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Series Preface

With remarkable vision, Prof. Otto Hutzinger initiated The Handbook of Environ-
mental Chemistry in 1980 and became the founding Editor-in-Chief. At that time,

environmental chemistry was an emerging field, aiming at a complete description

of the Earth’s environment, encompassing the physical, chemical, biological, and

geological transformations of chemical substances occurring on a local as well as a

global scale. Environmental chemistry was intended to provide an account of the

impact of man’s activities on the natural environment by describing observed

changes.

While a considerable amount of knowledge has been accumulated over the last

three decades, as reflected in the more than 70 volumes of The Handbook of
Environmental Chemistry, there are still many scientific and policy challenges

ahead due to the complexity and interdisciplinary nature of the field. The series

will therefore continue to provide compilations of current knowledge. Contribu-

tions are written by leading experts with practical experience in their fields. The
Handbook of Environmental Chemistry grows with the increases in our scientific

understanding, and provides a valuable source not only for scientists but also for

environmental managers and decision-makers. Today, the series covers a broad

range of environmental topics from a chemical perspective, including methodolog-

ical advances in environmental analytical chemistry.

In recent years, there has been a growing tendency to include subject matter of

societal relevance in the broad view of environmental chemistry. Topics include

life cycle analysis, environmental management, sustainable development, and

socio-economic, legal and even political problems, among others. While these

topics are of great importance for the development and acceptance of The Hand-
book of Environmental Chemistry, the publisher and Editors-in-Chief have decided
to keep the handbook essentially a source of information on “hard sciences” with a

particular emphasis on chemistry, but also covering biology, geology, hydrology

and engineering as applied to environmental sciences.

The volumes of the series are written at an advanced level, addressing the needs

of both researchers and graduate students, as well as of people outside the field of
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“pure” chemistry, including those in industry, business, government, research

establishments, and public interest groups. It would be very satisfying to see

these volumes used as a basis for graduate courses in environmental chemistry.

With its high standards of scientific quality and clarity, The Handbook of Envi-
ronmental Chemistry provides a solid basis from which scientists can share their

knowledge on the different aspects of environmental problems, presenting a wide

spectrum of viewpoints and approaches.

The Handbook of Environmental Chemistry is available both in print and online

via www.springerlink.com/content/110354/. Articles are published online as soon

as they have been approved for publication. Authors, Volume Editors and Editors-

in-Chief are rewarded by the broad acceptance of The Handbook of Environmental
Chemistry by the scientific community, from whom suggestions for new topics to

the Editors-in-Chief are always very welcome.

Dami�a Barceló
Andrey G. Kostianoy

Editors-in-Chief
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Preface

Freshwater Microplastics as Emerging Contaminants:

Much Progress, Many Questions

Historically – if one can say that given the infancy of the field – environmental

plastic debris has been the baby of marine research. Driven by the rediscovery of

long forgotten, 1970s studies on the occurrence of small plastic fragments (today

termed microplastics) in the oceans, oceanographers and marine biologists

resurrected the topic in the early 2000s. Since then, the field has rapidly expanded

and established that plastics are ubiquitous in the marine system, from the Arctic to

Antarctic and from the surface to the deep sea.

While obviously the sources of environmental plastics are land-based, much less

research has been dedicated to investigating them in freshwater systems. At the

time of writing this book, less than four percent of publications had a freshwater

context, reflecting the idea that streams, rivers, and lakes are mere transport routes

transferring plastics to the oceans similar to a sewer. Because this is too simplistic,

this book is dedicated to the in-between. Our authors explore the state of the

science, including the major advances and challenges, with regard to the sources,

fate, abundance, and impacts of microplastics on freshwater ecosystems. Despite

the many gaps in our knowledge, we highlight that microplastics are pollutants of

emerging concern independent of the salinity of the surrounding medium.

Environmental (micro)plastics are what some call a wicked problem, i.e., there

is considerable complexity involved when one tries to understand the impact of

these synthetic materials on the natural world. Just as an example, there is no such

thing as “the microplastic.” Currently, there are in commerce more than 5,300

grades of synthetic polymers.1 Their heterogeneous physico-chemical properties

will likely result in very heterogeneous fates and effects once they enter the

1According to the plastics industry’s information system CAMPUS (http://www.campusplastics.

com, last visited on June 20, 2017).
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environment. In the light of this, treating microplastics as a single pollutant does not

make sense. Therefore, we kick off the book by giving a brief overview on what

plastics are, where they come from, and where they go to in the environment. As the

research on engineered nanomaterials faces similar challenges, we then look more

deeply into the (dis)similarities of nanoparticles and microplastics and try to learn

from past experiences.

We continue with five chapters focusing on the abundance of microplastics in

freshwater systems, touching on analytical challenges, discussing case studies from

Europe, Asia, and Africa as well as approaches for modeling the fate and transport

of microplastics. As the biological interactions of synthetic polymers will drive

their environmental impacts, we review the state of the science with regard to their

toxicity in freshwater species and biofilm formation. While, admittedly, progress in

this area is slow, we already learned that “It’s the ecology, stupid!” to paraphrase

Bill Clinton.

The last part of the book is dedicated to the question how society and

microplastics interact. We take a sociological perspective on the risk perception

of the issue at hand and discuss how this “vibrates” in the medial and political realm

and the society at large. While the uncertainty in our understanding is still enor-

mous, we conclude our book with an outlook on how to solve the problem of

environmental plastics. We have in our hands a plethora of regulatory instruments

ranging from soft to hard measures, of which some are already applied. However,

because the linear economical model our societies are built on is at the heart of the

problem, we critically revisit available solutions and put it into the larger context of

an emerging circular economy.

Given the wickedness of the plastics problem in terms of material properties,

analytical challenges, biological interactions, and resonance in society, we clearly

need an inter- and transdisciplinary effort to tackle it. We hope this book promotes

such view. We also hope it conveys the idea that we need to embrace the inherent

complexity to solve it. We thank our authors, reviewers, the publisher, and all

funders for following this path and making this book happen (and open access).

Frankfurt am Main, Germany Martin Wagner

June 2017 Scott Lambert
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Microplastics Are Contaminants of Emerging

Concern in Freshwater Environments: An

Overview

Scott Lambert and Martin Wagner

Abstract In recent years, interest in the environmental occurrence and effects of

microplastics (MPs) has shifted towards our inland waters, and in this chapter we

provide an overview of the issues that may be of concern for freshwater environ-

ments. The term ‘contaminant of emerging concern’ does not only apply to chem-

ical pollutants but to MPs as well because it has been detected ubiquitously in

freshwater systems. The environmental release of MPs will occur from a wide

variety of sources, including emissions from wastewater treatment plants and from

the degradation of larger plastic debris items. Due to the chemical makeup of plastic

materials, receiving environments are potentially exposed to a mixture of micro-

and nano-sized particles, leached additives, and subsequent degradation products,

which will become bioavailable for a range of biota. The ingestion of MPs by

aquatic organisms has been demonstrated, but the long-term effects of continuous

exposures are less well understood. Technological developments and changes in

demographics will influence the types of MPs and environmental concentrations in

the future, and it will be important to develop approaches to mitigate the input of

synthetic polymers to freshwater ecosystems.

Keywords Degradation, Ecosystem effects, Fate, Pollutants, Polymers, Sources,

Toxicity
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1 Introduction

Anthropogenic activity has resulted in the deposition of a complex combination of

materials in lake sediments, including synthetic polymers (plastics) that differ

greatly from the Holocene signatures. Accordingly, plastics are considered one

indicator of the Anthropocene [1]. Plastic has for some time been known to be a

major component of riverine pollution [2–6], and plastic degradation products have

been noted as a potential issue for soil environments [7]. However, up until recently

the main focus of research on plastic pollution has been the marine environment. To

highlight this, a literature search on Thomson Reuters’ ISI Web of Science returns

1,228 papers containing the term ‘microplastic*’, of which only a subset of 45 publi-
cations (3.7%) contains the term ‘freshwater’. This has started to change in recent

years, and attention is now also been directed towards both the terrestrial [8, 9] and

freshwater environments [8, 10, 11]. These publications point out the lack of know-

ledge for freshwater and terrestrial environments in terms of the occurrence and

impacts of plastics debris.

Monitoring studies have quantified microscopic plastics debris, so-called micro-

plastics (MPs), in freshwater systems, including riverine beaches, surface waters

and sediments of rivers, lake, and reservoirs [12–19]. Although far less data is

available compared to marine systems, these studies highlight that MP is ubiquitous

and concentrations are comparable [20]. Alongside the monitoring data, ecotoxico-

logical studies have mainly explored MP ingestion by various species and their

effects on life history parameters [21–24]. While the majority of studies used

primary microspheres of polyethylene (PE) and polystyrene (PS) at high concen-

trations [25] over short-term exposures, there is some evidence that MPs may pose a

risk to freshwater ecosystems [26]. In addition, there is concern that long-term

exposure may lead to bioaccumulation of submicron particles with wider impli-

cations for environmental health [27–29].

This chapter provides an overview of MPs and the issues, which may be of

concern to freshwater environments. The first section provides a background to the

topic of discussion by describing and defining plastic materials, MPs, emerging

contaminants. Subsequent sections then discuss the potential input, fate and trans-

portation, effects, and potential risk management options for plastics and MPs in

freshwater environments.

2 Plastics and Microplastics: An Overview

In this section, some context to the topic of environmental MPs is given by

(1) providing a brief historical overview of the development of plastic materials,

(2) describing the complex chemical composition of plastic material, and (3) defin-

ing MPs as a contaminants of emerging concern.

2 S. Lambert and M. Wagner



2.1 A Brief Overview of Plastic Development

The creation of new synthetic chemicals combined with the engineering capabili-

ties of mass production has made plastics one of the most popular materials in

modern times. Today’s major usage of plastic materials can be traced back to the

1800s with the development of rubber technology. One of the key breakthroughs in

this area was the discovery of vulcanisation of natural rubber by Charles Goodyear

[30]. Throughout the 1800s a number of attempts were made to develop synthetic

polymers including polystyrene (PS) and polyvinyl chloride (PVC), but at this time

these materials were either too brittle to be commercially viable or would not keep

their shape. The first synthetic polymer to enter mass production was Bakelite, a

phenol-formaldehyde resin, developed by the Belgian chemist Leo Baekeland in

1909 [31]. Later, around the 1930s the modern forms of PVC, polyethylene

terephthalate (PET), polyurethane (PUR), and a more processable PS were devel-

oped [32]. The early 1950s saw the development of high-density polyethylene

(HDPE) and polypropylene (PP; Table 1). In the 1960s, advances in the material

sciences led to the development of plastic materials produced other from natural

resources [34], such as the bacterial fermentation of sugars and lipids, and include

Table 1 A brief profile of plastic development based on Lambert [33]

Year Polymer type Inventor/notes

1839 Natural rubber latex Charles Goodyear

1839 Polystyrene Discovered by Eduard Simon

1862 Parkesine Alexander Parkes

1865 Cellulose acetate Paul Schützenberger

1869 Celluloid John Wesley Hyatt

1872 Polyvinyl chloride First created by Eugen Baumann

1894 Viscose rayon Charles Frederick Cross

1909 Bakelite Leo Hendrik Baekeland

1926 Plasticised PVC Walter Semon

1933 Polyvinylidene chloride Ralph Wiley

1935 Low-density polyethylene Reginald Gibson and Eric Fawcett

1936 Acrylic or polymethyl methacrylate

1937 Polyurethane Otto Bayer and co-workers

1938 Polystyrene As a commercially viable polymer

1938 Polyethylene terephthalate John Whinfield and James Dickson

1942 Unsaturated polyester John Whinfield and James Dickson

1951 High-density polyethylene Paul Hogan and Robert Banks

1951 Polypropylene Paul Hogan and Robert Banks

1953 Polycarbonate Hermann Schnell

1954 Styrofoam Ray McIntire

1960 Polylactic acid Patrick Gruber is credited with inventing

a commercially viable process

1978 Linear low-density polyethylene DuPont

Microplastics Are Contaminants of Emerging Concern in Freshwater. . . 3



polyhydroxyalkanoates (PHA), polylactides (PLA), aliphatic polyesters, and poly-

saccharides [35]. PLA is on the verge of entering into bulk production, while PHA

production is between pilot plant and commercial stage [36, 37].

2.2 Describing Plastic Materials

Plastics are processable materials based on polymers [38], and to make them into

materials fit for purpose, they are generally processed with a range of chemical

additives (Table 2). These compounds are used in order to adjust the materials

properties and make them suitable for their intended purpose. Therefore, within

polymer classifications plastic materials can still differ in structure and performance

depending on the type and quantity of additives they are compounded with. More

recently, technological advances have seen the development of new applications of

elements based on nanoscales that are now producing plastic nanocomposites. The

plastics industry is expected to be a major field for nanotechnology innovation. It is

estimated that by 2020, the share of nanocomposites among plastics in the USA will

be 7% [39]. These nanocomposites include materials that are reinforced with nano-

fillers (nano-clay and nano-silica) for weight reduction, carbon nanotubes (CNTs)

for improved mechanical strength, and nano-silver utilised as an antimicrobial

agent in plastic food packaging materials.

2.3 Microplastics as Contaminants of Emerging Concern

The term ‘microplastics’ commonly refers to plastic particles whose longest dia-

meter is<5 mm and is the definition used by most authors. It has been suggested that

the term microplastics be redefined as items <1 mm to include only particles in the

Table 2 A selective list of additive compounds used to make plastics fit for purpose

Additive compounds Function

Plasticisers Renders the material pliable

Flame retardants Reduces flammability

Cross-linking additives Links together polymer chains

Antioxidants and other stabilisers Increases the durability of plastics by slowing down the

rate at which oxygen, heat, and light degrade the material

Sensitisers (e.g. pro-oxidant transi-

tion metal complexes)

Used to give accelerated degradation properties

Surfactants Used to modify surface properties to allow emulsion of

normally incompatible substances

Inorganic fillers Used to reinforce the material to improve impact

resistance

Pigments For colour

4 S. Lambert and M. Wagner



micrometer size range [40, 41], and the term ‘mesoplastic’ introduced to account for
items between 1 and 2,500 mm [42]. Lambert et al. [8] described macroplastics as

>5 mm, mesoplastics as �5 to >1 mm, microplastics as �1 mm to >0.1 μm, and

nanoplastics as �0.1 μm. However, the upper limit of 5 mm is generally accepted

because this size is able to include a range of small particles that can be readily

ingested by organisms [42].

Generally, MPs are divided into categories of either primary or secondary MPs.

Primary MPs are manufactured as such and are used either as resin pellets to

produce larger items or directly in cosmetic products such as facial scrubs and

toothpastes or in abrasive blasting (e.g. to remove lacquers). Compared to this deli-

berate use, secondary MPs are formed from the disintegration of larger plastic

debris.

MPs have undoubtedly been present in the environment for many years. For

instance, Carpenter et al. [43], Colton et al. [44], and Gregory [45] reported on

marine plastics in the 1970s, but they have not been extensively studied particularly

in the context of freshwater systems. As research focused on the issue more inten-

sively since the early 2000s, MPs are considered contaminants of emerging concern

[8, 10, 46].

3 Sources of Plastics and Microplastics into the Freshwater

Environment

Plastics will enter freshwater environments from various sources through various

routes. On land littering is an important environmental and public issue [47, 48] and

is a matter of increasing concern in protected areas where volumes are influenced

by visitor density; consequently, measures are now needed to reduce and mitigate

for damage to the environment [49]. In addition, waste management practices in

different regions of the world also vary, and this may be a more important source in

one geographical region compared to another [8]. As with bulk plastic items, MPs

can enter the environment by a number of pathways, and an important route in one

geographical region may be less important in another. For example, primary MPs

used in consumer cosmetics are probably more important in affluent regions

[8]. MPs have several potential environmental release pathways: (1) passage

through WWTPs, either from MP use in personal care products or release of fibres

from textiles during the washing of clothes, to surface waters, (2) application of

biosolids from WWTPs to agricultural lands [50], (3) storm water overflow events,

(4) incidental release (e.g. during tyre wear), (5) release from industrial products or

processes, and (6) atmospheric deposition of fibres (discussed further in Dris et al.

[51]). Plastic films used for crop production are considered an important agricul-

tural emission, and their use is thought to be one of the most important sources of

plastic contamination of agricultural soils [52–54]. There advantages include con-

serve of moisture, thereby reducing irrigation; reduce weed growth and increase

Microplastics Are Contaminants of Emerging Concern in Freshwater. . . 5



soil temperature which reduces competition for soil nutrients and reduces fertiliser

costs, thereby improving crop yields; and protect against adverse weather condi-

tions [7, 55]. However, weathering can make them brittle and difficult to recover

resulting in disintegration of the material, and when coupled with successive preci-

pitation events, the residues and disintegrated particles can be washed into the soil

where they accumulate [7, 55, 56]. Other sources exist and include emissions from

manufacturing and constructions sites. Automotive tyre wear particles may also

release large volumes of synthetic particles. These tyre wear particles are recog-

nised as a source of Zn to the environment, with anthropogenic Zn concentrations

that are closely correlated to traffic density [57]. The sources and emission routes of

nanoplastics are also discussed in Rist and Hartmann [58].

4 Occurrence in Freshwater Systems

The isolation of MPs in environmental matrices can be highly challenging parti-

cularly when dealing with samples high in organic content such as sediments and

soils. Likewise, the spectroscopic identification of synthetic polymers is compli-

cated by high pigment contents and the weathering of particles and fibres. Accord-

ingly, the detection and analytical confirmation of MPs require access to

sophisticated equipment (e.g. micro-FTIR and micro-Raman; discussed further in

Klein et al. [20]). Recent monitoring studies have established that – similar to

marine environments – MPs are ubiquitously found in a variety of freshwater

matrices. Reported MP concentrations in surface water samples of the Rhine river

(Germany) average 892,777 particles km�2 with a peak concentration of 3.9 million

particles km�2 [15]. In river shore sediments the number of particles ranged from

228 to 3,763 and 786 to 1,368 particles kg�1 along the rivers Rhine and Main

(Germany), respectively [19]. High surface water concentrations are reported at the

Three Gorges Dam, China (192–13,617 particles km�2), which are attributed to a

lack of wastewater treatment facilities in smaller towns, as well as infrastructure

issues when dealing with recycling and waste disposal [14]. These studies may

underestimate the actual MP concentrations because their separation and identifi-

cation are based on visual observation methods (e.g. Reddy et al. [59]) and may

exclude those in the submicron size ranges. The environmental occurrence and

sources of MPs in freshwater matrices in an African, Asian, and European context

are further discussed in Dris et al. [51], Wu et al. [60], Khan et al. [61], respectively.

5 Fate and Transport in Freshwater Systems

Once MPs are released or formed in the freshwater environment, they will undergo

fate and transportation processes. In the following section, these processes are

discussed.
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5.1 Environmental Transportation

Many plastic materials that enter the environment will not remain stationary.

Instead they will be transported between environmental compartments (e.g. from

land to freshwater and from freshwater to marine environments), with varying

residence times in each. For example, the movement from land to river systems

will depend upon prevailing weather conditions, distance to a specific river site, and

land cover type. The collection of plastic litter at roadside habitats is easily

observed, and the regular grass cutting practices of road verges in some countries

means that littered items are quickly disintegrated by mowing equipment [8]. The

movement of MPs from land to water may then occur through overland run-off or

dispersion (via cutting action) to roadside ditches. The movement of bulk plastics

and MPs within the riverine system will be governed by its hydrology (e.g. flow

conditions, daily discharge) and the morphology (e.g. vegetation pattern) at a

specific river site that will have a large effect upon the propagation of litter because

of stranding and other watercourse obstructions such as groynes and barrages

[2]. Compared to larger plastics, MPs may also be subject to different rates of

degradation as they will be transported and distributed to various environment

compartments at quicker rates than macroplastics. The formation of

MP-associated biofilms has been investigated for LDPE in marine setting

[62]. Transport to sediments and the formation of biofilms over the surface of

MPs may also limit rates of degradation as this removes exposure to light. The

modelling of MP fate and transportation in freshwaters is discussed further in

Kooi et al. [63], while MP-associated biofilm are discussed in Harrison et al. [64].

5.2 Environmental Persistence and Degradation

The majority of our current understanding regarding plastic degradation processes

is derived from laboratory studies that often investigate a single mechanism such as

photo-, thermal, or bio-degradation [65]. There is limited information on the

degradation of plastics under environmentally relevant conditions where a number

of degradation mechanisms occur at together. Where information is available these

studies have tended to focus on weight loss, changes in tensile strength, breakdown

of molecular structure, and identification of specific microbial strains to utilise

specific polymer types. The degradation processes are defined in accordance with

the degradation mechanism under investigation (e.g. thermal degradation) and the

experimental result generated. In contrast, particle formation rates are often not

investigated. This is important because polymers such as PE do not readily depoly-

merise and generally decompose into smaller fragments. These fragments then

further disintegrate into increasingly smaller fragments eventually forming nano-

plastics [66–68].
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The prediction of plastic fragmentation rates is not a simple process. Kinetic

fragmentation models have been investigated in the mathematics and physics liter-

atures, and the kinetics of polymer degradation has been researched extensively in

the polymer science literature. These models describe the distribution of fragment

sizes that result from breakup events. These processes can be expressed by rate

equations that assume each particle is exposed to an average environment, mass is

the unit used to characterise a particle, and the size distribution is taken to be

spatially uniform [69, 70]. These processes can be described linearly (i.e. particle

breakup is driven only by a homogeneous external agent) or nonlinearly

(i.e. additional influences also play a role), and particle shape can be accounted

for by averaging overall possible particle shape [69]. The models used to describe

these degradation process are often frequently complicated, but as a general rule

focus on chain scission in the polymer backbone through (a) random chain scission

(all bonds break with equal probability) characterised by oxidative reactions;

(b) scission at the chain midpoint dominated by mechanical degradation;

(c) chain-end scission, a monomer-yielding depolymerisation reaction found in

thermal and photodecomposition processes; and (d) in terms of inhomogeneity

(different bonds have different breaking probability and dispersed throughout the

system) [71–73]. The estimation of degradation half-lives has also been considered

for strongly hydrolysable polymers through the use of exponential decay eqs.

[65, 74, 75]. However, the applicability of modelling the exponential decay of

more chemically resistant plastics requires greater investigation [74].

Important variables that will influence MP degradation and fragmentation are

environmental exposure conditions, polymer properties such as density and crys-

tallinity (Table 3), and the type and quantity of chemical additives. Molecular char-

acteristics that generally counteract degradation are the complexity of the polymer

Table 3 Polymer type, density, and crystallinity

Polymer type Density (g cm�3) Crystallinity

Natural rubber 0.92 Low

Polyethylene–low density 0.91–0.93 45–60%

Polyethylene–high density 0.94–0.97 70–95%

Polypropylene 0.85–0.94 50–80%

Polystyrene 0.96–1.05 Low

Polyamide (PA6 and PA66) 1.12–1.14 35–45%

Polycarbonate 1.20 Low

Cellulose acetate 1.28 High

Polyvinyl chloride 1.38 High

Polylactic acid 1.21–1.43 37%

Polyethylene terephthalate 1.34–1.39 Described as high in [76] and

as 30–40% in [77]

Polyoxymethylene 1.41 70–80%

Information on crystallinity was taken from [76, 77]
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structure and the use of structural features that are not easy to biodegrade. Here,

crystallinity is an important polymer property because the crystalline region con-

sists of more ordered and tightly structured polymer chains. Crystallinity affects

physical properties such as density and permeability. This in turn affects their

hydration and swelling behaviour, which affects accessibility of sorption sites for

microorganisms. Stabilisers such as antioxidants and antimicrobial agents act to

prolong the life of plastics, whereas biological ingredients act to decompose the

plastic in shorter time frames.

Overall, environmental degradation processes will involve MP fragmentation

into increasingly smaller particles including nanoplastics, chemical transformation

of the plastic fragments, degradation of the plastic fragments into non-polymer

organic molecules, and the transformation/degradation of these non-polymer mol-

ecules into other compounds [65]. The environmental degradation of plastic mate-

rials is also further discussed in Klein et al. [20].

5.3 Interactions with Other Compounds

The sorption of hydrophobic pollutants to MPs is considered an important environ-

mental process, because this will affect the mobility and bioavailability of these

pollutants. It is well known that MPs in marine environments concentrate persistent

organic pollutants (POPs) such as DDT, PCBs, and dioxins [78–80]. In addition,

Ashton et al. [81] also found concentrations of metals in composite plastic pellet

samples retrieved from the high tide line along a stretch of coastline in Southwest

England. To investigate whether the metals were in fact associated with nonremov-

able fine organic matter associated with the pellet samples, new polypropylene

pellets were suspended in a harbour for 8 weeks and were found to accumulate

metals from the surrounding seawater, from low of 0.25 μg g�1 for Zn to a high of

17.98 μg g�1 for Fe [81]. So far, little data is available on freshwater and terrestrial

ecosystems, which will have a pollutant makeup very different to that found in

marine environments. In the freshwater environment MPs are likely to co-occur

with other emerging contaminants such as pharmaceuticals, personal care products,

flame retardants, and other industrial chemicals, which enter the environment as

parts of complex solid and liquid waste streams.

Sorption processes will occur through physical and chemical adsorption as well

as pore-filling processes. Physical adsorption is the reversible sorption to surfaces

of the polymer matrix and does not involve the formation of covalent bonds.

Chemical adsorption involves chemical reactions between the polymer surface

and the sorbate. This type of reaction generates new chemical bonds at the polymer

surface and may depend on how aged the polymer surface is. These processes can

be influenced by changes in pH, temperature, and ionic strength of the localised

environment [82]. Pore-filling occurs when hydrophobic pollutants enter the
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polymer matrix and will be dependent on the pore diameter of a particular polymer

structure and the molecular size of the chemical. Here, pollutants with lower mol-

ecular weights will more easily move through a polymer matrix with larger pores.

Adsorption kinetics will depend on polymer type, polymer characteristics such

as density and crystallinity, the surrounding environment, and the pollutants pre-

sent. For instance, the sorption and diffusion of hydrophobic contaminants are most

likely to take place in the amorphous area of a plastic material, because the crystal-

line region consists of more ordered and tightly structured polymer chains. Poly-

mers that have structures with short and repeating units, a high symmetry, and

strong interchain hydrogen bonding will have a lower sorption potential. A good

example is low-density polyethylene (LDPE) and high-density polyethylene

(HDPE; Table 3). LDPE contains substantial concentrations of branches that

prevent the polymer chains from been easily stacked side by side. This results in

a low crystallinity and a density of 0.90–0.94 g cm�3 [83]. Whereas, HDPE consists

primarily of linear unbranched molecules and is chemically the closest in structure

to pure polyethylene. The linearity HDPE has a high degree of crystallinity and

higher density of 0.94–0.97 g cm�3 [83]. LDPE is often used for passive sampling

devices to determine dissolved polycyclic aromatic hydrocarbons (PAH), poly-

chlorinated biphenyls (PCB), and other hydrophobic organic compounds in aquatic

environments [84–88]. Batch sorption experiments were also used to determine

PAH sorption to LDPE and HDPE pellets, and LDPE was identified to exhibit

higher diffusion coefficients than HDPE meaning shorter equilibrium times for

low-density polymers [89]. This indicates that PE is of interest from an envi-

ronmental viewpoint because of its high sorption capacity. In addition, particle

size will influence the sorption parameters because the higher surface to volume

ratio of smaller particles will shorten diffusion times. Isolating and quantifying the

sorption mechanisms for all polymer types in use today will be challenging,

because sorption behaviour may differ within polymer classification depending

on the type and quantity of additive compounds the polymer is compounded with

and the effects that this may have on polymer crystallinity and density. These issues

are discussed in further detail in Scherer et al. [26] and Rist and Hartmann [58] in

relation to MP and nanoplastics, respectively.

An interesting question is to what extent does irreversible sorption play a role?

Some evidence in the pesticides literature suggests that a proportion of pesticides

bind irreversibly soils [90, 91]. The study of sorption equilibrium isotherms is an

important step in investigating the sorption processes that exist between different

polymer types and co-occurring hydrophobic contaminants. This will make it possi-

ble to identify the sorption and diffusion relationships between case study

co-occurring contaminants and MPs. Another interesting question is to what extent

sorbed chemicals become bioavailable in the water column due to the continued

breakdown and degradation of the MPs, or due to changes in environmental condi-

tions, such as changes in pH, temperature, or system chemistry.
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6 Effects of Plastics and Microplastics on Freshwater

Ecosystems

Once in the aquatic environment, the mobility and degradation of plastics will gen-

erate a mixture of parent materials, fragmented particles of different sizes, and other

non-polymer degradation products. Accordingly, biota will be exposed to a com-

plex mixture of plastics and plastic-associated chemicals that changes in time and

space.

6.1 Uptake and Biological Effects

MPs may be taken up from the water column and sediment by a range of organisms.

This can occur directly through ingestion or dermal uptake most importantly

through respiratory surfaces (gills). Previous investigations on freshwater zoo-

plankton have included Bosmina coregoni that did not differentiate between PS

beads (2 and 6 μm) and algae when exposed to combinations of both [92]. The same

study also found that Daphnia cucullata, when exposed to PS beads (2, 6, 11, and

19 μm) in combination with algae cells of the same size, was observed to exhibit

similar filtering rates for the three smaller size classes but preferred alga over the

larger beads [92]. Rosenkranz et al. [93] demonstrated that D. magna ingests nano

(20 nm) and micro (1 μm) PS beads. The authors note that both types of PS beads

were excreted to some extent, but the 20 nm beads were retained to a greater degree

within the organism.

The extent to which organisms are exposed to physical stress because of MP

uptake depends on particle size, because particles larger than sediment or food

particles may be harder to digest [94]. In addition, particle shape is also an

important parameter, because particles with a more needle-like shape may attach

more readily to internal and external surfaces. The indirect effects of MPs may

include physical irritation, which may depend on MP size and shape. Smaller more

angular particles may be more difficult to dislodge than smooth spherical particles

and cause blockage of gills and digestive tract. In a recent study, the chronic effects

of MP exposure to D. magna were evaluated [21]. Exposure to secondary MPs

(mean particle size 2.6 μm) caused elevated mortality, increased inter-brood period,

and decreased reproduction but only at very high MP levels (105,000 particles L�1).

In contract, no effects were observed in the corresponding primary MP (mean

particle size 4.1 μm) [21].

There is some evidence suggesting that a trophic transfer of MP may occur, for

instance, from mussels to crabs [27]. The blue musselMytilus eduliswas exposed to
0.5 μm PS spheres (ca. 1 million particles mL�1) and fed to crabs (Carcinus
maenas). The concentration of microspheres in the crab haemolymph was reported

to be the highest after 24 h (15,033 particles mL�1) compared to 267 residual
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particles mL�1 after 21 days, which is 0.027% of the concentration fed to the

mussels. Another study has demonstrated the potential of MP transfer from meso-

to macro-zooplankton, using PS microspheres (10 μm) at much lower concentra-

tions of 1,000, 2,000, and 10,000 particles mL�1 [28]. Because excretion rates are

unavailable and MP uptake is often defined as particles present in the digestive tract

(i.e. the outside and not the tissues of an organism), it is so far not clear whether the

trophic transfer of MP also results in a bioaccumulation or biomagnification.

However, it is clear that MP will certainly be transferred from the prey to the

predator and that this can – in certain situations – be retained for longer periods in

the body of the latter.

An open question is to what extent the organisms consume naturally occurring

microparticles and how the effects compare to MPs (for a more in-depth discussion

on this topic see Scherer et al. [26]). This is important because naturally occurring

particles are an important component of aquatic ecosystems and particle properties,

such as concentration, particle size distribution, shape, and chemical composition,

as well as duration of exposure plays a strong role in determining their interactions

with aquatic communities [95].

Overall, an understanding of the relationships between cellular level responses

and population level impacts will be important in order to determine the broader

implications for ecosystem functioning. Points to be assessed concern both the

biological aspects (molecular target, affected endpoints) and the particle aspects

such as MP physical and chemical characteristics. The bioavailability of the MPs

and the penetration of submicron MPs into the cells are factors to take into

consideration.

6.2 Effects of Leaching Chemicals

The environmental effects of residual starting substances and monomers,

non-intentionally added substances (impurities, polymerisation byproducts, break-

down products), catalysts, solvents, and additives leaching from plastic materials

are not easy to assess [96]. The mixture composition and concentration of leachable

compounds depend on the physical, chemical, and biological conditions of receiv-

ing environments. The leaching of water-soluble constituents from plastic products

using deionised water is considered a useful method for profiling environmental

hazards posed by plastics [97, 98]. Lithner et al. used such leachates in a direct

toxicity testing approach to assess their acute toxicity to D. magna [97, 98]. For

instance, with a liquid to solid (L/S) ratio of 10 and 24 h leaching time, leachates

from polyvinyl chloride (PVC), polyurethane (PUR), and polycarbonate (PC) were

the most toxic with EC50 values of 5–69 g plastic L�1 [98]. Higher L/S ratios and

longer leaching times resulted in leachates from plasticised PVC and epoxy resin

products to be the most toxic at (EC50 of 2–235 g plastic L�1) [99]. In a recent

study, Bejgarn et al. [99] investigated the leachates from plastic that were ground to
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a power and had undergone artificial weathering, using a L/S of 10 and a 72 h

leaching time, to the marine harpacticoid copepod Nitocra spinipes. Here, leachates
from different PVC materials differed in their toxicity, with the toxicity of leachate

from PVC packaging increasing after artificial weathering; whereas the leachate

from PVC garden hose material decreased after artificial weathering [99]. This

study also showed that the leachable PVC constitutes were a complex mixture of

substances, and interestingly mass fragments containing chlorine were not identi-

fied. There are many challenges associated with the characterisation of such

leachates owing to the potential diversity of physicochemical properties that chem-

ical migrants and breakdown products may have. A test protocol for the identifica-

tion of migration products from food contact materials has been developed that

combines LC-TOF-MS and GC-MS techniques that generate accurate mass and

predicted formulae to screen for volatile, semi-volatile, and non-volatile substances

[100, 101].

Overall, the L/S ratio of plastic material used in these studies is higher than that

typically identified during environmental monitoring studies. However, this type of

screening when applied to materials manufactured from hazardous monomers and

additives could facilitate the identification of compounds of interest so that they can

be effectively replaced.

6.3 Biological Effects of Sub-micrometer Plastics

Depending on their use, plastic materials can contain compounds such as anti-

microbial agents and nanomaterials that may be toxic to organisms such as bacteria

and fungi that play a critical role in ecosystem functioning. It is possible that a

combination of microscopic particles, leached additives, and other degradation

products may cause subtle effects towards aquatic and terrestrial organisms that

are difficult to identify in current testing methodologies. The formation of plastic

particles in the submicron and nanometer size range during degradation is highly

likely [8, 40, 66, 102, 103]. Engineered nanoparticles (ENPs) are able to cross cell

membranes and become internalised, and the uptake of ENPs is size dependent with

uptake occurring by endocytosis or phagocytosis [104]. Once inside the cell ENPs

are stored inside vesicles and mitochondria and able to exert a response [104]. Cel-

lular responses include oxidative stress, antioxidant activity, and cytotoxicity

[105]. In terms of toxicity assessments, there is a need to understand the molecular

and cellular pathways and the kinetics of absorption, distribution, metabolism, and

excretion mechanisms that may be unique to MPs in the nano-size range. Desai

et al. [106] showed that 100 nm particles of a polylactic polyglycolic acid co-

polymer had a tenfold higher intracellular uptake in an in vitro cell culture when

compared to 10 μm particles made of the same material. ENPs have also been

shown to produce cytotoxic, genotoxic, inflammatory, and oxidative stress

responses in mammalian and fish systems [107]. A literature review by Handy
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et al. [108] highlighted the gills, gut, liver, and brain as possible target organs in

fish, as well as a range of toxic effects including oxidative stress, cellular patho-

logies consistent with tumour formation in the liver, some organ specific iono-

regulatory disturbances, and vascular injury. Taking into account the complex

chemical makeup of some plastics and the ability to sorb co-occurring contami-

nants, experimental investigation of these endpoints for MPs seems to be merited.

There are many lessons to be learned from the growing literature on the biological

effects of ENPs, and these are discussed in more detail in Rist and Hartmann [58].

7 Considerations for Assessing Environmental Risks

In most countries chemical risk assessments rely on mass concentrations of sub-

stances of interest as an exposure and effect metric. In the nano-literature the mass

concentrations of particles predicted to be emitted have been used to assess the risks

of ENPs [109, 110]. These approaches assume particles are evenly distributed with

no transfer between different environmental compartments. This approach was

further developed by Gottschalk et al. [111] who used transfer coefficients to

model emission flows between the different compartments used in their model, as

well as the inclusion of sedimentation rates. Such modelling approaches (further

discussed in Kooi et al. [63]) could be used to assess the environmental fate of

primary MPs where emissions to the environment are distributed across a geo-

graphical region proportional to population density and consumption rates, assum-

ing that the route of enter into the environment depends on the use of the

MP. However, this type of approach requires extensive information on primary

MP production levels, industrial applications and uses, levels in consumer products,

fate in wastewater treatment, discharges to landfill, and environmental fate and

distribution modelling to perform a meaningful exposure assessment. An exposure

assessment for secondary MPs will require monitoring data, but this is hindered as

the size ranges reported in field studies are generally constrained by the sampling

techniques used [42].

The problems of using mass concentrations as an effect metric are similar to

those discussed in the context of ENPs in that biological effects might not be mass

dependent but dependent on physical and chemical properties of the substance in

question [112, 113]. Consequently, when estimating the hazards presented by MP

properties such as size, shape, polymer density, surface area, chemical composition

of the parent plastic, and the chemical composition of sorbed co-occurring conta-

minants may need to be considered [114]. However, when considering secondary

MPs information on some of these properties may be unavailable. This lack of

information makes it difficult to identify the key characteristics, or combinations of

characteristics, that may be responsible for hazards in the environment.

The assessment of MPs based on their chemical composition also presents a

considerable challenge, because chemically MPs can be considered as a mixture. A
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simplified example of a risk assessment for polyurethane (PUR) based on its

chemical composition is provided in Table 4. PUR flexible foam is used for

mattresses and car seats and is made by combining three monomers and can consist

of up to 18% flame retardant content [117]. An example risk assessment based on

predicted environmental concentration (PEC)/predicted no effect concentration

(PNEC) ratios for all components of the mixture are then used to calculate a risk

quotient (RQ; Table 4). The RQ for this particular example is less than one;

however, this type of assessment does not account for potential negative effects

caused by physical irritation of solid particles. In this case it becomes clear that risk

assessment for MPs as with ENPs holds specific challenges (see Brennholt et al.

[118] for an in-depth discussion of the regulatory challenges).

The different particles sizes of MPs in environmental systems will present

different risks to organisms living in those systems. For example, small plankton

feeding fish species may encounter MPs from the nanoscale through to MPs 5 mm

or greater. The fish may avoid larger particles but small particles may be ingested

while feeding. For filter feeding organisms the upper size boundary will depend on

the size of particles that a particular organism will naturally ingest. The risk

assessment of MPs could therefore be based on particle size. A simplified hypo-

thetical case is presented in Box 1 that draws on an example given by Arvidsson

[119]. This approach assumes that there is information on harm-related thresholds

of MPs based on size classes and particle concentration for the most sensitive

species in that particles size range. However, the use of particle size for defining

environmental risk may not be that straight forward, because MPs are not

monodispersed in the environment. Additionally, as described by Hansen, [120]

when discussing ENPs it remains unclear whether a ‘no effect threshold’ can be

established, what the best hazard descriptor(s) are, and what are the most relevant

endpoints.

Table 4 A hypothetical chemical mixture risk assessment based on the chemical components of

PUR flexible foam with TBBPA as a flame retardant (units are mg/L)

Monomer 1 Monomer 2 Monomer 3 Additive 1

Propylene

oxide

Ethylene

oxide

Toluene

diisocyanate TBBPA

LC50 algae 307 502 3.79 0.19

LC50 daphnid 188 278 2.61 0.02

LC50 fish 45 58 3.91 0.02

PNEC (AF ¼ 1000) 0.045 0.058 0.003 0.000002

PEC (dissolved compound) 0.00067 0.00067 0.00067 0.0000032

RQPEC/PNEC 0.015 0.012 0.257 0.160

Mixture RQ 0.443

LC50 (median lethal concentration) for this example were generated using the EPI Suite ECOSAR

model; AF assessment factor

Monomer PECs are based on propylene oxide ECHA risk assessment [115]

TBBPA PEC based on maximum concentrations measured in UK lakes [116]
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Box 1: A hypothetical case for the risk assessment for MPs based

on particles size

A lake has a PEC of MPs �5 mm at 10,000 particles/L and it is assumed that

the PNEC of these particles is 1,000 particles/L. Furthermore, it is assumed

that 1% of the PEC consists of particles <1 mm, assuming that the lower

boundary is the same; the RQ is then determined by the upper boundary of the

particles size as given below:

RQupper boundary��5mm ¼ PEC

PNEC
¼ 10,000

1,000
¼ 10 > 1ð Þ:

RQupper boundary��1mm ¼ PEC

PNEC
¼ 100

1,000
¼ 0:1 < 1ð Þ

Risk or no risk is then determined by the setting of the upper boundary.

8 Concluding Thoughts

In this chapter, we have provided a brief overview of the environmental challenges

associated with MP in freshwater systems and refer the readers to the appropriate

chapters of this book for more detailed information. Overall, the environmental

inputs in different geographical regions may vary depending on per capita con-

sumption of consumer plastics, population demographics [121], and the capability

of infrastructure to deal with waste materials. Environmental concentrations may

change in the long term (whether positivity or negative) because of urbanisation,

population increase, and technological developments. A better understanding of the

environmental exposure in different geographical regions will identify those areas

where mitigation actions and options will be the most effective. Future work should

focus on better understanding the environmental fate and ecological impacts of

MPs. Such an understanding should ultimately allow the development of new

modelling approaches to assess transport of MPs in soil, sediments, and the water

column. Little is also known about the long-term, subtle effects of MP exposure and

sensitive endpoints (e.g. oxidative stress) need to be identified that integrate particle

as well as chemical toxicity. Finally, although science is far from understanding the

ecological implications of freshwater MPs, technological innovation, societal

action, and political interventions need to be taken to mitigate the plastics pollution,

which will – in case of inaction – certainly increase over the years to come.
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Aquatic Ecotoxicity of Microplastics

and Nanoplastics: Lessons Learned from

Engineered Nanomaterials

Sinja Rist and Nanna Bloch Hartmann

Abstract The widespread occurrence of microplastics in the aquatic environment

is well documented through international surveys and scientific studies. Further

degradation and fragmentation, resulting in the formation of nanosized plastic

particles – nanoplastics – has been highlighted as a potentially important issue. In

the environment, both microplastics and nanoplastics may have direct ecotoxico-

logical effects, as well as vector effects through the adsorption of co-contaminants.

Plastic additives and monomers may also be released from the polymer matrix and

cause adverse effects on aquatic organisms. Although limited information regard-

ing the ecotoxicological effects of nano- and microplastics is available at present,

their small size gives rise to concern with respect to the adverse effects and disloca-

tion of these particles inside organisms – similar to issues often discussed for

engineered nanomaterials. In the same way, transport of co-contaminants and

leaching of soluble substances are much debated issues with respect to the

ecotoxicology of nanomaterials.

In this chapter, we draw on existing knowledge from the field of ecotoxicology

of engineered nanomaterials to discuss potential ecotoxicological effects of nano-

and microplastics. We discuss the similarities and differences between nano- and

microplastics and engineered nanomaterials with regard to both potential effects

and expected behaviour in aquatic media. One of the key challenges in ecotoxico-

logy of nanomaterials has been the applicability of current test methods, originally

intended for soluble chemicals, to the testing of particle suspensions. This often

requires test modifications and special attention to physical chemical character-

isation and data interpretation. We present an overview of lessons learned from
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nanomaterials and offer suggestions on how these can be transferred to recommen-

dations for ecotoxicity testing of nano- and microplastics.

Keywords Biological effects, Nanoparticles, Nanotoxicology, Test methods,

Vector effects

1 Engineered Nanomaterials Versus Plastic Particles:

Comparing Apples and Oranges?

Over the last half century, it has become increasingly clear that environmental

pollution presents a global societal challenge due to immediate and long-term

hazards posed by chemicals in the environment. The focus of researchers, legisla-

tors and the population has been on chemicals such as pesticides, persistent organic

pollutants, heavy metals, pharmaceuticals and endocrine-disrupting chemicals, as

well as the effect of chemical mixtures. The common denominator for these groups

of chemicals is that they are most often soluble in aqueous media. Ecotoxicology is

a multidisciplinary field, integrating ecology and toxicology. It is the study of

potentially harmful effects of chemicals on biological organisms, from the cellular

to the ecosystem level. Standardised and harmonised ecotoxicological test methods

have been developed within the frameworks of OECD and ISO to assess the envi-

ronmental fate and effects of chemicals.

During the last decade, a new group of chemical substances has entered the

limelight, namely, particles. The increasing use of nanotechnology and production

of engineered nanomaterials has sharpened the public, scientific and regulatory

focus on their potential consequences for the environment and human health,

leading to the formation of the new scientific field of ecotoxicology of nano-

materials. The concerns apply not only to engineered nanomaterials but also to

unintentionally produced anthropogenic nanomaterials such as ultrafine particles

resulting from combustion processes. Similarly, it is becoming increasingly clear

that microscopic plastic particles are widespread in the environment, resulting from

industrial use, human activities and inadequate waste management. This plastic

debris is found in the micrometre size range (i.e. microplastics) although

submicron-sized plastic particles (i.e. nanoplastics) are also expected to be formed

in the environment through continuous fragmentation of larger plastic particles

[1, 2]. Microplastics are commonly defined as plastic particles smaller than 5 mm

[3], whereas no common definition for nanoplastics has yet been established. The

term has been used for particles <1 μm as well as <100 nm [2, 4]. Engineered

nanomaterials, on the other hand, are more unambiguously defined as having at

least one dimension in the size range of 1–100 nm [5]. Nanoparticles are a subgroup

of nanomaterials possessing three dimensions within this size range. The term

‘nanomaterials’ is generally used here; however, ‘nanoparticles’ are referred to in

certain places to emphasise the particulate nature of the material. To date, no

established analytical methods exist for the detection of nanoplastics in the aquatic
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environment, and no studies have demonstrated their presence [2]. However, labo-

ratory studies have shown the formation of nanoplastics down to sizes of 30 nm

during artificial weathering of larger plastic materials, using nanoparticle tracking

analysis [6]. This is a strong indication that this process can also take place in the

environment. Particles as emerging environmental pollutants call for a better under-

standing of their environmental behaviour and potentially harmful effects on organ-

isms. Ecotoxicity testing of particles represents a shift in test paradigm away from

testing of soluble chemicals and demands reconsideration of existing test methods

and procedures, including the standardised methods developed by OECD and ISO

[7, 8]. On the one hand, parallels can generally be drawn between ecotoxicological

testing of particles, independent of whether those particles are engineered nano-

materials or plastic particles [9]. On the other hand, it is important to understand

where the similarities end, in order to avoid redundant testing, use of inappropriate

test methods and generation of meaningless data. Nano- and microplastics cover a

wide range in terms of particle sizes. To illustrate this: If a 1 mm particle corre-

sponded to the size of the Earth, then a nanosized particle would correspond to the

International Space Station in the orbit around it, i.e. differing in size by six orders

of magnitude. Resemblances, in terms of behaviour, fate and effects, are more

likely to occur for particles that are similar in size. Therefore the similarities

between engineered nanomaterials and nano- and microplastic particles are more

likely to apply for smaller microplastics of up to a few microns as well as the

submicron-sized nanoplastic particles, which will be the main focus of this chapter.

Further noteworthy differences exist in terms of their chemical properties, sources

and their related methodological challenges, as described in further detail below.

2 Sources, Emissions and Regulation

The potential sources and routes by which engineered nanomaterials and nano- and

microplastics enter the environment are somewhat similar (see Fig. 1). As their name

suggests, engineered nanomaterials are intentionally designed and produced for

specific applications, processes or products. Production can take place by synthesis

(bottom-up approach) or comminution of larger materials (top-down approach). This

is comparable to the production of primary nano- and microplastics, for example,

microbeads intentionally produced for cosmetic products or plastic pellets used as

feeding material in plastic production. Depending on the definitions applied, primary

nanoplastics would actually fall under the definition of engineered nanomaterials. An

estimated amount of more than 4,000 t of primary microplastic beads were used in

cosmetics in Europe in 2012 [10]. Nonetheless, primary microplastics only represent

a small fraction of the estimated overall environmental microplastics load [11], a

fraction, however, which can relatively easily be addressed and reduced. The main

sources of nano- and microplastic pollution, however, are uncontrolled processes

such as abrasion and degradation of larger plastic products and fragments,

i.e. secondary sources of anthropogenic origin [12]. These sources include
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mismanaged plastic waste, either discarded in the environment directly or improperly

collected and disposed of in landfills, subsequently reaching the environment by

wind- or water-driven transport [13]. Also, industrial abrasion processes (e.g. air

blasting), synthetic paints and car tyres are thought to contribute significantly to the

generation of microplastics [11]. Wind and surface run-off water can transport these

to aquatic ecosystems. Another important source is synthetic textiles, which have

been shown to release large amounts of microplastic fibres into waste water during

washing [14]. The relative importance of secondary sources is unique to micro- and

nanoplastics, compared to engineered nanomaterials, in the sense that engineered

nanomaterials are produced through controlled industrial processes and not generated

from the bulk material in the environment. Their release is thereby linked to

specific products or industrial applications and therefore comparable to primary

microplastics.

The differences in sources between engineered/industrially produced primary

particles and unintentionally produced secondary particles have consequences for

risk management and regulatory options. For engineered nanomaterials, regulatory

measures can ensure that risk is minimised to acceptable levels through upstream

regulation of their specific production and use. Regulations addressing criteria for

air emissions from various combustion processes can help to reduce the release of

Fig. 1 Nano- and microplastics and engineered nanomaterials can enter the environment through

different processes: intentional industrial manufacturing (as in the case of engineered

nanomaterials and primary nano- and microplastics) or through uncontrolled anthropogenic

processes (secondary nano- and microplastics). The different sources result in particles with

different shapes, morphologies, compositions, sizes, etc. Particles manufactured under controlled

industrial conditions tend to be more homogenous and uniform in their properties. Blue, primary

sources; red, secondary sources
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unintentionally produced anthropogenic nanomaterials. For micro- and nano-

plastics, upstream regulation may be effective in reducing the environmental emis-

sions of primary microplastics. Examples are the US ‘Microbead-Free Waters Act

of 2015’ [15] prohibiting plastic microbeads in rinse-off cosmetics including

toothpaste as well as the upcoming UK ban on microbeads in cosmetics by 2017

[16]. For secondary microplastics, on the other hand, reducing their environmental

occurrence involves taking general action against plastics entering the environment

during all steps of plastic production, use and waste management. Taxation of, or a

ban on, single-use plastic shopping bags [17] and bottle return systems [18] are

examples of regulatory measures aimed at reducing the general environmental

plastic load. Once the plastic has entered the environment, the formation of micro-

plastics is governed by the inherent properties of the plastic and the environmental

conditions [19] and thereby practically impossible to mitigate through regulatory

measures.

3 Material Synthesis, Chemical Composition

and Consequences for Environmental Detection

A clear difference between engineered nanomaterials and nano- and microplastics

relates to their chemical composition. In principle, engineered nanomaterials can be

produced from any solid material. Higher production volume engineered nano-

materials are typically made from metals or metal oxides (such as TiO2, CeO2 and

Ag) or from carbon (such as carbon nanotubes (CNTs)) [20] although organic

nanomaterials are also manufactured (from polymers, monomers and lipids)

[21]. Nano- and microplastics, on the other hand, consist specifically of synthetic

polymers, produced by polymerisation of various monomers and covering a range

of materials such as polyethylene (PE), polypropylene (PP), polystyrene (PS) and

polyvinylchloride (PVC) [1, 22]. Synthetic polymers differ in properties such as

density, porosity and content of non-polymeric additives. Additives may constitute

up to 50% of the total mass of plastics and can be composed of both organic and

inorganic substances [23]. Hence, while nano- and microplastics consist of specific

synthetic polymers (e.g. PE or PP), there are as many variations as there are combi-

nations and ratios of additives. These additives may alter the properties of the

material in such a way that it will behave differently in the environment and cause

different environmental effects. The same is true for engineered nanomaterials: For

engineered nanoparticles with a given chemical composition (e.g. TiO2), the prop-

erties change with different crystalline structures and surface coatings. At the same

time, engineered nanomaterials can be made from a range of different materials and

combinations of materials. An ongoing discussion within engineered nanomaterials

relates to ‘sameness’: When can two particles be considered the same and when are

they so different that they cannot? This has consequences for categorisation and
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read-across for regulatory purposes [24]. For example, if data exist on the toxicity

of a certain nanomaterial, can these data then be used to assess the safety of a

similar nanomaterial? On what parameters should these two particles be similar:

size, shape, surface chemistry? And when is ‘similar’ similar enough to be consid-

ered ‘the same’? This discussion will be relevant for nano- and microplastics,

should legislative frameworks require regulatory data on their environmental

safety. According to European legislation, polymers are currently exempted from

registration under REACH [25]. However, this may change in the future, making

the discussion of ‘sameness’ also relevant for primary nano- and microplastics. For

secondary microplastics, sameness is likewise relevant to categorising particles

occurring in the environment, as well as to comparing observed behaviour and

effects of nano- and microplastic particles between different scientific studies.

The characteristics and chemical composition of particles have consequences for

the feasibility of detection and quantification of particles, especially in environ-

mental samples and biota. It is highly challenging to detect engineered nano-

materials in the environment, especially due to their small size. Under controlled

laboratory conditions, with known nanomaterials, techniques based on electron

microscopy, mass spectrometry and spectroscopy can be applied to investigating

the behaviour of the nanomaterials in the test system [26]. However, applying the

same techniques to the detection and quantification of nanomaterials in a

natural environmental matrix is not straightforward – even when looking for a

known nanomaterial. For this reason, monitoring data for engineered nanomaterials

are practically non-existent. One of the main problems is that the nanomaterials

may be modified through sample preparation (e.g., causing dissolution or aggrega-

tion), making it difficult to ‘extract’ the particles from the sample in their naturally

occurring state [26]. Electron microscopy, in combination with elemental ratios,

has successfully been applied in detecting TiO2 nanoparticles released from sun-

screen into lake surface waters [27]. Comparing elemental ratios was necessary in

order to distinguish natural Ti-bearing particles from their engineered counterparts.

Even for engineered nanomaterials made of non-ubiquitous elements (e.g. Ag),

detection is not straightforward due to complicated sample preparations, matrix

interferences and analytical difficulties in distinguishing between different metal

species [28].

Nano- and microplastics pose additional challenges due to their organic origin,

affecting and limiting the analytical options when they are present in an organic

matrix. While the larger-sized fractions can be collected or extracted fairly easily,

for example, by filtering water samples or density-based fractionation of sand, it

becomes increasingly difficult to distinguish smaller microplastics, and especially

nanoplastics, from the surrounding environmental matrix. At the same time, sec-

ondary nano- and microplastics, which constitute the main environmental load of

plastic particles, are irregular in shape, resulting from their formation through

fragmentation rather than controlled production. Also, they are often transparent,

semi-transparent or neutral in colour. A study has been carried out to compare

stereomicroscopy and Fourier transform infrared spectroscopy (FT-IR) as
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identification methods for microplastics in environmental samples. White and

transparent fragments were identified through FT-IR, but not easily detected by

microscopy, leading to underestimation of the actual concentrations of micro-

plastics [29]. In contrast, fibres, identified as cotton fibres by FT-IR, were mistaken

for microplastics by stereomicroscopy, leading to overestimation of microplastic

fibres using this technique [29].

The development of FT-IR combined with microspectroscopy (i.e. micro-FT-

IR) greatly improved the spatial resolution, allowing the identification of particles

down to a few μm [30, 31]. The technique allows measurement of transmission and

reflectance. The first gives a higher-quality spectrum, but is limited to thin samples,

while the latter can also be applied to thick and opaque particles [32]. However,

irregular surface structures (e.g. of plastic fragments) can lead to refractive errors

when using the reflectance mode [30]. In this case, attenuated total reflectance

(ATR) micro-FT-IR can be used to improve the quality of the spectrum. The

standard FT-IR techniques rely on a visual pre-sorting of potential plastic particles,

which is time-consuming and prone to errors [30]. Therefore, the coupling of

micro-FT-IR with focal plane array detectors is considered a promising method

for high throughput analysis of microplastics in complex environmental samples

[30, 31, 33]. Currently, however, the technique is limited to particles larger than

10–20 μm, and sample preparation is labour-intensive. As for many of the analyt-

ical techniques used for engineered nanoparticles, FT-IR is particularly useful for

controlled laboratory tests with microplastics of known composition. This material

can be included in the spectral library and is then detected in samples. However, it

can be difficult to use FT-IR to identify unknown plastics particles from environ-

mental samples, as the spectra of polymers change due to the weathering and

chemical changes of the surface of the plastics [29]. Raman spectroscopy is another

commonly used method to identify plastic particles. In combination with micro-

scopy (i.e. micro-Raman), a resolution of less than 1 μm is achievable. However,

the applicability of micro-Raman with automated spectral imaging for analysis of

an entire sample is yet to be demonstrated for microplastics in environmental

matrices [32].

The development of methods to detect and characterise nano- and microplastics

in environmental matrices with a higher resolution, lower time consumption and

high throughput is ongoing, comparable to the developments being made for

engineered nanomaterials. The requirements for ideal analytical techniques are

similar for both groups of particles. As previously described by Tiede et al. [26],

such techniques should (a) cause minimal changes to the physical and chemical

state of the particles during sample preparation; (b) provide information on several

physicochemical parameters, such as chemical composition, size, shape, etc.; and

(c) be able to handle complex, heterogeneous samples [26].
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4 Particles as a Vector for Co-pollutants

One of the possible environmental processes, often discussed for both engineered

nanomaterials and microplastics, is their ability to act as vectors for other pollut-

ants. Through their use in, for example, consumer products and medical and

industrial applications, engineered nanomaterials and primary microplastics will

come into contact with other chemical substances, such as preservatives, surfactants

and active ingredients in pharmaceutical drugs. Finally, through different disposal

routes, the particles will come into contact with environmental contaminants

present in, for example, waste water streams and landfill leachate. As a conse-

quence, intentional and unintentional mixing of the particles with other chemical

compounds takes place before, during and after their intended use. By this process,

an otherwise inert and non-toxic particle potentially becomes a carrier of toxic

compounds. At the same time hydrophobic pollutants with a low water solubility

become more mobile when sorbed to plastic particles, which may increase their

transport and consequently impact their distribution and bioavailability [34]. It has

been shown that engineered nanomaterials can sorb and transport organic pollutants

in the aquatic environment [35–37]. Similarly, nano- and microplastics have the

potential to act as vectors for hydrophobic organic chemicals, as recently reviewed

by Rochman [38].

With an increased surface area-to-volume ratio, smaller particles will generally

have a larger capacity for adsorption of chemical substances (on an ‘adsorption per
particle mass’ basis). At the same time, their small size may facilitate uptake by

organisms and even potential translocation into different parts and organs. This

vector function is governed by the properties of the pollutant and the particle

[39]. Important particle properties include chemical composition, porosity, size

and surface properties (coating, charge). Weathering processes can both increase

and decrease sorption [40]. The formation of cracks and increased surface rough-

ness leads to an increased surface area and, therefore, a potentially increased

sorption capacity. Counteracting this, weathering may also change crystallinity,

increase density and hardness and change surface charge. For instance, changes in

surface charge as a result of weathering can increase the sorption of some sub-

stances and decrease the affinity for others [41].

Plastic to water partitioning coefficients (log Kpw) for various organic chemicals

(log Kow from 0.90 to 8.76) have been collected for polydimethylsiloxane (PDMS),

low density PE (LDPE), high density PE (HDPE), ultra-high molecular weight PE

(UHMWPE), PP, PS and PVC [41]. Regression analysis showed generally good

correlations between log Kow and log Kpw and linear proportionality for LDPE and

HDPE. This analysis suggests that the partitioning of chemicals into plastics is

driven by hydrophobic interactions – similar to the partitioning of chemicals into

animal lipids [41]. At the same time, pollutants may adhere to the particle surfaces.

For example, it has been found that nanoplastics have a capability to adsorb

hydrophobic pollutants, a process which can potentially be exploited in the removal

of chemicals from contaminated soil and water [42]. Hence, for nano- and
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microplastics the processes of ad- and absorption may both be relevant to their

potential role as pollutant vectors.

Many engineered nanomaterials are manufactured from inorganic materials – or

inorganic carbon in the case of C60 fullerenes and CNTs. In these cases, the sorption

of co-pollutants is governed by adsorption to the particle surface, rather than

absorption into the particle matrix. Hence, the sorption capacity is determined by

available adsorption sites on the surface of the nanomaterial. The differences in

sorption processes between polymer particles and inorganic nanomaterials are

illustrated in Fig. 2.

Nano- and microplastics as well as engineered nanomaterials have the potential

to act as vectors for co-pollutants in the environment. The process will always

depend on the specific chemical pollutant (e.g. Kow), the specific particle properties

(e.g. composition and size) and the properties of the surrounding media (e.g. pH),

influencing the particle surface properties and the speciation and dissociation of the

chemical pollutant. It has been proposed that the vector effect of particle-mediated

transport of co-pollutants can be divided into three groups: (1) an environmental

vector effect, whereby the co-pollutant is transported through the environment;

(2) an organismal vector effect, whereby the co-pollutant is transported into organ-

isms; and (3) a cellular vector effect whereby the co-pollutant is transported with

the particle into cells [9]. Combining this with a proposed framework for different

pollutant-particle interaction mechanisms, originally developed for engineered

nanomaterials [37], the vector function of particle pollutants can be summarised

as illustrated in Fig. 3.

Another type of vector function relates to leaching of substances that were

originally part of the particle matrix. In the case of engineered nanomaterials, this

is primarily metal ions (from metal and metal oxide nanomaterials) or release of

coating materials. Similarly, polymer additives can leach from plastic particles.

From the field of ecotoxicology of nanomaterials, the importance of properly

quantifying ion release is becoming increasingly clear, as observed biological

effects can often be directly linked to the concentration of free metal ions [8]. In

the same way, the release of plastic additives should be examined when

A B C
Fig. 2 Illustration of the difference between adsorption (a) (more pronounced for inorganic

engineered nanomaterials) and absorption (b) (more pronounced for polymer particles). In the

case of polymer particles, the sorption may also be a combination of ab- and adsorption processes (c)

Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from. . . 33



investigating the potential biological effects of nano- and microplastics. This will

enable a differentiation between effects caused by the particle itself and effects

caused by plastic additives.

5 Biological Effects

Engineered nanomaterials are often designed to have a certain reactivity, function-

ality or biological effect. As discussed, nano- and microplastics often stem from

unintentional anthropogenic rather than engineered processes. Even when they are

intentionally produced, they are not as such intended to be biologically active.

Certain polymer additives may, however, have the purpose of, for example,

preventing biotic or abiotic degradation. For both engineered nanomaterials and

nano- and microplastics, it is therefore useful to consider their intended use and

properties when evaluating their potential environmental risk. Engineered nano-

materials that are intended to have biocidal effects are likely to be more toxic to

non-target organisms than materials intended to be inert. Similarly, plastic particles

A

B

C
I IIIII IV

Fig. 3 Illustration of the potential vector function of particles. (a) The interaction between the

particles (orange, filled) and the co-pollutants (purple, open) will depend on the properties of the

particles, the pollutant and the surrounding medium. This will result in various degrees of

absorption and/or adsorption. (b) The particles and pollutants are transported in the environment

– individually and co-transported. This has been referred to as the ‘environmental vector effect’
[9]. (c) The particles and pollutants interact with biological organisms. This can be via ‘indepen-
dent action’ whereby the particle and the pollutant interact with the organisms individually (I ). It
can also be via desorption of the co-pollutant (or leaching of ions/additive), which subsequently

interact with the organism (II). The pollutant can also be co-transported into the organisms and

potentially further into cells (III). This has been referred to as an organismal and cellular vector

effect, respectively [9]. Finally, the particles can act as a ‘trap’ for the pollutants, thereby

decreasing the interactions between the pollutant and the organisms (IV)
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containing biocidal additives, plasticisers or flame retardants are likely to be more

environmentally hazardous, as these substances may leach out of the polymer

matrix.

One effect mechanism is being highlighted as important for both engineered

nanomaterials and nano- and microplastics, namely, physical interactions between

the particle and the organisms [43]. This includes inflammation and interference

with the energy balance caused by uptake of particles into the gut, thereby limiting

food uptake. Different types of engineered nanomaterials, as well as nanoplastics,

have been observed to adhere to the surface of microalgae, potentially causing a

physical shading effect on a cellular level [44]. Physical effects of microplastics on

marine organisms have been reviewed recently [45], and mechanisms that have

been described as potentially relevant include blockage of the digestive system,

abrasion of tissues, blockage of feeding appendages of invertebrates, embedment in

tissues, blockage of enzyme production, reduced feeding stimulus, nutrient dilution,

decreased growth rates, lower steroid hormone levels and impaired reproduction.

Table 1 presents an overview of effects in response to the physical particle prop-

erties that have been observed in different species.

The potential of microplastics to cause such physical effects on organisms

depends on a number of factors. Particles with a high capacity to accumulate in

Table 1 Examples of biological effects observed in aquatic organisms after exposure to

engineered nanoparticles or nano- and microplastics

Engineered nanoparticles Nano- and microplastics

Molecular/cellular level

Oxidative stressa

Inhibition of photosynthesis (shading)b
DNA damage and differential gene expressionl

Cellular stress response and impaired

metabolismm

Tissue level

Histopathological changesc

Transfer into cellsd
Tissue damagen

Transfer into tissueso

Organ/organismal level

Morphological malformatione

Decreased swimming velocitiesf

Increased mucus productiong

Toxic effects of released ionsh

Decreased growth rates and biomass

productioni

Moulting inhibitionj

Impaired mobilityk

Impaired respirationp

Impaired feedingq

Impaired development and reproductionr

Decreased growth rates and biomass productions

Behavioural changest

Increased mortalityu

aIn algae [46]; bin algae [47]; cin fish [48]; din algae [49]; ein fish embryos [50]; fin crustaceans

[51]; gin fish [52]; hin algae [53]; iin algae [7]; jin crustaceans [54]; kin crustaceans [51]; lin

echinoderms [55], bivalves [56–58] and fish [59]; min polychaetes [60], echinoderms [55],

bivalves [56–58, 61] and fish [62–64]; nin fish [59, 64, 65]; oin crustaceans [66], mussels

[67, 68] and fish [69]; pin polychaetes [70], crustaceans [71] and bivalves [72]; qin polychaetes

[60, 73], crustaceans [74, 75], bivalves [72, 76, 77] and fish [62]; rin crustaceans [74, 78, 79],

echinoderms [80], bivalves [58] and fish [81]; sin crustaceans [75, 79] and bivalves [72]; tin fish

[62, 81, 82]; uin crustaceans [75, 83], bivalves [72] and fish [84]
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organisms and translocate into tissues are expected to have a stronger physical

impact [45]. This is closely linked to particle size, as will be explained further

below. Shape also plays an important role since irregular, sharp fragments are more

likely to cause damage than round, smooth particles. Fibres are more likely to

accumulate in the digestive system. The capacity of individual species to egest

microplastics is also considered as an important factor because this process will

determine how long an organism is exposed to the particles [45].

For nanomaterials, size-dependent changes in effects are of particular interest.

The whole purpose of nanotechnology is to take advantage of the novel properties

that come with a smaller size. For engineered nanomaterials, this involves, for

example, the novel catalytic effects of some materials on the nanoscale including

gold (Au), titanium dioxide (TiO2) and cerium dioxide (CeO2). As larger-sized

(bulk) materials, these are relatively inert, but with decreasing particle size and

increasing surface area, they become reactive. Therefore, as particle size decreases,

there is a tendency for toxicity to increase, even if the same material is relatively

inert in its corresponding bulk (micron-sized) form [85]. In addition, the small size

of engineered nanomaterials may enable their uptake into tissues and cells

[49]. Observed biological effects of engineered nanomaterials in aquatic organisms

include oxidative stress, inhibition of photosynthesis, tissue damage, impaired

growth and development, behavioural changes and increased mortality (Table 1).

Similarly, the question for nano- and microplastics is therefore: Is it likely that a

decrease in size will make them more hazardous? To answer this question, we will

examine the two main causes for concern: novel properties and ingestion by

organisms (and potential subsequent transfer into tissues). The novel properties

that would occur for smaller-sized polymer particles are linked to their increased

surface-to-volume ratio. With decreasing particle size, a larger fraction of the

molecules will be present on the surface of the particle. As the surface is where

interactions with the surrounding environment take place, this can lead to an

increase in chemical reactions and biological interactions. For example, smaller

particles may (on a mass basis) have a larger adsorption capacity compared to larger

particles [86], which in turn is of relevance for the vector effects. The second

concern relates to the potential to cross biological barriers. Nanosized particles,

such as nanoplastics, are potentially more hazardous due to their easier uptake into

tissues and cells [2]. Depending on particle size, different uptake routes into

organisms are also involved. For example, the freshwater crustacean Daphnia
magna normally catches prey (mainly algae) in the size range 0.4–40 μm
[87, 88]. For particles or agglomerates that are within this size range, uptake can

occur through active filtration, and at the same time unwanted particles can be

rejected. Particles smaller than the preferred size are not actively taken up by the

animals, but may instead enter the organisms through ‘drinking’ of the surrounding
water, resulting in non-selective, uncontrolled uptake. Depending on the feeding

strategies of specific aquatic organisms and their ability to actively select their food

source, they may be able to regulate their uptake of microplastics, whereas

nanoplastics may enter the organisms unintentionally.
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5.1 Nano- and Microplastics in Standard Ecotoxicity Tests

In the quest to determine the environmental risk posed by nano- and microplastics,

laboratory-based experiments need to be carried out which analyse the effects of the

particles under well-defined conditions. The number of controlled laboratory stud-

ies investigating the effects of nano- and microplastics on freshwater organisms is

steadily increasing, and many different impacts have been observed – extending

from the molecular and cellular to the physiological level (see Table 1). These

include inflammation, disruption of lipid and amino acid metabolism, lower growth

rates, decreased feeding rates, behavioural changes, impairment of reproduction

and increased mortality [62, 64, 75, 79, 81, 82]. When studies involving marine

organisms are also taken into account, the number and variety of biological effects

of nano- and microplastics that have been found are even greater.

However, most effect studies differ greatly with respect to the parameters used,

for example, particle type (different polymers, sizes, shapes, presence of

chemicals), test species, exposure duration, exposure concentration and response

variables. This makes it difficult to compare results between studies and hampers

reproducibility. It can, therefore, be advantageous to apply standardised tests,

which come with a number of benefits as they ensure controlled and reproducible

test designs and inter-laboratory comparability. Another advantage of standardised

ecotoxicity tests is the extensive knowledge base resulting from decades of testing

the effects of chemicals on selected model organisms. For ecotoxicology of

nanomaterials, this has been highlighted as a motivation for using standardised

short-term tests as a starting point for gaining an insight into the fate and bioavail-

ability of engineered nanomaterials in the environment [89]. By using a well-

defined test system and a fully defined synthetic medium, other test parameters

can be varied individually and in a controlled manner, thereby providing an insight

into specific processes and mechanisms [90].

However, the use of standard test guidelines also comes with some potential

disadvantages, especially for testing of particles. For freshwater systems, a com-

monly used species is the freshwater flea Daphnia magna, for which the OECD has

developed two standard tests: an acute immobilisation test (48 h) (OECD TG 202)

and a chronic reproduction test (21 days) (OECD TG 211). These tests were

originally developed for soluble chemicals. Since particles show very different

behaviours to soluble chemicals, it is challenging to apply the same test set-ups.

Even so, some studies have used these standard tests to investigate the effects of

nano- and microplastics. Casado et al. [91] conducted an acute immobilisation test

with 55 and 110 nm polyethyleneimine PS beads and reported EC50 values of

0.8 mg/l and 0.7 mg/l, respectively. The same test with 1 μm PE beads resulted in an

EC50 value of 57.4 mg/l [83]. This huge difference could be a consequence of the

different polymer types and sizes used in the studies, but it might also indicate that

mortality is not a very sensitive biological response when it comes to plastic

particles. Finally, it may be indicative of a problem that has been highlighted for

tests with engineered nanomaterials: That reproducibility and data interpretation in
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standard ecotoxicity tests with particles, rather than soluble chemicals, are chal-

lenged by the dynamic nature of particles suspended in aqueous media [90]. Particle

properties and behaviour may change as a function of time or as a result of

interactions with test organisms and emitted biomolecules (e.g. exudates) [7]. It

has therefore been recognised as essential in the work with engineered nano-

materials to conduct a particle and exposure characterisation before and during a

laboratory test [26, 92]. This includes an analysis of the size, shape, surface area and

surface chemistry of the tested particle, as well as aggregation/agglomeration,

sedimentation and dissolution behaviour in the test system, thereby providing

information on exposure in both qualitative and quantitative terms. Furthermore,

appropriate ways of dispersing the particles in aquatic media have been highlighted

as an important area of future test method development [93]. The rationale behind

thorough characterisation and carefully considered sample preparation methods

relates to data interpretation and avoidance of the introduction of test artefacts.

Such activities are currently rarely undertaken in the work with nano- and micro-

plastics, but should be included in order to gain an insight into the behaviour of

the particles in exposure media and the resulting influence on their interaction with

test organisms.

Another aspect that needs to be taken into account is the leaching of molecules

from particles. For engineered nanomaterials, work is ongoing within the OECD to

develop test guidelines for investigating the dissolution of metal ions from metal-

containing nanomaterials [94]. In the case of plastic particles, the leaching of

chemicals from the polymer matrix (e.g. additives or monomers) and the release

of adhered co-pollutants can influence the test results. Appropriate test methods are

therefore needed to investigate the actual release of plastic additives from nano- and

microplastics under relevant conditions (media, temperature, pH, etc.), and a

control for the effects of chemicals and released additives or adhered pollutants

needs to be included as a reference.

Transformation processes, such as oxidation/reduction, interaction with macro-

molecules, light exposure and biological transformation, can significantly influence

the integrity, behaviour and persistence of nanomaterials in aquatic media [95–

97]. Depending on the specific conditions, dissolution and degradation can be

enhanced or reduced. Enhanced dissolution may result in increased toxicity of,

for example, metal and metal oxide nanomaterials. At the same time it may cause a

gradual decrease in particle size [97]. For nano- and microplastics, aging/

weathering processes should also be accounted for as they may change particle

properties (e.g. surface chemistry, polarity and density) and enhance fragmentation.

It should be emphasised that a complete degradation of plastic particles under

realistic environmental conditions has not yet been demonstrated [6, 98,

99]. While aging is potentially important for nanomaterials, and for nano- and

microplastics, in the environment, the relevant aging processes and kinetics may

differ. Based on current knowledge, nano- and microplastics may have a higher

core persistence and lower release of soluble compounds than certain engineered

nanomaterials (especially metal and metal oxide nanomaterials such as ZnO and

Ag). However, this is clearly an area of future research – for both nanomaterials and
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nano- and microplastics. Aging is currently not incorporated in standard ecotoxicity

test protocols, but has been proposed for engineered nanomaterials [100]. There are

also indications that aging of plastic particles can influence biological effects

[79]. This aspect should therefore generally be considered in the future develop-

ment of ecotoxicological tests for particle testing.

For test method developments, the field of ecotoxicity testing of nanomaterials

has benefitted from the availability of reference materials (e.g. NIST Standard

Reference Materials) and representative industrial nanomaterials (such as those

from the JRC Nanomaterials Repository). Such materials are valuable for analytical

method validation and for conducting comparable inter-laboratory and inter-species

studies. The field of ecotoxicity testing of nano- and microplastics would similarly

benefit from the establishment of sources of well-characterised, industrially and

environmentally relevant materials of various sizes and compositions.

The applicability of current standard ecotoxicity tests has been questioned for

engineered nanomaterials. Development of new test guidelines and guidance is

under discussion, for example, within the OECD [101]. The same concerns apply to

testing of nano- and microplastics: They represent a specific challenge due to their

dynamic nature in environmental media, resulting in, for example, differences in

relevant exposure routes (through food or other active uptake routes, grazing on

sedimented materials, etc.), as well as potentially different effect mechanisms.

Soluble molecules can be taken up into aquatic organism by diffusion and then

distributed within the organism based on partitioning, e.g. to lipid tissues. Cellular

uptake of soluble chemicals generally relates to passage of biological membranes,

mainly through passive diffusion or active uptake, such as transport through ion

channels or carrier-mediated transport [102]. In the tissues, they can act

non-specifically, leading to narcosis, or specifically by inhibiting or affecting

certain biological processes. In comparison, particle distribution is not governed

by diffusion and partitioning. Uptake of particles by organisms depends on mech-

anisms such as feeding rather than molecular diffusion. On a cellular level, particles

may be taken up through processes such as phagocytosis. Effects will therefore

most likely differ from those of soluble chemicals. An essential aspect is therefore

to determine sensitive biological endpoints for the exposure to particles, potentially

moving away from the current standard test organisms. A limited number of

response variables and test species can be seen as a disadvantage of standardised

tests. Based on the argument above, it may further be claimed that ‘no effect’ in a

standard test does not imply a lack of ecological impact of nano- and microplastics,

as these tests may not cover the most sensitive endpoints and test species for particle

exposure.

As mentioned, effects of microplastics have been observed on a molecular,

cellular and physiological level (see Table 1). When performing ecotoxicity testing,

the aim is to establish a dose-response relationship based on the underlying

assumption that effects are strongly dependent on exposure dose/concentration

and time. For engineered nanomaterials, however, an inverse relationship has

been observed between concentration and agglomerate size, meaning that with

higher particle concentrations, particles tend to form larger agglomerates
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[103]. High concentrations of engineered nanomaterials have also been linked to

effects that are not due to an actual toxic response, but rather caused by an over-

loading of the test organisms with engineered nanomaterials, causing physical inhi-

bition [8]. Testing of low, environmentally relevant particle concentrations during

short exposure times may, however, not be sufficient to detect effects when using

endpoints on a physiological level. Before an organism shows impairment to, for

example, its reproduction or survival, multiple changes must take place on a

cellular level. Cellular responses may therefore be more sensitive to microplastic

particle stress compared with whole-organism responses. On this level, however,

we are dealing with a complex network and huge number of reactions, which makes

it challenging to find and define a meaningful, reliable set of response variables. If

cellular responses are to be used as indicators of the potentially hazardous prop-

erties of nano- and microplastics, more research is needed to develop suitable

(standard) test methods. Another option for testing the toxicity of relatively low

concentrations of particles is chronic effect studies, as chronic endpoints can prove

more sensitive than acute ecotoxicity. An added benefit of testing lower concen-

trations is that particle agglomeration/aggregation is reduced, leading to more

stable exposure.

One major criticism of current nano- and microplastic ecotoxicity studies is their

lack of realism and environmental relevance when selecting test parameters

[104]. Pristine particles with a clearly defined, homogenous chemical composition

are most often applied in laboratory tests. This is in sharp contrast to the particles

present in the environment, which undergo transformation processes, potentially

influencing their morphology, and, in the case of plastic, often contain various

additives. This trade-off between environmental realism and standardised test

conditions is not a dilemma that is unique to testing of particles [105]. It should

be kept in mind that different testing paradigms inform different scientific and

regulatory questions. In standard ecotoxicity, applying simplified test systems and

often synthetic media, test parameters can more easily be controlled and modified

one by one in order to gain deeper insight into the mechanisms of toxicity and

particle uptake [89]. They are also developed to ensure data comparability and

study repeatability. For example, data generated following OECD Test Guidelines

and Good Laboratory Practice are considered to satisfy the criteria for Mutual

Acceptance of Data and can be used for regulatory assessment purposes in all

OECD member states, ideally minimising testing efforts and use of test animals

[106]. More environmentally realistic studies can, on the other hand, provide case-

and site-specific information on the effects of particle pollution under specific

environmental conditions. They may also provide more realistic information with

regard to the combined effects of multiple environmental stressors and their inter-

actions with plastic particles. Standard ecotoxicity tests and more environmentally

realistic studies should therefore be seen as complementary tools of

equal importance but potentially addressing different questions of scientific and

regulatory relevance.
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5.2 Detecting and Quantifying Particle Uptake
as a Prerequisite for Assessing the Effects of Nano-
and Microplastics

Research on the biological effects of nano- and microplastics is currently at the

stage of determining possible responses and thereby investigating the interactions

of organisms and plastic particles. For most organisms, there is a direct and obvious

link between the uptake of nano- and microplastics by ingestion or ventilation and

subsequent effects. Even so, knowledge on uptake itself is very limited, especially

when it comes to quantification of this process, since the detection of small plastic

particles is extremely challenging, as described earlier. Methods that have been

used to quantify particle uptake include counting using a microscope and spectros-

copy (Raman or FT-IR) of tissue samples. Furthermore, fluorescent particles are

used for image analysis of gut sections, fluorescence microscopy and the measure-

ment of fluorescence intensity of tissues as a proxy for the quantity of particles. All

these methods have limitations and are either very difficult to use on a large scale

(e.g. spectroscopy) or become increasingly challenged and even unusable with

smaller particles and lower particle numbers. This is major drawback since most

biological effects depend on the amount of plastic particles taken up into the

organism. A possible way forward could be the use of plastic particles with a

metal core which are easy to measure, even in small concentrations and sizes, by,

for example, mass spectroscopy – using the same techniques as for nanoparticles.

Such traceable nano- and microplastics do not reflect naturally occurring particles

as found in the environment, but they could serve as model particles for investi-

gating interactions of nano- and microplastics with biological systems. The tech-

nique could be used for precise quantification of particles as well as for localisation

in tissues. Nanoparticles with a gold core and a polymer coating have previously

been used in a number of studies, aimed at gaining an insight into the uptake of

engineered nanomaterials in fish and daphnids [107].

6 Lessons Learned. . . and the Way Ahead

When the ecotoxicology of nanomaterials emerged as a scientific field around a

decade ago, the already existing field of ‘colloidal science’ was somewhat over-

looked. Over the years, it has become increasingly clear that many parallels can be

drawn between the two fields. The links between particle behaviour, exposure and

ecotoxicological effects, as highlighted here, demonstrate the highly interdisciplin-

ary nature and complexity of this research field. Consequently, cooperation is

required between scientists with backgrounds in biology, chemistry and colloidal

science. Similarly, for studies of environmental behaviour and the effects of nano-

and microplastics, it is clearly important to draw on experience from ecotoxicology

of nanomaterials as well as colloidal science. This is the key to moving forwards
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towards an understanding of their potential environmental effects. This applies to

general scientific knowledge as well as ongoing work on developing appropriate

test methods that are applicable to the testing of particle pollutants rather than

soluble chemicals.

Based on experience within the field of engineered nanomaterials, we recom-

mend that the following aspects be considered in work with nano- and

microplastics:

• Development of clear, common definitions for plastic particle categorisation

• Thorough particle characterisation in exposure studies (including particle intrin-

sic properties, aggregation, agglomeration, sedimentation, dissolution, etc.)

• Inclusion of chemical leaching controls (monomers, additives, etc.)

• Development and use of reference materials for method validation and

comparison

• Development of protocols for ecotoxicity testing, sample preparation and ana-

lytical methods to minimise test artefacts

• Studies into the influence of environmental transformation processes (‘aging’)
on nano- and microplastic behaviour and ecotoxicity

• Development of analytical techniques that introduce minimal changes to the

plastic particles during sample preparation, provide information on several phy-

sicochemical parameters and can handle complex, heterogeneous samples.

While we should draw on the existing knowledge on engineered nanomaterials,

it is equally important to understand where the similarities begin and where they

end. In some respects, nano- and microplastics are likely to present different

environmental, analytical and methodological problems compared to engineered

nanomaterials, and this should be considered in the planning of experiments and in

making informed decisions regarding endpoints and tests of interest.

Finally, it is very important to understand the fundamental effect mechanisms

associated with nano- and microplastics: Which properties make them hazardous?

This is the way forwards towards replacing problematic plastic materials with safer

alternatives in consumer products and industrial applications. Such considerations

are important when discussing strategies for future plastic manufacturing,

minimising environmental risks and increasing the potential for plastic reuse and

recycling.
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JY, Thiéry A (2013) Exposure to cerium dioxide nanoparticles differently affect swimming

performance and survival in two Daphnia species. PLoS One 8:1–11. doi:10.1371/journal.

pone.0071260

52. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to

rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other

physiological effects. Aquat Toxicol 82:94–109. doi:10.1016/j.aquatox.2007.02.003

53. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and

bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and

Thamnocephalus platyurus. Chemosphere 71:1308–1316. doi:10.1016/j.chemosphere.2007.

11.047

54. Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, Schaumann GE, Schulz R

(2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle

toxicity in Daphnia magna. PLoS One 6:1–7. doi:10.1371/journal.pone.0020112

Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from. . . 45

https://doi.org/10.1002/etc.3461
https://doi.org/10.1098/rstb.2008.0284
https://doi.org/10.1016/j.marpolbul.2016.07.021
https://doi.org/10.1038/ncomms8765
https://doi.org/10.1038/ncomms8765
https://doi.org/10.1016/j.aquatox.2012.03.008
https://doi.org/10.1016/j.envpol.2013.02.031
https://doi.org/10.3109/17435390.2013.809810
https://doi.org/10.1021/acs.est.6b01072
https://doi.org/10.1007/s00580-014-2019-2
https://doi.org/10.1039/c3en00054k
https://doi.org/10.1088/0957-4484/19/25/255102
https://doi.org/10.1371/journal.pone.0071260
https://doi.org/10.1371/journal.pone.0071260
https://doi.org/10.1016/j.aquatox.2007.02.003
https://doi.org/10.1016/j.chemosphere.2007.11.047
https://doi.org/10.1016/j.chemosphere.2007.11.047
https://doi.org/10.1371/journal.pone.0020112


55. Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014)

Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development

of sea urchin embryos Paracentrotus lividus. Environ Sci Technol 48:12302–12311. doi:10.

1021/es502569w

56. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, D’Errico G, Pauletto M, Bargelloni L,

Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine

mussels. Environ Pollut 198:211–222. doi:10.1016/j.envpol.2014.12.021
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94. Rasmussen K, González M, Kearns P, Sintes JR, Rossi F, Sayre P (2016) Review of

achievements of the OECD working party on manufactured nanomaterials’ testing and

assessment programme. From exploratory testing to test guidelines. Regul Toxicol Pharma-

col 74:147–160. doi:10.1016/j.yrtph.2015.11.004

95. Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the

environment. J Environ Qual 39:1896. doi:10.2134/jeq2009.0423

96. Turco R, Bischoff M, Tong Z, Nies L (2011) Environmental implications of nanomaterials:

are we studying the right thing? Curr Opin Biotechnol 22:527–532. doi:10.1016/j.copbio.

2011.05.006

97. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the

environment. Environ Sci Technol 46:6893–6899. doi:10.1021/es300839e

98. Brandon J, Goldstein M, Ohman MD (2016) Long-term aging and degradation of micro-

plastic particles: comparing in situ oceanic and experimental weathering patterns. Mar Pollut

Bull 110:299–308. doi:10.1016/j.marpolbul.2016.06.048

99. ter Halle A, Ladirat L, Gendre X, Goudouneche D, Pusineri C, Routaboul C, Tenailleau C,

Duployer B, Perez E (2016) Understanding the fragmentation pattern of marine plastic debris.

Environ Sci Technol 50:5668–5675. doi:10.1021/acs.est.6b00594

100. Sørensen SN, BaunA (2015)Controlling silver nanoparticle exposure in algal toxicity testing –

a matter of timing. Nanotoxicology 9:201–209. doi:10.3109/17435390.2014.913728

101. Kühnel D, Nickel C (2014) The OECD expert meeting on ecotoxicology and environmental

fate – towards the development of improved OECD guidelines for the testing of nano-

materials. Sci Total Environ 472:347–353. doi:10.1016/j.scitotenv.2013.11.055

102. Sijm DTHM, Rikken MGJ, Rorije E, Traas TP, Mclachlan MS, Peijnenburg WJGM (2007)

Transport, accumulation and transformation processes. In: van Leeuwen CJ, Vermeire TG

(eds) Risk assessment of chemicals: an introduction. Springer, Dordrecht, pp 73–158. doi:10.

1007/978-1-4020-6102-8_3

103. Baalousha M, Sikder M, Prasad A, Lead J, Merrifield R, Chandler GT (2016) The

concentration-dependent behaviour of nanoparticles. Environ Chem 13(1). doi:10.1071/

EN15142

104. Phuong NN, Zalouk-Vergnoux A, Poirier L, Kamari A, Châtel A, Mouneyrac C, Lagarde F

(2016) Is there any consistency between the microplastics found in the field and those used in

laboratory experiments? Environ Pollut 211:111–123. doi:10.1016/j.envpol.2015.12.035

105. Wickson F, Hartmann NB, Hjorth R, Hansen SF, Wynne B, Baun A (2014) Balancing scien-

tific tensions. Nat Nanotechnol 9:870–870. doi:10.1038/nnano.2014.237

48 S. Rist and N.B. Hartmann

https://doi.org/10.1007/BF00347591
https://doi.org/10.1007/s10646-008-0208-y
https://doi.org/10.1016/j.envint.2012.11.001
https://doi.org/10.1016/j.envint.2012.11.001
https://doi.org/10.1021/es4052999
https://doi.org/10.1080/10937404.2015.1074969
https://doi.org/10.1016/j.yrtph.2015.11.004
https://doi.org/10.2134/jeq2009.0423
https://doi.org/10.1016/j.copbio.2011.05.006
https://doi.org/10.1016/j.copbio.2011.05.006
https://doi.org/10.1021/es300839e
https://doi.org/10.1016/j.marpolbul.2016.06.048
https://doi.org/10.1021/acs.est.6b00594
https://doi.org/10.3109/17435390.2014.913728
https://doi.org/10.1016/j.scitotenv.2013.11.055
https://doi.org/10.1007/978-1-4020-6102-8_3
https://doi.org/10.1007/978-1-4020-6102-8_3
https://doi.org/10.1071/EN15142
https://doi.org/10.1071/EN15142
https://doi.org/10.1016/j.envpol.2015.12.035
https://doi.org/10.1038/nnano.2014.237


106. The Organisation for Economic Co-operation and Development (OECD) (1981) Decision of

the Council concerning the mutual acceptance of data in the assessment of chemicals. 12 May

1981—C(81)30/FINAL. Amended on 26 November 1997—C(97)186/FINAL., Paris, France

107. Skjolding LM 2015 Bioaccumulation and trophic transfer of engineered nanoparticles in

aquatic organisms. PhD thesis, Technical University of Denmark, Kgs. Lyngby

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from. . . 49



Analysis, Occurrence, and Degradation

of Microplastics in the Aqueous Environment

Sascha Klein, Ian K. Dimzon, Jan Eubeler, and Thomas P. Knepper

Abstract Synthetic polymers are one of the most significant pollutants in the

aquatic environment. Most research focused on small plastic particles, so-called

microplastics (particle size, 1–5,000 μm). Compared to macroplastics, the small

size complicates their determination in environmental samples and demands for

more sophisticated analytical approaches. The detection methods of microplastics

reported in the past are highly diverse. This chapter summarizes different strategies

for the sampling of water and sediment and sample treatments, including the

separation of plastic particles and removal of natural debris that are necessary

prior the identification of microplastics. Moreover, the techniques used for the

identification of plastics particles are presented in this chapter.

With the application of the method described in this chapter, microplastics were

detected in freshwater systems, such as rivers and lakes worldwide. The abundance

of microplastics reported in the studies varied in more than three orders of

magnitude.

Furthermore, microplastics are not uniform, as there are many different types of

synthetic polymers commercially available. Consequently, a variety of different

polymer types is present in the aquatic environment. The knowledge on the type of

polymer provides additional information for scientists: the type of polymer dictates

its physicochemical properties and the degradation. The environmental degradation

of plastics is an important factor for the formation, distribution, and accumulation

of microplastics in the aquatic system. Thus, this chapter also summarizes the

degradation pathways for synthetic polymers in the environment.
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1 Analysis of Microplastics: Sampling, Sample

Preparation, and Identification

The investigation of small synthetic polymer particles (size<5 mm), so-called

microplastics, strongly depends on appropriate analytical methods. These particles are

present in the aquatic environment due to mechanical degradation of macroplastics

(size>5 mm) or the introduction of man-made microparticles. The analysis of

microplastics is a new challenge for analytical scientists. The small size ofmicroplastics

complicates their determination in environmental samples compared to macroplastics

and demands for more sophisticated analytical approaches. Microplastics are hetero-

geneously distributed in the environment, and this impedes the representative sampling

of sediments and water. The sample matrix, independent of the sampled environmental

compartment, contains a high burden of particles of natural origin that strongly interfere

with the visual detection of microplastics. Therefore, suitable methods for the sample

preparation are needed to extract microplastics and reduce the number of natural

particles. Moreover, an analytical method for the identification and confirmation of

the plastic particles is mandatory to obtain reliable results. A wide range of different

sampling methods, sample treatments, and detection methods were described (Fig. 1).

1.1 Sampling of Microplastics

The sampling of microplastics in the aquatic environment strongly depends on the

compartment that is the subject of interest. In general, this can be differentiated

between sampling of the aqueous phase (surface water, water column) and the

sediment phase (shoreline sediments, riverbed, or lakebed sediments).

1.1.1 Sampling of the Aqueous Phase

The concentrations of microplastics in aqueous samples are relatively low compared

to those in the sediments. Therefore, a large volume of the water samples (up to

hundreds of liter) is usually filtered during the sampling process to obtain a represen-

tative sample. Sampling of the water surface is carried out in most cases with neuston

or plankton nets supported by a flow meter to determine the accurate sample volume.

These nets are used in different mesh sizes ranging from50 to 3,000 μm,while 300 μm
is the most commonly used mesh size along all studies [1]. This approach leads to

nonquantitative sampling of microplastics with particle sizes<300 μm. The nets with

smaller mesh sizes are prone to clogging. To overcome this problem, newmethods are
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being developed using filter cascades that result in a size fractionation during the

sampling and the reduction of the matrix burden of the small mesh sizes [2].

Less frequently, a sample of the aqueous phase is taken below the water surface.

Sampling of the water column is carried out by direct filtration of the water with

submersible pumps or is reported by the acquisition of batch samples [3, 4].

1.1.2 Sampling of Sediments

There is no commonly accepted sampling strategy so far for sediment samples.

First, the sediments samples must be divided into samples from the shoreline and

the river- or lakebed. The collection of bed sediments by sediment grabs provides

Fig. 1 Possible strategies described in literature for the analysis of microplastics in sediment and

water samples starting with the sampling to the report of the results. The sample preparation is split

in pretreatment, the density separation, and the posttreatment of the separated microplastics.

Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy energy-dispersive

X-ray spectroscopy (SEM-EDS), pyrolysis- or thermal desorption-gas chromatography/mass

spectrometry (Pyr-GC/MS, TDS-GC/MS) are deployed for the analysis
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relatively comparable results due to the standardized sampling instrument [5]. The

applications of corers allows the determination of microplastic depth profiles but

results in small sample volumes (25 cm3) and is so far only reported for the marine

environment [6]. The differences between microplastic studies for the sampling of

shore sediments start with the selection of the sampled area. Shore sediments are

collected parallel, perpendicular, or randomly selected in different distances to the

shoreline. The majority of the studies reports the collection of grid samples with

sampling depths of 2–5 cm of the upper sediment layer [7, 8]. Other studies state the

sampling in relation to the lowest flotsam line of the waterbody [9, 10]. Sample

collection is usually carried out with stainless steel spoons, trowels, or shovels

[10, 11]. In addition, the sampling procedure used will affect how the corresponding

results are reported. For example, studies that use grid samples usually report

the results per surface sampled (e.g., m2), whereas studies based on aerial

bulk samples give the results referred to the volume or mass of the collected sample

(e.g., m3 or kg).

During the sampling and the sample preparation, it is important to avoid contact

with plastic equipment to keep the contamination by the method low. If plastic

vessels are included for transportation, blank samples must be also analyzed to

quantify their contribution to the microplastic load of the sample [8, 10]. In general,

blank samples need to be regarded in microplastic studies to estimate the limit of

quantification of each method used, as the limit of quantification (LOQ) is mainly

affected by the background contamination [12]. Especially studies dealing with

fibers often neglected the analysis of blank samples; thus, the results obtained might

be of limited validity. Moreover, the entire method starting from the sample

preparation to the analytical detection must be critically evaluated. Therefore, a

proper validation must be performed, which also allows a good comparability

between different studies. This includes, for example, the determination of

within-site variabilities for the sampling process or the determination of recovery

rates for the separation methods used during the sample preparation [10, 13, 14].

1.2 Sample Preparation

Even large microplastics like plastic pellets, especially aged and fouled ones, are

difficult to distinguish from natural matter in surface water samples with the naked

eye. Various methods were developed that allow the mechanical separation of

microplastics from the sediment and the removal or reduction of natural debris in

the sample prior to analysis of the separated particles. A variety of techniques have

been used during the sample treatment and the microplastic identification. Because

not all studies conducted extensive method validation including the determination

of recovery of the microplastic particles or did not provide experiments with blank

samples, the resulting data can lack comparability.
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1.2.1 Separation of Microplastics from Sediment Samples

In contrast to microplastics in water, which are easily filtered from the sample

during the sampling process, microplastics in sediment samples must be separated

in the first step of the sample preparation. A commonly used technique for the

separation of plastic particles from sediment particles is the density separation. In a

solution of high density, the microplastic particles float, while the very dense

sediment particles settle. Numerous different techniques are described in literature,

many of them based on the separation introduced by Thompson et al. [15]. Alter-

ations to this method include the use of different salts to create the dense liquid used

for separation and the development of different instrumental setups and different

pretreatment and posttreatment steps of the samples (compare Fig. 1).

In addition to sodium chloride, which was used by Thompson et al. [15] and

others, the application of sodium iodide and zinc chloride has also been reported [16–

18]. Sodium iodide, sodium tungstate, and zinc chloride offer the possibility to

produce solutions with higher densities than sodium chloride. As the density of a

saturated sodiumchloride solution (ρ� 1.2 g cm�3) is rather limited and does not offer

consistent separation of higher density polymers such as polyoxymethylene, polyvinyl

chloride (PVC), and polyethylene terephthalate (PET), sodium iodide, sodium

polytungstate (ρ � 1.6 g cm�3), and zinc chloride are viable choices. Density

separations in the microplastic research rarely use sodium polytungstate despite the

possibility of solutions with high density (ρ up to 1.6 g cm�3), as it is too expensive for

the application in large volume samples [11]. Sodium iodide (ρ � 1.6–1.8 g cm�3) is

usually combined with a pre-separation, based on elutriation that separates less dense

particles from heavier particles in an upward directed stream of gas or water. This

procedure is necessary to minimize the volume needed for the density separation due

to the high costs of sodium iodide [14, 16]. The application of zinc chloride enables

solutions with densities of ρ > 1.6–1.7 g cm�3 and is suitable for the separation of

most polymer types. Due to the lower costs compared to sodium tungstate and sodium

iodide, zinc chloride is frequently reported in recent studies [8]. However, the eco-

logical hazards of zinc chloride complicate the disposal of used solutions and con-

taminated sediments. Thus, the recycling of solutions containing zinc chloride,

sodium iodide, or sodium polytungstate offers a possibility to overcome the waste

management problem and reduce the material costs. To improve the effectivity, the

repeatability, and the ease of handling for the density separation method, different

setups were developed. The initial use of beakers or Erlenmeyer flask was substituted

by the use of separation funnels, vacuum-enhanced separation of the plastic particles,

or stainless steel separators with high sample volume capacity [9, 10, 13].

Recent developments focus on alternatives to density separation techniques.

Elutriation seems to be a suitable and cost-effective alternative even without

following density separation, yielding in good recoveries for polymers with densi-

ties of up to ρ ¼ 1.4, and the versatility of this method might be improved with a

pre-size fractionation of the sample [19].

A different approach includes accelerated solvent extraction (ASE) for the sep-

aration of plastics from soils. The extraction by ASE is carried out under higher

Analysis, Occurrence, and Degradation of Microplastics in the Aqueous. . . 55



pressure to increase the boiling point of the extraction solvent, which increases the

extraction speed. The process usually uses metal cells of small volume that can resist

the pressure. This method bypasses the need for further sample purification and

benefits of a high degree of automatization and allows for a quantitative extraction

of small plastic particles. However, the identification of extracts consisting ofmultiple

polymer types is complicated, and the size of the extracted sediment sample is limited

due to the small size of the extraction cell of the instrument [20].

1.2.2 Removal of Natural Debris

The identification of microplastic particles is often prevented by natural debris that

is present in the sample and accompanies the microplastics during the sampling of

water samples or the density separation. Thus, the destruction of natural debris or

biological material is unavoidable to minimize the possibility of misidentification

or underestimation of small plastic particles. The destruction of natural material can

be carried out by chemical or enzymatically catalyzed reactions. Chemical destruc-

tion of natural debris is achieved through the treatment of the sample with hydrogen

peroxide, mixtures of hydrogen peroxide and sulfuric acid, and Fenton-like reac-

tions prior or after the density separation [8, 18, 21]. These harsh conditions might

result in losses of plastics that are labile to oxidation or unstable in strong acidic

solutions, such as poly(methyl methacrylate) or polycarbonates.

To avoid the loss of synthetic polymers, which are not resistant against acidic

treatments, usage of sodium hydroxide was proposed. However, Cole et al. report

that the alkaline treatment with sodium hydroxide could damage some of the

synthetic polymers as well [22]. Dehaut et al. showed that the application of

potassium hydroxide is preferable for the destruction of organic material, as it

seems to attack the synthetic polymers less than the abovementioned methods [23].

Enzymatic treatments were developed for biota-richmarine surfacewater samples,

which allow the detection of pH-sensitive polymers [22]. Single-enzyme approaches

using proteinase K or mixtures of technical enzymes (lipase amylase, proteinase,

chitinase, cellulase) were used for the removal of biological material, as the enzymatic

digestion can be carried out under moderate experimental conditions in terms of pH

and temperature. Unfortunately, the use of enzymes involves several disadvantages.

Enzymatic treatments are, compared to chemical treatments, expensive and very time-

consuming and might not result in a complete removal of the natural debris.

1.3 Identification of Microplastics

In most studies, microplastics are first identified visually, before an identification of

the polymer type is undertaken. Larger particles can be identified with the naked eye,

whereas small microplastics are identified using binocular microscopes or scanning

electron microscopy (SEM) [6, 24, 25]. Early studies determined microplastic
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concentrations after visual inspection of the sample only. Depending on the efficiency

of the sample treatment and particle size, the visual identification is considered not

state of the art and often insufficient resulting in false-positive results. For this reason,

further spectroscopic or spectrometric methods are needed to ensure the unambiguous

identification of particles made from synthetic polymers.

Spectroscopic identification methods include Fourier transform infrared (FTIR)

spectroscopy and Raman spectroscopy. These methods are based on the energy

absorption by characteristic functional groups of the polymer particles. For larger

particles (approximately >500 μm), FTIR can be carried out using an attenuated

transverse reflection (ATR) unit as the particles need to be transferred on the crystal of

the ATR unit manually [9, 26]. Coupling of FTIR instruments to microscopes such as

reflectance or transmission micro-FTIR allows the detection of smaller microplastics

[27]. The use of FTIRmicroscopy in transmissionmode is only applicable for smaller

particles or thin films that do not fully absorb the IR beam.Moreover, special filters are

required in the sample treatment that are translucent to IR radiation, such as aluminum

oxide membranes. Both FTIR-based and Raman-based methods are limited in the

minimum particle size that can be determined by the physical diffraction of the light.

FTIR measurements in transmittance mode are limited for particles between 10 and

20 μm, while Raman instruments can measure particle with sizes that are one to two

orders of magnitude smaller, due to the smaller wavelengths that are applied for the

excitation. Identification of the polymers by FTIR and Raman is susceptible to

environmentally driven changes of the polymer surface or the additive application

during polymer processing. Thus, microbial fouling, soiling, adsorption of humic

acids, and colored plastics can interfere with the absorbance, reflection, or excitation

of the polymer molecules and might lead to misidentification or totally prevent

identification of the particles [28] (for an in-depth discussion on microplastic associ-

ated biofilms, see [29]). Besides the identification of the polymer type, visual images

of particles enable the determination of particle shape.

The application of pyrolysis-gas chromatography/mass spectrometry (Pyr-GC/MS)

allows the simultaneous determination of the polymer type and polymer additives by

combustion of the sample and the detection of the thermal degradation products of the

polymers [16, 30]. The identification of thermal degradation products serves as amarker

that is specific for each polymer. The degradation products are separated by GC prior

the detection of their specificmass to charge ratios in themass spectrometer. In contrast

to the spectroscopic techniques, Pyr-GC/MS is a destructive method, preventing any

further analysis of the plastic particles. Results obtained through Pyr-GC/MS analysis

are usually provided as the mass fraction or mass concentration of plastics. Therefore,

the determination of particle counts is not possible due to the combustion of the sample.

Thermal desorption GC/MS (TDS-GC/MS) in combination with thermogravimetric

analysis (TGA) coupled with a solid-phase adsorber enables higher initial sample sizes

compared to Pyr-GC/MS [31]. For this reason, more representative results might be

obtained for inhomogeneous samples with complex matrices.

SEM can be coupled with energy-dispersive X-ray spectroscopy (SEM-EDS),

which produces high-resolution images of the particles and provides an elemental

analysis of the measured objects. For SEM-EDS, the particle surface of the sample
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is scanned by an electron beam. The contact of the electron beam with the sample

surface results in the emission of secondary electrons and element-specific X-ray

radiation. Thus, an image of the particle can be created and the elemental compo-

sition can be identified by using SEM-EDS. It is, therefore, possible to distinguish

between microplastics and particles that are composed of inorganic elements, such

as aluminum silicates [32].

Alternatively, hardness tests are reported as inspection of the separated particles.

Pressure is applied to the particles by needles or tweezers. This precludes mis-

identifications of microplastics with fragile carbon or carbonate particles that break

during the test and are not removed or formed during the sample treatment

[33]. However, these tests are very time-consuming, do not provide exact polymer

identification, and are less accurate as other instrumental methods.

More specialized but promising approaches for the detection of microplastics are

described by Sgier et al. and Jungnickel et al. [34, 35]. The latter describe the

measurement and identification of microplastics by time-of-flight secondary ion

mass spectrometry. An imaging technique allows the visualization of the particles,

and the ionization of the polymer molecules is carried out by a primary ion source,

generating secondary ions of polymer fragments. As with Raman microscopy, this

technique enables the identification of particles smaller than 10μm.Sgier et al. detected

microplastics using flow cytometry combined with visual stochastic network embed-

ding (viSNE). viSNE is a tool for the visualization of high-dimensional cytometry data

by nonlinear dimension reduction onto two dimensions [36]. This method was capable

of detecting microplastic particles directly in environmental samples by using

nonbiological reference data sets for the interpretation of the viSNE analysis, although

the reliability of the microplastic identification needs to be proven in future studies.

2 Occurrence in the Aquatic Environment

Microplastic particles are present in surface water, sediments, and oceans all over

the world, for example, at the Italian, Singapore, and Portuguese coast, at beaches

of Hawaii, and islands of the equatorial Western Atlantic as well as at shores of

German and Greek islands [3, 11, 17, 37–40]. First reports of smaller plastic items

were primarily focused on plastic pellets that are used in the production of bulk

plastic items. Plastic pellets have been quantified on numerous beaches and coast-

lines, for instance, in New Zealand, Lebanon, and Spain [41–43]. However, indus-

trial plastic pellets only compose a small fraction of the numerous microscopic

plastic fragments present in the ocean and other aquatic systems [15]. Monitoring

studies often subdivide microplastics into categories of spheres, fibers, foams, and

fragments and report range in concentrations by up to four orders of magnitude,

spanning 1.3 particles kg�1 (German island) over 13.5 particles kg�1 (equatorial

Western Atlantic) to 2175 particles kg�1 (Italy). All these studies were carried out

in the marine environment, and freshwater systems have attracted less attention

until 2010.
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In freshwater environments of lakes and rivers, studies also report highly hetero-

geneous concentrations comparable to those reported for the marine environment.

High within-site variabilities, as well as different units used for microplastic quanti-

tation, complicate the comparison of microplastic concentrations in aquatic systems.

Microplastics in riverine systems were reported for large European rivers, e.g., the

river Rhine and the river Danube, as well as for tributaries such as the river Main.

Plastic particles in the river Danube were determined with high abundance and even

exceeded the number of fish larvae. Lechner et al. stated that the river might transport

high loads of plastic particles into the Black Sea [44]. Studies investigating the river

Rhine showed high abundances of microplastics, especially in the German section of

the river. Average concentrations amounted to approx. 900,000 particles km�2 for

surface water and up to 4000 particles kg�1 for shore sediments. In the Swiss part of

the rivers Rhône, Aubonne, Venoge, and Vuachière, microplastics were detected in

concentrations between 0.10 and 64 particles m3 (mean, 7 particles m�3; median,

0.36 particles m�3) [45]. Distinctly higher concentrations were detected in Chinese

river estuaries. The estuaries of the rivers Jiaojiang, Oujiang, and Minjiang, which all

are located in an urban region, contained microplastics in the range of 100–-

4100 particles m�3 [46].

A study conducted with lakeshore sediments collected from Lake Garda (Italy)

showed high abundances of polyethylene (PE) and polystyrene (PS) microplastics,

indicating the importance of buoyant microplastics for shore sediments. In addition,

polymer particles of a higher density, such as PVC and PET, were also identified in

this study underlining the variety of microplastics present in shore sediments

[8]. Microplastics were detected in concentrations between 108 and 1,108 particles m
�2 with notable spatial variation between the south and the north shore of the lake.

Faure et al. reported microplastics in the Swiss parts of Lake Geneva, Lake Con-

stance, Lake Neuchâtel, Lake Maggiore, Lake Zurich, and Lake Brienz. The con-

centrations of microplastics in lakeshore sediments varied between 20 and

7,200 particles m�2 (mean, 1,300 particles m�2; median, 270 particles m�2) and

are comparable with concentrations reported for Lake Garda. Between 11,000 and

220,000 particles km�2 of microplastics were detected in the surface water of the six

lakes mentioned. Microplastics were also detected in the Laurentian Great Lakes in

North America with concentrations ranging between 0 and 466,305 particles m�2

(mean, 42,533 particles m�2; median, 5,704 particles m�2). Higher abundances of

microplastics have been detected in proximity to urban areas [32]. The determination

of microplastics in gastrointestinal tract of fish from Lake Victoria (Tanzania) shows

first evidence for the microplastic pollution of African lakes [47] (microplastic uptake

biological interactions are discussed in Scherer et al. [48] of this volume). A

monitoring study of Lake Taihu in China detected up to 6,000,000 particles km�2

in surface water samples. In bulk water samples, microplastics were present in

concentrations between 3 and 26 particles L�1, while the sediments of Lake Taihu

contained microplastics in the range of 11–235 particles kg�1. The reported concen-

trations of microplastics in the sediments of Lake Taihu are lower compared to those

detected in the sediments of the European lakes. However, it needs to be taken into

account that lake-bottom sediments were sampled in Lake Taihu, whereas shore
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sediments were studied in the European lakes [49]. Lower concentrations of plastic

particles in Asian freshwaters were detected in the surface water samples of Lake

Hovsgol (Mongolia). Microplastics were quantified in the range of 997–-

4435 particles km�2, but it should be taken into account that the catchment area of

Lake Hovsgol is less populated compared to the abovementioned lakes [50]. For case

study discussions on microplastic occurrence in African and Asian freshwaters, see

Kahn et al. [51] and Chenxi et al. [52] of this volume.

3 Environmental Degradation of Synthetic Polymers

One of the reasons for the great versatility of many synthetic polymers is their high

resistance against environmental influences. However, this fact leads to extremely

low degradation and long residence times for synthetic polymers once they enter the

environment. Degradation of synthetic polymers can generally be classified as biotic

or abiotic, following different mechanisms, depending on a variety of physical,

chemical, or biological factors. During the degradation process, polymers are

converted into smaller molecular units (e.g., oligomers, monomers, or chemically

modified versions) and possibly are completely mineralized [53]. The most important

processes for the degradation of synthetic polymers can be divided into (Fig. 2):

• Physical degradation (abrasive forces, heating/cooling, freezing/thawing, wet-

ting/drying)

• Photodegradation (usually by UV light)

• Chemical degradation (oxidation or hydrolysis)

• Biodegradation by organisms (bacteria, fungi, algae)

Mechanical degradation is an important factor with regard to plastics in the

aquatic environment. In most cases, aging of the polymer by environmental influ-

ences, such as photodegradation or chemical degradation of additives, changes the

polymer properties and leads to embrittlement of the polymer [54]. The recalcitrant

material is then shredded into smaller particles by friction forces occurring during

the movement through different environmental habitats (also see Kooi et al. [55] of

this volume for a discussion on microplastics fate and transportation). This degra-

dation generally leads to smaller plastic particles, which can result in particles with

sizes between 1 and 5,000 μm. Such particles are classified as microplastics.

However, the mechanical degradation does not stop if the particles are within the

size range of microplastics. Thus, the formation of even smaller particles, so-called

nanoplastics, is very likely [56]. These nanoplastics could have different properties

compared to the original macroplastics or microplastics (for a discussion on

nanomaterials, see Rist and Hartmann [57] of this volume). In both cases, the

mechanical degradation leads to a decrease in particle size and consequently to

an increase in the surface area of the polymer particles, which results in faster

degradation due to higher reactivity.

60 S. Klein et al.



Under normal environmental conditions in aquatic systems, the temperature is

not high enough to start chemical changes of synthetic polymers; thus, thermal

degradation is not significant for freshwaters [58, 59].

The degradation of synthetic polymers in the environment on a molecular basis is

usually initiated by photooxidation (with UV radiation) or by hydrolysis and is

eventually followed by chemical oxidation [60]. The predominant mechanisms

strongly depend on the type of polymer, as there are numerous different compositions

of synthetic polymers produced (i.e., polyolefins, polyesters, polyamides). After the

initial reactions, the molecular weight of the polymer is decreased, and the reacted

groups become available for microbial degradation. Photooxidation is usually a fast

process, but the degradation rate also depends on the extent of additives in a particular

polymer that could prevent oxidation processes (i.e., antioxidants). Moreover, the

photodegradation of plastics floating in the aquatic environment is slower compared

to degradation in terrestrial exposure [61]. Experiments on the disintegration of PE

and PS showed faster degradation on the water surface compared to plastics that

partially or completely submerged, likely related to the decreasing intensity of light

and thus to the lower rate of photooxidation [62]. For this reason, many plastics can

stay in the aquatic environment for decades or hundreds of years.

Biodegradation of synthetic polymers can occur in two different environments

(aerobic and anaerobic). The extent of the degradation of polymers intoCO2, H2O,N2,

H2, CH4, salts, minerals, and biomass (mineralization) can be full or partial [63]. Par-

tial or primary degradation of the polymer chain leads to stable or temporarily stable

transformation products. Biodegradation is coupled to three essential criteria:

1. Microorganisms must be present that can depolymerize the target substance and

mineralize the monomeric compounds with enzymes of an appropriate meta-

bolic pathway.

2. The environmental parameters, such as temperature, pH, moisture, and salinity

must provide conditions that are necessary for biodegradation.

Fig. 2 Degradation pathways of synthetic polymers in the aquatic environment with degradation

processes involved and intermediate steps until complete mineralization
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3. The morphology of polymer particles must render the attachment of microor-

ganisms and the formation of a biofilm, while the structure of the polymeric

substrate, e.g., chemical bonds, degree of polymerization, degree of branching,

and parameter, such as hydrophobicity or crystallinity, must not hinder micro-

bial actions.

Since the size of synthetic polymers is generally too large to penetrate the cell

membranes of microorganisms, the first step of biotic degradation is the cleavage of

side chains or the polymer backbone and the formation of smaller polymer units

(monomers, oligomers) by extracellular enzymes [64]. In most cases, this first step

of depolymerization involves an enzymatically catalyzed hydrolysis of amides,

esters, or urethane bonds. These smaller molecules can then be absorbed by

microorganisms and metabolized. Of course, abiotic hydrolysis can also result in

intermediates that are then further metabolized by microorganisms [65].

The complete biotic degradations of poly(ε-caprolactam) and water-soluble

polyethylene glycol are well described in literature [66]. However, most of the

plastics occurring in the environment are water insoluble, and many of the synthetic

polymers present in the aquatic environment, such as PE, polypropylene (PP), PS,

and PET, degrade very slowly or not at all. The degradation of these polymers is

usually a combination of abiotic and biotic degradation pathways.

Polyolefins, such as PE and PP, represent a class of substances with high

industrial production volumes and are determined frequently in environmental

samples. These polymers are usually not biodegradable, as the alkyl backbone is

not accessible for microorganism and must undergo an abiotic transformation. The

alkyl backbone of polyolefins offers a high resistivity against hydrolysis but is

usually susceptible to oxidative degradation. To prevent this, additives are added

during the production process, and the oxidative or photooxidative degradation of

the polymer is delayed until the antioxidants are consumed. After the initial

oxidation of the surface of polyolefins, the degradation could occur in several

weeks but results in the formation of microplastics as possible intermediates

[67]. These smaller and oxidized plastic fragments are more susceptible to micro-

bial attack, e.g., biodegradation of PE is described for pre-oxidized fragments of the

original material by Pseudomonas sp. [68].

4 Conclusion

The results of studies worldwide highlight the great importance of microplastics for

freshwater ecosystems, as they are present in high abundance. Microplastics are

emerging contaminants in the aquatic environment, and attention should be focused

on a harmonized nomenclature of microplastic particles with official guidelines for

microplastic studies. The definition of microplastics often remains vague, and

different size classes are investigated in monitoring studies. For a thorough inves-

tigation of microplastic pollution, standardized methods, especially for the
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sampling of the different compartments, are a key factor for meaningful results. The

quantitation of microplastics differs due to the individual sampling method and

studies still lacking in comparability. Therefore, future studies should integrate

additional units to describe microplastic occurrence in their investigations. More-

over, an integral step of future investigations should be a sufficient validation of the

microplastic analysis, as different technological approaches might be used or future

technological improvements will be implemented for the determination of

microplastics. Important approaches, such as Raman-, FTIR-, and GC/MS-based

techniques, seem to be very versatile for the detection of microplastics, but a better

comparability of results obtained with either of these methods needs to be

established. Degradation of larger plastics will result in a constant source for new

microplastic particles of all size classes, and thus, as it is a slow process,

microplastics will be a relevant long-term threat.
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Sources and Fate of Microplastics in Urban

Areas: A Focus on Paris Megacity

Rachid Dris, Johnny Gasperi, and Bruno Tassin

Abstract Since the beginning of the 2010s, the number of investigations on micro-

plastics in freshwater increased dramatically. However, almost no study aims at

investigating the various sources and fate of microplastics in a catchment. This

chapter aims at analyzing the various sources and fate of microplastics for an

urban catchment and its hydrosystem (sewage, runoff, etc.). It presents the results

obtained during a 3-year study of the Paris Megacity. Such a study required the

development of appropriate sampling strategies for each compartment. It was high-

lighted that fibers are highly concentrated in the studied area, and therefore a focus

in this category of microplastics was carried out. The atmospheric fallout exhibited

important levels of fibers. However, at the scale of the Parisian agglomeration,

wastewater treatment plant disposals and combined sewer overflows represent the

major sources (number of fibers introduced per year) among the studied ones.

Keywords Fibers, Freshwater, Microplastics, Plastic pollution, Urban areas,

Urban impact

1 Introduction

Although the first scientific articles that identified plastic in the environment as

an issue are rather old [1, 2], efforts of the scientific community on this subject

actually started at the beginning of the twenty-first century with the 2004 paper

of Thompson et al. [3]. Studies highlighted the issue of microplastics (MPs)

and raise two main questions: (1) the interaction between plastic items and the
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physical-chemical environment (fragmentation, micro-pollutant exchanges) and

(2) their interaction with the biological compartment including ecotoxicological

effects but also biodegradation. As underlined by Dris et al. [4], the term

“microplastics” was used first in the Thompson article to describe mainly plastic

particles that are “fibrous, 20 μm in diameter, and brightly colored.” However, in

2008 another definition of microplastics with a much broader scope was proposed

that included all the particles with a size smaller than 5 mm [5]. Although, on the

basis of the usual scientific meaning of “micro,” microplastics will describe

“micrometric” particles (i.e., 1–1,000 μm), for the scientific community, the name

“micro” has to be understood following its Greek word μικρóς, meaning small (i.e.,

all particles <5 mm).

This issue of microplastics in the environment has received increasing attention

from the scientists, and the number of articles on this subject increased from less

than 10 in 2011 to more than 150 in 2016 (request on Scopus with the words

“microplastic” and “environment”). However, microplastics in freshwater environ-

ments represent only a small fraction of this amount. The first articles on

microplastics in freshwater were published in 2011 and focus mainly on Lake

Huron [6] and Los Angeles rivers [7] in the USA. Since that period, numerous

studies have been published covering all continents, with the exception of Antarc-

tica, and all the potentially impacted environments (water and sediment for the

aquatic environment, banks for the terrestrial environment). While at the beginning

mainly lakes have been investigated, it can be considered that now both lentic and

lotic ecosystems are investigated. Nevertheless, the dynamics of fibers and plastics

in urban catchments and hydrosystems are practically unknown. Their fate, transfer

routes, and processes in continental water have yet to be determined.

Cities can be considered as one of the major sources of MPs as they gather at an

especially high density all the activities that involve plastics and MPs including

textile uses, packaging, transportation, electronics, buildings, and constructions.

The aim of this work is to provide a comprehensive analysis of the sources and fate

of microplastics in an urban environment with a focus on the Paris Megacity. Often

referred to as the Paris agglomeration, this megacity is one the world’s 40 largest

with a population of over 10 million. The Paris agglomeration is crossed by the

Seine River, whose catchment drains an area of approximately 32,000 km2 from the

river’s headwaters to Paris. This catchment combines intense anthropogenic pres-

sures with a very limited dilution factor due to the low average flow of the Seine

River (350 m3 s�1 in Paris). As a consequence, the Paris agglomeration exerts a

dramatic pressure regarding pollutants on the river and provides a good case study

in order to understand the consequences of urban environments on continental

water. Moreover, to our knowledge, there is no case study dealing with MPs and

covering all the compartments of the urban system and fluxes that occur between

them. This study on Paris Megacity provides, from our point of view, the most

comprehensive overview of MP sources in an urban area and its interaction with

continental water.
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2 Types and Shapes of Microplastics: A Focus on Fibers

in Urban Areas?

MPs observed in freshwater not only cover several orders of magnitude in size, they

also cover a wide spectrum of shapes. This includes fibers (length� diameter) and

fragments (diameter � thickness) composed of different irregular shapes and

spheres. These can be considered as either primary or secondary MPs depending

on their origin.

Primary MPs are already manufactured in a size smaller than 5 mm. Two

different forms of primary MPs exist: preproduction pellets and microbeads.

Preproduction pellets are used in plastic industry. These virgin resins are melted

and then formed into consumer products [8]. Microbeads were first present in hand

cleaners that are used on rare occasion by the average consumer [9]. Microbeads

have also come to replace natural exfoliating materials in facial cleansers, which

are often used on a daily or at least weekly basis [10]. Secondary MPs stem from the

degradation and fragmentation of large debris. Thermal, mechanical, and photo-

degradation are important factors during the fragmentation process [11, 12].

We consider textile fibers to represent a special case. They can be considered as

secondary MPs as they come from the breakdown of large items (clothes). This

breakdown does not primarily occur in the environment but in the washing

machines during the laundry [13]. As a consequence, fibers are found in the disposal

of washing machines and, like primary MPs, enter the environment in a micro-

scopic size. The same study showed the presence of fibers at the disposal of waste-

water treatment plants (WWTPs). As a consequence, we would expect a

predominance of fibers in urban areas with large WWTPs. In addition, because of

the complexity of studying fibers, they are often overlooked. It is here decided as

consequence to give a specific attention to fibers.

Fibers are often not included on the key figures concerning plastic materials

[14]. However, a great proportion of the produced fibers are derived from petro-

chemical polymers. The international organization for standardization (ISO/TR

11827:2012 Textiles – Composition testing – Identification of fibers) proposed a

classification of the fibers according to their nature and origin.

Fibers that are used and commercialized can be either natural or man-made. The

natural fibers are categorized according to their origin into animal, vegetal, or

mineral fibers. For instance, cotton is a vegetal natural fiber and is very widely

used. Man-made fibers are obtained by a manufacturing process. The artificial ones

are made by the transformation of natural polymers. For example, rayon is artifi-

cially manufactured but is made from cellulose, which is a natural polymer. On the

other side, synthetic fibers are made from polymers that were chemically

synthetized. In this latter category, we can find plastic polymers (polypropylene,

PP; polyamide, PA; polyether sulfone, PES; etc.). The latter are most often the only

fibers that are included in the microplastics definition in the different studies.

Bicomponent fibers also exist and are composed of two fibers forming polymer

components, which are chemically and/or physically different.

Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity 71



In 2014, a total of 91 million metric tons of textile fibers were produced [15], of

which 63 million metric tons were man-made fibers and 58 million metric tons were

plastic fibers (�20% of the world’s plastic production).

3 Source and Fate of Microplastics on the Paris Megacity

3.1 Overview of the Approach

Between 2014 and 2016, an investigation of several sources and fluxes of MPs has

been carried out on the Paris Megacity. The following sources have been

investigated:

1. Atmospheric fallout

2. Runoff water

3. Gray water

4. Wastewater and WWTP outlets

5. Combined sewer overflows (CSOs)

A map of Paris Megacity as well as the location of the various sampling sites is

presented (Fig. 1). More details on the methodology and the approach can be found

in Dris [16–18].

One of the challenges of a holistic study is that the different sample types will

require different sampling methods. For instance, atmospheric fallout requires the

use of a funnel for sampling, while automatic samplers including pumping devices

are needed for the inaccessible canals of wastewater and CSOs. The other difficulty

for such a systemic approach is the interpretation and comparison of the results. The

atmospheric fallout is intrinsically expressed differently than the other compart-

ments (fibers per surface and time unit rather than a concentration). Moreover, the

interpretation has to take into consideration the time and space scale differences

among the compartments. For instance, atmospheric fallout is a diffusive perma-

nent source, whereas WWTP outlets represent a punctual but permanent source,

while CSOs are punctual in time and space. The best way to work around this and

be able to understand the sources of MPs is to consider the fluxes between the

various compartments, for instance, on an annual basis. In this chapter, a first

attempt to describe this approach is presented (Table 1).

3.2 Microplastics Encountered in the Different
Compartments

The various concentrations of fibers and fragments encountered in each compart-

ment are synthetized in Fig. 2. The total atmospheric fallout was investigated at two
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sampling sites: one in a dense urban environment and one in suburban environment

[17]. Only fibers were encountered and fragments were not detected. Throughout

the year of monitoring (site 1), the atmospheric fallout ranged from 2 to

355 fibers m�2 day�1 (110 � 96 fibers m�2 day�1, mean � SD), indicating a

high annual variability. On site 2, the atmospheric fallout was estimated around

53 � 38 fibers m�2 day�1. When the levels on both sites are compared, the

suburban site systematically showed fewer fibers than the urban one. We hypo-

thesize that this difference can be explained by the density of the surrounding

population, which is considered as a proxy of local activity. However, this has to be

confirmed through investigations at other sites.

A suburban catchment with a separate sewer (wastewater and runoff water are

collected separately) was considered for the urban runoff (unpublished data). The

Sucy-en-Brie (R1, Fig. 1) catchment area reaches 261 ha, and its impervious

Fig. 1 Map of Paris Megacity and location of the various sampling sites [23]

Table 1 Used methods and sampled volumes for the various compartments

Sampling method Sampled volume

Atmospheric fallout A collection funnel Continuous monitoring

Urban runoff, WWTP effluents, CSOs Automatic samplers 200–1,500 mL

Fibers in freshwater 80 μm mesh size net 0.2–4 m3

Fragments in freshwater 300 μm mesh size net 50–200 m3
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surface coefficient is about 27%. At the outlet of this catchment, stormwater was

collected during five different precipitation events between October 2014 and

March 2016. Runoff concentrations at the catchment outlet ranged between

24 and 60 fibers L�1 with an average of 35 fibers L�1. By considering the rainwater

volumes collected during the atmospheric fallout experiments, a median concen-

tration of 40 fibers L�1 of rainwater can be estimated. Fragments of plastic were

also recovered in the runoff on three of the five sampled events and consisted

mainly of foamy and irregular shapes. Concentrations ranged from <2 to 16 frag-

ments L�1. The number of fragments was systematically lower than the number of

fibers, and there is no correlation between both types of MPs.

MPs were also analyzed at various scales of the sewer system: from the outlet of

washing machines to the outlet of WWTPs (unpublished data except for few

samples of oneWWTP outlet [18]). Washing machine effluents have been collected

at four volunteers’ homes. The washings were carried out in their own washing

machines with their own items. To have a more realistic vision, participants were

asked to not change anything from their habitual washing process. Therefore,

clothes made from natural, artificial, and synthetic fibers were all included, without

any preselection. Concentrations between 8,850 and 35,500 fibers L�1 were

encountered compared to 120 and 810 fibers L�1 for control washes (without

clothes), confirming the large amount of the fibers disposed of in washing

machines’ effluents.
The wastewater entering four WWTPs of the Paris agglomeration was consi-

dered. Generally, wastewater is highly contaminated with fibers with the average

concentration being of 248 � 109 fibers L�1 (mean � SD, n ¼ 20) reaching a

Fig. 2 A synthesis of the total fibers and fragment concentrations in the investigated urban

compartments as well as the fluxes of synthetic fibers between different compartments. Only

data about total fibers (natural fiber like cotton + artificial and synthetic fibers) are available for

CSOs and runoff, and therefore the latter is not included in the synthetic fiber flux estimations [24]
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maximum of 473 fibers L�1. In comparison, another study found similar values

about 180 textile fibers L�1 [19].

Unlike fibers, fragments were only rarely collected, probably because of the low

volumes of the samples (100–400 mL). In the 20 samples studied, 16 did not

contain any fragments. For the four remaining samples, three contained one frag-

ment, while the other contained two fragments. These small values indicate a

potential upper limit for the concentration of these particles. No fragments in a

400 mL sample, for instance, imply a concentration <2.5 particles L�1. Larger

values were observed in other studies: 430 particles L�1 [19] or 13 particles L�1

[20]. If this variation in fragment concentrations is site dependent or is related to

different methodologies, it remains unknown at the moment. Fragments could, in an

oversized sewage network, settle inside the sewer during dry weather periods and

reach the WWTP only at low concentrations. It is known that Paris wastewater

sewerage system is oversized leading to a very low flow velocity and therefore a

high sedimentation of particles inside the sewer.

Two WWTPs were selected in order to estimate the treatment efficiency. Seine

Centre WWTP was considered for the case of a treatment by biofilters, while Seine

Aval WWTP is a conventional activated sludge plant. For Seine Centre, three

sampling campaigns on three consecutive working days were carried out. Raw

wastewater after pretreatment, settled wastewater (after the primary clarifier), and

treated water (after the biofilters treatment) were all considered. Only limited

volumes were considered here. As the disposal channel of Seine Aval is large and

long enough to be navigable, a manta trawl with a 330 μmmesh size was towed by a

motor boat in the upstream direction in order to sample high volumes (68 m3) and

count fragments.

In the case of Seine Centre, only fibers were encountered. The results suggested

a removal from 83 to 95% of the fiber contamination. Other works showed higher

removal efficiencies of MPs by WWTPs, i.e., between 95 and 99% [20, 21]. How-

ever, all these results are hardly comparable since methods used vary from one

study to another.

Fragments were detected at the outlet of the WWTP Seine Aval because larger

volumes were integrated. Irregular fragments were observed primarily, and foams,

films, and spheres were found punctually. The number of fragments observed in the

treated water varies between 6 � 10�5 and 3 � 10�4 fragments L�1. The concen-

trations of fragments are much lower than the levels of fibers observed in the

automatic sampler samples (105 more fibers). Being able to observe fragments in

the manta trawl samples is also an additional indication that fragments are present

in WWTP effluents but just too scarce to be observed in small sample volumes.

A combined sewer system collects rainwater runoff and domestic sewage.

However, during heavy rainfall events, the volume of water may exceed the

capacity of the sewer and can cause flood events. In this situation, untreated

water is discharged directly into the water bodies. In this context, 500 mL samples

were collected at La Briche CSO outlet during three events.

Both fragments and fibers were encountered in the CSO samples. For fibers,

levels of 190,898 and 1,046 fibers L�1 were detected. The presence of fibers is most
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likely due to the combined contribution of both wastewater and runoff. The levels

observed in CSOs are higher than the levels in strict separated runoff. For two of the

three samples, concentrations were higher than the concentrations in wastewater. A

settlement of particles during dry weather periods and their re-suspension when the

flow increases was described on the literature [22]. A similar behavior could be

expected for the fibers. The level of fibers also depends on the previous rain events:

the first sampling was conducted after a long period of heavy rainfall, which might

have induced a decrease in the amount of fibers in the sewer system.

Levels of fragments vary between 35 and 3,100 fragments L�1. The levels are

especially high even if they vary by two orders of magnitude. Lower concentrations

of fragments in comparison to fibers can be observed except for the event present-

ing the highest runoff contribution and volume.

3.3 Fiber Fluxes in Different Compartments

As fibers are of utmost importance concerning MP pollution in freshwater, it is

especially interesting to assess the relative contribution of the various sources. In

this section, the number of fiber fluxes is estimated at the scale of the Paris Megacity

(surface area around 2,500 km2–10 million inhabitants). The number of MP fibers is

used to estimate the mass fluxes. Because the fibers were measured, the cumulated

total length of the fibers was calculated. The length was coupled with their approx-

imated diameter to evaluate the volume. It was estimated that diameters ranged

between 5 and 100 μm with an average diameter of 25 μm. Therefore, with the total

volume and specific densities of the plastic polymers (1 g cm�3 for the PA and

1.45 g cm�3 for the PET, corresponding to polymers widely used in the textile

industry), total masses can be estimated. The results are summarized in Fig. 2.

• Atmospheric fallout. According to the average atmospheric flux of total fibers at

the urban and suburban sites (110 and 53 fibers m�2 day�1), we can estimate that

at the scale of the Paris agglomeration between 1.2 and 2.5 � 1011 fibers could

originate annually from the atmosphere. According to our analyses, we calculate

that 30% of these fibers are plastic polymers. Therefore, between 3.5 and

7.6 � 1010 MPs would fall per year from the atmosphere on the Paris agglomer-

ation. The masses of plastic fibers are likely between 6 and 17 metric tons.

• Gray water. Based on the water consumption for washing machine in France

(14.4 L inhab�1 day�1) and 10 millions of inhabitants, we assess that between

4 � 1014 and 2 � 1015 fibers are discharged annually into the wastewater.

However, the washing machine fibers were not chemically characterized in

this work. Two hypotheses can be assumed. For the first one, we can consider

that, at a global scale, 60% of these fibers are synthetic, according to the

Europeans’ uses and supposing also that both categories of fibers tear off

similarly from clothes. The second hypothesis is based on a talk at the SETAC

Europe 2016 conference indicating that MPs account for 5% of the fibers at the

76 R. Dris et al.



disposal of washing machines [23]. Therefore, based on both scenarios (5 and

60% of synthetic fibers), between 2 � 1013 and 1 � 1015 annual MP fibers are

discharged into the wastewater at the Paris agglomeration scale. This corre-

sponds to a mass between 6 and 437 metric tons/year.

• Wastewater. As 2.3 million m3 wastewater are treated daily for the Paris

agglomeration, between 6 � 1013 and 4 � 1014 fibers flow annually in the

wastewater. Assuming that the proportion of synthetic fibers remains constant

between the washing machine disposal and the entry of the wastewater treatment

plant, it was considered that between 5 and 60% of the fibers in wastewater are

synthetic. Therefore, between 3 � 1012 and 3 � 1014 synthetic fibers, i.e.,

between 2 and 225 metric tons of fibrous MPs, flow annually on wastewater.

By applying the removal rates of WWTP Seine Centre (between 80 and 95%) to

the global estimation made above for the wastewater, we estimate that the Paris

agglomeration releases annually between 2 � 1011 and 5 � 1013 plastic fibers

into the surface waters, corresponding to a mass between 0.1 and 45 metric tons.

• Combined sewer overflows. CSO discharges in the Paris combined sewage

system are approximated about 21 million m3 year�1, corresponding to a

potential introduction into the freshwater of between 4 and 5 � 1012 fibers

annually. It is hard to provide an accurate estimation of the proportion of

plastic polymers among those fibers.

3.4 Comparison of Microplastic Sources in Freshwater

Among the various sources investigated, fibers were always present, while frag-

ments were mainly detected in the urban runoff and the CSOs. The atmospheric

compartment was confirmed as a source of fibers including MPs. These fibers could

have different sources including synthetic fibers from clothes and houses, degrada-

tion of macroplastics, landfills, or waste incineration. The characterization indicates

that the hypothesis of the clothing being the main source of these fibers is the most

plausible (proportion of polymers close to the uses on the textile industry). These

fibers in the atmosphere, including MPs, could be transported by wind to the aquatic

environment or deposited on surfaces of cities or agrosystems. After deposition,

they could impact terrestrial organisms or be transported into the aquatic systems

through runoff. Future work is needed in order to investigate these atmospheric

fibers and understand where they come from, where they end up, and which

mechanisms and factors lead to their transport and their fallout. The distance over

which a fiber could be transported is also still unknown. In this study, it was not

possible to assess whether the observed fibers come from very close sources in the

proximity or from distant places. MPs found in isolated lakes suggest that the

transport could occur over long distances [24]. It seems that atmospheric fallout

is a significant source of MPs and should be considered when investigating MPs in

freshwater. In addition to atmospheric fallout, other sources have to be considered

like fibers that can deposit directly from the clothes of people walking on streets. In
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addition, fibers coming from dry weather atmospheric fallout could be re-suspended

by wind or washed during the roads and streets cleaning, limiting the accumulation

between two rain events.

While only fibers were detected in atmospheric fallout, runoff contained also

fragments. It suggests that fibers can be transported by air, while the larger

fragments seem to fall directly on surfaces and wait to be transported by the

urban runoff, if not cleaned by road cleaning services. We can suppose that the

fragments stem from the degradation of larger debris, but this hypothesis still needs

verification.

WWTPs were also studied as potential sources of MPs. Fibers were found in

washing machine effluents and consequently in wastewater. Mechanisms and

dynamics that fibers undergo inside of a sewage system are up to now not reported

in the literature. The roughly estimated flux of fibers entering WWTPs lies in the

same range as the amounts supposedly discharged by washing machines. The

estimation range is however large and fluxes could be potentially lower. Because

the transport duration in the sewer systems is probably short (max. 48–72 h), it is

considered that no fragmentation occurs. On the other hand, a sedimentation

process during dry weather periods in the sewage network is possible. WWTP

effluents are perhaps the most investigated sources to the receiving systems. For the

different Parisian WWTPs, the estimated number of MP fibers even with a removal

of fibers between 80 and 95% is higher than the fibers coming from atmospheric

fallout. The WWTP effluents seem to be the major source of fibers in comparison to

other MPs.

In contrast, CSOs contain both high fragments and fiber concentrations. It

appears that CSOs are the main and major input of MP fragments into the fresh-

water. Moreover, the fact that it presents concentrations of fibers sometimes higher

than wastewater tends to confirm a re-suspension of sewer deposits during wet

weather periods.

The knowledge on the various dynamics and mechanisms of MPs in urban

catchments is still very coarse. For instance, conditions driving the fibers suspen-

sion, the aerial transport, and the fallout processes are unknown. If some sources

and fluxes have been identified, it is necessary to compare the results obtained on

the Paris Megacity on other case studies all over the world.

4 Monitoring Microplastics in the River Seine

4.1 Overview of the Approach

In a preliminary study published at early stages of this work, we tested two different

mesh size nets to sample the river Seine [18]. It highlighted the differences between

a small (80 μm) and a larger mesh size (330 μm). Fibers are highly concentrated and
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the use of the 80 μm mesh size is preferred. Fragments on the other hand are less

abundant, and sampling higher volumes is mandatory, requiring large mesh size

(330 μm). In this chapter, both methods were employed. Moreover, because fibers

seem to characterize the area of the case study and are less investigated by the

previously published investigations on freshwater, a long-term monitoring from

April 2014 to December 2015 was carried out on four stations (P2–P5) on the Seine

River from upstream to downstream Paris plus one station on the Marne River (P1).

For the fragments, only five different campaigns were carried out on the

various sites (Fig. 1).

4.2 Fibers in the Seine and Marne Rivers

Concentrations through the year in the Marne River (P1) range between 5.7 and

398.0 fibers m�3 with a mean concentration of 100.6 � 99.9 fibers m�3

(mean � SD). From the upstream to the downstream points, the concentrations

are 48.5 � 98.5 fibers m�3 (P2), 27.9 � 26.3 fibers m�3 (P3), 27.9 � 40.3 fibers m
�3 (P4), and 22.1 � 25.3 fibers m�3. Variations occurred in a parallel way on the

different sites. This could indicate that global factors that vary equally for all sites

are more likely to affect the concentrations than local factors. The variations in

diffusive inputs or seasonal changes could be at cause. We could also suspect a

relation with the river flow variations, but no clear correlation was found. None-

theless, a tendency to always have low fiber levels during high-water-flow periods

was observed. During low-water-flow periods, levels are much more variable and

could be influenced by different parameters such as the input of fibers, either from

punctual sources (WWTP, CSO), diffusive sources (atmospheric fallout), or a pos-

sible re-suspension of fibers from the sediments.

It is possible to assess the annual fluxes of fibers in the Seine River using the

19 punctual fluxes calculated at each site. The increase between the most upstream

and most downstream point (P2 and P5) is only 6%, which is much smaller than the

uncertainty induced by the short-term variability (unpublished data). As a conse-

quence, it seems regarding the fibers that the impact of the Paris agglomeration is

rather small. Current state of knowledge does not allow to understand and explain

this non-increasing pattern. In fact, between P2 and P5, two tributaries (Marne and

Oise Rivers), three WWTP disposals (Seine Amont, Seine Centre, and Seine Aval),

and numerous CSOs join the Seine River. Sinks that counterbalance these inputs

could explain the fact that similar fluxes are found from upstream and downstream

Paris. We suspect an important role related to the sedimentation and deposition on

the banks of the fibers. Further research on the fate of the fibers is still required.

The minimum and maximum estimated fluxes for the site P5 are 2.8 � 1010 and

6.1� 1011 fiber/year with a mean of 1.8� 1011. With the hypothesis that 65% of the

fibers are synthetic, we approximate that between 1.8 � 1010 and 4.0 � 1011 MP

Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity 79



fibers flow in 1 year in this site corresponding to an estimated mass of synthetic

fibers between 0.01 and 0.34 metric tons flow per year. The evolution of this flux

toward the estuary has to be determined in order to be able to determine the input

from freshwater to the marine environment in terms of MPs.

4.3 Comparison with the Fragments

There is a large difference in the concentration levels between fibers and fragments.

The mean fiber concentration is around 45 fibers m�3 (n ¼ 95 samples), while the

mean fragment concentrations considering both methods is around 0.54 frag-

ments m�3 (n ¼ 17 samples). As a consequence, using two different sampling

methods for fibers and fragments seems really pertinent. While analyzing fibers

needs the use of a small mesh size, sampling higher volumes is mandatory to collect

other shapes of MPs.

By assuming a mean fiber length (973 μm) and diameter (25 μm) and for the

fragments the mean area (168,000 μm [2]) and roughly estimated thickness

(35 μm), the volumes of a typical particle for each shape can be approximated.

Combining MP proportions and polymer densities hypotheses (1 and 1.45 g cm�3),

the mass concentrations were approached.

It was estimated that the mean concentration for synthetic fibers is of 2 � 10�5

g m�3, while it is of 3� 10�6 g m�3 for fragments. Because of the small amount of

data, the fragment mass flux was not estimated. However, it seems with this result

that even if a fragment is bigger than a fiber on average, the fragment mass fluxes

would be one order of magnitude smaller than fiber mass fluxes.

5 Conclusions and Perspectives

Although information on MPs in freshwater increased dramatically over the very

recent years, there is, until now, neither a systematic overview of the sources, fate,

and sinks on a catchment scale nor a link between the catchment characteristics and

the concentration of MPs in receiving systems.

A first attempt was made on the urban catchment of Paris Megacity and its main

drainage system: the Seine and the Marne Rivers. During almost 3 years, samples

have been collected from atmospheric fallouts and urban runoff, from upstream to

downstream of the sewage system, and in the rivers. The key results are:

• The importance of the fiber category (near urban areas at least), which includes

not only plastic fibers but also other synthetic fibers like rayon, which might also

have an environmental impact.
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• The necessity to split MPs in two categories: fibers and fragments. Sampling

protocols often do not allow the sampling of fibers. This study shows that micro-

plastic fibers are numerous in the catchment and in the receiving system and

cannot be neglected. Of course the impact of such fibers is still unknown and

must be investigated. Fragments are two orders of magnitude less abundant than

fibers, but with different environmental impacts and must also be analyzed.

• Atmospheric fallouts constitute a significant flux of fibers at the scale of an urban

catchment. Up to now, the dynamics of these fibers in the atmosphere, its

interaction with the catchment surface, the alternating mechanisms of fallout/

re-suspension, and the length scale of the movement of a fiber in the atmosphere

remain unknown. Moreover, while studies point out at the rivers as a major

introduction way of the fibers from the continental into the marine environment,

this study suggests that the atmospheric compartment and the wind should be

further investigated as a potentially major contributor.

• Washing machines seem to be a major source of fibers, including MP fibers.

However, wastewater treatment plants play a major role in the reduction of fibers

and microplastic fragments, which are probably transferred to sludge. Investi-

gation of sludges and, when sludge spreading takes place, of agricultural land

has still to be reinforced.

• Sampling protocol of fragments in rivers has to be improved, in order to decrease

the uncertainty in downstream flow estimates.

• Concerning fibers, surprisingly no obvious increase of the upstream-downstream

flow has been observed. Various in-river phenomena may explain this, but both

in situ measurements and lab experiments have to be conducted to clarify this

point.

Actually, this study is only the starting point of a more comprehensive work

related to the dynamics of (micro)plastics at a catchment and especially urban

catchment scale. Other places have to be investigated and consistent interdisciplin-

ary research programs conducted. This study showed mainly that the identification

of the sources and the fate of microplastic in freshwater is complicated and that a

systematic and holistic approach is required.
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Microplastic Pollution in Inland Waters

Focusing on Asia

Chenxi Wu, Kai Zhang, and Xiong Xiong

Abstract The presence of microplastics in marine environment is increasingly

reported and has been recognized as an issue of emerging concern that might

adversely affect wildlife and cause potential risk to the health of marine ecosys-

tems. In addition, preliminary works demonstrated that microplastics are ubiqui-

tously present in many inland waters with concentrations comparable or higher

than those observed in marine environments. Asia is the most populous continent

in the world, and most Asian countries are under rapid development while facing

serious environmental problems. In this chapter, we review the available literature

reporting on the occurrence of microplastics in inland waters in Asia. Limited

works have provided basic information on the occurrence, distribution, and prop-

erties of microplastics in lakes, reservoirs, and estuaries in Asia. Comparison with

data from other regions worldwide suggests that microplastic pollution in inland

waters in Asia can be more serious. These preliminary results call for more

research efforts to better characterize the sources, fate, effects, and risks of

microplastics in inland waters. Extensive and in-depth studies are urgently needed

to bridge the knowledge gaps to enable a more comprehensive risk assessment of

microplastics in inland waters and to support the development of policy addressing

this issue.
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1 Introduction

Plastics are the most versatile materials invented by man. The use of plastic

materials has brought great convenience to our daily lives but not without down-

sides [1]. Inappropriate disposal of wasted plastics has caused serious environmen-

tal problems. The presence of plastic debris in the environment not only affects

the aesthetical and recreational values of ecosystems but may also present a

persistent pollution problem that will continue to accumulate into future genera-

tions [2–4]. Once entering the environment, plastics are subject to physical, chem-

ical, and biological weathering processes, which act to slowly break large pieces of

plastic into smaller fragments. Plastics less than 5 mm are considered as

“microplastics” [5]. However, no universally accepted definition in terms of the

size range for microplastics is currently available [6]. Microplastics can be ingested

by aquatic organisms, which might cause potential adverse effects and arouse food

safety concerns [7–10]. As a result, microplastic pollution has become an issue of

emerging concern and is drawing increasing attention from both the public and

scientific community.

Microplastic pollution in the marine environment has received widespread

attention. Microplastics are found ubiquitously in benthic and pelagic environments

in the oceans [11, 12]. In oceans, the high abundance of microplastics observed in

the large-scale subtropical convergence zones is attributed to the circulation of

ocean currents [13–15]. Accumulation of microplastics in shoreline sediments has

also been observed worldwide [16–19]. The majority of plastic debris in oceans

originates from land, although discharges from ocean vessels, military operations,

and general shipping activities cannot be discounted [20]. It was estimated that

275 million metric tons of plastic wastes were generated in 192 coastal countries in

2010, and about 4.8–12.7 million metric tons are estimated to end up in the ocean

[20]. Based on this estimation, over 95% of the plastic wastes will remain on

continents to be either recycled, disposed of in landfills, go for incineration (with

or without energy recovery), or otherwise be discarded and stay on continents [21].

Only a few studies have addressed the issue of microplastic pollution in terres-

trial environments and inland waters in contrast to the vast amount of research in

marine environments. These studies suggest inland waters are facing similar

microplastic accumulation problems as found in the oceans [22, 23]. Many inland

waters are habitats for aquatic species that have important ecological and economic

value and provide services for recreation, aquatic products, and water resources.

Therefore, it is important to understand the occurrence, fate, and effects of

microplastics in inland waters [24–26].

Asia is the largest and the most populous continent in the world. Asia covers

about 30% of Earth’s total land area and supports about 60% of the world’s
population. There are about a 1,000 ethnic groups with diverse languages and

cultures. Nearly all countries in Asia are developing countries, which are under

rapid development while facing growing environmental problems at the same time.

In this chapter, we reviewed the available literature on microplastic pollution in

inland waters with a specific focus on Asia. A considerable lack of data for inland
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waters was found. Extensive and in-depth studies are urgently needed to bridge the

knowledge gaps to enable a more comprehensive risk assessment of microplastics

in inland waters and to support the development of policy addressing this issue.

2 Production and Use of Plastics in Asia

According to the data from Plastics Europe [27], world production of plastics

reached 311 million metric tons in 2014, an increase of 38% from 2004. China

and Japan are the two leading countries with the highest plastic production in Asia

accounting for 26% and 4% of the world’s total production in 2014, respectively.

Plastic production in the rest of Asia accounted for 16% of the world production.

All together Asia produced nearly a half of the world’s plastic materials in 2014.

These plastic materials are used in a wide variety of markets, including packaging,

building and construction, automotive, electrical and electronic, agriculture, con-

sumer and household appliance, etc. Polypropylene (PP), polyethylene (PE), and

polyvinyl chloride (PVC) are the most-used polymer types and account for 19.2%,

29.3%, and 10.3% of the plastics demand in Europe, respectively [27]. Although the

production of plastics is the highest in Asia, the per capita consumption is low

compared to developed regions. For example, the per capita plastic consumption is

9.7 and 45 kg per person in India and China, comparing to 65 and 109 kg per person

in Europe and the USA [28].

Plastic wastes are recycled at a much lower ratio in developing countries than in

developed countries. In China, less than 10% of the plastic wastes are recycled,

while about 30% of the plastic wastes are recycled in Europe [27, 29]. What’s more,

developing countries usually have a high percentage of mismanaged plastic waste.

Among the top 20 countries ranked by the mass of mismanaged plastic waste, all of

them are developing countries except the USA which has the highest waste

generation rate but the lowest percentage of mismanaged plastic waste [20]. Twelve

Asian countries were on the list with China, Indonesia, and the Philippines ranked

top three. The percentage of mismanaged plastic waste among these Asian coun-

tries varied from 1.0 to 27.7%. As a result the environmental release of

plastic wastes is more likely in these Asian countries.

3 Microplastics in Inland Waters in Asia

3.1 Occurrence of Microplastics

Although inland waters in Asia have a high potential to be polluted by micro-

plastics, relevant studies are scarce among the literature. Only seven studies were

found from the databases accessible to us and are summarized in Table 1. Among

these studies, one was carried out in Mongolia, while all others were performed in
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China. Lake Hovsgol, a remote mountain lake in Mongolia, was surveyed for

pelagic microplastics [30]. Results showed that microplastic abundance ranged

from 997 to 44,435 items/km2. Microplastic abundance decreased with distance

from the southwestern shore which had the highest human impact and was distri-

buted by the prevailing winds. Zhang et al. [22] investigated microplastic occur-

rence in the surface waters of the Three Gorges Reservoir in China and found

microplastic abundance up to 136,175� 106 items/km2, which is the highest micro-

plastic abundance ever reported in the literature. The authors suggested that the

high accumulation of microplastics is related to the damming, and reservoirs can act

as potential hot spots for microplastics. In another study by Zhang et al. [23],

microplastics were sampled from the shorelines of four lakes within the Siling Co

basin in northern Tibet. Microplastics were detected in six out of seven sampling

sites, and the site with the highest microplastic abundance was related to the

riverine input. Su et al. [31] reported microplastic pollution in Taihu Lake, which

is the third largest freshwater lake in China located in a well-developed area under

extensive human influence. Microplastics were detected in plankton net, surface

water, sediment, and Asian clams samples. More recently, microplastic pollution

was studied in inland freshwaters in Wuhan, the largest city in Central China

[32]. Microplastics were detected with concentrations ranged from 1,660 � 639.1

to 8,925 � 1,591 items/m3 in surface water, and microplastic abundance was

negatively correlated with the distance from the city center. Another two studies

have also investigated the occurrence of microplastics in surface water from the

estuaries of Yangtze, Jiaojiang, Oujiang, and Minjiang in China [33, 34]. Results

demonstrated that microplastics were present in high abundance in these transi-

tional zones between rivers and the sea and suggested that rivers are important

sources of microplastics to marine environment.

The literature reporting the occurrence of microplastics in inland waters from

other geographical regions is also summarized in Table 1. A comparison of data

from different regions can be challenging due to the difference in sampling methods

used, size ranges investigated, and the reporting units that are employed. Therefore,

it is urgently needed to adopt universal criteria for sampling and reporting

microplastics occurrence data to facilitate a comparison [49]. Additionally, the

abundance of microplastics from different regions differs by several orders of

magnitude. Even within the same region, the abundance of microplastics varies

considerably. This uneven distribution pattern can be related to their relatively low

density, which means that they can be transported easily with the current and

accumulation in areas with weaker hydrodynamic conditions. In addition, the

loading rate of plastic waste can differ significantly in different regions. Previously,

Yonkos et al. [45] demonstrated that the abundance of microplastics was positively

correlated with population density and proportion of urban/suburban development

within the watersheds. However, researches also demonstrated that microplastics

were also found at relatively high concentrations in inland waters from remote areas

with limited human activities [23, 30]. This is likely due to a lack of proper waste

management measures in those areas. In many Asian countries, high population

density and unsound waste management systems lead to a high risk of inland water
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pollution by microplastics as well as many other pollutants. This might explain the

very high abundance of microplastics observed in Taihu Lake and Three Gorges

Reservoirs in China. Therefore, inland waters in Asia deserve more attention in the

future.

3.2 Characteristics of the Microplastics

3.2.1 Particle Shape

After sample collection, potential microplastics are usually examined using stereo

microscopes. According to their shapes, microplastics are typically categorized as

follows: sheet, film, line/fiber, fragment, pellet/granule, and foam (Fig. 1). How-

ever, there is no set protocol, and different classifications might be used by different

researchers. This morphological information from the microplastic samples can be

used to indicate their potential origins. For example, line/fiber usually originates

from fishing lines, clothing, or other textiles, while film mainly originates from bags

or wrapping materials. In Lake Hovsgol, fragments and films were found to be the

most abundant, together accounting for 78% of the total microplastics [31]. In the

Three Gorges Reservoir, sheet particles and miscellaneous fragments were domi-

nant in most sites [22], whereas fibers and fragments were predominant in samples

from Taihu Lake [31]. In inland freshwaters of Wuhan, fiber, granule, film, and

pellet were commonly detected, and fibers were most frequently detected account-

ing for 52.9–95.6% of the total plastics [32]. For microplastic samples from the four

estuaries in China, fibers and granules were the more abundant [33, 34]. Different

patterns observed in these study areas suggest that the sources of the microplastics

Fig. 1 Shapes of typical microplastics collected from inland waters (Qinghai Lake and Three

Gorges Reservoir) in China (a, sheet; b, film; c, line/fiber; d, fragment; e, pellet/granule; f, foam)
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might differ considerably in different regions. Fibers appeared to be more abundant

in more populated areas.

3.2.2 Particle Size

Size is another parameter usually measured for microplastics, but no unified criteria

are currently available. Different size classes were reported by different authors,

which make it difficult to compare the data from different works [50]. Due to the

restriction of the sampling methods used, usually only microplastics >0.333 mm

(mesh size of the manta trawl net) are assessed in neustonic samples collected by

trawling. Smaller microplastics can be examined for sediment and biota samples as

density separation combined with filtration is used. Whereas the examination of

microplastics <0.05 mm will get increasingly difficult, advanced instruments such

as Raman microscopy, micro-Fourier transform infrared spectroscopy (μ-FTIR), or
scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS)

should be used [36]. Generally, microplastic abundance increases with decreasing

size [51–53]. In lake Hovsgol, 0.355–0.999, 1.00–4.749, and>4.75 mm size classes

accounted for 41, 40, and 19% of the total plastics, respectively [30]. In the

freshwaters of Wuhan, 0.05–0.5, 0.5–1, and 1–2 mm size classes together

accounted for over 80% of the total microplastics, and 0.05–0.5 mm microplastics

were the most abundant in most of the studied waters [32]. In Yangtze Estuary,

0.5–1, 1–2.5, 2.5–5, and>5 mm size classes made up 67, 28.4, 4.4, and 0.2% of the

total plastics, respectively [33]. In the estuary of Minjiang, Oujiang, and Jiaojiang,

the smallest size class (0.5–1.0 mm) was also found the most abundant followed by

the 1.0–2.0 mm size class, and these two size classes together accounted for over

70% of the total plastics [34]. However, among the four size classes (0.112–0.3,

0.3–0.5, 0.5–1.6, 1.6–5 mm), 0.5–1.6 mm microplastics were the most abundant

from the majority of site in the Three Gorges Reservoir, which made up 30–57% of

the total microplastics [22]. While for microplastic samples from the lakeshore

sediment of the Siling Co basin, different size distribution patterns were observed

from different sampling sites [23]. The patterns of microplastic size distribution can

be related to the sources of microplastics and might also reflect the degree of

weathering. A higher degree of weathering might result in a higher abundance of

smaller particles. Biofouling and hydrodynamic conditions were also believed to

affect the size distribution of microplastics [54–56].

3.2.3 Color

In some studies, colors of the microplastics were described. Microplastics can

inherit their colors from their parent plastic products, but their colors can change

due to weathering. Previous research infers that predators may preferably ingest

microplastics with colors resembling their prey [57–59]. Therefore, color informa-

tion of microplastics may be used to indicate their potential to be ingested by
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aquatic animals. In Taihu Lake, recovered microplastics were found in a variety of

colors including transparent, black, white, red, yellow, green, and blue [31]. In

addition, blue was the most dominant color in plankton net and surface water

samples, while white microplastics were the most abundant in sediments [31]. In

the freshwaters of Wuhan, microplastics were found to be transparent or in blue,

purple, red, or other colors, and colored microplastics, accounting for 50.4–86.9%

of the total microplastics, were more abundant than transparent ones [32]. From the

estuaries of Jiaojiang, Oujiang, and Minjiang, microplastics were divided into

transparent, white, black, and colored groups, and colored microplastics were

identified as the most dominant [34]. It may be interesting to investigate further

how color affects the environmental fate and ecological effects of microplastics. As

an example, colorants can often influence the final thermal and UV stability of a

plastic material [60, 61].

3.2.4 Surface Texture

Once entering the environment, plastics are subject to weathering processes, and

these processes will influence the surface of the microplastics (Fig. 2). Featured

surface textures on microplastics can be used to indicate the processes of mechan-

ical and oxidative weathering [62, 63]. Surface textures are usually examined using

SEM. Features such as grooves, fractures, and mechanical pits are believed to result

from mechanical weathering, while flakes, granules, and solution pits are consid-

ered as oxidative weathering features [43]. The surface oxidation of plastics can be

confirmed using FTIR as indicated by the appearance of peaks for carbonyl groups

[31, 43]. Zhang et al. [23] examined the surface textures of microplastics from the

lakeshore sediments of the Siling Co basin, and mechanical weathering features

were more often observed, which were attributed to the windy weather condition in

the study area. This result agrees with the overall trend of microplastics recovered

from the Great Lakes, but differs from those recovered from beach sands in Hawaii

[43, 63]. Hawaii has a warmer and more humid climate than northern Tibet and the

Great Lakes region and might therefore favor the oxidative weathering of the

plastics.

3.3 Polymer Types Found

A variety of polymers were used in the production of plastics. Properties and

performances of the plastic materials are largely determined by the polymer

types they are made of. Thus, polymer types can have a great impact on the

longevity and buoyancy of microplastics, thus affecting their fate in the environ-

ment. Polymer types are typically identified using FTIR and Raman spectrometry,

and less often pyrolysis-gas chromatography/mass spectrometry (Pyr-GC/MS) is

used [64, 65]. Detailed reviews of the typically used techniques for the
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identification of microplastics were published recently [66–68]. An overview of

the advantages and limitations of these techniques is summarized in Table 2.

In the Three Gorges Reservoir, only PE, PP, and PS were identified from the

recovered microplastics, which may be related to their lower density. The weak

hydraulic conditions of the Three Gorges Reservoir will generally favor the sedi-

mentation of microplastics originating from denser polymer types [22]. In lakeshore

sediments from Siling Co basin, PE and PP were predominant, while PVC, PET,

and PS were only identified from one sampling site [23]. Whereas cellophane

(CP) which is a transparent material made of regenerated cellulose was found to

Fig. 2 Surface texture of typical microplastics collected from inland waters (Siling Co Basin) in

China (a, grooves; b, fractures; c, mechanical pits; d, flakes; e, granular; f, solution pits)
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be the most abundant in Taihu Lake likely due to a low biodegradability of the

material [31]. In the freshwaters of Wuhan, PET, PP, PE, PA, and PS were

identified, and PET and PP were more abundant [32]. From the estuaries of

Jiaojiang, Oujiang, and Minjiang, selected microplastics were found mostly PP

and PE [33], which agrees with the result from the Three Gorges Reservoir.

Frequent detection of PP and PE was also reported in many other works [36, 45,

69, 70]. This can be related to their low density, meaning these polymer types are

buoyant and readily transported with water. In addition, a larger global demand for

PE and PP makes them more prevalent in the environment.

4 Conclusions

Inland waters are facing similar issues as marine environments with regard to

microplastics. Analysis suggests that inland waters in many Asian countries have

a high risk to be polluted by microplastics. However, only limited works have been

performed in investigating microplastic occurrence in inland waters in Asia cur-

rently. Available researches have demonstrated the presence of microplastics in

lakes, reservoirs, and river estuaries. The abundances of microplastics in the Three

Gorges Reservoir and Taihu Lake in China are among the highest reported data in

inland waters worldwide. Relatively high abundance of microplastic was also

Table 2 Advantages and limitations of commonly used techniques for the identification of

microplastics from environmental samples

Technique Size Advantages Limitations

ATR-FTIR >1 mm Easy simple preparation; low cost Unable to identify small sam-

ples; unsuitable for convex par-

ticles or severely aged or

contaminated samples

μ-FTIR >10 μm Suitable for small samples Sample preparation is complex;

unable to analyze polyamides;

high cost

FPA-based

μ-FTIR
>20 μm Suitable for small samples; no

need for visual sorting

Time consuming; high cost

Raman

spectroscopy

>1 μm Suitable for very small samples;

lower water interference

Sensitive to fluorescence inter-

ference; laser-induced degrada-

tion; high cost

CARSc >1 μm Applicable to living organisms;

minimal or no sample prepara-

tion; strong signal; less

interference

Very high cost

Pyr-GC/MS >0.1 mg Organic plastic additive can be

analyzed

Destructive; time consuming

ATR attenuated total reflectance, FPA focal plane array, CARS coherent anti-Stokes Raman

scattering
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observed in lakes from remote areas in Mongolia and in central Tibet. Waste

management systems need to be improved in these developing Asian countries to

mitigate the microplastic pollution problems. Along with abundance, features of

microplastic samples such as shapes, sizes, colors, surface textures, and polymer

types were measured in these studies, which can be used to interpret the origins and

experiences of the microplastics. These preliminary results call for further research

efforts to better understand the sources and fate of microplastics in inland waters.

The biological and ecological risk of microplastic exposure should be assessed

especially at environmentally relevant circumstances. Sampling, pretreatment, and

reporting of microplastics should be standardized for the future monitoring

programs.
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Microplastics in Inland African Waters:

Presence, Sources, and Fate

Farhan R. Khan, Bahati Sosthenes Mayoma, Fares John Biginagwa,

and Kristian Syberg

Abstract As the birthplace of our species, the African continent holds a unique

place in human history. Upon entering a new epoch, the Anthropocene defined by

human-driven influences on earth systems, and with the recognition that plastic

pollution is one of the hallmarks of this new age, remarkably little is known about

the presence, sources, and fate of plastics (and microplastics (MPs)) within African

waters. Research in marine regions, most notably around the coast of South Africa,

describes the occurrence of MPs in seabirds and fish species. More recently

environmental sampling studies in the same area have quantified plastics in both

the water column and sediments. However, despite Africa containing some of the

largest and deepest of the world’s freshwater lakes, including Lakes Victoria and

Tanganyika as part of the African Great Lakes system, and notable freshwater

rivers, such as the River Congo and the Nile, the extent of MPs within the inland

waters remains largely unreported. In the only study to date to describe MP

pollution in the African Great Lakes, a variety of polymers, including polyethylene,

polypropylene, and silicone rubber, were recovered from the gastrointestinal tracts

of Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) fished from

Lake Victoria. The likely sources of these plastics were considered to be human

activities linked to fishing and tourism, and urban waste. In this chapter we discuss

the need for research focus on MPs in Africa and how what has been described in
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the coastal regions and other freshwater environments can be applied to inland

African waters. The aforementioned study in Lake Victoria is used to exemplify

how small-scale investigations can provide early indications of MP pollution.

Lastly we discuss the current challenges and future needs of MP research in African

freshwaters.

Keywords Africa, African Great Lakes, Freshwater, Microplastics, MP sampling

1 Introduction

1.1 Africa, the Anthropocene, and Plastic Pollution

As the birthplace of our species, the African continent holds a unique place in

human history. Current scientific consensus places the evolution of modern humans

in East Africa approximately 200,000 years ago from where they successfully

dispersed approximately 72,000 years ago during the late Pleistocene [1, 2]. From

here our species continued to spread and over the next 50,000 years or so colonized

the majority of the Earth’s land surface. Fast-forward through the following epoch,

the Holocene, which is regarded as being relatively stable in terms of climate, and

we arrive at a point in time in which humankind have established themselves as the

dominant force and major driver for environmental change. Accordingly a new era

is said to have now dawned – the Anthropocene [3, 4]. While the exact start date of

the Anthropocene is subject to much current debate, the advent of the industrial age

(ca. 1800s) changed the dynamics between humans and the environment. The

Anthropocene is thus defined by human actions which perturb the Earth’s land,

oceans, and biosphere [5]. These dramatic effects include climate change, ocean

acidification, deforestation, and plastic pollution.

Plastics (and microplastics, MPs, defined as <5 mm in size) are considered a

hallmark of this new anthropogenic age, having become widely used in the last

60 years [6], and are now a ubiquitous pollutant found worldwide and in all aquatic

compartments (surface waters, water column, and sediments) and numerous ani-

mals (invertebrates, fish, seabirds, and marine mammals) [7]. Up until recently MP

pollution had been viewed solely as a marine issue, but there is now an increasing

amount of information regarding the presence of MPs in freshwaters [8, 9]. MPs

have been sampled from both freshwater lakes, such as Lakes Erie, Huron, and

Superior in Canada [10], Lake Geneva in Switzerland [11], and Lake Garda in Italy

[12], and rivers, such as the River Thames in London (UK, [13]), River Seine in

Paris (France, [14]), and the Danube [15], to name but a few. In this last study, the

mass and abundance of drifting plastic items in the Austrian Danube were found to

be higher than those of larval fish [15], which is an indication of the magnitude of

the problem. However, there is remarkably little information on the presence of

MPs in the freshwaters of Africa – the place where it all started for humans!

In this chapter we begin by outlining the scope for plastic pollution in African

inland waters, both through the nature of the water bodies and the human pressures
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they face. We then focus briefly on the marine and estuarine MP research that has

been conducted in Africa. There are only two studies that have investigated the

prevalence of plastics in African freshwaters, specifically the Tanzanian waters of

Lake Victoria, Ngupula et al. [16] and Biginagwa et al. [17], and only the latter is

focused directly on MPs. They are exemplified as case studies, which, in addition to

providing useful data, may also be a template for similar research in other African

freshwater bodies. Lastly, we discuss the current challenges and knowledge gaps

and future research needs that require attention in order to gain a better understand-

ing of the presence, sources, and fate of MPs in inland African waters.

1.2 African Freshwaters and the Potential for MP Pollution

The African continent contains some of the most famous and notable freshwater

bodies in the world. The River Nile, which is the second longest river, has been

described as the “donor of life to Egypt” [18], and the River Congo is the second

largest by river discharge (in both cases the Amazon is number one) and also the

world’s deepest river. Lakes Victoria, Tanganyika, and Turkana are perhaps the

three most well-known of the African Great Lakes that are located in East Africa.

Lake Nasser is a vast man-made reservoir that was created by the construction of

the Aswan Dam across the River Nile. Each of these freshwater bodies, identified in

Fig. 1, supports significantly sized populations (see Table 1a, b). The city of Cairo,

through which the Nile flows, will have a population of over 20 million inhabitants

by the year 2020 according to United Nations Sources [19]. The River Congo flows

through the capital city of the Democratic Republic of the Congo, Kinshasa, with a

population of over 14 million, and the Lakes Victoria and Tanganyika both have on

their banks urban centers of >1 million people. Many of Africa’s cities have

undergone rapid urban expansion [20], with sub-Saharan urban growth averaging

140% between the 1960s and the 1990s, at a rate 10 times faster than OECD

countries and 2.5 times than the rest of the developing world [21].

Inevitably, the pace of increase has placed pressure on urban services and not

least in the management of solid waste, where it is common in the developing world

for municipalities to be short of funds, deficient in institutional organization and

interest, have poor equipment for waste collection, and lack urban planning

[22, 23]. Among this waste are plastics. Plastics, as we know, are used in a variety

of products including packaging, bags, bottles, and many other short-lived products

that are discarded within a year of production [6]. In some parts of the world, plastic

recycling procedures are well established, but in African countries, even when

reuse and/or recycling practices are present, they often lack legal foundation and

are therefore conducted on an ad hoc basis [24]. Thus much solid waste ends up in

landfills or is subject to illegal dumping. In proximity to freshwater systems, plastic

waste then has the potential to enter the aquatic environment where subsequent

degradation can form MPs. The link between urban waste and MPs has been

established in the freshwater MP literature [10, 11, 13, 15], but to date there is
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little information on this specific to African freshwaters. Contributions to MP

concentrations may also be from fishing and tourism activities [25] which are

commonly linked to freshwaters. Given the magnitude of Africa’s freshwater

bodies and the populations and activities they support, the likelihood for MP

pollution in these waters is substantial.
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Fig. 1 Map of the African continent showing major freshwater bodies (rivers numbered 1–6 and

lakes lettered A–F). Water bodies and their characteristics including highly populated neighboring

urban centers can be found in Table 1
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Table 1 Major African freshwater bodies, their characteristics, and neighboring urban centers

(>0.3 million people) with estimated populations (in 2020). (a) Major rivers depicted on Fig. 1

(numbered 1–6) are described by the location of river mouth, length, and average discharge.

(b) Major lakes depicted on Fig. 1 (lettered A-F) are described by the counties in the basin, surface

area and water volume

River(a) Flows through

Length

(km)

Average

discharge

(m3/s)

Major urban centers and

estimated population size in

2020 (million)a

1 Nile Egypt, Sudan, South

Sudan, Uganda

6,853 2,830 Cairo (20.57), Alexandria

(5.23), Aswan (0.34) (all

Egypt); Khartoum (5.91)

(Sudan); Juba (0.40) (South

Sudan)

2 Niger Guinea, Mali, Niger,

Benin, Nigeria

4,180 5,589 Bamako (3.27) (Mali);

Niamey (1.32) (Niger);

Lokoja (0.66) (Nigeria)

3 Congo DR Congo, Congo 4,700 41,000 Kinshasa (14.12),

Kisangani (1.25), Mban-

daka (0.44) (all DR Congo);

Brazzaville (2.21) (Congo)

4 Zambezi Angola, Zambia,

Zimbabwe,

Mozambique

2,574 3,400 No urban centers >0.3 m

people

5 Limpopo South Africa,

Botswana, Zimbabwe,

Mozambique

1,750 170 No urban centers >0.3 m

people

6 Orange South Africa 2,200 365 No urban centers >0.3 m

people

Lakes(b) Basin countries

Surface

area

(km2)

Water

volume

(km3)

Major urban centers and

estimated population size in

2020 (million)a

A Nasser Egypt, Sudan 5,250 132 Aswan (0.34) (Egypt)

B Chad Chad, Cameroon,

Niger, Nigeria

1,350 72 N’Djaména (1.54) (Chad)

C Turkana Kenya, Ethiopia 6,405 203.6 No urban centers >0.3 m

people

D Victoria Tanzania, Uganda,

Kenya

68,800 2,750 Kampala (2.39) (Uganda);

Mwanza (1.12) (Tanzania)

E Tanganyika Burundi, DR Congo,

Tanzania, Zambia

32,900 18,900 Bujumbura (1.01)

(Burundi); Uriva (0.57)

(DR Congo)

F Malawi Malawi, Mozam-

bique, Tanzania

29,600 8,400 No urban centers >0.3 m

people
aSource: United Nations, Department of Economic and Social Affairs, Population Division (2014)

[18]
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Despite the lack of scientific confirmation of MPs in Africa’s freshwaters, it

would be unfair to say that there is a lack of recognition of the plastic issue. On the

contrary, there has been a great deal of research conducted on the presence of MPs

within the marine and estuarine environment (described in the following section),

and also, there has been much progress made on reducing and banning the use of

plastic bags in some countries. This progress has not been made solely to reduce the

plastic waste but also on the grounds of environmental and public health. Improp-

erly discarded plastic bags have been shown to block gutters and drains which

create storm water problems and collect water which provides a breeding ground

for mosquitos that spread malaria, and the use of bags as toilets has been linked to

the spread of disease [26, 27]. The government of South Africa introduced levies on

the use of plastic bags in 2003 [28], in 2005 Rwanda imposed a ban on the use and

importation of plastic bags of <100 microns thick, and Tanzania similarly imposed

a ban based on thickness in 2006 [27]. Such measures may not always be successful

as in South Africa levies were not predicted to reduce the plastic bag litter stream

[28]. Subsequently the actions taken, while positive, may have little impact in terms

of the potential for MP pollution in African freshwaters. However, the scale of the

problem first needs to be assessed, and in this regard, studies conducted in marine

and estuarine waters may show the way forward.

2 Presence of MPs in African Marine and Estuarine

Environments

In comparison to the rest of Africa, significant knowledge has been gathered about

the presence, sources, and fate of plastics and MPs in the coastal regions around

South Africa and their biota. The earliest documented reports of plastics are from

the mid- to late 1980s with Ryan [29] having sampled the sea surface water off the

southwestern Cape province between 1977 and 1978 with a total of 1,224 neuston

trawls that found a mean plastic density of 3,640 particles km�2 with the majority of

the particles in the MP range. Commonly found types were fragments, fibers, and

foamed plastic particles with polyethylene being a predominant polymer [29]. A

follow-up study [30] conducted at 50 South African beaches in 1984 and 1989

found a significant increase in the mean MP density from 491 m�1 in 1984 to 678 m
�1 5 years later. Analysis of the distribution of MPs found that inshore currents

rather than local sources were responsible for the variation in abundances between

beaches. Conversely, in the case of macroplastics, it was the local sources that had

the greater influence. More recent research conducted by Nel and Froneman [31]

reached the same conclusion regarding the primary influence on the distribution

of MPs in both sediment and water. Across 21 sampling locations along

South Africa’s southeastern coastline, comprising both bay and open coast areas,

with both sediment and water samples analyzed for MP abundance, the authors
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found that MP densities in general did not significantly vary between sites in either

matrix. As with the study conducted 25 years prior, the conclusion was that water

circulation rather than proximity to land-based sources was main driver to MP

abundances in coastal regions [31].

Biological sampling in this region has also revealed a number of interesting

details regarding the fate of marine plastics. Plastic particles were found in more

than half the seabirds predominantly sampled off Southern Africa and African

sector of the Southern Ocean [32]. The size of the ingested particles was related

to the body size of the bird, and smaller species exhibited a higher incidence of

plastic ingestion. Dark-colored particles were more abundant suggesting a selection

for easily visible particles rather than transparent ones. Omnivorous species were

the most likely to confuse plastics with prey items, whereas feeding specialists were

less likely to mistake plastics for food, unless they shared a resemblance [32]. A

comparison of this historic dataset with a more recent sampling period (1999–2006)

revealed a decrease in virgin pellet ingestion, but no overall change in total plastic

ingestion [33]. This decrease suggested a change in the make-up of small plastic

debris at sea in the intervening period.

Studies in the estuarine environment are less common than marine studies and,

like freshwater research on MPs, have only recently started to gain momentum.

However, estuaries provide pathways for the transport of MPs from catchments to

the oceans, notably in urban areas where estuarine waters serve as industrial out-

flows or fishing grounds [34, 35]. The characterization of MPs in five urban

estuaries of Durban (KwaZulu-Natal, South Africa) found the highest concentra-

tions in sediments collected from Durban harbor, which included cosmetic

microbeads and fibers [35]. Possible sources were thought to include the several

rivers that flow through Durban’s industrial suburbs and enter the harbor, the

industrial companies that use plastic powders and pellets around the harbor, and

the closeness of dry docks where ship repairs take place. The fate of these plastics

was revealed in a follow-up study by the same authors looking at plastic ingestion

by the estuarine mullet (Mugil cephalus) in Durban harbor [36]. Plastic particles

were found in the digestive tracts of 73% of the sampled fish, with more than half of

the recovered plastics in the form of fibers and approximately one-third as frag-

ments. Plastic concentrations found in the mullet were higher than those reported

elsewhere for other species, and it appears that, as with omnivorous seabirds, the

nonselective feeding mode of M. cephalus (i.e., ingestion of sediments) was a

contributing factor.

Studies into South Africa’s plastic and MP pollution are particularly pertinent as

the country is ranked within the top 20 counties with the highest mass of

mismanaged plastic waste [37]. Other African countries are also on the list, and

although focused on marine debris, the relevance to freshwaters should not be

ignored.
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3 Presence, Sources, and Fate of MPs in Inland African

Freshwaters

3.1 Presence of MPs in Freshwaters

The presence of MPs has been extensively reported in the marine environment [38–

40], including that of South Africa’s coast (as described in the previous section). In
comparison, describing MPs in freshwaters is still in its infancy with the majority of

research only arriving in the last 5 years [9]. Thus, only a few studies have

investigated the occurrence of MPs in freshwaters with research conducted in the

vicinity of urbanization and industrialization, such as Laurentian Great Lakes in

North America [10] and Lake Geneva in Switzerland [11], as well as in more

remote locations, such as Lake Hovsgol in Mongolia [25] and Lake Garda in Italy

[12]. Not only do these studies show that MPs are present in freshwaters, but also

relate the type of plastics found to their likely sources.

In the Laurentian Lakes (Lakes Superior, Huron, and Erie), MPs were found in

20 out of 21 surface samples, and in many of the tows, the most notable MPs were

multicolored spherical beads that were determined to be polyethylene in composi-

tion. Shape, size, and composition were comparable to the microbeads used in

exfoliating facial cleansers and cosmetic products and were likely to originate from

nearby urban effluents [10]. Although there have been efforts to raise scientific,

regulatory, and public awareness to ban the use of microbeads [41–43], successfully

in some countries, the Canadian Great Lake study demonstrated that they are

already abundant in the environment, and in the Laurentian lakes, “hot spots”

were found where lake currents converge. Logically, it would be expected that

remote lakes with lower population densities would have less plastic pollution than

freshwaters near urban centers, but in case of Lake Hovsgol, the remote mountain

lake in northwest Mongolia near the Russian border, the opposite was true. An MP

density of 20,264 particles km2 was averaged from nine transacts making the lake

more polluted than Lakes Huron and Superior. No microbeads were found with

fragments and films instead being the most abundant MP shapes. The shoreline was

dominated by discarded household waste (bottles, plastic bags) and fishing gear,

and the likely source of the pelagic MPs was the degradation of this shoreline debris

[25]. Thus even low population densities can cause significant levels of MP

pollution in the absence of waste management infrastructures. Taken together it

appears that plastics recovered from freshwaters in different parts of the world

closely reflect the anthropogenic activities and waste generated by the local

populations. Although this would seem obvious, further research is required to

verify this link with the aim of more specific waste management relating to the

nature of plastic pollution within a given location.

To date only two studies have attempted to document the presence of plastic

debris in African freshwaters [16, 17], and only one specifically focused on MPs

[17]. Both studies were conducted in the Tanzanian waters of Lake Victoria, and in

the following sections, we describe them as case studies. In addition to providing
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valuable baseline data for MPs in Lake Victoria, these investigations may serve to

inform how research could be conducted in other African freshwater bodies.

3.2 Plastics in the Tanzanian Waters of Lake Victoria

Lake Victoria is the world’s second largest freshwater lake by area (the largest

being Lake Superior in North America) and has been described as eutrophic and

polluted due to human influences within the catchment area [44]. The area sur-

rounding the lake is among the most densely populated in the world, and this

population growth is set to continue – by the year 2020, an estimated 53 million

people will inhabit the lake basin [45]. The majority of economic activities in the

region are associated with the lake with one of the most important being fishing.

Case Study I details the work of Ngupula et al. [16] in which the authors

documented presence and distribution of solid waste including plastic bags and

fishing gear at six depth strata reaching 80 m below the surface. Thus, while they

did not specifically look for MPs in the waters of Lake Victoria, the work of these

authors greatly increases our understanding of where MPs originate from in the lake

system. In the second case study by Biginagwa et al. [17], the ingestion of MPs by

resident fish species in Lake Victoria was used in place of environmental sampling.

The recovery of MPs from the gastrointestinal tracts of Lake Victoria Nile perch

(Lates niloticus) and Nile tilapia (Oreochromis niloticus), and their subsequent

characterization, provided the first evidence of MPs within African inland

freshwaters.

3.2.1 Case Study I: Abundance, Composition, and Distribution of Solid

Wastes in Lake Victoria

To determine the vertical distribution of solid wastes in Lake Victoria, the waters

were categorized into three main ecological zones: (1) the nearshore, which is

described as highly influenced by anthropogenic input and was sampled at depths of

<10 m and 10.1–20 m; (2) the intermediate zone which is moderately influenced by

the catchment and was sampled at depths of 20.1–30 m and 30.1–40 m; and (3) the

deep offshore waters which are the most isolated from the human activities and

were sampled at depths of 40.1–50 m and then>50.1. The maximum depth of Lake

Victoria is 80 m; thus, this last depth stratum extended to bottom trawls. Across

these three zones and six strata, 68 samples were taken in total during two periods,

May and late September to early October 2013. Trawls were conducted at three

knots and debris collected by 4 mm mesh trawl net.

Plastic debris was found at all depths and all sampling locations. Across all

trawls, the dominant waste types originated from fishing activities; multifilament

gillnets compromised 44% of all debris, monofilament gillnets (42%), longlines and

hooks (7%), and floats (1%). Plastic bags (4%) and clothing (2%) accounted for the
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remaining solid waste. Gillnets, which compromised more than 80% of all the

debris found and 96% of waste in the fourth depth strata, are constructed using

synthetic fibers, and although nylon was used in the 1960s, newer materials, such as

ultrahigh-molecular-weight polyethylene (UHMWPE) or polyethylene terephthal-

ate (PET), are now commonplace as they are cheaper, are more durable, and require

less maintenance. Multifilament gillnets are used in the fishing of Nile perch, while

monofilaments are used for catching tilapiine species, including Nile tilapia. Both

species were found to contain MPs in their intestinal tracts, as described in Case

Study II [17].

There were only minor differences in the abundance by weight of debris sampled

from the different depths, and of the six waste types identified, the proportion found

at each depth did not vary to any great degree, with the exception of the bottom

strata in which longlines and hooks (67%) were most abundant. Of the three

ecological zones, the intermediate zone (20.1–40 m) contained most waste and is

also known to have the highest levels of fishing activities; thus, within this zone,

there was a reduced abundance of clothing and plastic bags. Fishing activity

appears to be the major source of solid (plastic) waste in Lake Victoria, but land-

based waste was not accounted for due to the inability to trawl at shallow depths

(<4 m) in the nearshore. Land-based waste is often an important component of

marine waste and through tidal action is transported to the lower depths of the sea

[46]. However, without strong currents, this mechanism of circulating waste is

ineffective within the lake environment. Nevertheless, within shallow waters, land-

based waste would undoubtedly be important.

While not specifically focusing on the abundance of MPs, this study demon-

strates that plastic waste is present at all levels of Lake Victoria and is strongly

linked to fishing activities and discarded fishing gear. Though authors do not

discount other sources including land runoff and transportation of cargo, the

limitations of the study do not allow these to be investigated further.

3.2.2 Case Study II: Recovery of MPs from Lake Victoria Nile Perch

and Nile Tilapia

A number of studies have used the ingestion of MPs by resident fish species as a

marker of MP pollution. Lusher et al. [47] found that marine pelagic and demersal

fish sampled from the English Channel readily consume plastics, and Sanchez et al.

[48] similarly reported, for the first time in freshwaters, that wild gudgeons (Gobio
gobio) inhabiting French rivers ingest MPs. Using Nile perch (Lates niloticus) and
Nile tilapia (Oreochromis niloticus) as proxies for environmental MP contamina-

tion in Lake Victoria, a small-scale study was conducted in the Mwanza region of

Tanzania, located on the Lake’s southern shore (Fig. 2). Both species are econom-

ically and ecologically important and were introduced to Lake Victoria in the 1950s

and 1960s with the aim of supplementing native fish populations that had declined

due, in part, to overfishing [49]. However, this introduction was detrimental to the

native species, particularly the native tilapiine species such as the Victoria tilapia
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(Oreochromis variabilis) and Singidia tilapia (Oreochromis esculentus), which
subsequently disappeared from parts of the lake [49, 50]. Thus Nile perch and

Nile tilapia have established themselves as dominant commercial and ecological

species and therefore represent logical choices by which to monitor MP pollution in

the area. Moreover, their differing feeding habits could provide additional infor-

mation by which to contextualize plastic ingestion. Nile perch are predatory fish

feeding on haplochromine cichlids and gastropod snails, whereas Nile tilapia are

omnivorous with a diet consisting of plankton and fish.

In March 2015, 20 fish of each species were purchased from Mwanza harbor

market, where fish are caught and sold daily. The fishing territory for both species

extends to Ukerewe Island (the largest island in Lake Victoria) to the North of

Mwanza and across the Mwanza Gulf to the neighboring district of Sengerema

(Fig. 2). Nile perch and Nile tilapia were 46–50 cm and 25–30 cm in length and

500–800 g and 500–700 g in weight, respectively. For each fish, the dissection of

the entire gastrointestinal tract (buccal cavity to anus) was conducted on site. All

efforts were made to eliminate sample contamination with separate clean dishes

used for each fish and thorough cleaning of dissection utensils between samples. A

preliminary examination was made of each gastrointestinal tract, and in the case of

Nile perch, undigested gastropods and cichlids were removed. Gastrointestinal

tracts and their contents were then individually preserved in 96% ethanol and

transported to laboratory facilities at the University of Dar es Salaam (Dar es

Salaam, Tanzania), a journey of approximately 1,150 km. In the laboratory,

NaOH digestion (10 M NaOH at 60�C for 24 h) was used to isolate plastic litter

from the organic tissue. The NaOHmethod has been shown to digest organic matter

with an efficacy of >90% [51], and the tests of this protocol prior to its use

confirmed such high efficiencies (96.6� 0.9%, n¼ 5, data not shown). Importantly,

NaOH digestion has a minimal impact on the chemical and physical states of

plastics, especially when compared to strong acid digestion which, while also

Fig. 2 Map of the Lake Victoria study area showing the Mwanza region. (a) Nile perch and Nile

tilapia were purchased from the harbor market at Mwanza (regional capital). The local fishing area

extends across the Mwanza Gulf and to Ukerewe Island. Inset Lake Victoria (LV) bordered by

Uganda, Kenya, and Tanzania. The Mwanza region located on the southern shore of Lake Victoria

is highlighted. (b) Urban waste in Mwanza, including plastic debris, collects in drainage ditches

which are a potential source of plastic pollution in Lake Victoria. (c) Nile Tilapia used in this study

(photographed prior to dissection) were purchased from the market
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being an effective digestant of organic matter, can discolor or degrade plastics.

Post-digestion, plastics, and a minimal amount of partially digested tissue were

rinsed from the NaOH through 250 μm mesh stainless steel sieves under running

water and placed on filter paper to dry. Samples were then brought to the laboratory

(Roskilde University, Denmark), and suspected plastic pieces were separated from

tissue residue under light dissection microscope. The chemical composition of all

suspected plastics was identified nondestructively by attenuated total reflectance

Fourier transform infrared (ATR-FTIR) spectroscopy, a standard analytical tech-

nique for identifying the chemical composition of samples larger than 0.5 mm.

Scans were run at a resolution of 2 cm�1 between 4,000 and 650 cm�1 on a Bruker

Alpha FT-IR instrument (Bruker, Billerica, MA, USA) fitted with a diamond

internal reflectance element. Spectra were compared with standard references on

the same instrument and processed using Opus software supplied by Bruker.

In total, suspected plastics were recovered from the gastrointestinal tracts of

11 perch (55%) and 7 tilapia (35%). However, some plastics were too small (i.e.,

<0.5 mm) to have their chemical structure confirmed by ATR-FTIR. In addition,

spectroscopy of some suspected plastic samples showed that their compositions

most closely resembled cellulose, suggesting these samples were likely plant

material or paper originating from perhaps newspaper, tissues, or cigarette filters.

Thus 20% of each fish species (i.e., four individuals) contained confirmed MPs

within their gastrointestinal tracts. The polymers recovered from the fish were

polyethylene, polyurethane, polyester, copolymer (consisting of polyethylene and

polypropylene), and silicone rubber (Fig. 3). The common use of such materials

includes packaging, clothing, food and drink containers, insulation, and industrial

applications (Table 2). Given the dimensions of the recovered plastics (0.5–5 mm,

Fig. 3), it is likely that the MPs ingested by the fish are secondary MPs which have

resulted from the degradation and breakdown of larger plastic pieces [38]. A likely

source of the input of such materials into the Mwanza Gulf area is from the drainage

ditches that are filled with urban waste, including plastic products (Fig. 2). This may

be a particular problem during heavy rain when input into the lake is increased. In

common with other studies conducted at freshwater sites [10, 25], it appears that the

nature of the plastic pollution is related to the usage and waste by the local human

population.

This work provided the first evidence that MPs are present in the African Great

Lakes and that they are ingested by economically important fish species. In addition

to confirming the ingestion of MPs by freshwater fish species [48], the chemical

composition of the MPs was determined. However, this is only a preliminary study

and only limited conclusions can be drawn. With plastics confirmed in only 20% of

both species, the study likely underestimates the true extent of plastic ingestion by

Nile perch and Nile tilapia, especially when considering the constraints of

ATR-FTIR analysis and the inability to confirm the identity of the smaller-sized

suspected “MPs.” Similarly, it is not possible to determine whether the feeding

preferences of the two species effected their ingestion of plastics. Thus, while this

study provides evidence for the ingestion of secondary MPs by fish populations, it is

clear that further research needs to be undertaken in Lake Victoria to fully charac-

terize the extent of MP pollution.
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3.3 Plastics and MPs in Lake Victoria

Together these two cases provide compelling evidence that plastic debris in the

Tanzanian waters of Lake Victoria is subject to degradation and the products of that

breakdown are available for ingestion by resident piscine populations. While

Ngupula et al. [16] found fishing to be the predominant source of debris, the

Table 2 Polymers recovered from the gastrointestinal tracts of sampled fish and their common

uses and potential source of plastic pollution in Lake Victoria

Polymer Common uses and potential sources

PE/PP copolymera Packaging, carrier bags

Polyethylene Carrier bags, food wrappers, beverage bottles

Polyester Beverage bottles, textile (clothing, carpets, curtains)

Polyurethane Insulation, sealants, packaging

Silicone rubber Industrial sealants. O-rings, molds, food storage
aPE (polyethylene)/PP (polypropylene)
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Fig. 3 Variety of plastic debris recovered from Nile perch and Nile tilapia. Images (a–e) are

examples of the range of polymers isolated after NaOH digestion of the gastrointestinal tissue. In

each case the identity of the polymer was confirmed by ATR-FTIR spectroscopy. Spectra

attributed to silicone rubber (d) and polyethylene/polypropylene copolymer (e) debris are shown

next to their respective plastic samples
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identification of different polymers from the fish intestinal tracts suggests a wider

range of inputs related to urban waste [17].

The consequence of plastic debris and MPs in the lake ecosystem requires

further research. Other types of solid waste, such as those originating from paper

production and agriculture, were found to interfere with the distribution of

macroinvertebrate communities in the Kenyan waters of Lake Victoria [52]. Future

investigations could also consider the trophic transfer of MPs through the fresh-

water food chain, particularly in the case of Nile perch which are known to feed on

smaller fish (haplochromine cichlids) and gastropods, as well as any potential

“vector effect” that facilitates the movement of adhered contaminants through the

food chain [53]. These are important aspects to study primarily because the top

predators in these food chains are the local residents that ultimately consume

the fish.

Given the existing population density surrounding Lake Victoria and its esti-

mated growth, the prevalence of plastic debris and subsequently MPs is also likely

to increase. The reliance on the lake as a resource means that any potential impacts

of MPs on the ecosystem and biota need to be researched, assessed, and, if possible,

mitigated. However, research activities should not be confined only to Lake Vic-

toria. A number of African freshwater bodies are just as likely or even more likely

to be impacted by MP pollution. Potentially, the main message to be taken from

these case studies is the relative simplicity by which they were accomplished. In

particular, the purchase of fish from market and subsequent dissections required

little specialist scientific equipment and could be replicated in other locations. In

the following section, we consider the current challenges to MP research and

mitigation in Africa and discuss future research needs.

4 Current Challenges and Future Research Needs

With only two case studies available to highlight plastic and MP pollution in

African waters, the most obvious challenge and research need is the lack of data.

More studies are urgently required to assess the extent of MP pollution in African

freshwaters, as well as their sources and their fate. However, let us assume that this

lack of data does not indicate that MPs are not present in the environment and that

further research would describe their presence. In this case, the more immediate

challenges may be how to mitigate MP pollution rather than just report it. We argue

that effective waste management, increased public awareness, and political will are

all necessary to avoid deleterious impacts. However, it is the combination of these

factors rather than each one in isolation that is likely to affect change.
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4.1 Current Challenges

4.1.1 Waste Management

Unlike most developed nations where plastic waste is often separated from other

wastes prior to disposal [54], the management of solid wastes in many developing

countries can be considered as problematic often due to inappropriate technology

and infrastructure [55]. Thus while a significant proportion of plastics in developed

countries are collected and recycled [6], in most African countries, even in the

presence of reuse and/or recycling practices, effective plastic waste management

often lacks a legal foundation [24]. This results in urban and industrial wastes in

developing countries being sent to disposal sites or dumped as mixed bulks

[56]. This type of dumping of refuse has been documented as a major cause of

pollution in African waters and is a recognized source for MP pollution (e.g.,

Fig. 2b).

In order to improve waste management practices, sustainable approaches should

be a priority. Examples of these approaches could include establishing permanent

recycling stations or working with communities to promote recycling and change

their perception of plastic from disposable single-use items. However, such

approaches require time and effort, and moreover do necessarily have an impact

on the current level of plastic waste in the inland water bodies. Following the

characterization of plastic litter in Mongolia’s Lake Hovsgol, local plans to regulate
waste management and reduce waste production were suggested [25]. Based on the

analyses and observations made in the two case studies presented in this chapter,

similar proposals could certainly be made for this affected area and potentially

implemented in other areas, following appropriate initial data collection and

analysis.

One methodology that has been proposed for quickly assessing the impact of

waste in the environment is the rapid environmental assessment (REA). The

method involves scoring the abundances of key indicator species and the magnitude

of environmental pressures concurrently on the same logarithmic assessment scale

[57]. High pressure scores coupled with decreases in biological abundances indicate

that urgent action is mediated. REAs were used to assess potential impacts and

threats in the coastal region of Kerkennah, Tunisia. Solid waste densities, including

plastics, were ranked with high scores, indicating the need for action, but scores for

other pressures and biological abundance decreases were not determined to be high

enough for remediation actions to take place. In this example the authors suggested

that beach rubbish and coastal debris should be cleaned up, but further action was

not needed at the present time [57]. While the REA approach demands a certain

level of taxonomic knowledge, this is not prohibitory for the involvement of “non-

experts” as the focus is taxonomic breadth rather than depth (i.e., broadscale). In

Kerkennah, the training of team members without specific taxonomic or technical

expertise was achieved via a 1–2 h PowerPoint presentation followed by trial REAs.

Following training, assessment at each site was typically conducted in approximately
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1 h [57]. While REAs capture low-resolution data, they do provide a means of

grading levels of management urgency and response. Moreover, the surveyors need

not be experts and could be sourced from the local community within a program set

by the municipality or regional government – although such action requires political

will and public awareness (as discussed in the following sections). Thus REAs with

criteria (pressures and species indicators) tailored for site-specific thresholds could

become a valuable tool in determining which African freshwater locations require

remediation from MP pollution.

4.1.2 Political Will and Governance

Most of African freshwater bodies are transboundary (see Table 1), and therefore

their management requires cooperation and effective, coherent regional environ-

mental policies [58]. However, the management of most African transboundary

lakes and rivers ecosystems is largely compromised by conflicting political stand-

ings among the riparian countries [59]. A good example of this is Lake Victoria

which is shared by Tanzania, Kenya, and Uganda. Its management has been

challenging due to a lack of good cooperation and harmonized policies mainly

following the collapse of East African Community of 1977. Despite its reformation,

there are still country-specific political issues hindering the management of the

lake. This is also the case for other African Great Lakes like Lake Tanganyika and

Lake Malawi. However, when policies, conventions, and cooperations do occur, the

major focus is often on how natural resources can be shared [60], rather than the

control of pollutants. Thus, at an international level, the political will to combat

issues like MP pollution is not strong and is equally problematic at the local level.

In most African countries, MP pollution is not recognized as emergent issue of

concern, although the efforts to levy, reduce, and ban the use of plastic bags [26, 27]

would suggest that the plastic issue is not entirely ignored.

It is perhaps stereotypical to consider, but in many African nations, the chal-

lenges faced are greater than MP pollution – war, famine, literacy rate, infrastruc-

ture, clean drinking water, poverty, and corruption [61]. Moreover, most African

countries have insufficient budgets from which to plan and execute governmental

projects including research activities. A number of countries receive financial aid,

and under these circumstances, and understandably, the study of MP pollution is not

of the highest priority. Based on this, the current financial challenges of working

with MPs in African waters may not be solved by local budgets but rather by

bringing together different stakeholders (i.e., local community, local and national

governments, NGOs, researchers), in order to first collect data, evaluate steps

forward, and implement effective measure to halt MP pollution.
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4.1.3 Public Awareness

The role of the general public through awareness and active involvement (i.e.,

citizen science) is discussed in detail elsewhere in this book, both with an historical

overview and specifics related to MP pollution (see Syberg et al. this volume [62]).

Briefly it could be suggested that in comparison to other environmental issues, the

public has been invaluable in assessing the magnitude of plastics and MP pollution

through volunteer beach cleanups and surveys that provide data for monitoring

programmers, as well as carrying out the practical task of removing beach litter. In

the USAmost information regarding the abundance and distribution of beach debris

has been derived from volunteer beach cleaning efforts [63], and such public

involvement is also occurring elsewhere. Public collaboration with scientific

research has taken place in a number of locations worldwide, for instance, the

collection of marine litter in the Firth of Forth, Scotland [64], collection of beach

debris along the coast of southeast Chile [65], and many volunteers mobilized for

beach surveys in South Africa [66]. However, to the best of our knowledge, such

public-involving initiatives have not been attempted in areas surrounding African

freshwaters. Part of this problem may be, as has been discussed, a scarcity of

information regarding the scale of potential MP pollution, which results in a lack

of funding and a lack of awareness.

As discussed, funding for environmental issues may not be the highest priority in

most African countries, but NGOs which could collaboratively work with various

public sectors have paid little or no attention in raising public awareness in the issue

of plastic waste management [67]. Similarly, the opportunities for 3Rs (reduce,

reuse, and recycle) are not well explored and advocated in developing countries

[68]. It has been suggested that improved education on the issues of waste man-

agement in developing countries, and the preparation and training of environmental

professionals and technicians, could be the way forward. Some developing coun-

tries have reported positive effects from investing in education, such as citizens

assuming responsibility and higher status of waste workers, which have resulted in

cleaner cities [68]. Such programs would potentially have similar results in urban-

ized regions around African freshwaters, and the downstream effect of cleaner

cities would be less urban waste from which to produce MPs. But as mentioned

earlier in this section, the increase of awareness and education of the population

must be coupled with an increase in effective waste management and ultimately

coherent regional political action.

4.2 Future Research Needs

To discuss the future research needs, we revisit the themes of this chapter –

presence, sources, and fate of MPs in African inland waters. As mentioned several

times, there is a dearth of information regarding the prevalence of MPs within
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Africa’s freshwaters. Filling this knowledge gap must therefore be the highest

priority and an absolute necessity to further understandings of sources and fate.

The two studies described in detail in this chapter have been conducted in the same

region and found that the sources of plastic (and MP) pollution were linked to urban

refuse and fishing activities. This echoes the findings of studies in other freshwater

areas, where type of plastic and MPs reflect the usages and anthropogenic inputs of

the local populations [10, 13, 25]. The population of Mwanza is estimated to be 1.12

million people by 2020 (Table 1), and while not an insignificant number, this is by

no means the largest urban center close to a freshwater body. We, therefore, suggest

likely candidates for future research are locations with high population densities.

The River Nile flows through a number of heavily populated cities, most

notably, Khartoum in Sudan (almost six million inhabitants estimated by 2020),

Alexandria (5.23 million), and, of course, Cairo (20.57 million) (Fig. 1, Table 1).

While MPs have not been described in the Nile, other pollutants (i.e., trace metals

Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) were found in the abiotic compartments and the

tissues of resident fish populations [18]. It is worth noting that MPs have been

shown to adsorb trace metals in the environment [69, 70], and within the laboratory,

polyethylene MPs were shown to alter the bioavailability and uptake of Ag to

freshwater zebra fish [71]. The River Congo similarly flows through densely

populated cities, notably Kinshasa (14.12 million inhabitants) and Brazzaville

(2.21 million), and these waters would also be suspected of having MPs present.

Elevated trace metal concentrations in Congo sediments were found in the vicinity

of urban runoff and domestic and industrial wastewater discharge into the river

basin [72]. It would seem obvious to expect MPs to be present alongside other

pollutants of urban origin in both these rivers.

How to determine the prevalence of MPs requires thought, and there are various

sampling techniques to assess MP abundances to consider: (1) shoreline combing,

(2) sediment sampling, (3) water trawls, (4) observational surveys, and (5) biolog-

ical sampling. In different locations, some may be more or less relevant based on

practical (the availability of personnel and equipment) and economic factors (i.e.,

funding). In our study (Case Study II [17]), reporting the presence of MPs in Lake

Victoria, biological sampling was considered to be the most suitable technique as it

required little specialist field equipment (i.e., mantra trawls or trawl nets), and the

laboratory apparatus required to digest gastrointestinal tracts is relatively common.

Additionally, the study was inexpensive as fish were purchased from the local

market and the research could be conducted within a short space of time. However,

it is necessary to select suitable biological indictors. Nonselective feeders provide a

better reflection of MPs in the environment [32, 36]. For instance, the omnivorous

fish, Nile tilapia, was used in Lake Victoria, and water-filtering mussels (Mytilus
edulis) and sediment-dwelling lugworms (Arenicola marina) have been shown to

take up MPs from their respective environments [73]. Studies such as the one we

conducted in Lake Victoria only present a “snapshot” of MP pollution, and longi-

tudinal studies are required to describe temporal and spatial differences. Where

possible, a combination of techniques may be more advisable particularly to present

a complete picture of MPs in the environment. However, with the current lack of

118 F.R. Khan et al.



information, reporting the presence of MPs from any compartment of African

freshwater systems would be a welcome addition to the literature.

As described by Wagner et al. [8], information on the fate of MPs in freshwaters

is scarce, if not absent. Some common questions that need to be addressed in all

freshwaters and are still outstanding in marine waters include (1) the behavior of

MPs in environment – how they distribute and where they settle; (2) interactions

with biota, such as rates of excretion, accumulation, and infiltration in tissue;

(3) effects of MP exposure in order to determine environmental hazard; and

(4) interaction between MPs and other pollutants, the so-called vector effect.

Such considerations are as important in African freshwaters as elsewhere, but as

in most locations, regional concerns are also noted. As degradation rates of MPs are

influenced by the amount and strength of UV radiation [74], MPs in African

freshwaters, largely located in the tropics, are likely to be degraded faster than in

more temperate conditions as reactions, such as photolysis, thermo-oxidation, and

photooxidation, are accelerated in strong UV light [74, 75]. Degradation rates for

MPs under these conditions and how this affects the aforementioned questions of

distribution, biotic interactions, interactions with waterborne chemicals, and vector

interactions should be determined.

In order to prevent and mitigate deleterious effects, the challenges of MP

pollution cannot be dealt with by solely focusing on their presence and impacts in

the environment, but rather investigation of the entire chain from production to

disposal is mandatory [76]. Thus questions of fate must be integrated into the

requirement to report the presence and understand the sources. We recommend

the following focus areas to assess the current state of MPs in African inland waters:

1. Establishing a more complete picture of MP pollution in African freshwaters

with the prioritization of locations with dense urban populations

2. Environmental monitoring programs that encompass water, sediment, and biota

sampling and that consider spatial and temporal distributions

3. Life cycle assessments of plastics that consider production through disposal and

fate in the environment

4. Interactions between MPs and (a) environmental factors, (b) other pollutants,

and (c) resident biota

5 Conclusions

Knowledge regarding the presence, sources, and fate of MPs in freshwaters is being

gathered apace in different parts of the world, but this information is currently

lacking in Africa. Owing to the human pressures that increased urbanization has

placed on many inland rivers and lakes, in combination with ineffective waste

management and a general lack of awareness (although there are some notable

exceptions, e.g., plastic bag bans), the potential for MP pollution is great.
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The question then becomes, not if MPs are present, but where and how to sample

them. The marine and estuarine research conducted in South Africa provides a

potential guide via beach combing, water and sediment collection, and biological

sampling. However, such efforts may be difficult in the absence of personnel,

apparatus, and, of course, funding. Thus, the study of Biginagwa et al. [16],

exemplified in Case Study II, in which MPs were extracted and identified from

suitable biological indicators that inhabit the urbanized catchment area is offered as

a model for research in other areas that can be conducted in a cost- and time-

effective manner.

The confirmation of MPs is only the first step, albeit necessary for further under-

standing of sources and fate. Mitigating the effects of MPs requires the coming

together of numerous interested stakeholders, not least the local populations. In the

place where our species first evolved, it now falls on the current generation to

preserve Africa’s freshwaters for the future.

References

1. Oppenheimer S (2012) Out-of-Africa, the peopling of continents and islands: tracing uni-

parental gene trees across the map. Philos Trans R Soc B Biol Sci 367:770–784. doi:10.1098/

rstb.2011.0306

2. Oppenheimer S (2009) The great arc of dispersal of modern humans: Africa to Australia.

Quat Int 202:2–13. doi:10.1016/j.quaint.2008.05.015

3. Crutzen PJ (2002) Geology of mankind. Nature 415:23. doi:10.1038/415023a

4. Steffen W, Crutzen J, McNeill JR (2007) The Anthropocene: are humans now overwhelming

the great forces of nature? Ambio 36:614–621. doi:10.1579/0044-7447(2007)36[614:

TAAHNO]2.0.CO;2

5. Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The anthropocene: a new epoch of

geological time? Philos Trans A Math Phys Eng Sci 369:835–841. doi:10.1098/rsta.2010.0339

6. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities.

Philos Trans R Soc B Biol Sci 364:2115–2126. doi:10.1098/rstb.2008.0311

7. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on

marine organisms: a review. Environ Pollut 178:483–492. doi:10.1016/j.envpol.2013.02.031

8. Wagner M, Scherer C, Alvarez-Mu~noz D, Brennholt N, Bourrain X, Buchinger S, Fries E,

Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak A, Winther-

Nielsen M, Reifferscheid G (2014) Microplastics in freshwater ecosystems: what we know and

what we need to know. Environ Sci Eur 26:12. doi:10.1186/s12302-014-0012-7

9. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems:

a review of the emerging threats, identification of knowledge gaps and prioritisation of

research needs. Water Res 75:63–82. doi:10.1016/j.watres.2015.02.012

10. Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S (2013)

Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:

177–182. doi:10.1016/j.marpolbul.2013.10.007

11. Faure F, Corbaz M, Baecher H, de Alencastro L (2012) Pollution due to plastics and micro-

plastics in Lake Geneva and in the Mediterranean Sea. Arch Sci 65:157–164

12. Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C (2013) Contamination of beach sedi-

ments of a subalpine lake with microplastic particles. Curr Biol 23:R867–R868. doi:10.1016/j.

cub.2013.09.001

120 F.R. Khan et al.

https://doi.org/10.1098/rstb.2011.0306
https://doi.org/10.1098/rstb.2011.0306
https://doi.org/10.1016/j.quaint.2008.05.015
https://doi.org/10.1038/415023a
https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
https://doi.org/10.1098/rsta.2010.0339
https://doi.org/10.1098/rstb.2008.0311
https://doi.org/10.1016/j.envpol.2013.02.031
https://doi.org/10.1186/s12302-014-0012-7
https://doi.org/10.1016/j.watres.2015.02.012
https://doi.org/10.1016/j.marpolbul.2013.10.007
https://doi.org/10.1016/j.cub.2013.09.001
https://doi.org/10.1016/j.cub.2013.09.001


13. Morritt D, Stefanoudis PV, Pearce D, Crimmen OA, Clark PF (2014) Plastic in the Thames:

a river runs through it. Mar Pollut Bull 78:196–200. doi:10.1016/j.marpolbul.2013.10.035

14. Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B (2015) Microplastic contamination

in an urban area: a case study in Greater Paris. Environ Chem 12:592–599. doi:10.1071/

EN14167

15. Lechner A, Ramler D (2015) The discharge of certain amounts of industrial microplastic from

a production plant into the River Danube is permitted by the Austrian legislation. Environ

Pollut 200:159–160. doi:10.1016/j.envpol.2015.02.019

16. Ngupula GW, Kayanda RJ, Mashafi CA (2014) Abundance, composition and distribution of

solid wastes in the Tanzanian waters of Lake Victoria. Afr J Aquat Sci 39:229–232. doi:10.

2989/16085914.2014.924898

17. Biginagwa FJ, Mayoma BS, Shashoua Y, Syberg K, Khan FR (2016) First evidence of micro-

plastics in the African Great Lakes: recovery from Lake Victoria Nile perch and Nile tilapia.

J Great Lakes Res 42:146–149. doi:10.1016/j.jglr.2015.10.012

18. Osman AGM, Kloas W (2010) Water quality and heavy metal monitoring in water, sediments,

and tissues of the African Catfish Clarias gariepinus (Burchell, 1822) from the River Nile,

Egypt. J Environ Prot (Irvine, Calif) 1:389–400. doi:10.4236/jep.2010.14045

19. United Nations, Department of Economic and Social Affairs PD (2014) No Title. In: World

Urban. Prospect. 2014 Revis. Cust. data Acquir. via website. https://esa.un.org/unpd/wup/

20. Okot-Okumu J (2012) Solid Waste Management in African cities – East Africa. INTECH

Open Access Publisher, pp 3–20

21. Barrios S, Bertinelli L, Strobl E (2006) Climatic change and rural-urban migration: the case of

sub-Saharan Africa. J Urban Econ 60:357–371. doi:10.1016/j.jue.2006.04.005

22. Henry RK, Yongsheng Z, Jun D (2006) Municipal solid waste management challenges in

developing countries – Kenyan case study. Waste Manag 26:92–100. doi:10.1016/j.wasman.

2005.03.007

23. Parrot L, Sotamenou J, Dia BK (2009) Municipal solid waste management in Africa:
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Modeling the Fate and Transport of Plastic

Debris in Freshwaters: Review and Guidance

Merel Kooi, Ellen Besseling, Carolien Kroeze, Annemarie P. van Wezel,

and Albert A. Koelmans

Abstract Contamination with plastic debris has been recognized as one of today’s
major environmental quality problems. Because most of the sources are land based,

concerns are increasingly focused on the freshwater and terrestrial environment.

Fate and transport models for plastic debris can complement information from

measurements and will play an important role in the prospective risk assessment

of plastic debris. We review the present knowledge with respect to fate and

transport modeling of plastic debris in freshwater catchment areas, focusing espe-

cially on nano- and microplastics. Starting with a brief overview of theory and

models for nonplastic particles, we discuss plastic-specific properties, processes,

and existing mass-balance-, multimedia-, and spatiotemporally explicit fate

models. We find that generally many theoretical and conceptual approaches from
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models developed earlier for other types of (low density) particles apply also to

plastic debris. A unique feature of plastic debris, however, is its combination of

high persistence, low density, and extremely wide size distribution, ranging from

the nanometer to the>cm scale. This causes the system behavior of plastic debris to

show a far wider variety than most other materials or chemicals. We provide

recommendations for further development of these models and implications and

guidance for how fate and transport models can be used in a framework for the

tiered risk assessment of plastic debris.

Keywords Fate, Freshwater, Microplastics, Modeling, Nanoplastics

1 Introduction

Contamination of the environment with plastic debris has received increasing atten-

tion from the public, environmentalists, scientists, and policy makers since the 1970s

[1, 2]. Model predictions suggest that currently over 5 trillion plastic particles float on

the ocean surface [3] and that in 2010 alone between 4.8 and 12.7 million metric tons

of plastic entered the ocean [4]. Plastics occur in a wide range of sizes, and particles

can therefore be ingested by a variety of terrestrial [5] and aquatic species [6]. Inges-

tion of microplastics, particles <5 mm in length [1], can negatively affect hatching,

growth rates, and food ingestion [7, 8]. Besides the potential effect of ingestion,

plastic particles can act as vectors for organic pollutants [9] or function as floaters for

(invasive) rafting species [10]. The occurrence and distribution of plastic debris in the

marine environment has been studied even in the most remote areas, such as the arctic

[11] and the ocean floor [12]. However, even though rivers are recognized as a major

source of marine litter [13–15], the occurrence of plastic debris in freshwater systems

just started to receive attention [16, 17].

Microplastics have been found in freshwater systems around the world, as

summarized in a recent review by Eerkes-Medrano et al. [17]. Occurrence of

microplastics in freshwater systems ranges from remote lakes [18] to industrial

rivers such as the Rhine [15, 19] or St. Lawrence River [20]. Sources of plastic

debris in freshwater systems have not been studied extensively but likely include

effluents from wastewater treatment plants (WWTP), sewage sludge, shipping

activities, atmospheric fallout, direct disposal from the public, beach littering, and

runoff from agricultural, recreational, industrial, and urban areas [16, 21]. High

loads are estimated to enter the marine environment: for example, an average of

1,533 t plastic per year was estimated to enter the Black Sea from the Danube [13],

and an average of 208 t plastic per year was estimated to enter the Mediterranean

from the Rhone [22]. However, river loads exhibit a high degree of variation. For

example, rain events were shown to increase the plastic concentration up to

150 times in an urban part of the Rhone catchment [22]. Also, total loads in the

Danube varied between 10.9 � 43.6 and 2.2 � 3.0 g (mean � SD) per 1,000 m3

from 2010 to 2012 [13], indicating both the uncertainty in the load estimates and the

temporal change of plastic loads. Transport of plastic near the bottom of the river
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[23], plastic deposited in river sediments [15], and fragmentation increase the

uncertainty with respect to loads even further.

Besides microplastics, nanoplastics are likely to be present in the freshwater

environment [24]. No formal size definition has been set for nanoplastics, resulting

in different classifications such as <100 nm [24, 25], <1 μm [26], and <20 μm
[16]. Hereafter, we will use <100 nm as a size cutoff for nanoplastics, to comply

with the definition of engineered nanoparticles [24]. Nanoplastics can be either

directly released into to the environment (e.g., as a by-product of thermal cutting,

3D printing) or indirectly via the degradation of larger plastics [24, 27–29]. Several

studies have shown that nanoplastics can be ingested by a variety of organisms,

although systematic effects remain unknown (summarized in [24, 30]). Despite the

attention to plastic pollution and the potential harm it causes in the environment, to

date no proper environmental risk assessment (ERA) framework is available for this

anthropogenic pollutant. So far, microplastics have been found to be ingested by

freshwater organisms such as fish [31–33] and mud snails [34] (see [8] for further

detail). However, effect assessments are scarcely done for freshwater species

[16, 17]. Retrospective exposure assessments have also not been done yet for plastic

debris, because of the difficult, time-consuming, and costly detection methods

currently available. However, exposure assessments can also be based on quanti-

tative model estimates of plastic debris loads and distributions. To our knowledge,

only one transport-fate model has been developed for plastic debris from nano- to

1-cm-sized particles [35, 36], one for microplastics [37] in rivers, and none for

lakes. However, other types of models simulating particle transport in rivers do

exist, and they can be used as inspiration for new plastic debris transport models for

the freshwater environment.

The aims of this review are (a) to identify how existing particle transport models

can serve as examples for new plastic transport models, (b) to identify the properties

and processes that are relevant for the modeling of plastic debris in freshwater

systems, (c) to review the existing models that (to some extent) already take into

account these properties and processes, and (d) to provide recommendations for the

further development of these models and guidance of how these models can be used

in the framework of an ERA. We first briefly discuss existing particle transport and

fate models for different particle types such as sediment or organic matter (Sect. 2).

We identify what characterizes plastic debris from a transport modeling perspective

and how this differs from other (traditional, natural) particles (Sect. 3), followed by

a critical review of the fate models for freshwater systems published in the peer-

reviewed literature (Sect. 4). In Sect. 5, we include a short review on data and

knowledge gaps in relation to plastic modeling and discuss what kind of model

categories are highly relevant for plastic debris. We also discuss the possible role of

fate modeling in a future risk assessment framework for plastic debris in freshwater

systems. The terms “plastic debris,” “plastics,” and “plastic particles” are used

interchangeably in this review and do not refer to a specific size class.

Macroplastics, microplastics, and nanoplastics refer to particles >5 mm in size,

particles between 5 and 100 nm in size, and particles <100 nm, respectively.
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2 Modeling the Transport of Particles in Aquatic Systems

Few models exist that simulate the transport and fate of plastic debris in freshwater

systems. Plastic debris includes buoyant macroplastic items like bottles, food

wrappers and containers, plastic cutlery, and expanded polystyrene (PS), larger

polyethylene (PE), or polypropylene (PP) items that float at the surface [13, 38] and

will be transported under the influence of water flow and wind (discussed in Sect. 4

and Fig. 1). Non-buoyant plastics or buoyant plastics that become more susceptible

to vertical mixing due to their small size (i.e., microplastic and nanoplastic) will

become submerged and may be subject to settling in a fashion similar to that of

natural colloids and suspended solids (Fig. 2). Hence, such natural particles may

serve as a proxy for some classes of plastic debris, and models simulating the

transport of such natural particles can form the basis for the development of

transport models for plastic debris. In this section, we summarize modeling

methods for (submerged) particles in freshwater systems in general. This includes

how different materials, aquatic systems, processes, and scales can be modeled. It is

beyond the scope of this review to strive for completeness with respect to the large

number of specific particle transport models that have been presented before,

especially since excellent reviews on transport models already exist for sediment

[39–42], algae [43], microorganisms [44], and nanomaterials [45, 46]. These

reviews describe the present top models such as SWAT, WASP, HSPF,

ANSWERS, and WEPP, all of which include suspended solids [39, 42].

Key Processes Affecting Particle Transport in Freshwater Systems Particles can

enter an aquatic system via external inputs including, for example, WWTP

Fig. 1 Schematic representation of the different processes playing a role in the transport of

macroplastic in a river and lake. Turbulent water movement below a weir can “capture” plastic

debris for a certain period of time. The scaling of the different components is not representative,

and not all processes happen to each plastic piece or in a fixed order
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effluents, atmospheric deposition, groundwater, or surface runoff [16, 21]. Several

fundamental processes drive the subsequent transport of particles in streams. In

fluid mechanics, the collective motion of particles in a fluid is the result of

Fig. 2 Schematic representation of the key different processes playing a role in the transport of

non-buoyant microplastics (a), buoyant microplastics (b), non-buoyant nanoplastics (c), and

buoyant nanoplastics (d) in a river or lake. Processes include (1) turbulent transport, (2) settling,
(3) aggregation, (4) biofouling, (5) resuspension, and (6) burial. Aggregates can be formed with,

for example, sediment, algae, organic matter, or dissolved substances. The scaling of the different

components is not representative, and not all processes happen to each particle or in a certain

order. Other processes, such as removal by ingestion, relocation, and hydrodynamic alteration by

ingestion and excretion (e.g., zooplankton, mussels), can also affect particle fate but are not

depicted here
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advective, dispersive, and diffusive mass transfer. Advection refers to the longitu-

dinal transport based on the average flow velocity. Dispersive mass transfer is the

turbulent spreading of mass from highly concentrated areas to less concentrated

areas [47]. This results from nonideal flow patterns (i.e., deviations from plug flow)

and is a macroscopic phenomenon. Dispersion is multidirectional, as it covers the

distribution of all flow directions and velocities [48]. Diffusion is the transport of

particles from a high to a low concentration caused by random molecular

(Brownian) motion, which is a microscopic phenomenon. The combined transport

of substances in rivers due to advection and dispersion is commonly described by

the one-dimensional advection-dispersion equation [49, 50]. Besides being

transported in the water, suspended solids can be removed from the fluid by settling,

which can be modeled with Stokes law or a modification of that law [51, 52]. Par-

ticles and substances can reenter the water column by erosion/resuspension of the

riverbed. Advection, dispersion, diffusion, settling, and resuspension depend on

particle properties such as size, density, shape, fractal dimension, and porosity [53–

55]. During transport, the aforementioned particle properties can change due to

aggregation or biofouling, which will further influence their fate [56–58]. Aggrega-

tion is usually modeled using a von Smoluchowski particle interaction model where

the formation of aggregates is described kinetically as a function of the colliding

particle concentrations, their sizes and densities, their collision frequencies, and

attachment efficiencies [56, 59, 60]. Many studies assume spherical particles or

aggregates, although it has been suggested that fractal dimensions should be

included in these models [52, 61]. For aggregates, this would result in more realistic

collision radii and hydrodynamics, therewith providing better collision frequency

and sedimentation estimates [61]. The relative importance of the different transport

processes is dependent on the particle properties. For example, Brownian motion is

important for nanoparticle aggregation [36, 56], whereas it will be negligible when

studying the transport of larger particles [47]. Likewise, biofouling has a faster

effect on the buoyancy of microscopic particles, which have a large surface-to-

volume ratio, compared to macroscopic particles [62].

Type of Aquatic System Several system properties affect the occurrence of the

abovementioned processes. Transport of particles in rivers and lakes differs in

many aspects. Rivers have a downstream discharge driven by an elevation gradient.

Although natural rivers are turbulent, the time-averaged motion of the water is in

the longitudinal direction. In rivers, the advection flow component is usually higher

than the dispersion component [47]. Due to sedimentation and burial of suspended

solids and associated contaminants, rivers often act as a sink for these contaminants.

Compared to rivers, lakes have a very low, if any, flow velocity, enhancing

sedimentation processes. Water residence times can be days to >103 years [63]

compared to days or weeks in rivers. Therefore, biological and chemical processes

are usually more important for the fate of particles in lakes. Mixing processes in

lakes, and therefore the importance of sedimentation versus resuspension, can be

complex to model because of vertical stratification, the effect of wind, and the lake

geometry [47]. Dams in rivers or lakes can increase the water retention time and
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lower the flow velocity, enhancing sedimentation of suspended solids [64]. Also,

water withdrawal for various human uses [65, 66], which is highly different for

different regions [67], influences the fate of plastics as these abstracted particles are

no longer carried to the ocean.

Particle Type With respect to modeling natural particles in freshwater systems,

different particle types can be distinguished, such as sediment [39, 68, 69], algae

[43], microorganisms [44], particulate organic matter [70, 71], nanoparticles

[59, 63, 72, 73], and seeds [74]. The properties of these materials, such as size,

shape, density, porosity, fractal dimension, and attachment efficiency, influence

their hydrodynamic behavior and thereby their fate [75]. Some of them approach

the properties of categories of plastic particles, which may cause them to have

similar hydrodynamic behavior and a mutual applicability of modeling approaches

and results. For instance, some plastic particles may become captured in

low-density aggregates or flocs, as has been shown for the marine environment

[57, 76], which affects the hydrodynamics of the resulting new composite particles

[77, 78]. This implies that the transport of the plastic-inclusive floc or aggregate

may become indistinguishable from that of a fully natural floc or aggregate. The

implications of similarities and differences of plastic compared to natural solid

materials for fate and transport will be further discussed in the next section.

3 Plastic Debris: Properties and Processes Relevant

for Fate Modeling

Key Properties Relevant for Fate Modeling Plastic debris comprises a highly

diverse mixture of particle sizes and shapes, made out of different polymers. The

size ranges from >10 cm for fishing nets, bottles, and plastic bags to nanosized

particles<100 nm. Nanoplastics have so far not been detected in natural waters but

are likely to be present [24, 36]. The density of plastics ranges from 50 kg m�3 for

extruded polystyrene foam to 1,400 kg m�3 for PVC. It can be expected that the

composition of plastic in rivers is related to the production volumes of the different

polymers, of which polyethylene (38%), polypropylene (24%), PVC (19%), and

polystyrene (6%) are produced most [1]. Recent data partly confirmed these relative

proportions of polymers in river sediments of the river Rhine [15], in the reservoir

of the Three Gorges Dam [79], and floating on the river Seine [38]. Besides the size

and density, the shape of plastics is also highly variable, ranging from small lines

and fibers to irregular fragments to granules [80]. Microplastics have often been

classified as fragments, fibers, spheres, pellets, lines, sheets, flakes, and foam

[13, 15, 22, 79, 81], of which fragments are most abundant [15, 22, 79]. The size,

shape, and density of particles will influence their transport behavior and fate in the

aquatic environment.
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The unique nature of plastic debris can be illustrated by comparison with properties

of other types of particles present in water systems. Plastic can be considered to be

unique with respect to fate processes because:

• Other particles can be similar sized but then have higher density (metal-based

nanoparticles and colloids, suspended sediments, clays, minerals).

• Other particles can have similar density but are far less persistent (wood, algae,

detritus, exopolymers, organic matter flocs, or organic colloids).

• Other particles do not exist in a nm to > cm size range with all other properties

being similar to those of plastics.

We argue that the combination of low density (often near that of water),

persistence, wide size range, and variable shape is what makes plastic particles

and thus fate model simulation results different from those for other particles. At the

same time, low-density nanomaterials (fullerenes, carbon nanotubes) or natural

organic particles like cellulose can have a hydrodynamic behavior similar to that

of some specific plastic particles.

Processes Specifically Relevant for the Modeling of Plastic Debris Once in the

aquatic environment, plastics will be transported downstream. Floating

macroplastic can be assumed to be transported with the flow (Fig. 1), i.e., to

estuaries, to sea, or to lake reservoirs, where reduced flow conditions, fouling,

embrittlement, and fragmentation may trigger sedimentation and further dispersion.

Larger items will also accumulate on riverbanks due to wind or reduced flow or

dispersive flow patterns in river bends. Vegetation or trees near the shores may

serve as a temporary sink for large plastic debris [82], which later on may be

released again to the main stream. Non-buoyant plastic debris is subject to the

advective, dispersive, and sedimentation processes as described in the previous

section. A unique feature here is that a high proportion of the plastic will have a

density not that different from that of water, in contrast to natural suspended

(mineral) solid particles of the same size. The variety of plastic sizes and densities,

however, still varies enormously, leading to a wide variety of transport patterns for

individual particles in the mixture.

Biofouling of plastics has been reported for freshwater samples [83, 84] and also

is a well-researched phenomenon in marine waters [57, 58, 62, 84]. Plastic debris of

all sizes and densities will be fouled and colonized by microbes, forming biofilms,

which can lead to significant changes in particle buoyancy. For instance, increased

settling as a result of biofouling has recently been shown for marine particles

[57, 58, 62], and it is plausible that the same holds for plastics in the freshwater

environment (Fig. 2). The recent detection of microplastics in rivers and lake

sediment [15, 20, 85] confirms that particles with a density higher as well as

lower than water can settle and be buried in the sediment. Recent model analysis

showed that this also can be explained on a theoretical basis [35, 36]. Buoyant

plastics will only settle when they are incorporated in aggregates with a density

larger than the water density. This is an important phenomenon, which is
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mechanistically explained by biofouling causing an overall increase in density and

attachment efficiency with other particles. Heteroaggregation with natural colloids,

clays, and other high-density suspended particles will lead to faster sedimentation

of the plastic particles that are captured in the aggregate [35, 36] (Fig. 2).

Another unique feature is the high persistence of plastic. Other particles with

similar density and size, e.g., wood, algae, detritus, or other natural organic matter

solids, disappear through degradation and mineralization within rather short time

scales. Plastic debris however, once buried in the sediment, will only be mineralized

on very long time scales, rendering them highly accumulative, bioavailable, and also

subject to further transport. As long as plastic particles are close to the sediment

surface, they can be resuspended if the flow velocity is high enough to exceed the

critical shear stress [86]. However, after prolonged sedimentation, the particles could

become “buried.” Buried plastic debris would not resuspend anymore, unless turbu-

lence would increase sharply due to storm events or flash floods, for example.

In the laboratory under accelerated weathering conditions, plastics have been

shown to become brittle and fragment [28], and it is likely that this also occurs in

freshwater systems. This process however is very slow in nature [87] and probably

much slower than the typical residence times of plastic in rivers. In lakes with a

large retention time, weathering is potentially important though. Fragmentation is

caused by photodegradation, thermo-oxidation, hydrolysis, physical abrasion,

and/or biodegradation [1, 88]. Most of these processes require either light, friction,

or oxygen to act on the surfaces of the particles, which implies that once buried in

anoxic sediment layers, plastic will be preserved for at least decades [89]. Several

model categories exist that can use the above mechanistic evidence to simulate the

fate of plastic debris in rivers, some of which already have been published in the

literature [36, 37, 72].

4 Models for Fate and Transport of Microplastics

in Freshwater Systems

In this section, four categories of models will be discussed: emission-based mass

balance modeling, global modeling, multimedia modeling, and spatiotemporally

explicit modeling. The models differ in their aim, design, scale, level of detail, and

state of validation (Table 1). We classified the models based on their major

characteristics, but some overlap in these classifications can be found. For example,

a global model can also be referred to as spatiotemporally explicit yet on a much

larger scale, and a small-scale spatiotemporally explicit model can cover plastic

transport in water and sediment, rendering it “multimedia.”
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4.1 Emission-Based Mass Flow Modeling

Emission-based mass flow or mass balance models have been used for chemicals

[97] and have recently been implemented for engineered nanoparticles as well

[45, 98, 99]. The latter category of models is of particular interest for this review,

because mass flow models for plastic particles can relatively easily be developed

along the same lines. Based on estimates of nanoparticle emissions from products,

environmental fluxes are calculated to the major compartments like air, soil, water,

sediment, and several technical compartments [45]. The compartments typically are

considered homogeneous and well mixed [45, 98]. Deposition and removal of

particles within compartments are modeled as constant annual flows into a

sub-compartment of each box considered. Similar mass flow model applications

that calculate environmental concentration for plastic debris in all media (air, soil,

water, and sediment) have not been published yet. However, the essence of the

approach has been used to estimate concentrations of microplastics from cosmetics

in WWTP effluents in the Netherlands [90] and mass emissions of microplastics

from cosmetics from Europe to the North Sea [100]. The first study is discussed in

detail below.

Mass Flow Modeling of Microplastic Concentrations in WWTP Effluents With the

use of a mass flowmodeling approach, VanWezel et al. [90] estimated the emission

of microplastics from consumer products to the surface water via WWTP effluents

(Table 1). Based on the known use of microplastics in cosmetics and personal care

products, cleaning agents, and paints and coatings, emissions were estimated. Per

product category, data on the use of the product, the market penetration, and

concentration of microplastics in the product were collected. It was estimated that

during the wastewater treatment, between 40 and 96% of the microplastics would

be retained by the WWTP. The model calculated the predicted concentration of

microplastics in a WWTP effluent as the product of the concentration of

microplastics in a product, the daily usage of that product, the fraction of

microplastics removed during the wastewater treatment, and the market penetration

of the products, divided by the volume of wastewater produced. The estimated

effluent concentration of microplastic ranged from 0.2 μg L�1 for the conservative

estimate to 66 μg L�1 for the maximum scenario.

Measured concentrations of microplastics in WWTP effluents range from 20 to

150 particles L�1, as reported after a Dutch monitoring campaign [90]. These

particle numbers were converted to mass, based on the size range, the volume

assuming cubic shapes, and an average density. To validate the model, the model

outcomes were compared with the observations of the monitoring [90]. Three

different particle number-to-mass conversion categories were used, classified at

“little and light,” “intermediate,” and “big and heavy” particles, the names relating

to the assumed particle size, volume, and density. The model coincided best with

observations when “big and heavy” particles were assumed to be measured, that is,

particles with a relatively high density, large size, and large volume. However, the
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measured concentrations include both primary and secondary plastics (i.e., pro-

duced and fragmented/weathered particles, respectively), whereas the model only

included primary plastics, which may have interfered with the reported validation.

Current knowledge on the use of nano- and microplastics in consumer products

is limited, so a generic approach with many assumptions was used in this mass flow

modeling study, contrasting with the approaches used with more advanced multi-

media mass balance models, life cycle perspective models, or probabilistic material

flow models. More reliable data to feed the models are needed to improve the

emission estimates [90].

4.2 Global River Models

River pollution is a worldwide problem. Human activities on the land pollute rivers

in all continents. A number of global river pollution models exist. One of these is

the Global NEWS (Nutrient Export from WaterSheds) model [101, 102]. Global

NEWS is a model that calculates river export of nutrients from land to sea as a

function of human activities on the land. Global NEWS includes more than 6,000

river basins using hydrology from the water balance model [103]. It calculates river

export at the river mouth. The model input is mostly on a grid of 1 degree longitude

by 1 degree latitude. It has been used to simulate trends in river pollution for the

period 1970–2050, taking into account change in land use, food production, urban-

ization, and hydrology [103–105]. Results indicate that over time, most rivers

worldwide become more polluted.

Global river export models for nutrients, like Global NEWS, have been under

development for more than 20 years. For other pollutants global river export models

do not have such a long history. As a result, the Global NEWS approach has been

taken as an example and inspiration for other pollutants [44]. Nutrients in rivers can

have point sources (e.g., pipes draining into the river) or diffuse sources (e.g., runoff

from soils or atmospheric deposition [65]). This is the case for nutrients, but also for

other pollutants, like plastic debris. Model structures for point sources of one

pollutant can easily serve as an example for other pollutants. The same holds for

diffuse sources.

A river export model for microplastics, inspired by the Global NEWS model, is

currently under development (Table 1). Preliminary results for point source inputs

of microplastics to European seas have been presented [91]. This plastic model

calculates point source inputs of microplastics from sewage to rivers. In addition, it

simulates river transport of microplastics as a function of population, sewage

connection, wastewater treatment, and river retention. River retention is derived

from [36]. First results indicate that car tires are important point source inputs of

microplastics in European rivers.
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4.3 Multimedia Modeling

Multimedia models for chemicals are built by setting up a mass balance equation

for each compartment that calculates the fluxes of transport via all exchange

processes among compartments that are considered relevant. The fluxes are calcu-

lated based on first-order kinetic process rate parameters and concentration or

fugacity gradients. The model equations are commonly solved by simple matrix

algebra assuming steady state, but they also can be temporally resolved. Common

multimedia models for nanosized particles are MendNano [106] and

SimpleBox4Nano (SB4N) [72, 73]. These models calculate steady-state concentra-

tions in the compartments atmosphere, surface water, soil, and sediment. In this

review we discuss SB4N in more detail, as a first plastic implementation has already

been made for this model (Fig. 3). SB4N models the partitioning between dissolved

and particulate forms of the chemical as nonequilibrium colloidal behavior, instead

of equilibrium speciation. Within each compartment, particles can occur in differ-

ent physical�chemical forms (species): (a) freely dispersed, (b) heteroaggregated

with natural colloidal particles, smaller than 450 nm, or (c) attached to natural

particles larger than 450 nm. All these particle forms are subject to gravitational

forces in aqueous media. Because SB4N is a spreadsheet model, it can easily be

implemented for plastic debris of all sizes, as long as the parameter values are

known. One of the advantages is that the model stems from SimpleBox, which is an

established model already used in the risk assessment of chemicals [108]. A

limitation is that the model only calculates average background concentrations.

Fig. 3 Multimedia distribution of plastic debris of size 100 nm to 1 mm, between atmosphere,

soil, water, and sediment on a regional scale, for the river Rhine catchment, simulated with SB4N

[72, 73]. Concentrations are given on the log scale. Predicted environmental concentrations (PEC)

assume a yearly emission in the catchment of 20 kt (based on data provided in [107]) in total, a

(fouled) plastic density of 1,100 kg/m3, negligible degradation and fragmentation due to short

particle residence time in the system, and an attachment efficiency for heteroaggregation of 0.01

[35, 36]
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We provide a first implementation for plastic in SB4N in this review (Fig. 3),

which has not been published before. SB4N was parameterized for the river Rhine

catchment, assuming initial emissions to the compartments soil and surface water of

50% of total emission, each. We assumed that no direct emission to sediment

occurs, implying that plastic particles reach the sediment only through settling

from the water column. Further assumptions are provided in the caption of Fig. 3.

With all parameters at the same value, an increase in particle diameter results in

more removal from water and soil and increased concentrations in sediment

(more settling, Fig. 3).

4.4 Spatiotemporally Explicit Models

To date, two models have been presented that are able to simulate the transport

of plastic debris in freshwater rivers with high spatial and temporal resolution [35–

37]. Both models are framed by the authors as theoretical models, that is, they are

supposed to be valid with respect to the design criteria and in agreement with

existing theory, but they are not yet validated against measured data for

plastic debris (Table 1).

Modeling the Transport of Plastic Debris in the Dommel River (The Netherlands)
The model by Besseling et al. [35, 36] is the first model that simulated the fate of

nano- up to centimeter (i.e., macroplastic)-sized plastic particles in a river (see [24]

for review). The model is based on the NanoDUFLOW hydrological model

[96, 109] and includes advective transport of particles, their homo- and hetero-

aggregation, biofouling, sedimentation/resuspension, degradation of plastic, and

burial in the sediment. This implies that all processes mentioned in Sect. 3 were

accounted for. Although not yet formally validated for plastic particles because of

lacking monitoring data, earlier model simulations for nano-CeO2 showed good

agreement with measured nano-CeO2 submicron particles in the same river

[96]. The model can be implemented for other catchments using DUFLOWModel-

ing Studio [110] and allows for the inclusion of tributaries and diffuse as well as

point sources (e.g., WWTPs) [96].

To simulate the transport of plastic debris, parameter values were set based on

literature data. Data for the attachment efficiency for heteroaggregation are scarce

and therefore were also determined experimentally. A 40 km stretch of the river

Dommel (the Netherlands) was modeled with a spatial resolution of 477 sections of

an average 87.7 m length and with section widths ranging from 8 to 228 m. The

effect of all processes was calculated per section and the result was passed on to the

next. An upstream point source with known mass concentration was used as a

boundary condition at time zero, based on an average order of magnitude of

published concentrations of microplastics in freshwaters. Scenario studies aimed

at identifying how plastic debris of all sizes and densities would be distributed

along the river. Realistic flow data were used. Impacts of long-term variability in
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weather conditions were not accounted for given the short simulation times

required to reach steady state in the water column.

The scenario studies showed that the attachment efficiency to suspended solids

or other plastic particles, biofilm formation on the plastic particles, and polymer

type of the plastic particles had only a small effect on the modeled fate and retention

[36]. Particle size, however, had a much stronger effect. Both the occurrence of

accumulation “hot spots” in river sediment and overall retention in the 40 km river

stretch were found to be highly affected by particle size. The larger micro- and

millimeter-sized plastic particles showed high up to complete retention in the river

due to direct Stokes settling [36]. Nanoplastic appeared to be retained and

transported to an equal extent, due to the predicted fast heteroaggregation with

natural solids. These solids have a higher density than the plastic and the water,

causing subsequent sedimentation of these aggregates that captured the plastic

particles. Retention, however, was lowest for the intermediate size class of plastic

particles around 5 (1–10) μm due to the trade-off between these “direct” and

“indirect heteroaggregate” Stokes settling mechanisms. The authors emphasized

the importance of this size selection mechanism in rivers. The model was also

applied to particles with a density equal to water, which resulted in no particle

settling. This scenario was taken as a proxy for buoyant particles.

Freshwater organisms might be exposed relatively more to such intermediate

size classes, whereas they would be depleted in the mixture of particles that is

exported to sea under discontinuous input regimes [36]. The fact that the model

accounted for all known processes that are relevant and that it was in agreement

with data for another particle type (nano-CeO2 submicron particles [96]) contri-

butes to the credibility of the results. The model however was set up for (near-)

spherical particles. This means that it is already applicable for spherules, micro-

beads, or secondary plastics (e.g., car tire dust) that can be assumed to approach

sphericity, but it may not yet simulate particles with diverging shapes like fibers or

thin films with the same level of accuracy. Furthermore, parameters for hetero-

aggregation are still poorly known, which also calls for further refinement.

Modeling the Transport of Microplastic Debris in the Thames River Catchment
(UK) Nizzetto et al. presented a spatiotemporally explicit model that was applied

to the Thames River catchment [37]. The study is framed as purely theoretical as

empirical data on microplastic emissions and concentrations were not available.

The model is based on an existing hydrobiogeochemical multimedia model, INCA-

contaminants [93], with a sediment transport module [95], a rainfall-runoff module

[94], and the possibility to add direct effluent inputs from, for instance, WWTPs. It

is a lumped model as it assumes homogeneous rainfall and temperature distributions.

The model accounted for surface runoff and effluent inputs and reentrance to the

system by resuspension. Whether particles are transported by surface runoff

depended on the microplastic pool available for mobilization, the transport capacity

of the overland flow both for microplastics and sediment, and the detachment of

plastics through splash erosion and flow erosion. In the stream, the particles are
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assumed to be uniformly mixed within each section, and the transport processes

advection, settling, and size-dependent resuspension from the sediment bed were

taken into account.

Microplastic properties were defined by dimension and density. The study

assumed plastic particles were pristine, that is, effects of biofouling were not

taken into account. The model showed that the transport of microplastics is strongly

related to flow regimes, especially for the larger (> 0.2 mm) particles. The transport

dynamics were more influenced by size than by density, which confirms the

findings by Besseling et al. [35, 36]. Average retention of particles was size

dependent, decreasing with decreasing particle size and starting with 90–100%

retention for particles >0.2 mm. Particles <0.2 mm were less well retained, and a

large portion was expected to end up in the marine environment. The particle size

range of the simulated particles was 0.05–0.7 mm; densities ranged from 1,000 to

1,300 kg m�3. The model did not include biofouling, aggregation, or fragmentation.

These processes influence the hydrodynamic behavior and size distribution of the

particles but according to the authors should be better understood before they can be

included in the model. Nanoparticles are also not included in the model yet [37].

Comparison of the Besseling (DUFLOW) and Nizzetto (INCA-Plastic)
Models Both the DUFLOW and INCA-Plastic models were in accordance with

their design criteria and study aim. The NanoDUFLOW model seems more com-

plete as it includes aggregation, which has been shown to be a crucial process,

especially for submicron particles [59, 60]. The model by Besseling et al. [35, 36]

also accounted for biofouling, which also has been shown to affect the settling

behavior of plastic particles. Given the study aim, Besseling et al. did not provide

long-term simulations that accounted for the impacts of weather conditions. How-

ever, in principle DUFLOW can accommodate point and diffuse sources like

WWTPs, tributaries [96], or runoff [111]. The latter processes were already

accounted for in the INCA-Plastic implementation by Nizzetto et al., which is a

relevant merit of that study. Both model outcomes agree on the important effect of

particle size on retention and on a high retention for particles >0.2 mm. A

contrasting conclusion, however, is that the INCA-Plastic model predicted that

smaller particles would be less well retained in the river and thus exported to sea,

whereas the NanoDUFLOW model reported an increased retention again for

particles smaller than 5 μm. This difference can be explained from the fact that

NanoDUFLOW accounted for aggregation of these small plastic particles, which

allowed for the simulation of the increased sedimentation of these small plastic

particles captured in heteroaggregates. This emphasizes the need to include this

process. It has been shown that because heteroaggregation captures virtually all free

nanosized particles, uncertainty with respect to the exact parameterization of

heteroaggregation is of minor importance [73, 96, 112]. The conclusions of both

studies depend on the modeled scenario’s and parameters’ variability. Also labo-

ratory experiments have shown that processes like biofouling and aggregation

[57, 62, 84] and particle properties like density, size, and shape [52, 55] signifi-

cantly influence particle fate.
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5 Recommendations and Guidance for the Development

of Fate Models for Plastic Debris from a Risk Assessment

Perspective

5.1 Data and Knowledge Gaps with Respect to Further Model
Development

Quality Criteria for Analysis and Detection To date, few studies have measured

concentrations and characteristics of plastic debris in the freshwater environment,

which implies that more and also better data are of utmost importance. Quality

assurance criteria are common in analytical chemistry or ecotoxicology [113, 114]

but are less self-evident for monitoring of plastic debris which is a relatively young

field of science [115].

There also is an urgent need to standardize the units used to quantify abundance of

plastic debris [81]. For instance, for freshwater systems, concentrations of plastics

in water and sediment have until now been reported in mass per unit of volume of

water [13], mass per mass of sediment [15], particles per volume of water [13, 19],

particles per surface area of water [18, 19, 83, 116], and particles per mass of

sediment [15]. Utility of data for modeling would improve enormously if studies

would at least mention both mass and particle count data and, when taking water

samples, mention the sampling depth and sampling net dimensions, which would

enable a surface-to-volume conversion or vice versa. This conversion only holds

under the assumption that particles are evenly distributed over the sampled depth,

which is also often assumed in models.

Depending on the aims of the modeling, measured plastic abundances should

meet specific requirements. To validate mass flow analysis, an estimate of the total

mass of plastic per unit of volume of the modeled media would be required.

Multimedia models like SB4N [72] model the free, <0.45 μm aggregated, and

>0.45 μm aggregated species, and validation ideally would require mass concen-

trations for these size classes. Because the latter models start with emission data,

i.e., from production figures, the modeling will usually relate to a specific polymer

type. For deterministic spatiotemporally explicit modeling, sufficient detail with

respect to actual size and polymer density distributions is required because such

approaches aim to simulate the reality as closely as possible. This implies that

analysis and characterization of plastic in environmental samples would need to

include (a) sufficient detail in the particle size and density distributions and

(b) sufficient detail in the classification of shape, i.e., like fibers, fragments, and

spherules [81]. What is to be considered as “sufficient” in this respect depends on

the more specific aim of the modeling and is beyond the scope of this review. Given

that particle interactions as well as potential ecological effects across different

species traits are size dependent, standardization of methods, including those for

nano- and micrometer-sized plastic particles, is considered very important.
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Recommendation for Model Validation Validation would require sufficient data to

verify the credibility of the model with statistical rigor. For mass flow or multime-

dia models, limited data per system yet for a high number of aquatic systems would

be preferred. For spatiotemporally resolved models, however, it would be preferred

to sample one catchment in detail. Such a case study catchment could then be used

to calibrate and validate models, which could later be applied to other catchments.

As for process parameters, little is known yet especially about the time scales of

aggregation, fragmentation, and biofouling. This means that experimental work is

needed, after which the parameter values obtained from these experiments can be

applied in models. The development of fate models for freshwater may also benefit

from experimental and model studies on marine plastic aggregation, fragmentation,

and biofouling.

5.2 Comparing the Models: What Model for Which
Question?

In the previous sections, we described different categories of models in detail. Here,

we briefly discuss what category of model is needed for which type of question or

application. In essence, this categorization does not differ from that for soluble

chemicals or engineered nanomaterials.

For emission-based regional estimates of environmental concentrations of plas-

tic debris, mass balance, mass flow, and especially mechanistic multimedia models

are adequate. Recently, for nanoparticles such models have been developed, like

the SB4N model [63, 72, 73] and the MendNano model [106]. It is highly

recommended that such mechanistic multimedia models are adapted for plastic as

well. Being neither temporal nor spatially explicit, such models are screening level

models that can be used to assess relative concentrations among classes of nano-

and microplastics or among plastic emission scenarios. Hence, such models are

useful to calculate regional average or background concentrations (PECs, predicted

environmental concentrations) for different plastic types, for different regions, or

for different future emission scenarios. Multimedia particle models can also be used

to detect the parameters to which the model output is most sensitive or to quantify

uncertainty in PECs, which than can be applied in probabilistic risk assessments

(discussed below).

Compared to the output provided by multimedia models, more realistic estimates

of local environmental fate and concentrations can be obtained with spatiotempo-

rally explicit models. However, fate models that are spatially explicit only yield

better estimates if data on spatial variability in emission intensities are available. At

present, there is only limited information on such spatial variation. Furthermore,

estimating regional average concentrations still requires definition of what is

defined as “a region.” Different models use different scales, which means that the

research question defines what model is most adequate. Global river models like
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Global NEWS link mass flow models for river catchments, which thus accounts for

spatial variation among catchments on a global scale, but not within catchments

[91, 117]. As for applications, such models can rank catchments, regions, countries,

or continents with respect to emission intensity to the marine environment [92]. The

multimedia model SB4N can also accommodate various spatial scales, like

regional, continental, and global, but always calculates one average concentration

for soil, sediment, air, lake, river, and seawater. It is possible, however, to run

models like SB4N for a certain grid, within an overarching model that provides

input on a scale of, for instance, 200 � 200 km [118].

For more accurate local estimates of concentrations of plastic debris, system-

specific zero-D mass balance approaches can be used for smaller systems, like lakes

[63]. However, to better account for variability, spatiotemporally explicit models in

1, 2, or 3 dimensions can be used. As far as we know, the 1-D NanoDUFLOW

model discussed above is the most elaborated model available. By defining small

segments in a river, full hydrology can be taken into account. This is important for

answering questions with respect to “hot spot” locations, quantifying which plastic

types and sizes can be expected where (including nanosized plastic), calculation of

retention versus flow-through to sea, and prospective assessments of fate and

exposure on a detailed local scale. It has been argued recently that such models

may be able to predict biologically relevant nanoparticle aggregate species as a

function of time and space, which in turn can be linked to exposure by biota

inhabiting the water system in question [24]. We propose that a similar approach

also is possible for plastic debris, although further validation of fate models as well

as further assessment of what has to be considered bioavailable and ecologically

relevant is required. These last steps are particularly important when models are

used in the framework of a formal risk assessment.

5.3 Fate and Exposure Models in the Context of ERA
for Plastic in Freshwater Systems

To date, no ERA framework has been defined or applied to plastic debris. Here, we

postulate that for plastic debris the same basic components of ERA can be used as

for traditional chemicals and engineered nanomaterials: problem definition stage,

an exposure assessment, an effect assessment, and a risk characterization step

[119, 120]. For plastic debris, exposure presently is difficult to measure, so there

is a relatively high need for modeling tools. A crucial aspect of exposure modeling

and effect assessment in the context of ERA is what is to be considered the

“ecotoxicologically relevant metric” (ERM) [120]. The ERM is the “common

currency” used in the exposure and the effect assessment, which links these two,

such that they can lead to a consistent risk characterization. For soluble chemicals,

the ERM always is concentration, which is why ERA for chemicals uses the
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ecotoxicologically relevant concentration. Effect assessment and risk characteriza-

tion are beyond the scope of this review, which focuses on freshwater models for

fate and exposure (see [121] for details). However, in order to frame models in the

context of ERA, here we briefly touch upon the wide variety of adverse outcome

pathways (AOPs) that exists for plastic debris. As plastic debris is a complex

mixture of sizes, types, and shapes, which also can be associated with chemicals,

there will be a multitude of ERMs. Each ERM captures the unique features of a

particular type of debris present in a habitat in combination with specific traits of

species in that habitat, leading to an AOP describing the preset ecological or human

health protection goals. Some reported AOPs are entanglement, ingestion/suffoca-

tion, blockage of the gastrointestinal tract, food dilution, chemical toxicity from

associated chemicals, and a series of biomarker responses, which have been

reviewed recently [6, 9, 122]. ERMs for physical effect of plastic can be defined

in the form of a matrix where exposure and effect criteria such as habitat, species,

life stage, mode of action, plastic size, plastic shape, and exposure duration are

tabulated and scored. Using population models, effects on individuals then can be

integrated with those from other stressors and habitat factors and, where needed,

scaled to the population level similar to pesticide effect models (e.g., [100]). The

ERM then needs to be assessed in space and time, dependent on the protection goal

and the aim of the ERA. Ideally, fate models as described in this review should thus

be able to simulate or predict all relevant ERMs emerging from the broad suite of

species and particles that can be encountered in a habitat that has to be protected.

Here, as mentioned before, for relatively simple site or material prioritizations,

regional background concentrations as produced by multimedia models may suf-

fice. Multimedia models can also be used in probabilistic ERA where spatial

heterogeneity is accounted for by using a probability function that quantifies the

spatial variation. For site-specific assessments, ERMs may be predicted by explicit

models like NanoDUFLOW [36, 96], INCA-contaminants [93], or similar particle

models, as long as aggregation of nanosized particle fractions is accounted for.

Exposure then can be combined with effect thresholds in a PEC/NEC (NEC is the

no-effect concentration) approach, where the NEC may come from data for differ-

ent dose response models dependent on the AOP (threshold model, log logistic,

Weibull, binary). Due to considerable uncertainty compared to ERA for traditional

chemicals, probabilistic approaches are recommended, which can be adopted from

recent developments in the ERA of engineered nanoparticles [118].

6 Concluding Thoughts

Contamination of the freshwater environment with plastic debris of all sizes has

received increasing attention. In this review we argue that in order to conduct a

proper risk assessment of plastic pollutants and their sources, and given the scarcity

of data, models are useful complementary methods for exposure assessment. These

models can build on existing transport models that simulate other types of particles,
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only changing the plastics-specific parameters and characteristics. As a material to

model, plastic is unique given its wide range of sizes, shapes, and densities. It can

aggregate or fragment and obtain a biofilm, all of which influence the hydrody-

namics and size distribution of the particles. The first models developed for plastic

transport so far range from mass-balance point-emission models to spatiotempo-

rally explicit models. These models, however, have not yet been calibrated because

of a lack of data. We recommend that before large measurement campaigns start,

units to express abundance of plastics and methods for the analysis of plastics in the

environment are standardized, which would increase the usability of the

measurements.
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Interactions of Microplastics with Freshwater

Biota

Christian Scherer, Annkatrin Weber, Scott Lambert, and Martin Wagner

Abstract The ubiquitous detection of microplastics in aquatic ecosystems pro-

motes the concern for adverse impacts on freshwater ecosystems. The wide variety

of material types, sizes, shapes, and physicochemical properties renders interac-

tions with biota via multiple pathways probable.

So far, our knowledge about the uptake and biological effects of microplastics

comes from laboratory studies, applying simplified exposure regimes (e.g., one

polymer and size, spherical shape, high concentrations) often with limited environ-

mental relevance. However, the available data illustrates species- and material-

related interactions and highlights that microplastics represent a multifaceted

stressor. Particle-related toxicities will be driven by polymer type, size, and

shape. Chemical toxicity is driven by the adsorption-desorption kinetics of addi-

tives and pollutants. In addition, microbial colonization, the formation of hetero-

aggregates, and the evolutionary adaptations of the biological receptor further

increase the complexity of microplastics as stressors. Therefore, the aim of this

chapter is to synthesize and critically revisit these aspects based on the state of the

science in freshwater research. Where unavailable we supplement this with data on

marine biota. This provides an insight into the direction of future research.

In this regard, the challenge is to understand the complex interactions of biota

and plastic materials and to identify the toxicologically most relevant characteris-

tics of the plethora of microplastics. Importantly, as the direct biological impacts of
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natural particles may be similar, future research needs to benchmark synthetic

against natural materials. Finally, given the scale of the research question, we

need a multidisciplinary approach to understand the role of microplastics in a

multiple-particle world.

Keywords Autecology, Feeding types, Microplastic-biota interaction, Polymers,

Suspended solids, Vector

1 Introduction

Over the past decade, microplastics (MPs) have become a prominent environmental

concern, mainly because of their frequent and ubiquitous detection in marine and

freshwater ecosystems. Therefore, biota will likely encounter and interact with MPs.

In addition, MPs are a heterogeneous class of pollutants with a broad range of

individual properties such as material type, particle size, and particle shape. These

diverse material characteristics make them potentially available to a broad range of

neustonic (buoyant materials, density <1 g cm�3), pelagic (materials in suspension),

and benthic species (sedimenting materials, density>1 g cm�3). This enables MPs to

penetrate aquatic food webs at multiple trophic levels and ecological niches.

To date, research into MP exposure for freshwater biota is limited. Yet, marine

research has shown malnutrition caused by the intensive feeding on MPs replacing

parts of the natural diet [1–3]. Additionally, further ingestion-related effects include

blockages and injuries to the digestive tract [4], inflammatory response [5], and

desorption of xenobiotics [6]. Obviously, all of these responses presuppose feeding

and ingestion of MPs. As such, the aim of this chapter is to discuss the diverse

interactions between MPs and biota that may occur in the environment. In the first

section, we focus on factors influencing the ingestion of MPs considering the

impact of the different physical properties of MPs and feeding types of freshwater

species. In the second section, we provide an overview and analysis of the observed

MP effects in terms of their physical, chemical, and vector-related impacts. This is

followed by a comparison of the similarities in the effects caused by exposure to

naturally occurring particles and MPs. Finally, we conclude by discussing the wider

implications of MPs toward freshwater systems.

2 Factors Influencing Microplastic Ingestion by

Freshwater Biota

Species in freshwater ecosystems are part of complex food webs and forage on a

wide diversity of food types, utilizing a variety of different feeding strategies.

Notwithstanding this diversity, the classification by feeding types or by food

types is commonly used to group biota. For instance, suspension feeders obtain

nutrients from particles suspended in water, deposit feeders forage for particles in
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sediments, fluid feeders feed on other biotas fluids, and suction feeders ingest the

prey together with the surrounding water. The utilized morphological structures

determine further classifications. For example, filter feeders (e.g., daphnids) use

specialized filtering structures to strain suspended particles, and raptorial feeders

(e.g., copepods) actively capture and process suspended particles by modified

appendages. Further typically used classifications are collectors (e.g., chironomids),

shredders (e.g., amphipods), scrapers (e.g., gastropods), and predators (e.g., odo-

nates) [7]. Another way to categorize species is based on their diet. For instance,

bacterivores feed on bacteria, herbivores feed on plants, carnivores feed on animals

(e.g., zooplanktivores, insectivores), and detritivores feed on decomposing mate-

rials. These groupings imply clear boundaries, although some species feed on

multiple food sources (e.g., generalist, omnivorous) or have the ability to switch

between food sources (opportunistic feeders).

Primary producers like unicellular algae or bacteria as well as particulate organic

matter (POM) provide nutrients for a broad range of pelagic and benthic species.

Thus, small MPs are in a similar size range to the natural food of these consumers.

To understand the capacities of different species to feed on specific size classes,

limnologists have frequently used polymer beads as tracers [8–10]. Although these

studies primarily focus on pelagic zooplankton communities, they illustrate that the

intake of food and MPs depend on complex interactions between biotic (e.g.,

feeding type, physiological state, competition, food size, and availability) and

abiotic factors (e.g., temperature). Accordingly, they provide a useful starting

point to discuss MP ingestion and effects.

2.1 The Role of Feeding Types

2.1.1 Invertebrates

Suspension and filter feeders like protozoans, rotifers, cladocerans, and mussels are

assumed to be especially prone to MP ingestion because they commonly feed on

suspended particulate matter (SPM) and ingest a variety of seston components. The

ingestion of MPs by these feeding types has been shown in numerous studies

(Table 1). For instance, bacterivorous and herbivorous ciliates (e.g., Halteria sp.),

flagellates (e.g., Vorticella sp.), rotifers (e.g., Anuraeopsis fissa), and cladocerans

(Daphnia sp.) can feed readily on plastic beads [9, 10]. While data on MP ingestion

by pelagic filter-feeding zooplankton is relatively abundant, one prominent group of

filter feeders, the bivalves, is underrepresented. Bivalves are known to feed effectively

on SPM, including MP, which is ingested by marine mussels (e.g., Mytilus edulis,
[24]) and freshwater clams (Sphaerium corneum, 1–10 μm polystyrene (PS) beads;

Anodonta cygnea, 5–90 μm polystyrene (PS) beads and fragments; unpublished data).

In addition to organisms specialized in feeding on SPM, a variety of organisms

forage for particles in sediments. Although MP exposure may be as relevant for

deposit feeders (feeding on fine particulate matter and associated biota in sedi-

ments) as for filter feeders, only a few studies have investigated the ingestion of

MPs for this mode of feeding. The blackworm Lumbriculus variegatus and the
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Table 1 Summary of the results of uptake studies with microplastic particles and freshwater

species

Uptake (P Ind−1 h−1) Species

Ciliates

Yes (13.6–1,200) Epistylis plicatilisa, Epistylis rotansc, Halteria grandinellaa, Halteria
sp.b, Pelagohalteria viridisb, Stokesia sp.a, Strombidium virideb,
Strombidium sp.a,b, Vorticella microstomaa, Vorticella natansa,
Vorticella sp.b, Unident. oligotrichsa, Unident. Scuticociliatidaa

No Askenasia volvoxb, Balanion sp.b, Coleps sp.a, Condylostoma sp.a,

Cyclidium sp.b, Didinium sp.a,b, Lembadion magnuma, Litonotus spp.a,
Mesodinium spp.a, Paradileptus sp.a, Paradileptus elephantinusb,
Strobilidium caudatumb, Strombidium viridea, Suctoriab, Tintinnidium
fluviatilea, Tintinnopsis lacustrisa, Urotricha furcatab, Unident.
Scuticociliatidab

Flagellates

Yes (2.6–103) Chrysostephanospharea globuliferaa, Cryptomonas ovatab, Dinobryon
bavaricuma, Dinobryon cylindricuma,b, Monas spp.a, Monas-like cellsb,
Ochromonas sp.a, Undetermined Choanoflagellatea, Unident.

heterotrophsa

No Chrysidalis sp.b, Chrysococcus sp.b, Chrysomonadineb, Kathablepharis
sp.b, Mallomonas sp.b, Pandorina morumb, Peridinium volziib,
Rhodomonas minutab, Synura sp.b, Undetermined choanoflagellateb,

Unident. heterotrophsb

Rotifera

Yes (2.5–3,200) Anuraeopsis fissaa,d,e, Brachionus angularise, Brachionus calyciflorusf,
Brachionus koreanuss, Conochilus unicornisb,d,e, Conochilus sp.a,
Filinia longisetaa,d,e, Filinia terminalisf+, Gastropus sp.a, Hexarthra
mirab, Hexarthra sp.a, Kellicottia bostoniensisa, Keratella cochlearisd,e,
Keratella cochlearis tectad, Keratella quadratae, Keratella spp.a, Lecane
sp.e, Lepadella sp.e, Pompholyx complanatad0.5, Pompholyx sulcatae

No Anuraeopsis fissad6, Ascomorpha saltanse, Asplanchna priodontatab,
Asplanchna sp.e, Collotheca spp.e, Conochilus unicornisd6, Filinia
longisetad6, Filinia terminalisb,f, Kellicottia longispinab, Keratella
cochlearisd6, Keratella cochlearis tectad6, Keratella quadratad,
Polyarthra spp.a,b,e, Pompholyx complanatad3–6, Synchaeta spp.b,e,

Trichocerca pusillae, Trichocerca spp.a

Annelida

Yes (0–1) Lumbriculus variegatush,i

No –

Crustacea

Yes (1–28,000) Bosmina coregonid,e,g, Bosmina longirostrisa,b,d,e,f, Ceriodaphnia
lacustrisa, Ceriodaphnia quadrangulab,f, Chydorus sphaericusd,e,f,g,
Cyclops bicuspidatus thomasi f, Cyclops bicuspidatus thomasi (nauplii)f,
Daphnia cucullatad,e,g, Daphnia galeata mendotaef, Daphnia
longispinab, Daphnia magnaf,h1–10, Daphnia parvulaa, Diaphanosoma
birgeif, Diaphanosoma brachyuruma,g, Diaptomus siciloidesf,
Diaptomus siciloides (nauplii)f, Eubosmina coregonif, Eudiaptomus
gracilisb, Gammarus pulexh, Holopedium amazonicuma, Hyalella
aztecak, Notodromas monachai, Simocephalus vetulusf

No Acanthocyclops robustusb,e, Alona sp.e, Chydorus sphaericusg19,
Cyclops vicinusb, Daphnia magnah90, Diacyclops bicuspidatuse,
Diaptomus mississippiensisa, Eudiaptomus gracilisg,Mesocyclops edaxa,
Mesocyclops leuckartie, naupliia,e, Tropocyclops prasinus mexicanusa

(continued)
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aquatic larvae of Chironomus riparius ingest a broad size range of MPs implying a

relative nonselective feeding on sediment components (Table 1 [16]). Surface-

grazing gastropods Physella acuta and Potamopyrgus antipodarum as well as

the shredder Gammarus pulex have also been shown to ingest MPs through

water-/sediment-borne (P. acuta and G. pulex [16]) and food-associated

(P. antipodarum and G. pulex [17]) exposure routes. It is unknown if these results

are relevant for other benthic deposit feeders considering the diverse ecological

niches and feeding types (e.g., collector-gatherer, filter-gatherer, shredders,

scrapers).

An analysis of studies on MP ingestion by freshwater species indicates that their

general role in the food web (generalist vs. specialized feeders) may determine

dietary MP uptake. Generalists (e.g., Daphnia sp.) or deposit feeders like the

dipteran C. riparius frequently ingested MPs in laboratory experiments, while

this is not the case for more specialized raptorial and carnivorous feeders like the

cyclopoid copepodMesocyclops sp., the rotifer Asplanchna sp. as well as the ciliate
Didinium sp. (Table 1). However, given the potential of MPs to enter complex

aquatic food webs at low trophic levels, an indirect ingestion via the prey is also

likely for carnivorous predators. For instance, the transfer of MPs via prey was

observed in food chain experiments with D. magna and Chaoborus flavicans
(personal observation). While the predator C. flavicans did not directly ingest

suspended MPs (PS beads, 10 μm), the feeding of MP-containing daphnids

(pre-fed on MPs) resulted in an indirect uptake of 10 μm MPs.

Table 1 (continued)

Uptake (P Ind−1 h−1) Species

Insecta

Yes (0.05–15.6) Chironomus ripariush

No –

Mollusca

Yes (0.16–104) Anodonta cygneaw, Physella acutah, Potamopyrgus antipodarumI,

Sphaerium corneumu1–10

No Sphaerium corneumu90

Pisces

Yes Cathorops agassiziin, Cathorops spixiin, Eucinostomus melanopteruso,
Eugerres brasilianuso, Diapterus rhombeuso, Dorosoma cepedianumq,

Sciades herzbergiin, Stellifer brasiliensism, Stellifer stelliferm

No –
a [9], carboxylated microspheres 0.57 μm; b [10], plain microspheres 0.5 μm; c [11], latex beads

0.57–1.05 μm; d [12], PS spheres 0.5, 3, and 6 μm; e [13], carboxylated PS spheres 0.51 μm; f [14],

PS spheres 6.5 μm (f+) flavored (f−) non-flavored; g [15], carboxylated spheres 2.1, 6.2, 10.8, and

19.4 μm; h [16], PS spheres 1, 10, and 90 μm; i [17], polymethyl methacrylat 29.5 ± 26 μm; k [18],

PE particles and PP fibers 10–75 μm; m [19], field study, nylon rope fibers; n [20], field study, nylon

fragments; o [21], field study, nylon fragments; q [22], microspheres 10–82 μm; s [23], PS beads,

0.05, 0.5, and 6 μm; u pers. observation, PS beads 1, 10, and 90 μm; w pers. observation, PS beads

and fragments 5–90 μm. Superscript numbers indicate particle sizes
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Besides these general trends, available studies illustrate that species of the same

functional feeding type have species-specific and sometimes highly divergent MP

feeding rates. For instance, the filter-feeding cladocerans Daphnia longispina and

Ceriodaphnia quadrangula ingested 230 � 103 P I�1 h�1 and 176 � 103 P I�1 h�1,

respectively. In comparison, rotifers (e.g., Hexarthra mira, 38.1 � 103 P I�1 h�1)

and ciliates (e.g., Halteria sp., 46.8 P I�1 h�1) ingest MPs at a much slower rate

[10]. While differences are mainly caused by the species’ morphology and auteco-

logy, numerous other factors (e.g., appetite, MP type and concentration, quantifi-

cation methods) may also contribute. Overall, the most commonly studied

invertebrate species are zooplankton. However, we still know little about the inter-

actions of MPs with other prominent invertebrate freshwater taxa, e.g., Annelida,

Insecta, Decapoda, and Mollusca.

2.1.2 Vertebrates

When considering vertebrate species, MP uptake is documented in laboratory and

field studies for several fish species (Table 1). In contrast, no information is avail-

able for amphibians. Considering the diversity of vertebrates acting as predators,

herbivores, detritivores, or omnivores, we can assume that many species, at least in

principle, have the capacity to ingest MPs depending on their feeding strategies.

However, predicting MP ingestion by vertebrates solely based on feeding types

may be too short sighted. For instance, grouping fishes into specific guilds/feeding

groups is an imprecise and difficult task. Indeed, typical terms like detritivores,

herbivores, and carnivores as well as generalist, specialist, and opportunist are used,

but the variability of feeding (e.g., during development) and the trophic adaptability

(ability to switch food sources) impede a precise classification [25]. The ingestion

of prey through suction feeding is utilized by the majority of teleosts, which allows

this high flexibility to exploit a variety of food sources [26]. Thus, accidental

(mistake MPs for prey) and indirect ingestion of MPs (via prey containing MPs)

are probable. The documented MPs in several fishes collected in the field (e.g.,

catfish, perch, drum, Table 1) support this assumption.

2.2 The Role of Particle Size, Shape, and Taste

2.2.1 Size and Shape

The importance of particle size in the acquisition of particulate food has been

studied for pelagic protozoans, rotifers, and crustaceans (e.g., [26, 27]). For filter-

feeding taxa, a distinct relation between morphology and particle size has been

observed. Here, the minimum ingested particle size is mainly determined by the

mesh size of the filtering apparatus. The maximum size is determined by the

morphology of mouthparts and, in the case of cladocerans, the opening width of

the carapace. Additionally, Burns [8] and Fenchel [27] describe a correlation
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between the maximum ingestible particle size and the overall size of several clado-

ceran and protozoan species. Studies with the aquatic larvae of the dipteran

C. riparius confirm this pattern for a benthic deposit feeder. Here, only individuals

with a head capsule width larger than 400 μm ingested 90 μm PS spheres ([16],

Table 1).

Fine-mesh filter feeders (size range 0.2–75 μm; e.g., Daphnia magna) are highly
efficient bacteria feeders, whereas coarse mesh filter feeders (macrofiltrators, size

range >2 μm; e.g., Holopedium gibberum) feed mainly on larger particles

[28]. Results from feeding studies with polymer spheres illustrate that several

protozoans feed effectively on 0.5 μm particles [9]; several rotifers on 0.5, 3, and

6 μm particles [19]; and cladocerans on 0.5, 3, 6, 10, and 20 μm particles ([13],

Table 1). In comparison, calanoid copepods are macrofiltrators and ingest particles

>2.1 μm but not 0.5 μm particles (e.g., [10], Fig. 1a). In addition, some species with

a broad feeding size range have been shown to selectively forage on specific sizes

when exposed to multiple size fractions. For instance, Bosmina sp. ingested large

algae cells (Cosmarium sp.) six times faster than a small algae species (Chlorella
sp.) [29, 30]. Furthermore, Agasild and Nõges [12] observed higher filtering rates of
Daphnia cucullata on 3 and 6 μm compared to 0.5 μm MPs, whereas the rotifer

Conochilus unicornis exhibited an increased filtering rate on 3 μm compared to

0.5 μm MPs.

Particle shape is another important property determining MP-biota interactions.

Currently, the majority of the available literature focuses on MP beads, and it

remains unclear whether the investigated species have similar feeding rates on

non-spherical MPs (e.g., fibers, fragments). Some species (e.g., G. pulex,D. magna,
Notodromas monacha) feed readily on secondary, irregularly shaped MPs [17, 31]

with different toxicological profiles (see Sect. 3.1). As most of the MPs found in

aquatic ecosystems are not spherical, more research is needed on irregularly

shaped MPs.

Fig. 1 Estimated feeding size ranges on microplastic particles (a). Dotted lines and question

marks indicate the lack of min to max limits based on ingested size classes. An increasing feeding

selectivity decreases the probability to directly ingest microplastics (b)
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2.2.2 Taste Discrimination

Many species are able to identify particles with nutritional value. For example,

some bacterivorous and herbivorous protozoan, rotifer, and copepod species do

not ingest polymer particles in their preferred size ranges (Table 1). Studies with

fluorescently labeled bacteria have shown that some ciliates (estuarine oligotrichs)

and flagellates prefer bacteria over MPs, while other species (estuarine scuti-

cociliates; e.g., Uronema narina) cannot discriminate between bacteria and

MPs [32].

The essential role of “taste” in the feeding of zooplankton [14, 32, 33] was

acknowledged when discussing the comparability of feeding studies with synthetic

microspheres and labeled bacteria or algae [9, 10, 15]. In rotifers, Bosmina (clado-

ceran), and copepods (calanoid and cyclopoid), DeMott [14] observed significant

differences between feeding rates on flavored and non-flavored polymer particles.

While Bosmina and the rotifer Filinia terminalis preferred algal-flavored spheres

over untreated ones, D. magna and Brachionus calyciflorus did not [14]. This

degree of selectivity was even higher in feeding trials with copepods. Here,

calanoid (e.g., Diaptomus siciloides) and cyclopoid (e.g., Cyclops bicuspidatus
thomasi) species strongly avoided untreated polymer spheres [14].

Despite the abundance of studies that illustrate pelagic zooplankton feeding on

MPs, information about benthic invertebrates and vertebrates in general is scarce.

Although drawing conclusions for unexamined species is highly speculative,

knowledge on zooplankton can be used as a template to a certain extent. The

examined species cover a broad spectrum in terms of their autecology (feeding

types, selectivity, and food preferences). The same is true for the unexamined

species, which inhabit similar niches and have equally diverse autecologies. There-

fore, we hypothesize a similar pattern regarding species-specific size and taste

discrimination: Some species will directly feed on available MPs in the size

range of their food, while more selective feeders will avoid MP ingestion.

2.3 Conclusion

Primary consumers featuring bacterivorous, herbivorous, detritivorous, and

deposit-feeding species are commonly specialized in foraging on particulate matter

and have the capacity to ingest MP particles. The direct ingestion of MPs might be

the major route for primary (e.g., herbivores) and secondary consumers (e.g.,

zooplanktivores), while apex predators are additionally prone to an indirect inges-

tion of MPs via prey (food web). The limited literature suggests that generalist and

nonselective filter feeders (e.g., daphnids) have higher feeding rates compared

to raptorial (e.g., copepods) and deposit feeders. Although studies on benthic

invertebrates are scarce, species with detritivorous and omnivorous feeding types

(e.g., Annelida, Insecta, Decapoda) may have the potential for ingesting MPs.
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However, the feeding type is not a reliable predictor of MP ingestion as several

studies on pelagic zooplankton communities highlight a far more complex

MP-biota interaction than currently understood.

Overall, the feeding on particulate matter is a sequential process involving the

encounter, pursuit, capture, and ingestion of potential prey [30]. Every single stage

is determined by species-specific abilities and preferences to distinguish between

favored and non-favored food sources (e.g., size, shape, taste, motile, sessile).

Additionally, many taxa can adapt their feeding habits (e.g., targeting a preferred

size class and/or nutritional value) in response to environmental conditions (optimal

foraging). In general, it appears that the capability to directly ingest MPs decreases

with an increasing selectivity in feeding (Fig. 1b). Generalist filter feeders will

actively and directly ingest MPs from the water column or sediments in the size

range of their typical food, whereas more specialized feeders (e.g., fluid feeders,

raptorial carnivorous feeders) will indirectly ingest MPs associated with their prey.

The variety of feeding types and degrees of selective feeding present in aquatic

fauna complicates generalizing patterns of MP uptake. This is especially true when

comparing experimental to the real exposure scenarios. In the laboratory, virgin

spherical microbeads are used, whereas in the environment, irregularly shaped MPs

are colonized by microbes (see Sect. 3.2), adsorb extracellular proteins (biofilm),

and form hetero-aggregates (increasing size). While MP-biota interactions are hard

to predict based on the currently available data, feeding selectivity may be a driving

factor (see Fig. 1b for a conceptual model).

3 Effects on Freshwater Biota

Studies on the potential adverse effects caused by MP exposures are scarce for

freshwater compared to marine species. The few available studies (Table 2) include

the filter feeder D. magna [34, 35, 41], the amphipods Hyalella azteca [18] and

G. pulex [31], the freshwater snail P. antipodarum [38] as well as several fishes

[37–39]. In this section, the outcomes of these studies are discussed.

3.1 Physical Impacts

The evaluation of feeding types (Sect. 2.1) suggests that nonselective filter feeders

are especially prone to MP exposures. Based on their high rates of MP filtration and

ingestion in laboratory studies, adverse effects induced by the particle toxicity may

include blockages, reduced dietary intake, and internal injuries.
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3.1.1 Algae

So far, the majority of studies focused on the effects of MPs on consumers of

aquatic food webs, and information on primary producers is limited. However,

there are some indications that MPs adversely affect algae in a concentration and

size-dependent manner [41–43]. For instance, 1 μm PVC fragments inhibited the

growth and negatively affected photosynthesis (50 mg L�1) of the marine algae

Skeletonema costatum [43], while 1 mm PVC fragments did not induce such

alterations. The underlying mechanisms are still unknown, whereby the direct

interaction between MPs and algae and formation of aggregates seem to be strongly

related. Since algae are used as a food source in ecotoxicological experiments, MPs

may induce direct and indirect (quality and quantity of the algae) effects in the

consumer.

3.1.2 Daphnia magna

In contrast to marine studies, only one filter-feeding freshwater species, D. magna,
has been tested thoroughly in chronic and acute exposure regimes. Acute toxicity

testing over 96 h resulted in an elevated immobilization at extremely high concen-

trations of 1 μm polyethylene (PE) particles [34]. With a median lethal concen-

tration (LC50) of 75.3 mg L�1, these acute effects are (presumably) not

environmentally relevant. Compared to this, chronic exposure to nanoscale PS

over 21 days (0.22–150 mg L�1, [41]) was not lethal. However, high concentrations

of nano-PS (>30 mg L�1) induced neonatal malformations and slightly decreased

the reproductive output. Interestingly, the mortality as well as the amount of

malformations increased when the daphnids were fed with nano-PS incubated

algae (5 days). Since nano-PS particles might be too small for a direct ingestion,

the formation of particle-algae aggregates may have resulted in a higher exposure.

Furthermore, nano-PS reduced the growth and the chlorophyll a content of algae

(Scenedesmus obliquus) indicating a reduced nutritional value of algae cultured

with polymer particles.

Ogonowski et al. [35] conducted life-history experiments with D. magna
exposed to primary MPs (spherical beads, 1.3 g cm�3, 4.1 μm), secondary MPs

(PE fragments, 1.0 g cm�3, 2.6 μm), and kaolin (2.6 g cm�3, 4.4 μm) under food-

limited conditions. They observed an increased mortality and slightly

decreased reproduction of daphnids for the highest concentration of secondary

MPs (105 P mL�1). However, incoherent exposure regimes (different particle

sizes, concentrations, and exposure durations, among others) limit a general com-

parability and conclusion. In fact, the strongest response was driven by the low

amount of food (reproduction far below validation criteria, OECD). However, these

studies illustrate that (a) adverse effects depend on several factors, e.g., the size and

shape of primary vs. secondary MPs, particle concentrations, polymer densities, as
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well as particle interaction with other stressors, and (b) D. magna seems relatively

resistant to MP exposures.

The low sensitivity of D. magna could be due to its behavioral and morpholog-

ical adaptations as a generalist filter feeder. D. magna feeds nonselectively on

seston components encountering multiple particle sizes, shapes, and materials.

High concentrations of SPM reduce the filtration rates as daphnids reject collected

particles before ingestion or even narrow their carapace opening to avoid large

particles [44, 45]. Besides pre-ingestion adaptations to unsuitable SPM, the

peritrophic membrane protects the epithelium of the digestive tract from particle-

induced injury. It consists of a complex matrix of chitin microfibrils, polysaccha-

rides, as well as proteins and surrounds the food bolus in the digestive tract of many

arthropods [46, 47]. Pores of several nanometers in diameter ensure the transport of

digestive fluids and nutrients and protect against pathogens and mechanical dam-

age. The packed food particles pass the digestive tract and are egested with the

surrounding peritrophic membrane. Therefore, a direct interaction of MPs with

epithelial cells in the digestive tract and thus injuries and a transfer of MPs into the

surrounding tissue are unlikely. However, Rosenkranz et al. [48] observed 20 and

1,000 nm particles in the oil droplets of D. magna implying a translocation through

the gut’s epithelial cells, whereas the majority of studies with nanomaterials did not

confirm this observation [49, 50].

3.1.3 Other Crustaceans

Null effects were found in the amphipod Gammarus pulex exposed to irregular

polyethylene terephthalate (PET) fragments (0.4–4,000 P mL�1, size 10–150 μm;

[31]). After 48 days, MPs did not induce any effects on behavior (feeding activity),

metabolism (energy reserves), development (molting), and growth. Au et al. [18]

tested weathered polypropylene (PP) fibers (20–75 μm, 0–90 P mL�1) as well as

laboratory-made PE fragments (10–27 μm, 0–105 P mL�1) in the amphipod

Hyalella azteca. In a 10-day acute exposure, PP fibers were more toxic than PE

fragments with LC50 values of 71.43 and 46,400 P mL�1, respectively. This might

be related to the longer gut retention times of fibers versus fragments and again

highlights the importance of particle shape. In the same study, a 42-day chronic

exposure to PE fragments significantly decreased growth and reproduction.

At present, besides the studies with D. magna and the amphipods, there is very

limited data regarding other freshwater crustaceans as the majority of research

focuses on marine species. In addition to the increasing number of laboratory

studies, the monitoring of wild populations of the common shrimp Crangon
crangon [51] and the Norway lobster Nephrops norvegicus [52] have shown that

field populations in marine environments are exposed to MPs. In both studies, MPs

(predominantly fibers) were detected in 63% [51] and 83% [52] of the examined

animals. A recent study by Welden and Cowie [1] with N. norvegicus confirmed

that MP exposure negatively affects feeding, body mass, metabolic activity, and

energy reserves. An 8-month exposure to PP fibers via food (0.2–5 mm, five fibers
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per feeding) resulted in formations of MP aggregates in the gut of the langoustine

that might have reduced the uptake of nutrients. Effects on survival and growth

as an outcome of reduced feeding have also been shown in the marine calanoid

copepod Calanus helgolandicus [2]. The presence of 20 μm PS beads (75 P mL�1)

reduced the feeding on algae and provoked a feeding preference for smaller

algae prey.

Although calanoid copepods are raptorial with strong size and taste discrimina-

tion, a study by Lee et al. [53] demonstrated a nonselective ingestion of 0.05, 0.5,

and 6 μm PS beads by the marine Tigriopus japonicus. While all individuals

survived an acute exposure (96 h), a two-generation chronic exposure to 0.05

(>12.5 μg mL�1) and 0.5 μm beads (25 μg mL�1) induced a concentration- and

size-dependent mortality and a significant decrease in fecundity by 0.5 and 6 μm PS

beads. Again, the observed effects were mainly interpreted as related to an impaired

nutritional uptake.

In addition to the presumed nutritional effects, Bundy et al. [54] have shown that

calanoid copepods regularly attack, capture, and reject 50 μm PS beads. This

pre-ingestion behavior may result in a negative energy budget. Additionally, Cole

et al. [55] documented that MPs attach to the external carapace and appendages of

marine zooplankton, which then might interfere with locomotion, molting, and

feeding. The relevance of adhered particles was also shown in the marine crabs

Uca rapax and Carcinus maenas [56, 57]. Here, MP exposure led to an accumula-

tion in the stomach and hepatopancreas but also to an accumulation in the gills. The

respiratory uptake and the following adhesion of MPs to the gills might influence

the branchial function. For instance, Watts et al. [58] found a significantly

decreased oxygen consumption of MP-exposed crabs after 1 h and observed some

adaptation as oxygen consumption returned to normal after 16 h.

3.1.4 Bivalves

The transfer of MPs to tissues induces cellular injuries as well as inflammatory

responses in the marine filter-feeding musselM. edulis. After 3 days of exposure to
3.0 and 9.6 μm PS beads, Browne et al. [24] observed a translocation to the

circulatory (hemolymph) system where they remained for up to 48 days. Although

the exact pathway is yet unknown, the transfer may be due to specialized

enterocytes which in humans and rodents transport MPs from the gut into follicles

from which they can translocate into the circulatory system. In addition, particles

accumulating in the digestive gland were taken up by cells of the lysosomal system,

which resulted in an inflammatory response and histological alterations (lysosomal

membrane destabilization) [5]. As a consequence of particle interaction with tissue

or hemolymph cells, marine bivalves can express an immediate stress and immune

response. This results in an increased production of reactive oxygen species as well

as anti-oxidant and glutathione-related enzymes but also changes the hemocyte

phagocytosis activity and the ratio of granulocytes and hyalinocytes [59, 60].
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Rist et al. [61] exposed the marine Asian green mussel Perna viridis to 1–50 μm
polyvinyl chloride (PVC) fragments. MP exposure reduced the filtration and respi-

ration rates, byssus production, as well as motility, while mortality was enhanced.

Regarding life-history parameters, MP significantly reduced the reproductive suc-

cess of Crassostrea gigas and negatively affected larval development of the off-

spring (PS spheres, 2, 6 μm). Sussarellu et al. [62] linked these effects to a disrupted

energy uptake, which resulted in a shift of resources from reproduction to growth.

In contrast, studies with M. edulis by van Cauwenberghe et al. [63] showed no

significant effects of particle exposure to energy reserves (PS spheres, 10, 30,

90 μm).

Behavioral and physiological responses have also been shown for bivalves

exposed to suspended solids. For instance, particle exposure damaged the cilia of

the gill filaments in P. viridis (<500 μm [64]) and significantly reduced the algal

ingestion of M. mercenaria (3–40 μm, [65]). Therefore, the lack of studies com-

paring impacts of both MPs and suspended particles hampers a discrimination of

MP-associated and more general particle-associated effects.

These studies provide evidence that MP ingestion can affect marine bivalves. As

the general feeding strategies are consistent in both marine and freshwater species,

the latter may be similarly affected. Still, morphological details of the feeding-

associated organs vary in the different bivalve taxa, which can alter feeding-specific

characteristics [66].

3.1.5 Gastropods

In comparison to bivalves, fewer studies have examined MP toxicity in gastropods,

which also have a high capacity to ingest MPs (discussed in Sect. 2.1). The only

currently available study on MP toxicity in gastropods suggests limited impacts

[36]. In this study, the omnivorous surface grazer P. antipodarum was exposed to a

mixture of five different polymers (4.6–603 μm particle size; polyamide (PA),

polycarbonate (PC), PET, PS, PVC) mixed with food at a ratio of 30 and 70%.

After 8 weeks, MPs neither affected the growth (shell width, length, body weight)

nor the reproduction (number of produced embryos and ratio of embryos with and

without shell). Additionally, MP had no effect on the development of the conse-

cutive generation of juveniles.

3.1.6 Fish

Several adverse effects by MP exposures have also been observed for freshwater

fishes (Table 2). MPs accumulate in the gills of marine crustaceans, and studies

with freshwater fishes demonstrate that this pathway is relevant for vertebrate

species too. One example is zebrafish (Danio rerio) in which PS beads accumulate
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in the gills (5 and 20 μm), gut (5 and 20 μm), and liver (5 μm) [38]. Indeed,

histopathological analysis revealed an inflammatory response and accumulation of

lipids in the liver as well as oxidative stress. However, these findings were only

significant at high concentrations (2 mg L�1) of 0.07 and 5 μm beads. In compar-

ison, Karami et al. [37] observed histological alterations in the gills (e.g., basal cell

hyperplasia and necrosis in connective tissue) and blood biochemistry parameters

(e.g., plasma cholesterol levels, blood HDL levels) of the African catfish (Clarias
gariepinus) at lower concentrations of HDPE fragments (50 μg L�1). More severe

changes (epithelial lifting, hyperplasia, extensive cell sloughing) were reported for

higher particle concentration (500 μg L�1). Additionally, concentrations of

500 μg L�1 significantly affected the degree of tissue change in the liver of exposed

individuals. Overall, the authors point toward ethylene monomers (released from

HDPE) and internal as well as external abrasions (caused by sharp edges of the

fragments) as possible mechanisms for the changes in biomarker responses.

It is well documented that suspended solids can damage organs in several fish

species and cause adverse effects similar to those observed for MPs. High concen-

trations of SPM can accumulate in the gills, disturb the respiratory function, and

have been found to translocate into epithelial cells, cause lipid peroxidation, and

reduce the tolerance of infection by pathogens [67, 68]. Additionally, studies with

gill epithelial cells (rainbow trout, RTgill-W1) and fluvial fine sediment revealed

translocation of fine minerals (<2 μm, 10–250 mg L�1) into the cells as well as

material-related cytotoxicity [69]. Here, quartz and feldspar only caused sporadic

changes in biomarker response, and exposure to mica (silicate minerals) and kaolin

induced cytotoxicity as well as free radicals and cell membrane damage. Therefore,

Michel et al. [69] conclude that the uptake of fine particles by gill epithelial cells is

a common natural event in aquatic species with the material, size, shape, and

concentration determining the impacts.

3.2 Chemical Impacts

So far, MPs detected in freshwater environments represent a range of material types

(e.g., PE, PS, PET, PVC, PA, and PP), originate from various sources and applica-

tions, and represent a plethora of material characteristics. In general, plastic mate-

rials are highly functional compounds of synthetic polymers and additives (e.g.,

plasticizers, flame retardants, colorants). Leachates from diverse plastic products

were found to cause chemical toxicity [70, 71] induced by monomers, residues of

production processes (e.g., catalyzers, stabilizers), and additives. For instance,

some leaching components were classified as endocrine disrupting chemicals
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(e.g., phthalates, bisphenol A) adversely affecting life-cycle parameters of a broad

range of species [72, 73]. Fries et al. [74] extracted several organic (e.g., phthalates)

and inorganic additives (e.g., metals) from MP samples in marine sediments

highlighting the relevance of these compounds. Besides additives, adsorbed persis-

tent organic pollutants have been found on MPs (e.g., [75, 76]). The capacity of

plastic materials to accumulate hydrophobic organic chemicals is thoroughly stud-

ied and frequently applied in passive samplings/monitoring (e.g., [76, 77]). For

MPs, the large surface-to-volume ratio supports an accumulation of dissolved

pollutants (e.g., PAHs, PBTs, metals), and complex adsorption-desorption patterns

have been demonstrated [77, 78].

Although a detailed review of the complexity in adsorption-desorption kinetics

is beyond the focus of this chapter, the default hypothesis is that MPs readily sorb

hydrophobic compounds and therefore act as vectors transferring waterborne con-

taminants to aquatic organisms (vector hypothesis). However, this idea is contro-

versially discussed. Several laboratory studies illustrate the capacity of MPs to

modify adverse effects of chemicals by affecting the bioavailability or acting as an

additional stressor. For instance, (1) the exposure to spiked MPs lead to an accu-

mulation of pollutants to the tissues of lugworms (PVC, [6]), mussels (PE and PS,

[59]), amphipods (PE, [79]), and fish (LDPE, [39]); (2) Besseling et al. [80]

observed a decreased bioaccumulation of polychlorinated biphenyls in lugworms

at higher doses of PS particles; (3) Oliveira et al. [40] confirmed a delayed pyrene-

induced mortality of juvenile fishes (Pomatoschistus microps) in the presence of PE
MPs; and (4) Karami et al. [37] as well as Paul-Pont et al. [60] detected modulations

of adverse effects by an exposure to phenanthrene-loaded LDPE fragments (Afri-

can catfish) and PS beads and fluoranthene (Mytilus spp.), respectively. However,
Gouin et al. [81] and Koelmans et al. [82] highlight the minor influence of MPs as

vectors for the bioaccumulation of pollutants considering they are outcompeted by

natural occurring matter. These authors emphasize the importance of experimental

design and chemical analysis in order to understand the relevance and underlying

mechanisms of MPs as vectors of bioaccumulative substances. For instance, the

introduction of freshly spiked MPs in clean water can result in desorption, which

increases dermal exposure [82]. Furthermore, desorbed chemicals might adsorb to

food or sediments and decrease the potential relevance of MPs as vectors. In princi-

ple, adsorption and desorption patterns follow the partition equilibrium between the

available compartments (e.g., biota, food, MPs, sediment, water). This may con-

found the analysis of single pathways particularly if analytical information is absent

(e.g., exposure via ingestion of MPs, food or sediments vs. dermal uptake).

While studies on the vector hypothesis were mostly performed with marine

species and persistent organic pollutants, the situation is likely to be very different

in freshwater ecosystems. First and foremost, freshwater compartments are exposed

to a completely different and much larger spectrum of chemicals than marine

systems. This is because they receive a constant input of chemicals from land-

based sources (e.g., pesticides) and wastewater (e.g., pharmaceuticals and
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chemicals from personal care products). Many of these compounds are pseudo-

persistent and biologically highly active but do not occur in marine ecosystems (due

to dilution or degradation). Accordingly, freshwater MPs will sorb a completely

different set of chemicals than marine ones. In addition, being closer to the source

of plastic litter and thus “younger,” freshwater MPs might contain higher concen-

trations of plastic additives. With regard to desorption, physical water properties

will affect the transfer of pollutants. The adsorption equilibrium of chemicals to

organic materials is highly dependent on water temperature, quantity of organic

matter, and the content of inorganic salts [83]. Therefore, the partition equilibrium

will be different in salt- and freshwater.

Besides the capacity of MPs to influence the bioavailability of toxic compounds,

Besseling et al. [41] suggested that MPs can interfere with intra- and interspecies

signaling (e.g., phero- and kairomones) as an integral component of aquatic bio-

coenosis regulating predator-prey interactions as well as population and community

structures [84]. Although they found significant interactions between kairomones

and nano-PS when investigating the growth of the water flea D. magna, it remains

unclear whether the nano-PS beads increased the bioavailability of kairomones or

they observed an additive effect of both stressors [41]. Any disturbance of this inter-

and intraspecies communication can lead to maladaptive responses in both signaler

and receiver [85]. So far, it is unclear whether MPs act as info-disruptors as is the

case for several metals and pesticides (reviewed in [85]), especially when consider-

ing the abundance of additional particulate organic and inorganic matter in

aquatic ecosystems.

3.3 Biofilm-Related Impacts

Apart from the potential of MPs to act as carriers for chemicals, MPs can serve as

substrates for microorganisms. The formation of biofilms [86] can affect the

interaction of MPs with biota on multiple levels. For example, the colonization of

MPs with microbes and the adsorption of biopolymers increase the nutritional value

and improve the “taste” making them more attractive for biota. In contrast, the

colonization of MPs with pathogens [87] and toxic algae/bacteria might induce

infections/chemical toxicity or avoidance of “bad tasting” MPs. Additionally,

biofouling was shown to affect the fate of MPs by changing the particle properties

(e.g., density). The formation of biofilms increases the density of floating or

buoyant MPs and leads to sedimentation of these low-density particles (reviewed

in [88]). Furthermore, in the environment, MPs are most likely incorporated in

so-called hetero-aggregates. These aggregates consist of particulate matter (MPs as

well as other suspended solids) and microbes (e.g., protozoans, algae) with bio-

polymers acting as binders. A laboratory study by Lagarde et al. [89] confirmed

170 C. Scherer et al.



polymer-dependent (PP vs. HDPE) aggregations with the algae Chlamydomonas
reinhardtii. While rapid colonization of the surfaces of both HDPE and PP was

observed, expanding hetero-aggregates consisting of polymer particles, algae cells,

and exopolysaccharides were solely formed by PP. The upscaling of microscopic

particles via aggregation can modify their potential for being ingested. While the

abundance of microscopic particles and thereby the availability to micro-feeders

(e.g., protozoans, planktonic crustaceans) decreases, large hetero-aggregates are

accessible to macro-feeders (e.g., planktivorous fishes). Thus, the uptake of one

aggregate by macro-feeders might lead to an internal release and exposure to

multiple particles of different sizes as digestive fluids digest the biopolymer matrix.

However, the sample preparation needed to separate MPs from environmental

Fig. 2 Schematic overview of interactions between microplastics, biota, and ecosystems. The

term microplastics comprises the following interdependent factors: A additives (e.g., polymer

monomers, production residues), P pollutants (e.g., HOCs), B biofilm and biopolymers, MP
microplastics including varieties of material, density, shape, size, and surface characteristics
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samples destroys hetero-aggregates and makes it almost impossible to investigate

them in their natural state.

Overall, MP-associated risks are multifaceted in their nature and the following

must be considered: MP-biota interactions, toxicity of polymer-related leachates,

adsorption-desorption kinetics of co-occurring compounds, biofilm-related effects,

and the formation of hetero-aggregates. Thus, understanding the interaction of all

these factors in real-world situations is necessary to evaluate the environmental risk

of MP exposures (Fig. 2).

4 Natural vs. Synthetic Particle Toxicity

The similarities in the effects caused by exposure to natural fine particles and MPs

(see Sect. 3.1) provoke the legitimate question whether MPs have a different

toxicological profile compared to natural solids. In general, organisms interact

with a variety of particulate matter in freshwater ecosystems and possess adapta-

tions to this potential stressor (e.g., peritrophic membrane, mucus). Species occu-

pying turbid waters might be less sensitive to high concentrations of SPM than

species inhabiting clear water. Species-specific effects of exposures to suspended

solids were highlighted in numerous studies investigating the anthropogenic intro-

duction of particulate matter (e.g., arising from erosion, dredging; reviewed in

[90, 91]). Suspended particles or fine sediments can reduce feeding rates, decrease

reaction distance to prey, influence embryo development, increase mortality, reduce

primary production, reduce species diversity, and decrease population size [90–

94]. Bilotta and Brazier [90] conclude that the magnitude of adverse effects

depends on concentration, exposure duration, chemical composition, and particle

size distribution. Tolerant species suffered moderately negative effects, while

strong effects mainly occurred in intolerant species (see a review on fish in [91]).

These outcomes are also applicable for the effect studies with MPs and, thus,

illustrate the importance of benchmarking the toxicity of MPs in comparison to

naturally occurring particles. Considering the available literature, we can hypo-

thesize a higher particle toxicity of MPs since adverse effects were observed at

lower concentrations compared to fine sediments. However, studies with suspended

solids have used a variety of units (particle per volume, mass per volume, parts per

million), size classes, densities, and experimental conditions, which impedes a

direct comparison. Accordingly, to answer the question whether the particle toxi-

city of MPs is indeed different from natural materials, ecotoxicological studies need

to include reference treatments with natural particles (e.g., minerals, charcoal).

However, investigating particle toxicity necessitates a highly complex approach

featuring multiple factors, e.g., concentration, material, size, shape, density, and

surface characteristics.
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In principle, aquatic species interact with MPs through a variety of pathways

featuring direct or indirect ingestion, respiration, or attachment to the body surface.

Therefore, a single stressor (e.g., inert particle) influences life-cycle parameters on

multiple levels. For instance, the presence of MPs can limit the nutrient assimilation

by reducing the proportion of available food particles or by interfering with feeding

mechanisms and locomotion, influencing digestion efficiency, and driving behav-

ioral adaptations (e.g., avoidance, foraging). This implies that effect studies with

MPs should focus on multiple endpoints including typical life-cycle parameters

(e.g., reproduction, growth, nutritional state), histological analyses, and biomarker

responses. Furthermore, the implementation of time-course, chronic, and multi-

generational test designs might help uncover adaptive responses as well as cascad-

ing effects in populations. Only the simultaneous investigation and direct

comparison of the toxicity of natural and polymeric particles will enable discover-

ing specific MP-associated risks in the diversity of particulate matter. In the absence

of this reference, adverse effects of MPs observed in the laboratory could be

nothing but a representation of the (normal) biological response and physiological

condition induced by natural particles. However, species in freshwater systems are

adapted to naturally occurring particles, and it remains relatively unclear whether

polymer particles act differently or have the potential to bypass protective

adaptations.

5 Implications for Freshwater Ecosystems

Although plastics have been released into the environment for many years,

researchers have barely begun to understand the extent of MP distribution in

freshwater systems. As such, the environmental impacts of MPs have not been

thoroughly evaluated. Importantly, the term “microplastics” encompasses a tre-

mendous variety of polymers that in turn spans a very wide range of sizes, shapes,

and chemical compositions. In this sense, MPs do not represent one stressor, whose

impacts can be evaluated relatively easily, but a very large number of stressors that

potentially act jointly. The use of copolymers, product-specific mixtures of addi-

tives, and source- and pathway-specific sorbed pollutants further complicates the

situation.

In physical terms, MPs can influence water (e.g., translucency [42]), sedimen-

tation (e.g., feces [95]), and sediment (e.g., thermal conductivity [96]) characteris-

tics. In ecological terms, MPs can affect the aquatic biocoenosis on a large scale

(Fig. 2), for instance, as vectors for invasive species and pathogens [97–99]. The

existing toxicological studies mostly focus on the interaction of MPs and biota in

simplified exposure regimes, commonly using spherical microbeads composed of a

single polymer. Here, there is a tendency for elevated adverse effects (e.g., reduced

reproduction, inflammatory response) with decreasing particle sizes. At the current
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state of research, MP toxicity has been studied and in some cases demonstrated at

relatively high concentrations. This has been criticized as lacking ecological rele-

vance. However, the environmental concentrations of very small, biologically

relevant MPs (<100 μm) remain unknown but may be higher than predicted

based on analyzing larger MPs. In addition, species-specific responses may be

incorrectly estimated by using microspheres alone. The use of multiple polymer

types, shapes, and sizes may establish that some species are more sensitive than

originally predicted.

It is already established that high concentrations of suspended solids affect

community structure through changes in growth, reproduction, and species inter-

actions. Accordingly, evolutionary adaptations (e.g., peritrophic membrane, mucus,

avoidance) might explain the species-dependent resistance to high concentrations

of MPs (e.g., D. magna, G. pulex). However, MPs can infiltrate habitats normally

low in suspended solid and thereby affect more sensitive species.

The continuing release of MPs through the breakdown of littered plastics that are

already present in the environment means that MPs may become an increasingly

important freshwater pollutant in the future. In addition, the high demand of plastic

materials/products will not decrease if continuing the business-as-usual mode.

Accordingly, without rethinking and restructuring our resource production and

use (e.g., within the framework of a circular economy, [100]), plastic waste will

further accumulate in the biosphere.

Overall, traditional approaches for toxicity testing may not be appropriate for a

multifaceted stressor such as MPs. The default assumption that standard model

organisms act as appropriate surrogates for aquatic biocoenoses may ignore

species-specific responses of more sensitive species. In addition, consideration of

future scenarios may render vector-related impacts (e.g., biofilms, transfer of

additives, and hydrophobic persistent pollutant) more prominent.

Our knowledge regarding the impacts of MPs on freshwater species is limited at

the present time, although we are beginning to appreciate some of the complexities

as more laboratory and field data becomes available. First and foremost, we need to

prioritize which physical and chemical MP characteristics are toxicologically and

ecologically most important. In this context, there is also a lot to learn from other

disciplines with important data already abundant (e.g., ecological feeding studies,

suspended solids, medicine, nanomaterials; see e.g., chapter “Freshwater

Microplastics: Challenges for Regulation and Management”). Ecological knowl-

edge regarding the adaptations of specific species as well as factors driving species

compositions might help to identify especially sensitive biota. In addition, under-

standing the role of MPs relative to other stressors will require a multidisciplinary

approach. Overall, understanding the complex interactions of plastics and the envi-

ronment can only be achieved by a joint effort. The upcoming challenge will be to

unravel the role that MPs play in a multiple-particle world.
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Microplastic-Associated Biofilms: A

Comparison of Freshwater and Marine

Environments

Jesse P. Harrison, Timothy J. Hoellein, Melanie Sapp, Alexander S. Tagg,

Yon Ju-Nam, and Jesús J. Ojeda

Abstract Microplastics (<5 mm particles) occur within both engineered and

natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers,

and estuaries. While a significant proportion of microplastic pollution is likely

sequestered within freshwater environments, these habitats also constitute an

important conduit of microscopic polymer particles to oceans worldwide. The

quantity of aquatic microplastic waste is predicted to dramatically increase over

the next decade, but the fate and biological implications of this pollution are still

poorly understood. A growing body of research has aimed to characterize the

formation, composition, and spatiotemporal distribution of microplastic-associated

(“plastisphere”) microbial biofilms. Plastisphere microorganisms have been

suggested to play significant roles in pathogen transfer, modulation of particle

buoyancy, and biodegradation of plastic polymers and co-contaminants, yet inves-

tigation of these topics within freshwater environments is at a very early stage.

Here, what is known about marine plastisphere assemblages is systematically

compared with up-to-date findings from freshwater habitats. Through analysis of

key differences and likely commonalities between environments, we discuss how
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an integrated view of these fields of research will enhance our knowledge of the

complex behavior and ecological impacts of microplastic pollutants.

Keywords Biodegradation, Biofilms, Microorganisms, Pathogens, Plastisphere

Abbreviations

BONCAT Bioorthogonal noncanonical amino acid tagging

FACS Fluorescence-activated cell sorting

FISH Fluorescence in situ hybridization

FT-IR Fourier-transform infrared

HDPE High-density polyethylene

LDPE Low-density polyethylene

MALDI-ToF MS Matrix-assisted laser desorption/ionization time-of-flight mass

spectrometry

MDA Multiple displacement amplification

PET Polyethylene terephthalate

PHBV Polyhydroxybutyrate-polyhydroxyvalerate

PP Polypropylene

PS Polystyrene

(r)DNA (Ribosomal) deoxyribonucleic acid

(r)RNA (Ribosomal) ribonucleic acid

SIMS Secondary ion mass spectrometry

SNP Single-nucleotide polymorphism

UV Ultraviolet

WWTP Wastewater treatment plant

XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction

1 Introduction

Microplastics (particles with an upper size limit of <5 mm) are globally distributed

within aquatic environments, with up to 51 trillion pieces estimated to float at sea

alone [1, 2]. They are encountered within the water column and sediments, with the

latter functioning as a sink for the accumulation of plastic waste [3–5]. Most plastic

litter originates from land-based activities, with wastewater treatment plant

(WWTP) and inland waters comprising an important route through which this

pollution reaches marine environments [6, 7]. While a substantial proportion of

microplastic is likely to become sequestered within freshwaters, the amount of

plastic entering the sea is predicted to increase by an order of magnitude by 2025

(corresponding to an input of up to 250 million metric tons) [7]. Legislation for

phasing out microplastics in cosmetic products (e.g., the Microbead-Free Waters

Act of 2015 in the USA) can be expected to achieve only a limited reduction in the

quantity of environmental plastic debris.
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A growing body of research has investigated the impacts of microplastics on

biota, which may involve direct and indirect processes (e.g., physical blockage

caused by ingested particles, as well as their ability to transport harmful com-

pounds, pathogens, and algae) [2, 8–10]. Even so, little is known about the

ecological effects of microplastics within freshwaters [10]. For example, while

microplastic-associated microbial (bacterial, archaeal, and picoeukaryotic) assem-

blages are likely to profoundly influence the distribution, impacts, and fate of these

pollutants, research into this topic has focused on marine environments [11–13]. In

streams and other habitats, biofilms1 are primary sites for carbon and nutrient

transformations and form the base of food webs, contributing to local and global

ecosystem functioning [14]. As they are also essential to pollutant biodegradation,

an improved knowledge of microbial-microplastic interactions is required to pre-

dict the environmental impacts of plastic debris [15]. Investigating this topic could

inform the development of solutions to manage plastic pollution by determining

how it affects processes including microbially mediated primary production and

interactions between plastic-associated (“plastisphere”) taxa and other organisms

[11, 12, 16, 17]. It could also lead to insights concerning the biodegradability of

plastic litter and facilitate the development of new approaches to plastic disposal

and/or recycling [18].

Freshwater and marine habitats share a number of features, but there are also

differences between them that may affect the development and activities of

plastisphere consortia. To facilitate investigation of this topic, findings based on

marine plastisphere research are compared with those available for freshwaters.

Following an assessment of recent discoveries concerning the formation and dis-

tribution of plastic-associated biofilms, our knowledge concerning their ecological

roles and ability to drive processes including polymer biodegradation is considered.

Finally, some of the main knowledge gaps in plastisphere research are discussed

and used to highlight methodological advances in microbial ecology that could be

used to improve our understanding of microbial-microplastic interactions.

2 Freshwater Plastisphere Assemblages: State

of the Science

2.1 Factors Contributing to Biofilm Formation
and Composition

Fundamental processes involved in biofilm formation are well established, with

initial attachment followed by maturation and the eventual detachment of cells

[19]. There are also further factors that may influence the formation, composition,

1Surface-associated aggregates of microbial cells encased in a matrix of extracellular polymeric

substances.
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and activities of plastic-associated biofilms (Fig. 1). Only some of the parameters

shown in Fig. 1 have been investigated with reference to microplastics. However,

efforts to identify factors driving the formation of these assemblages in marine

habitats have recently been reviewed [12, 13, 20].

Microplastics are rapidly colonized by environmental microorganisms (within

hours; [21]). Many factors driving the development of plastisphere communities are

likely to be similar between freshwater and marine habitats. For example, in

agreement with research into biofilm formation on other artificial substrata

[19, 22], there is evidence for the importance of surface properties (including

roughness and hydrophobicity) during early colonization of microplastics

[12, 23]. Exposure to ultraviolet (UV) radiation and waves can modify the surface

chemistry and structure of plastics (e.g., via the formation of cracks and pits, a

reduction in molecular weight, and an increase in surface oxidation), which may

Fig. 1 Physical, chemical, and biological factors likely to affect the formation and composition of

plastisphere microbial assemblages. Only a limited selection of these parameters has been inves-

tigated with specific reference to microplastics
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facilitate biofilm formation [24, 25]. Plastic-colonizing microorganisms have also

been found to influence the surface properties and buoyancy of polymers [12, 20,

26]. Since microplastics are likely to be transported into marine environments via

WWTP, rivers, and streams [6, 7], factors contributing to initial colonization (such

as surface roughness and attachment by pioneering colonizers) can be hypothesized

to be particularly important within freshwaters. The impacts of particle age and/or

weathering on plastisphere consortia may be comparatively pronounced within

marine ecosystems where the residence times of plastic often exceed those within

rivers and streams [24]. However, microplastics additionally accumulate within

environments such as lakes, where they may persist for decades (similar to time-

scales predicted for marine habitats) and can be exposed to high levels of UV

radiation [2, 27, 28]. Local-scale differences in the composition of plastisphere

assemblages between polymer types have been found [12, 29, 30], but it is unknown

whether there are any general differences in the dominant types of plastic within

freshwater and marine ecosystems. Moreover, although it is possible that the

ingestion of plastics by higher organisms could have an impact on plastisphere

colonization processes, this topic has not been investigated [11, 20, 30].

Ambient conditions such as temperature, salinity, pressure, and the availabilities

of light and oxygen are likely to influence the development of plastic-associated

biofilms (Fig. 1) [29, 31]. Many of these conditions differ between freshwater and

marine ecosystems, and WWTP and unmanaged freshwaters. For example, the low

temperatures (<5�C), absence of light, and elevated pressure within deep waters are
likely to impose selective forces on plastisphere assemblages that differ from those

within shallow habitats. In contrast with the frequently nutrient-poor conditions

present within the open ocean, inland and coastal waters receive high fluxes of

nutrients from the surrounding environment [14]. In addition to contributions from

organic matter input and upwelling, high concentrations of nutrients (e.g., nitrogen

and phosphorus) are released by agriculture and other human activities. Many

plastisphere members have been affiliated with pollutant degradation [12, 13, 20,

21], and it is probable that several contaminants play a role in shaping biofilm

formation and activities on polymers (Fig. 1). Indeed, multiple types of pollutants,

as well as heavy metals, are known to become adsorbed onto microplastics [2, 8,

10].

Further to these factors, physical processes contributing to the movement of

suspended particles differ between freshwater and marine habitats [2]. Continuous

downstream movement of water is a key distinction between freshwater and marine

ecosystems. In rivers, sediment movement is characterized using the concept of

“spiraling” [32, 33]. The components of one spiral include downstream transport,

deposition, bed load transport, and resuspension. This concept is a well-developed

approach for modeling particle movement and is quantified using measurements of

deposition length and velocity, turnover time, and the retention-export ratio

[34]. To date, direct measurements of spiraling metrics have not been applied to

microplastic (but see Kowalski et al. [26], Long et al. [35], and Nizzetto et al. [36]).
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Each step in a spiral is likely to have implications for plastic-associated biofilm

composition and activity, due to accompanying shifts in the surrounding environ-

mental conditions (Fig. 1) [29, 31]. Studies of microplastic spiraling metrics will

help estimate the spatial scales over which plastic particles move within lotic

environments, informing how the associated microbial communities can be

expected to change across multiple downstream spirals. Rivers are also character-

ized by flooding, which redistributes materials between riparian and aquatic com-

ponents of the fluvial landscape [37, 38]. Flooding moves plastic from the riparian

zone into aquatic habitats and increases stranding of plastic in debris dams

[39]. Analogous processes in marine environments include tidal movements and

storm surges which strand plastic on intertidal or wrack zones [2]. Despite their

likely impacts on plastisphere communities (Fig. 1), the effects of movement

between aquatic and terrestrial habitats on plastic-associated biofilms have not

been studied.

Hydrology in most lakes includes at least a single upstream inlet and down-

stream outlet, with water and particle residence times depending on water volume

and currents. Little is known about plastisphere communities in lakes (Sect. 2.2),

but research into this topic can be expected to benefit from a budgetary approach

which measures rates of microplastic inflow, outflow, and retention. These metrics

will determine microplastic residence times, which are likely to influence

microbial-plastic associations within several habitats, including the epilimnion,

littoral, and benthic zones (Sect. 3.1). Wind and wave action are likely to further

influence the distribution of microplastics within lakes [2].

It is unclear how transport of microplastics from freshwater to marine environ-

ments affects plastisphere assemblages, but they may undergo a variety of taxo-

nomic and physiological shifts during this transition (Sects. 2.2 and 2.3)

[20, 40]. For example, subjecting Pseudomonas aeruginosa to salt stress (0.5 M

NaCl) was found to inhibit biofilm formation and reduce rates of benzoate degra-

dation by this strain [41]. Geographic and seasonal differences in the structure and

composition of freshwater plastisphere communities are yet to be investigated.

However, the spatiotemporal distribution of marine plastic-colonizing microbial

consortia has recently been studied [29, 30, 42]. Based on 6-week in situ exposures

of polyethylene terephthalate (PET) bottles in the North Sea, Oberbeckmann et al.

[29, 42] found location-dependent and seasonal differences in the structure and

composition of plastisphere communities. Similar differences were also reported by

Amaral-Zettler et al. [30]. Further to distinct communities being discovered in the

North Atlantic and North Pacific subtropical gyres, the authors reported latitudinal

gradients in the species richness of plastic-colonizing assemblages [30]. While

taxonomic differences were also observed between polymer types, the data

suggested that geography is likely to be a stronger predictor of plastisphere com-

munity composition at the scale of ocean basins [29, 30, 42].
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2.2 Examples of Microbial-Microplastic Interactions
in Freshwater Habitats

Despite measurements of plastic density and composition in freshwater ecosystems

[10, 43], little is known about microbial associations with plastic in unmanaged

freshwaters. A limited number of publications have investigated polymer biodeg-

radation in lakes and rivers (Sect. 2.3), and there are at least three studies that have

experimentally characterized the structure, composition, and/or activities of plastic-

associated biofilms in these environments [44–46]. Because of differences in the

study design and sites and the response parameters that were examined, there are

few findings in common among these three studies. Thus, some of the major results

of each study are discussed and compared with insights into marine microbial-

microplastic interactions.

Hoellein et al. [44] compared bacterial community composition and activity on

six substrate types (5 � 5 cm pieces of ceramic tile, glass, aluminum, PET, leaf

litter, and cardboard) in a river, a pond, and recirculating laboratory streams. In

contrast with McCormick et al. [45] and several studies of marine plastisphere

communities [21, 29, 47], the authors found no differences in the composition of

plastic-colonizing biofilms relative to those on other solid substrates. The plastic,

tile, and glass samples also showed similar rates of gross primary production and

respiration. The primary factors for determining bacterial community composition

and metabolic rates were the study site (river, pond, or artificial stream) and

whether the substrate was hard (tile, glass, aluminum, and PET) or soft (leaf litter

and cardboard). While the surface-colonizing assemblages on PET were composi-

tionally similar to those on other surfaces, it was suggested that differences between

substrate types may be stronger during early stages of biofilm formation. Similarly,

Oberbeckmann et al. [42] found PET- and glass-colonizing communities to be

compositionally similar following up to 6 weeks of exposure to seawater; the

authors noted that higher-resolution studies may be required to distinguish “plas-

tic-specific” taxa from other biofilm members. Taken together, these studies

emphasize how investigating the early-stage development of plastisphere commu-

nities in more detail will be necessary not only in marine ecosystems [21] but also in

freshwater habitats.

McCormick et al. [45] compared bacterial communities on microplastic,

suspended organic matter (i.e., seston) and the water column downstream and

upstream of a WWTP. All habitats differed from each other, and the microplastic

community had a lower taxon diversity relative to seston and downstream water

samples. In marine environments, plastic-associated microbial communities have

also been found to be taxonomically distinct from those in the surrounding water

[30, 47–49]. Genera selected for on plastic (relative to nonplastic habitats) in the

study by McCormick et al. [45] included Pseudomonas, Arcobacter, Aeromonas,
Zymophilus, and Aquabacterium. These genera contain species with the potential

for plastic degradation and pathogenesis (Sect. 2.3). Aquabacterium commune is a
common member of drinking water biofilms [50], and colonization of low-density
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polyethylene (LDPE) by Arcobacter spp. has also been shown to occur in coastal

marine sediments [21]. The study by McCormick et al. [45] was conducted imme-

diately below a WWTP outfall, and it is unknown if wastewater-affiliated microbial

communities will persist further downstream. However, the presence of plastic-

colonizing Arcobacter spp. in both freshwater and marine habitats [21, 45] implies

that certain genera could survive on polymers as they are transported from WWTP

to other ecosystems (Fig. 2 and Sect. 2.1). Indeed, Arcobacter spp. have been found
to be prevalent members of the “landfill microbiome” in the USA [51] and have also

been detected in sewage [52].

The objective of Lagarde et al. [46] was to examine the growth of a microalga

(Chlamydomonas reinhardtii) on plastic particles over time, determine the effect of

plastic type on algal growth, and measure particle aggregation. The authors found

little effect of plastic (high-density polyethylene [HDPE] or polypropylene [PP]) on

algal growth, but contact with polymer particles altered the expression of genes for

some sugars used in extracellular polysaccharides. On PP, algal biofilms increased

particle aggregation, which was not observed for HDPE. Research has recently

been aimed at characterizing the sedimentation rates of microplastics in freshwater

and marine environments [26, 35, 36]. Lagarde et al. [46] add to our understanding

of microplastic movement by showing that aggregation of plastic particles via

biofilm attachment occurs differently among polymer types, which will affect

their suspension or deposition. Future studies will benefit from extrapolating this

approach to in situ analyses, as well as comparing findings between marine and

freshwater environments. For example, the types and sinking rates of algal

microplastic aggregates within marine environments are known to be species

specific [35], and similar interactions could affect the distribution of microplastics

in rivers and lakes.

Fig. 2 Scanning electron

micrograph showing a

biofilm attached to a HDPE

fragment incubated in

aerobic wastewater for

6 months. Microplastics are

likely to function as vectors

for the transport of

microbial taxa from WWTP

to other environments. The

scale bar is 2 μm (Credit:

Alexander S. Tagg)
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2.3 Potential for Pathogenesis, Toxicant Transfer,
and Biodegradation

2.3.1 Microplastics as Vectors for Pathogen Transfer and Biotoxins

Gene sequencing analyses initially highlighted how microplastics may function as

vectors for the transport of potential pathogens including Vibrio and Arcobacter spp.
[21, 30, 45, 48, 53]. A high proportion of 16S rDNA reads (24%) could be attributed to

Vibrio spp. detected on PP and, to a lesser extent, on polyethylene (PE) collected at a

station in North Atlantic waters [48]. Unfortunately, the widely used bacterial

metabarcoding technique based on sequencing fragments of the 16S rRNA gene is

limited in its ability to provide the required taxonomic resolution for detecting human

pathogens [53]. Using oligotyping of 16S rRNAgene data, Schmidt et al. [54] obtained

more specific results for taxa within the genus Vibrio indicating the presence of

potential pathogens affecting animals including fishes, corals, and bivalves in marine

or mixed saline plastic samples. The presence of pathogens on plastics sampled from

seawater was also implied by increased abundances of genes involved in type IV and

type VI secretion systems [49]. However, genes involved in these systems can be

involved not only in virulence and infection [55] but also in conjugation [56] and

interbacterial interactions [57] that are important in biofilms [58]. Vibrio spp. were

additionally isolated from plastic collected from a Scottish beach [59], but no further

characterization of the isolates was performed. Only recently was the presence of

Vibrio spp. on marine plastics conclusively confirmed by matrix-assisted laser desorp-

tion/ionization time-of-flight mass spectrometry (MALDI-ToF MS) [60]. In their

study, Kirstein et al. [60] identified V. parahaemolyticus, V. fluviales, and

V. alginolyticus on microplastics from the North Sea. Apart from V. alginolyticus,
these species were also found on plastics collected in the brackish Baltic Sea. In

addition to bacteria, microplastics may transport microbial eukaryotes involved in

disease transmission [12]. Potentially harmful algae, including Ostreopsis and Coolia
spp., have been discovered on plastic in theMediterranean Sea [61]. To date, the only in

situ evidence for microplastic-associated pathogens in unmanaged freshwaters identi-

fied an increase in Campylobacteraceae attached to microplastics sourced from an

urban river [45]. Specifically, 16S rRNA gene sequences related to Arcobacter and
Pseudomonas spp.were enriched on plastic in comparisonwith other suspendedmatter

and the surrounding water.

In summary, current evidence indicates an important role of microplastics as

vectors for opportunistic animal and human pathogens. Methodological advances

are required to reliably detect viable pathogenic species, so that realistic distribu-

tion patterns can be obtained and potential sources can be identified. This is

particularly relevant with regard to waters used for recreational [13] but also for

industrial purposes such as aquaculture. Relative abundances of Aeromonas spp.
(a genus harboring fish pathogens) were increased on riverine plastics [45],

implying that such species could take advantage of microplastics as vectors. This

possibility is reinforced by the presence of Aeromonas salmonicida, causing
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furunculosis in hatcheries, on several plastic types [62]. Recently, 16S rRNA

gene sequences affiliated to Tenacibaculum spp. (another genus including fish

pathogens) were detected on PET in seawater [42]. Research has only started to

shed light on this issue, as well as the ability of polymers to transport biologically

produced toxins.

2.3.2 Biodegradation and Pollutant Transport

Several reviews of research into plastic biodegradation have been published (e.g.,

see [11–13, 24, 63–65]). Therefore, only a brief overview of this topic is provided.

Plastic biodegradation involves several steps during which the polymer is enzy-

matically cleaved into oligomers and monomers that can be assimilated by micro-

organisms [65]. Many microbial taxa can degrade biopolymers2 including

polyhydroxybutyrate (PHB) and polyhydroxybutyrate-polyhydroxyvalerate

(PHBV). The biodegradation rates of biopolymers in freshwater have been found

to exceed those in marine environments, and higher rates have also been observed

in sewage than within natural freshwaters [63, 66, 67]. Even so, these materials can

still persist for considerable periods of time in freshwaters, with a lifespan of

~10 years having been estimated for PHBV bottles deposited onto lake sediments

at a depth of 85 m [68].

In comparison with biopolymers, traditional plastics (such as PE, PET, and PP)

will persist for even longer within aquatic environments (decades or centuries;

[11, 63, 64]), with biodegradation typically preceded by abiotic weathering

[24, 65]. Although it has been unclear whether plastisphere members can biode-

grade conventional plastics [11, 69, 70], a bacterial strain isolated from sediment

near a Japanese bottle recycling facility (Ideonella sakaiensis) was recently found

to assimilate PET [18]. The strain was shown to employ two enzymes to degrade

PET at a daily rate of 0.13 mg cm�2 when incubated at 30�C [18]. This finding

implies that other synthetic plastic-degrading taxa are likely to be present within

aquatic environments. Indeed, colonization of plastics by potentially

hydrocarbonoclastic bacteria has been observed in both marine and freshwater

habitats [21, 45, 47–49]. However, due to a lack of research into plastisphere

physiology, the long residence times of plastic waste, and the ability of polymers

to adsorb polyaromatic hydrocarbons [11, 12], the mechanisms underlying recruit-

ment of hydrocarbon degraders on microplastics are unknown. These and other taxa

could mediate desorption and/or degradation of several plastic-associated com-

pounds, including additives and diverse pollutants, with implications for the eco-

logical impacts of microplastics. Indeed, Bryant et al. [49] already reported the

presence of diverse xenobiotic degradation genes in association with marine plastic

debris. Since organic contaminants and metals rapidly partition into biofilms

2Polymers derived from renewable biomass (as opposed to nonrenewable fossil fuels).
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[71, 72], plastisphere communities may alternatively be hypothesized to facilitate

transport of pollutants between ecosystems and to biota (Sect. 3.2).

3 Knowledge Gaps and Research Needs

3.1 Sources and Transport Between Habitats

Processes contributing to microplastic transport differ between freshwater andmarine

ecosystems (Sect. 2.1). Conditions encountered within WWTP and unmanaged fresh-

waters also differ from one another. A priority for research involves determining the

extent to which plastic-colonizing taxa associatedwithwastewater and other sources of

plastic (such as landfills) are transported downstream along rivers and streams and

whether they remain viable and active upon enteringmarine habitats [12, 40].As part of

this work, research is required to characterize the residence times of polymer particles

within several environments, including different stages of the wastewater treatment

process. Most WWTPs are based on three main treatment stages, although slight

differences in their configuration can be found. During primary treatment, large debris

fragments are removed by using a 6 mm (or larger) screen mesh. During secondary

treatment, large aeration tanks are used to remove suspended and dissolved organic

material and nutrients throughmicrobial activity. Subsequently, flocculates and settling

tanks are used to facilitate separation of sewage sludge from the post-processing

effluent prior to a potential disinfection step, also known as advanced tertiary treatment.

Studies reporting pathways of microplastics through different wastewater treatment

stages are only beginning to emerge [73–75], and little is still known about how these

stages influence the development of plastisphere microbial communities.

Overall, studies of microplastic movement and associated biofilms should be

based on well-established principles of ecosystem and community ecology [39] and

are prerequisite to estimating the spatial scales over which plastics are distributed

within a watershed. This approach will best inform how plastic-associated micro-

bial communities can be expected to change with movement from freshwater to

marine habitats. There is also a need to compare plastisphere communities in

managed and natural environments, within several locations along the water col-

umn, as well as between pelagic and benthic habitats. Research into plastic-

associated biofilms has focused on surface waters (despite the long-term accumu-

lation of microplastics in sediments; [8, 27]), and investigations of benthic

plastisphere assemblages have been restricted to marine habitats [21, 47]. In several

environments, no information is available on plastic-associated microbial assem-

blages. For example, no data have yet been published on plastisphere consortia

within WWTP, and although the buildup of plastic debris in deep-sea environments

has been reported [76], biofilms associated with this debris have not been studied.
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This lack of data limits our ability to predict the ecological consequences and

lifetimes of plastic pollution (Sects. 3.2 and 3.3).

3.2 Interactions with Higher Organisms and the Wider
Environment

Interactions between plastisphere communities and higher organisms have been

recommended as a topic for research in marine environments [11, 12], but they also

require investigation within freshwaters. Many organisms including fishes, gastro-

pods, and zooplankton (e.g., Daphnia magna) ingest microplastics [2]. Indeed,

nanopolystyrene has been found to negatively affect reproduction in D. magna, as
well as population growth in the primary producer Scenedesmus obliquus
[77]. Effects of plastic-sorbed chemicals have been rarely studied, but liver toxicity

was observed in Japanese medaka [78]. A significant knowledge gap is the in situ

analysis of microplastic present within freshwater organisms. Such analyses will

need to consider how plastic-associated biofilms may amend the buoyancy of

polymer particles and/or influence organismal behavior (e.g., selective feeding).

Additionally, research is needed to investigate the pathogenicity of plastic-

colonizing microbial taxa, as well as their ability to produce toxins.

Oberbeckmann et al. [12] suggested that microplastics could carry pathogens

encountered in the feces of marine organisms, and transport of human fecal

bacteria on plastics has also been discussed [13]. There is a particular require-

ment to determine how this debris affects organisms at low trophic levels, such as

invertebrates used for biomonitoring purposes [79, 80]. Impacts of plastisphere

assemblages on processes such as nutrient cycling and primary production

should also be investigated. Indeed, Bryant et al. [49] reported high densities

of chlorophyll a and an increased abundance of nitrogen fixation genes (nifH,
nifD, and nifK) on polymers in comparison with other sample types, leading the

authors to suggest that plastic particles may constitute autotrophic “hot spots” in

seawater.

Further to impacts on the fitness of plastic-ingesting taxa and processes including

elemental cycling, interactions between plastisphere assemblages and other organisms

may influence the distribution and fate of plastic waste. For example, microplastics

may become transported away from surface waters via encapsulation within fecal

pellets [81]. Although this topic has not been investigated in freshwater or marine

environments, the gut bacteria of mealworms (larvae of Tenebrio molitor Linnaeus)
can degrade polystyrene [82], and certain aquatic organisms could harbor microor-

ganisms capable of modifying the surface properties of plastics and/or biodegrading

them. Thus, investigating the interactions between plastisphere communities and
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other organisms is closely connected to research into the transport of plastics between

habitats (Sect. 3.1) and the environmental lifetime of this debris (Sect. 3.3).

While this chapter focuses on freshwater and marine environments, plastisphere

communities may also be of significance to human health. Risks associated with the

human ingestion of microscopic plastics have been identified [83], and investiga-

tions of this topic could also be approached from a microbiological viewpoint. In

particular, the human health implications of putative pathogens within plastic-

associated biofilms (Sect. 2.3.1 and [13]) merit further study.

3.3 In Situ Biodegradability of Plastics
and Plastic-Associated Compounds

The recent evidence for PET assimilation by I. sakaiensis [18] suggests that,

although rates of plastic breakdown in the environment are extremely low (Sect.

2.3.2), several novel polymer-degrading taxa are likely to be present within fresh-

water and marine ecosystems. Identifying such taxa and investigating their ability

to biodegrade different plastic types, additives, and polymer-sorbed compounds are

of primary importance to understanding the environmental residence times of

plastic waste. Research in this area should focus on habitats functioning as sinks

for the accumulation of plastic, including sediments [3–5, 27]. To obtain a complete

understanding of the biodegradability of different materials and compounds, there

is a need to combine laboratory-based experiments with field-based measurements

of plastic degradation in both freshwater and marine environments. Moreover, as

nanometer-sized plastic particles become released from the parent polymer as a

result of weathering [84], their biodegradation behavior will need to be compared

with that of larger fragments that may support a comparatively complex biofilm

community. Most research into plastic biodegradation has been based on indirect

measurements such as mass loss [11], and a key challenge will be to conclusively

demonstrate in situ assimilation of carbon from a given plastic type (or plastic-

associated compound) [18]. The toxicity of any degradation products, or of com-

pounds released from the polymer, will also require investigation (Sect. 3.2).

3.4 Analytical and Experimental Advances in Plastisphere
Research

Research into plastisphere assemblages has focused on bacterial communities

[44, 45]. Little is known about plastic-associated microbial eukaryotes in freshwa-

ters, and there is a need for analyses targeting these organisms, not the least as they

are known to occur on marine plastics [48, 49]. Several advances have improved

the suitability of metabarcoding for analyzing fungi, diatoms, and protists
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[85–87]. This approach is based on taxonomically informative markers and pro-

vides no direct information on metabolic activities. Overcoming this limitation

could involve using metagenomics or metatranscriptomics, with the former provid-

ing information on metabolic capability [49] and the latter enabling investigations

of functional gene expression [20] (Fig. 3). The origin of plastic-colonizing path-

ogens could be determined by whole genome sequencing followed by genome

comparisons or identification of single-nucleotide polymorphism (SNP),

approaches widely used in bacterial epidemiology. This would result in important

insights into the transfer of pathogens on plastics, provided that suitable databases

are available for comparison [88, 89].

Several further developments could enable us to move beyond initial studies of

biofilm formation on microplastics (Fig. 3). Stable isotope labeling is increasingly

used to characterize microbial activity at the single-cell level, including methods

such as heavy water labeling [90] and bioorthogonal noncanonical amino acid

tagging (BONCAT) [91]. Heavy water labeling is compatible with Raman spec-

troscopy and cell sorting using optical tweezers [90], and BONCAT has been

combined with fluorescence-activated cell sorting (FACS) [91]. These approaches

Fig. 3 Moving beyond initial research into the taxonomy and formation of plastisphere microbial

assemblages. As investigations of this topic mature, new types of experiments and analytical tools

are anticipated to improve our knowledge of topics including how plastisphere communities

develop in several types of habitat, how they are affected by transport from freshwater to marine

environments, and the metabolic functions of plastic-colonizing microorganisms
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could be followed by multiple displacement amplification (MDA)3, enabling iden-

tification of taxa that are metabolically active under in situ conditions. Raman

spectroscopy has been combined with techniques such as fluorescence in situ

hybridization (FISH), which can be used to further investigate the presence and

activities of specific microbial taxa [92]. Fourier-transform infrared (FT-IR) spec-

troscopy has additionally been employed to characterize the chemical composition

of biofilms, providing a convenient and low-cost method for analyzing microor-

ganisms adhering to opaque materials [93]. Such methods could be used in con-

junction with biological rate measurements (e.g., gas evolution) [44, 49]. This, in

turn, could advance our understanding of how plastisphere taxa contribute to

disease transmission, nutrient fixation, and pollutant degradation.

Research into microplastic-associated biofilms has relied on samples that were

collected in situ or exposed to seawater, with only a small selection of studies

involving microcosm experiments under controlled conditions [21, 46,

59]. Mesocosm experiments could be used to bridge the current gap between

microcosm studies and field-based research into microplastic-associated biofilms

(Fig. 3). Microfluidics is also increasingly used as a tool in microbial ecology and

could be employed to obtain insights into microbial-microplastic interactions under

selected conditions (e.g., in the presence of fluid flow and chemical gradients)

[94, 95]. To improve our knowledge of the biodegradation of plastics and plastic-

sorbed pollutants, such approaches could be supplemented by advanced surface

analysis techniques. X-ray photoelectron spectroscopy (XPS) and secondary ion

mass spectrometry (SIMS) have been used to investigate abiotic weathering of

plastics [96–98] and could be valuable for monitoring polymer biodegradation

(Fig. 3). Indeed, XPS can detect chemical signatures at the parts-per-thousand

(‰) range [96], and SIMS (including nanoscale SIMS) has been used to trace

microbial uptake of 13C-labeled substrates in environmental samples

[99, 100]. While these techniques are suitable for analyzing organic compounds,

X-ray diffraction (XRD) analyses are particularly useful for measurements of

inorganic materials, including metals. Although microbial interactions with

plastic-associated metals (e.g., metal solubilization or precipitation) have not

been previously studied, this could be achieved using XRD (e.g., see Roh et al.

[101]).

4 Concluding Remarks

Over the past 5 years, several studies have improved our understanding of the

taxonomy and potential activities of microbial consortia associated with

microplastic particles in the environment. Due to most of these studies focusing

on marine ecosystems, there remains a particular lack of information concerning

plastisphere assemblages within freshwaters. However, as highlighted in this

3A method for amplifying very low concentrations of DNA for genomic analysis.
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chapter, many of the fundamental processes that underpin the formation and

activities of plastic-colonizing biofilms remain poorly understood within both

freshwater and marine environments. Establishing an understanding of the impli-

cations of microplastic-associated microorganisms for ecosystem and human

health, therefore, will require research spanning the entire diversity of environ-

ments encountered by these pollutants following their release by industrial and

domestic activities.

Acknowledgments We thank Buck Hanson, Toby Samuels, and William Southwell-Wright for

their feedback and helpful suggestions.

References

1. van Sebille E, Wilcox C, Lebreton L et al (2015) A global inventory of small floating plastic

debris. Environ Res Lett 10(12):124006. doi:10.1088/1748-9326/10/12/124006

2. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems:

a review of the emerging threats, identification of knowledge gaps and prioritisation of

research needs. Water Res 75(15):63–82. doi:10.1016/j.watres.2015.02.012

3. Barnes DKA, Galgani F, Thompson RC et al (2009) Accumulation and fragmentation of

plastic debris in global environments. Philos Trans R Soc B 364(1526):1985–1998. doi:10.

1098/rstb.2008.0205

4. Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines

worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. doi:10.1021/

es201811s

5. Corcoran PL (2015) Benthic plastic debris in marine and freshwater environments. Environ

Sci: Processes Impacts 17:1363–1369. doi:10.1039/c5em00188a

6. Sadri SS, Thompson RC (2014) On the quantity and composition of floating plastic debris

entering and leaving the Tamar Estuary, Southwest England. Mar Poll Bull 81(1):55–60

7. Jambek JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean.

Science 347(6223):768–771

8. van Cauwenberghe L, Devriese L, Galgani F et al (2015) Microplastics in sediments: a review

of techniques, occurrence and effects. Mar Environ Res 111:5–17. doi:10.1016/j.marenvres.

2015.06.007

9. Rochman CM, Browne MA, Underwood AJ et al (2016) The ecological impacts of marine

debris: unraveling the demonstrated evidence from what is perceived. Ecology 97

(2):302–312. doi:10.1890/14-2070.1

10. Wagner M, Scherer C, Alvarez-Mu~noz D et al (2014) Microplastics in freshwater ecosys-

tems: what we know and what we need to know. Environ Sci Eur 26:12. doi:10.1186/s12302-

014-0012-7

11. Harrison JP, Sapp M, Schratzberger M et al (2011) Interactions between microorganisms and

marine microplastics: a call for research. Mar Technol Soc J 45(2):12–20. doi:10.4031/MTSJ.

45.2.2

12. Oberbeckmann S, L€oder MGJ, Labrenz M (2015) Marine microplastic-associated biofilms –

a review. Environ Chem 12(5):551–562. doi:10.1071/EN15069

13. Keswani A, Oliver DM, Gutierrez T et al (2016) Microbial hitchhikers on marine plastic

debris: human exposure risks at bathing waters and beach environments. Mar Environ Res

118:10–19. doi:10.1016/j.marenvres.2016.04.006

14. Battin TJ, Besemer K, Bengtsson MM et al (2016) The ecology and biogeochemistry of

stream biofilms. Nat Rev Microbiol 14:251–263. doi:10.1038/nrmicro.2016.15

196 J.P. Harrison et al.

https://doi.org/10.1088/1748-9326/10/12/124006
https://doi.org/10.1016/j.watres.2015.02.012
https://doi.org/10.1098/rstb.2008.0205
https://doi.org/10.1098/rstb.2008.0205
https://doi.org/10.1021/es201811s
https://doi.org/10.1021/es201811s
https://doi.org/10.1039/c5em00188a
https://doi.org/10.1016/j.marenvres.2015.06.007
https://doi.org/10.1016/j.marenvres.2015.06.007
https://doi.org/10.1890/14-2070.1
https://doi.org/10.1186/s12302-014-0012-7
https://doi.org/10.1186/s12302-014-0012-7
https://doi.org/10.4031/MTSJ.45.2.2
https://doi.org/10.4031/MTSJ.45.2.2
https://doi.org/10.1071/EN15069
https://doi.org/10.1016/j.marenvres.2016.04.006
https://doi.org/10.1038/nrmicro.2016.15


15. Widder S, Allen RJ, Pfeiffer T et al (2016) Challenges in microbial ecology: building

predictive understanding of community function and dynamics. ISME J 10:2557. doi:10.

1038/ismej.2016.45

16. Hoellein TJ, Tank JL, Rosi-Marshall EJ et al (2009) Temporal variation in the substratum-

specific rates of N uptake and metabolism and their contribution at the stream-reach scale. J N

Am Benthol Soc 28(2):305–318. doi:10.1899/08-073.1

17. Kominoski JS, Hoellein TJ, Kelly JJ et al (2009) Does mixing litter of different qualities alter

stream microbial diversity and functioning on individual litter species? Oikos 118

(3):457–463. doi:10.1111/j.1600-0706.2008.17222.x

18. Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly

(ethylene terephthalate). Science 351(6278):1196–1199. doi:10.1126/science.aad6359

19. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu

Rev Microbiol 54:49–79. doi:10.1146/annurev.micro.54.1.49

20. Mincer TJ, Zettler ER, Amaral-Zettler LA (2016) Biofilms on plastic debris and their

influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In:

Takada H, Karapanagioti HK (eds) Hazardous chemicals associated with plastics in the

marine environment. Handbook of environmental chemistry. Springer, Heidelberg. doi:10.

1007/698_2016_12

21. Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of

low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol

14:232. doi:10.1186/s12866-014-0232-4

22. Fish KE, Osborn AM, Boxall J (2016) Characterising and understanding the impact of

microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking

water distribution systems. Environ Sci Water Res Technol 2:614–630. doi:10.1039/

C6EW00039H

23. Carson HS, Nerheim MS, Carroll KA et al (2013) The plastic-associated microorganisms of

the North Pacific Gyre. Mar Poll Bull 75(1–2):126–132

24. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers

floating in the marine environment. Environ Sci Process Impacts 17:1513–1521. doi:10.1039/

C5EM00207A

25. Brandon J, Goldstein M, Ohman MD (2016) Long-term aging and degradation of

microplastic particles: comparing in situ oceanic and experimental weathering patterns.

Mar Poll Bull 110(1):299–308. doi:10.1016/j.marpolbul.2016.06.048

26. Kowalski N, Reichardt AM, Waniek JJ (2016) Sinking rates of microplastics and potential

implications of their alteration by physical, biological, and chemical factors. Mar Poll Bull

109(1):310–319. doi:10.1016/j.marpolbul.2016.05.064

27. Corcoran PL, Norris T, Ceccanese T et al (2015) Hidden plastics of Lake Ontario, Canada and

their potential preservation in the sediment record. Environ Poll 204:17–25. doi:10.1016/j.

envpol.2015.04.009

28. Free CM, Jensen OP, Mason SA et al (2014) High-levels of microplastic pollution in a large,

remote, mountain lake. Mar Poll Bull 85(1):156–163. doi:10.1016/j.marpolbul.2014.06.001

29. Oberbeckmann S, L€oder MGJ, Gerdts G et al (2014) Spatial and seasonal variation in

diversity and structure of microbial biofilms on marine plastics in Northern European waters.

FEMS Microbiol Ecol 90(2):478–492. doi:10.1111/1574-6941.12409

30. Amaral-Zettler LA, Zettler ER, Slikas B et al (2015) The biogeography of the plastisphere:

implications for policy. Front Ecol Environ 13(10):541–546. doi:10.1890/150017

31. Hullar MA, Kaplan LA, Stahl DA (2006) Recurring seasonal dynamics of microbial com-

munities in stream habitats. Appl Environ Microbiol 72(1):713–722. doi:10.1128/AEM.72.1.

713-722.2006

32. Newbold JD, Mulholland PJ, Elwood JW et al (1982) Organic carbon spiralling in stream

ecosystems. Oikos 38(3):266–272. doi:10.2307/3544663

Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine. . . 197

https://doi.org/10.1038/ismej.2016.45
https://doi.org/10.1038/ismej.2016.45
https://doi.org/10.1899/08-073.1
https://doi.org/10.1111/j.1600-0706.2008.17222.x
https://doi.org/10.1126/science.aad6359
https://doi.org/10.1146/annurev.micro.54.1.49
https://doi.org/10.1007/698_2016_12
https://doi.org/10.1007/698_2016_12
https://doi.org/10.1186/s12866-014-0232-4
https://doi.org/10.1039/C6EW00039H
https://doi.org/10.1039/C6EW00039H
https://doi.org/10.1039/C5EM00207A
https://doi.org/10.1039/C5EM00207A
https://doi.org/10.1016/j.marpolbul.2016.06.048
https://doi.org/10.1016/j.marpolbul.2016.05.064
https://doi.org/10.1016/j.envpol.2015.04.009
https://doi.org/10.1016/j.envpol.2015.04.009
https://doi.org/10.1016/j.marpolbul.2014.06.001
https://doi.org/10.1111/1574-6941.12409
https://doi.org/10.1890/150017
https://doi.org/10.1128/AEM.72.1.713-722.2006
https://doi.org/10.1128/AEM.72.1.713-722.2006
https://doi.org/10.2307/3544663


33. Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic

matter dynamics and metabolism in streams. J N Am Benthol Soc 29(1):118–146. doi:10.

1899/08-170.1

34. Webster JR, Benfield EF, Ehrman TP et al (1999) What happens to allochthonous material

that falls into streams? A synthesis of new and published information from Coweeta. Freshw

Biol 41(4):687–705. doi:10.1046/j.1365-2427.1999.00409.x

35. Long M, Moriceau B, Gallinari M et al (2015) Interactions between microplastics and

phytoplankton aggregates: impact on their respective fates. Mar Chem 175:39–46. doi:10.

1016/j.marchem.2015.04.003

36. Nizzetto L, Bussi G, Futter MN et al (2016) A theoretical assessment of microplastic

transport in river catchments and their retention by soils and river sediments. Environ Sci

Process Impacts 18:1050–1059. doi:10.1039/C6EM00206D

37. Gregory SV, Swanson FJ, McKee WA et al (1991) An ecosystem perspective of riparian

zones. Bioscience 41(8):540–551. doi:10.2307/1311607

38. Jones Jr JB, Smock LA (1991) Transport and retention of particulate organic matter in two

low-gradient headwater streams. J N Am Benthol Soc 10(2):115–126. doi:10.2307/1467572

39. McCormick AR, Hoellein TJ (2016) Anthropogenic litter is abundant, diverse, and mobile in

urban rivers: insights from cross-ecosystem analyses using ecosystem and community ecol-

ogy tools. Limnol Oceanogr 61:1718–1734. doi:10.1002/lno.10328

40. Osborn AM, Stojkovic S (2014) Marine microbes in the plastic age. Microbiol Aust

35:207–210. doi:10.1071/MA14066

41. Bazire A, Diab F, Jebbar M et al (2007) Influence of high salinity on biofilm formation and

benzoate assimilation by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 34(1):5–8.

doi:10.1007/s10295-006-0087-2

42. Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season

and geography influence community composition of microbes colonizing marine plastic

debris. PLoS One 11(8):e0159289. doi:10.1371/journal. pone.0159289

43. Dris R, Imhof H, Sanchez W et al (2015) Beyond the ocean: contamination of freshwater

ecosystems with (micro-)plastic particles. Environ Chem 12(5):539–550. doi:10.1071/

EN14172

44. Hoellein T, Rojas M, Pink A et al (2014) Anthropogenic litter in urban freshwater ecosys-

tems: distribution and microbial interactions. PLoS One 9(6):e98485. doi:10.1371/journal.

pone.0098485

45. McCormick A, Hoellein J, Mason SA et al (2014) Microplastic is an abundant and distinct

microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871. doi:10.1021/

es503610r

46. Lagarde F, Olivier O, Zanella M et al (2016) Microplastic interactions with freshwater

microalgae: hetero-aggregation and changes in plastic density appear strongly dependent

on polymer type. Environ Poll 215:331–339. doi:10.1016/j.envpol.2016.05.006

47. De Tender CA, Devriese LI, Haegeman A et al (2015) Bacterial community profiling of

plastic litter in the Belgian part of the North Sea. Environ Sci Technol 49(16):9629–9638.

doi:10.1021/acs.est.5b01093

48. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial

communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146. doi:10.

1021/es401288x

49. Bryant JA, Clemente TM, Viviani DA et al (2016) Diversity and activity of communities

inhabiting plastic debris in the North Pacific Gyre. mSystems 1(3):e00024-16. doi:10.1128/

mSystems.00024-16

50. Kalmbach S, Manz W, Bendinger B et al (2000) In situ probing reveals Aquabacterium
commune as a widespread and highly abundant bacterial species in drinking water biofilms.

Water Res 34(2):575–581. doi:10.1016/S0043-1354(99)00179-7

51. Stamps BW, Lyles CN, Suflita JM et al (2016) Municipal solid waste landfills harbor distinct

microbiomes. Front Microbiol 7:534. doi:10.3389/fmicb.2016.00534

198 J.P. Harrison et al.

https://doi.org/10.1899/08-170.1
https://doi.org/10.1899/08-170.1
https://doi.org/10.1046/j.1365-2427.1999.00409.x
https://doi.org/10.1016/j.marchem.2015.04.003
https://doi.org/10.1016/j.marchem.2015.04.003
https://doi.org/10.1039/C6EM00206D
https://doi.org/10.2307/1311607
https://doi.org/10.2307/1467572
https://doi.org/10.1002/lno.10328
https://doi.org/10.1071/MA14066
https://doi.org/10.1007/s10295-006-0087-2
https://doi.org/10.1371/journal.pone.0159289
https://doi.org/10.1071/EN14172
https://doi.org/10.1071/EN14172
https://doi.org/10.1371/journal.pone.0098485
https://doi.org/10.1371/journal.pone.0098485
https://doi.org/10.1021/es503610r
https://doi.org/10.1021/es503610r
https://doi.org/10.1016/j.envpol.2016.05.006
https://doi.org/10.1021/acs.est.5b01093
https://doi.org/10.1021/es401288x
https://doi.org/10.1021/es401288x
https://doi.org/10.1128/mSystems.00024-16
https://doi.org/10.1128/mSystems.00024-16
https://doi.org/10.1016/S0043-1354(99)00179-7
https://doi.org/10.3389/fmicb.2016.00534


52. Merga JY, Royden A, Pandey AK et al (2014) Arcobacter spp. isolated from untreated

domestic effluent. Lett Appl Microbiol 59(1):122–126. doi:10.1111/lam.12256

53. Woo PCY, Lau SKP, Teng JLL et al (2008) Then and now: use of 16S rDNA gene sequencing

for bacterial identification and discovery of novel bacteria in clinical microbiology laborato-

ries. Clin Microbiol Infect 14(10):908–934. doi:10.1111/j.1469-0691.2008.02070.x

54. Schmidt VT, Reveillaud J, Zettler E et al (2014) Oligotyping reveals community level habitat

selection within the genus Vibrio. Front Microbiol 5:563. doi:10.3389/fmicb.2014.00563

55. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion

system. Cell Host Microbe 15(1):9–21. doi:10.1016/j.chom.2013.11.008

56. Wallden K, Rivera-Calzada A, Waksman G (2010) Type IV secretion systems: versatility and

diversity in function. Cell Microbiol 12(9):1203–1212. doi:10.1111/j.1462-5822.2010.

01499.x

57. Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons

with a purpose. Nat Rev Microbiol 12(2):137–148. doi:10.1038/nrmicro3185

58. Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation, and competition in

biofilms. Nat Rev Microbiol 14:589–600. doi:10.1038/nrmicro.2016.84

59. Quilliam RS, Jamieson J, Oliver DM (2014) Seaweeds and plastic debris can influence the

survival of faecal indicator organisms in beach environments. Mar Poll Bull 84

(1–2):201–207. doi:10.1016/j.marpolbul.2014.05.011

60. Kirstein IV, Kirmizi S, Wichels A et al (2016) Dangerous hitchhikers? Evidence for poten-

tially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8. doi:10.

1016/j.marenvres.2016.07.004
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Risk Perception of Plastic Pollution:

Importance of Stakeholder Involvement

and Citizen Science

Kristian Syberg, Steffen Foss Hansen, Thomas Budde Christensen,

and Farhan R. Khan

Abstract Risk perception has a significant impact on how society reacts to a given

risk. There have been cases where a mismatch between the actual risk and the

perception of it has led to poor decisions on societal initiatives, such as inappro-

priate regulatory measures. It is therefore important that the perception of risk is

based on an informed foundation acknowledging the biases and drivers that inev-

itably go with risk perception. Plastic pollution differs in regard to other classical

risks, such as those posed by chemicals or genetically modified organisms (GMOs),

since the pollution is more visible and already has a significant magnitude. At the

same time, everyone is familiar with using plastic, and our daily lives are highly

dependent on the use of plastic. This offers some potential to strengthen the societal

risk perception and subsequently implement effective measures to address the

pollution.

In this chapter, we define eight risk perception drivers (voluntariness, control,

knowledge, timing, severity, benefit, novelty, and tangibility) and relate these

drivers to plastic pollution. We discuss the process in which plastic pollution has

been recognized as an important environmental problem by scientists, the public,

and policy makers and elaborate on how the eight risk drivers have influenced this

process. Plastic pollution has several of the characteristics that can enhance peo-

ple’s perception of the risk as being important and which has generated great

awareness of the problem. The chapter finally discusses how risk perception can
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be improved by greater stakeholder involvement and utilization of citizen science

and thereby improve the foundation for timely and efficient societal measures.

Keywords Citizen science, Plastic pollution, Public participation, Risk perception,

Stakeholder involvement

1 Introduction

Risk is often portrayed as a function of hazard and exposure or in other words as

being determined by the probability of an adverse event and the magnitude of this

event’s consequences [1]. The scientific capabilities for quantifying both probabil-

ities and magnitude related to many risks are often relatively uncertain, which

implies that quantification of risk is inherently uncertain [2]. This means that

interpretations of risk are very important for human’s response to the risk, since

the risk perception, rather than an (often unknown) actual estimation of risk, will

guide societal response to the risk. Uncertainty furthermore plays a profound role in

regard to human’s psychological responses to risks [1]. This implies that psychol-

ogy is important in regard to how we as society react to a given risk, but elements

such as communication and social structures also influence risk behavior as they

frame the overall social and technical perception of both hazard and exposure.

Risk perception can be explained as the subjective assessment of a negative

incident happening together with our concern of the consequences. The term risk

perception is perhaps mostly associated with Ulrich Beck’s description of the “risk

society” in his book of the same name [3]. Beck argues that society must (and will)

respond to the growing threat from ecological degradation by acting in a reflexive

way [3]. This reflexivity can manifest in different manners, and Beck describes how a

public demand for regulation can push a political debate, by drawing upon historical

cases regarding oil drilling platforms and nuclear power plants [3]. Since the risk

perception is thus often a strong driver for regulation, it has received increasing

attention from stakeholders and legislators. In Sweden and Norway, parliamentarians

now devote about three times as much attention to risk issues as they did in the first

half of the 1960s, as reflected in their submitted private bills [1].

In this chapter we first describe how the historical development of risk perception

can be explained within a theoretical framework. After the introduction of these

theoretical boundaries, the chapter focuses on risk perception of plastic pollution in

a historical perspective, followed by an analysis of stakeholder’s role in development

of public risk perception and policy measures. The last part of the chapter addresses

how citizen science [4] can be an important method to improve societal risk perception

of plastic pollution and finally discusses how the concept of citizen science can be

expanded to allow for greater stakeholder involvement and better communication

between scientist and citizens. Such communication can be vital in regard to informing

about plastic pollution and thus improve the foundation for development of risk

perception among stakeholders – including citizens and policy makers. For a discus-

sion on the socio-ecological risks of microplastics from a global perspective, see [5].
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2 The Theory of Risk Perception

Even though Beck’s book on “risk society” might be the best known description of

the importance of risk perception, the scientific theory predates Beck’s book. One
earlier example is that of Slovic et al. [6], who conducted a study where they

evaluated several drivers for societal risk perception. One of their conclusions was

that the greater a risk is perceived to be, the greater is the public demand for action

[6]. The aim of the study was to explain why some hazards were perceived as

extreme and others caused less concern, despite inconsistencies in the respective

expert opinions [6]. This work built upon earlier studies, where Starr [7] found that

risk seemed to be easily accepted if it was associated with benefits and had a

voluntary nature. Risk of death in a traffic accident is a classic example of such

acceptable risk.

In this paper we will distinguish eight drivers for risk perception (Table 1). The

first driver that frames risk perception is voluntariness (driver 1). A person is more

likely to accept a given risk if the risk exposure takes place on a voluntary basis

compared to an imposed risk. Risks that are perceived to be uncontrollable gener-

ally cause greater concern (driver 2: control). The risk associated with flying as a

passenger in an airplane, for example, often causes more concern than highway

driving in passenger cars. A third driver (driver 3: knowledge) is the degree of

familiarity associated with the risk. A known and quantifiable risk (such as the risk

of getting cancer from smoking) is often more easily acceptable than the risk posed

from an unknown entity. The timing (driver 4) of the risk is also important to its

perception. Persons exposed to a given risk are more likely to accept the risk if it is

imposed gradually over time than if the risk is imposed instantaneously. Risks with

Table 1 Eight main drivers for risk perception

Drivers for risk

perception Explanation

1 Voluntariness If the exposure to the risk factor is voluntary, it is more likely to be

accepted compared to a superimposed risk

2 Control If the risk is perceived to be uncontrollable, it is viewed as more severe

3 Knowledge A known risk is perceived more acceptable than an unknown and

unfamiliar risk

4 Timing If a hazard has instant and disastrous potential, it is perceived as a

higher risk, than hazards, which pose gradual risk over time

5 Severity Greater perceived risk is correlated with how big a part of the popu-

lation that is perceived as being at risk

6 Benefits Risks that are associated with perceived benefits are often deemed

more acceptable than risk without any obvious advantage

7 Novelty Risks from novel entities are generally perceived as more risky than

existing risks

8 Tangibility A risk that is more tangible is perceived as more severe than a risk that

is abstract and elusive

Table constructed after [6, 8]
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greater potential for immediate disastrous outcome to the individual such as a

nuclear power plant meltdown are often perceived as worse than those that inflict

slow and gradual damage. A fifth driver is the severity of the risk (driver 5:

severity), measured in terms of how many people it might affect, as there seems

to be a correlation between number of people potentially affected and the perceived

risk. The sixth driver (driver 6: benefit) for risk perception is the degree of benefits

that are associated with the risk. People are more likely to accept risks if they

believe that taking the risks is associated with high degree of benefit. Driving in

cities with intense traffic is an example, where the risk of ending up in a car accident

is perceived acceptable due to the benefit of transportation in a car. The seventh

driver is the novelty of the risk (driver 7: novelty). Risks associated with new

technologies and novel entities are generally perceived as more dangerous than

older and more familiar risks, even if the statistical risks are comparable or even

lower for the novel risk. The eighth and final driver relates to how tangible the risk

is (driver 8: tangibility). It is important to distinguish between risks that by the

individual are perceived as tangible and risks that are perceived as abstract and

elusive. Abstract and elusive risks, such as those posed by climate change, are

typically far more difficult to mobilize political action against, and therefore

political action will only take place when the risk has become visible and acute,

and by then, it will often be too late to take political action [8]. Giddens himself

refers to this phenomenon as the “Giddens paradox” [8].

Before addressing risk perception of plastic pollution in respect to these drivers,

it is feasible to explore two historical cases of other yet somewhat related types of

risk – i.e., those of hazardous chemicals and genetically modified organisms

(GMOs).

2.1 Risk Perception of Hazardous Chemicals and GMOs

In 2009 the European Commission published a study on Europeans’ risk perception
of potential hazardous chemicals in household products [9]. The results are inter-

esting in the light of the abovementioned framework for “risk” perception, biases,

and drivers. The group of chemicals that were associated with the highest perceived

risk were pesticides and herbicides used for home use. Of the respondents that

answered, 70% said that this group of chemicals posed a risk in their perception. At

the other end of the scale were toothpaste (7%) and hair shampoo (11%).

The report concludes that people generally view personal risks lower than risks

to the general public. This could be due to a perception of the personal risk being

easier to control [9]. The report concludes that if a product is known to be risky,

citizens could translate this knowledge into taking precautionary measures, which

would again lower the perceived risk. This is in line with the theories about risk

perception, i.e., the level of voluntariness as well as the level of control of the risk.

Another important aspect for risk perception of household chemicals is the potency

of the chemicals [9]. Chemical with high hazardous potential was generally
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perceived as more risky than less potent chemicals. This could be part of the reason

why pesticides and herbicides were perceived as most risky, since these chemicals

are designed to kill. The level of control might also be an important driver for the

perceived risk in the study (driver 2 in Table 1). Pesticides and herbicides are spread

in the environment leading to a loss of control, whereas exposure to toothpaste and

hair shampoo is conducted under controlled circumstances (not taking the exposure

to the environment from wastewater into consideration). Furthermore, there is a

general trust that cosmetic products such as sunscreen are tested and that any

potential risk is therefore known to science [9], again in correlation with risk

perception driver 3 (whether a risk is understood and quantifiable or unknown

and unfamiliar). The report finally concludes that there is a correlation between

the educational levels of citizens and their awareness of potential risk but also that

the better a risk is understood, the less concerned citizens are about it. These

observations are also in accordance with the risk perception, biases, and drivers

presented in Table 1.

The use of genetically modified organisms (GMOs) is another controversial

topic which has spun an intense debate about risk perception since their introduc-

tion in the 1970s [10]. Especially, European citizens have been very reluctant to

accept the risk associated with GMOs, not at least due to the high degree of

scientific uncertainty associated with the use. Since the 1990s, the debate about

the use of GMOs is mainly centered on crops and food products, whereas GMOs in

pharmaceuticals have gained broader acceptance [10]. This tendency can possibly

be explained by a number of the biases and drivers in Table 1. For instance, citizens

will generally view a risk as more tolerable if there is an obvious benefit from taking

the risk (driver 6) or if the risk is not directly affecting the individual subject, for

example, if the use of a GMO at a farm is affecting the ecosystem on a general level

and to a less extent the individual farmer. Production of new pharmaceuticals is

often viewed positively, whereas enhanced crop yield might be less related to a

consumer benefit and often more related to maximizing the economic outcome to

the benefit of the farmer and only very indirectly the consumer.

Another aspect that has had importance for public risk perception of GMOs is

the so-called yuck factor [11]. It is a term that was first used to describe citizens’
reluctance toward new technologies with unknown consequences: a classic exam-

ple being the unwillingness toward using purified wastewater as drinking water,

regardless of how effective the cleaning is [11]. The “yuck factor” can thus be seen

as an emotional response to something that people might find repulsive or in other

ways conflicting with their beliefs and values. The emotional attitude toward novel

technologies is framed by many factors on the individual level (e.g., age, gender,

education, profession, previous experience with technologies, etc.) and on the

societal level (e.g., structure and level of educational, media and legal system,

norms and values, etc.). The “yuck factor” is therefore only a simplistic explanation

to some of the public aversion toward GMOs [11]. The perception that food should

be grown in the field and not in the laboratory surely also plays a role for some

citizens’ reluctance toward accepting this technology. GMOs thereby challenge a

public idea of the relation between nature and food as a public set of values,
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regardless of what might be expressed as objective and scientific truth by the expert

community. The “yuck factor” is important in two types of scenarios where a

modification to what is perceived as a “natural system” changes this system

drastically, whether it is altering the genes in a plant or spreading of artificial

objects such as plastic in the environment. First, if the modification is linked with

a limited scientific understanding and communication about possible negative

consequences, or second if the scientific understanding is conflicting with core

values in society and therefore not accepted as trustworthy.

3 Risk Perception of Plastic Pollution and the Role

of Stakeholders

After this initial introduction to the field of risk perception, the remaining part of the

chapter will focus on how plastic pollution is perceived today and how future

efforts with better integration of stakeholders might facilitate a better and more

informed risk perception among citizens. However, prior to that we address the

historical risk perception of plastic pollution.

3.1 Historical Development

Scientific focus on plastic pollution has increased markedly over the last decades,

especially since the turn on the millennium. The first notion of seabirds ingesting

plastic debris was published in the 1960s [12]. At this point, research into environ-

mental contamination with plastic debris was a small field, and few papers were

published through the 1960s and 1970s (see [13–15]). However, Carpenter and

Smith [16] were the first to notice that plastic accumulated in specific oceanic zone,

in their Science publication of plastic debris in the Sargasso Sea. It was also in the

1970s that the first reports of beach litter were published [17]. More frequent reports

on occurrence were consistently being published from the 1980s (e.g., [18, 19]), and

it was in this decade that a systematically growing trend of marine pollution with

plastic was first reported [20]. These findings initiated political discussions about

the problem and were followed with political initiatives such as the MARPOL

Annex V aiming at reducing plastic wastes at sea [21]. However, the Annex was

considered optional, and ratification was required by UN member states before it

enter into force in 1988 [21] (for a broader discussion on the regulation of

microplastics, see [22]). Also in 1988 a report from the US National Oceanic and

Atmospheric Administration (NOAA) described the concentration of plastic debris

in the North Pacific Gyre. This was later followed by the work of Moore et al. [23],

who compared abundance of plastic pellets and planktonic organism in the North

Pacific Gyre. They concluded that while planktons were five times as abundant as
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plastic pellets when measured by number, the mass of the plastic pellets exceeded

planktonic mass six times [23]. This “litter artifact” in the middle of the ocean was

popularly called the “Great Pacific Garbage Patch,” which had a significant impact

on the public perception of the problem. The linguistic framing of the plastic

pollution repelled the public by playing on the yuck factor, similar to the case of

GMOs described above. The pollution was also unknown to many, making the

novelty of the problem significant (driver 7). On the other hand, this description did

give some backlash since it created an illusion of islands of plastics floating around

in the ocean. Since such islands do not exist in reality, some commentators have

argued that the environmental problem was exaggerated and that this could erode

citizens’ trust in institutions [24]. Plastic pollution was not perceived as such a big

risk in the decades after the first reports were published. This can be explained using

several of the risk perception drivers (Table 1). Since plastic pollution was first

reported as a phenomenon on the open ocean and not related directly to severe

impacts on marine species and ecosystems, it was not perceived as a risk with

“potential for disaster” (driver 4) nor a contamination that impacted a large group of

people (driver 5). Debris in the middle of the ocean has no direct link to any human

populations per se, which might also have affected the lack of public response

(driver 5). Furthermore, oceanic pollution is abstract and not so tangible since it is

not easily visible to most people. Therefore, the “Giddens paradox” (driver 8) might

also have influenced the lack of perceived risk in these early years. Finally, there

was very little information communicated to the public about the problem, for

instance, from 2004 to 2010, microplastics were only mentioned a few times in UK

newspapers, whereas the number of articles grew markedly in the following years

[25]. Since people obviously cannot perceive a risk that they are not aware of, this

lack of communication is a final but very important reason for the lack of early

alertness to the problem.

4 Risk Perception of Plastic Pollution and Political Actions

Since the 2000s

Plastic pollution research declined during the 1990s, only to drastically increase

after it was verified during the 2000s that plastic was a ubiquitous marine pollutant

[17]. Among several important publications, Thompson et al. [26] published a

famous paper in science entitled “Lost at sea: Where is all the plastic?” which is

being recognized as a major driver for the elevated scientific interest [17]. The

significant increase in scientific publications on the topic was followed with

increased international media attention and political measures being enforced.

Reports about the plastic pollution problem have thus been broadcasted in interna-

tional media such as Reuters [27], and political measures have been taken in

different regions of the world. In 2008 Rwanda banned the use of

non-biodegradable plastic bags throughout the country [28]. This ban followed a
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national discussion of plastics’ negative environmental impacts, especially due to

the extensive physical presence of bags in the environment (also discussed by Khan

et al. [29] in this volume). This measure was among the first and most comprehen-

sive political acts to control plastic pollution, and it can to a large extent be

explained with the risk perception drivers. The spreading of plastic bags was not

an environmental risk that the population faced voluntary (driver 1). Since the

plastic bags were further spread throughout the environment, it could be viewed as

an uncontrollable risk (driver 2), perhaps even with potential for disasters for the

ecosystems affected (driver 4). Since it may appear as there is only very limited

societal benefit of the pollution to the end consumer (driver 6), there were strong

incentives to address the pollution with political measures. Of course, the use of

plastic on a societal level includes a vast amount of technical and economic benefits

to both producers and consumers, and the current waste management practices

where the majority of waste plastics is either landfilled or incinerated may be

perceived by some stakeholders as beneficial to the society.

In Europe the debate about the use of resources, waste handling, and the plastic

pollution has been ongoing for several years primarily within the context of waste

regulation. The first packaging waste directive (Directive 85/339/EEC) was

adopted in the mid-1980s aimed at reducing negative environmental aspects of

packaging and packaging waste. The Packaging and PackagingWaste Directive has

been amended several times since then (1994, 2003, 2004, 2013, and 2015). The

2015 revision resulted in the adoption of Directive (EU) 2015/720 on reducing the

consumption of lightweight plastic carrier bags [30]. The overall framework for

waste-related regulation is in the EU described in the Waste Framework Directive

(Directive 2008/98/EC) that contains the core principles for waste management in

Europe. The Waste Framework Directive is related to several directives that target

specific waste streams such as batteries, electronic and electrical equipment, end-

of-life vehicles, sewage sludge, construction and demolition waste, etc. Many of

these waste streams contain plastic, and EU efforts to reduce plastic pollution in the

waste sector shall therefore be seen on the background of this wide range of

directives. In December 2015, the European Commission launched a Circular

Economy (CE) package (also discussed in [31]). The CE package includes pro-

posed revisions to many of the central waste-related directives including the Waste

Framework Directive and the Packaging and Packaging Waste Directive. A central

element in proposed revisions is common EU-wide 2030 targets for the waste

sector. The CE strategy includes five priority areas, one of which is plastic. The

commission will in 2017 adopt a strategy on plastic targeting issues such as

recyclability, biodegradability, hazardous substances, and marine litter [32].

Microbeads pose a special and interesting case in regard to risk perception of

plastic pollution. Microbeads contribute to a relatively small percentage of the total

plastic production but have become highly exposed in the media, and risk percep-

tion of microplastic is often connected to microbeads. Several campaigns (e.g., Beat

the microbead [33]) focus on phasing out microbeads explicitly. Several initiatives

have been launched to call for a phaseout of microbeads. In one petition, gathering

more than 375,000 signatures called for a ban in the UK [34]. The US state of
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California approved Assembly Bill No. 888 banning the use of plastic microbeads

in personal care products by 2020 [35], and a new US initiative aims at banning the

use of microbeads in personal care products and cosmetics on a national level by

mid-2017 [36]. The Canadian House of Commons have proposed a new order

which will add microbeads to the national list of toxic substances, as a response

to a vote to take immediate measures to phase out microbeads [37]. The environ-

mental presence of microbeads has been documented [38], and the focus on

microbeads is therefore scientifically valid. However, the major problem with

plastic pollution seems to stem from other sources [39]. The “yuck factor” has

played a role in the risk perception and subsequent political action on microbeads.

Plastics in products such as toothpaste are viewed as “unnecessary” (driver 6) and

“unnatural.” Consumers therefore react emotionally negative toward this new,

“unnecessary,” and “unnatural” use of microbeads in consumer products, and this

consumer attitude can be understood as an example of the “yuck factor.”

Microbeads thus serve as an example of the importance of risk perception to

societal action and furthermore how important risk communication and involve-

ment of citizens can be for societal reactions to an environmental problem.

The second part of the chapter addresses how citizen science has improved the

risk perception of plastic pollution and finally discusses how it can be further

expanded in order to involve citizens and thereby address the pollution better and

further enable citizens to obtain informed perceptions of the plastic pollution

problem.

5 Citizen Science as Concept

Science as a paid profession started in the later part of the nineteenth century

[4]. Up until then scientific data were produced by people who collected the data

due to interest. Some famous examples of citizen scientists were Benjamin Franklin

and Charles Darwin [4]. Today’s citizen science (CS) is most commonly conducted

when projects are specifically designed to combine knowledge and expertise from

scientists at research institutions with the work of the skilled amateurs, often within

conservation biology and monitoring studies [40]. Silvertown [4] proposed that the

expanding use of CS is driven by three factors: (1) greater access to the technical

tools needed, (2) bringing in additional qualified labor, and (3) a greater demand for

outreach within academia. In a historical context, CS has most commonly been used

with conservation biology and nature monitoring programs. Examples such as the

Atlas Project in Australia, where BirdLife Australia has used CS to obtain more

than seven million bird observations for their “Atlas of Australian Bird” [41], and

Herbaria@home, where museum collections of wild plants are analyzed by citizens

in the UK for more than a decade [42], serve as illustrations of such classic CS

projects. CS has however also been used to monitor pollution. The Air Quality Egg

Project in the USA and Europe is a CS project that aims at monitoring air quality. It

is based on a sensor system designed to allow citizens to collect data on NO2 and
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CO concentrations outside of their home [43]. The IDAH2OMaster Water Stewards

program, offered by University of Idaho, aims at involving citizens in collection of

water quality data in streams in Idaho, USA [44]. In North American citizen

scientists have collected data for bird watching programs and have helped scientists

develop guidelines for land managers [45]. The increased use of CS can thus be

viewed as a way for science to be informed by citizens but at the same time, and

very importantly for risk perception, as a means for citizens to obtain a better

understanding of the scientific field in focus [46]. As mentioned earlier knowledge

is vital for the risk perception. Where risk is perceived as higher by citizens than by

experts within the field, it is often the unfamiliarity that is a key psychological

driver for risk perception [6]. But there might also be scenarios where citizens are

not fully aware of a risk, until they are involved in collecting data for it under a CS

program. In these situations, people might underestimate risk due to the lack of

knowledge. CS can thus help people to obtain more informed perceptions about a

given risk and thereby facilitate a process of transformative learning that can

ultimately result in citizens changing the perception of a given problem [47]. Col-

laboration between citizens and scientists not only influences citizen’s risk percep-

tion but may also influence the values and beliefs that the scientists possess and

ultimately their risk perception as well. This led Gibbons et al. [48] to suggest the

distinction between mode 1 and mode 2 researches. Mode 1 research characterizes

the traditional disciplinary scientific endeavor in closed scientific communities, and

mode 2 research describes a transdisciplinary type of knowledge production where

scientists and citizens collaborate to define both problems and solutions. Elements

of this way of looking at research can today be found in, for example, the €80 billion
European research and innovation program Horizon2020. Horizon2020 is based on

three pillars: the excellence pillar that resembles the mode 1 research, the industrial

leadership that mainly focuses on innovation in the private sector, and the Societal

Challenges pillar that with requirements for multi-actor approach and

co-innovation resembles the mode 2 research.

6 Citizen Science and Plastic Pollution

Citizen science has been widely used within the field of plastic pollution [49], often

in and around the intertidal zone, e.g., as “beach cleanup” projects. A review

conducted by Hidalgo-Ruz and Thiel [49] comparing CS and professional scientist

projects concluded that CS can be a useful method for increasing the amount of

available information on marine litter. Such events are typically organized by

national organizations such as the NOAA in the USA [50] or by private stake-

holders such as NGOs. NOAA has developed a mobile application called “Marine

Debris Tracker app” (Fig. 1) together with Southeast Atlantic Marine Debris

Initiative (SEA-MDI), allowing citizens to report findings of trash from beaches

and waterways [51]. The app records the debris location through GPS, and the data

can be view directly on the citizens’ phone.
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Similar initiatives have been developed on the other side of the Atlantic in

Europe. The European Environmental Agency, an independent agency financed

by the European Union, has developed a mobile application called Marine

LitterWatch [52] on the same principles as Marine Debris Tracker. Marine

LitterWatch is used by scientists and NGOs in at least ten member states [52].

Apart from these stakeholders (scientist and NGOs), students can also play an

active role in collecting and monitoring data using these mobile applications

(Fig. 2). In the Roskilde Fjord region in Denmark, students collaborated with

scientists to generate data on the occurrence of marine litter at 12 beaches around

the fjord [53]. The students analyzed the data using a protocol inspired by the

Marine LitterWatch protocol [53]. A similar but much larger project has been

conducted in Chile [54]. The “National Sampling of Small Plastic Debris” was a

CS project, where schoolchildren from 39 (approximately 1,000 students) from

continental Chile and the Easter Island participated in the activity [54]. The project

documented the distribution and abundance of small plastic debris on Chilean

beaches. Scientist validated the data obtained in the program by recounting all

samples in the laboratory. The results showed that the students were able to follow

the instructions and generate reliable data [54]. Such involvement of students in

collecting data serves as an example of the transformative learning discussed by

Ruiz-Mallén et al. [47].

Microplastic is not as visible as meso- and macroplastic and therefore not as

easily collected in these CS programs. But since the majority of microplastic

pollution is secondary microplastic particles – i.e., breakdown products from

meso- and macroplastic – the microplastic pollution is closely interlinked with

larger plastic debris. Furthermore the majority of marine plastic debris stems from

land-based sources [39], making NOAA arguing that beach cleanups are important

contribution to marine protection [50], since they provide additional information

for monitoring programs and help protect the environment. The development of

Marine Debris Tracker app and the EEAMarine LitterWatch illustrates two aspects

Fig. 1 (Left): Picture showing data marine debris collected and reported with the “Marine Debris

Tracker app” made by NOAA Marine Debris Program and the Southeast Atlantic Marine Debris

Initiative [50]. (Right): Citizens using the Marine Debris Tracker app (Picture from SEA-MDI)
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of the CS development within the field of plastic pollution monitoring. Firstly, it

serves as an example of how new (mobile) technology enables a systematic

gathering of CS-collected data, in accordance with [4] drivers to expansion of

CS. Secondly, it illustrates how collaboration between scientist, citizens, and

NGOs results in efficient, high-quality data collection and monitoring programs.

The quality of data is exactly one of the aspects that have been highlighted as a

potential problem with CS-driven data collections [49]. It is therefore important to

validate data collected under CS beach cleanup programs, if they are subsequently

used in monitoring programs. Lavers et al. [55] found that detection of beach litter

varied from 60 to 100% across various types of plastic. The authors further found

variation among different observers, depending on observer experience and bio-

logical material present on the beach that could be confused with plastic [55]. The

authors found that the color of the plastic debris was an important parameter, with

blue fragments having the highest detection probability, while white fragments had

the lowest.

In 2005 “International Pellet Watch” (IPW) was launched by Prof. Takada from

Tokyo University [56]. The aim of the program was to collect monitoring data on

POPs adhered to plastic pellets. The program (which can be characterized as a

voluntary citizen science program) has participants in more than 50 countries

[56]. Yeo et al. [57] describe how the implementation of the IPW program in

Australia and New Zealand has been used to collect data. The authors found that

the science communication part of the IPW program was so effective that it could

be used to generate awareness of both plastic debris and POPs. These two types of

pollution are interconnected to some extent, since POPs tend to adsorb strongly to

plastic debris, making plastic debris a potential vector for environmental transport

of POPs [58] (also discussed by [59, 60]). Since plastic pollution is often visible

(especially for meso- and macroplastic), the environmental risk is more readily

perceived than risk from hazardous chemicals such as POPs. The visibility gener-

ates a higher awareness of the problem than for less visible problems, leading to

significant involvement in CS projects, and possibly policy measures as those

described above for Rwanda. Furthermore it can also be used to increase the

awareness and improve the risk perception or other less visible, but equally

problematic, environmental problems, such as the contamination of POPs [57].

Due to the expanding data available from beach cleanup programs, scientists are

now using these data to evaluate the ecological importance of plastic debris. Wilcox

et al. [61] used expert elicitation to score impact from different types of plastic

marine debris. In order to do so, those authors conducted the threat assessment by

focusing on the most common types of litter found along the world’s coastlines,
based on data gathered during three decades of international coastal cleanup efforts

[61]. The authors argued that the approach opened opportunities both for policy-

based and consumer-driven changes in plastics, by focusing effort on the plastic

debris with the highest demonstrable impact on ecologically important taxa serving

as indicators of marine ecosystem health [61].
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7 Expanding Citizen Science: The Bottom-Up Approach

Thus, citizen science can serve to integrate citizens in scientific projects increasing

the scientific data pool and enabling citizens to obtain a more informed foundation

for developing risk perception. There are however limitations to the current use of

CS. Projects such as Marine LitterWatch and International Pellet Watch can be

characterized as top-down CS, where scientists define the problem and ask citizens

to help collect data to either illuminate and/or possibly solve the problem. While

this is important work, it is dependent on and limited to the problems scientists have

identified, and the citizens are primarily seen as “supporters.” In this context, we

refer to this as a top-down CS approach. An alternative (but not mutually exclusive)

approach can be characterized as a bottom-up approach, where citizens are included

already in the problem definition phase, potentially transcending a role as “sup-

porters.” This can facilitate stronger cooperation between scientist and citizens and

lead to a more sustainable development [62]. Such an approach has some advan-

tages that we will address below, before concluding the chapter by evaluating to

what extent CS can serve as a valuable tool for increasing and qualifying risk

perceptions.

Clausen [62] argues that the current dominating paradigm for inclusion of

specific stakeholders in policy and environmental planning processes (i.e., gover-

nance) comes at the cost of the participation and influence of citizens in a broader

sense and has a tendency to alienate citizens from nature and nature conservation.

This is due to the focus on expert elicitation in the governance process (although the

current governance paradigm includes more and different stakeholders compared to

traditional expert-centered planning and decision processes), which has a tendency

to decouple political processes from lay persons’ perception of the problem.

Clausen [62] further argues that by involving citizens in evolving shared norms

and activities within a given topic, it is possible to facilitate the development of a

community governance and thereby initiate a continuous sustainable process where

citizens gain stronger ownership of (managing) the environment they are a part

of. The earlier inclusion of (local) citizens can further strengthen the scientific

foundation for addressing an environmental problem. Valinia et al. [63] discussed

how the inclusion of local citizens’ knowledge about a Swedish lake could improve

the scientific foundation for assessing the anthropogenic impact on the water

quality. The authors argued that local citizens possessed historical knowledge,

which they used to conceptualize reference conditions in regard to the environmen-

tal state of the lake [63]. They showed that by comparing local knowledge with data

from fish and water chemistry monitoring, as well as paleolimnological reconstruc-

tions of water quality, local citizens’ knowledge corresponded well with the

historical data, helping to deliver a more detailed picture of the present state of

the lake. This local knowledge enabled a better assessment of the water quality and

could thus contribute to developing a better scientific foundation for regulation

[63]. And this is not all. As shown by Nielsen et al. [64], this kind of involvement of

local citizens in natural resource management certainly broadened out the total
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scope of environmental management, integrating biological, cultural, and social

dimensions, and through this leads to a growing responsibility within the local

community regarding nature protection.

If citizens are included in the problem formulation phase of a risk assessment

and meet the scientists in a mutual, not just formal, dialogue, their understanding of

the risk will often be more qualified. This again can lead to citizens contributing to

determining how risks are best addressed in their local community, which would

leave them with higher degree of control over the risk, and if citizens are included in

giving different risks priority, this might also ensure that they engage in making the

local community a responsible actor in the nature protection. Different kinds of

bottom-up CS confirm this, as, for instance, described by [65], discussing experi-

ences from a project in a deprived urban community in London. Since some of the

drivers for risk perceptions relate to how known the risk is (driver 3), whether it is

faced voluntary (driver 1), and the degree of control over the risk (driver 2), a better

integration of citizens via the bottom-up approach might ensure that citizens obtain

a more qualified risk perception.

8 Concluding Remarks

The risk perception of plastic pollution has developed markedly since the first

discoveries of oceanic plastic debris. In the first part of this chapter, we have

illustrated how this development can largely be described with eight common

drivers for risk perception. Common themes for many of these drivers are to what

degree the problems of character, magnitude, potential impact, and solutions are

understood. This implies that greater insight into these aspects by citizens will

almost inevitably result in a more informed risk perception. Risk drivers such as

how known the risk is (driver 2), possible benefits associated with the risk (driver

3), the novelty of the risk (driver 7), and whether the risk is tangible or abstract

(driver 8) are all influenced by the degree of insight people have. In the case of

plastic pollution, this greater insight has been built up over the last few decades and

has stimulated a development toward a much broader understanding of the problem

and a higher degree of perceived risk associated with plastic pollution.

In the second part of the chapter, we address how citizen science generates more

awareness of the plastic pollution problem, improves risk perception, evolves

science, and even contributes to actively addressing the plastic pollution problem.

Classical top-down form of citizen science has had a significant impact of risk

perception and subsequent societal measures. However, this type of mode

2 research, where scientists and citizens collaborate more systematically, has the

potential to improve this positive process even further. We describe how bottom-up

citizen science has been used to improve public participation, increase local

ownership, improve scientific understanding, and enhance transparency within

several different environmental topics. Within the area of plastic pollution,

bottom-up CS has the potential to enable citizens to address the local pollution
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they are most concerned with, and by involving local citizens, they get higher sense

of control over the risk (driver 2). The citizens also generate a better understanding

of the consequences of the plastic pollution for the environment (driver 4). Any

local conflicts where pollution with plastic is in favor of some citizens or organi-

zations (e.g., cosmetics producers) and not others can further be illuminated in such

a process (driver 6), enabling a dialogue about positive and negative consequences

of the different behaviors. Finally, the bottom-up citizen science approach has the

potential to make the problem even more explicit to the citizens and thereby

enhancing the risk perception by reducing the “Giddens paradox” (driver 8). The

risk perception of plastic pollution has thus developed markedly over the last

decades, due to increased scientific understanding and greater involvement of

citizens in collection scientific data.
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Understanding the Risks of Microplastics:

A Social-Ecological Risk Perspective

Johanna Kramm and Carolin V€olker

Abstract The diagnosis that we are living in a world risk society formulated by

Ulrich Beck 20 years ago (Beck, K€olner Z Soziol Sozialpsychol 36:119–147, 1996)

has lost nothing of its power, especially against the background of the

Anthropocene debate. “Global risks” have been identified which are caused by

human activities, technology, and modernization processes. Microplastics are a

by-product of exactly these modernization processes, being distributed globally

by physical processes like ocean currents, and causing effects far from their place of

origin. In recent years, the topic has gained great prominence, as microplastics have

been discovered nearly everywhere in the environment, raising questions about the

impacts on food for human consumption. But are microplastics really a new

phenomenon or rather a symptom of an old problem? And exactly what risks are

involved? It seems that the phenomenon has accelerated political action—the USA

has passed the Microbead-Free Waters Act 2015—and industries have pledged to

fade out the use of microbeads in their cosmetic products. At first sight, is it a

success for environmentalists and the protection of our planet?

This chapter deals with these questions by adopting a social-ecological perspec-

tive, discussing microplastics as a global risk. Taking four main characteristics of

global risks, we develop four arguments to discuss (a) the everyday production of

risk by societies, (b) scientific risk evaluation of microplastics, (c) social responses,

and (d) problems of risk management. To illustrate these four issues, we draw on

different aspects of the current scientific and public debate. In doing so, we

contribute to a comprehensive understanding of the social-ecological implications

of microplastics.
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1 The Social-Ecological Risk Perspective: Addressing

Global Risks

A common risk definition is that “the term ‘risk’ denotes the likelihood that an

undesirable state of reality (adverse effects) may occur as a result of natural events

or human activities” [1]. A classical risk analysis calculates the possibility of an

adverse event and the potential damage, for instance, an assessment of ecotoxicity

of hazardous substances based on dose-response relationships. For “global risks,”

also termed systemic risks, classical risk analysis is not so easily applicable, since

the characteristics of “global risks” comprise complex cause-effect linkages, which

are not fully known, resulting in a high degree of uncertainty and ambiguity in

assessing the risk. For this reason, consent to risk management strategies is difficult

to obtain [2, 3].

Who or what can be “at risk”? In social-ecological risk research, risks to humans

and biophysical entities (e.g., biocoenoses, ecosystems) are considered. The causes

of risks mostly lie in human activities, since many natural resources and biophysical

processes are influenced by societies [4]. In social-ecological risk research, it has

become clear that assessment of the risk alone is not sufficient for management and

policy decisions [5]. It is also important to consider the risk perception and concerns

of different interest groups [6]. In the case of complex risks which are accompanied

by uncertainty, it is important to define the degree of tolerability and acceptability

in order to find management strategies acceptable to all interest groups [7]. There-

fore, a prerequisite for risk management and related policy-making is not only

scientific evidence but also an agreement of the different interest groups on how to

understand, interpret, and value the evidence.

Hereafter, we will outline the characteristics of global risks from a social-

ecological perspective and present four arguments framing microplastics as a global

risk.

(a) Global risks are not produced by an extreme event or a disaster but are created

in modern societies as a side effect of an “everyday mode” of system’s
operation [8, 9] and regulation of the supply system [4]. From this understand-

ing, we derive our first thesis, arguing that the risks of microplastics are

produced as an unintended side effect of everyday operations in modern

societies.

(b) Global risks are complex; thus, no clear evidence of a cause-effect linkage

exists or can be proven, due to “intervening variables,” “long delay periods

between cause and effect,” or “positive and negative feedback loops”

[10]. These and the state of “not knowing” [8] contribute to a high degree of

uncertainty regarding effects, especially in terms of scope and time. Thus, we
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argue that the cause-effect linkages of risks associated with microplastics are

complex, leading to great uncertainty in their scientific assessment.

(c) Global risks are characterized by a specific vibrancy which affects other linked

entities or systems. This can lead to impacts in systems other than the

risk-producing system. Such linking may involve natural processes (such as

ocean currents, wind) and social processes (like communication, practices).

Therefore, we argue, thirdly, that microplastics are vibrant, affecting not only

ecosystems but different social, political, and economic spheres.

(d) Global risks are differently perceived, interpreted, and framed, which is an

impediment to management strategies. This may be due to the presentation of

different kinds of evidence, leading to competing views, or to conflicting

interpretations of the same evidence, producing what is referred to as ambiguity

[10]. Hence, we argue, fourthly, that microplastics are an example of a complex

problem, due not only to uncertainty regarding their negative effects but also to

competing views on how to combat the problem.

In the following sections, these four arguments are elaborated by taking into

account different aspects of the recent scientific and public debate on microplastics.

2 The Plastic Dilemma and Everyday Modes of Risk

Production

Microplastics emerged as a scientific topic about 10 years ago and recently came

into public awareness when the debate focused on their release from cosmetic

products and potential abundance in human food [11–15]. But are microplastics

really a new phenomenon or can we regard them as a newly discovered symptom of

an old problem, the problem of plastic pollution? As indicated in the quotation

below, microplastics, called “plastic particles,” were recognized as part of the

problem of plastic pollution in coastal and oceanic waters in the 1970s, though

the associated adverse consequences were considered as minor compared to other

contaminants:

At the present levels of abundance of plastic particles in coastal and oceanic waters, adverse

biological consequences would appear to be minor compared to the deleterious effect of

other contaminants such as petroleum residues and other chemical wastes. Increasing

production of plastics, combined with present waste disposal practices, will undoubtedly

lead to increases in the concentration of these particles in rivers, estuaries, and the open

ocean. [16]

Plastic has been known as a factor in environmental pollution—symbolized by

the plastic bag—for a long time. Looking at newspaper headlines dealing with the

environment-plastic nexus, it becomes clear that plastic waste in the environment

has been perceived as an environmental problem at least since the 1970s (see

Table 1 for The New York Times headlines).
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Although this visible (waste) problem has resulted in a number of new technol-

ogies for waste disposal and policies for its regulation, such as the German Law on

Circular Economy [17] (see [18] for further discussion), the European Directive on

Packaging and Packaging Waste [19], or the European Waste Framework Directive

[20], the current debate on the environmental consequences of plastic waste shows

that we still have not managed to find effective solutions. But why is it so hard to

tackle the problem?

From the social-ecological risk perspective, the environmental implications of

plastics can be understood as an unintended side effect produced by modern

societies through their normal mode of operation [9]. Plastic products are an

integral part of our everyday lives and their consumption is largely inconspicuous.

For instance, plastic used in food packaging does not satisfy a demand for plastic

but a demand for fresh food. Plastic packaging in the medical sector guarantees

aseptic medical products, and plastic bags are an easy way to transport our shopping

[21, 22]. These are just a few examples of how plastic products have penetrated our

society, contributing to the environmental accumulation of plastic waste. The

biggest share of plastic waste is produced by plastic packaging of consumer

goods [23]. The environmental risk is thus created in a decentralized way by our

everyday lives and not by an extreme event or disaster. To manage the problem, we

would need to reconsider our everyday practices and transform our habits and

routines in respect of how we produce, use, and dispose of plastic products.

Changing everyday habits and routines is certainly challenging. However, it is

noteworthy that these routine practices, now referred to as the “throwaway culture,”

were learned by our society in the not-so-distant past. After Bakelite—the first truly

synthetic polymer—was invented as a substitute for natural resources such as horn,

ivory, or tortoiseshell in 1907, plastics were soon substituting other materials and

Table 1 Recurring headlines from The New York Times, selected from the period 1970 to 2015

18.02.1973 Ocean pollution—the very dirty sea around us
Report on scientific surveys discovering pollution at sea. Among other kinds of

trash, plastic litter is mentioned as plastic fragments and plastic bottles

25.12.1984 Deadly tide of plastic waste threatens world’s oceans and aquatic life
Report on the first international conference of marine biologists on the issue of

“plastic waste in the oceans” held at the University of Hawaii in Honolulu. The

article describes plastic waste as a new and insidious form of pollution

28.02.1992 Biologists cite plastic bag in whale death
Article about a humpback whale washed ashore who swallowed a plastic bag,

probably the cause of death as stated by researchers

22.06.2008 Sea of trash—pollution in the world’s oceans
Essay on plastic pollution in the oceans describing concrete examples, causes,

effects, public perception of the issue, and measures to fight the problem from the

1980s to the 2000s

12.02.2015 Study finds rising levels of plastics in oceans
Article about a scientific study of the growing amounts and the sources of plastic

waste entering the oceans. Nations are urged to take strong measures to dispose of
their trash responsibly
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used to produce multiple objects. In the first half of the twentieth century, plastic

materials enacted a new way of life: first, durable everyday plastic items, like

combs, nylon stockings, radios, and telephones, led to “mass culture”—a “democ-

ratization of material goods” [24]. Finally, the translation of plastics from the

laboratory to the beverage and food packaging industry paved the way for a

“throwaway culture.” An article published in the late 1950s in the journal Modern
Packaging captures the shift from a material considered as durable to an ephemeral

product:

The biggest thing that’s ever happened in molded plastics so far as packaging is concerned

is the acceptance of the idea that packages are made to be thrown away. Plastic molders are

no longer thinking in terms of re-use refrigerator jars and trinket boxes made to last a

lifetime. Taking a tip from the makers of cartons, cans and bottles, they have come to the

realization that volume lies in low-cost, single-use expendability. . .consumers are learning

to throw these containers in the trash as nonchalantly as they would discard a paper cup—

and in that psychology lies the future of molded plastic packaging. (n.a. 1957:120 in [25])

The plastic material was coded to be become waste after a short period of use; its

use and meaning were changed. This new way of consuming and throwing away

metamorphosed into a normal feature of ordinary everyday lives, a practice that is

taken for granted nowadays [21]. In the last 50 years, plastics have become the
workhorse material of the global economy and led to enormous progress for modern

societies [23]. And that is the dilemma: society benefits from the attributes of

plastic products (they are lightweight, inexpensive, and durable), and at the same

time, mass production and durability lead to growing amounts of plastic waste

accumulating in the environment [21, 26]. Although plastic has been perceived as a

pollutant for a long time, and environmental awareness continues to grow, the per

capita consumption of packaging is still increasing [27], so that with the increasing

accumulation of (micro)plastics, the associated risks are growing.

3 From Macro to Micro: Unveiling the Complex Side

Effects of Plastic Pollution

In recent years, scientific and public debates on plastic pollution have shifted from

the visible waste problem to microplastics, an invisible form of plastic pollution.

Though already detected in seawater in the 1970s [16, 28–33], it was not until the

2000s that small plastic particles, previously described as pellets, fragments, spher-

ules, granules, etc., were labeled “microplastics” [34], which propelled their scien-

tific career. Since then, the number of studies has grown exponentially (see Fig. 1).

With the rising number of studies, microplastics have been discovered in more and

more ecosystems, whether deep-sea sediments or freshwater environments

[35, 36]. These studies have demonstrated the vast extent of microplastic pollution

and its ubiquitous and persistent character and accelerated further research on the

sources, environmental fate, and biological effects of microplastics. However, the

number of studies is not only the result of a growing scientific interest in a “new”
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research field—it also indicates the complexity of the problem calling for scientific

methods in order to identify and quantify the consequences for the environment and

for human health [10].

The traditional approach to environmental risk assessment of chemical sub-

stances cannot do justice to the multitude of microplastic particles and intervening

variables and, therefore, cannot be applied to determining “safe” or “hazardous”

levels of microplastics in natural environments [37]. Microplastics are not a

homogenous group of substances, and they stem from various sources. The phys-

icochemical properties of microplastics are as diverse as their sources. They differ

in their polymeric composition, their additives, and have various shapes and sizes—

all characteristics that can influence their biological effects. Microplastics can be

toxic due to associated substances like phthalates and BPA [38], they can result in

physical damage due to their shape [39], and they can induce indirect effects after

being ingested, such as reduced food consumption due to satiation (malnutrition or

even starvation) or intestinal blockage leading to death. Furthermore, biological

effects are linked to other environmental contaminants such as persistent organic

pollutants (POPs) that are absorbed by microplastic particles [40]. The lack of

specific adverse effects leads to great uncertainty regarding predictions of the

environmental consequences. These uncertainties were already expressed in early

studies of microplastics around 30 years ago. However, despite these knowledge

gaps, the problem was addressed pragmatically at that time: microplastics detected

in natural waters and proven to be ingested by aquatic organisms were denoted as an

“unnecessary contaminant” [33] that is “in all likelihood not beneficial” [41].
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Fig. 1 Environmental studies on plastic particles from 1970 to today. The figure shows the rising
number of studies in recent years, especially since the introduction of the term “microplastics.”

Studies were obtained from the search engines “Google Scholar” and “Web of Science.” Key-

words for the search were: microplastics þ environment; plastic particles/fragments/pellets/

granules/spheres/fibers þ environment
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Today, pragmatic viewpoints still exist promoting a precautionary strategy with

a call for action to reduce the leakage of microplastics into the environment despite

evidence on specific adverse effects on ecosystems [42]. Others follow an approach,

which Klinke and Renn [43] call “risk based.” These studies aim to determine the

potential damage of microplastics to provide evidence for the development of risk

management strategies. Therefore, they target the existing research gaps in order to

reduce uncertainties. But due to the nature of global risks, a broadened knowledge

base will reveal even more variables, and it will be hard to achieve clear causality in

order to structure the problem. For instance, research on microplastics has discov-

ered even more sources of microplastics [44], and more species that ingest

microplastics [45] and exposed methodological questions for assessing the risk,

such as adequate detection methods to properly assess and compare the extent of

microplastic contamination [46]. This hints at another dilemma: on the one hand,

precisely these complexities call for thorough scientific investigation [10], but, on

the other hand, exactly these investigations might contribute to higher complexity

and greater uncertainty. Finally, the two approaches (risk based vs. precaution

based) negotiate the question of how much knowledge is sufficient for action.

4 From Ecosystem Health to Human Health: Vibrancy,

Uncertainty, and the Feeling of Insecurity

The impacts of (micro)plastics are not limited to the ecosystems where the plastic

materials accumulate; the impacts are vibrant, affecting the political, social, and

economic spheres, where they induce secondary and tertiary consequences, a

typical characteristic of global risks [10]. For instance, studies point to economic

effects, such as income loss among fishermen due to plastic debris [47], damage to

marine industries [48], and loss of tourism revenues [49–51], which subsequently

have social consequences. Today’s discussions center on the impacts of

microplastics on food for human consumption [13, 14], with possible but yet

unknown threats for food safety and human health. Scientific evidence shows that

microplastics are present in organisms, such as shellfish and fish, that play a role in

human consumption [14, 52].

Microplastics infiltrating food for human consumption induce social processes.

The following case from Germany shows the vibrancy of risk traveling from

science into public awareness and how uncertain evidence and risk communication

trigger feelings of insecurity.

A study commissioned by the media detected microplastic particles in drinking

water, honey, and beer and was covered prominently in the German media

[11, 12]. The knowledge produced by this study and the coverage of it in the

media were contested by consumer protection agencies and food and beverage

industries afraid of reputational effects. The studies were repeated by other scien-

tists who could not verify the results, and some explained the identification of

microplastics in German beer as an artifact of laboratory contamination [53].
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The German Federal Institute for Risk Assessment (BfR), which deals with risks

to human health, published a statement saying on the one hand that they could not

detect microplastics in honey and beer in their laboratory studies. On the other

hand, they stated that the health risk posed by microplastic-contaminated food and

beverages cannot be assessed, due to the lack of reliable data and analytical

methods [54]. The European Food Safety Authority (EFSA) started taking first

steps toward a future assessment of the potential risks to consumers from

microplastics and nanoplastics in food, especially seafood. Uncertainty exists,

first, about the scope and quality of the contamination and, second, about the

negative health effects for the public.

The media reports led to a raised public awareness of health risks, but the risk

management authorities could not clear up the concerns, because despite that their

studies had not verified the claim of microplastics in honey and beer, the question

remains, if negative effects for human health exist. This feeling of insecurity is also

reflected in the consumer survey by the BfR [55], which shows that 63% of the

respondents had heard about “microplastics in food” and 52% answered that they

were “concerned about microplastics in food”. This case shows that there are only

single observations of microplastics in food for human consumption and no scien-

tific evidence for negative effects for human health exists. No general statement

about risk for human health can be made; nevertheless, people are worried since a

hypothetical risk has been communicated. Thus, due to the communication about

the hypothetical risk, it becomes symbolically relevant in the first place, and a risk

for human health is constructed. Therefore, risk communication is a very important

aspect of risk management, with regard to the perception and psychological reac-

tions of people who feel they are at risk. To reduce the social amplification of risk, it

is important for laypersons that experts address risks and contextualize them in

relations to other risks. Research on risk perception has pointed out that public

opinion is steered by media reports scandalizing or exaggerating minor risks,

leading to the spending of money to reduce them, while other major risks that

failed to attract public attention are insufficiently considered [56, 57]. Risk man-

agers should be sensitive to this and not become misguided by media and public

concerns.

5 Risk Decision-Making: From Complex to Structured

Problems

In the USA in December 2015, President Obama signed the Microbead-FreeWaters

Act, banning microbeads from rinse-off cosmetics—a success for microplastic

opponents and environmentalists. What led to the quick decision to ban them,

despite the complexity of the topic, which impedes risk assessment? A prerequisite

for policy decisions is the degree of “consensus on the questions policy is

addressing,” as well as “certainty about the relevant knowledge” [58]. The degree
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to which a problem or a risk can be structured depends on consensus, values, views,

and secured evidence, which includes knowledge of causes and effects. The con-

tinuum ranges from structured problems with common values and consensus on

strategies and on the evidence, which comprises secured knowledge including clear

causes and effects, to unstructured problems with competing values and no con-

sensus on strategies and on the scientific evidence due to ambiguity and

uncertainty [58].

In the case of the adoption of the Microbead-Free Waters Act, different actors

were involved in “structuring the problem” [58]. Scientific evidence on the path-

ways into and the abundance in the environment was provided in strong collabo-

ration with activists. For example, the NGO 5 Gyres Institute published the first

microplastic pollution survey of the Great Lakes region in collaboration with the

State University of New York in 2013. The concentration of microplastics found in

the Great Lakes was higher than that of most samples collected in the oceans

[59]. The studies were covered by the media, and the argumentation chain presented

was quite clear: the microbeads threaten our lakes and rivers, stem from our

cosmetic products, and slip through the sewage plants [60–62]. A clear scientific

narrative was established and presented by scientists and activists to big personal

care companies. The short “viewpoint” paper by Rochman et al. titled “Scientific

Evidence Supports a Ban on Microbeads” [63], comprising a simple calculation of

the number of microbeads and their route into the environment, was clearly aimed

at strengthening this scientific narrative.

At the same time, environmental and ocean-protection NGOs campaigned for a

ban on microplastics in cosmetics. Their campaigning methods included shopping

guides that listed all producers using microplastics in their products and the app

“Beat the Microbead” which could be used to check whether a product contains

plastics. This app was launched by two Dutch NGOs in 2012 and further developed

for international use by UNEP and another environmental NGO in 2013 [64]. With

the guide and the app, tools were provided which enabled consumers to reduce their

use of cosmetic products containing microplastics and to become more aware of

the issue.

In the cosmetics industry, the evidence presented by the coalition between

scientists and activists was not seriously contested. Global players like Johnson &

Johnson, Unilever, and other multinationals announced that their products would be

plastic-free within the next few years and that they would use natural substitutes

instead. Since then, many more companies have pledged to phase out microplastics,

motivated by reputational or environmental concerns.

With the detection of high amounts of microplastics in the Great Lakes, on the

doorstep of the USA, the campaign against microplastics was boosted and entered

the governmental arena, with several US states passing laws banning microbeads in

cosmetics in 2014 and 2015 (e.g., New York, Illinois, California).

In March 2015, legislation to ban microplastics in cosmetics was introduced in

the US Congress. How well the problem was structured by then is reflected in the

speed with which the bill was passed: In March, it was introduced in the House of

Representatives; in December, it was reported on and amended by the Committee
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on Energy and Commerce, and on the same day it was passed by the House of

Representatives. Only 11 days later, it was passed by the Senate unanimously and

was signed by the president 10 days later on December 28, 2015 [65]. The

“Microbead-Free Waters Act of 2015” (H.R. 1321) prohibits “the manufacture

and introduction or delivery for introduction into interstate commerce of rinse-off

cosmetics containing intentionally-added plastic microbeads.” The law specifies a

phase out, starting with a ban on manufacturing the beads from July 2017 on,

followed by product-specific manufacturing and sales bans in 2018 and 2019. The

law bans only rinse-off and not leave-on products (eye shadow, face powder). Still,

the ban can be regarded as a first step toward reducing the emission of

microplastics. In Europe, industries have also pledged to phase out the use of

microplastics, and Cosmetics Europe, the personal care industry’s trade association,
though highlighting that the “vast majority” of microplastics come from other

sources than personal care products, issued a recommendation to discontinue

their use in rinse-off cosmetics, and announced its intention to collaborate closely

with regulators. By doing so, they were “addressing public concerns” [66].

At the science-policy interface, interest groups like environmental organizations

did play an important role as brokers, but nevertheless further points were also

decisive for the structuring of the policy problem. First, clearly structured evidence

of cause and effect was presented and was not confused by other conflicting facts

(other sources of primary microplastics and secondary microplastics as major

sources were almost totally excluded in the US debate). Second, a ban on

microbeads in cosmetic products did not constitute a financial risk or any other

threat to the personal care sector, since alternatives existed and a change in

production was implementable in the set timeframe. In addition, it gave the

cosmetic industry the possibility to shape its sustainability profile and to emphasize

value sharing with the consumer. This may be a reason why the presented evidence

was not contested.

Recently published studies (e.g., [67]) have shifted the focus to land-based

sources and the degradation of plastic waste in the oceans and other environments,

enhancing the circle of responsibilities from single industries to complex processes

of supplying, consuming, and waste management. In this context, it has turned out

that cosmetic products as a source of microplastics play a much smaller role than

previously thought [68, 69]. In this context, the ban on microbeads is only a tiny

drop in the ocean. The complexity of plastics in the environment is becoming more

and more obvious and poses a great challenge to risk assessment and management.

Against this background, it seems that the Microbead-Free Waters Act was adopted

in a window of opportunity in which the problem was perceived as well struc-

tured—the scientific evidence was clear to all interest groups, there was consent on

the trade-off between the benefits of microbeads in cosmetics and the hazards they

pose to ecosystems, and multiple alternatives for microbeads in cosmetics were

available (physically and economically). Thus, the case of the USA can be regarded

as an example of using a well-structured problem for policy-making, while most of

the problems related to plastics are in fact unstructured, e.g., due to competing

views of multiple interest groups.
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6 Conclusion

Increased research on (micro)plastics has developed the picture that (micro)plastic

pollution is ubiquitous. Microplastics have been detected in rivers in Europe (e.g.,

Danube, [70]), as well as in lakes in Mongolia [50] and the USA [59]. They cross

state boarders, passing from rivers into lakes, and finally into the global common,

the ocean. They also cross the boundaries between single organisms, accumulating

in the food web. From a social-ecological perspective, the risk induces a vibrancy

and resonance in socioeconomic, political, and public spheres. Thus, the theses we

have presented and their corresponding data clearly identify microplastics as a

global risk, leading to the following conclusions regarding further research areas:

Based on an understanding of the risks posed by microplastics as an unintended

side effect of the everyday mode of societies, the global dimensions of production

and distribution patterns need to be researched in more depth. In many countries of

the Global South, a new middle income class with a high demand for plastic

products is growing. Relations between the Global North and the Global South

need to be addressed more adequately, regarding the production, distribution,

consumption, disposal, and leakage into the environment of plastic-packaged

products like fast-moving consumer goods.

Due to the complexity of the microplastics phenomenon, its assessment is

difficult and requires further scientific investigations to establish the evidence in

order to properly address the environmental risk. The same holds true for the

assessment of the human health risks. This uncertainty impedes risk management

decisions, but nevertheless action is required despite a lack of clear evidence,

because microplastics are perceived as a threat by society. Therefore, as the

complexity of the phenomenon may never be entirely resolved, future research

should also focus on the question of how to handle uncertainty and manage

complex global risks.

Although it is common sense that plastics should not be allowed to accumulate in

the environment, much less consensus exists regarding the strategies needed to

achieve this. As Shaxson [58] points out, the question “How can we make plastics

sustainable?” is just too broad and unstructured to enable all the interest groups to

speak with one voice. Strategies to combat pollution range from reuse, green

chemistry, designs for recycling, improved waste management, standardized label-

ing, education, cleaning programs, and sustainable consumption. Not a single

strategy is required, but each sector needs to be active. However, current debates

show that responsibilities are often shifted elsewhere. Thus, identifying the risk

producers is not straightforward, as some voices do not regard plastics as the source

of the problem but rather their improper disposal; other voices emphasize the design

of the plastic material, and yet others target consumer behavior. Risk management

is about the negotiation of evidence and values. We should not stop at symbolic

goals, like the G7 Action Plan [71], but move on to binding regulations. Research

should focus on developing and testing mechanisms to call risk producers to

account, for example, with the integration of costs in the benefits, extended pro-

ducers’ responsibility, cost of inaction analysis, etc.
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To conclude, we reflect on the risks of microplastics for ecosystems and our

health, by drawing on the questions Beck once asked:

How worried should we be? Where is the line between prudent concern and crippling fear

and hysteria? [8]

Concerns about microplastics in our food and subsequent health effects, trig-

gered by media reports, lead to social risk amplification, which may be dispropor-

tionate to other risks associated with plastics, such as environmental accumulation

or the endocrine effects of plasticizers. There is no need for “hysteria” (to quote

Beck). Nevertheless, we should take the (micro)plastics issue as a serious symptom

of human-made environmental change. Plastic pollution is a visible example of how

society and nature interact, and it unveils our relationship with nature. What kind of

nature do we want and how do we want to live?We have to explore the intersections

between global risks, power relations, and societal relations with nature if we want

to bring about their sustainable transformation.
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Freshwater Microplastics: Challenges

for Regulation and Management

Nicole Brennholt, Maren Heß, and Georg Reifferscheid

Abstract The accumulation of plastic debris in aquatic environments is one of the

major but least studied human pressures on aquatic ecosystems. Besides the general

waste burden in waterbodies, (micro)plastic debris gives rise to ecological and

social problems. Related to marine ecosystems, these problems are already in the

center of interest of science, policy, and public. The United Nations Environment

Programme, for instance, drafted a joint report on “marine plastic debris and

microplastics,” and the European Community included the issue into the

European Marine Strategy Framework Directive, descriptor 10 “marine litter.”

However, (micro)plastic litter in freshwater systems is not yet explicitly

addressed in the respective regulations, although the issue is relevant for many

international and national policy instruments and initiatives. Many conventions,

agreements, regulations, strategies, action plans, programs, and guidelines refer to

“all wastes” in general. This should also concern (micro)plastic waste.

This chapter provides an overview of the regulatory instruments developed at

different levels to address freshwater (micro)plastic litter. Beyond that, specific

management options and measures that are either compulsory or voluntary are

presented. Nevertheless, only few options have been realized so far. Reasons are

numerous, first and foremost the lack of consensus on the definition of

microplastics.
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The complexity of these particulate stressors with very heterogeneous physico-

chemical characteristics poses new challenges for regulation and management. We

highlight the most important questions from the perspective of freshwater monitoring.

Furthermore, we discuss a possible adaption of existing environmental policy instru-

ments and potential management options for single categories of (micro)plastics.

Keywords Environmental plastics, Microplastics definition, National–

international, Policy instruments, Science–policy interface

1 Introduction

“Microplastics” (MPs) are a topic of discussion in all types of media and are one of

the environmental issues also strongly debated by the public (see [1]). A question-

naire sent to the representatives responsible for water monitoring and management

in Europe revealed that around 50% of the European population is discussing about

MPs and its potential harm to the environment and human health [2]. Hence, the

public expects policy-makers to tackle the problem and to manage it as soon as

possible.

In fact, awareness about this issue is increasing in policy. Some of the most

important and worldwide acting international and intergovernmental bodies are

debating about the global problem of environmental plastics (e.g., United Nations,

G7, World Bank, World Economic Forum, etc.). Beyond that, the (micro)plastic

issue is already addressed in a few regulations and policy instruments on interna-

tional and national level (see Sects. 2.1 and 2.2). As most environmental MPs result

from incorrect disposed and fragmented plastic litter (see [3]), the management of

MPs is closely related to a variety of policy areas. Additionally, regulatory respon-

sibilities can change along the product life of a single plastic product and include

plastic production and product design, trade and consumer behavior, recycling and

waste management (summarized as “land-based policies”), as well as wastewater

management and water protection (“water-based policies”). Hence, the regulation

of plastics is already considered in several directives, guidelines, agreements, etc.

addressing the application of plastic products, starting with regulations on plastic

monomers and additives (e.g., REACH;1 see Sect. 2.2.3). The use of plastic

products is especially regulated in sensible application fields, e.g., food packaging.

Recently, management strategies increasingly aim at plastics that either are not

needed for the function of a product or do not benefit the user or can easily be

replaced by other materials – e.g., carrier bags (see Sect. 2.2.2) or MPs in personal

care products (see Sect. 2.3). Various directives address the recycling or disposal of

plastics at the end of product life (see Sect. 2.2.2).

Given an efficient plastic management, including waste and wastewater

control, plastics should not enter environmental systems. However, they do.

Problematically, environmental plastics are outside the intended product life.

1Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals.
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While regulatory measures can be clearly addressed to one stakeholder at a certain

stage of product life (e.g., producer, manufacturer, consumer, waste manager), it is

more difficult to identify the correct addressee for plastics already released to the

environment. So far, due to the complexity of this issue, it is not clear which

(policy) areas have to act first, which concepts would be necessary, and what

requirements are needed to promote actions beyond those already initiated.

With regard to aquatic environments, (micro)plastics are mainly considered by

marine science and policy and, for instance, implemented into the European Marine

Strategy Framework Directive (MSFD, [4], descriptor 10 “marine litter”). A com-

prehensive overview on regulation and management of marine (plastic) litter is

provided by Chen [5]. However, it is assumed that approximately 80% of marine

debris is land based [6], even though there is a lack of available quantitative

evidence supporting this statement. Rivers are one of the entry pathways for

(micro)plastics into marine ecosystems. However, the plastic issue is not explicitly

addressed in any regulation regarding freshwater environments so far. In contrast to

the MSFD, the 8 years older European Water Framework Directive (WFD, [7])

does not include the issue of plastic pollution.

The management of MPs in aquatic systems is even more complex than the

regulation of macroplastic litter. Many questions need to be answered, starting with

a commonly accepted definition of MPs. Knowledge gaps about sources, transport

pathways, and volumes and the environmental fate of the small particles with their

heterogeneous characteristics have to be filled, not at least to define adequate

methods for a standardized freshwater monitoring of MPs. The adaption of expo-

sure and hazard assessment to evaluate the risk of freshwater MPs as particulate

stressors is one of the major challenges for regulation and management. Currently,

essential yet unanswered questions refer to the ecological impacts of plastics on

today’s environment, let alone their long-term consequences.

Notwithstanding, the issue of (micro)plastic pollution in freshwater environ-

ments is one of the major but least studied human pressures on aquatic ecosystems,

and further research is required on this issue. Nevertheless, there are many indica-

tions for adverse environmental impacts that should lead to preventive measures.

As stated in Article 191 of the Lisbon Treaty [8], the European Community policy

on the environment “[. . .] shall aim at a high level of protection taking into account

the diversity of situations in the various regions of the Union. It shall be based on

the precautionary principle and on the principles that preventive action should be

taken, that environmental damage should as a priority be rectified at source and that

the polluter should pay.” Therefore, regulation and management should deal with

the issue of freshwater (micro)plastics.

This chapter provides a rough overview of the existing regulatory instruments

developed at international and national levels which address or at least touch the

topic of freshwater (micro)plastics. It does not intend to develop new regulatory

approaches dealing with the issue but highlights challenges for regulation and

management. Despite the regulation of (micro)plastics being already addressed in

a few initiatives, it is still far from a comprehensive management. Reasons might be

various as (micro)plastics pose new challenges for freshwater monitoring and

regulation. This will be discussed in the third section of this chapter. A compilation
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of the requirements concerning future standards and guidelines is given from the

perspective of specialized authorities conducting monitoring programs on regional,

state, and national level (Germany).

2 Regulatory and Policy Instruments

This section provides a brief overview of the current regulatory and policy instru-

ments developed at international, regional, and national levels associated with the

issue of (micro)plastics in freshwater systems (Fig. 1). National policy instruments

apply only to a particular country, whereas regional instruments tackle certain

problems within a specific geographical region, e.g., Europe. International regula-

tion and regional agreements, for instance, are transposed into national legislation,

so that similar texts can be found in the instruments at the national level.

The interfaces with the legislation are various: direct links are more likely in

marine regulation, whereas freshwater (micro)plastics are not explicitly addressed

in regulation so far, although this issue is related, for instance, to many European

directives. Within this section, an attempt is being made to demonstrate this link. If

possible, regulatory strategies for the integration of (micro)plastics in existing legal

instruments are proposed. However, the focus is on European regulatory and policy

instruments.

Fig. 1 Levels of regulatory and policy instruments and initiatives for the regulation, assessment,

and management of freshwater (micro)plastic litter. * REACH Regulation concerning the Regis-

tration, Evaluation, Authorisation and Restriction of Chemicals
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2.1 International-Level Instruments and Initiatives

International regulation, namely, conventions, agreements, regulations, strategies,

action plans, programs, and guidelines, is transposed into regional or national

instruments. This is usually done through regional agreements or national legisla-

tions so that similar texts can also be found in the instruments at the regional or

national level. International instruments apply to the signatory countries and

include different geographical regions worldwide.

United Nations (UN)

Based on the Millennium Development Goals, the UN General Assembly adopted

the resolution no. A /RES/70/1 “Transforming Our World: The 2030 Agenda for

Sustainable Development” on 25 September 2015 [9]. Within this agenda, 17 sus-

tainable development goals with 169 associated targets are announced. Goal

12 “Ensure sustainable consumption and production patterns” includes the follow-

ing target 12.4: “By 2020, achieve the environmentally sound management of

chemicals and all wastes throughout their life cycle, in accordance with agreed

international frameworks, and significantly reduce their release to air, water and

soil in order to minimize their adverse impacts on human health and the environ-

ment” [9, p. 22]. Furthermore, the waste generation shall be substantially reduced

by 2030 through prevention, reduction, recycling, and reuse (target 12.5). Although

these targets refer to “all wastes” in general, they also cover plastic wastes. The new

goals and targets addressed in the agenda have come into effect on 1 January 2016

and will guide the decisions of the member states over the next 15 years. Therefore,

the General Assembly “encourages all member states to develop as soon as

practicable ambitious national responses to the overall implementation of this

Agenda. These can support the transition to the Sustainable Development Goals

and build on existing planning instruments, such as national development and

sustainable development strategies, as appropriate” [9, p. 33].

The Group of 7 (G7)

The Group of 7 (G7) consists of Canada, France, Germany, Italy, Japan, the UK,

and the USA. As environmental issues play an important role alongside economics,

foreign policy, and security, topics discussed at G7 summits include climate

change, sustainable development, resource efficiency, marine pollution, and

nuclear safety. In 2015, the G7 discussed options to address plastic pollution in

marine environments and “acknowledge that marine litter, in particular plastic

litter, poses a global challenge, directly affecting marine and coastal life and

ecosystems and potentially also human health” [10, p. 17]. Among others, the G7

countries are aware of the need for worldwide movement to tackle marine pollution.

Therefore, they are developing an action plan to combat marine litter, which pro-

vides, inter alia, that practical measures to reduce waste from land- and sea-based

sources will be implemented. At this point, it becomes apparent that although

marine ecosystems are in the center of interest, freshwater systems cannot be

neglected. This is also reflected in the G7 action plan to combat marine litter,
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where it is stated that they “support development and implementation of national or

regional action plans to reduce waste entering inland and coastal waters and

ultimately becoming marine litter, as well as to remove existing waste” [11, p. 9].

The G7 action plan lists the following priority actions to address land-based

sources:

• Improving countries’ systems for waste management, reducing waste generation, and

encouraging reuse and recycling;

• Incorporating waste management activities into international development assistance

and investments and supporting the implementation of pilot projects where appropriate;

• Investigating sustainable and cost-effective solutions to reduce and prevent sewage and

storm water related waste, including micro plastics entering the marine environment;

• Promoting relevant instruments and incentives to reduce the use of disposable single-

use and other items, which impact the marine environment;

• Encouraging industry to develop sustainable packaging and remove ingredients from

products to gain environmental benefits, such as by a voluntary phase-out of

microbeads;

• Promoting best practices along the whole plastics manufacturing, and value chain from

production to transport, e. g. aiming for zero pellet loss. [11, p. 10]

The G7 points out that existing platforms and tools for cooperation should be

used like the Global Programme of Action for the Protection of the Marine

Environment from Land-Based Activities (GPA). The GPA “is the only global

intergovernmental mechanism directly addressing the connectivity between terres-

trial, freshwater, coastal and marine ecosystems. It aims to be a source of concep-

tual and practical guidance to be drawn upon by national and/or regional authorities

for devising and implementing sustained action to prevent, reduce, control and/or

eliminate marine degradation from land-based activities” (retrieved 10.11.2016

from http://www.unep.org/gpa/).

The common understanding of the topic “marine litter” and the most important

areas of action and approaches by the G7 can indeed be understood as a step toward

an intergovernmental effort against marine litter, but considering that there is a

huge potential for reduction regarding litter reaching the sea mainly from land-

based sources, litter in freshwater systems should also be in the focus and require

concrete measures.

World Economic Forum (WEF)

In January 2016, the World Economic Forum (WEF) published an industry agenda

entitled “The New Plastic Economy: Rethinking the Future of Plastics.” It states

that despite many benefits, the current plastic economy has economic as well as

environmental detriments that are becoming more apparent by now: “After a short
first-use cycle, 95% of plastic packaging material value, or $80–120 billion annu-

ally, is lost to the economy. A staggering 32% of plastic packaging escapes

collection systems, generating significant economic costs by reducing the produc-

tivity of vital natural systems such as the ocean and clogging urban infrastructure”

[12, p. 6]. The agenda assesses the up- and downsides of today’s plastic packaging
emphasizing the need to rethink the current plastic economy. A new and systemic

approach and action plan to achieve a better economic and environmental outcome
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are proposed. Thereby, “[t]he circular economy is gaining growing attention as a

potential way for our society to increase prosperity, while reducing demands on

finite raw materials and minimizing negative externalities” [12, p. 3]. The three

main efforts of the New Plastic Economy are to:

1. Create an effective after-use plastics economy by improving the economics and uptake

of recycling, reuse and controlled biodegradation for targeted applications. This is the

cornerstone of the New Plastics Economy and its first priority, and helps realize the two

following ambitions.

2. Drastically reduce leakage of plastics into natural systems (in particular the ocean) and

other negative externalities.

3. Decouple plastics from fossil feedstocks by – in addition to reducing cycle losses and

dematerializing – exploring and adopting renewably sourced feedstocks. [12, p. 16]

World Bank

The World Bank’s Urban Development and Resilience Unit of the Sustainable

Development Network produces the Urban Development Series Knowledge Papers

to discuss the challenges of urbanization. Within this series, a global review of solid

waste management is given by Hoornweg and Bhanda-Tata [13]. This review

comprises global management practices, generation, collection, composition, and

disposal of waste and compares these across different regions of the world. Fur-

thermore, they did not only estimate global amounts and trends but also make

projections on waste generation and composition for the near future in order for

decision-makers to prepare accordingly. Further, they describe practical approaches

and a range of policy options for governments that could be applied in most cities to

encourage waste management practices that will reduce greenhouse gas emissions.

They note that “Poorly managed waste has an enormous impact on health, local and

global environment, and economy; improperly managed waste usually results in

down-stream costs higher than what it would have cost to manage the waste

properly in the first place” [13, p. 11].

In 2015, the World Bank established a Pollution Management and Environmen-

tal Health (PMEH) program that covers technical assistance and financing for

reducing pollution and improving health for all. Three strategic objectives were

formulated to progress toward this goal:

• Help selected countries to significantly reduce air, land, and marine pollution levels and

thereby improve environmental health outcomes

• Generate new knowledge and improve our understanding of pollution and its health

impacts in urban, rural, and marine areas

• Promote increased awareness of environmental health and pollution issues among

policy makers, planners, and other relevant stakeholders in low- and middle-income

countries (LMICs) through dissemination of scientific evidence in this area, including

but not limited to content generated through this program. [14, p. 6]

One component of the PMEH program activities dealing with integrated solid

waste management to reduce land-based pollution in marine environments does

clearly refer to plastic litter. It addresses issues such as upstream control of solid

waste generation to prevent and reduce downstream impacts, focusing on reducing

the inflow of plastic litter into marine environments.
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2.2 Regional-Level Instruments with Focus on the European
Union

Instruments to tackle the problems concerning freshwater (micro)plastics in the

European Union are typically regional agreements, regional programs, legislation,

or activities dealing with specific problems of freshwater (micro)plastics. The

Lisbon Treaty, which aimed at increasing the consistency and coherence of the

EU’s external actions, stated in Article 191 that the EU policy on the environment

shall contribute to preserve, protect, and improve the quality of the environment,

protect human health, utilize natural resources in a prudent and rational way, and

promote measures at international level to deal with regional or worldwide envi-

ronmental problems. In this context, the European directives dealing with various

aspects of environmental protection can be seen. In the light of the increasing

number of scientific publications dealing with the impacts of (micro)plastics on

aquatic environments, especially on aquatic organisms, as well as due to the

transboundary dimension of plastic pollution, the EU is called upon to develop

appropriate policy strategies. As already mentioned, the “water-based policies”

such as water protection (MSFD, WFD) and the “land-based policies” such as

waste management, plastic production and product design, circular economy, and

REACH are affected or likely to be affected by the issue of (micro)plastic pollution

of freshwater systems.

2.2.1 Water-Based Policy

The most important directives for the European water policy are the Marine

Strategy Framework Directive (MSFD) [4] and the Water Framework Directive

(WFD) [7] establishing the legal framework for the protection of European marine

and freshwater environments, respectively. Although both aim at implementing a

good ecological/environmental status, there is a large discrepancy between them

regarding the issue of plastic waste. In the MSFD, waste is defined as one out of

11 qualitative indicators of the good environmental status (descriptor 10 “marine

litter”; for further discussion, see [5]), whereas in the WFD, waste is not mentioned.

In a possible future revision of the WFD (next review due in 2019), this discrepancy

might be clarified.

European Water Framework Directive (WFD)

The WFD has been enacted in October 2000 by the European Commission and

focuses on “maintaining and improving the aquatic environment in the Community

[. . .] ensuring good [water] quality” [7, p. 2]. Therefore, the amount of pollution

entering waterways should be minimized, and the objectives for future water

protection should be set. “It does not set exact regulations, but gives each country

space to fit the national legislation to put it into practice and arranges and coordi-

nates existing European water legislation” [15, p. 80]. In recital 40, it is noted that
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“[w]ith regard to pollution prevention and control, Community water policy should

be based on a combined approach using control of pollution at source through the

setting of emission limit values and of environmental quality standards” [7, p. 4].

Article 10 describes the combined approach for point and diffuse sources in more

detail, “(a) the emission controls based on best available techniques, or (b) the

relevant emission limit values, or (c) in the case of diffuse impacts the controls

including, as appropriate, best environmental practice” [7, p. 13], and points, in this

respect, to further relevant directives.

Even though the 8 years older WFD does not explicitly refer to (micro)plastics or

litter in general, Wesch et al. [16] argued that plastic waste is already indirectly

integrated in the WFD as it currently stands. In their opinion, litter is broadly

associated with relevant quality elements determining the good ecological status

of freshwater systems. Consequently, the occurrence of litter, in particular (micro)

plastics, could considerably influence the water quality. Furthermore, they point out

that a good chemical status of surface waters according to the WFD is achieved

when concentrations of listed chemicals (Annex X, WFD) do not exceed the

environmental quality standards.

In Article 16, strategies against the pollution of water are mentioned in such a

way that “the European Parliament and the Council shall adopt specific measures

against pollution of water by individual pollutants or groups of pollutants

presenting a significant risk to or via the aquatic environment” [7, p. 17].

Approaches described in Article 16 of the WFD result in a list of priority substances

(approved in Annex X). This list registers 45 priority substances or groups of

substances, several of which are applied in plastic products such as di

(2-ethylhexyl)phthalate, nonylphenol, or octylphenol. As far as priority substances

are concerned, the member states are legally obligated to monitor them. However,

the measured total concentration of a substance includes all sources of pollution and

cannot indicate the plastic-related percentage.

Furthermore, Annex VIII comprised an indicative list of the main pollutants,

among others “persistent hydrocarbons and persistent and bioaccumulative organic

toxic substances” as well as “substances and preparations, or the breakdown

products of such, which have been proved to possess carcinogenic or mutagenic

properties or properties which may affect steroidogenic, thyroid, reproduction or

other endocrine-related functions in or via the aquatic environment” [7, p. 68]. This

might include synthetic polymers and their additives. However, (micro)plastics are

not explicitly addressed in the WFD. This discrepancy should be clarified in a

possible future revision of the WFD due by 2019, and an assessment system needs

to be developed.

Water Protection and Wastewater Treatment Directives

To protect the environment from the adverse effects of urban wastewater discharges

and discharges from certain industrial sectors, the European Urban Waste Water

Treatment Directive [17] was adopted in 1991. It concerns the collection, treatment,

and discharge of domestic effluent or mixture of domestic and certain industrial
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wastewater (see Annex III of the directive) and/or rainfall water. The issue of

(micro)plastic is not included, so that adequate amendments might be needed.

Compared to Europe, the US wastewater regulations established by the Federal

Water Pollution Control Act, short Clean Water Act [18], provide the basic

structure for regulating discharges of pollutants and regulating quality standards

for surface waters. The Clean Water Act refers to regulation of wastewater as well

as entry of waste from diffuse sources. Total maximum daily loads of waste are

defined aiming at reducing the waste input to freshwater systems. However, it

should be noted that, for example, under Californian law, debris less than 5 mm

is not considered litter subject to regulation [15, 19, 20]. Accordingly, freshwater

MPs, here too, are currently not considered.

2.2.2 Land-Based Policy

Packaging

The Packaging and Packaging Waste Directive [21] calls on the member states to

implement return, collection, and recovery systems. The manufacturers, importers,

and distributors are directly responsible for reducing packaging waste as well as for

developing their own take-back scheme. The “Green Dot Initiative” covering

several European countries, for example, collects, sorts, and recycles used packag-

ing. Furthermore, it encourages giving packaging waste a value while being

recovered and/or recycled. Hence, the Packaging and Packaging Waste Directive

aims not only at “ensur[ing] the functioning of the internal market and to avoid

obstacles to trade and distortion and restriction of competition within the Commu-

nity” but also at “prevent[ing] any impact [. . .] on the environment of all Member

States as well as of third countries or [. . .] reduc[ing] such impact, thus providing a

high level of environmental protection” [21, p. 3].

The Directive 2004/12/EC of the European Parliament and of the Council of

11 February 2004 amending Directive 94/62/EC on packaging and packaging

waste [22] aims to ensure that recovery and recycling of packaging waste should

be further increased to reduce its environmental impact. With regard to plastics

contained in packaging waste, it sets a minimum recycling target of 22.5% by

weight no later than 31 December 2008, counting exclusively material that is

recycled back into plastics. Annex I gives illustrative examples for criteria of

“packaging” referred to in Article 3(1) of [21]. Here, among others, plastic carrier

bags are mentioned.

Carrier Bags

Meanwhile, the issue of plastic carrier bags is picked up by another amending

directive, known as the Plastic Bags Directive [23]. The Plastic Bags Directive is

for the first time considering not only the management of packaging and packaging

waste but also its consumption. It was adopted in 2015, and its implementation is

currently underway in the member states. It aims at reducing very significantly the

use of single-use lightweight plastic carrier bags. The measures to be taken by the
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member states “may involve the use of economic instruments such as pricing, taxes

and levies, which have proved particularly effective in reducing the consumption of

plastic carrier bags” [23, p. 2]. The original directive on packaging and packaging

waste of 1994 [21] aimed at preventing or reducing the impact of packaging and

packaging waste on the environment. Even though plastic carrier bags are included

in this directive [21], it does not comprise specific measures on the consumption of

such plastic bags.

Waste Legislation

In the present European waste legislation, some strategic elements already exist to

tackle the problem of plastic waste in the environment. The Waste Framework

Directive [24], for example, relates to issues of product design, life cycle thinking,

extended producer responsibility, resource efficiency and conservation, as well as

waste prevention through waste operations. This directive aims at “lay[ing] down

measures to protect the environment and human health by preventing or reducing

the adverse impacts of the generation and management of waste and by reducing

overall impacts of resource use and improving the efficiency of such use” [24, p. 6].

It sets general recycling targets for household waste including plastics “[. . .] by
2020, the preparing for re-use and the recycling of waste materials such as at least

paper, metal, plastic and glass from households [. . .] shall be increased to a

minimum of overall 50 % by weight” [24, p. 11]. Furthermore, in Article 4(1),

an explicit waste hierarchy is defined as a priority order in waste prevention and

management legislation and policy. It gives precedence to waste prevention; reuse

and recycling over recovery, including energy/thermal recovery; and disposal. In

addition to the Waste Framework Directive [24], other directives [25–28] also set

out recovery and recycling targets.

Another key element in waste management is the extended producer responsi-

bility as described in Article 8 of the Waste Framework Directive [24]. Next to this,

it introduces the polluter-pays principle as “guiding principle at European and

international levels. The waste producer and the waste holder should manage the

waste in a way that guarantees a high level of protection of the environment and

human health” [24, p. 4]. Furthermore, “[In] accordance with the polluter-pays

principle, the costs of waste management shall be borne by the original waste

producer or by the current or previous waste holder” [24, p. 12]. The “polluter-

pays principle” is also mentioned in the directive on environmental liability [29]

with regard to the prevention and remedying of environmental damage.

According to the waste management hierarchy as laid out in the Waste Frame-

work Directive [24], disposal of waste is the least preferable option and should be

limited to the necessary minimum. If disposed waste needs to be landfilled, it has to

be sent to landfills, which comply with the requirements of the directive on the

landfill of waste [30]. The main objective of this directive is the prevention and

reduction of negative effects on the environment, including freshwaters, from the

landfilling of waste by introducing strict technical requirements.

In 2014 the European Commission made a legislative proposal [31], which states

that “clear environmental, economic and social benefits would be derived from
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further increasing the targets laid down in Directives 2008/98/EC, 94/62/EC and

1999/31/EC for re-use and recycling of municipal and packaging waste, starting

with waste streams which can be easily recycled (e.g. plastics, metals, glass, paper,

wood, bio-waste)” [31, p. 9]. With regard to the directive on packaging and

packaging waste [21], Article 6 should be amended as follows: “by the end of

2020, the following minimum targets for preparing for re-use and recycling will be

met regarding the following specific materials contained in packaging waste: 45%

of plastic [. . .] and by the end of 2025, the following minimum targets for preparing

for reuse and recycling will be met regarding the following specific materials

contained in packaging waste: 60% of plastic” [31, p. 23]. Concerning the amend-

ment of the directive on the landfill of waste [30], the proposal aims at phasing out

landfilling by 2025 for recyclable waste, including plastics, in nonhazardous waste

landfills. It is also said that “littering, especially of plastic, has a direct and

detrimental impact on the environment and high clean-up costs are an unnecessary

economic burden. The introduction of specific measures in waste management

plans, financial support from producers within the extended producer responsibility

schemes, and proper enforcement from the competent authorities should help

eradicate this problem” [31, p. 11].

Circular Economy Package

The discussion on resource efficiency and waste reduction often refers to a systemic

change from a linear to a circular economy model (see [32]). In 2015, the European

Commission adopted a Circular Economy Package with five priority sectors, among

others plastics. It should “stimulate Europe’s transition towards a circular economy

[. . .] where resources are used in a more sustainable way” [33, p. 1]. The proposed

actions will contribute to “closing the loop” of product life cycles from production

and consumption to waste management and the market for secondary raw materials.

Concerning the future work on the circular economy, the European Commission

schedules a strategy to incentivize plastic recycling (“plastic circular economy

strategy”) for the following years [34].

Industrial Emissions Directive

In general, the Industrial Emissions Directive (IED) [35] aims at preventing,

controlling, and reducing the impact of industrial emissions on the environment

(air, water, and land) ensuring a high level of protection for the environment taken

as a whole. According to this directive, the guiding principle of sustainable pro-

duction shall be developed further. For this purpose, an integrative approach takes

into account not only pollution emissions but also all production processes to

reduce the consumption of resources and energy as well as the environmental

damage caused by operation and post-closure of an industrial plant. For this, best

available techniques have to be applied. In Annex I, categories of industrial

activities giving rise to pollution are listed including the production of organic

chemicals, such as plastic materials (polymers, synthetic fibers).
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Green Paper on a European Strategy on Plastic Waste in the Environment

In 2013 the European Commission released a Green Paper on a European Strategy

on Plastic Waste in the Environment “to launch a broad reflection on possible

responses to the public policy challenges posed by plastic waste,” because these

particular challenges are not specifically addressed in the EU waste legislation at

present despite the growing environmental impact of plastic pollution [36, p. 3].

This Green Paper is the first systematic approach to (micro)plastics in the environ-

ment at EU level. It explicitly refers to the problem of (micro)plastics and their fate

in the environment and the issue of chemicals in and adsorbed to (micro)plastics as

well as examines several policy options to improve the management of plastic

waste in Europe. The Green Paper addresses the following policy options

(as presented by Clayton, 20162):

• Application of the waste hierarchy to plastic waste management
• Achievement of targets, plastic recycling, and voluntary initiatives
• Targeting consumer behavior
• Toward more sustainable plastics
• Durability of plastics and plastic products
• Promotion of biodegradable plastics and bio-based plastics
• EU initiatives dealing with marine litter including plastic waste
• International action

Thus, in its Green Paper, the European Commission clearly addressed

microplastics as part of the waste legislation focusing on mitigation measures.

2.2.3 Chemical Regulation: REACH3

For regulating chemical substances, the European REACH regulation [37] has been

adopted in 2006. REACH addresses not only the production and use of chemicals

but also their potential impacts on both human health and the environment.

According to REACH manufacturers, importers and downstream users have to

register their chemicals. Furthermore, they are responsible for their safe use.

Selected substances are evaluated from public authorities and, if necessary, regu-

lated. Substances of special concern have to go through an authorization procedure.

As far as (micro)plastics are concerned, the European REACH Regulation already

refers to plastic monomers and additives. The assessment of polymers within

REACH is as follows: Because of their high molecular weight, polymer molecules

are considered as being of low concern. They are exempted from registration and

evaluation, unless the content of (unreacted) monomers exceeds certain limits or

they contain certain additives triggering registration and evaluation [38].

2Presentation by Helen Clayton on the European Conference on plastics in freshwater systems,

Federal Press Office, Berlin/Germany, June 21/22, 2016.
3Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals.
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2.3 National-Level Instruments

Many national regulations support reducing the amount of (micro)plastic litter in

freshwater systems. A selection of these is briefly presented in this section that

neither claims to be complete nor to be an assessment. Most of the regulation-based

activities aim at reduction actions preventing the environmental plastic pollution.

In the case of preventing littering, there are several regulatory instruments

conceivable, for example, the prohibition (of any kind) of littering by prosecuting

when disposing litter. Therefore, often a kind of penalty system is established. A

non-exclusive list of countries, which have adopted littering acts, is provided in

Table 1. As an example, the UK littering act is described below in more detail. In

contrast to penalty systems, incentive schemes could be created to encourage a

proper return of, e.g., packaging waste.

Table 1 Non-exclusive list of littering acts

Country Title

Australia:

• Australian Capital Territory Litter Regulations 1993

• New South Wales Protection of the Environment Operations Act 1997

• Northern Territory Litter Act 1972

• South Australia Container Deposit Legislation 1977a

• Tasmania Litter Act 2007

• Queensland Environmental Protection Act 1994

• Victoria Litter Act 1987

• Western Australia Litter Act 1979

United States of America (USA):

• Georgiab Comprehensive Litter Prevention and Abatement Act 2006

• Idahob Comprehensive Litter Prevention and Abatement Act 2006

• Illinoisb Litter Control Act 1974

Ireland Litter Pollution Act 1997

Jamaica The Litter Act 1986

Malta Litter Act 1968

New Zealand Litter Act 1979

Canada, Saskatchewan The Litter Control Act 2015

Scotland Environmental Protection Act 1990

Code of Practice on Litter and Refuse (Scotland) 2006

(COPLAR)

South Africa White Paper on Integrated Pollution and Waste Management

for South Africa 2000

Trinidad and Tobago Litter Act 1973

United Kingdom (UK) Environmental Protection Act (EPA) 1990

Clean Neighbourhoods and Environment Act (CNEA) 2005

Most of the acts have been amended since they took effect
aAim of reducing litter by encouraging recycling
bhttp://www.litterbutt.com/stop-litter/litter-laws-by-state.aspx provides a list of US litter laws
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In the UK, the Environmental Protection Act (EPA) of 1990 stated that it is an

offense to throw down, drop, or otherwise deposit, and then to leave, litter. It

enables bans and fines for littering any public places [39]. The Clean

Neighbourhoods and Environment Act (CNEA) of 2005 amends the EPA, for

example, that a principal litter authority is empowered to specify the amount of a

fixed penalty to be applied for a littering offense [40].

In England, the Code of Practice on Litter and Refuse published by the Depart-

ment for Environment, Food and Rural Affairs in 2006 “applies to all places that are

open to the air, including private land and land covered by water. [. . .] There is no
restriction on the type of litter for which this may be used, but it is intended

primarily to help deal with food and drink packaging and other litter caused by

eating ‘on-the-go’” [41, p. 42f]. In this code, litter is defined as “materials, often

associated with smoking, eating and drinking, that are improperly discarded and left

by members of the public; or are spilt during business operations as well as waste

management operations” [41, p. 11]. In addition, a law has been passed that requires

large shops to charge 5 pence for all single-use plastic carrier bags starting on

5 October 2015. The charge was introduced trying to influence consumer behavior.

In the first 6 months since introducing the charge, the plastic bag usage drops to

approximately 85% [42]. Wales (started charging in 2011), Northern Ireland

(started charging in 2013), and Scotland (started charging in 2014) have also seen

a significant drop in plastic bag usage.

In Scotland, The Litter (Fixed Penalties) (Scotland) Order 2013 [43], entering

into force in 2014, prescribes fixed penalties for discharging any liability to

conviction for the waste (including littering and flytipping) and littering offenses

with reference to the EPA. The Scottish Litter Strategy [44], published in 2014 and

based on research and extensive consultation, has three main goals to reduce and

ultimately prevent litter and flytipping and to encourage personal responsibility and

behavior change: “1. Information - improving communications, engagement and

education around the issue. 2. Infrastructure - improving the facilities and services

provided to reduce litter and promote recycling. 3. Enforcement - strengthening the

deterrent effect of legislation and improving enforcement processes” (retrieved

13.11.2016 from http://www.zerowastescotland.org.uk/litter-flytipping/national-

strategy).

As already mentioned in the section on regional regulation instruments, the

Packaging and Packaging Waste Directive [21] calls on the member states to

implement national deposit and return systems, in which disposed plastics are

collected and recycled to allow their reuse as new packaging. This should contrib-

ute, among others, to a reduction of plastic inputs into freshwater environments. In

Denmark, for instance, Dansk Retursystem A/S is such a privately owned nonprofit

organization that is regulated by a statutory order (see https://www.dansk-

retursystem.dk/). Another example for such a deposit and return system is the

Irish company Repak (see https://www.repak.ie/). Deposit and return systems

incentivize to correctly dispose (plastic) litter and thus provide the advantage to

keep plastics in the economic circle.
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Outside Europe, there are further deposit and return systems. In the USA, for

instance, container deposit laws, known as bottle bills, are currently implemented in

ten states. They require a minimum refundable deposit on beverage containers

(usually 5 or 10 cents) in order to promote a high rate of recycling or reuse to

reduce waste and prevent littering. By the bottle bills, the refund value of the

container provides a monetary incentive to return the container for recycling (see

http://www.bottlebill.org/).

Many countries have implemented waste management plans or schemes to

prevent and reduce waste production, recover through reuse and recycling, and

properly dispose the waste. This helps to prevent environmental pollution including

the pollution of freshwater systems.

The Flanders Public Waste Agency (OVAM), developing and monitoring leg-

islation and policies regarding waste management and soil remediation, initiated

measures that included promoting source separation, subsidizing the construction

of recycling and composting facilities, and discouraging waste. Hence, Flanders,

the Flemish region of Belgium, reused, recycled, or composted almost three-fourths

of the residential waste produced in this region and has also managed to stabilize

waste generation [45]. Furthermore, within the framework of the Flemish Waste

Regulation, general regulations that prohibit any kind of littering have been

implemented.

The Luxembourgian Waste Management Plan [46] aims at preventing and

reducing waste production and pollution from waste; recovering through reuse,

recycling, and other environmentally appropriate methods; as well as disposing

final waste in an environmentally and economically appropriate way. It set quan-

titative targets for recovery and recycling including packaging waste. It states that

“[o]ther avoided emissions include the benefits of recycling of food and garden

waste, paper, glass, metals, plastics, textiles and wood in the municipal solid waste”

[47, p. 10].

Regulation instruments do not only address the end (i.e., waste) but also at the

beginning of product life or product design. For instance, the UK’s The Packaging
(Essential Requirements) Regulations 2003 [48] urge the manufacturer to produce

the packaging that its “volume and weight be limited to the minimum adequate

amount to maintain the necessary level of safety, hygiene and acceptance for the

packed product and for the consumer” and to design their products in such a way so

as to permit its reuse and recovery and to minimize its environmental impact during

the packaging waste disposal. Furthermore, the “Packaging shall be so

manufactured that the presence of noxious and other hazardous substances and

materials as constituents of the packaging material or of any of the packaging

components is minimised with regard to their presence in emissions, ash or leachate

when packaging or residues from management operations or packaging waste are

incinerated or landfilled” [48, p. 7].

In the USA, for instance, the Microbead-Free Waters Act of 2015 [49],

amending the Federal Food, Drug, and Cosmetic Act, prohibits “The manufacture

or the introduction or delivery for introduction into interstate commerce of a rinse-

off cosmetic that contains intentionally-added plastic microbeads.” Here a plastic
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microbead is defined as “any solid plastic particle that is less than five millimeters

in size and is intended to be used to exfoliate or cleanse the human body or any part

thereof” (including toothpaste) [49, p. 1]. In this act, the term “microbead” is

precisely defined. It refers to primary microplastics and thus provides a direct

regulation instrument to tackle the problems related with it, e.g., the pollution of

freshwater systems.

3 Challenges of Current Regulation: Reasons

and Requirements for Future Management

As shown above, policy-makers are very aware of the problems of environmental

plastic waste, and these issues are already considered in several regulatory docu-

ments. Nevertheless, most regulations do not clearly refer to microplastics. There-

fore, this section aims to highlight the open questions and identify the challenges

and the requirements for the future management of MP from the perspective of

scientific authorities.

3.1 Do We Need Regulation of Microplastics at All?

Some critics debate the need for a regulation of MP and question whether it is only a

“media-made” problem. Indeed, the general public’s concern is driven by sensa-

tionalized media reports about enormous numbers of MP in the environment.

However, there is little scientific data on adverse effects caused by relevant envi-

ronmental concentrations of MP. Usually, effects were detected in laboratory studies

that have tested concentrations far above measured environmental concentrations

(see [50] for effects of MP to organisms). So far, only one study reports significant

impacts of MP on fish larvae at concentrations found in coastal waters [51].4

Nevertheless, MPs occur in almost all types of freshwater environments –

ranging from streams in densely populated areas to lakes in almost non-populated

areas, e.g., in Mongolia ([52–55], [19, 56, 57]; see [58, 59] for further discussion).

Additionally, MPs persist over centuries under common environmental conditions

[60]. Thus, in the special case of such extremely persistent pollutants such as MPs,

the motivation for any regulatory efforts should not be based solely on the demon-

stration of adverse effects at current environmental concentrations. If MP input into

the environment continues at the current level, environmental concentrations will

increase dramatically. Ubiquitous detection, persistency, and continuing release

should motivate policy-makers and regulators to act immediately according to the

precautionary principle to stop a further plastic accumulation.

4Note from the editors: The cited publication has been retracted because of scientific misconduct.
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Usually, regulation of pollutants in freshwater systems refers to dissolved

chemicals, which are different to particulate matter with regard to their environ-

mental fate (e.g., homogeneous versus inhomogeneous distribution). Therefore, we

have to critically evaluate the transferability of regulatory options for dissolved

chemicals to the issue of MPs. This represents a similar challenge as we know it

from engineered nanomaterials. The development of regulation strategies for MP

should consider more options than the simple adaptation of the existing regulation

strategies for dissolved chemicals or suspended matter. Possibly, entirely new

regulation strategies for MP in freshwater need to be developed. To start with,

this requires a commonly accepted definition of “microplastics.”

3.2 A Precondition for Regulation: The Definition
of Microplastics

The term “microplastics” turned into a kind of buzzword in public communication

and media, and it is understood as one specific type of pollutant. Hence, expecta-

tions rose to find solutions and regulations, which could consider all materials

summarized by this single term. In contrast, the term “microplastics” refers to a

large group of polymers with various chemical and physical properties, originating

from different sources and entering the environment via different pathways (see

[3, 59]). Accordingly, these differences among MP particles apply to their envi-

ronmental fate and persistence and, consequently, also to their bioavailability and

potential impacts to organisms.

Verschoor [61] identified five commonly applied criteria to define MP: (1) syn-

thetic materials with high polymer content, (2) solid particles, (3)<5 mm, (4) insol-

uble in water, and (5) not degradable. However, several points are still under

discussion; e.g., some experts are still debating if tire abrasion should be considered

as “microplastics” as the monitoring guidance documents for marine litter [62]

categorize rubber originating from tires separately from plastics (discussed in more

detail in [61]). This decision would significantly influence the measurement results

of total environmental MP concentration.

The same applies to the definition of a lower limit for particle size, which is still

under discussion. While it is commonly accepted to define all plastic items <5 mm

as MPs [e.g., 63], some authors categorize MPs into size-based subgroups. The

MSFD Technical Subgroup on Marine Litter [62], for instance, differentiates

between larger MPs (1–5 mm) and smaller MPs (20 μm to 1 mm). Various studies

set particular methodical limits as a lower size limit – e.g., mesh size of the

sampling net or analytical detection limits. As “nano” refers to particles of

1–100 nm [64], the size limit for MPs should consequently start with a lower size

limit of 100 nm. Miklos et al. [65] base their size definition on this idea and suggest

a size range on “microscale” from 100 nm to 100 μm. Depending on the thresholds

defined for these criteria, completely different field concentrations would be
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obtained. Thus, these standards are fundamental for regulation purposes and should

preferably be elaborated scientifically.

The debate about reasonable standards has to face some paradoxical points of

discussion: On one hand, a lower limit for particle size would promote the stan-

dardization of sampling methods (see Sect. 3.5) and, thus, the elaboration of

regulation standards. On the other hand, a lower size limit would exclude small

particles from regulation. As MP particles are expected to continuously disintegrate

into smaller fragments on sub-micrometer to nanometer scale, present MP particles

are future nanoplastic particles, and thus, present regulatory measures on MP will

also impact the future concentrations of nanoplastics. Additionally, sources and

entry pathways are similar for particles with a wide size range. Therefore, it is

questionable to what extent a further differentiation of micro- and nanoplastics is

advantageous for the development of regulatory measures. The same plastic item

might be documented and assessed as one MP particle in a current monitoring but as

many nanoparticles in a future monitoring. From an ecotoxicological perspective,

there is also no lower size limit: The smaller the particles are, the more species

might potentially ingest those (see [50]). Furthermore, smaller particles can per-

meate through membranes and, hence, pose a higher risk for adverse effects in

organisms. Against this background, it seems unreasonable to exclude small parti-

cles from regulation by defining a lower size limit. However, at the same time,

general definitions are essential to bring regulatory measures forward. Measures are

based on monitoring data, and monitoring again requires standardized and gener-

ally accepted methods. Clear guidelines for maximum and minimum particle sizes

considered in sampling and analysis are required to generate reliable and legally

valid monitoring data. Furthermore, regulation needs to assess the current environ-

mental status with knowledge on the ecotoxicological impacts on organisms. As

described, ecotoxicological effects are strongly related to particle size, which

determine ingestion, membrane permeation, etc. Apart from size limits, regulators

should think about an appropriate categorization of particle size classes. To con-

clude, final definitions of certain standards are fundamental for regulation purposes

and should preferably be elaborated scientifically.

A first attempt to pave the way for future standards has been done by an ad hoc

group (AHG) “Microplastics” under the International Organization for Standardi-

zation (ISO) Technical Committee (TC) 61 “Plastics.” ISO decided to join all

forces concerning environmental standards on the plastic issue under this technical

committee in order to avoid duplicate work. The scope of this TC is standardization

of nomenclature, methods of test, and specifications applicable to materials and

products in the field of plastics. The AHG recommended to start a preliminary work

item for an ISO technical report “Plastics: Recommendations for the Development

of Standards for Investigations of Plastics in the Environment and Biota.” It is

generally agreed that a global environmental problem needs globally agreed stan-

dardization approaches covering the whole range from sampling to effect assess-

ment in order to provide a basis for risk assessment and regulatory options.
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3.3 Regulation by Groups?

Besides their size, MP particles vary regarding further physicochemical properties.

For regulators, the question follows if a single regulation strategy can address such

a comprehensive group of diverse polymers or if it would be more reasonable to

tailor regulations specifically to subgroups, especially since (micro)plastics do not

solely consist of pure polymers but contain also a number of additives such as

plasticizers, UV filters, antioxidants, etc. that alter product properties. Thus, the

heterogeneity within the term “microplastics” arises from myriads of combinations

of polymers and additives. To make things even more challenging, those additives

can change the physicochemical properties and, consequently, also the environ-

mental behavior of particles (for details, see [66]). Therefore, it seems reasonable to

develop particular regulatory options focusing on special subgroups. This, in

consequence, leads to the question about the main criteria required for a categori-

zation into single groups. Of course, any categorization is depending on the

regulatory context and the life stage of a product, as described below. While it

can be useful to categorize into very specific subgroups for specific regulatory

purposes, in other cases, it might be more efficient to evaluate the whole group

of MPs.

As a first approach for MP assessment in freshwater environments, Miklos et al.

[65] suggest a modular system starting with the quantification of selected indicator

polymers. As soon as the concentration of these polymers exceeds a certain level,

more specific analyses should be conducted. These subsequent analyses can take

various criteria (such as polymer type, size, shape, additives, etc.) into consider-

ation to further categorize the particles and support the selection of adequate

mitigation measures. Here, approaches from chemical regulation might serve as

examples.

Chemicals can be categorized based on molecular similarities (e.g., PAHs,

PCBs, etc.), by the field of application (e.g., pesticides), or according to their

mode of action (e.g., endocrine disruptors). So far, mainly sum parameters for

molecularly similar chemicals are implemented to freshwater directives (e.g.,

dioxin þ dlPCB, cyclodiene pesticides, EU WFD). Similarly, MPs could be

grouped based on their physicochemical properties (e.g., polymer type, density),

by their application fields (e.g., cosmetics, carrier bags, electrical devices), or by

(eco)toxicological impacts. The latter might be difficult as little is known about the

biological effects of MP, and it will take time to generate comprehensive data (see

[50]). In contrast to chemical pollutants, MP can cause both chemical and addi-

tionally mechanical effects on organisms. Chemical effects could be caused by the

polymers themselves, by their additives, or by a combination of both. Similarly, an

occurrence of mechanical effects could depend on particle size, particle shape, or a

combination of both. It follows that (eco)toxicologists face the challenge to test the

effects of myriads of combinations. Hence, there are efforts to prioritize and start

with the presumed most harmful combinations. Ideally, these results will be

transferable to a group of similar combinations.
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However, ecotoxicity-derived groups are not necessarily suitable for regulation

purposes: As each MP particle has unique physicochemical properties (individual

polymers, additives, size, shape, etc.), it will induce a unique set of modes of action.

Accordingly, one would – in theory – need to perform a multiple stressor assess-

ment of each single particle, which is in itself a complex mixture. From a practical

perspective, the integration from multiple stressors in risk assessment is

challenging – traditionally each stressor is considered individually. For instance,

existing regulations refer to the total concentration of suspended particulate matter

(SPM) or for single pollutants adsorbed to SPM. Currently, chemical and particu-

late parameters are not integrated – as would be required for MP regulation.

Hence, an alternative approach to categorize MP for regulation might by the

field of application or by the source for environmental entry. Plastics are used in a

wide range of applications including packaging, construction materials, cosmetics,

electrical and even medical devices, etc. Obviously, distinct regulatory measures

are required to manage the proper recycling of electronic devices compared to

throwaway packaging materials or to reduce MP in cosmetics – even though the

same polymers might be used in these completely different products. In conse-

quence of their broad use, (micro)plastics enter ecosystems via various pathways.

Hence, regulatory measures must not necessarily refer to groups based on MP

properties but can also act on groups of sources or entry pathways such as waste-

water, incorrect disposal, or agricultural runoff.

As we have seen above, we have different options of grouping MPs. The

microbead ban, to name just one example from practice, clearly categorizes MPs

by the field of application (cosmetics/personal care products). Which characteristics

one select for categorization depends on the regulatory context.

Environmental policy has developed a long list of general and specific manage-

ment options applicable to a variety of environmental issues (including waste

management and water resource management). Some of these might be adopted

for the regulation of MPs.

3.4 General Regulation Options by Environmental Policy:
Applicable for MP?

Environmental policy aiming at protecting ecosystems and improving the environ-

mental status can be implemented by various regulatory instruments and measures.

An intervention can take place on different statutory levels – ranging from volun-

tary commitments to legally binding bans of certain materials. Furthermore, the

interventions can differ regarding the implementation level – including direct

regulation of production and application of materials, improvement of waste and

water management, and long-term measures aiming at social awareness and chang-

ing of behavior. Exhaustive compilations regarding environmental policy instru-

ments are given, e.g., by the OECD [67, 68]. Some of those generally applicable
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instruments might be transferable to the regulation of MP in freshwater environ-

ments. In Fig. 2, some examples are categorized according to the three main types

of environmental policy into “regulative,” “economic,” and “persuasive” instru-

ments. Each category comprises instruments from different statutory and imple-

mentation levels. Within each main category, we rated the instruments from “hard”

to “soft,” depending on how strict measures would affect the application of certain

materials. On the horizontal scale, the figure emphasizes the gradient from a

“direct” to an “indirect” influence of the regulatory action. The figure does not

provide a full compilation of policy tools but rather gives an overview of the range

of possible instruments on different implementation levels that could be of interest

for the regulation of MP.

In the case of MPs, the choice of regulatory instruments depends on several

aspects. It is conceivable that “command and control” (CaC, Fig. 2) instruments

such as bans or limitations could either apply to certain polymers, to additives, or to

their combination. Similarly, they could be limited to a certain field of application.

Measures targeted on certain fields of application could either relate to specific
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rising

• Re-thinking

Fig. 2 Instruments of environmental policy, which might be applicable to a regulation of (micro)

plastics in freshwater environments (based on [68])
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materials or to MPs in general. To give an example, food packaging should not

contain any polymers or polymer-additive combinations that could pose any risk to

human health by leaching into food products. The same polymer-additive combi-

nation might be less harmful in products without direct contact to food and

environment. Hence, limitations can be restricted to certain fields of application –

provided that proper waste management ensures competent disposal or recycling.

In contrast to the above given example, the Microbead-Free Waters Act 2015

[49] applies not solely to selected materials but bans MPs in general from an

application in personal care products (for details, see Sect. 2.3). In rinse-off

cosmetic products, where MPs could easily be replaced with natural materials

that have similar functions, an entry of MPs into the environment is consciously

accepted. “Hard” measures, such as bans and limitations, can potentially be applied

to plastic applications that are either not needed for the function of a product or do

not benefit the user or can easily be replaced by other materials. In contrast, “softer”

instruments need to be applied in areas in which the use of plastics is indisputable

(e.g., medical devices).

Regulatory instruments to reduce the emission of MP into the aquatic environ-

ment need not necessarily affect production or application but can also be related to

an improvement of the management of wastewater and solid waste. Requirements

on improved technical standards can be implemented on different levels in a

product life cycle. Starting with product design, the range of possibilities includes

degradable polymers, polymers with high recycling quotas, or a product design

promoting a long and circular product life to reduce waste (see [32]). At the end of

product life, enhanced recycling systems can prolong the service time of raw

materials to avoid disposal. Any emission of unavoidable waste to the environment

needs to be reduced by further regulations. This might be achieved by technical

innovations (“CaC”) or by a stricter product responsibility from the producer side

(“liability”).

Economic measures to achieve environmental goals are well known from other

fields. They range from imposing financial burden (e.g., taxation) to flexible

systems with tradable permits (e.g., CO2 emission trading) and to financial incen-

tives for increasing recycling rates, to name just a few. With regard to the latter,

recycling rates for plastic bottles and further containers for water, soft drinks, milk,

etc. increased considerably since the introduction of a container deposit system in

several European countries. Deposit systems would be transferable to further

plastic-based products (e.g., packaging, carrier bags, etc.)

One of the most sustainable measures would be a social change, with regard to a

transformation from a society with linear resource use toward a recycling society,

valuing plastics as a precious resource. To achieve such long-term objectives,

policy can apply so-called persuasive instruments such as public information,

environmental education, and funding of research and development. Compared to

the instruments on the left side of Fig. 2, these measures are softer, and effects are

less direct. Nevertheless, they might lead to long-lasting input reduction of plastics,

MPs, and even further pollutants into the environment.
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In case of the heterogeneous group of (micro)plastics, it is important to develop a

set of different measures to tackle the problem from different sides. This set might

include measures well known from similar environmental issues, ideally

complemented with new and specific strategies. The choice of suitable measures

depends on the characteristics of the plastics under regulation, on their intended

application, and on their current stage of product life cycle. With regard to the

latter, various regulatory measures can be applied to one plastic product, as the

regulatory responsibilities change during product life. The main stages of product

life are schematized in Fig. 3 to emphasize that the management of plastics involves

different regulatory authorities as well as various addressees.

As we have seen above, various CaC measures can affect plastic products mainly

at the beginning (production, product design) and end (recycling, disposal) of

product life. During the actually intended use and function of the product, regula-

tory measures address consumers and are often realized by financial or persuasive

measures. Regulations related to freshwater do usually not concern the intended

product life. Plastics usually enter into freshwater systems in consequence of

incorrect disposal or insufficient treatment after their intended product life has

e.g. Plastic Bags
Directive (section 2.2.2)

Use
e.g. Deposit and return
systems (section 2.3)
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Regulatory
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Fig. 3 Main stations in the life cycle of plastic products. Regulatory responsibilities and

addressees of regulatory measures change during product life. Examples for regulatory instru-

ments are given for each stage of product life. Environmental plastics mostly occur from incorrect

disposal of plastic products after their intended product life has expired
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expired. Hence, regulatory measures in early product life stages should minimize

plastic waste that could be released into the environment.

However, currently (micro)plastics enter freshwater systems, and monitoring

programs need to evaluate the environmental status quo to develop adequate

measures. For instance, the type of (micro)plastic and its entry path into the

environment should be considered: Depending on their application, plastics enter

the environment as macroplastics, secondary microplastics, or primary

microplastics (for definition, see [3]). The regulation of primary MP seems to be

closer related to the regulation of chemical pollutants: production, application, and

entry into the environment are traceable to a certain extent. In freshwater monitor-

ing, source and polluter can potentially be identified, similar to chemical polluters.

It has to be noted that the application of some primary MPs even accepts its

intended entry into the water cycle, for instance, in the application of MPs in

personal care products or as blasting abrasives for cleansing of surfaces (e.g.,

wheel rims of cars; [69, 70]).

Secondary MPs, in contrast, are not easily traceable due to their various sources

and entry pathways. As to their potentially long fate in the environment, the polluter

can rarely be identified, and, as a result, it is hardly possible to apply the polluter-

pays principle. Secondary MPs usually originate from larger plastic products,

which are originally intended to be correctly recycled or disposed. Incorrect

disposal (by purpose or because of lacking waste management) leads to fragmen-

tation and distribution of smaller particles in environmental systems. Thus, regula-

tory measures should intervene before an unintended fragmentation of plastics into

MPs can occur. Reasonable strategies should have positive effects on a global level

and should be able to prevent the (micro)plastic problems even in regions that lack

proper waste management (see [32]).

3.5 Standardization of Sampling and Analysis

The implementation of any regulation measure implies the existence of reliable

monitoring data on the status quo and temporal trends in the environment.

In environmental monitoring for regulatory purposes, standardized and harmo-

nized procedures are a prerequisite for reliable, generally accepted, and justiciable

data acquisition. On several conferences on plastics in the environment, stake-

holders agreed that there is a considerable – not to say a complete – lack of

standards for sampling, sample preparation, chemical analysis, and the analysis of

biological effects in the field of plastic contamination. A fundamental challenge lies

in the fact that the issue of plastic materials in different environmental compart-

ments differs from classical environmental monitoring and assessment issues.

Classical monitoring of chemical contamination, e.g., according to the EU WFD,

mainly addresses dissolved or particle-bound chemicals in the waterbody or in

biota. The plastic contamination issue concerns undissolved material with an

extremely inhomogeneous distribution pattern. Up to now, knowledge about
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representative sampling in wastewater streams and rivers under different hydrolog-

ical conditions is missing. The picture is similar for sample processing, chemical

analysis, sample throughput, and biological effect methods. Crucial criteria like

water depth for sampling or mesh size of sampling nets need to be standardized. As

mentioned above, such criteria can significantly influence the monitoring results. A

marine study conducted in Swedish coastal waters revealed 105-fold higher con-

centrations of MP using 80 μm nets compared to 450 μm nets [71].

Besides a lack of sampling guidelines, no standardized methods for chemical

analysis of MP particles in environmental samples exist, so far. The problem starts

with sample processing which is a precondition for a precise analysis of plastic

particles. Several methods are under development (as summarized in [58]). Some

of them are time and work intensive; others are suspected to corrode the plastic

items. A generally accepted method for extensive application has still to be

developed. However, the required sample cleanup depends on the analysis methods

applied. Currently, two main directions of analytical methods are applied to identify

MP: spectroscopy and thermogravimetry (see [58]). For both, several techniques

exist for the identification of polymer types. However, the choice of a certain

technique is determining the outcome less than the choice of the main direction

of methods: Spectroscopic methods (e.g., IR microscopy or Raman) can lead to

an exact definition of single particles regarding size, shape, color, and main

polymer type but are not appropriate for exact mass balancing. In contrast,

thermogravimetric methods (e.g., TED-GC-MS or pyrolysis GC-MS) can quantify

the exact mass of certain polymers in environmental samples – but thermal degra-

dation of particles does not allow any further characterization of particles. Both

directions are appropriate to answer specific questions. (Waste)water management

will be more interested in mass balances, while ecology and water conservation will

rather ask for an exact description of particle size distribution in order to assess the

risk to organisms.

3.6 Mass Balance Versus Particle Characterization
as Criterion for Regulation

The choice of mass versus particle concentration depends on the aims of regulation.

To give some examples:

The EU MSFD [4] aims to regulate the contribution of plastic waste from single

member states to the marine environment via rivers. Here, it seems obvious for the

regulation to require information on mass balances instead of particle numbers

because (1) the regulation aims to impose financial penalties depending on the

contribution of each state to the overall plastic load and (2) plastic particles may

disintegrate and break into more pieces on their way through different countries. If

regulation should refer to the impact on freshwater ecosystems, it will ask about

ecotoxicological effects of MP, for instance. Hence, such regulation requires
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information on particle number, shape, and size distribution to assess a potential

ingestion by organisms and resulting adverse effects. Table 2 gives an overview on

the advantages and disadvantages on both sides.

Apart from any discussion about numbers versus mass balances, further discor-

dances reduce the comparability of monitoring data. Currently, masses or numbers

are reported in various units as per m2 water surface, per m3 water volume, per m2

sediment surface, per liter sediment, or per kg sediment, to name just a few. For

regulation purpose, comparable units need to be defined and generally applied.

3.7 Adaptation of Ecotoxicological Test Systems

The previous paragraphs discuss the challenges related to the exposure assessment of

MPs. Furthermore, comprehensive hazard assessment is required to evaluate the

environmental risk ofMPs and subsequently formulate reasonable regulation strategies.

As described above, particulate pollutants behave differently than dissolved chemicals,

and thus, an adaption of test systems of toxicity tests for dissolved chemicals could be

required. With regard to this, there is some experience from studies on engineered

nanomaterials (see [72]). Researchers can learn from those experiences; however, they

need to consider that physicochemical properties of MP might lead to again different

behavior in test systems. High-density polymers will sink to sediments. Hence,

sediment-living species are required – comparable to the testing of highly lipophilic,

sediment-bound chemicals. Vice versa, low-density polymerswill float andwill only be

available for surface-feeding organisms. Those will be at higher risk in environmental

systems as they might feed selectively on floating materials and accumulate them from

the water phase. Chemical testing is usually not focused on this feeding type.

Furthermore, MP particles can impact organisms in various manners – chemically

and mechanically (see [50]). One particle can be seen as a multiple stressor itself.

Hence, ecotoxicologists have to face different challenges and to adapt common test

systems and endpoints. Potentially, the chosen endpoints of mono-substance test

designs simply overlook the effects of MP. Fundamental research would be required

Table 2 Overview of the advantages and disadvantages of mass balance versus particle

characterization as criteria for regulation

Particle concentration Mass concentration

Pro Contra Pro Contra

• Information about

size, shape, color

! Ecotoxicological

relevance

! Distinguish primary

and secondary MP

➢ Enables source

tracking

• No exact mass

quantification

• Exact mass

quantification

• No further charac-

terization of

particles• Snapshot

! Due to continu-

ous fragmenta-

tion under

environmental

conditions

• Fits to conven-

tional regulation

options

! Less

information

Appropriate for ecotoxicological questions Appropriate for water management
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to formulate the right questions and to adapt or develop suitable test designs with

adequate endpoints. This also applies to biomarkers used in field studies.

Above all, scientists should consider that organisms are adapted to natural

particles of different materials (sand, clay, or similar), but with similar properties

as MP, in their natural habitats. It is crucial to perform tests on MP particles in

comparison with such natural particles. This applies especially to tests regarding the

“Trojan horse effect” – the transport of hydrophobic substances via MP into

organisms (see [50]). Studies need to address whether there are differences in the

sorption of chemicals to MP versus natural particles and, consequently, in the

impact to organisms. In fact, there are regulations for priority substances bound

to suspended matter – and MP particles are included in the suspended matter.

Unfortunately, most ecotoxicological studies lack a direct comparison of suspended

matter spiked with chemicals toward spiked MP particles. Knowledge about those

aspects could help to prioritize regulatory questions.

3.8 The Information Base for Regulation: Too Scarce? Too
Much? Inapplicable?

Even though scientists continuously provide new findings about MPs, it still

provides a huge challenge for numerous scientific fields. The group of MPs

comprises particles with countless physicochemical properties determining their

environmental fate and risk to organisms. It seems to be a playground for

researchers to investigate open questions ranging from degradation process,

uptake by organisms, and interaction with chemicals to special surface properties

of aged plastics. Knowledge about those aspects is fundamental but in sum too

complex to be considered for regulation.

We have to formulate what information is needed for regulation and what kind

exceeds the scope of generalized regulation instruments. While the current lack

of knowledge is obvious, this should not serve as a general excuse for delaying

an implementation of regulation instruments for those persistent materials.

To refer to the initial statements of this chapter, we have to ask ourselves

which kind of knowledge is required to justify the need for regulation of highly

persistent MP?

While we can clearly state that regulatory strategies for a reduction of environ-

mental (micro)plastics are urgently needed, many questions about the implemen-

tation of monitoring and regulatory strategies are still open:

• How to define microplastics?

• Can we adopt existing regulative options or do we need to develop new

strategies?

• Which criteria can categorize MPs for regulatory purpose?

• Which particles have to be regulated with priority?

• Which monitoring methods can adequately answer regulatory questions?
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• How should standardization of monitoring methods look like?

• How can ecotoxicological test designs be adopted for an assessment of com-

bined chemical and mechanical effects?

• What are the relevant sources and pathways into the environment?

• Which measures can reduce MP entry into the environment?

However, the list of questions could be continued far beyond the one above –

especially with regard to different perspectives as human toxicology, drinking

water supply, etc. exceeding the scope of this freshwater-related chapter. Never-

theless, it emphasizes the need of interdisciplinary cooperation to address the issue

of freshwater (micro)plastics.

4 Conclusions

This chapter provided a rough overview of the existing regulation instruments

developed at international, regional, and national levels to address freshwater

(micro)plastics. While several regulations address plastics, concrete regulations

on microplastics – especially with regard to freshwater systems – are rare. Hence,

we discussed possible reasons for that and formulated a list of questions to be

answered with priority.

Despite many open questions, we want to conclude that:

• In our point of view, regulation of freshwater (micro)plastics is urgently

required.

• An important step toward the management of environmental (micro)plastics has

been accomplished by awareness raising in society and policy.

• International and intergovernmental bodies already discuss measures to reduce

environmental plastics (e.g., UN, G7, World Bank, World Economic Forum)

• So far, policy-makers integrated the (micro)plastic issue into a few regulatory

directives on international and national level.

• These regulations concern diverse fields of policy (e.g., chemical regulation,

waste management, water resource management).

• Environmental policy provides a long list of instruments, which might be

adopted to develop further management options for the issue of MP.

Nevertheless, further research should be promoted to fill current knowledge

gaps. The compilation of challenges for regulation and management as presented

in Sect. 3 highlights the most important needs from the perspective of freshwater

monitoring. Thus, the key issues to be tackled in a systematic approach are:

• Microplastics are a heterogeneous group of pollutants.

• Hence, a definition of regulatory (sub)groups is as important as the definition of

MPs itself in order to define management options more precisely.

• As MPs are mainly derived from larger plastic items, its management needs to be

closely linked to the regulation of plastic production, consumption, and litter.
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• MPs in the freshwater environment are already outside their intended product

cycle. Hence, it is difficult to address responsible stakeholders (producer, con-

sumer, waste manager, etc.).

• Thus, it is even more important to clarify entry pathways into aquatic environ-

ment, to define standardized methods for exposure and hazard assessment, and to

work in an integrated approach.

An adequate regulation of environmental (micro)plastics is a huge challenge for

research and policy. As plastics influence all parts of society, single fields of science

or policy cannot tackle this issue individually. During the lifetime of a single plastic

product – from design and production to trade and consumption to the correct

recycling or disposal at the end of its functional product life – regulatory respon-

sibilities change. This provides various possibilities for regulators to intervene

before plastics enter the environment. However, it requires an interdisciplinary

coordination of measures on different statutory, political, economic, and social

levels.

Only the interplay between all stakeholders from all countries results in success.

(Micro)plastic particles do not respect political frontiers and, thus, accumulate in

interregional waterbodies. For this reason, the need to treat this emerging environ-

mental issue in an international context is increasing. Although – or precisely

because – we currently know little about the consequences of MPs in aquatic

systems, we should develop and implement measures to reduce further emissions.

This is especially true regarding the high persistence and accumulation of these

materials in the environment and in accordance with the precautionary principle.
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Baltruschat B, Brennholt N, Kochleus C, Reifferscheid G, Koschorreck J Conference on

plastics in freshwater environments. pp 16–71. UBA Dokumentationen 05/2017. ISSN 2199-

6571

3. Lambert S, Wagner M (2017) Microplastics are contaminants of emerging concern in fresh-

water environments: an overview. In: Wagner M, Lambert S (eds) Freshwater microplastics:

emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-

5_1 (in this volume)

4. EU (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June

2008 establishing a framework for community action in the field of marine environmental

policy. Marine Strategy Framework Directive (MSFD). http://eur-lex.europa.eu. Retrieved

4 May 2009

5. Chen C-L (2015) Regulation and management of marine litter. In: Bergmann M, Gutow L,

Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 185–200

268 N. Brennholt et al.

http://eur-lex.europa.eu


6. Gordon M (2006) Eliminating Land-based discharges of Marine Debris. In: California State

Water Resources Control Board. California: A Plan of Action from The Plastic Debris Project.

Sacramento

7. EU (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October

2000 establishing a framework for Community action in the field of water policy. Water

Framework Directive (WFD). http://eur-lex.europa.eu. Retrieved 4 May 2009

8. EU (2007) The Lisbon Treaty. http://www.lisbon-treaty.org/wcm/. Retrieved 09 Nov 2016

9. UN (2015) Transforming our world: the 2030 Agenda for Sustainable Development. Resolu-

tion No. A /RES/70/1 adopted by the General Assembly of the United Nations on 25 Sep 2015

10. G7 (2015) Leaders’ Declaration G7 Summit, 7–8 June 2015. Schloss Elmau, Germany, pp

17–18

11. G7 (2015) Annex to the Leaders’ Declaration G7 Summit, 7–8 June 2015. Schloss Elmau,

Germany, pp 9–11

12. WEF (2016) The New Plastics Economy: Rethinking the future of plastics. Industry Agenda

by the World Economic Forum. p 36. https://www.weforum.org/reports/the-new-plastics-

economy-rethinking-the-future-of-plastics/

13. Hoornweg D, Bhada-Tata P (2012) What a Waste - A Global Review of Solid Waste

Management. Urban Development Series Knowledge Papers No. 15. p 116. http://

siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-

1334852610766/What_a_Waste2012_Final.pdf

14. PMEH (2016) Supporting Pollution Action for Health. Pollution Management & Environmen-

tal Health Program Annual Report 2016. p 56. http://documents.worldbank.org/curated/en/

905491479734253523/pdf/110353-AR-PMEHAnnualRprtFINALWEBHI-PUBLIC.

pdfREACH. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of

18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of

Chemicals

15. Gorycka M (2009) Environmental risks of microplastics. Faculteit der Aard- en

Levenswetenschappen, Vrije Universiteit Amsterdam, Amsterdam, p 171

16. Wesch C, St€ofen A, Klein R, Paulus M (2014) Microplastics in freshwater environments: a

need for scientific research and legal regulation in the context of the European water frame-
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Microplastic: What Are the Solutions?

Marcus Eriksen, Martin Thiel, Matt Prindiville, and Tim Kiessling

Abstract The plastic that pollutes our waterways and the ocean gyres is a symp-

tom of upstream material mismanagement, resulting in its ubiquity throughout the

biosphere in both aquatic and terrestrial environments. While environmental con-

tamination is widespread, there are several reasonable intervention points present as

the material flows through society and the environment, from initial production to

deep-sea microplastic sedimentation. Plastic passes through the hands of many

stakeholders, with responsibility for environmental contamination owned, shared,

or rejected by plastic producers, product/packaging manufacturers, government,

consumers, and waste handlers.

The contemporary debate about solutions, in a broad sense, largely contrasts the

circular economy with the current linear economic model. While there is a wide

agreement that improved waste recovery is essential, how that waste is managed is a

different story. The subjective positions of stakeholders illuminate their economic

philosophy, whether it is to maintain demand for new plastic by incinerating
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Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile

Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI),

Coquimbo, Chile

Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
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postconsumer material or maintain material efficacy through recycling, regulated

design, and producer responsibility; many proposed solutions fall under linear or

circular economic models. Recent efforts to bring often unheard stakeholders to the

table, including waste pickers in developing countries, have shed new light on the

life cycle of plastic in a social justice context, in response to the growing economic

and human health concerns.

In this chapter we discuss the main solutions, stakeholder costs, and benefits. We

emphasize the role of the “honest broker” in science, to present the best analysis

possible to create the most viable solutions to plastic pollution for public and

private leadership to utilize.

Keywords Extended producer responsibility, Marine debris solutions,

Microplastic, Plastic marine pollution, Recycling, Reuse

1 Research Conclusions Guide Solutions

Since 2010 there have been more research publications about plastic marine

pollution than in the previous four decades, bringing the issue mainstream as a

robust field of science and in public discourse. Much of what we know can be

summarized in three conclusions: fragmented plastic is globally distributed, it is

associated with a cocktail of hazardous chemicals and thus is another source of

hazardous chemicals to aquatic habitats and animals, and it entangles and is

ingested by hundreds of species of wildlife at every level of the food chain

including animals we consider seafood [1].

Global Distribution ofMicroplastics The global distribution of plastics is a result

of the fragmentation and transportation by wind and currents to the aquatic envi-

ronment, from inland lakes and rivers to the open ocean and likely deposition to

coastlines or the seafloor [2]. New studies are showing increasing abundances of

microplastic upstream, showing that microplastic formation is not limited to the

sea, though it was discovered there.

The first observations of plastic in the ocean were made in 1972 in the western

North Atlantic consisting of preproduction pellets and degraded fragments found in

plankton tows [3]. Studies in the North Pacific [4, 5], and South Atlantic followed

[6]. Scientists were beginning to understand the global implications of fragmented

plastics traveling long distances. “Data from our oceanic survey suggests that

plastic from both intra- and extra-gyral sources becomes concentrated in the center

of the gyre, in much the same fashion that Sargassum does [7].”

In 2001 Captain Charles Moore published his discovery of an accumulation of

microplastics in the North Pacific Subtropical Gyre [8]. This finding might have

joined the trickle of research that had been published in the previous quarter

century, but sensationalized media stories reported fictional islands of trash con-

verging in the ocean that were forming garbage patches twice the size of Texas.
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This subsequently catalyzed the attention, interest, and concern of the public,

policymakers, industry, and science.

Regional and global estimates of floating debris have come forth [9, 10]. Esti-

mates of environmental concentrations have ranged from 8 million tons of plastic

leaving shorelines globally each year [11], compared to one estimate of a quarter

million tons drifting at sea [12]. This represents a huge disparity suggesting that

plastics sink, wash back ashore, or fragment long before they arrive in the subtrop-

ical gyres. Analysis of the size distribution of plastic in the oceans has found

hundred times less microplastics than expected [10, 12], supporting the suggestion

that fragmented microplastics do not survive at the sea surface indefinitely and

likely invade marine food chains before moving subsurface to be captured by

deeper circulating currents and ultimately deposited as sediment. Recent studies

have unveiled microplastics frozen in sea ice [13] and deposited on shorelines

worldwide [14] and across the sea floor [15, 16], even the precipitation of synthetic

fibers as fallout from the skies [17]. Collectively, these observations suggest

widespread contamination in all environments.

Inherent Toxicity and the Sorption of Pollutants While plastic products enter-

ing the ocean represent a range of varied polymers and plasticizers, many absorb

(taking in) and adsorb (sticking to) other persistent organic pollutants and metals

lost to the environment, resulting in a long list of toxicants associated with plastic

debris [18]. Gas stations will sometimes use giant mesh socks full of polyethylene

pellets draped around storm drains to absorb hazardous chemicals before they reach

the watershed. In the aquatic environment, plastic behaves similarly, mopping up

chemicals in surrounding water. Several persistent organic pollutants (POPs) bind

to plastic as it is transported through the watershed, buried in sediment, or floating

in the ocean [19, 20]. A single pellet may attract up to one million times the

concentration of some pollutants in ambient seawater [21], and these chemicals

may be available to marine life upon ingestion.

The chemistry of plastic in consumer products raises human health as well as

ecological concerns. For example, they include polyfluorinated compounds

(“PFCs”) [22–24] and the pesticide/sanitizer triclosan [25, 26], also used in over-

the-counter drugs, antimicrobial hand soaps and some toothpaste brands, flame

retardants, particularly PBDEs [27, 28], and nonylphenols. Bisphenol A (BPA), the

building block of polycarbonates, and phthalates – the plastic additive that turns

hardened PVC into pliable vinyl � are both known endocrine disruptors [29, 30].

This is not surprising in the case of BPA, which was invented as a synthetic

estrogen [31], yet proved to be a usable form of plastic. Exposure may come from

the lining of metal cans for food storage [32], CDs, DVDs, polycarbonate dishware,

and receipt paper from cash registers. BPA has been linked to many developmental

disruptions, including early puberty, increased prostate size, obesity, insulin inhi-

bition, hyperactivity, and learning disabilities [33]. Phthalates are similarly prob-

lematic as endocrine disruptors [34], with effects including early puberty in

females, feminization in males, and insulin resistance [35]. Different phthalates
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are found in paints, toys, cosmetics and food packaging, added for the purpose of

increasing durability, elasticity, and pliability. In medical applications, such as IV

bags and tubes, phthalates are prone to leaching after long storage, exposure to

elevated temperatures, and as a result of the high concentration present – up to 40%

by weight [36]. Although phthalates metabolize quickly, in a week or less, we are

exposed continuously through contact with associated products.

Widespread Effects on Marine Life Of the 557 species documented to ingest or

entangle in our trash, at least 203 [1] of them are also ingesting microplastic in the

wild, of which many are fish [37] and other vertebrates [38, 39]. In addition,

laboratory data suggest a growing list of zooplankton [40], arthropods [41], mol-

lusks [42], and sediment worms [43] is also susceptible, along with phytoplankton

interactions that may affect sedimentation rates [44]. In addition, examples of clams

[45] and fish [46] recovered from fish markets have been found with abundant

microplastics in the gut. A study of mussels in the lab demonstrated that 10 μm
microplastics were translocated to the circulatory system [47], leading to studies

that now demonstrate evidence that micro- and nanoplastics can bridge trophic

levels into crustaceans and other secondary consumers [48, 49]. Ingested

microplastic laden with polybrominated diphenyls (PBDEs) may transfer to birds

[50, 51] and to lugworms [52]. The evidence is growing that there are impacts on

individual animals including cancers in fish [53] and lower reproductive success

and shorter lifespan in marine worms [43]. Some studies even show impacts to

laboratory populations: one study of oysters concludes that there is “evidence that

micro-PS (polystyrene) cause feeding modifications and reproductive disruption

[. . .] with significant impacts on offspring” [54].

While some research shows that plastic can be a vector, or entry point, for these

toxicants to enter food webs, others do not. Some studies of microplastic ingestion

have shown that complete egestion follows, as in the marine isopod Idotea
emarginata [55], or ingestion of non-buoyant microplastics by the mud snail

Potampoyrgus antipodarum, which showed no deleterious effects in development

during the entire larval stage [56]. A recent review concluded that hydrophobic

chemicals bioaccumulated from natural prey overwhelm the flux from ingested

microplastic for most habitats, implying that microplastic in the environment is not

likely to increase exposure [57].

Section Summary These three themes dominate the literature today, with an

increasing resolution on ecotoxicology and human health. Understanding the fate

of micro- and nanoplastics is necessary for a better understanding of the distribution

and disposition of plastic pollution. These themes collectively imply microplastic is

hazardous to the aquatic environment in the broadest sense. As the literature

expands, these themes become benchmarks, tools for policymakers, to mitigate

foreseen problems of microplastic contamination of all environments and the social

impacts they have on communities worldwide.
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2 Mitigation Where There Is Harm

Demonstrated harm to wildlife from plastic is documented from entanglement and

macrodebris ingestion, and ingestion of microplastics have shown negative impacts

on individual organisms, but demonstrating that microplastics cause harm to the

whole ecosystems is unclear [58]. In a recent meta-analysis of available research

demonstrating impacts on wildlife from marine debris, 82% of 296 demonstrated

impacts were caused by plastic [59]. Interestingly, the vast majority of those (89%)

were impacts at suborganismal levels from micro- and nanoplastics, including

damages to tissues or organ function, with only 11% due to impacts from large

debris, such as entanglement in ropes and netting or death from ingestion of larger

items.

According to Rochman et al. [59] there are many cases of suborganismal level

impacts, like the ingestion of 20 μm microplastic particles by the copepod Calanus
helgolandicus affecting survival and fecundity [60], toxic effects on the embryonic

development of the sea urchin Lytechinus variegatus [61], and reduced feeding in

the annelid worm Arenicola marina after ingesting 400 μm particles [43]. What

these studies and others have in common is that they are limited to laboratory

settings, often using PS microspheres only, and use a narrow scale of particle size,

shape, and duration of exposure [62]. This criticism was also pointed out in a recent

study of the freshwater mud snail Potamopyrgus antipodarum, whereby five com-

mon and environmentally relevant non-buoyant polymers were introduced in a

range of sizes and high concentrations in their food, resulting in no observed effects

[56], suggesting that more work in real settings with environmentally relevant

microplastic particle size, shape, and polymer type is needed to better understand

ecological harm.

Can we say ecological harm exists without the weight of evidence in the

literature to say so? One could argue that the volume of research published lately,

especially the proposal from Rochman and others to classify plastic marine debris

as a hazardous substance [63], indicates substantial concern from the scientific

community. That classification would meet criteria for mitigation from

policymakers in terms of shifting the burden of proof that plastic is safe to the

producer [64]. While further studies of ecological impacts are needed, it is reason-

able to employ the precautionary principle considering the risk of widespread and

irreversible harm.

Equally, we must not forget the harm to society from plastic pollution. The flow

of the material from plastic production to waste management and environmental

pollution affects societies in ways that are often difficult to quantify and are often

ignored. For example, plastic waste has been shown to incubate water-borne insects

and act as a vector for dengue fever in the Philippines [65]. The industry of waste-

picking in developing countries is plagued with substantial human health costs from

illness and injury from collecting and handling plastics. Open-pit and low-tech
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incineration is correlated with respiratory illness and cancer clusters among the

populations that live near them [66]. While this book aims to understand the

impacts of freshwater microplastics, in this chapter we aim to understand and

include the upstream social costs in our assessment of the sources and true costs

associated with micro- and nanoplastics.

3 Downstream (Ocean Recovery) Versus Upstream

Intervention

Then where do our actions to prevent the potential of irreversible harm begin? The

three research themes (global distribution, toxicity, marine life impacts) guide

mitigation upstream, but it did not begin that way.

The sensationalized mythology of trash islands and garbage patches that had

dominated the public conversation about plastic marine pollution in the mid-2000s

invoked well-intentioned schemes to recover plastic from the ocean gyres, like

giant floating nets to capture debris and plastic-to-fuel pyrolysis machines on

ocean-going barges, to seeding the seas with bacteria that consume PET, polyeth-

ylene, and polypropylene (which, if this could work, would have the unintended

consequence of consuming fishing nets, buoys, docks, and boat hulls). All of these

schemes fail on several fronts: economics of cost-benefit, minimizing ecological

impacts, and design and testing in real ocean conditions [67]. Recent analysis of

debris hot spots and current modeling support the case for nearshore and riverine

collection rather than mid-ocean cleanup [68].

This begs the question, “What should be done about what is out there now?” If

we do nothing, the likely endgame for microplastic is sedimentation on shore [14]

or the seafloor [16], as a dynamic ocean ejects floating debris. Consider the

precedent of how tar balls plagued the open ocean and shorelines until MARPOL

Annex V stopped oil tankers from rinsing their ship hulls of petroleum residue to

the sea in the mid-1980s. A relatively rapid reduction in tar ball observations soon

followed [69]. Though we will live with a defining stratigraphy of micro- and

nanoplastic in sediments worldwide [70], the ocean can recover if we stop doing

more harm.

Still, what can be done about macrodebris? In the 2015 G7 meeting in Germany,

Fishing for Litter was presented as the only viable ocean cleanup program, and

described as “a useful last option in the hierarchy, but can only address certain types

of marine litter” [71]. While Fishing for Litter campaigns can be effective at

capturing large persistent debris, like fishing nets, buoys, buckets, and crates before

they fragment further, like the KIMO International efforts in North Sea and around

Scotland [72], they do not address the source.
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4 Upstream Interventions at the Sources of Freshwater

Microplastic

Doing no more harm requires upstream intervention. The further upstream mitiga-

tion occurs, the greater the opportunity to collect more plastic with less degradation

and fragmentation and identifying sources before environmental impacts occur. For

most scientists and policymakers, ocean cleanup is not economically or logistically

feasible, moving the debate to upstream efforts, like zero waste strategies, improv-

ing waste recovery, and management and mitigating point and nonpoint sources of

microplastic creation and loss to the environment.

Measuring Microplastic Sources There is wide agreement that microplastic at

sea is a case of the tragedy of the commons, whereby its abundance in international

waters and untraceability makes it nearly impossible to source to the company or

country of origin. In terrestrial environments, identification to source is easier due

to less degradation, but capturing and quantifying microplastics in any environment

is difficult and can easily be contaminated or misidentified [73], and in inland

waterways there is the challenge of sorting debris from large amounts of biomass.

In the United States provisions under the Clean Water Act and state TMDLs (Total

Max Daily Loads) direct environmental agencies to regulate plastic waste in

waterways, like California’s TMDLs, though they are often limited to >5 mm

and miss microplastic entirely.

While there are processes in the environment that degrade plastic into smaller

particles (UV degradation, oxidation, embrittlement and breakage, biodegradation),

there are other terrestrial activities and product/packaging designs that create

microplastic (Table 1). These may include the mishandling of preproduction pellets

at production and distribution sites, industrial abrasives, synthetic grass in sports

arenas, torn corners of sauce packets, vehicle tire dust, tooled shavings from plastic

product manufacture, road abrasion of plastic waste on roadsides, unfiltered dryer

exhaust at laundry facilities losing microfibers to the air [17], or combined sewage

overflow that discharges plastics from residential sewer lines, like personal care

products, fibers from textiles, and cosmetics, into the aquatic environment. These

many sources lack specific methods of measurement.

There are examples of observed microplastic abundance in terrestrial and fresh-

water environments leading to mitigations, such as the US Microbead-Free Waters

Act of 2015 [74] and state laws on the best management practices on preproduction

pellet loss [75]. Interestingly, these two examples share three common character-

istics: (a) they are quantified by standard methods using nets to measure discharges

in waterways, (b) they are found in high abundance, and (c) they are primary

microplastics, making it easier to identify responsible sources. Considering the

many terrestrial activities that create small amounts of difficult to quantify micro-

and nanoplastics, often called secondary microplastics, there is a need for new

methods to measure their significance.
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Why wait until microplastic reaches water to quantify its existence? The current

methods of storm drain catchment and waste characterization measure macroplastic

only. Microplastics, such as synthetic grass, tooled shavings, road abrasion, etc., are

sources of microplastic with unknown abundances, which could be measured by

sampling surface areas on the ground nearby the activities that create them.

Methodologies might include square meter sweeping of sidewalks and roadsides

to quantify abundances. A recent study of microfiber fallout used containers on

rooftops in Paris to capture airborne particles [17]. These micro- and nanoplastic

fibers can be measured closer to the source. Surveying the surface of foliage near

laundromats (Eriksen, unpublished data) recently discovered abundant microfibers.

Other methods might employ footbaths outside hotels or shops with carpeted floors

to measure the transport of fibers due to foot traffic. The production of household

microplastics could be estimated from dust particles accumulated in the filter bags

of vacuum cleaners. Quantifying the significance of these point and nonpoint

sources might assist efforts to mitigate their contributions.

Table 1 Sources, measurements, and strategies for upstream mitigation of microplastics

Tackling upstream microplastics

Category Source Potential mitigation

Production Microplastics in cosmetics Removing them from products.

Replace with benign alternatives

Mismanaged preproduction pellets Regulate pellet handling. Operation

clean sweep

Commerce Industrial abrasives Improve containment and recovery

and require alternatives

Laundromat exhaust Improved filtration

Agriculture – degraded film, pots, and

pipes

Improve recovery, biodegradable

plastics

Consumer Tire dust Technological advances, road surface

Littering of small plastic items (ciga-

rette filters, torn corners of packaging,

small film wrappers, etc.)

Enforcement of fines for littering,

consumer education, EPR on design

Domestic laundry. Waste water effluent Wash with top-load machines.

Wastewater containment, single-fiber

woven textiles. Textile coatings

Waste

management

Fragmentation by vehicles driving over

unrecovered waste

Improved waste management

UV and chemically degraded terrestrial

plastic waste

Improved waste management

Sewage effluent (synthetic fibers) Laundry filtration, textile industry

innovation

Combined sewage overflow (large

items)

Infrastructure improvement

Mechanical shredding of roadside waste

during regular cutting of vegetation

(mostly grass)

Better legislation and law enforce-

ment; valorization of waste products
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5 Competing Economic Models Impact Microplastic

Generation

The contemporary debate about solutions largely contrasts the circular economy

with the current linear economic model. These competing economic models reveal

subjective stakeholder motives, whether it is a fiduciary responsibility to share-

holders, an environmental or social justice mission, or an entrepreneurial opportunity.

These economic models influence the design and utility of plastic and therefore the

abundance and exposure of plastic waste to the environment, thus influencing the

formation of microplastic.

Material Loss Along the Value Chain in the Linear and Circular Economic

Models Given the many sources of microplastic, the different sectors of economy

and society producing these and the relatively limited knowledge about them

(Table 1), it becomes apparent how difficult it would be trying to “plug” leaks of

microplastics to the environment. Some of the sources could be stopped by effec-

tive legislation (e.g., banning microbeads in cosmetic products), education and

regulation enforcement (litter laws), and technological advancements (effluent

filters, biodegradable polymers).

However, in the end it becomes increasingly difficult to mitigate these leak

points the further from the source intervention begins. The closest point to the

source is the choice of polymer and how it is managed throughout the supply chain

and once it becomes waste. Some efforts have included an upfront tax to fund

cleanup efforts or mitigate environmental impacts, but those appear impractical due

to the diffusion and difficulty in collecting small microplastics. Given the low value

of most postconsumer plastic products and lack of recovery incentives, the chances

of downstream mitigation are extremely low.

Consequently, leaks of microplastics to the terrestrial and ultimately aquatic

environment (primary or secondary by input in form of large objects which later

degrade into microplastics) occur throughout the supply chain, e.g., in form of loss

of preproduction pellets, littering, or irresponsible waste management (Fig. 1).

Little material remains in the system, and most would not be fit for effective

recycling (i.e., reusing) because of contamination or expensive recuperation

schemes. Deposition in landfills or energy recovery through incineration therefore

appears as the ultimate strategy to remove almost all material from the system,

effectively creating a linear economic model. Energy recovery is not a form of

recycling and does not break this linearity, because it essentially removes used

plastics from the economic system through destruction, converting them into ashes

and atmospheric CO2 (Fig. 1).

A circular economic model on the other hand could address leaks of plastics at

all life cycle stages. The reduction of leakage to the environment requires adapta-

tion and consensus of all stakeholders, e.g., designing for reuse; discouraging

littering, for example, by introducing deposit return schemes; and ensuring a high

recycling quota during the waste stage (Fig. 2). Most likely one key to the
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implementation of this circular economic model is to modify the value chain of

plastics throughout all phases of its functional life. A number of economic alterna-

tives are already being implemented as will be described below. This model also

puts emphasis on preventive measures when accounting for environmental prob-

lems caused by excessive leakage. Prevention is also much more cost-effective and

environmentally friendly than postconsumer cleanup schemes, many of which are

economically or technologically unfeasible.

Most stakeholders agree waste management must improve globally to prevent

pollution of the aquatic environment, and that landfilling waste is not a viable

strategy in the future. What some have called “uncontrolled biochemical reactors”

[76] are landfills which are increasingly losing popularity as the costs and hazards

outweigh the benefits. In “Zero Plastics to Landfill by 2020” [77], the European

Union, and the trade organizations Plastics Europe and the American Chemistry

Council [78], advocates ending landfill reliance. Where the circular and linear

economies largely differ is the role of policy to drive design, and the end-of-life

plan for recovered plastic.

Zero Waste vs. Waste-to-Energy This division could be considered the frontline

where sharp divisions exist. Whether plastics are incinerated for energy recovery or

sorted for recycling and remanufacture reflects stakeholder positions and influences

Fig. 1 Linear economy model for plastic products and packaging and system leaks. Product is

manufactured using principally new resources, largely petroleum based. Most of the product’s
value is lost during its life cycle because of leakage along the entire value chain (red arrows),
including pellet loss, littering, combined sewage overflow, loss during transport and improper

storage of waste, and poorly designed products that are easily lost to the environment and difficult

to recover (microbeads, small wrappers, torn corners of packaging). This leads to a contamination

of the environment, affecting wildlife and human well-being. A small proportion is recycled

(green arrow) for remanufacture, with the remainder utilized for energy recovery
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decisions about product and packaging design and regulation far upstream. The

end-of-life plan for plastic affects the entire value chain.

A recent document produced by the Ocean Conservancy (2015) titled “Stem-

ming the Tide,” with strong industry support, called for a $5 billion investment in

waste management, with large-scale waste-to-energy incinerator plants targeting

SE Asia, specifically China, Taiwan, Philippines, Indonesia, and Vietnam, based on

a study reporting 4–12 million tons of waste entering the oceans annually, primarily

from that region [11]. It was released 1 week prior to the October 2015 Our Ocean

Conference. Within days, the organization Global Alliance for Incinerator Alter-

natives (GAIA) submitted a letter in response with 218 signatories, mostly envi-

ronmental and social justice NGOs, arguing that incinerators historically exceed

regulatory standards for emissions and subsequently cause harm to the environment

and human health and that the financial cost to build infrastructure, maintenance,

and management are typically underestimated [79]. In many cases, the financial

structure includes long-term waste quotas that lock communities into mandatory

waste generation [66]. For example, the $150 million cost to build the H-Power

Fig. 2 Circular economy model for plastic products and packaging. A high percentage of recycled

content is required as feedstock for new products, and the remainder from sustainable sources

(potentially biopolymers). Poor practices (red arrows) throughout the life cycle are mitigated, for

example, by proper legislative policy, public awareness that leads to proper consumer waste

handling, and incentivized recovery systems (e.g., returnable bottles). Recovery is further

improved by regulating end-of-life design in products and packaging. This leads to reduced

leakage of plastic to the environment from all sectors of society, and significant improvements

are social justice concerns for communities that manage waste. The small amount of residual

plastic is then disposed of responsibly
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incinerator in Oahu, Hawaii, also comes with an 800,000 ton per year “put or pay”

trash obligation. If they don’t get their quota of waste, the city pays a portion of the
revenue they would have earned burning the trash they didn’t get. The public calls it
“feeding the beast” [80], which had undermined recycling, waste diversion, and

composting programs, for fear of fines.

Two earlier documents, “On the Road to Zero Waste” from GAIA [79] and

“Waste and Opportunity,” from As You Sow and the National Resources Defense

Council (NRDC) [81], both lay out a framework for sustainable material manage-

ment from resource extraction to recovery and remanufacture, without the need for

incineration, or the legacy of associated toxicity and human health effects.

In the developing world, circular economic systems are expanding. There are

material recovery facilities, or MRFs, sprouting up everywhere. Waste sorting and

collection happens door to door, with the collector keeping the value of recyclables

after delivering all materials to the local MRF. Organics are composted, recyclables

are cashed in, and the rest is put on public display to show product/packaging

design challenges. According to the Mother Earth Foundation, 279 communities in

the Philippines have MRFs, and waste diversion from landfills and open-pit burning

now exceeds 80%. The template for the community MRF is proving its scalability

across Asia, India, Africa and South America.

Rationale of the Linear Economy In 2014 Plastics Europe released an annual

report titled “Plastics – the facts 2013: An analysis of European latest plastics

production, demand and waste data” [82], outlining the forecast for plastic demand

and challenges in the years ahead. Worldwide, there has been a historical trend of a

4% increase of annual plastic production since the 1950s, with slight dips during the

OPEC embargo in the 1970s and the 2008 economic downturn, but otherwise it’s
been steady growth from almost no domestic plastic produced post-WWII to

311 million tons of new plastic produced in 2013 alone. If this growth rate

continues as anticipated worldwide, there will be close to 600 million tons produced

annually by 2030 and over a billion tons a year by 2050.

This trajectory is partially based on rising demand from a growing global middle

class and is coupled with the rising population. Yet, these demands will stabilize,

leaving waste-to-energy through incineration a key driver in the security of demand

for new plastic production. Recycled plastic is a direct competitor with new plastic

production, being inversely proportional to the available supply. This has been

largely acknowledged and has kept recycling rates generally very low worldwide.

Consider recycle rates in the United States alone, with the highest recovery per

product in 2013 won by PET bottles (31.3%) seconded by HDPE milk containers

(28.2%), and national average for all plastic combined was 9.2% after 53 years of

keeping score [83].

The industry transition in light of these trends is to advocate energy recovery

after maximizing the utility of plastic, arguing that the cost vs. benefit of plastic

favors unregulated design and improved waste management. A careful look at the

life cycle of alternative materials (paper, metals, glass), from extraction to manu-

facture, transportation, and waste management, must be weighed against the
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benefits of plastic. Plastics make food last longer [84], offer more durable and

lightweight packaging for transportation of goods, maintain clean pipes for drinking

water distribution, and facilitate low-cost sterile supplies for hospitals, each having

degrees of efficiency over alternative materials in terms of waste generation, water

usage, and CO2 emissions, like lightweighting cars with plastic resulting in lower

fuel consumption [85].

For example, an industry analysis comparing the impacts of transportation,

production, waste management, and material/energy recovery on the environment

concluded that the upstream production and transportation phases of the value chain

for plastics accounted for 87% of total costs [78], leaving 13% of the impacts on the

environment caused downstream by how waste is managed. Plastic producers have

suggested that some of these upstream production impacts could be further miti-

gated by sourcing low-carbon electricity that by doubling the current use of

alternate energy for production could cut the plastics sector’s own greenhouse gas

emissions by 15% [78]. Mitigating the problems of microplastics requires under-

standing not only where waste is generated but also where other environmental

harms can be avoided at all points along the value chain.

The Case for Bridge Technologies While large-scale incinerators are criticized

for cost, waste quotas, emissions, and the effect of undermining zero waste strat-

egies, is there a case for the temporary use of small-scale waste to energy until more

efficient systems of material management evolve?

While the H-Power plant in Oahu, Hawaii has been criticized, alternatives have

been proposed. One firm recently proposed gasification (high heat conversion of

waste to a synthetic gas), submitting evidence that the initial cost of infrastructure is

far less than the H-Power plant, pays for itself in 1.4 years with current waste input,

is three times more efficient than incineration in terms of energy conversion, and

has no long-term waste quota, allowing zero waste strategies to alleviate existing

waste streams. The system could then be relocated to other waste hot spots to

manage waste or reduce waste volumes in exposed landfills (Sierra Energy, per-

sonal communication).

Although volumes of waste reduced on land become volume of waste increased

in the air (conservation of mass), any form of combustion (pyrolysis, gasification,

incineration) to create energy results in greenhouse gas (GHG) emissions, a prin-

ciple concern of any form of waste incineration.

A study of waste incineration and greenhouse gas (GHG) emissions found that

once it came to energy recovery, “the content of fossil carbon in the input waste, for

example, as plastic, was found to be critical for the overall level of the GHG

emissions, but also the energy conversion efficiencies were essential”

[86]. Increased plastic in the waste stream meant increased overall GHG emissions.

Reliance on energy recovery from waste in the linear economic model will have a

net balance of more GHG than upstream mitigation strategies in the circular

economic model, though the linear vs. circular economy may not be so black and

white. A combination of multiple end-of-life strategies could collectively manage

the diversity of waste in both efficiency and economy.
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Another analysis of GHG emissions compared the current strategy in Los

Angeles of landfilling the vast majority of waste to a combination of three strategies

in a modern MRF, namely, (a) anaerobic digestion of wet waste, (b) thermal

gasification of dry waste, and (c) landfilling residuals [87]. Their analysis did not

consider economic, environmental, or social parameters, only GHG emissions, and

was based on an assumption of 1,000 ton of waste per day entering each scenario for

25 years; then they modeled the GHG emissions for the century that followed. In

each scenario, the GHG emissions from transportation, operation, and avoided

emissions by replacing fossil fuels were factored in. Results showed that continued

landfilling resulted in a net increase of approximately 1.64 million metric tons of

carbon dioxide equivalent (MTCO2E), while the MRF scenario results in a net

avoided GHG emissions of (0.67) million MTCO2E, showing that a shift to a MRF

where multiple waste management strategies are employed resulted in a total GHG

reduction of approximately 2.31 million MTCO2E.

Those residuals that exist after diversion of waste to recycling and anaerobic

digestion could be landfilled, and in some cases waste-to-energy could have a role.

This would be appropriate only after diversion efforts of recyclables and

compostables have been maximized. Also, building incinerator infrastructure

could create tremendous debt or include a demand for large volumes of waste,

also called a “waste quota” that could undermine local efforts to eliminate products

and packaging that generate microplastics. Simultaneously, a market for recycled

materials must be encouraged, while all environmental and worker health concerns

are prioritized. Waste-to-energy could have a role, but long after all other efforts to

manage waste have been employed.

Section Summary In the linear economy contrasted with the circular economy,

we see two world views on how to solve the plastic pollution problem. While the

linear economic system benefits production by eliminating competition from

recycled material, it is more polluting than the circular system because of multiple

points of leakage along the supply chain. Plastic pollution is lost at production as

pellet spills, lost by the consumer as litter with no inherent value, and lost at

collection and disposal as waste is transported. In the circular system these are

mitigated when systems to focus on material control and capture are implemented.

Zero waste is the ideal of the circular economy, where the need for destruction

through energy capture, or landfill, are increasingly unnecessary.

6 Microplastic Mitigation Through a Circular Economy

In the emerging circular economy, the flow of technical materials through society

returns to remanufacture, with products and packaging designed for material

recovery, low toxicity, ease of dismantling, repair and reuse, and where this doesn’t
work, a biological material may substitute so circularity in a natural system can

prevail. Shifting to a circular economy has prompted interest in a range of
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interventions, including bioplastics, extended producer responsibility, and novel

business approaches.

Green Chemistry as a Biological Material Bioplastic has been in production

since Henry Ford’s soybean car in the 1930s, made from soy-based phenolic resin,

which he bashed with a sledgehammer to demonstrate its resilience, but the WWII

demand for a cheap, better-performingmaterial induced him to chose petroleum-based

plastic. Today, bioplastics are viewedwith new interest. These plant-based plastics are

considered a means to create a more reliable and consistently valued resource,

decoupled from fossil fuels. The Bioplastic Feedstock Alliance, created with wide

industry alliance and support from theWorldWildlife Fund (WWF), intends to replace

fossil fuels with renewable carbon from plants, representing no net increase in GHG

emissions. Referred to as [the] “bioeconomy,” these companies envision bioplastics as

“reducing the carbon intensity of materials such as those used in packaging, textiles,

automotive, sports equipment, and other industrial and consumer goods” [88].

It is important to distinguish biodegradable from bio-based plastics. Bioplastic is

the loosely defined catch-all phrase that describes plastic from recent biological

materials, which includes true biodegradable materials and nonbiodegradable poly-

mers that are plant based. While the label “biodegradable” has a strict ASTM

standard and strict guidelines for usage in advertising, the terms bioplastic, plant

based, and bio based do not. Despite all of the leafy greenery in labeling for these

bioplastics, it is still the same polymer that would otherwise have come from fossil

fuels.

The biodegradability of bio-based and biodegradable plastics will vary widely

based on the biological environment where degradation may occur. Poly-lactic acid

(PLA) is a compostable consumer bio-based plastic requiring a large industrial

composting facility that’s hot, wet, and full of compost-eating microbes, unlike a

backyard composting bin. Poly-hydroxy-alkanoate (PHA), made from the off-gassing

of bacteria, is a marine-degradable polymer (ASTM 7081), but rates of degradation

vary with temperature, depth, and available microbial communities [89].

PHA and PLA are both recyclable and compostable, but how these materials are

managed depends on available infrastructure. While recycling could be energetically

more favorable than composting, it may not be practical because of sorting and

cleaning requirements. Kale et al. point out the lack of formal agreement between

stakeholders (industry, waste management, government) about the utility of biode-

gradable plastics and their disposal [90], but the compostability of bioplastic packag-

ing materials could become a viable alternative if society as a whole would be willing

to address the challenges of cradle-to-grave life of compostable polymers in food,

manure, or yard waste composting facilities. The industries that make bioplastic

polymers recognize these challenges and therefore their limited applications. PHA

is ideal to be usedwhere you need functional biodegradation, such as some agriculture

and aquaculture applications, where a part has a job to do in the environment but it

would be either impractical or very costly to recover (Metabolix, personal communi-

cation). Also, many single-use throwaway applications may be replaced by PHA,

including straws or the polyethylene lining on paper cups (MangoMaterials, personal
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communication).Without the infrastructure widely available to recycle bio-based and

biodegradable plastics, manufacturers are aiming for compostability in compliance

with organic waste diversion initiatives.

Extended Producer Responsibility (EPR) There is a wide agreement that waste

management must be improved, including public access to recycling, composting,

and waste handling facilities. Equally, there is a need to improve the design of

products and packaging to facilitate recovery in the first place. Regulating primary

microplastics has been successful with microbeads and preproduction pellets, yet

there are many characteristics of product and packaging design that could be

improved to minimize the trickle of irrecoverable microplastics from terrestrial to

aquatic environments.

Product and packaging design must move “beyond the baseline engineering

quality and safety specifications to consider the environmental, economic and

social factors,” as explained in “Design through the 12 Principles of Green Engi-

neering” [91]. When designing for the full life cycle of a product, manufactures and

designers talk with recyclers to reduce environmental impacts by improving recov-

ery, which may include avoiding mixed materials or laminates, reduced toxicity,

and ease of repair, reuse, and disassembly, as well as the systems that move

materials between consumer and the end-of-life plan. Reducing microplastic for-

mation by design might also include eliminating tearaway packaging (opening chip/

candy wrappers, individual straw/toothpick covers), small detached components

(bottle caps and safety rings), or small single-use throw-away products (coffee

stirrers, straws, bullets in toy air rifles). These mitigations can be voluntary, but are

often policy-driven through fees or bans [92].

Extended producer responsibility is a public policy tool whereby producers are

made legally and financially responsible for mitigating the environmental impacts

of their products. When adopted through legislation, it codifies the requirement that

the producer’s responsibility for their product extends to postconsumer manage-

ment of that product and its packaging. With EPR, the responsible legal party is

usually the brand owner of the product.

EPR is closely related to the concept of “product stewardship,” whereby pro-

ducers take action to minimize the health, safety, environmental, and social impacts

of a product throughout its life cycle stages. Producers’ being required to take back
and recycle electronic equipment through the EU’s Waste of Electrical and Elec-

tronic Equipment (WEEE) Directive is an example of EPR. The Closed Loop

Fund – which accepts corporate money to loan to US municipalities to boost

packaging recycling – is an example of voluntary product stewardship [93]. Differ-

ent schemes of EPR have been implemented [94], and even though some first

success is achieved in recycling of plastics and other packaging products [95],

these systems still require many improvements ranging from economic models [96]

to logistic aspects [97].

While EPR has primarily been applied as a materials management strategy, the

concept can also be applied to plastic pollution prevention and mitigation. In 2013,

the Natural Resources Defense Council helped advance how EPR can more directly
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impact plastic pollution beyond boosting the collection and recycling of packaging

[98]. NRDC developed policy concepts and legislation to make the producers of

products which have a high tendency to end up as plastic pollution, responsible not

just for recycling, but for litter prevention and mitigation as well. Legislation

introduced in California would have (a) had State Agencies identify the major

sources of plastic pollution in the environment and (b) required the producers of

those products to reduce the total amount in the environment by 75% in 6 years and

95% in 11 years. While the legislation did not advance far in California, this was a

significant development and provides an example of how to incorporate litter

prevention and pollution mitigation in future EPR policy.

Section Summary The utility of green chemistry has led to public confusion over

the biodegradability of polymers, stemming from an important differentiation

between biopolymers and biodegradable polymers, as well as the true conditions

where biodegradability occurs. While biopolymers offer a promising divestment

from fossil fuel feedstocks, biodegradable plastics are challenged by the infrastruc-

ture requirements for identification, sorting, and degradability. In a circular econ-

omy, biopolymers and biodegradable polymers must exist in a system, either

manufactured or natural, where the material is recovered and reprocessed. Extended

producer responsibility is the policy mechanism that creates those systems, with the

intention to mitigate the true economic, social, and environmental costs associated

with waste.

7 Business Transformation Through Novel Policy

and Design

The status quo for much of product and packaging manufacture is planned obso-

lescence, which drives cheap-as-possible chemistry and design and has been largely

subsidized by municipalities that agree to manage all that waste at a limited cost to

the manufacture and principal cost to the tax payer. With an abundance in the waste

stream of plastics embedded in difficult-to-recover products and packaging (elec-

tronics, laminates, food-soiled packaging), energy recovery becomes a more attrac-

tive alternative.

The effort to rely on energy recovery through incineration is largely a perpetu-

ation of the “planned obsolescence” strategy of securing demand for new products,

employed historically since post-WWII manufacture. Planned obsolescence

encourages material consumption in several ways: technological (software and

upgrades overwhelming old hardware), psychological (fashion), and conventional

(designed weakness and impractical repair).

The Ellen MacArthur Foundation [99] published in February 2016 “The New

Plastics Economy” proposed business solutions that manage materials through the

consumer, beyond planned obsolescence, where product designers talk to recyclers

to create an end-of-life design, systems of “leasing” products over ownership,

Microplastic: What Are the Solutions? 289



allowing product upgrades over planned obsolescence. By making a business case

for managing the circular flow of technical materials, the status quo of cradle to

grave can be put to rest.

The market dominance of poorly designed products will likely not self-regulate a

transformation, requiring policy tools. EPR in some ways can be facilitated by

novel policy tools. In London in 2015 a 5p fee on plastic bags, rather than a ban,

resulted in an 85% reduction in their consumption. In areas where citizens “pay to

pitch” the waste they generate, consumers commonly strip packaging at the point of

purchase, which in turn is communicated to the distributor of goods to redesign the

delivery of goods. This system of pay to pitch has been applied to some remote

communities, such as islands, to require importers to export postconsumer

materials.

Andrew Winston, author of The Big Pivot, suggests an alternate model of doing

business, the Benefit Corporation, or “B-Corp,” whereby corporations take on a

mission statement of social or environmental justice that is on equal par with the

profit motive. A rapidly changing consumer base that is more connected through

communication is forcing corporations to be transparent, accountable, and behave

ethically. The B-Corp is the bridge across the divide.

8 Reducing and Reusing Plastic Waste

Avoiding the production of new plastics altogether whenever possible is the most

reliable way to avoid the generation of microplastics, whether primary

microplastics (needed for the production of new plastic articles) or secondary

(resulting during breakdown of larger plastic items).

As the market for ethically produced products is growing worldwide (e.g.,

Fairtrade [100], organic food produce [101, 102]), and consumers become aware

of the possible impacts of marine pollution [103], several examples are demon-

strating a successful reduction of plastic waste or the reuse of discarded plastics in

order to create other products (upcycling), thereby saving natural resources and, in

some cases, even removing ocean plastic pollution.

Among popular recent innovations are the production of clothes, shoes, skate-

boards, sun-glasses, and swimming gear from derelict fishing gear [104, 105]. Such

lines of products, making a pro-environmental statement, are likely to be especially

appealing to customers of the Generation Y/Millenials (see references in [106]).

Another example for a consumer-driven desire to combat excessive plastic litter,

this time in the form of packaging waste, is the recent development of zero waste

stores, sprouting up in Europe and the United States (Fig. 3a) [107, 108]. Many of

these stores are crowd funded [107] and require customers to bring their own food

container which also avoids food waste by allowing customers to buy the quantities

they consume. Many of those shops do not offer products from large brands to

distance themselves from supermarket chains and emphasize a community-based

economy model.
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An example of a large retail store taking up waste reduction strategies is the

Amazon.com, Inc., with its program “Frustration-Free Packaging,” which aims to

reduce packaging volume and complexity. The company claims to have saved

11,000 tons of packaging during 5 years, including reductions of styrofoam and

thin plastic films [109].

Possibly the most established way of avoiding excessive waste and saving

valuable resources is in the form of container deposit fees, especially for beverages

(Fig. 3b). This has been shown as highly effective to reduce the amount of waste in

the environment with return rates as high as 90% and higher in Sweden and

Germany for several materials commonly used in beverage production (metal,

glass, plastic) [110, 111]. Deposit return strategies are more efficient than curbside

recycling programs [112], largely because of the monetary incentive for recovery

(“One man’s trash is another man’s treasure”). For example, the “Pfand geh€ort
daneben” campaign in Germany (“Deposit bottles belong next to it [the garbage

bin]”) encourages the public to leave unwanted deposit return bottles accessible for

easy pick up by private waste collectors and not trashing them in a garbage bin

Fig. 3 Initiatives to reduce or recuperate packaging waste. (a) ¼ “Unverpackt” store in Germany

where customers can buy food in bulk, bringing their own containers.©Martin Thiel. (b)¼Reverse

vending machines accepting glass and plastic bottles and aluminum cans in a supermarket in the

United States. ©Alex Kirsch. (c) ¼ Advertisement of the “Pfand geh€ort daneben”-campaign in

Germany, advocating to leave deposit return bottles in Germany next to the garbage bin in order

for easy pick up ©Pfand geh€ort daneben 2016. (d) ¼ “Feria libre” in Chile, allowing customers to

buy vegetables and fruits in bulk (public domain, Jorge Valdés R. Joval)
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(Fig. 3c). However, a return deposit fee on food containers does not ensure that the

container is reused as the large and growing proportion of returnable but single-use

plastic bottles in Germany illustrate [113]; therefore, further incentives are

necessary.

Another way to reduce plastics is prohibition or taxing of plastic products that

can be easily replaced, such as microbeads in cosmetic and daily care products and

plastic bags for groceries. A survey conducted in Ireland revealed that fees/taxes on

plastic bags seem to be well received among customers [114].

Buying from local farmers’markets is another way for a customer to procure less

packaging (Fig. 3d). While farmers’ markets were replaced in most of Europe and

North America by large supermarket chains, they are celebrating a comeback over

the last two decades [115]. In other countries it is still normal to procure the

majority of fresh foods from farmers’ markets, despite the introduction of large

supermarket chains. This is the case in Chile where “Ferias libres” (neighborhood

outdoor markets) supply the population with 70% of its demand for fruit and

vegetables and 30% of seafood products [116].

Collectively, all these strategies help reduce the leakage of low-value/single-use

plastics into terrestrial and aquatic environments and subsequent formation of

microplastics from their degradation. Regardless of the most modern waste man-

agement systems available, leakage of single-use throwaway products and packag-

ing occurs. Their reduction is the most efficient mitigation effort to reduce

microplastics in the environment.

9 Conclusion

An environmental movement may be defined as a loose, noninstitutionalized

network of organizations of varying degrees of formality, as well as individuals

and groups with no organizational affiliation, who are engaged in collective action

motivated by shared identity or concern about environmental issues [117].

In July of 2016, the American Chemistry Council published “Plastics and

Sustainability: A valuation of environmental benefits, costs and opportunities for

continuous improvement,” largely a comparison of life cycle analyses putting

plastic in a positive light against alternative materials (glass, metal, paper). At the

same time, the Plastic Pollution Policy Project convened 18 organizations focused

on zero waste initiatives to align on policy and campaigns and to create common

messaging to counter industry-dominated narratives. A movement has emerged,

while stakeholder positions have dug in their heels.

Here we have discussed solutions to microplastics in freshwater ecosystems,

which largely form in terrestrial environments from primary or secondary

microplastics. We know that microplastics are global, increasingly toxic over

time, and impacts to wildlife are pervasive, leading to the collective conclusion

that plastic in the environment causes harm. We also know that capturing

microplastic downstream is extremely difficult and requires upstream intervention.
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Once in natural water bodies (rivers, lakes, oceans), recovery of microplastics is

impossible. Therefore, one challenge is to identify and quantify the upstream

sources – a prerequisite to mitigation. In the cases of microbeads and preproduction

pellets, we witnessed the role of science to present observations of microplastic

pollution, followed by a movement to pressure policymakers to regulate industry.

The work of scientists continues to illuminate microplastic impacts, such as recent

reports from the Group of Experts on the Scientific Aspects of Marine Environ-

mental Protection (GESAMP) [118], a working group gathered by UNEP to

synthesize and report on the state of the scientific evidence regarding the plastic

pollution issue and distribute the information to the United Nations Environment

Assembly.

There are four principal solutions that will have high impact on preventing

terrestrial and freshwater microplastics from forming. They are: (1) identify and

quantify terrestrial microplastic sources, (2) scale zero waste strategies, (3) pursue

policy-driven EPR, and (4) develop novel business solutions. These solutions will

bring greater alignment between stakeholders on the utility of plastic in society and

a more equitable end-of-life, where environmental and social justice are integrated

in the full cost of plastic. The bridge between the linear and circular economy is

about material circularity coupled with a sincere investment in common decency

and democracy, and corporate responsibility toward those ends, what Severyn

Bruyn calls a Civil Economy, whereby government, business, nonprofits and

civic groups “can develop an accountable, self-regulating, profitable, humane,

and competitive system of markets” [119] (Bruyn 2000).

This a thoughtful approach that considers the chemistry of materials, the design

of products, the processes required to make things, and finally the systems that

manage how materials flow back into the production chain, all in the context of

causing no harm to people and the environment, benign by design in its totality.
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Rhône, 59, 126

Risks, assessment, 223

decision-making, 229

perception, 203, 205

River Seine, 78

Riverine pollution, 2

Roadside ditches, 7

Ropes, 277

Runoff water, 69–80, 110, 118, 126–141, 259

Rwanda, 106

S
St. Lawrence River, 126

Sampling, 10, 52, 142, 169, 256, 263

standardization, 263

Sargasso Sea, 208, 274

Scanning electron microscopy (SEM), 56

Scenedesmus obliquus, 164, 192
Science–policy interface, 239

Scrapers, 155

Seabirds, 101, 107, 208

Secondary ion mass spectrometry (SIMS), 195

Sediments, sampling, 53

Seine River, 70, 78, 88, 102, 131

Sensitizers, 4

Shredders, 155

Shrimp, 165

Silicone rubber, 101, 112, 113

Siling Co basin, 88, 93, 94

Silver (Ag), 29

Singidia tilapia (Oreochromis esculentus), 111
Skeletonema costatum, 164
Social ecology, 223

Sorption, 9, 32, 275

Sources, 1, 27, 279

South Africa, 101, 106

Sphaerium corneum, 155
Stabilizers, 4, 9, 168

Stakeholders, 273

involvement, 203

Sub-micrometer plastics, 13

Suction feeders, 154

Surfactants, 4, 32

Suspended particulate matter (SPM), 155, 259

Suspended solids, 128, 130, 140, 153, 167, 174

302 Index



T
Taihu (China), 59, 88, 93, 95

Tanganyika Lake, 101, 103, 105, 116

Tanzania, 103–116

Taste, 158, 160

Teleosts, 158

Tenebrio molitor, 192
Three Gorges Dam (China), 6, 88–95

Tigriopus japonicus, 166
Titanium dioxide, TiO2, 29, 36

Toothpastes, 5, 29, 206, 207, 211, 255, 275

Toxicant transfer, 189

Toxicity, 1

Triclosan, 275

U
Uca rapax, 166
Ultrahigh-molecular-weight polyethylene

(UHMWPE), 32, 110

Uncertainty, 223, 229

United Nations (UN), 243

Urban areas/impact, 69

Uronema narina, 160
UV filters, 258

V
Vectors, 153

effects, 25

Venoge, 59

Vertebrates, 158, 167, 276

Vibrio fluviales, 189
Victoria tilapia (Oreochromis variabilis),

110, 111

Visual stochastic network embedding

(viSNE), 58

Vuachière, 59

W
Waste management, 5, 26, 29, 90, 108, 115,

210, 232–267, 277–292

Waste-to-energy, 282

Wastewater outlets, 72

Water-based policy, 246

World Bank, 245

World Economic Forum (WEF), 244

WWTPs, 5, 71–79, 126–141, 182, 191

X
X-ray diffraction (XRD) analysis, 195

X-ray photoelectron spectroscopy (XPS), 195

Y
Yangtze, 88, 90, 92

Z
Zero waste, 279, 282–293

Zinc, 6, 9, 55

Zooplankton, 12, 155, 158, 160, 166, 192, 276

Index 303


	Series Preface
	Preface
	Freshwater Microplastics as Emerging Contaminants: Much Progress, Many Questions

	Contents
	Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview
	1 Introduction
	2 Plastics and Microplastics: An Overview
	2.1 A Brief Overview of Plastic Development
	2.2 Describing Plastic Materials
	2.3 Microplastics as Contaminants of Emerging Concern

	3 Sources of Plastics and Microplastics into the Freshwater Environment
	4 Occurrence in Freshwater Systems
	5 Fate and Transport in Freshwater Systems
	5.1 Environmental Transportation
	5.2 Environmental Persistence and Degradation
	5.3 Interactions with Other Compounds

	6 Effects of Plastics and Microplastics on Freshwater Ecosystems
	6.1 Uptake and Biological Effects
	6.2 Effects of Leaching Chemicals
	6.3 Biological Effects of Sub-micrometer Plastics

	7 Considerations for Assessing Environmental Risks
	Box 1: A hypothetical case for the risk assessment for MPs based on particles size

	8 Concluding Thoughts
	References

	Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials
	1 Engineered Nanomaterials Versus Plastic Particles: Comparing Apples and Oranges?
	2 Sources, Emissions and Regulation
	3 Material Synthesis, Chemical Composition and Consequences for Environmental Detection
	4 Particles as a Vector for Co-pollutants
	5 Biological Effects
	5.1 Nano- and Microplastics in Standard Ecotoxicity Tests
	5.2 Detecting and Quantifying Particle Uptake as a Prerequisite for Assessing the Effects of Nano- and Microplastics

	6 Lessons Learned and the Way Ahead
	References

	Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment
	1 Analysis of Microplastics: Sampling, Sample Preparation, and Identification
	1.1 Sampling of Microplastics
	1.1.1 Sampling of the Aqueous Phase
	1.1.2 Sampling of Sediments

	1.2 Sample Preparation
	1.2.1 Separation of Microplastics from Sediment Samples
	1.2.2 Removal of Natural Debris

	1.3 Identification of Microplastics

	2 Occurrence in the Aquatic Environment
	3 Environmental Degradation of Synthetic Polymers
	4 Conclusion
	References

	Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity
	1 Introduction
	2 Types and Shapes of Microplastics: A Focus on Fibers in Urban Areas?
	3 Source and Fate of Microplastics on the Paris Megacity
	3.1 Overview of the Approach
	3.2 Microplastics Encountered in the Different Compartments
	3.3 Fiber Fluxes in Different Compartments
	3.4 Comparison of Microplastic Sources in Freshwater

	4 Monitoring Microplastics in the River Seine
	4.1 Overview of the Approach
	4.2 Fibers in the Seine and Marne Rivers
	4.3 Comparison with the Fragments

	5 Conclusions and Perspectives
	References

	Microplastic Pollution in Inland Waters Focusing on Asia
	1 Introduction
	2 Production and Use of Plastics in Asia
	3 Microplastics in Inland Waters in Asia
	3.1 Occurrence of Microplastics
	3.2 Characteristics of the Microplastics
	3.2.1 Particle Shape
	3.2.2 Particle Size
	3.2.3 Color
	3.2.4 Surface Texture

	3.3 Polymer Types Found

	4 Conclusions
	References

	Microplastics in Inland African Waters: Presence, Sources, and Fate
	1 Introduction
	1.1 Africa, the Anthropocene, and Plastic Pollution
	1.2 African Freshwaters and the Potential for MP Pollution

	2 Presence of MPs in African Marine and Estuarine Environments
	3 Presence, Sources, and Fate of MPs in Inland African Freshwaters
	3.1 Presence of MPs in Freshwaters
	3.2 Plastics in the Tanzanian Waters of Lake Victoria
	3.2.1 Case Study I: Abundance, Composition, and Distribution of Solid Wastes in Lake Victoria
	3.2.2 Case Study II: Recovery of MPs from Lake Victoria Nile Perch and Nile Tilapia

	3.3 Plastics and MPs in Lake Victoria

	4 Current Challenges and Future Research Needs
	4.1 Current Challenges
	4.1.1 Waste Management
	4.1.2 Political Will and Governance
	4.1.3 Public Awareness

	4.2 Future Research Needs

	5 Conclusions
	References

	Modeling the Fate and Transport of Plastic Debris in Freshwaters: Review and Guidance
	1 Introduction
	2 Modeling the Transport of Particles in Aquatic Systems
	3 Plastic Debris: Properties and Processes Relevant for Fate Modeling
	4 Models for Fate and Transport of Microplastics in Freshwater Systems
	4.1 Emission-Based Mass Flow Modeling
	4.2 Global River Models
	4.3 Multimedia Modeling
	4.4 Spatiotemporally Explicit Models

	5 Recommendations and Guidance for the Development of Fate Models for Plastic Debris from a Risk Assessment Perspective
	5.1 Data and Knowledge Gaps with Respect to Further Model Development
	5.2 Comparing the Models: What Model for Which Question?
	5.3 Fate and Exposure Models in the Context of ERA for Plastic in Freshwater Systems

	6 Concluding Thoughts
	References

	Interactions of Microplastics with Freshwater Biota
	1 Introduction
	2 Factors Influencing Microplastic Ingestion by Freshwater Biota
	2.1 The Role of Feeding Types
	2.1.1 Invertebrates
	2.1.2 Vertebrates

	2.2 The Role of Particle Size, Shape, and Taste
	2.2.1 Size and Shape
	2.2.2 Taste Discrimination

	2.3 Conclusion

	3 Effects on Freshwater Biota
	3.1 Physical Impacts
	3.1.1 Algae
	3.1.2 Daphnia magna
	3.1.3 Other Crustaceans
	3.1.4 Bivalves
	3.1.5 Gastropods
	3.1.6 Fish

	3.2 Chemical Impacts
	3.3 Biofilm-Related Impacts

	4 Natural vs. Synthetic Particle Toxicity
	5 Implications for Freshwater Ecosystems
	References

	Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments
	1 Introduction
	2 Freshwater Plastisphere Assemblages: State of the Science
	2.1 Factors Contributing to Biofilm Formation and Composition
	2.2 Examples of Microbial-Microplastic Interactions in Freshwater Habitats
	2.3 Potential for Pathogenesis, Toxicant Transfer, and Biodegradation
	2.3.1 Microplastics as Vectors for Pathogen Transfer and Biotoxins
	2.3.2 Biodegradation and Pollutant Transport


	3 Knowledge Gaps and Research Needs
	3.1 Sources and Transport Between Habitats
	3.2 Interactions with Higher Organisms and the Wider Environment
	3.3 In Situ Biodegradability of Plastics and Plastic-Associated Compounds
	3.4 Analytical and Experimental Advances in Plastisphere Research

	4 Concluding Remarks
	References

	Risk Perception of Plastic Pollution: Importance of Stakeholder Involvement and Citizen Science
	1 Introduction
	2 The Theory of Risk Perception
	2.1 Risk Perception of Hazardous Chemicals and GMOs

	3 Risk Perception of Plastic Pollution and the Role of Stakeholders
	3.1 Historical Development

	4 Risk Perception of Plastic Pollution and Political Actions Since the 2000s
	5 Citizen Science as Concept
	6 Citizen Science and Plastic Pollution
	7 Expanding Citizen Science: The Bottom-Up Approach
	8 Concluding Remarks
	References

	Understanding the Risks of Microplastics: A Social-Ecological Risk Perspective
	1 The Social-Ecological Risk Perspective: Addressing Global Risks
	2 The Plastic Dilemma and Everyday Modes of Risk Production
	3 From Macro to Micro: Unveiling the Complex Side Effects of Plastic Pollution
	4 From Ecosystem Health to Human Health: Vibrancy, Uncertainty, and the Feeling of Insecurity
	5 Risk Decision-Making: From Complex to Structured Problems
	6 Conclusion
	References

	Freshwater Microplastics: Challenges for Regulation and Management
	1 Introduction
	2 Regulatory and Policy Instruments
	2.1 International-Level Instruments and Initiatives
	2.2 Regional-Level Instruments with Focus on the European Union
	2.2.1 Water-Based Policy
	2.2.2 Land-Based Policy
	2.2.3 Chemical Regulation: REACH

	2.3 National-Level Instruments

	3 Challenges of Current Regulation: Reasons and Requirements for Future Management
	3.1 Do We Need Regulation of Microplastics at All?
	3.2 A Precondition for Regulation: The Definition of Microplastics
	3.3 Regulation by Groups?
	3.4 General Regulation Options by Environmental Policy: Applicable for MP?
	3.5 Standardization of Sampling and Analysis
	3.6 Mass Balance Versus Particle Characterization as Criterion for Regulation
	3.7 Adaptation of Ecotoxicological Test Systems
	3.8 The Information Base for Regulation: Too Scarce? Too Much? Inapplicable?

	4 Conclusions
	References

	Microplastic: What Are the Solutions?
	1 Research Conclusions Guide Solutions
	2 Mitigation Where There Is Harm
	3 Downstream (Ocean Recovery) Versus Upstream Intervention
	4 Upstream Interventions at the Sources of Freshwater Microplastic
	5 Competing Economic Models Impact Microplastic Generation
	6 Microplastic Mitigation Through a Circular Economy
	7 Business Transformation Through Novel Policy and Design
	8 Reducing and Reusing Plastic Waste
	9 Conclusion
	References

	Erratum to: Modeling the Fate and Transport of Plastic Debris in Freshwaters: Review and Guidance
	Index

