Skip to main content Accessibility help
×
  • Cited by 95
  • 2nd edition
  • R. M. Dudley, Massachusetts Institute of Technology
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9781139014830

Book description

In this new edition of a classic work on empirical processes the author, an acknowledged expert, gives a thorough treatment of the subject with the addition of several proved theorems not included in the first edition, including the Bretagnolle–Massart theorem giving constants in the Komlos–Major–Tusnady rate of convergence for the classical empirical process, Massart's form of the Dvoretzky–Kiefer–Wolfowitz inequality with precise constant, Talagrand's generic chaining approach to boundedness of Gaussian processes, a characterization of uniform Glivenko–Cantelli classes of functions, Giné and Zinn's characterization of uniform Donsker classes, and the Bousquet–Koltchinskii–Panchenko theorem that the convex hull of a uniform Donsker class is uniform Donsker. The book will be an essential reference for mathematicians working in infinite-dimensional central limit theorems, mathematical statisticians, and computer scientists working in computer learning theory. Problems are included at the end of each chapter so the book can also be used as an advanced text.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Alexander, Kenneth S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probab. 12, 1041–1067.
Alexander, K. S. (1987). The central limit theorem for empirical processes on Vapnik-Červonenkis classes. Ann. Probab. 15, 178–203.
Alon, N., Ben-David, S., Cesa-Bianchi, N., and Haussler, D. (1997) Scale-sensitive dimensions, uniform convergence, and learnability. J. ACM 44, 615–663.
Andersen, Niels Trolle (1985a). The central limit theorem for non–separable valued functions. Z. Wahrsch. verw. Gebiete 70, 445–455.
Andersen, N. T. (1985b). The calculus of non-measurable functions and sets. Various Publ. Ser. no. 36, Matematisk Institut, Aarhus Universitet.
Andersen, N. T., and Dobrić, Vladimir (1987). The central limit theorem for stochastic processes. Ann. Probab. 15, 164–177.
Andersen, N. T., and Dobrić, V. (1988). The central limit theorem for stochastic processes II. J. Theoret. Probab. 1, 287–303.
Andersen, N. T., Gine, E., Ossiander, M., and Zinn, J. (1988). The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions. Probab. Theory Related Fields 77, 271–305.
Anderson, Theodore W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170–176.
Araujo, Aloisio, and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York.
Arcones, Miguel A., and Giné, E. (1993). Limit theorems for U-processes. Ann. Probab. 21, 1494–1542.
Assouad, Patrice (1981). Sur les classes de Vapnik-Červonenkis. C. R. Acad. Sci. Paris Sér. I 292, 921–924.
Assouad, P. (1982). Classes de Vapnik–Červonenkis et vitesse d'estimation (unpublished manuscript).
Assouad, P. (1983). Densité et dimension. Ann. Inst. Fourier (Grenoble) 33, no. 3, 233–282.
Assouad, P. (1985). Observations sur les classes de Vapnik–Červonenkis et la dimension combinatoire de Blei. In Séminaire d'analyse harmonique, 1983–84, Publ. Math. Orsay, Univ. Paris XI, Orsay, 92–112.
Assouad, P., and Dudley, R. M. (1990). Minimax nonparametric estimation over classes of sets (unpublished manuscript).
Aumann, Robert J. (1961). Borel structures for function spaces. Illinois J. Math. 5, 614–630.
Bahadur, Raghu Raj (1954). Sufficiency and statistical decision functions. Ann. Math. Statist. 25, 423–462.
Bakel'man, I. Ya. (1965). Geometric Methods of Solution of Elliptic Equations (in Russian). Nauka, Moscow.
Bakhvalov, N. S. (1959). On approximate calculation of multiple integrals. Vestnik Moskov. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim. 1959, No. 4, 3–18.
Bauer, Heinz (1981). Probability Theory and Elements of Measure Theory, 2nd ed. Academic Press, London.
Bennett, George W. (1962). Probability inequalities for the sum of bounded random variables. J. Amer. Statist. Assoc. 57, 33–15.
Berkes, István, and Philipp, Walter (1977). An almost sure invariance principle for the empirical distribution function of mixing random variables. Z. Wahrsch. verw. Gebiete 41, 115–137.
Bernštein, Sergei N. (1924). Ob odnom vidoizmenenii neravenstva Chebysheva i o pogreshnosti formuly Laplasa (in Russian). Uchen. Zapiski Nauchn.-issled. Kafedr Ukrainy, Otdel. Mat., vyp. 1, 38–48; reprinted in S. N. Bernštein, Sobranie Sochinenit [Collected Works], Tom IV, Teoriya Veroiatnostei, Matematicheskaya Statistika, Nauka, Moscow, 1964, pp. 71–79.
*Bernštein, S. N. (1927). Teoriya Veroiatnostei (Theory of Probability, in Russian). Moscow. 2nd ed., 1934.
Bickel, Peter J., and Doksum, Kjell A. (2001). Mathematical Statistics, 2nd ed., vol. 1. Prentice–Hall, New York.
Bickel, P. J., and Freedman, David A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9, 1196–1217.
Billingsley, Patrick (1968). Convergence of Probability Measures. Wiley, New York.
Birkhoff, Garrett (1935). Integration of functions with values in a Banach space. Trans. Amer. Math. Soc. 38, 357–378.
Birnbaum, Zygmunt W., and Orlicz, W. (1931). Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math. 3, 1–67.
Birnbaum, Z. W., and Tingey, F. H. (1951). One-sided confidence contours for probability distribution functions. Ann. Math. Statist. 22, 592–596.
Blum, J. R. (1955). On the convergence of empiric distribution functions. Ann. Math. Statist. 26, 527–529.
Blumberg, Henry (1935). The measurable boundaries of an arbitrary function. Acta Math. (Sweden) 65, 263–282.
Bochner, Salomon (1933). Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind. Fund. Math. 20, 262–276.
Bolthausen, Erwin (1978). Weak convergence of an empirical process indexed by the closed convex subsets of I2. Z. Wahrsch. verw. Gebiete 43, 173–181.
Bonnesen, Tommy, and Fenchel, Werner (1934). Theorie der konvexen Körper. Berlin, Springer; repr. Chelsea, New York, 1948.
Borell, Christer (1974). Convex measures on locally convex spaces. Ark. Mat. 12, 239–252.
Borell, C. (1975a). Convex set functions in d-space. Period. Math. Hungar. 6, 111–136.
Borell, C. (1975b). The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30, 207–216.
Borisov, Igor S. (1981). Some limit theorems for empirical distributions (in Russian). Abstracts of Reports, Third Vilnius Conf. Probability Th. Math. Statist. 1, 71–72.
Bousquet, O., Koltchinskii, V., and Panchenko, D. (2002). Some local measures of complexity of convex hulls and generalization bounds. COLT [Conference on Learning Theory], Lecture Notes on Artificial Intelligence 2375, 59–73.
Bretagnolle, Jean, and Massart, Pascal (1989). Hungarian constructions from the nonasymptotic viewpoint. Ann. Probab. 17, 239–256.
Bronshtein [Bronštein], E. M. (1976). ∈-entropy of convex sets and functions. Siberian Math. J. 17, 393–398, transl. from Sibirsk. Mat. Zh. 17, 508–514.
Brown, Lawrence D. (1986). Fundamentals of Statistical Exponential Families, Inst. Math. Statist. Lecture Notes–Monograph Ser. 9, Hayward, CA.
Cantelli, Francesco Paolo (1933). Sulla determinazione empirica della leggi di probabilità. Giorn. Ist. Ital. Attuari 4, 421–424.
Carl, Bernd (1982). On a characterization of operators from lq into a Banach space of type p with some applications to eigenvalue problems. J. Funct. Anal. 48, 394–407.
Carl, B. (1997). Metric entropy of convex hulls in Hilbert space. Bull. London Math. Soc. 29, 452–458.
Chernoff, Herman (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23, 493–507.
Chevet, Simone (1970). Mesures de Radon sur ℝn et mesures cylindriques. Ann. Fac. Sci. Univ. Clermont #43 (math., 6° fasc.), 91–158.
Clements, G. F. (1963). Entropies of several sets of real valued functions. Pacific J. Math 13, 1085–1095.
Coffman, E. G. Jr., and Lueker, George S. (1991). Probabilistic Analysis of Packing and Partitioning Algorithms.Wiley, New York.
Coffman, E. G., and Shor, Peter W. (1991). A simple proof of the upright matching bound. SIAM J. Discrete Math. 4, 48–57.
Cohn, Donald L. (1980). Measure Theory. Birkhäuser, Boston. (Second Ed., 2013.)
Cover, Thomas M. (1965). Geometric and statistical properties of systems of linear inequalities with applications to pattern recognition. IEEE Trans. Elec. Comp. EC-14 326–334.
*Csáki, E. (1974). Investigations concerning the empirical distribution function. Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl. 23 239–327; English transl. in Selected Transl. Math. Statist. Probab. 15 (1981), 229–317.
Csörgő, Miklós, and Horváth, Lajos (1993). Weighted Approximations in Probability and Statistics. Wiley, Chichester.
Csörgő, M., and Révész, Pal (1981). Strong Approximations in Probability and Statistics. Academic, New York.
Cuesta, J. A., and Matrán, C. (1989). Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab. 17, 1264–1276.
Danzer, Ludwig, Grünbaum, Branko, and Klee, Victor L. (1963). Helly's theorem and its relatives. Proc. Symp. Pure Math. (Amer. Math. Soc.) 7, 101–180.
Darmois, Georges (1951). Sur une propriété caractéristique de la loi de probabilité de Laplace. Comptes Rendus Acad. Sci. Paris 232, 1999–2000.
Darst, Richard B. (1971). C∞ functions need not be bimeasurable. Proc. Amer. Math. Soc. 27, 128–132.
Davis, Philip J., and Polonsky, Ivan (1972). Numerical interpolation, differentiation and integration. Chapter 25 in Handbook of Mathematical Functions, ed. M., Abramowitz and I. A., Stegun, Dover, New York, 9th printing.
DeHardt, John (1971). Generalizations of the Glivenko–Cantelli theorem. Ann. Math. Statist. 42, 2050–2055.
*Dobrushin, R. L. (1970). Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–186.
Donsker, M. D. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statist. 23, 277–281.
Doob, Joseph L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statist. 20, 393–403.
Drake, Frank R. (1974). Set Theory: An Introduction to Large Cardinals. North-Holland, Amsterdam.
Dudley, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10, 109–126.
Dudley, R. M. (1967a). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330.
Dudley, R. M. (1967b). Measures on non-separable metric spaces. Illinois J. Math. 11, 449–453.
Dudley, R. M. (1968). Distances of probability measures and random variables. Ann. Math. Statist. 39, 1563–1572.
Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probab. 1, 66–103.
Dudley, R. M. (1974). Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory 10, 227–236; Correction 26 (1979), 192–193.
Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6, 899–929; Correction 7 (1979), 909–911.
Dudley, R. M. (1980). Acknowledgment of priority: Second derivatives of convex functions. Math. Scand. 46, 61.
Dudley, R. M. (1981). Donsker classes of functions. In Statistics and Related Topics (Proc. Symp. Ottawa, 1980), North-Holland, New York, 341–352.
Dudley, R. M. (1982). Empirical and Poisson processes on classes of sets or functions too large for central limit theorems. Z. Wahrsch. verw. Gebiete 61, 355–368.
Dudley, R. M. (1984). A course on empirical processes. Ecole d'été de probabilités de St.-Flour, 1982. Lecture Notes in Math. (Springer) 1097, 1–142.
Dudley, R. M. (1985a). An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. In Probability in Banach Spaces V (Proc. Conf. Medford, 1984), Lecture Notes in Math. (Springer) 1153, 141–178.
Dudley, R. M. (1985b). The structure of some Vapnik–Červonenkis classes. In Proc. Berkeley Conf. in Honor of J. Neyman and J. Kiefer 2, 495–508. Wadsworth, Belmont, CA.
Dudley, R. M. (1987). Universal Donsker classes and metric entropy. Ann. Probab. 15, 1306–1326.
Dudley, R. M. (1990). Nonlinear functionals of empirical measures and the bootstrap. In Probability in Banach Spaces 7, Proc. Conf. Oberwolfach, 1988, Progress in Probability 21, Birkhäuser, Boston, 63–82.
Dudley, R. M. (1994). Metric marginal problems for set-valued or non-measurable variables. Probab. Theory Related Fields 100, 175–189.
Dudley, R. M. (2000). Notes on Empirical Processes. MaPhySto Lecture Notes 4, Aarhus, Denmark.
Dudley, R. M. (2002). Real Analysis and Probability. 2nd ed., Cambridge University Press, Cambridge.
Dudley, R. M., Giné, E., and Zinn, J. (1991). Uniform and universal Glivenko–Cantelli classes. J. Theoret. Probab. 4, 485–210.
Dudley, R. M., and Koltchinskii, V. I. (1994, 1996). Envelope moment conditions and Donsker classes. Theory Probab. Math. Statist. No. 51, 39–18; Ukrainian version, Teor. Ĭmovĭr. Mat. Stat. No. 51 (1994) 39–49.
Dudley, R. M., Kulkarni, S. R., Richardson, T., and Zeitouni, O. (1994). A metric entropy bound is not sufficient for learnability. IEEE Trans. Inform. Theory 40, 883–885.
Dudley, R. M., and Philipp, Walter (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. verw. Gebiete 62, 509–552.
Dunford, Nelson (1936). Integration and linear operations. Trans. Amer. Math. Soc. 40, 474–494.
Dunford, N., and Schwartz, Jacob T. (1958). Linear Operators. Part I: General Theory. Interscience, New York. Repr. 1988.
Durst, Mark, and Dudley, R. M. (1981). Empirical processes, Vapnik–Chervonenkis classes and Poisson processes. Probab. Math. Statist. (Wrocław) 1, no. 2, 109–115.
Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and the classical multinomial estimator. Ann. Math. Statist. 27, 642–669.
Eames, W., and May, L. E. (1967). Measurable cover functions. Canad. Math. Bull. 10, 519–523.
Effros, Edward G. (1965). Convergence of closed subsets in a topological space. Proc. Amer. Math. Soc. 16, 929–931.
Efron, Bradley (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1–26.
Efron, B., and Tibshirani, Robert J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.
Eggleston, H. G. (1958). Convexity. Cambridge University Press, Cambridge. Reprinted with corrections, 1969.
Eilenberg, Samuel, and Steenrod, Norman (1952). Foundations of Algebraic Topology. Princeton University Press, Princeton, NJ.
Eršov, M. P. (1975). The Choquet theorem and stochastic equations. Analysis Math. 1, 259–271.
Evstigneev, I. V. (1977). “Markov times” for random fields. Theory Probab. Appl. 22, 563–569; Teor. Veroiatnost. i Primenen. 22, 575–581.
Feldman, Jacob (1972). Sets of boundedness and continuity for the canonical normal process. Proc. Sixth Berkeley Symposium Math. Statist. Prob. 2, pp. 357–367. University of California Press, Berkeley and Los Angeles.
Feller, William (1968). An Introduction to Probability Theory and Its Applications. Vol. 1, 3rd ed. Wiley, New York.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. 2, 2nd ed. Wiley, New York.
Ferguson, Thomas S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York.
Fernique, Xavier (1964). Continuité des processus gaussiens. Comptes Rendus Acad. Sci. Paris 258, 6058–6060.
Fernique, X. (1970). Intégrabilité des vecteurs gaussiens. Comptes Rendus Acad. Sci. Paris Ser. A 270, 1698–1699.
Fernique, X. (1971). Régularité de processus gaussiens. Invent. Math. 12, 304–320.
Fernique, X. (1975). Régularité des trajectoires des fonctions aléatoires gaussiennes. Ecole d'ete de probabilites de St.-Flour, 1974. Lecture Notes in Math. (Springer) 480, 1–96.
Fernique, X. (1985). Sur la convergence étroite des mesures gaussiennes. Z. Wahrsch. verw. Gebiete 68, 331–336.
Fernique, X. (1997). Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens. Publications du Centre de Recherches Mathématiques, Montréal.
Fisher, Ronald Aylmer (1922). IX. On the mathematical foundations of theoretical statistics. Phil. Trans. Roy. Soc. London Sér. A 222, 309–368.
Freedman, David A. (1966). On two equivalence relations between measures. Ann. Math. Statist. 37, 686–689.
Gaenssler, Peter (1986). Bootstrapping empirical measures indexed by Vapnik–Chervonenkis classes of sets. In Probability Theory and Mathematical Statistics (Vilnius, 1985), Yu. V., Prohorov, V. A., Statulevičius, V. V., Sazonov, and B., Grigelionis, eds., VNU Science Press, Utrecht, 467–481.
Gaenssler, P., and Stute, Winfried (1979). Empirical processes: a survey of results for independent and identically distributed random variables. Ann. Probab. 7, 193–243.
*Gelfand, Izrail' Moiseevich (1936). Sur un lemme de la théorie des espaces linéaires. Communications de l'Institut des Sciences Math. et Mécaniques de l'Université de Kharkoff et de la Societé Math. de Kharkov (= Zapiski Khark. Mat. Obshchestva) (Ser. 4) 13, 35–40.
Gelfand, I. M. (1938). Abstrakte Funktionen und lineare Operatoren. Mat. Sbornik (N. S.) 4, 235–286.
Giné, Evarist (1974). On the central limit theorem for sample continuous processes. Ann. Probab. 2, 629–641.
Giné, E. (1997). Lectures on some aspects of the bootstrap. In Lectures on Probability Theory and Statistics, Ecole d'été de probabilités de Saint-Flour (1996), ed. P., Bernard. Lecture Notes in Math. (Springer) 1665, 37–151.
Giné, E., and Zinn, Joel (1984). Some limit theorems for empirical processes. Ann. Probab. 12, 929–989.
Giné, E., and Zinn, J. (1986). Lectures on the central limit theorem for empirical processes. In Probability and Banach Spaces, Proc. Conf. Zaragoza, 1985, Lecture Notes in Math. 1221, 50–113. Springer, Berlin.
Giné, E. and Zinn, J. (1990). Bootstrapping general empirical measures. Ann. Probab. 18, 851–869.
Giné, E. and Zinn, J. (1991). Gaussian characterization of uniform Donsker classes of functions. Ann. Probab. 19, 758–782.
Glivenko, V. I. (1933). Sulla determinazione empirica della leggi di probabilità. Giorn. Ist. Ital. Attuari 4, 92–99.
Gnedenko, B. V., and Kolmogorov, A. N. (1949). Limit Distributions for Sums of Independent Random Variables. Moscow. Transl. and ed. by K. L., Chung, Addison-Wesley, Reading, Mass., 1954, rev. ed. 1968.
Goffman, C., and Zink, R. E. (1960). Concerning the measurable boundaries of a real function. Fund. Math. 48, 105–111.
Gordon, Yehoram (1985). Some inequalities for Gaussian processes and applications. Israel J. Math. 50, 265–289.
Graves, L. M. (1927). Riemann integration and Taylor's theorem in general analysis. Trans. Amer. Math. Soc. 29, 163–177.
Gross, Leonard (1962). Measurable functions on Hilbert space. Trans. Amer. Math. Soc. 105, 372–390.
Gruber, P. M. (1983). Approximation of convex bodies. In Convexity and its Applications, ed. P. M., Gruber and J. M., Wills. Birkhäuser, Basel, pp. 131–162.
Gutmann, Samuel (1981). Unpublished manuscript.
Hall, Peter (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.
Halmos, Paul R., and Savage, Leonard Jimmie (1949). Application of the Radon–Nikodym theorem to the theory of sufficient statistics. Ann. Math. Statist. 20, 225–241.
Harary, F. (1969). Graph Theory. Addison-Wesley, Reading, MA.
Harding, E. F. (1967). The number of partitions of a set of N points in k dimensions induced by hyperplanes. Proc. Edinburgh Math. Soc. (Ser. II) 15, 285–289.
Hausdorff, Felix (1914). Mengenlehre, transl. by J. P., Aumann et al. as Set Theory. 3rd English ed. of transl. of 3rd German edition (1937). Chelsea, New York, 1978.
Haussler, D. (1995). Sphere packing mumbers for subsets of the Boolean n-cube with bounded Vapnik–Chervonenkis dimension. J. Combin. Theory Ser. A 69, 217–232.
Hewitt, Edwin, and Ross, Kenneth A. (1979). Abstract Harmonic Analysis, vol. 1, 2nd ed. Springer, Berlin.
Hobson, E. W. (1926). The Theory of Functions of a Real Variable and the Theory of Fourier's Series, vol. 2, 2nd ed. Repr. Dover, New York, 1957.
Hoeffding, Wassily (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30.
Hoffman, Kenneth (1975). Analysis in Euclidean Space. Prentice-Hall, Englewood Cliffs, NJ.
Hoffmann-Jørgensen, Jørgen (1974). Sums of independent Banach space valued random elements. Studia Math. 52, 159–186.
Hoffmann-Jørgensen, J. (1984). Stochastic Processes on Polish Spaces. Published (1991): Various Publication Series no. 39, Matematisk Institut, Aarhus Universitet.
Hoffmann-Jørgensen, J. (1985). The law of large numbers for non-measurable and non-separable random elements. Astérisque 131, 299–356.
Hörmander, L. (1983). The Analysis of Linear Partial Differential Operators I. Springer, Berlin.
Hu, Inchi (1985). A uniform bound for the tail probability of Kolmogorov–Smirnov statistics. Ann. Statist. 13, 821–826.
Il'in, V. A., and Pozniak, E. G. (1982). Fundamentals of Mathematical Analysis. Transl. from the 4th Russian ed. (1980) by V. Shokurov. Mir, Moscow.
Itô, Kiyosi, and McKean, Henry P. Jr. (1974). Diffusion Processes and Their Sample Paths. Springer, Berlin.
Jain, Naresh C., and Marcus, Michael B. (1975). Central limit theorems for C(S)-valued random variables. J. Funct. Anal. 19, 216–231.
Kac, M. (1949). On deviations between theoretical and empirical distributions. Proc. Nat. Acad. Sci. USA 35, 252–257.
Kahane, Jean-Pierre (1985). Some Random Series ofFunctions, 2nd ed. Cambridge University Press, Cambridge.
Kahane, J.-P. (1986). Une inégalité du type de Slepian et Gordon sur les processus gaussiens. Israel J. Math. 55, 109–110.
*Kantorovich, L. V. (1942). On the transfer of masses. Dokl. AkadNauk. SSSR 37, 7–8.
Kantorovich, L. V., and Rubinshtein, G. Sh. (1958). On a space of completely additive functions. Vestnik Leningrad Univ. 13 no. 7, Ser. Math. Astron. Phys. 2, 52–59 (in Russian).
Kartashev, A. P., and Rozhdestvenskiĭ, B. L. (1984). Matematicheskiĭ Analiz (Mathematical Analysis; in Russian). Nauka, Moscow. French transl.: Kartachev, A., and Rojdestvenski, B.Analyse mathématique, transl. by Djilali Embarek. Mir, Moscow, 1988.
Kelley, John L. (1955). General Topology. Van Nostrand, Princeton, NJ. Repr. Springer, New York, 1975.
Kolmogorov, A. N. (1933a). Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung. Izv. Akad. Nauk SSSR (Bull. Acad. Sci. URSS) (Ser. 7) no. 3, 363–372.
*Kolmogorov, A. N. (1933b). Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4, 83–91.
Kolmogorov, A. N. (1955). Bounds for the minimal number of elements of an ε-net in various classes of functions and their applications to the question of representability of functions of several variables by superpositions of functions of fewer variables (in Russian). Uspekhi Mat. Nauk 10, no. 1 (63), 192–194.
Kolmogorov, A. N. (1956). On Skorokhod convergence. Theory Probab. Appl. 1, 215–222.
Kolmogorov, A. N., and Tikhomirov, V. M. (1959). ε-entropy and ε-capacity of sets in function spaces. Uspekhi Mat. Nauk 14, no. 2, 3–86 = Amer. Math. Soc. Transl. (Serr. 2) 17 (1961), 277–364.
Koltchinskii, Vladimir I. (1981). On the central limit theorem for empirical measures. Theor. Probab. Math. Statist. 24, 71–82. Transl. from Teor. Verojatnost. i Mat. Statist. (1981) 24, 63–75.
*Komatsu, Y. (1955). Elementary inequalities for Mills ratio. Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs. 4, 69–70.
Komlós, János, Major, Péter, and Tusnády, Gábor (1975). An approximation of partial sums of independent RV'-s and the sample DF. I. Z. Wahrsch. verw. Gebiete 32, 111–131.
Krasnosel'skiĭ, M. A., and Rutitskii, Ia. B. (1961). Convex Functions and Orlicz Spaces. Transl. from Russian by L. F., Boron. Noordhoff, Groningen.
Landau, H. J., and Shepp, Lawrence A. (1971). On the supremum of a Gaussian process. Sankhyā Ser. A 32, 369–378.
Lang, Serge (1993). Real and Functional Analysis, 3rd ed. of Real Analysis, Springer, New York.
Ledoux, Michel (1996). Isoperimetry and Gaussian analysis. In Ecole d'èté de probabilités de St.-Flour, 1994, Lecture Notes in Math. (Springer) 1648, 165–294.
Ledoux, M. (2001). The Concentration of Measure Phenomenon, Math. Surveys and Monographs 89, American Mathematical Society, Providence, RI.
Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces. Springer, Berlin.
Lehmann, Erich L. (1986, 1991). Testing Statistical Hypotheses, 2nd ed. repr. 1997, Springer, New York.
Leighton, Thomas, and Shor, P. (1989). Tight bounds for minimax grid matching, with applications to the average case analysis of algorithms. Combinatorica 9, 161–187.
Lorentz, G. G. (1966). Metric entropy and approximation. Bull. Amer. Math. Soc. 72, 903–937.
Luxemburg, W. A. J., and Zaanen, A. C. (1956). Conjugate spaces of Orlicz spaces. Akad. Wetensch. Amsterdam Proc. Ser. A 59 = Indag. Math. 18, 217–228.
Luxemburg, W. A. J., and Zaanen, A. C. (1983). Riesz Spaces, vol. 2, North-Holland, Amsterdam.
Marcus, Michael B. (1974). The ε-entropy of some compact subsets of lp. J. Approximation Th. 10, 304–312.
Marcus, M. B., and Shepp, L. A. (1972). Sample behavior of Gaussian processes. Proc. Sixth Berkeley Symp. Math. Statist. Prob. (1970) 2, 423–441. University of California Press, Berkeley and Los Angeles.
Marczewski, E., and Sikorski, R. (1948). Measures in non-separable metric spaces. Colloq. Math. 1, 133–139.
Mason, David M. (1998). Notes on the the KMT Brownian bridge approximation to the uniform empirical process. Preprint.
Mason, D. M., and van Zwet, Willem (1987). A refinement of the KMT inequality for the uniform empirical process. Ann. Probab. 15, 871–884.
Massart, Pascal (1990). The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality. Ann. Probab. 18, 1269–1283.
Mourier, Edith (1951), Lois de grands nombres et théorie ergodique. C. R. Acad. Sci. Paris 232, 923–925.
Mourier, E. (1953). Éléments aléatoires dans unespace de Banach. Ann. Inst. H. Poincaré 13, 161–244.
Nachbin, Leopoldo J. (1965). The Haar Integral. Transl. from Portuguese by L., Bechtolsheim. Van Nostrand, Princeton, NJ.
Nanjundiah, T. S. (1959). Note on Stirling's formula. Amer. Math. Monthly 66, 701–703.
Natanson, I. P. (1957). Theory of Functions of a Real Variable, vol. 2, 2nd ed. Transl. by L. F., Boron, Ungar, New York, 1961.
Neveu, Jacques (1977). Processus ponctuels. Ecole d'été de probabilités de St.-Flour VI, 1976, Lecture Notes in Math. (Springer) 598, 249–445.
*Neyman, Jerzy (1935). Su un teorema concernente le cosidette statistiche sufficienti. Giorn. Ist. Ital. Attuari 6, 320–334.
Okamoto, Masashi (1958). Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Statist. Math. 10, 29–35.
Olkin, I., and Pukelsheim, F. (1982). The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48, 257–263.
Ossiander, Mina (1987). A central limit theorem under metric entropy with L2 bracketing. Ann. Probab. 15, 897–919.
Pachl, Jan K. (1979). Two classes of measures. Colloq. Math. 42, 331–340.
Panchenko, Dmitry (2004). 18.465 Topics in Statistics, OpenCourseWare, MIT.
Pettis, Billy Joe (1938). On integration in vector spaces. Trans. Amer. Math. Soc. 44, 277–304.
Pisier, Gilles (1981). Remarques sur un resultat non publié de B. Maurey. Séminaire d'Analyse Fonctionelle 1980–1981V.1–V.12. Ecole Polytechnique, Centre de Mathematiques, Palaiseau.
Pisier, G. (1983). Some applications of the metric entropy bound in harmonic analysis. In Banach Spaces, Harmonic Analysis, and Probability Theory, Proc. Univ. Connecticut 1980–1981, eds. R. C., Blei and S. J., Sidney, Lecture Notes in Math. (Springer) 995, 123–154.
Pollard, David B. (1982). A central limit theorem for empirical processes. J. Austral. Math. Soc. Ser. A 33, 235–248.
Pollard, D. (1982). A central limit theorem for k-means clustering. Ann. Probab. 10, 919–926.
Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
Pollard, D. (1985). New ways to prove central limit theorems. Econometric Theory 1, 295–314.
Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference Series in Probab. and Statist. 2. Inst. Math. Statist. and Amer. Statist. Assoc.
Posner, Edward C., Rodemich, Eugene R., and Rumsey, Howard Jr. (1967). Epsilon entropy of stochastic processes. Ann. Math. Statist. 38, 1000–1020.
Posner, E. C., Rodemich, E. R., and Rumsey, H. (1969). Epsilon entropy of Gaussian processes. Ann. Math. Statist. 40, 1272–1296.
Price, G. B. (1940). The theory of integration. Trans. Amer. Math. Soc. 47, 1–50.
Pyke, Ronald (1968). The weak convergence of the empirical process with random sample size. Proc. Cambridge Philos. Soc. 64, 155–160.
Rademacher, Hans (1919). Über partielle und totale Differenzierbarkeit I. Math. Ann. 79, 340–359.
Radon, Johann (1921). Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83, 113–115.
Rao, B. V. (1971). Borel structures for function spaces. Colloq. Math. 23, 33–38.
Rao, C. Radhakrishna (1973). Linear Statistical Inference and Its Applications. 2nd ed. Wiley, New York.
Reshetnyak, Yu. G. (1968). Generalized derivatives and differentiability almost everywhere. Mat. Sb. 75, 323–334 (Russian) = Math. USSR-Sb. 4, 293–302 (English transl.).
Rhee, WanSoo, and Talagrand, M. (1988). Exact bounds for the stochastic upward matching problem. Trans. Amer. Math. Soc. 307, 109–125.
Rudin, Walter (1974). Real and Complex Analysis, 2nd ed. McGraw-Hill, New York.
Ryll-Nardzewski, C. (1953). On quasi-compact measures. Fund. Math. 40, 125–130.
Sainte-Beuve, Marie-France (1974). On the extension of von Neumann–Aumann's theorem. J. Funct. Anal. 17, 112–129.
Sauer, Norbert (1972). On the density of families of sets. J. Combin. Theory Ser. A 13, 145–147.
Sazonov, Vyacheslav V. (1962). On perfect measures (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 26, 391–414.
Schaefer, Helmut H. (1966). Topological Vector Spaces. Macmillan, New York. 3rd printing, corrected, Springer, New York, 1971.
Schaerf, Henry M. (1947). On the continuity of measurable functions in neighborhood spaces. Portugaliae Math. 6, 33–44, 66.
Schaerf, H. M. (1948). On the continuity of measurable functions in neighborhood spaces II. Portugaliae Math. 7, 91–92.
Schläfli, Ludwig (1901, posth.). Theorie der vielfachen Kontinuität, republ. 1991, Cornell University Library, Ithaca, NY; also in Gesammelte Math. Abhandlungen I, Birkhäuser, Basel, 1950.
Schmidt, Wolfgang M. (1975). Irregularities of distribution IX. Acta Arith. 27, 385–396.
Schwartz, Laurent (1966). Sur le théorème du graphe fermé. C. R. Acad. Sci. Paris Sér. A 263, A602–605.
Shao, Jun, and Tu, Dongsheng (1995). The Jackknife and Bootstrap. Springer, New York.
Shelah, Saharon (1972). A combinatorial problem: stability and order for models and theories in infinitary languages. Pacific J. Math. 41, 247–261.
Shor, Peter W. (1986). The average-case analysis of some on-line algorithms for bin packing. Combinatorica 6, 179–200.
Shorack, Galen, and Wellner, Jon A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
Shortt, Rae M. (1983). Universally measurable spaces: an invariance theorem and diverse characterizations. Fund. Math. 121, 169–176.
Shortt, R. M. (1984). Combinatorial methods in the study of marginal problems over separable spaces. J. Math. Anal. Appl. 97, 462–479.
Singh, Kesar (1981). On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 9, 1187–1195.
Skitovič, V. P. (1954). Linear combinations of independent random variables and the normal distribution law. Izv. Akad. Nauk SSSR Ser. Mat. 18, 185–200 (in Russian).
Skorohod, Anatoli V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl. 1, 261–290.
Skorohod, A. V. (1976). On a representation of random variables. Theory Probab. Appl. 21, 628–632 (English), 645–648 (Russian).
Slepian, David (1962). The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41, 463–501.
*Smirnov, N. V. (1944). Approximate laws of distributions of random variables from empirical data. Uspekhi Mat. Nauk 10, 179–206 (in Russian).
Smoktunowicz, Agata (1997). A remark on Vapnik–Chervonienkis classes. Colloq. Math. 74, 93–98.
Steele, J. Michael (1975). Combinatorial entropy and uniform limit laws. Ph. D. dissertation, mathematics, Stanford University, Stanford, CA.
Steele, J. M. (1978a). Existence of submatrices with all possible columns. J. Combin. Theory Ser. A 24, 84–88.
Steele, J. M. (1978b). Empirical discrepancies and subadditive processes. Ann. Probab. 6, 118–127.
Stein, Elias M., and Weiss, Guido (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ.
Steiner, Jakob (1826). Einige Gesetze über die Theilung der Ebene und des Raumes. J. Reine Angew. Math. 1, 349–364.
Stone, Arthur H. (1948). Paracompactness and product spaces. Bull. Amer. Math. Soc. 54, 631–632.
Strobl, Franz (1994). Zur Theorie empirischer Prozesse. Dissertation, Mathematik, Universität München.
Strobl, F. (1995). On the reversed sub-martingale property of empirical discrepancies in arbitrary sample spaces. J. Theoret. Probab. 8, 825–831.
Sudakov, Vladimir N. (1969). Gaussian measures, Cauchy measures and ε-entropy. Soviet Math. Dokl. 10, 310–313.
Sudakov, V. N. (1971). Gaussian random processes and measures of solid angles in Hilbert space. Soviet Math. Dokl. 12, 412–415.
Sudakov, V. N. (1973). A remark on the criterion of continuity of Gaussian sample function. In Proc. Second Japan-USSR Symp. Probab. Theory, Kyoto, 1972, ed. G. Maruyama, Yu. V. Prokhorov; Lecture Notes in Math. (Springer) 330, 444–454.
Sun, Tze-Gong (1976). Draft Ph. D. dissertation, Mathematics, University of Washington, Seattle.
Sun, Tze-Gong, and Pyke, R. (1982). Weak convergence of empirical processes. Technical Report, Dept. of Statistics, University of Washington, Seattle.
Talagrand, Michel (1987). Regularity of Gaussian processes. Acta Math. (Sweden) 159, 99–149.
Talagrand, M. (1992). A simple proof of the majorizing measure theorem. Geom. Funct. Anal. 2, 118–125.
Talagrand, M. (1994). Matching theorems and empirical discrepancy computations using majorizing measures. J. Amer. Math. Soc. 7, 455–537.
Talagrand, M. (2005). The Generic Chaining. Springer, Berlin.
Topsøe, Flemming (1970). Topology and Measure. Lecture Notes in Math. (Springer) 133.
Uspensky, James V. (1937). Introduction to Mathematical Probability. McGraw-Hill, New York.
van der Vaart, Aad [W.] (1996). New Donsker classes. Ann. Probab. 24, 2128–2140.
van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.
Vapnik, Vladimir N., and Červonenkis, Alekseĭ Ya. (1968). Uniform convergence of frequencies of occurrence of events to their probabilities. Dokl. Akad. Nauk SSSR 181, 781–783 (Russian) = Sov. Math. Doklady 9, 915–918 (English).
Vapnik, V. N., and Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 = Teor. Veroiatnost. i Primenen. 16, 264–279.
Vapnik, V. N., and (Červonenkis, A. Ya. (1974). TeoriyaRaspoznavaniya Obrazov: Statisticheskie problemy obucheniya [Theory of Pattern Recognition; Statistical problems of learning; in Russian]. Nauka, Moscow. German ed.: Theorie der Zeichenerkennung, by W. N. Wapnik and A. J. Tscherwonenkis, transl. by K. G. Stöckel and B. Schneider, ed. S. Unger and K. Fritzsch. Akademie-Verlag, Berlin, 1979 (Elektronisches Rechnen und Regeln, Sonderband).
Vapnik, V. N., and Červonenkis, A. Ya. (1981). Necessary and sufficient conditions for the uniform convergence of means to their expectations. Theory Probab. Appl. 26, 532–553.
Vorob'ev, N. N. (1962). Consistent families of measures and their extensions. Theory Probab. Appl. 7, 147–163 (English), 153–169 (Russian).
Vulikh, B. Z. (1961). Introduction to the Theory of Partially Ordered Spaces (transl. from Russian by L. F., Boron, 1967). Wolters-Noordhoff, Groningen.
*Wasserstein [Vaserštein], L. N. (1969). Markov processes of spaces describing large families of automata. Prob. Information Transmiss. 5, 47–52.
Watson, D. (1969). On partitions of n points. Proc. Edinburgh Math. Soc. 16, 263–264.
Wenocur, Roberta S., and Dudley, R. M. (1981). Some special Vapnik–Čservonenkis classes. Discrete Math. 33, 313–318.
Whittaker, E. T., and Watson, G. N. (1927). Modern Analysis, 4th ed., Cambridge University Press, Cambridge, repr. 1962.
Wichura, Michael J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41, 284–291.
Wolfowitz, Jacob (1954). Generalization of the theorem of Glivenko–Cantelli. Ann. Math. Statist. 25, 131–138.
Wright, F. T. (1981). The empirical discrepancy over lower layers and a related law of large numbers. Ann. Probab. 9, 323–329.
Young, William Henry (1912). On classes of summable functions and their Fourier series. Proc. Roy. Soc. London Ser. A 87, 225–229.
Zakon, Elias (1965). On “essentially metrizable” spaces and on measurable functions with values in such spaces. Trans. Amer. Math. Soc. 119, 443–453.
Ziegler, Klaus (1994). On functional central limit theorems and uniform laws of large numbers for sums of independent processes. Dissertation, Mathematik, Universität München.
*Ziegler, K. (1997a). A maximal inequality and a functional central limit theorem for set-indexed empirical processes. Results Math. 31, 189–194.
*Ziegler, K. (1997b). On Hoffmann-Jørgensen-type inequalities for outer expectations with applications. Results Math. 32, 179–192.
Ziemer, William P. (1989). Weakly Differentiable Functions. Springer, New York.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.