
Software Product Line
Advanced Topic

Edited by Abdelrahman Osman Elfaki

Edited by Abdelrahman Osman Elfaki

Photo by monsitj / iStock

The Software Product Line (SPL) is an emerging methodology for developing software
products. Currently, there are two hot issues in the SPL: modelling and the analysis

of the SPL. Variability modelling techniques have been developed to assist engineers
in dealing with the complications of variability management. The principal goal of
modelling variability techniques is to configure a successful software product by
managing variability in domain-engineering. In other words, a good method for

modelling variability is a prerequisite for a successful SPL. On the other hand, analysis
of the SPL aids the extraction of useful information from the SPL and provides a control
and planning strategy mechanism for engineers or experts. In addition, the analysis of
the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL.
This book presents new techniques for modelling and new methods for SPL analysis.

ISBN 978-953-51-0436-0

Soft
w

are Product Line - A
dvanced Topic

 SOFTWARE PRODUCT LINE
– ADVANCED TOPIC

Edited by Abdelrahman Osman Elfaki

 SOFTWARE PRODUCT LINE
– ADVANCED TOPIC

Edited by Abdelrahman Osman Elfaki

Software Product Line - Advanced Topic
http://dx.doi.org/10.5772/2480
Edited by Abdelrahman Osman Elfaki

Contributors

Camille Salinesi, Raul Mazo, Shahliza Abd Halim, Noraini Ibrahim, Safaai Deris, Dayang Jawawi, Amougou Ngoumou,
Marcel Fouda Ndjodo, Rasha Tawhid, Dorina C. Petriu, Yguaratã Cerqueira Cavalcanti, Paulo Anselmo Da Mota Silveira
Neto, Ivan Do Carmo Machado, Luanna Lopes Lobato

© The Editor(s) and the Author(s) 2012
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2012 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Software Product Line - Advanced Topic
Edited by Abdelrahman Osman Elfaki

p. cm.

ISBN 978-953-51-0436-0

eBook (PDF) ISBN 978-953-51-5658-1

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,350+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International authors and editors

114M+
Downloads

We are IntechOpen,
the first native scientific

publisher of Open Access books

Meet the editor

Dr Abdelrahman Osman Elfaki is currently a senior
lecturer at Management and Science University in
Malaysia. He is involved in many projects and research
related to software engineering in different countries,
which refined his software engineering experience in
both practical and academic fields. His current inter-
ests are modelling software product lines engineering

and managing variability. He has published many papers related to his
current interest.

Contents

Preface VII

Part 1 Modelling 1

Chapter 1 Handling Variability and Traceability over SPL Disciplines 3
Yguarată Cerqueira Cavalcanti, Ivan do Carmo Machado,
Paulo Anselmo da Mota Silveira Neto and Luanna Lopes Lobato

Chapter 2 An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line 23
Shahliza Abd Halim, Dayang N. A. Jawawi,
Noraini Ibrahim and Safaai Deris

Chapter 3 Transformational Variability Modeling Approach
to Configurable Business System Application 43
Marcel Fouda Ndjodo and Amougou Ngoumou

Part 2 Analysis 69

Chapter 4 Integrating Performance Analysis
in Software Product Line Development Process 71
Rasha Tawhid and Dorina Petriu

Chapter 5 Defects in Product Line
Models and How to Identify Them 97
Camille Salinesi and Raúl Mazo

Contents

Preface XI

Part 1 Modelling 1

Chapter 1 Handling Variability and Traceability over SPL Disciplines 3
Yguarată Cerqueira Cavalcanti, Ivan do Carmo Machado,
Paulo Anselmo da Mota Silveira Neto and Luanna Lopes Lobato

Chapter 2 An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line 23
Shahliza Abd Halim, Dayang N. A. Jawawi,
Noraini Ibrahim and Safaai Deris

Chapter 3 Transformational Variability Modeling Approach
to Configurable Business System Application 43
Marcel Fouda Ndjodo and Amougou Ngoumou

Part 2 Analysis 69

Chapter 4 Integrating Performance Analysis
in Software Product Line Development Process 71
Rasha Tawhid and Dorina Petriu

Chapter 5 Defects in Product Line
Models and How to Identify Them 97
Camille Salinesi and Raúl Mazo

Preface

Nowadays, Software Product Line (SPL) is considered to be one of the most popular
technical paradigms and emerging methodologies in developing software products.
The SPL consists of two main processes: the domain-engineering process and the
application-engineering process. Collecting software assets regarding a specific
business area falls within the domain-engineering process. The process of presenting
software assets (in domain- engineering) is called variability modelling. The principal
objective of application-engineering is to configure a successful specific software
product from the domain-engineering process by managing SPL assets using
variability modelling technique.

Modelling software assets in the domain-engineering is a substantial process as it
identifies the commonality and variability within the domain-engineering process.
Basically, the success of an SPL is largely dependent on effective variability
management. Variability management refers to: 1) how variability is modelled, i.e., the
representation of common features, uncommon features, dependency relations
between features (require and exclude), and structure of the features in the form of
parent and child features or formatted as variation points and variants; and 2) how to
configure a valid software product, i.e., select some features or variants based on the
configuration preferences in compliance with the variability-model rules.

Variability modelling techniques have been developed to assist engineers in dealing
with the complications of variability management. The principal goal of modelling
variability techniques is to configure a successful software product by managing
variability in domain engineering. In other words, a good method for modelling
variability is a prerequisite for a successful SPL.

On the other hand, the analysis of SPL aids the extraction of useful information from
the SPL and provides a control and planning strategy mechanism for engineers or
experts. In addition, the analysis of SPL provides a clear view for users. Moreover, its
analysis ensures the correctness of the SPL. This book discusses these two issues:
modelling and analysis of the SPL.

In the first part, modelling the SPL, Cavalcanti et al. introduce a new metamodel
which integrates the processes of the SPL lifecycle. In addition, Cavalcanti’s

Preface

Nowadays, Software Product Line (SPL) is considered to be one of the most popular
technical paradigms and emerging methodologies in developing software products.
The SPL consists of two main processes: the domain-engineering process and the
application-engineering process. Collecting software assets regarding a specific
business area falls within the domain-engineering process. The process of presenting
software assets (in domain- engineering) is called variability modelling. The principal
objective of application-engineering is to configure a successful specific software
product from the domain-engineering process by managing SPL assets using
variability modelling technique.

Modelling software assets in the domain-engineering is a substantial process as it
identifies the commonality and variability within the domain-engineering process.
Basically, the success of an SPL is largely dependent on effective variability
management. Variability management refers to: 1) how variability is modelled, i.e., the
representation of common features, uncommon features, dependency relations
between features (require and exclude), and structure of the features in the form of
parent and child features or formatted as variation points and variants; and 2) how to
configure a valid software product, i.e., select some features or variants based on the
configuration preferences in compliance with the variability-model rules.

Variability modelling techniques have been developed to assist engineers in dealing
with the complications of variability management. The principal goal of modelling
variability techniques is to configure a successful software product by managing
variability in domain engineering. In other words, a good method for modelling
variability is a prerequisite for a successful SPL.

On the other hand, the analysis of SPL aids the extraction of useful information from
the SPL and provides a control and planning strategy mechanism for engineers or
experts. In addition, the analysis of SPL provides a clear view for users. Moreover, its
analysis ensures the correctness of the SPL. This book discusses these two issues:
modelling and analysis of the SPL.

In the first part, modelling the SPL, Cavalcanti et al. introduce a new metamodel
which integrates the processes of the SPL lifecycle. In addition, Cavalcanti’s

XII Preface

metamodel can be used as a communication tool between SPL developers and
stakeholders. A real case study is used to validate the proposed metamodel. In the
second chapter, Abd Halim et al. propose an approach for standardizing the
representation of requirements and architectures in the SPL. Abd Halim’s approach
deals with the challenge of mapping the requirement models to architecture in
domain-engineering. Abd Halim’s chapter highlights and addresses requirement
engineering issues in the SPL. Their approach is also corroborated by a real case study.
In chapter three, Fouda Ndjodo and Ngoumou propose variability modelling
approach dealing with business application. In their work, domain-engineering
consists of business processes. This proposed technique addresses the challenges of
adaptation, integration, conflict, and evolving of and between business processes. As a
conclusion, this chapter deals with and solves critical issues in enterprise-systems SPL.

In the second part, analysis of the SPL, Tawhid and Petriu suggest a method for
integrating performance analysis in the SPL. Their method uses the standard
performance analysis technique to analyze the software product, so the challenge is
how to apply the same technique for the SPL, since the SPL consists of group of
products. A detailed example is provided to explain the method. Salinesi and Mazo
introduce a method for detecting defects in the SPL. Their method discusses three
criteria for verification: expressiveness, error-free, and redundancy-free. Some
experiments have been done to validate the method and the computational scalability
test has been performed to prove its applicability.

Dr. Abdelrahman Osman Elfaki
Management and Science University,

Malaysia

Part 1

Modelling

 0

Handling Variability and Traceability
over SPL Disciplines

Yguaratã Cerqueira Cavalcanti1, Ivan do Carmo Machado2, Paulo Anselmo
da Mota Silveira Neto1 and Luanna Lopes Lobato1

1Federal University of Pernambuco, Reuse in Software Engineering – RiSE
2Federal University of Bahia, Reuse in Software Engineering – RiSE

Brazil

1. Introduction

SPL has proven to be a successful approach in many business environments (Clements &
Northrop, 2001a; Pohl et al., 2005a). Nevertheless, the SPL advantages do not come for
free. They demand mature software engineering, planning and reuse, adequate practices of
management and development, and also the ability to deal with organizational issues and
architectural complexity. If these points are not considered, the product line success could be
missed (Birk & Heller, 2007). Therefore, the development should be supported by auxiliar
methods and tools, specially due to the complexity of the software systems that a SPL is
supposed to deal with, represented by the variabilities.

Modeling can be used as a support mechanism to define and represent the variability involved
in a SPL in a controlled and traceable way, as well as the mappings among the elements
that compose a SPL. Many SPL projects are developed and maintained using model-based
approaches (Dhungana et al., 2010). In this context, this chapter1 proposes a metamodel
representing the interactions among the assets of a SPL, developed in order to provide a way
of managing traceability and variability. The proposed metamodel consists of representing
diverse reusable assets involved in a SPL project, ranging from scoping to test artifacts, and
also documentation.

The motivation to build the metamodel emerged from the experience gained during an
industrial SPL project development that we have been involved in. This project consists
of introducing SPL practices in a company working in the healthcare management systems
domain, placed in Salvador, Brazil. The company currently has a single software development
process and develops four different products: SmartHealth, a product composed by 35
modules (or sub-domains), which has the capability of managing a whole hospital, including
all areas, ranging from financial management to issues related to patient’s control; SmartClin,
composed by 28 modules, is responsible to perform the clinical management, supporting
activities related to medical exams, diagnostics and so on; SmartLab is a product composed
by 28 modules, which integrates a set of features to manage labs of clinical pathology; all

1 This chapter is an extension of our previous work published in VaMoS’11 conference (Cavalcanti et al.,
2011)

1

 0

Handling Variability and Traceability
over SPL Disciplines

Yguaratã Cerqueira Cavalcanti1, Ivan do Carmo Machado2, Paulo Anselmo
da Mota Silveira Neto1 and Luanna Lopes Lobato1

1Federal University of Pernambuco, Reuse in Software Engineering – RiSE
2Federal University of Bahia, Reuse in Software Engineering – RiSE

Brazil

1. Introduction

SPL has proven to be a successful approach in many business environments (Clements &
Northrop, 2001a; Pohl et al., 2005a). Nevertheless, the SPL advantages do not come for
free. They demand mature software engineering, planning and reuse, adequate practices of
management and development, and also the ability to deal with organizational issues and
architectural complexity. If these points are not considered, the product line success could be
missed (Birk & Heller, 2007). Therefore, the development should be supported by auxiliar
methods and tools, specially due to the complexity of the software systems that a SPL is
supposed to deal with, represented by the variabilities.

Modeling can be used as a support mechanism to define and represent the variability involved
in a SPL in a controlled and traceable way, as well as the mappings among the elements
that compose a SPL. Many SPL projects are developed and maintained using model-based
approaches (Dhungana et al., 2010). In this context, this chapter1 proposes a metamodel
representing the interactions among the assets of a SPL, developed in order to provide a way
of managing traceability and variability. The proposed metamodel consists of representing
diverse reusable assets involved in a SPL project, ranging from scoping to test artifacts, and
also documentation.

The motivation to build the metamodel emerged from the experience gained during an
industrial SPL project development that we have been involved in. This project consists
of introducing SPL practices in a company working in the healthcare management systems
domain, placed in Salvador, Brazil. The company currently has a single software development
process and develops four different products: SmartHealth, a product composed by 35
modules (or sub-domains), which has the capability of managing a whole hospital, including
all areas, ranging from financial management to issues related to patient’s control; SmartClin,
composed by 28 modules, is responsible to perform the clinical management, supporting
activities related to medical exams, diagnostics and so on; SmartLab is a product composed
by 28 modules, which integrates a set of features to manage labs of clinical pathology; all

1 This chapter is an extension of our previous work published in VaMoS’11 conference (Cavalcanti et al.,
2011)

1

2 Software Product Lines - The Automated Analysis

these are desktop-based products, the only web-based product is the SmartDoctor, which is
composed by 11 modules, and is responsible to manage the tasks and routines of a doctor’s
office.

Throughout this project, during the scoping phase (John & Eisenbarth, 2009) of the SPL life
cycle, eight hundred and forty features (840) were consolidated. According to the time
recorded in the management tool used in the project, dotProject2, the scoping phase took
approximately 740 man/hours of work. After this phase, requirements engineering started
and the challenge faced during this phase was how to trace the variability and evolution
among several assets such as product map (Clements & Northrop, 2001a), sub-domain
documentation, features documentation, besides requirements, use cases, test cases and all
the relationships among these assets. Although this work could be done with conventional
tools, such as text and spreadsheet processors, it might be very error prone and not efficient.
To understand such difficulties, consider the scenario where features should be retrieved from
the existing products and then integrated with the products’ requirements; afterwards, use
cases must be linked to requirements, test cases linked to use cases, and so on. Clearly that
would be not trivial to be performed with conventional tools.

Although diverse metamodels have been proposed in the literature (Anquetil et al., 2010;
Bachmann et al., 2003; Bayer & Widen, 2001; Bühne et al., 2005; Moon et al., 2007; Sinnema
et al., 2004; Streitferdt, 2001) in order to address variability and traceability aspects, they
generally cover the SPL phases partially or do not treat such issues together through all
the SPL disciplines. In this paper, we propose a metamodel which provides support for
several SPL aspects, such as scoping, requirements, tests, and project and risk management.
Furthermore, the metamodel was built upon a set of requirements concerning different issues
identified in the literature, which is further discussed in Section 4. It also serves as a basis
to understand the mappings among the SPL assets, communicate them to the stakeholders,
facilitate the evolution and maintenance of the SPL, as well as it can be adapted to other
contexts.

The remainder of this chapter is structured as follows: Section 2 presents an overview
regarding SPL and its main concepts; Section 3 introduces the traceability conept; Section
4 specifies the requirements for a SPL metamodel; Section 5 describes the actual proposed
metamodel, detailing its building blocks; in Section 6 an initial validation of the proposal is
presented; Section 7 presents the related work; and finally, Section 8 concludes this work and
outlines future work.

2. SPL essential activities

Software Product Lines combine three essential and highly iterative activities that blend
business practices and technology. Firstly, the Core Asset Development (CAD) activity that
does not directly aim at developing a product, but rather aims to develop assets to be
further reused in other activities. Secondly, Product Development (PD) activity which takes
advantage of existing, reusable assets. Finally, Management activity, which includes technical
and organizational management (Linden et al., 2007). Figure 1 illustrates this triad of essential
activities.

2 dotProject is an open source, web-based project management application, and was used in the project
reported in this work.

4 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 3

Fig. 1. Essential product line activities (Northrop, 2002).

2.1 Core Asset Development

Core Asset Development is the life-cycle that results in the common assets that in conjunction
compose the product line’s platform (Linden et al., 2007). The key goals of this activity are
(Pohl et al., 2005b):

• Define variability and commonality of the software product line;

• Determine the set of product line planned members (scope); and

• Specify and develop reusable artifacts that accomplish the desired variability and further
instantiated to derive product line members.

This activity (Figure 2) is iterative, and its inputs and outputs affect each other. This
context influences the way in which the core assets are produced. The set of inputs
needed to accomplish this activity are following described (Northrop, 2002). Product
constraints commonalities and variations among the members that will constitute the product
line, including their behavioral features; Production constraints commercial, military, or
company-specific standards and requirements that apply to the products in the product
line; Styles, patterns, and frameworks relevant architectural building blocks that architects can
apply during architecture definition toward meeting the product and production constraints;
Production strategy the whole approach for realizing the core assets, it can be performed
starting with a set of core assets and deriving products (top down), starting from a set of
products and generalizing their components in order to produce product line assets (bottom
up) or both ways; Inventory of preexisting assets software and organizational assets (architecture
pieces, components, libraries, frameworks and so on) available at the outset of the product line
effort that can be included in the asset base.

Based on previous information (inputs), this activity is subdivided in five disciplines: (i)
domain requirements, (ii) domain design, (iii) domain realization (implementation), (iv)
domain testing and (v) evolution management, all of them administered by the management
activity (Pohl et al., 2005b). These disciplines are responsible for creating the core assets, as
well as, the following outputs (Figure 2) (Clements & Northrop, 2001b): Product line scope the
description of the products derived from the product line or that the product line is capable of

5Handling Variability and Traceability over SPL Disciplines

2 Software Product Lines - The Automated Analysis

these are desktop-based products, the only web-based product is the SmartDoctor, which is
composed by 11 modules, and is responsible to manage the tasks and routines of a doctor’s
office.

Throughout this project, during the scoping phase (John & Eisenbarth, 2009) of the SPL life
cycle, eight hundred and forty features (840) were consolidated. According to the time
recorded in the management tool used in the project, dotProject2, the scoping phase took
approximately 740 man/hours of work. After this phase, requirements engineering started
and the challenge faced during this phase was how to trace the variability and evolution
among several assets such as product map (Clements & Northrop, 2001a), sub-domain
documentation, features documentation, besides requirements, use cases, test cases and all
the relationships among these assets. Although this work could be done with conventional
tools, such as text and spreadsheet processors, it might be very error prone and not efficient.
To understand such difficulties, consider the scenario where features should be retrieved from
the existing products and then integrated with the products’ requirements; afterwards, use
cases must be linked to requirements, test cases linked to use cases, and so on. Clearly that
would be not trivial to be performed with conventional tools.

Although diverse metamodels have been proposed in the literature (Anquetil et al., 2010;
Bachmann et al., 2003; Bayer & Widen, 2001; Bühne et al., 2005; Moon et al., 2007; Sinnema
et al., 2004; Streitferdt, 2001) in order to address variability and traceability aspects, they
generally cover the SPL phases partially or do not treat such issues together through all
the SPL disciplines. In this paper, we propose a metamodel which provides support for
several SPL aspects, such as scoping, requirements, tests, and project and risk management.
Furthermore, the metamodel was built upon a set of requirements concerning different issues
identified in the literature, which is further discussed in Section 4. It also serves as a basis
to understand the mappings among the SPL assets, communicate them to the stakeholders,
facilitate the evolution and maintenance of the SPL, as well as it can be adapted to other
contexts.

The remainder of this chapter is structured as follows: Section 2 presents an overview
regarding SPL and its main concepts; Section 3 introduces the traceability conept; Section
4 specifies the requirements for a SPL metamodel; Section 5 describes the actual proposed
metamodel, detailing its building blocks; in Section 6 an initial validation of the proposal is
presented; Section 7 presents the related work; and finally, Section 8 concludes this work and
outlines future work.

2. SPL essential activities

Software Product Lines combine three essential and highly iterative activities that blend
business practices and technology. Firstly, the Core Asset Development (CAD) activity that
does not directly aim at developing a product, but rather aims to develop assets to be
further reused in other activities. Secondly, Product Development (PD) activity which takes
advantage of existing, reusable assets. Finally, Management activity, which includes technical
and organizational management (Linden et al., 2007). Figure 1 illustrates this triad of essential
activities.

2 dotProject is an open source, web-based project management application, and was used in the project
reported in this work.

4 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 3

Fig. 1. Essential product line activities (Northrop, 2002).

2.1 Core Asset Development

Core Asset Development is the life-cycle that results in the common assets that in conjunction
compose the product line’s platform (Linden et al., 2007). The key goals of this activity are
(Pohl et al., 2005b):

• Define variability and commonality of the software product line;

• Determine the set of product line planned members (scope); and

• Specify and develop reusable artifacts that accomplish the desired variability and further
instantiated to derive product line members.

This activity (Figure 2) is iterative, and its inputs and outputs affect each other. This
context influences the way in which the core assets are produced. The set of inputs
needed to accomplish this activity are following described (Northrop, 2002). Product
constraints commonalities and variations among the members that will constitute the product
line, including their behavioral features; Production constraints commercial, military, or
company-specific standards and requirements that apply to the products in the product
line; Styles, patterns, and frameworks relevant architectural building blocks that architects can
apply during architecture definition toward meeting the product and production constraints;
Production strategy the whole approach for realizing the core assets, it can be performed
starting with a set of core assets and deriving products (top down), starting from a set of
products and generalizing their components in order to produce product line assets (bottom
up) or both ways; Inventory of preexisting assets software and organizational assets (architecture
pieces, components, libraries, frameworks and so on) available at the outset of the product line
effort that can be included in the asset base.

Based on previous information (inputs), this activity is subdivided in five disciplines: (i)
domain requirements, (ii) domain design, (iii) domain realization (implementation), (iv)
domain testing and (v) evolution management, all of them administered by the management
activity (Pohl et al., 2005b). These disciplines are responsible for creating the core assets, as
well as, the following outputs (Figure 2) (Clements & Northrop, 2001b): Product line scope the
description of the products derived from the product line or that the product line is capable of

5Handling Variability and Traceability over SPL Disciplines

4 Software Product Lines - The Automated Analysis

Fig. 2. Core Asset Development (Northrop, 2002).

including. The scope should be small enough to accommodate future growth and big enough
to accommodate the variability. Core assets comprehend the basis for production of products
in the product line, besides the reference architecture, that will satisfy the needs of the product
line by admitting a set of variation points required to support the spectrum of products, theses
assets can also be components and their documentation. The Production plan describes how
the products are produced from core assets, it also describe how specific tools are to be applied
in order to use, tailor and evolve the core assets.

2.2 Product development

The product development main goal is to create individual (customized) products by reusing
the core assets previously developed. The CAD outputs (product line scope, core assets and
production plan), in conjunction with the requirements for individual products are the main
inputs for PD activity (Figure 3).

Fig. 3. Product Development (Northrop, 2002).

In possession of the production plan, which details how the core assets will be used in order
to build a product, the software engineer can assemble the product line members. The

6 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 5

product requirement is also important to realize a product. Product engineers have also
the responsibility to provide feedback on any problem or deficiency encountered in the core
assets. It is crucial to avoid the product line decay and keep the core asset base healthy.

2.3 Management

The management of both technical and organizational levels are extremely important to the
software product line effort. The former supervise the CAD and PD activities by certifying that
both groups that build core assets and products are engaged in the activities and to follow the
process, the latter must make sure that the organizational units receive the right and enough
resources. It is, many times, responsible for the production strategy and the success or failure
of the product line.

2.4 SPL variability management

During Core Asset Development, variability is introduced in all domain engineering artifacts
(requirements, architecture, components, test cases, etc.). It is exploited during Product
Development to derive applications tailored to the specific needs of different customers.

According to Svahnberg et al. (2005), variability is defined as "the ability of a software system or
artifact to be efficiently extended, changed, customized or configured for use in a particular context”.
It is described through variation points and variants. While, the variation point is the
representation of a variability subject (variable item of the real world or a variable property
of such an item) within the core assets, enriched by contextual information; the variant is the
representation of the variability object (a particular instance of a variability subject) within the
core assets (Pohl et al., 2005b).

The variability management involve issues, such as: variability identification and
representation, variability binding and control (de Oliveira et al., 2005). Three questions are
helpful to variability identification, what vary the variability subject, why does it vary the drivers
of the variability need, such as stakeholder needs, technical reasons, market pressures, etc.
The later, how does it vary the possibilities of variation, also known as variability objects.

The variability binding indicates the lifecycle milestone that the variants related with
a variation point will be realized. The different binding times (e.g.: link, execution,
post-execution and compile time) involves different mechanisms (e.g.: inheritance,
parameterization, conditional compilation) and are appropriate for different variability
implementation schemes. The different mechanisms result in different types of defects, test
strategies, and test processes (McGregor et al., 2004).

Finally, the purpose of variability control is to defining the relationship between artifacts in
order to control variabilities.

3. SPL traceability

It most organizations and projects with mature software development processes, software
artifacts created during the application of these processes end up being disconnected from
each other. There are several factors leading to the lack of traceability among artifacts, as
stated by Rilling et al. (2007). They are: (i) these artifacts may be written in different languages
(natural language vs. programming language); (ii) the system is described by considering

7Handling Variability and Traceability over SPL Disciplines

4 Software Product Lines - The Automated Analysis

Fig. 2. Core Asset Development (Northrop, 2002).

including. The scope should be small enough to accommodate future growth and big enough
to accommodate the variability. Core assets comprehend the basis for production of products
in the product line, besides the reference architecture, that will satisfy the needs of the product
line by admitting a set of variation points required to support the spectrum of products, theses
assets can also be components and their documentation. The Production plan describes how
the products are produced from core assets, it also describe how specific tools are to be applied
in order to use, tailor and evolve the core assets.

2.2 Product development

The product development main goal is to create individual (customized) products by reusing
the core assets previously developed. The CAD outputs (product line scope, core assets and
production plan), in conjunction with the requirements for individual products are the main
inputs for PD activity (Figure 3).

Fig. 3. Product Development (Northrop, 2002).

In possession of the production plan, which details how the core assets will be used in order
to build a product, the software engineer can assemble the product line members. The

6 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 5

product requirement is also important to realize a product. Product engineers have also
the responsibility to provide feedback on any problem or deficiency encountered in the core
assets. It is crucial to avoid the product line decay and keep the core asset base healthy.

2.3 Management

The management of both technical and organizational levels are extremely important to the
software product line effort. The former supervise the CAD and PD activities by certifying that
both groups that build core assets and products are engaged in the activities and to follow the
process, the latter must make sure that the organizational units receive the right and enough
resources. It is, many times, responsible for the production strategy and the success or failure
of the product line.

2.4 SPL variability management

During Core Asset Development, variability is introduced in all domain engineering artifacts
(requirements, architecture, components, test cases, etc.). It is exploited during Product
Development to derive applications tailored to the specific needs of different customers.

According to Svahnberg et al. (2005), variability is defined as "the ability of a software system or
artifact to be efficiently extended, changed, customized or configured for use in a particular context”.
It is described through variation points and variants. While, the variation point is the
representation of a variability subject (variable item of the real world or a variable property
of such an item) within the core assets, enriched by contextual information; the variant is the
representation of the variability object (a particular instance of a variability subject) within the
core assets (Pohl et al., 2005b).

The variability management involve issues, such as: variability identification and
representation, variability binding and control (de Oliveira et al., 2005). Three questions are
helpful to variability identification, what vary the variability subject, why does it vary the drivers
of the variability need, such as stakeholder needs, technical reasons, market pressures, etc.
The later, how does it vary the possibilities of variation, also known as variability objects.

The variability binding indicates the lifecycle milestone that the variants related with
a variation point will be realized. The different binding times (e.g.: link, execution,
post-execution and compile time) involves different mechanisms (e.g.: inheritance,
parameterization, conditional compilation) and are appropriate for different variability
implementation schemes. The different mechanisms result in different types of defects, test
strategies, and test processes (McGregor et al., 2004).

Finally, the purpose of variability control is to defining the relationship between artifacts in
order to control variabilities.

3. SPL traceability

It most organizations and projects with mature software development processes, software
artifacts created during the application of these processes end up being disconnected from
each other. There are several factors leading to the lack of traceability among artifacts, as
stated by Rilling et al. (2007). They are: (i) these artifacts may be written in different languages
(natural language vs. programming language); (ii) the system is described by considering

7Handling Variability and Traceability over SPL Disciplines

6 Software Product Lines - The Automated Analysis

various abstraction levels/views (scoping and requirements vs. design or implementation);
(iii) software processes do not consider maintenance of existing traceability links as a “must
have" practice; and also (iv) there is a lack of adequate tool support to create and maintain
traceability among software artifacts.

The lack of traceability among artifacts can be considered a major challenge for many software
maintenance activities (Rilling et al., 2007). As a result, during the comprehension of existing
software systems, software engineers are likely to spend an enormous effort on synthesizing
and integrating information from various sources to establish links among these artifacts.

Indeed, by establishing traceability, engineers have the opportunity to understand how
software artifacts interact with each other, in terms of relations and dependencies. Traceability
links are indeed helpful when considering the evolutionary characteristic of the software
artifacts, that are likely to be changed during its lifecycle.

According to Anquetil et al. (2010), establishing traceability yield a series of benefits, such
as: (i) to relate software artifacts and corresponding design decisions, (ii) to give feedback
to architects and designers about the current state of the development, allowing them to
reconsider alternative design decisions, and to track and understand errors, and (iii) to ease
communication between stakeholders, among others.

In SPL, where assets can be used by many products, traceability is even more important. A
change in an artifact in a product line may lead to resultant changes in all products developed
reusing such an artifact. Hence, it is necessary to define dependency relationships between
the relevant artifacts to support consistent change integration (Moon et al., 2007).

Traceability practices vary widely-from high-end to low-end (Ramesh & Jarke, 2001). The
prior use customized traceability knowledge for managing variability. Project managers may
select traceability practices based on project characteristics such as system complexity, product
line vs. single system software development, and degree of variety involved. The later take
more of a “one-size fits all” approach to documenting traceability knowledge, and create
simple traceability links between customer requirements, design, and code modules. While
high-end practices aim at customer satisfaction and system quality, low-end are used just to
meet organizational or customer-mandated quality requirements (Mohan & Ramesh, 2007).

4. Requirements for the SPL metamodel

We identified some work (Bayer & Widen, 2001; Bühne et al., 2005; Sinnema et al., 2004; von
Knethen & Paech, 2002) that elicited different requirements which a metamodel for SPL should
be in conformance with, in order to support properly the SPL development characteristics.
The requirements are following described.

In (Sinnema et al., 2004), the authors propose four (4) requirements that a framework for
modeling variability in SPL should have to support product derivation. However, the product
derivation phase in SPL depends on how properly the previous phases are done. Therefore,
such requirements in our metal-model are considered from the initial SPL phases:

Uniform and first-class representation of variation points in all abstraction levels. Sinnema
et al. (2004) stated that “uniform and first-class representation of variation points facilitates the
assessment of the impact of selections during product derivation and changes during evolution”.

8 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 7

Hierarchical organization of variability representation. In (Sinnema et al., 2004), it is also
argued that explicitly representing these variation points hierarchically reduces the cognitive
complexity during the product derivation process.

Dependencies, including complex ones, should be treated as first-class citizens in the
modeling approach. “First class representation of dependencies can provide a good overview on
all dependencies”. In our metamodel, we provide mechanisms that enable all the SPL assets,
even as all the dependencies, be treated as first-class citizens.

The interactions between dependencies should be represented explicitly. All the assets
in a SPL should be linked in order to preserve their dependencies. By doing that, the
product derivation, maintenance and evolution of the SPL can be performed in an efficient
and effective way. Thus, the metamodel should have a very high degree of linkage among its
entities.

In (Bühne et al., 2005), three (3) essential requirements were defined to support variability
documentation across different SPLs. Although our metamodel is not intended to support
multiple SPLs yet, one of those requirements may be useful:

Facilitate the creation of views on the documented variability and constraints. Bühne
et al. (2005) stated that an approach to document and manage variability across SPLs needs
“to support selective retrieval of variability and commonality information, including variability
constraints”. It is not a specific cause when supporting different SPLs, but it is also important
in a single SPL.

4.1 Traceability requirements

While analyzing all the previous requirements, we have noticed that traceability is the
fundamental building block that enables those requirements. Thus, the basis for constructing a
SPL metamodel is a strong linkage among all elements/assets involved in a SPL development.
These elements, such as features, requirements, design, source code, and test artifacts, should
be linked in a way that their building, evolution and maintenance could be more effectively
controlled, and the impact of changes and addition of new features in different products from
the SPL could be analyzed.

According to von Knethen & Paech (2002), tracing approaches should capture and manage
relationships among the different documents built during development phase. It enables to
support various stakeholders, such as maintainer, project manager, customers, developers,
testers, etc., in performing their tasks. For example, project planners use traceability
to perform impact analysis, while designers use it to understand dependencies between
requirement and design (von Knethen & Paech, 2002). Thus, we believe that without enabling
traceability as a basis of the metamodel, the realizations of the requirements previously
described are not feasible, becoming the SPL development a complete disorder.

In (Bayer & Widen, 2001), some requirements are set that consider traceability issues: (a) base
the traceability on the SPL metamodel; (b) it should be customizable in terms of available trace types;
(c) it should be capable of handling variability in the product line infrastructure; (d) the number of
traces should be as small as possible; and (e) it should be automatable.

Although we presented a large set of requirements along this section, we have not found
studies that implement all these together. Thus, in our proposal, we grouped all these

9Handling Variability and Traceability over SPL Disciplines

6 Software Product Lines - The Automated Analysis

various abstraction levels/views (scoping and requirements vs. design or implementation);
(iii) software processes do not consider maintenance of existing traceability links as a “must
have" practice; and also (iv) there is a lack of adequate tool support to create and maintain
traceability among software artifacts.

The lack of traceability among artifacts can be considered a major challenge for many software
maintenance activities (Rilling et al., 2007). As a result, during the comprehension of existing
software systems, software engineers are likely to spend an enormous effort on synthesizing
and integrating information from various sources to establish links among these artifacts.

Indeed, by establishing traceability, engineers have the opportunity to understand how
software artifacts interact with each other, in terms of relations and dependencies. Traceability
links are indeed helpful when considering the evolutionary characteristic of the software
artifacts, that are likely to be changed during its lifecycle.

According to Anquetil et al. (2010), establishing traceability yield a series of benefits, such
as: (i) to relate software artifacts and corresponding design decisions, (ii) to give feedback
to architects and designers about the current state of the development, allowing them to
reconsider alternative design decisions, and to track and understand errors, and (iii) to ease
communication between stakeholders, among others.

In SPL, where assets can be used by many products, traceability is even more important. A
change in an artifact in a product line may lead to resultant changes in all products developed
reusing such an artifact. Hence, it is necessary to define dependency relationships between
the relevant artifacts to support consistent change integration (Moon et al., 2007).

Traceability practices vary widely-from high-end to low-end (Ramesh & Jarke, 2001). The
prior use customized traceability knowledge for managing variability. Project managers may
select traceability practices based on project characteristics such as system complexity, product
line vs. single system software development, and degree of variety involved. The later take
more of a “one-size fits all” approach to documenting traceability knowledge, and create
simple traceability links between customer requirements, design, and code modules. While
high-end practices aim at customer satisfaction and system quality, low-end are used just to
meet organizational or customer-mandated quality requirements (Mohan & Ramesh, 2007).

4. Requirements for the SPL metamodel

We identified some work (Bayer & Widen, 2001; Bühne et al., 2005; Sinnema et al., 2004; von
Knethen & Paech, 2002) that elicited different requirements which a metamodel for SPL should
be in conformance with, in order to support properly the SPL development characteristics.
The requirements are following described.

In (Sinnema et al., 2004), the authors propose four (4) requirements that a framework for
modeling variability in SPL should have to support product derivation. However, the product
derivation phase in SPL depends on how properly the previous phases are done. Therefore,
such requirements in our metal-model are considered from the initial SPL phases:

Uniform and first-class representation of variation points in all abstraction levels. Sinnema
et al. (2004) stated that “uniform and first-class representation of variation points facilitates the
assessment of the impact of selections during product derivation and changes during evolution”.

8 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 7

Hierarchical organization of variability representation. In (Sinnema et al., 2004), it is also
argued that explicitly representing these variation points hierarchically reduces the cognitive
complexity during the product derivation process.

Dependencies, including complex ones, should be treated as first-class citizens in the
modeling approach. “First class representation of dependencies can provide a good overview on
all dependencies”. In our metamodel, we provide mechanisms that enable all the SPL assets,
even as all the dependencies, be treated as first-class citizens.

The interactions between dependencies should be represented explicitly. All the assets
in a SPL should be linked in order to preserve their dependencies. By doing that, the
product derivation, maintenance and evolution of the SPL can be performed in an efficient
and effective way. Thus, the metamodel should have a very high degree of linkage among its
entities.

In (Bühne et al., 2005), three (3) essential requirements were defined to support variability
documentation across different SPLs. Although our metamodel is not intended to support
multiple SPLs yet, one of those requirements may be useful:

Facilitate the creation of views on the documented variability and constraints. Bühne
et al. (2005) stated that an approach to document and manage variability across SPLs needs
“to support selective retrieval of variability and commonality information, including variability
constraints”. It is not a specific cause when supporting different SPLs, but it is also important
in a single SPL.

4.1 Traceability requirements

While analyzing all the previous requirements, we have noticed that traceability is the
fundamental building block that enables those requirements. Thus, the basis for constructing a
SPL metamodel is a strong linkage among all elements/assets involved in a SPL development.
These elements, such as features, requirements, design, source code, and test artifacts, should
be linked in a way that their building, evolution and maintenance could be more effectively
controlled, and the impact of changes and addition of new features in different products from
the SPL could be analyzed.

According to von Knethen & Paech (2002), tracing approaches should capture and manage
relationships among the different documents built during development phase. It enables to
support various stakeholders, such as maintainer, project manager, customers, developers,
testers, etc., in performing their tasks. For example, project planners use traceability
to perform impact analysis, while designers use it to understand dependencies between
requirement and design (von Knethen & Paech, 2002). Thus, we believe that without enabling
traceability as a basis of the metamodel, the realizations of the requirements previously
described are not feasible, becoming the SPL development a complete disorder.

In (Bayer & Widen, 2001), some requirements are set that consider traceability issues: (a) base
the traceability on the SPL metamodel; (b) it should be customizable in terms of available trace types;
(c) it should be capable of handling variability in the product line infrastructure; (d) the number of
traces should be as small as possible; and (e) it should be automatable.

Although we presented a large set of requirements along this section, we have not found
studies that implement all these together. Thus, in our proposal, we grouped all these

9Handling Variability and Traceability over SPL Disciplines

8 Software Product Lines - The Automated Analysis

requirements to fit them in our metamodel, as detailed in next section. Furthermore, such
requirements can also serve as a guideline for building SPL models.

5. The SPL metamodel

In this section, we describe the initial metamodel developed in order to fulfill the requirements
specified in previous sections. It was developed using the UML notation (Booch et al.,
2005). The metamodel was initially divided into SPL management, which currently includes
the risk management sub-metamodel, and the SPL core development, which are the scoping,
requirement, and tests sub-metamodels. Henceforth, we will call the submetamodels just by
models.

Figure 4 shows the overall view of the metamodel, where the dashed boxes specify the models
of the metamodel. The variability model is strongly based on the generic metamodel proposed
by Bachmann et al. (2003). We split the metamodel into small diagrams in the next subsections
in order to explain it in details. It starts by detailing the Asset UML Profile, scoping model,
then moving towards requirement, tests, and management models.

5.1 Asset UML profile

This is the metamodel core entity, called Asset, as shown in Figure 5. This entity is used
as a UML profile3 for the other entities of the metamodel which should behave as an Asset.
Thus, whenever an entity of the SPL metamodel have the properties of an Asset, it is extended
using the asset profile tag. The usage of such profile has three main reasons: (1) to enable
the evolution and maintenance of the metamodel without the need to modify the entire
metamodel; (2) to transform the metamodel entities into first class entities; and (3) to keep
the metamodel views clean and understandable.

The Asset entity is the metamodel core since it has properties that make feasible some of
the requirements aforementioned. For example, it is related to a History entity, which is
responsible to keep track of the changes that are performed in some Asset object. Thus, a
History object records the Asset object which was modified, what kind of modification was
performed, and who did it. Recording such modifications enables, for example, to calculate
the probability that an Asset object has to be modified – such probability could impact directly
in the SPL architecture design (von Knethen & Paech, 2002).

The Asset entity is also related to a set of metrics (Metric entity). During the SPL development,
it is important to have information quantifying the metrics. For example, we could measure
the effort for scoping analysis and requirement analysis, thus it would be possible to estimate
the value for each feature or requirement. We could also set a metric for number of LOC (Lines
of Code) for each feature in the SPL, or how many requirements and use cases some feature
has. The granularity of the metrics can vary from the very high level to the very low level due
to the strong tracking capability of the metamodel.

Furthermore, the Asset entity is also related to a Version entity. It enables the Asset objects to be
versioned. This characteristic is important due to the variability nature of a SPL project. The
presence of the Version entity means that for each modification in an Asset object, a new version

3 UML profiles are an extension mechanism of the UML language (Booch et al., 2005) that allow models
to be customized for specific domains.

10 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 9

Fig. 4. Overview of the proposed SPL metamodel.

of this should be created. Thus, integrating a versioning mechanism inside the metamodel
will enable easy maintenance of different versions of the same product. If the metamodel is
extended to support different SPLs, it becomes more critical. The History entity should not be
confused with the Version entity; the former holds metadata information for the Asset object,
while the later keeps different copies of an Asset object.

Last, but not least, the metamodel also integrates a mechanism for issues reporting. This
mechanism enables any Asset object to be associated with an Issue object. It also means that
someone could report an issue for different versions of the same Asset object. As direct impact
of this mechanism, it will provide easy maintenance and evolution of different Asset object
versions. However, due to better understanding reasons, the issue mechanism showed in the

11Handling Variability and Traceability over SPL Disciplines

8 Software Product Lines - The Automated Analysis

requirements to fit them in our metamodel, as detailed in next section. Furthermore, such
requirements can also serve as a guideline for building SPL models.

5. The SPL metamodel

In this section, we describe the initial metamodel developed in order to fulfill the requirements
specified in previous sections. It was developed using the UML notation (Booch et al.,
2005). The metamodel was initially divided into SPL management, which currently includes
the risk management sub-metamodel, and the SPL core development, which are the scoping,
requirement, and tests sub-metamodels. Henceforth, we will call the submetamodels just by
models.

Figure 4 shows the overall view of the metamodel, where the dashed boxes specify the models
of the metamodel. The variability model is strongly based on the generic metamodel proposed
by Bachmann et al. (2003). We split the metamodel into small diagrams in the next subsections
in order to explain it in details. It starts by detailing the Asset UML Profile, scoping model,
then moving towards requirement, tests, and management models.

5.1 Asset UML profile

This is the metamodel core entity, called Asset, as shown in Figure 5. This entity is used
as a UML profile3 for the other entities of the metamodel which should behave as an Asset.
Thus, whenever an entity of the SPL metamodel have the properties of an Asset, it is extended
using the asset profile tag. The usage of such profile has three main reasons: (1) to enable
the evolution and maintenance of the metamodel without the need to modify the entire
metamodel; (2) to transform the metamodel entities into first class entities; and (3) to keep
the metamodel views clean and understandable.

The Asset entity is the metamodel core since it has properties that make feasible some of
the requirements aforementioned. For example, it is related to a History entity, which is
responsible to keep track of the changes that are performed in some Asset object. Thus, a
History object records the Asset object which was modified, what kind of modification was
performed, and who did it. Recording such modifications enables, for example, to calculate
the probability that an Asset object has to be modified – such probability could impact directly
in the SPL architecture design (von Knethen & Paech, 2002).

The Asset entity is also related to a set of metrics (Metric entity). During the SPL development,
it is important to have information quantifying the metrics. For example, we could measure
the effort for scoping analysis and requirement analysis, thus it would be possible to estimate
the value for each feature or requirement. We could also set a metric for number of LOC (Lines
of Code) for each feature in the SPL, or how many requirements and use cases some feature
has. The granularity of the metrics can vary from the very high level to the very low level due
to the strong tracking capability of the metamodel.

Furthermore, the Asset entity is also related to a Version entity. It enables the Asset objects to be
versioned. This characteristic is important due to the variability nature of a SPL project. The
presence of the Version entity means that for each modification in an Asset object, a new version

3 UML profiles are an extension mechanism of the UML language (Booch et al., 2005) that allow models
to be customized for specific domains.

10 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 9

Fig. 4. Overview of the proposed SPL metamodel.

of this should be created. Thus, integrating a versioning mechanism inside the metamodel
will enable easy maintenance of different versions of the same product. If the metamodel is
extended to support different SPLs, it becomes more critical. The History entity should not be
confused with the Version entity; the former holds metadata information for the Asset object,
while the later keeps different copies of an Asset object.

Last, but not least, the metamodel also integrates a mechanism for issues reporting. This
mechanism enables any Asset object to be associated with an Issue object. It also means that
someone could report an issue for different versions of the same Asset object. As direct impact
of this mechanism, it will provide easy maintenance and evolution of different Asset object
versions. However, due to better understanding reasons, the issue mechanism showed in the

11Handling Variability and Traceability over SPL Disciplines

10 Software Product Lines - The Automated Analysis

Fig. 5. The metamodel core UML profile.

Asset UML Profile is a simplification of what an issue mechanism should be. Therefore, the
metamodel can be extended with other specialized entities to support a complete issue tracker
system, even as it could be done for versioning, metrics, and history mechanisms.

5.2 Scoping model

During the scoping phase (John & Eisenbarth, 2009), the feature model is assembled based
on the method to identify those features (Kang et al., 1990). In some cases, a tree is built
containing all feature types, such as mandatory, alternative and optional. The scoping model
is shown in Figure 6.

We used the Composite design pattern (Gamma et al., 1995) to represent the feature model,
since it is a good representation using UML diagrams for the feature model proposed by Kang
et al. (1990). It enables the features and their dependencies to be represented in a form of a
tree, where features can have sub-features (children) recursively. The feature model proposed
in the scoping model also enables other relationship between features, e.g. it is possible to
specify what are the required and excluded features when choosing any feature. Moreover,
the metamodel can be extended to support other relationships.

In the scoping model, a Feature object has BindingTime, VariabilityType, Module and Product
entities associated with it. We did not specify the binding times and variability types for
the features, because it must be done when instantiating the metamodel. According to Kang
et al. (1990), examples of binding time are before compilation, compile time, link time, load time,
run-time; and examples of variability type can be Mandatory, Alternative, Optional, and Or.

In the scoping model, the Feature objects are grouped into Module objects, and Module
objects are then grouped into Product objects. The Module objects can be viewed also as the
sub-domains of the Product objects. It was decided to structure the metamodel in this way
since it better represents the SPL project we are developing in the mentioned private company.
However, if it is not necessary to have a Module entity, it is easy to remove that from the
metamodel, since the other phases are not directly linked to the Module entity.

12 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 11

Fig. 6. The model for scoping phase.

5.3 Requirements model

The metamodel also involves the requirement engineering traceability and interactions issues,
considering the variability and commonality in the SPL products. The two main work
products from this SPL phase are the requirements and use cases. Figure 7 presents the model
regarding the requirements phase.

Fig. 7. The metamodel for requirements phase.

13Handling Variability and Traceability over SPL Disciplines

10 Software Product Lines - The Automated Analysis

Fig. 5. The metamodel core UML profile.

Asset UML Profile is a simplification of what an issue mechanism should be. Therefore, the
metamodel can be extended with other specialized entities to support a complete issue tracker
system, even as it could be done for versioning, metrics, and history mechanisms.

5.2 Scoping model

During the scoping phase (John & Eisenbarth, 2009), the feature model is assembled based
on the method to identify those features (Kang et al., 1990). In some cases, a tree is built
containing all feature types, such as mandatory, alternative and optional. The scoping model
is shown in Figure 6.

We used the Composite design pattern (Gamma et al., 1995) to represent the feature model,
since it is a good representation using UML diagrams for the feature model proposed by Kang
et al. (1990). It enables the features and their dependencies to be represented in a form of a
tree, where features can have sub-features (children) recursively. The feature model proposed
in the scoping model also enables other relationship between features, e.g. it is possible to
specify what are the required and excluded features when choosing any feature. Moreover,
the metamodel can be extended to support other relationships.

In the scoping model, a Feature object has BindingTime, VariabilityType, Module and Product
entities associated with it. We did not specify the binding times and variability types for
the features, because it must be done when instantiating the metamodel. According to Kang
et al. (1990), examples of binding time are before compilation, compile time, link time, load time,
run-time; and examples of variability type can be Mandatory, Alternative, Optional, and Or.

In the scoping model, the Feature objects are grouped into Module objects, and Module
objects are then grouped into Product objects. The Module objects can be viewed also as the
sub-domains of the Product objects. It was decided to structure the metamodel in this way
since it better represents the SPL project we are developing in the mentioned private company.
However, if it is not necessary to have a Module entity, it is easy to remove that from the
metamodel, since the other phases are not directly linked to the Module entity.

12 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 11

Fig. 6. The model for scoping phase.

5.3 Requirements model

The metamodel also involves the requirement engineering traceability and interactions issues,
considering the variability and commonality in the SPL products. The two main work
products from this SPL phase are the requirements and use cases. Figure 7 presents the model
regarding the requirements phase.

Fig. 7. The metamodel for requirements phase.

13Handling Variability and Traceability over SPL Disciplines

12 Software Product Lines - The Automated Analysis

The Requirement object is composed by name, description, bindingTime, priority. During its
elicitation, it should envisage the variations over the foreseeable SPL life-cycle (Clements &
Northrop, 2001a), considering the products requirements and the SPL variations. Briefly, it
presents what the systems should do and how they are supposed to be.

Some scoping outputs serve as source of information in this phase. For instance, during
the requirements elicitation the feature model is one of the primary artifacts. Features
and requirements have a many-to-many relationship, which means that one feature can
encompass many requirements and different requirements can encompass many features
(Neiva et al., 2009).

It is important to highlight that the metamodel was built in order to address the behavior of
SPL projects. In this sense, there are three scenarios where a requirement may be described:
(i) the requirement is a variation point; (ii) the requirement is a variant of a variation point;
and (iii) the requirement has variation points.

The same scenarios are used when eliciting use cases, it also can be composed by variation
points and variants, represented in the model by flow and sub-flow, respectively. In addition,
the same many-to-many association is used between requirements and use cases, in which
one requirement could encompass many use cases, and a use case could be encompassed by
many requirements. The UseCase model is composed by name, description, preCondition and
postCondition. The alternative flows are represented by the flows and sub-flows.

5.4 Tests model

The metamodel encompasses testing issues in terms of how system test cases interact with
other artifacts. The Test Cases are derived from Use Cases, as can be seen in the metamodel
and separated in Figure 8. This model expands on the abstract use case definition, in which
variability is represented in the use cases. A use case is herein composed by the entity
AbstractFlow, that comprises the subentity Flow, which actually represent the use case steps.
Every step can be associated with a subflow, that can represent a variation point.

Fig. 8. The metamodel for tests.

Figure 9 illustrates the dependency between test objective and test case when variability is
considered (Wübbeke, 2008). Consider that in (A) the component is variable as a whole, and
in (B) only part of the component is variable. They will turn, respectively, into (A’) and (B’),
the former as a new test case, which is variable as a whole, and the latter, a test case in which
only the corresponding part of the test case is variable.

14 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 13

Fig. 9. Dependency between test objective and test cases considering variability.

Hence, the challenge is how to optimally build test cases that take into consideration
variability aspects so that the reuse of the parts of test cases will emerge easily.

The case illustrated in the Figure 9 is a typical case, in which only part of a use case varies. It
is not necessary to create different use cases to represent the variability, but rather reuse part
of it. According to the requirements model of the metamodel (Figure 7), such a representation
is feasible, since every step in a use case can make reference to a subflow.

Consider a hypothetical situation in which there are two variation points, the first representing
an optional feature (white diamond), and the second representing an alternative feature (black
diamond), as depicted by the diagram shown in Figure 10. This diagram represents five
possible scenarios: (1) [A-B-C-D], (2) [A-B-C-D-E-F], (3) [A-B-C-D-E-G], (4) [A-E-F], (5)
[A-E-G]. In this case, if we consider the first three possible scenarios, we could create the test
case for scenario (1), and then reuse the flow of this scenario and the results for the remaining
scenarios (2) and (3). This idea is brought from the control-flow coverage criteria, based on
graph representation. We applied this same representation, but now considering aspects of
variability.

Fig. 10. Hypothetical diagram representing variability.

Considering that a use case can generate several test cases, the strategy to represent each step
in a use case and enable it to be linked to a variation point enables the building of test cases
which also consider the variation points. This way, several test cases can be instantiated from
a use case, that have represented the variation points. Variability is preserved in the core asset
test artifacts to facilitate reuse.

15Handling Variability and Traceability over SPL Disciplines

12 Software Product Lines - The Automated Analysis

The Requirement object is composed by name, description, bindingTime, priority. During its
elicitation, it should envisage the variations over the foreseeable SPL life-cycle (Clements &
Northrop, 2001a), considering the products requirements and the SPL variations. Briefly, it
presents what the systems should do and how they are supposed to be.

Some scoping outputs serve as source of information in this phase. For instance, during
the requirements elicitation the feature model is one of the primary artifacts. Features
and requirements have a many-to-many relationship, which means that one feature can
encompass many requirements and different requirements can encompass many features
(Neiva et al., 2009).

It is important to highlight that the metamodel was built in order to address the behavior of
SPL projects. In this sense, there are three scenarios where a requirement may be described:
(i) the requirement is a variation point; (ii) the requirement is a variant of a variation point;
and (iii) the requirement has variation points.

The same scenarios are used when eliciting use cases, it also can be composed by variation
points and variants, represented in the model by flow and sub-flow, respectively. In addition,
the same many-to-many association is used between requirements and use cases, in which
one requirement could encompass many use cases, and a use case could be encompassed by
many requirements. The UseCase model is composed by name, description, preCondition and
postCondition. The alternative flows are represented by the flows and sub-flows.

5.4 Tests model

The metamodel encompasses testing issues in terms of how system test cases interact with
other artifacts. The Test Cases are derived from Use Cases, as can be seen in the metamodel
and separated in Figure 8. This model expands on the abstract use case definition, in which
variability is represented in the use cases. A use case is herein composed by the entity
AbstractFlow, that comprises the subentity Flow, which actually represent the use case steps.
Every step can be associated with a subflow, that can represent a variation point.

Fig. 8. The metamodel for tests.

Figure 9 illustrates the dependency between test objective and test case when variability is
considered (Wübbeke, 2008). Consider that in (A) the component is variable as a whole, and
in (B) only part of the component is variable. They will turn, respectively, into (A’) and (B’),
the former as a new test case, which is variable as a whole, and the latter, a test case in which
only the corresponding part of the test case is variable.

14 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 13

Fig. 9. Dependency between test objective and test cases considering variability.

Hence, the challenge is how to optimally build test cases that take into consideration
variability aspects so that the reuse of the parts of test cases will emerge easily.

The case illustrated in the Figure 9 is a typical case, in which only part of a use case varies. It
is not necessary to create different use cases to represent the variability, but rather reuse part
of it. According to the requirements model of the metamodel (Figure 7), such a representation
is feasible, since every step in a use case can make reference to a subflow.

Consider a hypothetical situation in which there are two variation points, the first representing
an optional feature (white diamond), and the second representing an alternative feature (black
diamond), as depicted by the diagram shown in Figure 10. This diagram represents five
possible scenarios: (1) [A-B-C-D], (2) [A-B-C-D-E-F], (3) [A-B-C-D-E-G], (4) [A-E-F], (5)
[A-E-G]. In this case, if we consider the first three possible scenarios, we could create the test
case for scenario (1), and then reuse the flow of this scenario and the results for the remaining
scenarios (2) and (3). This idea is brought from the control-flow coverage criteria, based on
graph representation. We applied this same representation, but now considering aspects of
variability.

Fig. 10. Hypothetical diagram representing variability.

Considering that a use case can generate several test cases, the strategy to represent each step
in a use case and enable it to be linked to a variation point enables the building of test cases
which also consider the variation points. This way, several test cases can be instantiated from
a use case, that have represented the variation points. Variability is preserved in the core asset
test artifacts to facilitate reuse.

15Handling Variability and Traceability over SPL Disciplines

14 Software Product Lines - The Automated Analysis

This strategy allows that every change in the use case and/or the variation points and variants
to be propagated to the test cases and their steps (variable or not), due to the strong traceability
represented in the metamodel.

5.5 Initial management model

In this section, the main characteristics of the management model are presented. The main
objective of this model is to coordinate the SPL activities. Through this model it is possible
to manage the SPL project and consequently keep track of its different phases and the staff
responsible for that. Thus, it is possible to maintain the mappings and traceability between
every artifact.

As illustrated in Figure 11, the management model can be viewed as the starting point to the
SPL metamodel. Hence, through this model we can define information about the SPL project
as well as details such as the SPL phases, the tasks to be performed, the members responsible
for the tasks and their associated roles. In addition, the decisions about the SPL project can
be documented using the Decision entity, by describing the alternatives, justification, notes,
when it occurred, and the involved staff.

Fig. 11. The model for project management.

5.5.1 Risks model

According to Sommerville (2007), Risk Management (RM) is particularly important for
software projects because of the inherent uncertainties that most projects face. These stem
from loosely defined requirements, difficulties in estimating the effort and resources needed
for software development, and dependence on individual skills and requirements changes
due to changes in customer needs.

16 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 15

Thus, our RM model for SPL involves activities which must be performed during the RM
process that involves all SPL phases. These activities are based on the definition proposed
by Sommerville (2007), however it was adapted to our context, based upon the needs with
feedback in risk identification stage. The following activities for RM should be performed:

1. Risk identification: it is possible to map the risks in the project, considering product and
business risks identification;

2. Risk Documentation: identified risks are documented in order to provide the assessment of
them;

3. Risk analysis: the likely to occur and the consequences of these risks are assessed;

4. Risk planning: plans to address the risk either by avoiding it or minimizing its effects on
the project are drawn up;

5. Risk monitoring: the risk is constantly assessed and plans for mitigation are revised as more
information about the risk becomes available.

These activities compose the base for the RM model proposed in our metamodel in a way that
may support an automated risk management strategy. Figure 12 shows the functionalities
encompassed by the RM model.

Fig. 12. The metamodel for risks management.

According to the RM model, the risks are identified and then their main characteristics are
documented. The characteristics are: the risk description, type, status, mitigation strategy,
and contingency plans. In addition, as the RM process is a continuous activity, it is necessary
to keep track of the history about the management of these risks. Thus, the risks’ likelihood
and impact are documented according to their occurrence, which can happen in different
moments throughout the project development. It is important to emphasize that our approach

17Handling Variability and Traceability over SPL Disciplines

14 Software Product Lines - The Automated Analysis

This strategy allows that every change in the use case and/or the variation points and variants
to be propagated to the test cases and their steps (variable or not), due to the strong traceability
represented in the metamodel.

5.5 Initial management model

In this section, the main characteristics of the management model are presented. The main
objective of this model is to coordinate the SPL activities. Through this model it is possible
to manage the SPL project and consequently keep track of its different phases and the staff
responsible for that. Thus, it is possible to maintain the mappings and traceability between
every artifact.

As illustrated in Figure 11, the management model can be viewed as the starting point to the
SPL metamodel. Hence, through this model we can define information about the SPL project
as well as details such as the SPL phases, the tasks to be performed, the members responsible
for the tasks and their associated roles. In addition, the decisions about the SPL project can
be documented using the Decision entity, by describing the alternatives, justification, notes,
when it occurred, and the involved staff.

Fig. 11. The model for project management.

5.5.1 Risks model

According to Sommerville (2007), Risk Management (RM) is particularly important for
software projects because of the inherent uncertainties that most projects face. These stem
from loosely defined requirements, difficulties in estimating the effort and resources needed
for software development, and dependence on individual skills and requirements changes
due to changes in customer needs.

16 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 15

Thus, our RM model for SPL involves activities which must be performed during the RM
process that involves all SPL phases. These activities are based on the definition proposed
by Sommerville (2007), however it was adapted to our context, based upon the needs with
feedback in risk identification stage. The following activities for RM should be performed:

1. Risk identification: it is possible to map the risks in the project, considering product and
business risks identification;

2. Risk Documentation: identified risks are documented in order to provide the assessment of
them;

3. Risk analysis: the likely to occur and the consequences of these risks are assessed;

4. Risk planning: plans to address the risk either by avoiding it or minimizing its effects on
the project are drawn up;

5. Risk monitoring: the risk is constantly assessed and plans for mitigation are revised as more
information about the risk becomes available.

These activities compose the base for the RM model proposed in our metamodel in a way that
may support an automated risk management strategy. Figure 12 shows the functionalities
encompassed by the RM model.

Fig. 12. The metamodel for risks management.

According to the RM model, the risks are identified and then their main characteristics are
documented. The characteristics are: the risk description, type, status, mitigation strategy,
and contingency plans. In addition, as the RM process is a continuous activity, it is necessary
to keep track of the history about the management of these risks. Thus, the risks’ likelihood
and impact are documented according to their occurrence, which can happen in different
moments throughout the project development. It is important to emphasize that our approach

17Handling Variability and Traceability over SPL Disciplines

16 Software Product Lines - The Automated Analysis

to risk management should be performed in the essential activities of the SPL: Core Assets
Development (CAD), Product Development (PD) and Management (M).

6. Implementing and validating the metamodel

In order to validate the metamodel, we have implemented a web tool where all the entities
from the metamodel are provided and specialized in the tool for the company settings, and
the intended metamodel traceability is fully supported. We implemented the tool using the
Django4 framework, which enabled the fast development of a functional prototype. With
Django implementation, we mapped the metamodel entities and their relationship within
Python5 classes, and then a relational database for these entities is automatically created.
Finally, Django generates a Web application where it is possible to test the mapping by
inserting some test data – in our case, the documentation regarding features, requirements
and so on.

After this initial application generated by Django, we can extend it by developing new
functionalities for the tool. Currently, it is possible to use the tool to document all the assets
regarding the metamodel, however the test cases derivation from use cases is not supported
yet. Furthermore, the tool is able to produce feature models visualizations, as well as product
maps and other type of project documentation. For example, there are several types of reports
that can be generated, such as: features per modules/products; all the features, requirements
and use cases per modules/products; and the traceability matrix among these different assets.

Additionally, the tool also aids in the inspection activity – static quality assurance activities
carried out by a group composed by the authors of the artifacts, a reader and the reviewers
– through the generation of different reports and providing a way to gather information
about the change requests that should be performed in the inspected artifacts. Moreover,
it is important to mention that the tool provides a bug tracker, as proposed by the metamodel,
in order to manage the change requests. This also enables the tool to store all the historical
data to be further reused and serve as lessons learned in project future activities.

Since the tool provides the traceability proposed in the metamodel, it has also a way to
measure the impact analysis of each change request. For example, given a change in a use
case, the user opens a change request referencing that asset in order to solve that problem,
then the Change Control Board will investigate the change and assign a responsible to fix it.
As soon as someone starts to investigate the defect/enhancement, the tool can be asked to
inform the impacted artifacts associated with that change in that specific use case. In this way,
it can also help the decision regarding when a change should be done in the common platform
or in a single SPL product.

The tool has been used inside the company mentioned in the initial sections, since July 2010.
As previously stated, the project goal is to change their single software development process
to a SPL process. The tool is currently being used by SPL consultants working embedded
in the company to perform the scoping and requirements engineering phases. So far, it was
documented 4 products, 9 modules, 97 features, 142 requirements and 156 use cases using the
tool. In parallel, designing, implementation and testing are being started.

4 http://www.djangoproject.com
5 http://www.python.org

18 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 17

7. Others metamodels, approaches and tools

We searched the literature related work which addressed metamodels for SPL and/or approaches
and tools derived from the metamodels. Hence, we briefly describe our findings in the following
subsections.

7.1 Metamodels

In (Streitferdt, 2001), it is proposed a metamodel to integrate requirements to the feature
model, such as the one proposed in (Kang et al., 1990). A requirement, in this case, is
an indivisible piece of text describing some portion of the system to be developed. The
requirements can be described hierarchically, thus achieving variability. Furthermore, the
traceability among the entities is based on the metamodel itself.

In (Bachmann et al., 2003), a high level metamodel for representing variability in SPL
is proposed. The major goal of the metamodel was to “separate out the representation of
variability from the representation of various assets developed in the product development lifecycle
while maintaining the traceability between them”.

The authors in (Berg et al., 2005) proposed a conceptual variability model in order to address
traceability of variations at different abstraction levels and across different generic artifacts
of the SPL. To achieve that, it is proposed to represent the variability in a third dimension.
In such dimension, the variations points would be linked to the generic artifacts (such as
requirements, use cases, architecture, etc.) to keep the traceability.

In (Bühne et al., 2005), a metamodel is described to structure variability information across
different SPLs. It also based the metamodel in a set of requirements to document requirements
variability. Moon et al. (2007) introduced two metamodels representing domain requirements
and domain architecture with variability, and the traceability between these artifacts are based
upon the metamodel.

7.2 Approaches and tools

In (Dhungana et al., 2007), it is briefly described an integrated tool support to develop
SPL. Such tool follows some requirements, such as: Domain-specific adaptations, Mining
existing assets, Involving multiple teams, Project-specific adaptations, Support for product
derivation, Capturing new requirements during derivation, and Supporting product line
evolution. However, it is not discussed the metamodel behind it.

Alférez et al. (2008) proposed a model-driven approach for linking features and use cases,
along with its activities, and an example about how to apply the approach was showed. The
authors did not differentiate between requirements model and use case model, and it is not
explicitly described how the flows and sub-flows of the use cases should be handle.

Jirapanthong & Zisman (2009) presented the XTraQue, which is a rule-based approach to
support automatic generation of traceability relations. In the approach, the feature model, use
cases and some design documents are represented using XML. Thus, the approach extracts
the relationships from these documents automatically using predefined rules.

19Handling Variability and Traceability over SPL Disciplines

16 Software Product Lines - The Automated Analysis

to risk management should be performed in the essential activities of the SPL: Core Assets
Development (CAD), Product Development (PD) and Management (M).

6. Implementing and validating the metamodel

In order to validate the metamodel, we have implemented a web tool where all the entities
from the metamodel are provided and specialized in the tool for the company settings, and
the intended metamodel traceability is fully supported. We implemented the tool using the
Django4 framework, which enabled the fast development of a functional prototype. With
Django implementation, we mapped the metamodel entities and their relationship within
Python5 classes, and then a relational database for these entities is automatically created.
Finally, Django generates a Web application where it is possible to test the mapping by
inserting some test data – in our case, the documentation regarding features, requirements
and so on.

After this initial application generated by Django, we can extend it by developing new
functionalities for the tool. Currently, it is possible to use the tool to document all the assets
regarding the metamodel, however the test cases derivation from use cases is not supported
yet. Furthermore, the tool is able to produce feature models visualizations, as well as product
maps and other type of project documentation. For example, there are several types of reports
that can be generated, such as: features per modules/products; all the features, requirements
and use cases per modules/products; and the traceability matrix among these different assets.

Additionally, the tool also aids in the inspection activity – static quality assurance activities
carried out by a group composed by the authors of the artifacts, a reader and the reviewers
– through the generation of different reports and providing a way to gather information
about the change requests that should be performed in the inspected artifacts. Moreover,
it is important to mention that the tool provides a bug tracker, as proposed by the metamodel,
in order to manage the change requests. This also enables the tool to store all the historical
data to be further reused and serve as lessons learned in project future activities.

Since the tool provides the traceability proposed in the metamodel, it has also a way to
measure the impact analysis of each change request. For example, given a change in a use
case, the user opens a change request referencing that asset in order to solve that problem,
then the Change Control Board will investigate the change and assign a responsible to fix it.
As soon as someone starts to investigate the defect/enhancement, the tool can be asked to
inform the impacted artifacts associated with that change in that specific use case. In this way,
it can also help the decision regarding when a change should be done in the common platform
or in a single SPL product.

The tool has been used inside the company mentioned in the initial sections, since July 2010.
As previously stated, the project goal is to change their single software development process
to a SPL process. The tool is currently being used by SPL consultants working embedded
in the company to perform the scoping and requirements engineering phases. So far, it was
documented 4 products, 9 modules, 97 features, 142 requirements and 156 use cases using the
tool. In parallel, designing, implementation and testing are being started.

4 http://www.djangoproject.com
5 http://www.python.org

18 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 17

7. Others metamodels, approaches and tools

We searched the literature related work which addressed metamodels for SPL and/or approaches
and tools derived from the metamodels. Hence, we briefly describe our findings in the following
subsections.

7.1 Metamodels

In (Streitferdt, 2001), it is proposed a metamodel to integrate requirements to the feature
model, such as the one proposed in (Kang et al., 1990). A requirement, in this case, is
an indivisible piece of text describing some portion of the system to be developed. The
requirements can be described hierarchically, thus achieving variability. Furthermore, the
traceability among the entities is based on the metamodel itself.

In (Bachmann et al., 2003), a high level metamodel for representing variability in SPL
is proposed. The major goal of the metamodel was to “separate out the representation of
variability from the representation of various assets developed in the product development lifecycle
while maintaining the traceability between them”.

The authors in (Berg et al., 2005) proposed a conceptual variability model in order to address
traceability of variations at different abstraction levels and across different generic artifacts
of the SPL. To achieve that, it is proposed to represent the variability in a third dimension.
In such dimension, the variations points would be linked to the generic artifacts (such as
requirements, use cases, architecture, etc.) to keep the traceability.

In (Bühne et al., 2005), a metamodel is described to structure variability information across
different SPLs. It also based the metamodel in a set of requirements to document requirements
variability. Moon et al. (2007) introduced two metamodels representing domain requirements
and domain architecture with variability, and the traceability between these artifacts are based
upon the metamodel.

7.2 Approaches and tools

In (Dhungana et al., 2007), it is briefly described an integrated tool support to develop
SPL. Such tool follows some requirements, such as: Domain-specific adaptations, Mining
existing assets, Involving multiple teams, Project-specific adaptations, Support for product
derivation, Capturing new requirements during derivation, and Supporting product line
evolution. However, it is not discussed the metamodel behind it.

Alférez et al. (2008) proposed a model-driven approach for linking features and use cases,
along with its activities, and an example about how to apply the approach was showed. The
authors did not differentiate between requirements model and use case model, and it is not
explicitly described how the flows and sub-flows of the use cases should be handle.

Jirapanthong & Zisman (2009) presented the XTraQue, which is a rule-based approach to
support automatic generation of traceability relations. In the approach, the feature model, use
cases and some design documents are represented using XML. Thus, the approach extracts
the relationships from these documents automatically using predefined rules.

19Handling Variability and Traceability over SPL Disciplines

18 Software Product Lines - The Automated Analysis

As it can be seen, the literature basically proposes metamodels or techniques that address only
a specific portion of SPL development. In addition, traceability and variability are not always
considered together, or the description and the details of them are very simplified. Thus, the
main difference between the previous described work and our proposal, is that we present
a metamodel, and the implementation of it, for SPL development concerning variability and
traceability aspects together along the early phases of SPL, and providing a level of details
that simplifies the adoption of the metamodel. Furthermore, the tool that implements our
metamodel is currently being used in a industrial project.

8. Conclusion and future work

In this chapter, it was proposed a metamodel for Software Product Lines that encompasses
several phases of a SPL development, representing the interactions among the assets of a SPL,
developed in order to provide a way of managing traceability and variability, and its initial
validation inside a private company. The metamodel was built based upon a real-world SPL
project being conducted in a private software company from Brazil. The organization works
in the healthcare management systems domain, and have essentially four products, counting
a total of 102 modules (sub-domains), with encompass about 840 features.

The phases currently supported by the metamodel include: scoping, requirements
engineering, and tests. Additionally, the metamodel also supports different management
aspects of a SPL project. For example, in the current version of the metamodel it is possible to
manage different SPL projects concerning the staff, phases and activities, and it is proposed a
model for managing risks in SPL.

In the way that we conceived the metamodel, the assets are treated as first-class citizens,
which means that we can trace the linkage of any asset to others. Furthermore, treating
assets as first-class citizens in our metamodel also enables a set of issues: to keep different
versions of the same asset concerning different products in the SPL; to keep the history of
assets modifications; to associate any metrics to assets; and it is also possible to manage the
defects for different versions of the assets. Furthermore, by incorporating the management
model, it is also possible to keep track of different assets and their responsible.

Although the metamodel was conceived to represent the SPL project for a specific company,
in which we have been working jointly, it was built to be adaptable to other contexts. For
example, the metamodel can be easily changed to support single system development by
removing SPL specific entities.

For future work, we intend to extend the metamodel to support more aspects of SPL
development. Specifically, we are planning to extend the model for metrics management,
detailed software configuration aspects, integrate a model for SPL architecture, and establish
mechanisms to link all these artifacts to source code.

We also plan to provide some way to enable the products derivation. The reuse between
different SPLs (Bühne et al., 2005) is also intended to be implemented in future releases of the
metamodel. In addition, formalized evaluations will be performed, that consider aspects of
empirical software engineering, in order to assess the metamodel effectiveness. Finally, the
prototype initially created to support the metamodel should be evolved, as well as formally
validated.

20 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 19

9. References

Alférez, M., Kulesza, U., Moreira, A., Araújo, J. & Amaral, V. (2008). Tracing from features to
use cases: A model-driven approach, VaMoS’08: Proc. of the 2nd International Workshop
on Variability Modeling of Software-intensive Systems, pp. 81–87.

Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C., Rummler, A. & Sousa, A.
(2010). A model-driven traceability framework for software product lines, Software
and Systems Modeling 9: 427–451.

Bachmann, F., Goedicke, M., do Prado Leite, J. C. S., Nord, R. L., Pohl, K., Ramesh, B. & Vilbig,
A. (2003). A metamodel for representing variability in product family development,
PFE’03: Proc. of the 5th International Workshop on Software Product-Family Engineering,
pp. 66–80.

Bayer, J. & Widen, T. (2001). Introducing traceability to product lines, PFE’01: Proc. of 3th
International Workshop on Software Product-Family Engineering, pp. 409–416.

Berg, K., Bishop, J. & Muthig, D. (2005). Tracing software product line variability: from
problem to solution space, SAICSIT’05: Proc. of the 2005 Annual Research Conference
of the South African Institute of Computer Scientists and Information Technologists on IT
Research in Developing Countries, SAICSIT, Republic of South Africa, pp. 182–191.

Birk, A. & Heller, G. (2007). Challenges for requirements engineering and management
in software product line development, REFSQ’07: Proc. of the 11th International
Working Conference on Requirements Engineering, Springer-Verlag, Berlin, Heidelberg,
pp. 300–305.

Booch, G., Rumbaugh, J. E. & Jacobson, I. (2005). The Unified Modeling Language User Guide,
second edn, Addison Wesley.

Bühne, S., Lauenroth, K. & Pohl, K. (2005). Modelling requirements variability across product
lines, RE’05: Proc. of the 13th International Conference on Requirements Engineering,
pp. 41–52.

Cavalcanti, Y. C., do Carmo Machado, I., da Mota Silveira Neto, P. A., Lobato, L. L.,
de Almeida, E. S. & de Lemos Meira, S. R. (2011). Towards metamodel support
for variability and traceability in software product lines, Proceedings of the
Fifth International WOrkshop on Variability Modeling of Software-Intensive Systems
(VaMoS’2011), Namur, Belgium, pp. 49–57.
URL: http://yguarata.com/blog/wp-content/uploads/2011/01/vamos2011_submission_30.pdf

Clements, P. & Northrop, L. (2001a). Software product lines: practices and patterns,
Addison-Wesley, Boston, MA, USA.

Clements, P. & Northrop, L. (2001b). Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA.

de Oliveira, Junior, E. A., Gimenes, I. M. S., Huzita, E. H. M. & Maldonado, J. C. (2005).
A variability management process for software product lines, Proceedings of the
conference of the Centre for Advanced Studies on Collaborative research (CASCON),
pp. 225–241.

Dhungana, D., GrALnbacher, P. & Rabiser, R. (2010). The dopler meta-tool for
decision-oriented variability modeling: a multiple case study, Automated Software
Engineering pp. 1–38.

Dhungana, D., Rabiser, R., Grünbacher, P. & Neumayer, T. (2007). Integrated tool support
for software product line engineering, ASE’07: Proc. of the IEEE/ACM International
Conference on Automated Software Engineering, pp. 533–534.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns: elements of reusable
object-oriented software, Addison-Wesley, Boston, MA, USA.

21Handling Variability and Traceability over SPL Disciplines

18 Software Product Lines - The Automated Analysis

As it can be seen, the literature basically proposes metamodels or techniques that address only
a specific portion of SPL development. In addition, traceability and variability are not always
considered together, or the description and the details of them are very simplified. Thus, the
main difference between the previous described work and our proposal, is that we present
a metamodel, and the implementation of it, for SPL development concerning variability and
traceability aspects together along the early phases of SPL, and providing a level of details
that simplifies the adoption of the metamodel. Furthermore, the tool that implements our
metamodel is currently being used in a industrial project.

8. Conclusion and future work

In this chapter, it was proposed a metamodel for Software Product Lines that encompasses
several phases of a SPL development, representing the interactions among the assets of a SPL,
developed in order to provide a way of managing traceability and variability, and its initial
validation inside a private company. The metamodel was built based upon a real-world SPL
project being conducted in a private software company from Brazil. The organization works
in the healthcare management systems domain, and have essentially four products, counting
a total of 102 modules (sub-domains), with encompass about 840 features.

The phases currently supported by the metamodel include: scoping, requirements
engineering, and tests. Additionally, the metamodel also supports different management
aspects of a SPL project. For example, in the current version of the metamodel it is possible to
manage different SPL projects concerning the staff, phases and activities, and it is proposed a
model for managing risks in SPL.

In the way that we conceived the metamodel, the assets are treated as first-class citizens,
which means that we can trace the linkage of any asset to others. Furthermore, treating
assets as first-class citizens in our metamodel also enables a set of issues: to keep different
versions of the same asset concerning different products in the SPL; to keep the history of
assets modifications; to associate any metrics to assets; and it is also possible to manage the
defects for different versions of the assets. Furthermore, by incorporating the management
model, it is also possible to keep track of different assets and their responsible.

Although the metamodel was conceived to represent the SPL project for a specific company,
in which we have been working jointly, it was built to be adaptable to other contexts. For
example, the metamodel can be easily changed to support single system development by
removing SPL specific entities.

For future work, we intend to extend the metamodel to support more aspects of SPL
development. Specifically, we are planning to extend the model for metrics management,
detailed software configuration aspects, integrate a model for SPL architecture, and establish
mechanisms to link all these artifacts to source code.

We also plan to provide some way to enable the products derivation. The reuse between
different SPLs (Bühne et al., 2005) is also intended to be implemented in future releases of the
metamodel. In addition, formalized evaluations will be performed, that consider aspects of
empirical software engineering, in order to assess the metamodel effectiveness. Finally, the
prototype initially created to support the metamodel should be evolved, as well as formally
validated.

20 Software Product Line – Advanced Topic Handling Variability and Traceability over SPL Disciplines 19

9. References

Alférez, M., Kulesza, U., Moreira, A., Araújo, J. & Amaral, V. (2008). Tracing from features to
use cases: A model-driven approach, VaMoS’08: Proc. of the 2nd International Workshop
on Variability Modeling of Software-intensive Systems, pp. 81–87.

Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C., Rummler, A. & Sousa, A.
(2010). A model-driven traceability framework for software product lines, Software
and Systems Modeling 9: 427–451.

Bachmann, F., Goedicke, M., do Prado Leite, J. C. S., Nord, R. L., Pohl, K., Ramesh, B. & Vilbig,
A. (2003). A metamodel for representing variability in product family development,
PFE’03: Proc. of the 5th International Workshop on Software Product-Family Engineering,
pp. 66–80.

Bayer, J. & Widen, T. (2001). Introducing traceability to product lines, PFE’01: Proc. of 3th
International Workshop on Software Product-Family Engineering, pp. 409–416.

Berg, K., Bishop, J. & Muthig, D. (2005). Tracing software product line variability: from
problem to solution space, SAICSIT’05: Proc. of the 2005 Annual Research Conference
of the South African Institute of Computer Scientists and Information Technologists on IT
Research in Developing Countries, SAICSIT, Republic of South Africa, pp. 182–191.

Birk, A. & Heller, G. (2007). Challenges for requirements engineering and management
in software product line development, REFSQ’07: Proc. of the 11th International
Working Conference on Requirements Engineering, Springer-Verlag, Berlin, Heidelberg,
pp. 300–305.

Booch, G., Rumbaugh, J. E. & Jacobson, I. (2005). The Unified Modeling Language User Guide,
second edn, Addison Wesley.

Bühne, S., Lauenroth, K. & Pohl, K. (2005). Modelling requirements variability across product
lines, RE’05: Proc. of the 13th International Conference on Requirements Engineering,
pp. 41–52.

Cavalcanti, Y. C., do Carmo Machado, I., da Mota Silveira Neto, P. A., Lobato, L. L.,
de Almeida, E. S. & de Lemos Meira, S. R. (2011). Towards metamodel support
for variability and traceability in software product lines, Proceedings of the
Fifth International WOrkshop on Variability Modeling of Software-Intensive Systems
(VaMoS’2011), Namur, Belgium, pp. 49–57.
URL: http://yguarata.com/blog/wp-content/uploads/2011/01/vamos2011_submission_30.pdf

Clements, P. & Northrop, L. (2001a). Software product lines: practices and patterns,
Addison-Wesley, Boston, MA, USA.

Clements, P. & Northrop, L. (2001b). Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA.

de Oliveira, Junior, E. A., Gimenes, I. M. S., Huzita, E. H. M. & Maldonado, J. C. (2005).
A variability management process for software product lines, Proceedings of the
conference of the Centre for Advanced Studies on Collaborative research (CASCON),
pp. 225–241.

Dhungana, D., GrALnbacher, P. & Rabiser, R. (2010). The dopler meta-tool for
decision-oriented variability modeling: a multiple case study, Automated Software
Engineering pp. 1–38.

Dhungana, D., Rabiser, R., Grünbacher, P. & Neumayer, T. (2007). Integrated tool support
for software product line engineering, ASE’07: Proc. of the IEEE/ACM International
Conference on Automated Software Engineering, pp. 533–534.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns: elements of reusable
object-oriented software, Addison-Wesley, Boston, MA, USA.

21Handling Variability and Traceability over SPL Disciplines

20 Software Product Lines - The Automated Analysis

Jirapanthong, W. & Zisman, A. (2009). Xtraque: traceability for product line systems, Software
and System Modeling 8(1): 117–144.

John, I. & Eisenbarth, M. (2009). A decade of scoping: a survey, SPLC’09: Proc. of the 13th
International Conference on Software Product Lines, pp. 31–40.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. & Peterson, A. S. (1990). Feature-oriented
domain analysis (foda) feasibility study, Technical report, Carnegie-Mellon University
Software Engineering Institute.

Linden, F. J. v. d., Schmid, K. & Rommes, E. (2007). Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

McGregor, J., Sodhani, P. & Madhavapeddi, S. (2004). Testing Variability in a Software Product
Line, SPLIT ’04: Proceedings of the International Workshop on Software Product Line
Testing, Boston, Massachusetts, USA, p. 45.

Mohan, K. & Ramesh, B. (2007). Tracing variations in software product families,
Communications of the ACM 50: 68–73.

Moon, M., Chae, H. S., Nam, T. & Yeom, K. (2007). A metamodeling approach to
tracing variability between requirements and architecture in software product lines,
CIT’2007: Proc. of the 7th IEEE International Conference on Computer and Information
Technology, University of Aizu, Fukushima Japan, pp. 927–933.

Neiva, D. F. S., de Almeida, E. S. & de Lemos Meira, S. R. (2009). An experimental study
on requirements engineering for software product lines, EUROMIRCRO-SEAA’09:
Proc. of the 35th Euromicro Conference on Software Engineering and Advanced Applications,
pp. 251–254.

Northrop, L. M. (2002). Sei’s software product line tenets, IEEE Software 19(4): 32–40.
Pohl, K., Böckle, G. & Linden, F. J. v. d. (2005a). Software Product Line Engineering: Foundations,

Principles and Techniques, Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Pohl, K., Böckle, G. & Linden, F. J. v. d. (2005b). Software Product Line Engineering: Foundations,

Principles and Techniques, Springer-Verlag, Secaucus, NJ, USA.
Ramesh, B. & Jarke, M. (2001). Toward reference models for requirements traceability, IEEE

Trans. Softw. Eng. 27: 58–93.
URL: http://dl.acm.org/citation.cfm?id=359555.359578

Rilling, J., Charland, P. & Witte, R. (2007). Traceability in Software Engineering – Past,
Present and Future, Technical Report TR-74-211, IBM Technical Report, CASCON 2007
Workshop.

Sinnema, M., Deelstra, S., Nijhuis, J. & Bosch, J. (2004). Covamof: A framework for modeling
variability in software product families, SPLC’04: Proc. of the 9th International Software
Product Line Conference, pp. 197–213.

Sommerville, I. (2007). Software Engineering, 8 edn, Addison Wesley.
Streitferdt, D. (2001). Traceability for system families, ICSE’01: Proc. of the 23rd International

Conference on Software Engineering, pp. 803–804.
Svahnberg, M., van Gurp, J. & Bosch, J. (2005). A taxonomy of variability realization

techniques: Research articles, Software Practice and Experience 35(8): 705–754.
von Knethen, A. & Paech, B. (2002). A survey on tracing approaches in practice and research,

Technical report, Fraunhofer Institute of Experimental Software Engineering.
Wübbeke, A. (2008). Towards an efficient reuse of test cases for software product lines,

SPLC’08: Proc. of the International Conference on Software Product Lines, pp. 361–368.

22 Software Product Line – Advanced Topic

2

An Approach for Representing Domain
Requirements and Domain Architecture

in Software Product Line
Shahliza Abd Halim, Dayang N. A. Jawawi,

Noraini Ibrahim and Safaai Deris
Software Engineering Department,

Universiti Teknologi Malaysia, Skudai,
Malaysia

1. Introduction
Software Product Line (SPL) core assets development is an effective approach in software
reuse in which core assets can be shared among the members of the product line with an
explicit treatment of variability. Among the artefacts of core asset are architecture,
reusable software components, domain models, requirements statements, documentation
and specifications, performance models, schedules, budgets, test plans, test cases, work
plans, and process descriptions.Variability in its own right is the central concept in SPL
which is not being catered by conventional method of reuse. Consequently, it is important
for variability to be identified and to be represented early at requirements phase. The
importance of identifying requirements variability earlier at requirements level is also
known as systematic reuse by researchers (Frakes and Isoda 1994; Muthig 2002).
Variability at requirements levels also initiates the existence of the variability at
architecture thus further highlight the inadequacy of considering variability solely at
architectural level. Therefore, considering on variability at architecture and its
implementation level is not enough where the understanding of variability at the
requirements level is also required (Yu, Akhihebbal et al. 1998; Moon 2005; Kircher,
Schwanninger et al. 2006).

Nonetheless, there are challenges on relating variability at both abstraction levels where
mapping of user requirements with the core assets for the adaptation process and derivation
of core assets based on user requirements is a complex task (Matinlassi 2004; Dhungana
2006). This task is made difficult due to the dependencies among variants in architecture in
order to fulfil a single customer's requirements (Bachmann and Bass 2001; Chastek 2001;
Thiel and Hein 2002). Furthermore, the variability information assembled within the
requirements phase should be able to support the following phase, the architecture design
(Brown, Gawley et al. 2006). Consequently, the relationships between both abstraction levels
are not always apparent especially between high level requirements artifacts and more
specific and formal artifacts of architecture such as Architecture Description Language
(ADL)(Medvidovic, Grünbacher et al. 2003). In addition, relating between requirements to

20 Software Product Lines - The Automated Analysis

Jirapanthong, W. & Zisman, A. (2009). Xtraque: traceability for product line systems, Software
and System Modeling 8(1): 117–144.

John, I. & Eisenbarth, M. (2009). A decade of scoping: a survey, SPLC’09: Proc. of the 13th
International Conference on Software Product Lines, pp. 31–40.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. & Peterson, A. S. (1990). Feature-oriented
domain analysis (foda) feasibility study, Technical report, Carnegie-Mellon University
Software Engineering Institute.

Linden, F. J. v. d., Schmid, K. & Rommes, E. (2007). Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

McGregor, J., Sodhani, P. & Madhavapeddi, S. (2004). Testing Variability in a Software Product
Line, SPLIT ’04: Proceedings of the International Workshop on Software Product Line
Testing, Boston, Massachusetts, USA, p. 45.

Mohan, K. & Ramesh, B. (2007). Tracing variations in software product families,
Communications of the ACM 50: 68–73.

Moon, M., Chae, H. S., Nam, T. & Yeom, K. (2007). A metamodeling approach to
tracing variability between requirements and architecture in software product lines,
CIT’2007: Proc. of the 7th IEEE International Conference on Computer and Information
Technology, University of Aizu, Fukushima Japan, pp. 927–933.

Neiva, D. F. S., de Almeida, E. S. & de Lemos Meira, S. R. (2009). An experimental study
on requirements engineering for software product lines, EUROMIRCRO-SEAA’09:
Proc. of the 35th Euromicro Conference on Software Engineering and Advanced Applications,
pp. 251–254.

Northrop, L. M. (2002). Sei’s software product line tenets, IEEE Software 19(4): 32–40.
Pohl, K., Böckle, G. & Linden, F. J. v. d. (2005a). Software Product Line Engineering: Foundations,

Principles and Techniques, Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Pohl, K., Böckle, G. & Linden, F. J. v. d. (2005b). Software Product Line Engineering: Foundations,

Principles and Techniques, Springer-Verlag, Secaucus, NJ, USA.
Ramesh, B. & Jarke, M. (2001). Toward reference models for requirements traceability, IEEE

Trans. Softw. Eng. 27: 58–93.
URL: http://dl.acm.org/citation.cfm?id=359555.359578

Rilling, J., Charland, P. & Witte, R. (2007). Traceability in Software Engineering – Past,
Present and Future, Technical Report TR-74-211, IBM Technical Report, CASCON 2007
Workshop.

Sinnema, M., Deelstra, S., Nijhuis, J. & Bosch, J. (2004). Covamof: A framework for modeling
variability in software product families, SPLC’04: Proc. of the 9th International Software
Product Line Conference, pp. 197–213.

Sommerville, I. (2007). Software Engineering, 8 edn, Addison Wesley.
Streitferdt, D. (2001). Traceability for system families, ICSE’01: Proc. of the 23rd International

Conference on Software Engineering, pp. 803–804.
Svahnberg, M., van Gurp, J. & Bosch, J. (2005). A taxonomy of variability realization

techniques: Research articles, Software Practice and Experience 35(8): 705–754.
von Knethen, A. & Paech, B. (2002). A survey on tracing approaches in practice and research,

Technical report, Fraunhofer Institute of Experimental Software Engineering.
Wübbeke, A. (2008). Towards an efficient reuse of test cases for software product lines,

SPLC’08: Proc. of the International Conference on Software Product Lines, pp. 361–368.

22 Software Product Line – Advanced Topic

2

An Approach for Representing Domain
Requirements and Domain Architecture

in Software Product Line
Shahliza Abd Halim, Dayang N. A. Jawawi,

Noraini Ibrahim and Safaai Deris
Software Engineering Department,

Universiti Teknologi Malaysia, Skudai,
Malaysia

1. Introduction
Software Product Line (SPL) core assets development is an effective approach in software
reuse in which core assets can be shared among the members of the product line with an
explicit treatment of variability. Among the artefacts of core asset are architecture,
reusable software components, domain models, requirements statements, documentation
and specifications, performance models, schedules, budgets, test plans, test cases, work
plans, and process descriptions.Variability in its own right is the central concept in SPL
which is not being catered by conventional method of reuse. Consequently, it is important
for variability to be identified and to be represented early at requirements phase. The
importance of identifying requirements variability earlier at requirements level is also
known as systematic reuse by researchers (Frakes and Isoda 1994; Muthig 2002).
Variability at requirements levels also initiates the existence of the variability at
architecture thus further highlight the inadequacy of considering variability solely at
architectural level. Therefore, considering on variability at architecture and its
implementation level is not enough where the understanding of variability at the
requirements level is also required (Yu, Akhihebbal et al. 1998; Moon 2005; Kircher,
Schwanninger et al. 2006).

Nonetheless, there are challenges on relating variability at both abstraction levels where
mapping of user requirements with the core assets for the adaptation process and derivation
of core assets based on user requirements is a complex task (Matinlassi 2004; Dhungana
2006). This task is made difficult due to the dependencies among variants in architecture in
order to fulfil a single customer's requirements (Bachmann and Bass 2001; Chastek 2001;
Thiel and Hein 2002). Furthermore, the variability information assembled within the
requirements phase should be able to support the following phase, the architecture design
(Brown, Gawley et al. 2006). Consequently, the relationships between both abstraction levels
are not always apparent especially between high level requirements artifacts and more
specific and formal artifacts of architecture such as Architecture Description Language
(ADL)(Medvidovic, Grünbacher et al. 2003). In addition, relating between requirements to

Software Product Line – Advanced Topic

24

architecture also requires design decision to be explicitly represented (Bosch 2004; Avgeriou,
Kruchten et al. 2007). Avgeriou et al. further highlight the importance of design decision
accompanying the architecture development. Without the first class representation of
explicit knowledge and rationale as in design decision, it leads to knowledge vaporization
phenomena as described by Bosh. It is further suggested by him software architecture
should also consider composition of domain models, usage scenarios, feature and other
elements, which support architectural design decision.

In order to address the issues in relating between different abstraction levels, researchers
proposed different views represented by different models with defined mappings
between the models. The usage of multiple modeling and mappings are done by
(Savolainen, Vehkomäki et al. 2002; Medvidovic, Grünbacher et al. 2003; Lee and Kang
2004; Savolainen, Oliver et al. 2005; Dhungana 2006; Sochos, Riebisch et al. 2006; Zhang,
Mei et al. 2006; Zhu, Yuqin et al. 2007; Gomaa and Shin 2008; Bragança and Machado
2009; Lin, Ye et al. 2010). Among the approaches, Gomaa and Shin has the most
comprehensive models used in their mappings (Gomaa and Shin 2008). Nevertheless, they
only considers mapping at requirements to analysis model and do not involve mapping at
architectural levels. There are also approaches which only concentrate on the rule and also
the formal representation of the mapping without using any explicit models to represent
the different abstraction levels (Savolainen, Oliver et al. 2005; Zhu, Yuqin et al. 2007).
Furthermore, the mapping to architecture is generally referred as architectural assets and
no specific elements mentioned at the architectural level. Another approach is by feature-
driven mapping which is among the most accepted approaches so far by researchers (Lee
and Kang 2004; Dhungana 2006; Sochos, Riebisch et al. 2006; Zhang, Mei et al. 2006; Lin,
Ye et al. 2010). Nevertheless, these approaches seldom have an explicit representation of
design decisions in order to records decisions that architects made while designing the
domain architecture.

Therefore, even though the above-mentioned approaches for transitioning requirements
models to architecture levels have proposed techniques to overcome majority of the issues
mentioned earlier, nevertheless there are still room for improvement in the focus on of both
functional and non-functional requirements which are essential elements for architecture
development and also on the transition process itself which cannot be fully automated thus
highlighting the importance of design decision in bridging between requirements and
architectural level (Paech, Dutoit et al. 2002; Kaindl and Falb 2008; Turban, Kucera et al.
2009). However, we only elaborate on design decision at the conceptual framework only and
both requirements and architecture level representation will be the center of attention
instead in this chapter.

The layout of this chapter is as follows: Section 2 discusses the conceptual framework and
process governing the representation of domain requirements and domain architecture. In
Section 3, metamodels representing domain requirements level will be discussed.
Discussion on the metamodels representing domain architecture level is described in Section
4. Section 5 illustrates the usage of the representation in Autonomous Mobile Robot Product
Line case study. Section 6 discusses on the evaluation of the proposed notation. Lastly,
Section 7 concludes this chapter.

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

25

2. Conceptual framework for bridging between domain requirements and
domain architecture
In order to address the issues of integrating functional, non-functional, architecture and
design decisions in relating between the two abstractions levels, we argue that SPL
architecture design method should incorporate multiple model approach in order to relate
the requirements elements to architectural elements. Multiple model approach can provide
different views of the system for different stakeholders. Furthermore, in order to have a
clear identification and representation for requirements to enable it to be of importance at
the latter development phase, we investigate the knowledge suitable to be incorporated in
domain requirements profile and also at domain requirements profile for the purpose of
assisting the domain architecture representation development. Therefore, the research
question to be answered in this book chapter is “What are the representations suitable for
representing core assets at domain requirements level?” and “What are the representations suitable
for representing core assets at domain architectural level?”

The conceptual framework for relating from requirements to architecture follows the
framework proposed by Garlan, Capilla and Babar (Garlan 2000; Capilla and Ali Babar 2008)
as shown in Figure 1. Garlan proposed an architecture representation by incorporating ADL
in object oriented modeling UML.Whereas, Capilla and Babar proposed on three different
elements should be incorporated in a decision mode the product constraints, variability and
binding.

Fig. 1. Conceptual Framework for relating between requirements model to architecture

In order to represent the requirements and architectural elements representation, we use the
extension provided in SysML profile (SysML 2006). SysML has extended UML 2.0 with
specialized support for requirements engineering and traceability elements between
requirements model and other models elements thus making it a perfect candidate in

Software Product Line – Advanced Topic

24

architecture also requires design decision to be explicitly represented (Bosch 2004; Avgeriou,
Kruchten et al. 2007). Avgeriou et al. further highlight the importance of design decision
accompanying the architecture development. Without the first class representation of
explicit knowledge and rationale as in design decision, it leads to knowledge vaporization
phenomena as described by Bosh. It is further suggested by him software architecture
should also consider composition of domain models, usage scenarios, feature and other
elements, which support architectural design decision.

In order to address the issues in relating between different abstraction levels, researchers
proposed different views represented by different models with defined mappings
between the models. The usage of multiple modeling and mappings are done by
(Savolainen, Vehkomäki et al. 2002; Medvidovic, Grünbacher et al. 2003; Lee and Kang
2004; Savolainen, Oliver et al. 2005; Dhungana 2006; Sochos, Riebisch et al. 2006; Zhang,
Mei et al. 2006; Zhu, Yuqin et al. 2007; Gomaa and Shin 2008; Bragança and Machado
2009; Lin, Ye et al. 2010). Among the approaches, Gomaa and Shin has the most
comprehensive models used in their mappings (Gomaa and Shin 2008). Nevertheless, they
only considers mapping at requirements to analysis model and do not involve mapping at
architectural levels. There are also approaches which only concentrate on the rule and also
the formal representation of the mapping without using any explicit models to represent
the different abstraction levels (Savolainen, Oliver et al. 2005; Zhu, Yuqin et al. 2007).
Furthermore, the mapping to architecture is generally referred as architectural assets and
no specific elements mentioned at the architectural level. Another approach is by feature-
driven mapping which is among the most accepted approaches so far by researchers (Lee
and Kang 2004; Dhungana 2006; Sochos, Riebisch et al. 2006; Zhang, Mei et al. 2006; Lin,
Ye et al. 2010). Nevertheless, these approaches seldom have an explicit representation of
design decisions in order to records decisions that architects made while designing the
domain architecture.

Therefore, even though the above-mentioned approaches for transitioning requirements
models to architecture levels have proposed techniques to overcome majority of the issues
mentioned earlier, nevertheless there are still room for improvement in the focus on of both
functional and non-functional requirements which are essential elements for architecture
development and also on the transition process itself which cannot be fully automated thus
highlighting the importance of design decision in bridging between requirements and
architectural level (Paech, Dutoit et al. 2002; Kaindl and Falb 2008; Turban, Kucera et al.
2009). However, we only elaborate on design decision at the conceptual framework only and
both requirements and architecture level representation will be the center of attention
instead in this chapter.

The layout of this chapter is as follows: Section 2 discusses the conceptual framework and
process governing the representation of domain requirements and domain architecture. In
Section 3, metamodels representing domain requirements level will be discussed.
Discussion on the metamodels representing domain architecture level is described in Section
4. Section 5 illustrates the usage of the representation in Autonomous Mobile Robot Product
Line case study. Section 6 discusses on the evaluation of the proposed notation. Lastly,
Section 7 concludes this chapter.

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

25

2. Conceptual framework for bridging between domain requirements and
domain architecture
In order to address the issues of integrating functional, non-functional, architecture and
design decisions in relating between the two abstractions levels, we argue that SPL
architecture design method should incorporate multiple model approach in order to relate
the requirements elements to architectural elements. Multiple model approach can provide
different views of the system for different stakeholders. Furthermore, in order to have a
clear identification and representation for requirements to enable it to be of importance at
the latter development phase, we investigate the knowledge suitable to be incorporated in
domain requirements profile and also at domain requirements profile for the purpose of
assisting the domain architecture representation development. Therefore, the research
question to be answered in this book chapter is “What are the representations suitable for
representing core assets at domain requirements level?” and “What are the representations suitable
for representing core assets at domain architectural level?”

The conceptual framework for relating from requirements to architecture follows the
framework proposed by Garlan, Capilla and Babar (Garlan 2000; Capilla and Ali Babar 2008)
as shown in Figure 1. Garlan proposed an architecture representation by incorporating ADL
in object oriented modeling UML.Whereas, Capilla and Babar proposed on three different
elements should be incorporated in a decision mode the product constraints, variability and
binding.

Fig. 1. Conceptual Framework for relating between requirements model to architecture

In order to represent the requirements and architectural elements representation, we use the
extension provided in SysML profile (SysML 2006). SysML has extended UML 2.0 with
specialized support for requirements engineering and traceability elements between
requirements model and other models elements thus making it a perfect candidate in

Software Product Line – Advanced Topic

26

support of the variability extension. Furthermore, traceability support in SysML can
contribute to the possibility of mapping between requirements and architectural level being
done in the language. Section 3 and Section 4 will elaborate more on the treatment and
mapping for each model.

Based on Figure 2, except for Requirements Context which is a matrix table to analyse
requirements commonality and variability, Use Case model, Parametric model and Feature
Model are multiple models for representing Domain Requirements. Parametric diagram is a
new diagram extension in SysML to represent constrain on the property or behavior of a
system (Friedenthal, Moore et al. 2008; Holt and Perry 2008). The diagram is used for
representing system equations that can constrain the properties of a block (Friedenthal,
Moore et al. 2008). Though the model is usually used to represent constraint in terms of
mathematical equations it has the potential to be extended to represent general rule or to
apply for requirements validation and verification. Figure 2 shows the association between
the domain requirements model and the domain architectural model where design decision
is the connection which link between the models. Decision model is where the functional
and non functional constraint is being specified. There are also two types of mapping based
on the figure, horizontal mapping refers to mapping between models at the same level of
abstraction, in this case at domain requirements level (between use case, feature and
parametric model). Vertical mapping refers to the mapping between different levels of
abstractions, between domain requirements model and domain architecture model. Decision
model will be the intermediate model between both abstraction levels.

Fig. 2. Model for associating domain requirements to domain architecture with decision
model

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

27

The lack of fundamental process models and guidelines for the transition between the two
abstraction levels, further hinders the systematic task in developing the architecture. In
order to have a clear process for relating between requirements to architecture in SPL, we
look into available PLA design methods itself on their support for an explicit functional and
non functional requirements and its transition for architecture design. Existing method for
Product Line architecture design based on comparison by Matinlassi (Matinlassi 2004) has
evaluated COPA, FAST, FORM, KobrA and Quality Driven Architecture Design and
Analysis (QADA). From the evaluation, QADA method has consideration on quality
attributes requirements. We have also reviewed books on SPL such as by (Gomaa 2005)
concentrating on Product Line UML based Software Engineering (PLUS) method and by
Bosch proposing Functionality based Architecture Design (FAD) method (Bosch 2000).

From the reviews there are only two architecture design methods that focus on functional and
non-functional requirements, QADA and FAD. However, we concentrate on FAD as a process
in our research as it provides clear description of its Product line Architecture process. Though
FAD has a concentration in functional and non-functional requirements, yet it still does not
show explicitly what are the techniques or methods involve for the process at the requirements
level. Based on Figure 3, we will add suitable methods for each part of the processes in FAD
(i.e. requirements specification, software architecture, design decision, derivation and
mapping and lastly the evaluation or assessment done to the architecture).

Fig. 3. Process for associating domain requirements to domain architecture adapted with
enhancement from (Bosch 2000)

Software Product Line – Advanced Topic

26

support of the variability extension. Furthermore, traceability support in SysML can
contribute to the possibility of mapping between requirements and architectural level being
done in the language. Section 3 and Section 4 will elaborate more on the treatment and
mapping for each model.

Based on Figure 2, except for Requirements Context which is a matrix table to analyse
requirements commonality and variability, Use Case model, Parametric model and Feature
Model are multiple models for representing Domain Requirements. Parametric diagram is a
new diagram extension in SysML to represent constrain on the property or behavior of a
system (Friedenthal, Moore et al. 2008; Holt and Perry 2008). The diagram is used for
representing system equations that can constrain the properties of a block (Friedenthal,
Moore et al. 2008). Though the model is usually used to represent constraint in terms of
mathematical equations it has the potential to be extended to represent general rule or to
apply for requirements validation and verification. Figure 2 shows the association between
the domain requirements model and the domain architectural model where design decision
is the connection which link between the models. Decision model is where the functional
and non functional constraint is being specified. There are also two types of mapping based
on the figure, horizontal mapping refers to mapping between models at the same level of
abstraction, in this case at domain requirements level (between use case, feature and
parametric model). Vertical mapping refers to the mapping between different levels of
abstractions, between domain requirements model and domain architecture model. Decision
model will be the intermediate model between both abstraction levels.

Fig. 2. Model for associating domain requirements to domain architecture with decision
model

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

27

The lack of fundamental process models and guidelines for the transition between the two
abstraction levels, further hinders the systematic task in developing the architecture. In
order to have a clear process for relating between requirements to architecture in SPL, we
look into available PLA design methods itself on their support for an explicit functional and
non functional requirements and its transition for architecture design. Existing method for
Product Line architecture design based on comparison by Matinlassi (Matinlassi 2004) has
evaluated COPA, FAST, FORM, KobrA and Quality Driven Architecture Design and
Analysis (QADA). From the evaluation, QADA method has consideration on quality
attributes requirements. We have also reviewed books on SPL such as by (Gomaa 2005)
concentrating on Product Line UML based Software Engineering (PLUS) method and by
Bosch proposing Functionality based Architecture Design (FAD) method (Bosch 2000).

From the reviews there are only two architecture design methods that focus on functional and
non-functional requirements, QADA and FAD. However, we concentrate on FAD as a process
in our research as it provides clear description of its Product line Architecture process. Though
FAD has a concentration in functional and non-functional requirements, yet it still does not
show explicitly what are the techniques or methods involve for the process at the requirements
level. Based on Figure 3, we will add suitable methods for each part of the processes in FAD
(i.e. requirements specification, software architecture, design decision, derivation and
mapping and lastly the evaluation or assessment done to the architecture).

Fig. 3. Process for associating domain requirements to domain architecture adapted with
enhancement from (Bosch 2000)

Software Product Line – Advanced Topic

28

3. Metamodel for representing core assets at requirements level
Due to the unstructured nature of requirements, there are several approaches which combined
different strategies in order to represent artifacts in requirements analysis for SPL. A
systematic review has reported the high usage of textual and features artifacts in domain
analysis followed by use cases and goal based methods and others (Mahvish and Tony 2009).
Albeit the popular usage of feature model by various researches in SPL, it does not properly
represent variability information (Bühne, Lauenroth et al. 2004; Moon 2005). Among the
variability information that could not be supported by feature model are such as proper
decision on choosing features as either common or optional, identification of variation points
and also variation point type (Moon 2005) and required behavioral information in its
representation (Brown, Gawley et al. 2006). Goal based strategy also has been reportedly
having its own problem of implementation such as the abstractness of its concept has leads to
the problem in finding the right goal (Aurum and Wohlin 2005). Thus, in our research, we
concentrate on determining objectively the common and variable feature based on the analysis
on existing similar applications. To achieve the objectivity, commonality and variability matrix
is used in order to identify which are the common and optional requirements (Mikyeong,
Keunhyuk et al. 2005; Halim, Jawawi et al. 2009). In order to complement the use of feature
model, use case model is chosen as it enables the representation of text based system behavior
(Armour, Miller et al. 2001).

a. Functional mapping

For functional mapping, the feature model is used for representing functional requirements
while use case represents the behavioral specification of the requirements. Use case model
have two extensions to its metamodel where use case documentations have been added
with extra parameters for describing quality attributes. The extensions are shaded in grey as
shown in Figure 4. Another extension is on use case types to identify priority and reuse
property of the use case. For example if the priority is high the use case is a common and
will be reused by all the application in the product line.

FODA is commonly used as feature model by researcher, however in this research, feature
metamodel MRAM/TRAM is used as it has already proposed an extension of SysML profile
(Mannion and Kaindl 2008). The metamodel contains discriminants which are features that
differentiate one system from another. Discriminant and its associated pattern comprise of
single adaptor, multiple adaptor and option. The stereotypes <<MA>> represent multiple
adaptors, where at least one of the requirements can be chosen, while <<SA>> represent
Single Adaptor variability where only one requirement can be chosen from the variants.
Furthermore, MRAM/TRAM paired parameters and discriminant for modeling qualitative
and quantitative variability. According to (Magnus, Jurgen et al. 2009), discriminant provide
a decision model for composing product specification from product line requirements
documentation. Figure 4 shows the mapping between use case model and feature model.

b. Non functional mapping

For representing non functional requirements, architecture scenario is used (Clements,
Bachmann et al. 2003; Liming, Babar et al. 2004; Oquendo, Warboys et al. 2004; Bachmann,
Bass et al. 2005). With the use of architecture scenario, the non functional requirements can
be represented with more attribute instead of using just a general description or only using

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

29

one word such as Performance, Modifiability or Security. The architecture scenario comprise
of six elements which we will further refer as non functional parameters: stimulus; source of
stimulus; environment; artifact, response; response measure and expected response .(Bass,
Clements et al. 2003). Previously, architecture scenario has been proposed as design
decisions and non functional requirements by (Zhu and Gorton 2007). However, our
practice of using architecture scenario is in parametric diagram where it explicitly shows the
non functional parameters of the architectural scenario. To enable non functional parameters
to be defined in parametric diagram, it has to be defined prior to its usage. The metamodel
of the parametric diagram is based on Holt and Perry (Holt and Perry 2008).

c. Horizontal mapping

The functional mapping between use case and feature metamodel is referred as in Figure 4
and also (non-functional mapping) between use case and parametric metamodel in Figure 5 as
horizontal mapping. Hence, horizontal mapping is between models at the same level of
abstraction, in this case at domain requirements level. In use case metamodel, we refer
Extension Point metaclass as a variation point in use case model and also Discriminant
metaclass as a variation point in Feature model. Thus, based on Figure 4, we have defined the
mapping between variation points at use case model with variation point at feature model.

For the mapping between use case and parametric metamodel in Figure 5, the mapping is
more superficial due to the nature of non – functional requirements which not usually exist
in each use case. Furthermore, non-functional requirements also known to have an impact to
one whole application and again there is no specific use case that can show this type of
information. Thus, we will dwell further into this matter as our future research.

4. Metamodel for representing core assets at architectural level
UML has been used as an architecture modeling language and also a de facto modeling
language used in the industry, even so there are arguments concerning its modeling
notations inadequacy for representing architecture (Medvidovic, Rosenblum et al. 2002;
Medvidovic, Dashofy et al. 2007). Another paradigm, which has a consistent, complete and
correct architecture description for representing architecture is by using Architecture
Description Language (ADL) (Taylor, Medvidovic et al. 2009).

Integrating both languages, ADL and UML can be considered as having a synergistic
relationship where the combination enables a precise and explicit architecture description
and at the same time having a wider usage among UML users in commercial tool. xADL is
chosen due to its specialized schema targeted for product line architecture description
(Dashofy, Hoek et al. 2005) while SysML is chosen due to its first class consideration for
requirements modeling and also its traceability elements between requirements model and
other models elements.

a. Mapping of SysML to xADL

The metamodel of the xADL and SysML integration have been proposed in (Halim, Jawawi
et al. 2009). We have divided the profile into three sections, the metaclass section which
consists of UML classes reused in SysML known as UML4SysML. The architectural
construct section which shows the extension of stereotype classes and the variability
construct section which shows the extension of stereotype to represent variability.

Software Product Line – Advanced Topic

28

3. Metamodel for representing core assets at requirements level
Due to the unstructured nature of requirements, there are several approaches which combined
different strategies in order to represent artifacts in requirements analysis for SPL. A
systematic review has reported the high usage of textual and features artifacts in domain
analysis followed by use cases and goal based methods and others (Mahvish and Tony 2009).
Albeit the popular usage of feature model by various researches in SPL, it does not properly
represent variability information (Bühne, Lauenroth et al. 2004; Moon 2005). Among the
variability information that could not be supported by feature model are such as proper
decision on choosing features as either common or optional, identification of variation points
and also variation point type (Moon 2005) and required behavioral information in its
representation (Brown, Gawley et al. 2006). Goal based strategy also has been reportedly
having its own problem of implementation such as the abstractness of its concept has leads to
the problem in finding the right goal (Aurum and Wohlin 2005). Thus, in our research, we
concentrate on determining objectively the common and variable feature based on the analysis
on existing similar applications. To achieve the objectivity, commonality and variability matrix
is used in order to identify which are the common and optional requirements (Mikyeong,
Keunhyuk et al. 2005; Halim, Jawawi et al. 2009). In order to complement the use of feature
model, use case model is chosen as it enables the representation of text based system behavior
(Armour, Miller et al. 2001).

a. Functional mapping

For functional mapping, the feature model is used for representing functional requirements
while use case represents the behavioral specification of the requirements. Use case model
have two extensions to its metamodel where use case documentations have been added
with extra parameters for describing quality attributes. The extensions are shaded in grey as
shown in Figure 4. Another extension is on use case types to identify priority and reuse
property of the use case. For example if the priority is high the use case is a common and
will be reused by all the application in the product line.

FODA is commonly used as feature model by researcher, however in this research, feature
metamodel MRAM/TRAM is used as it has already proposed an extension of SysML profile
(Mannion and Kaindl 2008). The metamodel contains discriminants which are features that
differentiate one system from another. Discriminant and its associated pattern comprise of
single adaptor, multiple adaptor and option. The stereotypes <<MA>> represent multiple
adaptors, where at least one of the requirements can be chosen, while <<SA>> represent
Single Adaptor variability where only one requirement can be chosen from the variants.
Furthermore, MRAM/TRAM paired parameters and discriminant for modeling qualitative
and quantitative variability. According to (Magnus, Jurgen et al. 2009), discriminant provide
a decision model for composing product specification from product line requirements
documentation. Figure 4 shows the mapping between use case model and feature model.

b. Non functional mapping

For representing non functional requirements, architecture scenario is used (Clements,
Bachmann et al. 2003; Liming, Babar et al. 2004; Oquendo, Warboys et al. 2004; Bachmann,
Bass et al. 2005). With the use of architecture scenario, the non functional requirements can
be represented with more attribute instead of using just a general description or only using

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

29

one word such as Performance, Modifiability or Security. The architecture scenario comprise
of six elements which we will further refer as non functional parameters: stimulus; source of
stimulus; environment; artifact, response; response measure and expected response .(Bass,
Clements et al. 2003). Previously, architecture scenario has been proposed as design
decisions and non functional requirements by (Zhu and Gorton 2007). However, our
practice of using architecture scenario is in parametric diagram where it explicitly shows the
non functional parameters of the architectural scenario. To enable non functional parameters
to be defined in parametric diagram, it has to be defined prior to its usage. The metamodel
of the parametric diagram is based on Holt and Perry (Holt and Perry 2008).

c. Horizontal mapping

The functional mapping between use case and feature metamodel is referred as in Figure 4
and also (non-functional mapping) between use case and parametric metamodel in Figure 5 as
horizontal mapping. Hence, horizontal mapping is between models at the same level of
abstraction, in this case at domain requirements level. In use case metamodel, we refer
Extension Point metaclass as a variation point in use case model and also Discriminant
metaclass as a variation point in Feature model. Thus, based on Figure 4, we have defined the
mapping between variation points at use case model with variation point at feature model.

For the mapping between use case and parametric metamodel in Figure 5, the mapping is
more superficial due to the nature of non – functional requirements which not usually exist
in each use case. Furthermore, non-functional requirements also known to have an impact to
one whole application and again there is no specific use case that can show this type of
information. Thus, we will dwell further into this matter as our future research.

4. Metamodel for representing core assets at architectural level
UML has been used as an architecture modeling language and also a de facto modeling
language used in the industry, even so there are arguments concerning its modeling
notations inadequacy for representing architecture (Medvidovic, Rosenblum et al. 2002;
Medvidovic, Dashofy et al. 2007). Another paradigm, which has a consistent, complete and
correct architecture description for representing architecture is by using Architecture
Description Language (ADL) (Taylor, Medvidovic et al. 2009).

Integrating both languages, ADL and UML can be considered as having a synergistic
relationship where the combination enables a precise and explicit architecture description
and at the same time having a wider usage among UML users in commercial tool. xADL is
chosen due to its specialized schema targeted for product line architecture description
(Dashofy, Hoek et al. 2005) while SysML is chosen due to its first class consideration for
requirements modeling and also its traceability elements between requirements model and
other models elements.

a. Mapping of SysML to xADL

The metamodel of the xADL and SysML integration have been proposed in (Halim, Jawawi
et al. 2009). We have divided the profile into three sections, the metaclass section which
consists of UML classes reused in SysML known as UML4SysML. The architectural
construct section which shows the extension of stereotype classes and the variability
construct section which shows the extension of stereotype to represent variability.

Software Product Line – Advanced Topic

30

Fig. 4. Horizontal Mapping between use case and feature model

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

31

Fig. 5. Horizontal Mapping between use case and parametric model

Software Product Line – Advanced Topic

30

Fig. 4. Horizontal Mapping between use case and feature model

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

31

Fig. 5. Horizontal Mapping between use case and parametric model

Software Product Line – Advanced Topic

32

Fig. 6. Vertical Mapping between Domain Requirements to Domain Architecture

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

33

b. Vertical Mapping

Referring back to Figure 2, there should be a vertical mapping between domain
requirements model (feature and parametric model) with the domain architecture model.
However, the mapping involved decision model as an intermediate layers between the two
abstraction levels. Due to the insufficient research result for decision model, the vertical
mapping is done without considering decision model. Though the decision model does not
exist, the vertical mapping shown in Figure 6 can be a future reference for capturing
traceability information for the decision model.

The vertical mapping between the Feature metamodel to the component and connector
metamodel is basically between the Discriminant metaclass to the Variant metaclass in
Component and Connector metamodel. The mapping between the parametric diagram and
the component and connector architecture is based on the constraint in the Block metaclass
which can be matched to the ConstraintBlock metaclass in the Parametric metamodel.

Fig. 7. AMR Product Line (AMRPL)

Software Product Line – Advanced Topic

32

Fig. 6. Vertical Mapping between Domain Requirements to Domain Architecture

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

33

b. Vertical Mapping

Referring back to Figure 2, there should be a vertical mapping between domain
requirements model (feature and parametric model) with the domain architecture model.
However, the mapping involved decision model as an intermediate layers between the two
abstraction levels. Due to the insufficient research result for decision model, the vertical
mapping is done without considering decision model. Though the decision model does not
exist, the vertical mapping shown in Figure 6 can be a future reference for capturing
traceability information for the decision model.

The vertical mapping between the Feature metamodel to the component and connector
metamodel is basically between the Discriminant metaclass to the Variant metaclass in
Component and Connector metamodel. The mapping between the parametric diagram and
the component and connector architecture is based on the constraint in the Block metaclass
which can be matched to the ConstraintBlock metaclass in the Parametric metamodel.

Fig. 7. AMR Product Line (AMRPL)

Software Product Line – Advanced Topic

34

5. Case study of autonomous mobile robot software product line
In order to validate the applicability of the extended modelling in SysML, the extended
model was applied to product line of Autonomous Mobile Robots (AMR). The product line
consists of five different but similar applications of AMR. Four of the AMR are AMR for
research, AMR for teaching, i-wheelchair and intelligent scooter based on the research
collaboration done at Embedded Real Time and Software Engineering Research Lab
(ERetSEL), Universiti Teknologi Malaysia. The fifth AMR is the parking assistant based on
the work of Polzer, Kowalewski and Botterweck (Polzer, Kowalewski et al. 2009). The
AMRPL is as shown in Figure 7.

In order to identify the commonality and variability of the AMRPL requirements, approach
by Abd Halim, Jawawi and Safaai (Halim, Jawawi et al. 2009) is used. However, in order to
simplify this paper, the common and variable function is represented in use case diagram as
shown in Figure 8.

Fig. 8. AMRPL Use Case

Figure 9 shows all the three models based on their corresponding metamodel in Figure 6.
Feature model represents the functional requirements in the form of SysML requirements
model. Feature model in Figure 9 shows only partial requirements for AMRPL. The
stereotypes <<MA>> represent multiple adaptors, where at least one of the requirements
can be chosen, while <<SA>> represent Single Adaptor variability where only one
requirement can be chosen from the variants. The ellipse shape for variants in Motor

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

35

Fig. 9. Vertical mapping betweeen Feature Model, Parametric Model and Component
Connector Model of AMRPL

Software Product Line – Advanced Topic

34

5. Case study of autonomous mobile robot software product line
In order to validate the applicability of the extended modelling in SysML, the extended
model was applied to product line of Autonomous Mobile Robots (AMR). The product line
consists of five different but similar applications of AMR. Four of the AMR are AMR for
research, AMR for teaching, i-wheelchair and intelligent scooter based on the research
collaboration done at Embedded Real Time and Software Engineering Research Lab
(ERetSEL), Universiti Teknologi Malaysia. The fifth AMR is the parking assistant based on
the work of Polzer, Kowalewski and Botterweck (Polzer, Kowalewski et al. 2009). The
AMRPL is as shown in Figure 7.

In order to identify the commonality and variability of the AMRPL requirements, approach
by Abd Halim, Jawawi and Safaai (Halim, Jawawi et al. 2009) is used. However, in order to
simplify this paper, the common and variable function is represented in use case diagram as
shown in Figure 8.

Fig. 8. AMRPL Use Case

Figure 9 shows all the three models based on their corresponding metamodel in Figure 6.
Feature model represents the functional requirements in the form of SysML requirements
model. Feature model in Figure 9 shows only partial requirements for AMRPL. The
stereotypes <<MA>> represent multiple adaptors, where at least one of the requirements
can be chosen, while <<SA>> represent Single Adaptor variability where only one
requirement can be chosen from the variants. The ellipse shape for variants in Motor

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

35

Fig. 9. Vertical mapping betweeen Feature Model, Parametric Model and Component
Connector Model of AMRPL

Software Product Line – Advanced Topic

36

Controller such as PID, PI and PD has been elaborated in the same name as in component
and connector model. Non functional requirements are shown in parametric model in
Figure 9. The parametric model is divided into definition and usage constraint. Parametric
model in Figure 9 basically have defined four constraints. The parametric model represents
the architecture scenario and how the scenario helps in identifying suitable patterns
(Liming, Babar et al. 2004; Oquendo, Warboys et al. 2004). The pattern identified can then be
used for later refinement of the initial architecture in the component and connector model.

6. Discussion
Based on the applicability of the proposed approach in modeling the domain requirements
and domain architecture for AMRPL, we evaluate our proposed models and annotation in
previous sections with suitable evaluation criteria. As far as our concern, there are two
existing evaluation frameworks for evaluating variability modeling (Djebbi and Salinesi
2006; Sinnema and Deelstra 2007). The former proposed eleven criteria for comparing
requirements variability modeling notations resulted from a brainstorming session with
stakeholders. The evaluation framework is then compared to four feature-based notations
FOPLE, FeatuRSEB, GP and FORE. The latter, concentrates on classifying variability
modeling techniques based on two key characteristics. The key characteristics are
representation for the variability itself and the tool accompanying the variability modeling
(Sinnema and Deelstra 2007). Due to our variability modeling approach is based on profile
extension, therefore the evaluation suitable for our approach is based on the extensions and
the notations proposed in modeling the variability. Thus, we based our evaluation on the
first evaluation framework proposed by Djebbi and Salinesi. The second evaluation
framework by Sinnema and Deelstra is unsuitable for evaluating our approach as it rely
heavily on the use of tool for the evaluation.

From the eleven criteria in the evaluation framework, we have classified the criteria into three
classifications concerning our proposed notation. The three classifications are evaluation
criteria fit for the notation, evaluation criteria for future extension of the notation and
evaluation criteria which not covered by the notation. Evaluation criteria that fall into the first
classification are readability of the notation, simplicity and expressiveness of the notation,
explicit variability types of the notation, specification for variation point property, unified
modeling of the notation and standardize notation. Second classifications, the future extension
for the notation consist of criteria such as dependencies representation between the variable
part of the product line, scalability of the notation and also the tool which support the
proposed notation. The third classification is for the criteria which are not considered in our
approach. Among the criteria are the evolution support of the product line and the
adaptability of the notation towards other companies. Hence, we evaluate our notation based
on the first classification only and the second and third classification will not be elaborated as
it is either not being implemented yet or not related to our proposed notation.

Notations readability can be achieved by clear and minimal representation. The case study
showed in previous section confirms visualization of variability at requirements and
architectural level by using stereotypes. These elements thus demonstrate the clear
representation of the notation. However, this notation has redundancy on information
representing functional and non-functional requirements such as the information from use
case to parametric diagram. This redundancy affect the minimality of the notation. For

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

37

simplicity and expressiveness criteria, the construct proposed in the metamodel can be
considered as sufficient to represent variability at requirements and architectural level.
Though there are multiple models involve in representing domain requirements and
domain architecture, however the number of entities in the metamodel are higher than the
number of its relations thus highlight the simplicity of the notation. Expressiveness criteria
have possibility to be achieved as the notation is based on extension from UML constructs
therefore it can be understood by the user without much explanation. However, new model
such as parametric diagram will have a significant effort for comprehension.

Evaluation criteria fit for the notation

Readability of the notation Metamodel mapping and UML based
notations help in defining the graphical
means to visualize domain requirements and
domain architecture. However, there is
possible duplication on information
representing functional and non-functional
requirements.

Simplicity and expressiveness of the notation Simplicity can be achieved with the minimal
construct in the metamodel to show
variability. SysML profile which is an
extension of UML reflects the expressiveness
criteria.

Explicit variability types of the notation Variability types at requirements and
architectural levels are considered.

Specification for variation point properties The proposed notation has a clear
representation for variability through the use
of stereotypes in the notation.

Case tool support SysML profile extension is conformed to
standard UML hence can also be supported
by existing UML tool.

Unified modeling of the notation Notations at requirements level have
traceable relationships to notations at
architectural level.

Table 1. Evaluation criteria fit for the notation

The notation can fulfill the third evaluation criterion, by having an explicit variability type
at requirements level such as in use case relationships of uses and extend, in feature
diagram relationships as in single adaptor, multiple adaptor, and options and in component
and connector relationships such as the use of variants and options. The fourth criterion is
on the specification of the variation points. Though it’s not being shown in the case study,
we have proposed the specification of the variation points at the requirements level which
can be referred in (Halim, Jawawi et al. 2009). Nevertheless, specification of variation points
at architectural level is yet to be defined. The following evaluation criteria is on case tool
support. With the use of SysML profile which extends from UML itself, the notation can be
used in any tools which support UML. Nonetheless, a fully automated tool is still being
designed in order to automatically manage the variability of the models. The last evaluation

Software Product Line – Advanced Topic

36

Controller such as PID, PI and PD has been elaborated in the same name as in component
and connector model. Non functional requirements are shown in parametric model in
Figure 9. The parametric model is divided into definition and usage constraint. Parametric
model in Figure 9 basically have defined four constraints. The parametric model represents
the architecture scenario and how the scenario helps in identifying suitable patterns
(Liming, Babar et al. 2004; Oquendo, Warboys et al. 2004). The pattern identified can then be
used for later refinement of the initial architecture in the component and connector model.

6. Discussion
Based on the applicability of the proposed approach in modeling the domain requirements
and domain architecture for AMRPL, we evaluate our proposed models and annotation in
previous sections with suitable evaluation criteria. As far as our concern, there are two
existing evaluation frameworks for evaluating variability modeling (Djebbi and Salinesi
2006; Sinnema and Deelstra 2007). The former proposed eleven criteria for comparing
requirements variability modeling notations resulted from a brainstorming session with
stakeholders. The evaluation framework is then compared to four feature-based notations
FOPLE, FeatuRSEB, GP and FORE. The latter, concentrates on classifying variability
modeling techniques based on two key characteristics. The key characteristics are
representation for the variability itself and the tool accompanying the variability modeling
(Sinnema and Deelstra 2007). Due to our variability modeling approach is based on profile
extension, therefore the evaluation suitable for our approach is based on the extensions and
the notations proposed in modeling the variability. Thus, we based our evaluation on the
first evaluation framework proposed by Djebbi and Salinesi. The second evaluation
framework by Sinnema and Deelstra is unsuitable for evaluating our approach as it rely
heavily on the use of tool for the evaluation.

From the eleven criteria in the evaluation framework, we have classified the criteria into three
classifications concerning our proposed notation. The three classifications are evaluation
criteria fit for the notation, evaluation criteria for future extension of the notation and
evaluation criteria which not covered by the notation. Evaluation criteria that fall into the first
classification are readability of the notation, simplicity and expressiveness of the notation,
explicit variability types of the notation, specification for variation point property, unified
modeling of the notation and standardize notation. Second classifications, the future extension
for the notation consist of criteria such as dependencies representation between the variable
part of the product line, scalability of the notation and also the tool which support the
proposed notation. The third classification is for the criteria which are not considered in our
approach. Among the criteria are the evolution support of the product line and the
adaptability of the notation towards other companies. Hence, we evaluate our notation based
on the first classification only and the second and third classification will not be elaborated as
it is either not being implemented yet or not related to our proposed notation.

Notations readability can be achieved by clear and minimal representation. The case study
showed in previous section confirms visualization of variability at requirements and
architectural level by using stereotypes. These elements thus demonstrate the clear
representation of the notation. However, this notation has redundancy on information
representing functional and non-functional requirements such as the information from use
case to parametric diagram. This redundancy affect the minimality of the notation. For

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

37

simplicity and expressiveness criteria, the construct proposed in the metamodel can be
considered as sufficient to represent variability at requirements and architectural level.
Though there are multiple models involve in representing domain requirements and
domain architecture, however the number of entities in the metamodel are higher than the
number of its relations thus highlight the simplicity of the notation. Expressiveness criteria
have possibility to be achieved as the notation is based on extension from UML constructs
therefore it can be understood by the user without much explanation. However, new model
such as parametric diagram will have a significant effort for comprehension.

Evaluation criteria fit for the notation

Readability of the notation Metamodel mapping and UML based
notations help in defining the graphical
means to visualize domain requirements and
domain architecture. However, there is
possible duplication on information
representing functional and non-functional
requirements.

Simplicity and expressiveness of the notation Simplicity can be achieved with the minimal
construct in the metamodel to show
variability. SysML profile which is an
extension of UML reflects the expressiveness
criteria.

Explicit variability types of the notation Variability types at requirements and
architectural levels are considered.

Specification for variation point properties The proposed notation has a clear
representation for variability through the use
of stereotypes in the notation.

Case tool support SysML profile extension is conformed to
standard UML hence can also be supported
by existing UML tool.

Unified modeling of the notation Notations at requirements level have
traceable relationships to notations at
architectural level.

Table 1. Evaluation criteria fit for the notation

The notation can fulfill the third evaluation criterion, by having an explicit variability type
at requirements level such as in use case relationships of uses and extend, in feature
diagram relationships as in single adaptor, multiple adaptor, and options and in component
and connector relationships such as the use of variants and options. The fourth criterion is
on the specification of the variation points. Though it’s not being shown in the case study,
we have proposed the specification of the variation points at the requirements level which
can be referred in (Halim, Jawawi et al. 2009). Nevertheless, specification of variation points
at architectural level is yet to be defined. The following evaluation criteria is on case tool
support. With the use of SysML profile which extends from UML itself, the notation can be
used in any tools which support UML. Nonetheless, a fully automated tool is still being
designed in order to automatically manage the variability of the models. The last evaluation

Software Product Line – Advanced Topic

38

criterion, unification in the proposed approach is achieved with the ability to transfer
variability in models at both abstraction levels. At requirements level, variability
information is transformed between use case, feature model and parametric diagram. The
variabilities in both use case and feature model are then transferred to the component and
connector model through decision model. Therefore, from the proposed mapping from each
of the metamodels representing the use case, feature model, parametric model and
component and connector model, an initial unified modeling of variability can be achieved.

Table 1 summarizes the discussion related to the first classification. Based on Table 1, the
evaluation is done on our proposed notation only and there is no comparison done to other
existing methods.

7. Conclusion
An initial mapping between multiple models at requirements level to an architectural model
has been paved. The applicability of the approach has been validated in AMRPL case study.
The proposed notations and annotation used to model the AMRPL have also been evaluated
using an evaluation framework (Djebbi and Salinesi 2006). From the evaluation there are
several criteria have been fulfilled by the proposed notation among them are its readability,
simplicity and expressiveness, explicit variability types, specification for the variability,
unified modeling and tool support. Nonetheless the mapping have not yet consider design
decision as an intermediate model for vertical mapping between domain requirements to
domain architecture. The initial mapping contain basically a syntactic information of how it
can possibly be done. The semantics and rules of the mapping is the future work of this
research as these two elements are important for a more consistent approach of multiple
model mapping. In this paper also, an initial use of parametric model to represent quality
requirements has been shown. While it shows significant new way of using parametric
diagram which previously known to only represent mathematical equations, nonetheless
further refinement of how the model can be used to show the affect of non functional
requirements at architectural levels is strongly needed. The proposed approach of using
lightweight mechanism in representing the extension to map and represent the models at
different levels of abstraction also need to be evaluated with a proper matrix to ensure its
quality in representing PL architecture. Therefore, our future work is on refining the design
decision model and how the rules at requirements and architecture level can be
implemented in the design decision as a mapping between both abstraction levels.

8. Acknowledgement
This research is fully funded by the Research University Grant (RUG) from the Universiti
Teknologi Malaysia (UTM) and Ministry of Higher Education (MOHE) under Cost Center
No.Q.J130000.7128.03J23. Our profound appreciation also goes to ERetSEL lab members for
their continuous support in the working of this paper.

9. References
Armour, F., G. Miller, et al. (2001). Advanced use case modeling: software systems,

Addison-Wesley.

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

39

Aurum, A. and C. Wohlin (2005). Engineering and managing software requirements,
Springer Verlag.

Avgeriou, P., P. Kruchten, et al. (2007). Sharing and Reusing Architectural Knowledge--
Architecture, Rationale, and Design Intent, IEEE Computer Society.

Bachmann, F. and L. Bass (2001). Managing Variability in Software Architectures.
Proceedings of the 2001 Symposium on Software reusability: Putting Software
Reuse in Context Toronto, Ontario, Canada, ACM Press.

Bachmann, F., L. Bass, et al. (2005). Designing software architectures to achieve quality
attribute requirements, IET.

Bass, L., P. Clements, et al. (2003). Software architecture in practice, Addison-Wesley
Longman Publishing Co., Inc.

Berg, K., J. Bishop, et al. (2005). Tracing Software Product Line Variability: from Problem to
Solution Space. Proceedings of the 2005 annual research conference of the South
African institute of computer scientists and information technologists on IT
research in developing countries, White River, South Africa South African Institute
for Computer Scientists and Information Technologists.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley.

Bosch, J. (2004). "Software architecture: The next step." Lecture notes in computer science:
194-199.

Bragança, A. and R. J. Machado (2009). "A model-driven approach for the derivation of
architectural requirements of software product lines." Innovations in Systems and
Software Engineering 5(1): 65-78.

Brown, T. J., R. Gawley, et al. (2006). Weaving behavior into feature models for embedded
system families, Baltimore, MD, United states, Inst. of Elec. and Elec. Eng.
Computer Society.

Brown, T. J., R. Gawley, et al. (2006). Weaving behavior into feature models for embedded
system families.

Bühne, S., K. Lauenroth, et al. (2004). Why is it not Sufficient to Model Requirements
Variability with Feature Models?

Capilla, R. and M. Ali Babar (2008). On the Role of Architectural Design Decisions in
Software Product Line Engineering Software Architecture, Springer Berlin /
Heidelberg. 5292: 241-255.

Chastek, G. (2001). Product Line Analysis: A Practical Introduction. Pittsburgh, Software
Eng. Inst. (SEI), Carnegie Mellon Univ.

Clements, P., F. Bachmann, et al. (2003). Documenting software architectures: views and
beyond, Addison-Wesley, Boston.

Dashofy, E. M., A. Hoek, et al. (2005). "A comprehensive approach for the development of
modular software architecture description languages." ACM Transactions on
Software Engineering and Methodology (TOSEM) 14(2): 199-245.

Dhungana, D. (2006). Integrated variability modeling of features and architecture in
software product line engineering. 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE'06), Tokyo, Japan, Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States.

Software Product Line – Advanced Topic

38

criterion, unification in the proposed approach is achieved with the ability to transfer
variability in models at both abstraction levels. At requirements level, variability
information is transformed between use case, feature model and parametric diagram. The
variabilities in both use case and feature model are then transferred to the component and
connector model through decision model. Therefore, from the proposed mapping from each
of the metamodels representing the use case, feature model, parametric model and
component and connector model, an initial unified modeling of variability can be achieved.

Table 1 summarizes the discussion related to the first classification. Based on Table 1, the
evaluation is done on our proposed notation only and there is no comparison done to other
existing methods.

7. Conclusion
An initial mapping between multiple models at requirements level to an architectural model
has been paved. The applicability of the approach has been validated in AMRPL case study.
The proposed notations and annotation used to model the AMRPL have also been evaluated
using an evaluation framework (Djebbi and Salinesi 2006). From the evaluation there are
several criteria have been fulfilled by the proposed notation among them are its readability,
simplicity and expressiveness, explicit variability types, specification for the variability,
unified modeling and tool support. Nonetheless the mapping have not yet consider design
decision as an intermediate model for vertical mapping between domain requirements to
domain architecture. The initial mapping contain basically a syntactic information of how it
can possibly be done. The semantics and rules of the mapping is the future work of this
research as these two elements are important for a more consistent approach of multiple
model mapping. In this paper also, an initial use of parametric model to represent quality
requirements has been shown. While it shows significant new way of using parametric
diagram which previously known to only represent mathematical equations, nonetheless
further refinement of how the model can be used to show the affect of non functional
requirements at architectural levels is strongly needed. The proposed approach of using
lightweight mechanism in representing the extension to map and represent the models at
different levels of abstraction also need to be evaluated with a proper matrix to ensure its
quality in representing PL architecture. Therefore, our future work is on refining the design
decision model and how the rules at requirements and architecture level can be
implemented in the design decision as a mapping between both abstraction levels.

8. Acknowledgement
This research is fully funded by the Research University Grant (RUG) from the Universiti
Teknologi Malaysia (UTM) and Ministry of Higher Education (MOHE) under Cost Center
No.Q.J130000.7128.03J23. Our profound appreciation also goes to ERetSEL lab members for
their continuous support in the working of this paper.

9. References
Armour, F., G. Miller, et al. (2001). Advanced use case modeling: software systems,

Addison-Wesley.

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

39

Aurum, A. and C. Wohlin (2005). Engineering and managing software requirements,
Springer Verlag.

Avgeriou, P., P. Kruchten, et al. (2007). Sharing and Reusing Architectural Knowledge--
Architecture, Rationale, and Design Intent, IEEE Computer Society.

Bachmann, F. and L. Bass (2001). Managing Variability in Software Architectures.
Proceedings of the 2001 Symposium on Software reusability: Putting Software
Reuse in Context Toronto, Ontario, Canada, ACM Press.

Bachmann, F., L. Bass, et al. (2005). Designing software architectures to achieve quality
attribute requirements, IET.

Bass, L., P. Clements, et al. (2003). Software architecture in practice, Addison-Wesley
Longman Publishing Co., Inc.

Berg, K., J. Bishop, et al. (2005). Tracing Software Product Line Variability: from Problem to
Solution Space. Proceedings of the 2005 annual research conference of the South
African institute of computer scientists and information technologists on IT
research in developing countries, White River, South Africa South African Institute
for Computer Scientists and Information Technologists.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley.

Bosch, J. (2004). "Software architecture: The next step." Lecture notes in computer science:
194-199.

Bragança, A. and R. J. Machado (2009). "A model-driven approach for the derivation of
architectural requirements of software product lines." Innovations in Systems and
Software Engineering 5(1): 65-78.

Brown, T. J., R. Gawley, et al. (2006). Weaving behavior into feature models for embedded
system families, Baltimore, MD, United states, Inst. of Elec. and Elec. Eng.
Computer Society.

Brown, T. J., R. Gawley, et al. (2006). Weaving behavior into feature models for embedded
system families.

Bühne, S., K. Lauenroth, et al. (2004). Why is it not Sufficient to Model Requirements
Variability with Feature Models?

Capilla, R. and M. Ali Babar (2008). On the Role of Architectural Design Decisions in
Software Product Line Engineering Software Architecture, Springer Berlin /
Heidelberg. 5292: 241-255.

Chastek, G. (2001). Product Line Analysis: A Practical Introduction. Pittsburgh, Software
Eng. Inst. (SEI), Carnegie Mellon Univ.

Clements, P., F. Bachmann, et al. (2003). Documenting software architectures: views and
beyond, Addison-Wesley, Boston.

Dashofy, E. M., A. Hoek, et al. (2005). "A comprehensive approach for the development of
modular software architecture description languages." ACM Transactions on
Software Engineering and Methodology (TOSEM) 14(2): 199-245.

Dhungana, D. (2006). Integrated variability modeling of features and architecture in
software product line engineering. 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE'06), Tokyo, Japan, Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States.

Software Product Line – Advanced Topic

40

Dhungana, D., R. Rabiser, et al. (2007). "Decision-oriented modeling of product line
architectures."

Friedenthal, S., A. Moore, et al. (2008). A Practical Guide to SysML: Systems Model
Language, Morgan Kaufmann.

Garlan, D. (2000). "Software architecture: a roadmap." Proceedings of the Conference on The
Future of Software Engineering: 91-101.

Gomaa, H. (2005). Designing Software Product Lines with UML. From use cases to pattern-
based software Architectures, Addison Wesley.

Gomaa, H. and M. E. Shin (2008). "Multiple-view modelling and meta-modelling of software
product lines."

Halim, S. A., D. N. A. Jawawi, et al. (2009). Requirements Identification and Representation
in Software Product Line. Asia Pacific Software Engineering Conference
(APSEC'09), Pulau Pinang, Malaysia, IEEE.

Holt, J. and S. Perry (2008). SysML for systems engineering, Institution of Engineering &
Technology (IET).

Kaindl, H. and J. Falb (2008). Can We Transform Requirements into Architecture?
International Conference on Software Engineering Advances (ICSEA'08) IEEE
Computer Society.

Kandé, M. M. and A. Strohmeier (2000). Towards a UML profile for software architecture
descriptions, Springer-Verlag.

Kircher, M., C. Schwanninger, et al. (2006). Transitioning to a software product family
approach - challenges and best practices. Software Product Line Conference, 2006
10th International.

Lee, K. and K. C. Kang (2004). "Feature dependency analysis for product line component
design." Software Reuse: Methods, Techniques and Tools: 69-85.

Liming, Z., M. A. Babar, et al. (2004). Mining patterns to support software architecture
evaluation. Software Architecture, 2004. WICSA 2004. Proceedings. Fourth
Working IEEE/IFIP Conference on.

Lin, Y., H. Ye, et al. (2010). An Approach for Modelling Software Product Line Architecture.
International Conference on Computational Intelligence and Software Engineering
(CiSE), Wuhan, China, IEEE.

Magnus, E., B. Jurgen, et al. (2009). "Managing requirements specifications for product lines
- An approach and industry case study." J. Syst. Softw. 82(3): 435-447.

Mahvish, K. and G. Tony (2009). "A systematic review of domain analysis solutions for
product lines." J. Syst. Softw. 82(12): 1982-2003.

Mannion, M. and H. Kaindl (2008). "Using parameters and discriminants for product line
requirements." Systems Engineering 11(1).

Matinlassi, M. (2004). Comparison of Software Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA. Proceedings of the International
Conference on Software Engineering (ICSE'04), IEEE.

Medvidovic, N., E. M. Dashofy, et al. (2007). "Moving architectural description from under
the technology lamppost." Information and Software Technology 49(1): 12-31.

Medvidovic, N., P. Grünbacher, et al. (2003). "Bridging models across the software lifecycle."
Journal of Systems and Software 68(3): 199-215.

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

41

Medvidovic, N., D. S. Rosenblum, et al. (2002). "Modeling software architectures in the
Unified Modeling Language." ACM Transactions on Software Engineering and
Methodology (TOSEM) 11(1): 2-57.

Mikyeong, M., Y. Keunhyuk, et al. (2005). "An approach to developing domain requirements
as a core asset based on commonality and variability analysis in a product line."
Software Engineering, IEEE Transactions on 31(7): 551-569.

Moon, M., Yeom, K and Chae, HS (2005). "An Approach to Developing Domain
Requirements as a Core Asset Based on Commonality and Variability Analysis in
Product Line." IEEE Transactions on Software Engineering 31(7): 551-569.

Oquendo, F., B. Warboys, et al. (2004). Distilling Scenarios from Patterns for Software
Architecture Evaluation – A Position Paper. Software Architecture, Springer Berlin
/ Heidelberg. 3047: 225-229.

Paech, B., A. H. Dutoit, et al. (2002). Functional requirements, non-functional requirements,
and architecture should not be separated - A position paper. REFSQ, Essen.

Polzer, A., S. Kowalewski, et al. (2009). Applying Software Product Line Techniques in
Model-based Embedded Systems Engineering. MOMPES 2009, Vancouver,
Canada.

Savolainen, J., I. Oliver, et al. (2005). Transitioning from product line requirements to
product line architecture, Edinburgh, Scotland, United Kingdom, Institute of
Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States.

Savolainen, J., T. Vehkomäki, et al. (2002). "An Integrated Model for Requirements
Structuring and Architecture Design." Proceedings of the Seventh Australian
Workshop on Requirements Engineering, Melbourne.

Schmid, K. and I. John (2004). "A customizable approach to full lifecycle variability
management." Science of Computer Programming 53(3): 259-284.

Sochos, P., M. Riebisch, et al. (2006). The Feature-Architecture Mapping (FArM) Method for
Feature-Oriented Development of Software Product Lines. Proceedings of the 13th
Annual IEEE International Symposium and Workshop on Engineering and
Computer Based Systems (ECBS'06).

Taylor, R. N., N. Medvidovic, et al. (2009). "Software Architecture: Foundations, Theory, and
Practice."

Thiel, S. and A. Hein (2002). Systematic Integration of Variability into Product Line
Architecture Design. Software Product Lines : Second International Conference,
SPLC 2, San Diego, CA, USA, August 19-22, 2002. Proceedings: 67-102.

Turban, B., M. Kucera, et al. (2009). Bridging the Requirements to Design Traceability Gap
Intelligent Technical Systems, Springer Netherlands. 38: 275-288.

Yu, C. C., A. L. Akhihebbal, et al. (1998). Handling Variant Requirements in Software
Architectures for Product Families. Proceedings of the Second International ESPRIT
ARES Workshop on Development and Evolution of Software Architectures for
Product Families, Springer-Verlag London, UK.

Zhang, W., H. Mei, et al. (2006). "Feature-driven requirement dependency analysis and high-
level software design." Requirements Engineering 11(3): 205-220.

Software Product Line – Advanced Topic

40

Dhungana, D., R. Rabiser, et al. (2007). "Decision-oriented modeling of product line
architectures."

Friedenthal, S., A. Moore, et al. (2008). A Practical Guide to SysML: Systems Model
Language, Morgan Kaufmann.

Garlan, D. (2000). "Software architecture: a roadmap." Proceedings of the Conference on The
Future of Software Engineering: 91-101.

Gomaa, H. (2005). Designing Software Product Lines with UML. From use cases to pattern-
based software Architectures, Addison Wesley.

Gomaa, H. and M. E. Shin (2008). "Multiple-view modelling and meta-modelling of software
product lines."

Halim, S. A., D. N. A. Jawawi, et al. (2009). Requirements Identification and Representation
in Software Product Line. Asia Pacific Software Engineering Conference
(APSEC'09), Pulau Pinang, Malaysia, IEEE.

Holt, J. and S. Perry (2008). SysML for systems engineering, Institution of Engineering &
Technology (IET).

Kaindl, H. and J. Falb (2008). Can We Transform Requirements into Architecture?
International Conference on Software Engineering Advances (ICSEA'08) IEEE
Computer Society.

Kandé, M. M. and A. Strohmeier (2000). Towards a UML profile for software architecture
descriptions, Springer-Verlag.

Kircher, M., C. Schwanninger, et al. (2006). Transitioning to a software product family
approach - challenges and best practices. Software Product Line Conference, 2006
10th International.

Lee, K. and K. C. Kang (2004). "Feature dependency analysis for product line component
design." Software Reuse: Methods, Techniques and Tools: 69-85.

Liming, Z., M. A. Babar, et al. (2004). Mining patterns to support software architecture
evaluation. Software Architecture, 2004. WICSA 2004. Proceedings. Fourth
Working IEEE/IFIP Conference on.

Lin, Y., H. Ye, et al. (2010). An Approach for Modelling Software Product Line Architecture.
International Conference on Computational Intelligence and Software Engineering
(CiSE), Wuhan, China, IEEE.

Magnus, E., B. Jurgen, et al. (2009). "Managing requirements specifications for product lines
- An approach and industry case study." J. Syst. Softw. 82(3): 435-447.

Mahvish, K. and G. Tony (2009). "A systematic review of domain analysis solutions for
product lines." J. Syst. Softw. 82(12): 1982-2003.

Mannion, M. and H. Kaindl (2008). "Using parameters and discriminants for product line
requirements." Systems Engineering 11(1).

Matinlassi, M. (2004). Comparison of Software Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA. Proceedings of the International
Conference on Software Engineering (ICSE'04), IEEE.

Medvidovic, N., E. M. Dashofy, et al. (2007). "Moving architectural description from under
the technology lamppost." Information and Software Technology 49(1): 12-31.

Medvidovic, N., P. Grünbacher, et al. (2003). "Bridging models across the software lifecycle."
Journal of Systems and Software 68(3): 199-215.

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

41

Medvidovic, N., D. S. Rosenblum, et al. (2002). "Modeling software architectures in the
Unified Modeling Language." ACM Transactions on Software Engineering and
Methodology (TOSEM) 11(1): 2-57.

Mikyeong, M., Y. Keunhyuk, et al. (2005). "An approach to developing domain requirements
as a core asset based on commonality and variability analysis in a product line."
Software Engineering, IEEE Transactions on 31(7): 551-569.

Moon, M., Yeom, K and Chae, HS (2005). "An Approach to Developing Domain
Requirements as a Core Asset Based on Commonality and Variability Analysis in
Product Line." IEEE Transactions on Software Engineering 31(7): 551-569.

Oquendo, F., B. Warboys, et al. (2004). Distilling Scenarios from Patterns for Software
Architecture Evaluation – A Position Paper. Software Architecture, Springer Berlin
/ Heidelberg. 3047: 225-229.

Paech, B., A. H. Dutoit, et al. (2002). Functional requirements, non-functional requirements,
and architecture should not be separated - A position paper. REFSQ, Essen.

Polzer, A., S. Kowalewski, et al. (2009). Applying Software Product Line Techniques in
Model-based Embedded Systems Engineering. MOMPES 2009, Vancouver,
Canada.

Savolainen, J., I. Oliver, et al. (2005). Transitioning from product line requirements to
product line architecture, Edinburgh, Scotland, United Kingdom, Institute of
Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States.

Savolainen, J., T. Vehkomäki, et al. (2002). "An Integrated Model for Requirements
Structuring and Architecture Design." Proceedings of the Seventh Australian
Workshop on Requirements Engineering, Melbourne.

Schmid, K. and I. John (2004). "A customizable approach to full lifecycle variability
management." Science of Computer Programming 53(3): 259-284.

Sochos, P., M. Riebisch, et al. (2006). The Feature-Architecture Mapping (FArM) Method for
Feature-Oriented Development of Software Product Lines. Proceedings of the 13th
Annual IEEE International Symposium and Workshop on Engineering and
Computer Based Systems (ECBS'06).

Taylor, R. N., N. Medvidovic, et al. (2009). "Software Architecture: Foundations, Theory, and
Practice."

Thiel, S. and A. Hein (2002). Systematic Integration of Variability into Product Line
Architecture Design. Software Product Lines : Second International Conference,
SPLC 2, San Diego, CA, USA, August 19-22, 2002. Proceedings: 67-102.

Turban, B., M. Kucera, et al. (2009). Bridging the Requirements to Design Traceability Gap
Intelligent Technical Systems, Springer Netherlands. 38: 275-288.

Yu, C. C., A. L. Akhihebbal, et al. (1998). Handling Variant Requirements in Software
Architectures for Product Families. Proceedings of the Second International ESPRIT
ARES Workshop on Development and Evolution of Software Architectures for
Product Families, Springer-Verlag London, UK.

Zhang, W., H. Mei, et al. (2006). "Feature-driven requirement dependency analysis and high-
level software design." Requirements Engineering 11(3): 205-220.

Software Product Line – Advanced Topic

42

Zhu, C., L. Yuqin, et al. (2007). "A Feature Oriented Approach to Mapping from Domain
Requirements to Product Line Architecture." Journal of Computer Research and
Development 7.

Zhu, L. and I. Gorton (2007). Uml profiles for design decisions and non-functional
requirements, IEEE Computer Society.

3

Transformational Variability Modeling Approach
to Configurable Business System Application

Marcel Fouda Ndjodo1 and Amougou Ngoumou2
1University of Yaounde I

2University of Douala
 Cameroon

1. Introduction
For more than ten years now, adaptation of software systems has become a major challenge
for the software engineering community which has proposed different reference
architectures and systematic approaches to address this challenging research topic. In the
literature, the concept of adaptability is very broad and has many unclear and inconsistent
definitions, with many closed-related types of non functional requirements such as
flexibility, evolvability, transformability, reusability, robustness, configurability, etc. (see
(Subramanian & Chung, 2001a) for a sample of representative definitions). This broad
nature of adaptability makes it critical in practice since one of the problems in dealing with
it is to give a clear and non ambiguous definition of adaptation and adaptability.

This contribution is based on the intuitive definition of N. Subramanian and L. Chung who
consider that “adaptation means change in the system to accommodate change in its
environment”, and “adaptability is the extent to which a system adapts to change in its
environment” (Subramanian & Chung, 2001a, 2001b). Since we also agree with them that,
“software architecture should itself be adaptable for the final software system to be
adaptable”, this chapter, which is a continuation of our earlier work on business component
semantics (BCS) extension and transformation of feature-oriented models (Fouda &
Amougou, 2009, 2010), describes an engineering approach to support adaptation at
architectural level of enterprise systems.

The term enterprise system (ES) came into fashion somewhat recently, but the concept
behind it has been subject to academic discussion for a long time now and has evolved from
an historic development in Business, Computer Science, and Information Systems. Over the
last years, ES have evolved to comprehensive IT-supported business solutions that
presumptively support and enhance organizations in their operations. Often times, ES refer
to the larger set of all large organization-wide packaged applications with a process
orientation. They have to be configured to suit the requirements of an organization
(alignment with organizational requirements). In order to facilitate the alignment process,
most ES solutions provide reference models that describe the functionality and structure of
the system. But, research shows that reference models still are only of limited use to the
configuration process. According to M. Rosemanna and W.M.P. van der Aalst (Rosemanna

Software Product Line – Advanced Topic

42

Zhu, C., L. Yuqin, et al. (2007). "A Feature Oriented Approach to Mapping from Domain
Requirements to Product Line Architecture." Journal of Computer Research and
Development 7.

Zhu, L. and I. Gorton (2007). Uml profiles for design decisions and non-functional
requirements, IEEE Computer Society.

3

Transformational Variability Modeling Approach
to Configurable Business System Application

Marcel Fouda Ndjodo1 and Amougou Ngoumou2
1University of Yaounde I

2University of Douala
 Cameroon

1. Introduction
For more than ten years now, adaptation of software systems has become a major challenge
for the software engineering community which has proposed different reference
architectures and systematic approaches to address this challenging research topic. In the
literature, the concept of adaptability is very broad and has many unclear and inconsistent
definitions, with many closed-related types of non functional requirements such as
flexibility, evolvability, transformability, reusability, robustness, configurability, etc. (see
(Subramanian & Chung, 2001a) for a sample of representative definitions). This broad
nature of adaptability makes it critical in practice since one of the problems in dealing with
it is to give a clear and non ambiguous definition of adaptation and adaptability.

This contribution is based on the intuitive definition of N. Subramanian and L. Chung who
consider that “adaptation means change in the system to accommodate change in its
environment”, and “adaptability is the extent to which a system adapts to change in its
environment” (Subramanian & Chung, 2001a, 2001b). Since we also agree with them that,
“software architecture should itself be adaptable for the final software system to be
adaptable”, this chapter, which is a continuation of our earlier work on business component
semantics (BCS) extension and transformation of feature-oriented models (Fouda &
Amougou, 2009, 2010), describes an engineering approach to support adaptation at
architectural level of enterprise systems.

The term enterprise system (ES) came into fashion somewhat recently, but the concept
behind it has been subject to academic discussion for a long time now and has evolved from
an historic development in Business, Computer Science, and Information Systems. Over the
last years, ES have evolved to comprehensive IT-supported business solutions that
presumptively support and enhance organizations in their operations. Often times, ES refer
to the larger set of all large organization-wide packaged applications with a process
orientation. They have to be configured to suit the requirements of an organization
(alignment with organizational requirements). In order to facilitate the alignment process,
most ES solutions provide reference models that describe the functionality and structure of
the system. But, research shows that reference models still are only of limited use to the
configuration process. According to M. Rosemanna and W.M.P. van der Aalst (Rosemanna

Software Product Line – Advanced Topic

44

& van der Aalst, 2003), this is mainly due to a lack of conceptual support for configuration in
the underlying modeling language. Following this line of argumentation, they have defined
a language and a process for the design and usage of configurable reference models in a model-
driven approach towards ES configuration (Recker et al., 2006).

Computer-based systems built using ES are types of information systems (IS) which,
according to Jeffrey L. Whitten and al. (Whitten et al., 2001), are intrinsically linked to an
organization (also referred to, hereafter, as an enterprise) because “an IS is an arrangement
of persons, data, procedures and technology tools which interact to insure the collection,
processing, storage and the diffusion of essential information to the life of an organization”.
Since each enterprise must be adapted permanently to the evolution of its environment,
information systems are therefore intrinsically dynamic due to the fact that any adaptation
of an enterprise to its moving environment triggers an information system change whose
aim is to adapt the IS to its new environment.

A change in an IS, is any observable mutation and/or evolution of one or many of its
building blocks: people, data, processes or interface (Whitten et al., 2001; Zachman, 1987).
We qualify as “major” any change that results in a larger deviation of the information
system definition. While robustness (i.e. the ability to tolerate some deviations in the
environment) can be added to a software system at the design or even implementation
stage, adaptability (i.e. the ability to adapt to larger deviations in the environment) cannot
be added at such late stages. Adaptability can be enforced only if it is considered at the
architecture development stage (Subramanian & Chung, 2001b). We go further in that
direction by considering the IS architecture development stage, i.e. the enterprise process
modeling, should be the initial stage where adaptability is taken in consideration.

Enterprise modeling (Bernus, 2003; Fox & Gruninger, 1998; Lankhorst, 2004; Vernadat, 2002)
is a critical building block to establishing an agile, robust enterprise architecture that keeps
pace with the fast moving business. It is the first building block in aligning the IT initiative
with the business objectives. The aim of an enterprise model, named here “business system
architecture” (BSA), is to bring together business operations and IT. The BSA serves as the
foundation, framework and guidepost necessary to understand the enterprise and its
environment.

The aim of this chapter is to propose and illustrate a reusable business component-based
approach to develop BSAs with an innate potential to evolve and adapt to new
requirements. To be more concise, the chapter’s contribution is two-fold: First, it introduces
an adaptable BSA modeling framework covering an architecture description language
which formalizes the FORM engineering assets (Kang et al., 2002, 2003; Lee et al., 2000) as
reusable business components (Ramadour & Cauvet, 2002) which provide domain
knowledge reusable during IS engineering and a generic abstract model for adaptable
business architectures. Second a transformational (Rotenstreich, 1992) engineering process
for adaptable BSA design and use is given.

Our approach is an integrated system product line approach, like PLUSS+ (Eriksson et al.,
2010), in the sense that it extends traditional systems engineering by incorporating ideas
from software product line (SPL) engineering. It integrates a product line method managing
variability with a software engineering methodology. It is based on the traditional domain
engineering–application engineering view of software product line development (van der

Transformational Variability Modeling Approach to Configurable Business System Application

45

Linden et al., 2007; Weiss & Lai, 1999). SPL engineering is a paradigm to develop software
applications (software-intensive systems and software products) using platforms and mass
customization (Pohl et al., 2005). Developing applications using platforms means to plan
proactively for reuse, to build reusable parts, and to reuse what has been built for reuse.
Building applications for mass customization means employing the concept of managed
variability, i.e. the commonalities and differences in the applications (in terms of
requirements, architecture, components, and test artifacts) of the product line have to be
modeled.

The chapter is organized as follows: section 2 presents the modeling framework, section 3
then outlines the associated transformational engineering process, and section 4 concludes
the chapter.

2. Modeling approach
This section outlines a generic conceptual framework for adaptable BSA. This framework
is generic in the sense that it is not dependent on a specific modeling technique or
method. However, a requirement for the application of our engineering process is that the
engineering method used throughout the process must manage variability (Kang et al.,
2010) in order to facilitate the derivation of model variants from the initial model. The
main idea is to give reusable business component (Ramadour & Cauvet, 2002) semantics
(rBCS) to the assets of a domain-specific architecture design method M by providing for
each structure the context in which it can be reused. The resulting method, named M/BCS
(read “M with business component semantics”), produces M-adaptable domain-specific
architectures.

The model for adaptable BSA specification given in this section is based on a well
established method in the product line engineering research community: the feature-
oriented reuse method (FORM) (Kang et al., 1998).

2.1 Business component semantics

We use the model for conceptual business components specification of P. Ramadour and C.
Cauvet (Ramadour & Cauvet, 2002) to define reusable domain-specific architecture assets. In
this model, a business component integrates both reusable knowledge (object structures)
and contextual knowledge guiding the reuse of the component. The context of a structure
specifies specific requirements (set of constraints) accomplished by the structure and
therefore indicates the suitable situation(s) in which a structure can be reused. The three
levels of contextual constraints (business goals, business processes and business rules)
considered by the model to specify conceptual business components clearly indicate that the
conceptual business components of Ramadour and Cauvet are closely-related to enterprise
process models assets (Bernus, 2003; Fox & Gruninger, 1998; Lankhorst, 2004; Vernadat,
2002). In this model, each business component has three constituents: a name, a descriptor
and a realization:

 Descriptors explain when and why use components. A descriptor has an intention and a
context. The intention is the expression of the generic modeling problem. The term
“generic” here means that this problem does not refer to the context in which it is

Software Product Line – Advanced Topic

44

& van der Aalst, 2003), this is mainly due to a lack of conceptual support for configuration in
the underlying modeling language. Following this line of argumentation, they have defined
a language and a process for the design and usage of configurable reference models in a model-
driven approach towards ES configuration (Recker et al., 2006).

Computer-based systems built using ES are types of information systems (IS) which,
according to Jeffrey L. Whitten and al. (Whitten et al., 2001), are intrinsically linked to an
organization (also referred to, hereafter, as an enterprise) because “an IS is an arrangement
of persons, data, procedures and technology tools which interact to insure the collection,
processing, storage and the diffusion of essential information to the life of an organization”.
Since each enterprise must be adapted permanently to the evolution of its environment,
information systems are therefore intrinsically dynamic due to the fact that any adaptation
of an enterprise to its moving environment triggers an information system change whose
aim is to adapt the IS to its new environment.

A change in an IS, is any observable mutation and/or evolution of one or many of its
building blocks: people, data, processes or interface (Whitten et al., 2001; Zachman, 1987).
We qualify as “major” any change that results in a larger deviation of the information
system definition. While robustness (i.e. the ability to tolerate some deviations in the
environment) can be added to a software system at the design or even implementation
stage, adaptability (i.e. the ability to adapt to larger deviations in the environment) cannot
be added at such late stages. Adaptability can be enforced only if it is considered at the
architecture development stage (Subramanian & Chung, 2001b). We go further in that
direction by considering the IS architecture development stage, i.e. the enterprise process
modeling, should be the initial stage where adaptability is taken in consideration.

Enterprise modeling (Bernus, 2003; Fox & Gruninger, 1998; Lankhorst, 2004; Vernadat, 2002)
is a critical building block to establishing an agile, robust enterprise architecture that keeps
pace with the fast moving business. It is the first building block in aligning the IT initiative
with the business objectives. The aim of an enterprise model, named here “business system
architecture” (BSA), is to bring together business operations and IT. The BSA serves as the
foundation, framework and guidepost necessary to understand the enterprise and its
environment.

The aim of this chapter is to propose and illustrate a reusable business component-based
approach to develop BSAs with an innate potential to evolve and adapt to new
requirements. To be more concise, the chapter’s contribution is two-fold: First, it introduces
an adaptable BSA modeling framework covering an architecture description language
which formalizes the FORM engineering assets (Kang et al., 2002, 2003; Lee et al., 2000) as
reusable business components (Ramadour & Cauvet, 2002) which provide domain
knowledge reusable during IS engineering and a generic abstract model for adaptable
business architectures. Second a transformational (Rotenstreich, 1992) engineering process
for adaptable BSA design and use is given.

Our approach is an integrated system product line approach, like PLUSS+ (Eriksson et al.,
2010), in the sense that it extends traditional systems engineering by incorporating ideas
from software product line (SPL) engineering. It integrates a product line method managing
variability with a software engineering methodology. It is based on the traditional domain
engineering–application engineering view of software product line development (van der

Transformational Variability Modeling Approach to Configurable Business System Application

45

Linden et al., 2007; Weiss & Lai, 1999). SPL engineering is a paradigm to develop software
applications (software-intensive systems and software products) using platforms and mass
customization (Pohl et al., 2005). Developing applications using platforms means to plan
proactively for reuse, to build reusable parts, and to reuse what has been built for reuse.
Building applications for mass customization means employing the concept of managed
variability, i.e. the commonalities and differences in the applications (in terms of
requirements, architecture, components, and test artifacts) of the product line have to be
modeled.

The chapter is organized as follows: section 2 presents the modeling framework, section 3
then outlines the associated transformational engineering process, and section 4 concludes
the chapter.

2. Modeling approach
This section outlines a generic conceptual framework for adaptable BSA. This framework
is generic in the sense that it is not dependent on a specific modeling technique or
method. However, a requirement for the application of our engineering process is that the
engineering method used throughout the process must manage variability (Kang et al.,
2010) in order to facilitate the derivation of model variants from the initial model. The
main idea is to give reusable business component (Ramadour & Cauvet, 2002) semantics
(rBCS) to the assets of a domain-specific architecture design method M by providing for
each structure the context in which it can be reused. The resulting method, named M/BCS
(read “M with business component semantics”), produces M-adaptable domain-specific
architectures.

The model for adaptable BSA specification given in this section is based on a well
established method in the product line engineering research community: the feature-
oriented reuse method (FORM) (Kang et al., 1998).

2.1 Business component semantics

We use the model for conceptual business components specification of P. Ramadour and C.
Cauvet (Ramadour & Cauvet, 2002) to define reusable domain-specific architecture assets. In
this model, a business component integrates both reusable knowledge (object structures)
and contextual knowledge guiding the reuse of the component. The context of a structure
specifies specific requirements (set of constraints) accomplished by the structure and
therefore indicates the suitable situation(s) in which a structure can be reused. The three
levels of contextual constraints (business goals, business processes and business rules)
considered by the model to specify conceptual business components clearly indicate that the
conceptual business components of Ramadour and Cauvet are closely-related to enterprise
process models assets (Bernus, 2003; Fox & Gruninger, 1998; Lankhorst, 2004; Vernadat,
2002). In this model, each business component has three constituents: a name, a descriptor
and a realization:

 Descriptors explain when and why use components. A descriptor has an intention and a
context. The intention is the expression of the generic modeling problem. The term
“generic” here means that this problem does not refer to the context in which it is

Software Product Line – Advanced Topic

46

supposed to be solved. The context of a business component details its main business
activity (domain) in terms of atomic and non atomic sub activities (process) and explains
the choice of one alternative and not the other (common, optional, variabilities).

 Realizations provide solutions to the modeling problems expressed in the descriptor
sections. Solutions are the reusable part of the business component; they may have
adaptation points that are parameters whose values are fixed at the reuse moment.

We use the formal language Z to formalize this business component model in order to allow
a rigorous study of its properties. Due to space constraints, this model cannot be given here.
Figure 1, gives the specification skeleton, where A denotes the set of finite subsets of A and
Class is the set of classes of objects (as used in the object-oriented terminology). The detailed
specification is given in (Fouda & Amougou, 2009).

 BusinessComponent = =[name: Text; descriptor:Descriptor; realization: Realization]
 Descriptor = = [intention : Intention ; context : Context]
 Intention = = [action: EnginneeringActivity; target: Interest]
 Context = = [domain : Domain ; process : Context]
 Realization = = [solution: Solution; adaptationpoints : AdaptationPoints ]
 Interest = Domain  BusinessObjects
 Domain = = [action: BusinessActivity; target : BusinessObjects ]
 BusinessActivity == [common: BusinessActivity ;
 optional: BusinessActivity;
 variabilities: BusinessActivity
 atomic: Boolean]
 BusinessObjects = = Class
Fig. 1. A formal specification of a business component

The types of solutions depend on the types of the business components. A solution can be a
system decomposition, an activity organization or an object description, or anything else
depending on the intention of the component. If this intention is to implement an activity of
a product line engineering method (e.g. feature analysis), then the type of the solution is
necessarily a kind of asset produced by the method (e.g. a feature model).

The BCS approach for adaptable business system architecture, which is advocated here, is a
way to envelop assets of a product line engineering method with a domain knowledge
layer. This layer, which indicates the purpose intended by the asset and the constraints it
solve, provides the context in which it can be reused. It formally defines the extent to which
the asset adapts to change in its environment. This additional layer is in fact an “adaptability
information layer”.

2.2 Business architecture description language

FORM/BCS architecture description language is specified through the description of its four
main concepts: feature business components, subsystem architecture business components,
process architecture business components, module business components and adaptable
system architectures.

Transformational Variability Modeling Approach to Configurable Business System Application

47

2.2.1 Feature business component

In FORM, a feature model of a domain gives the “intention” of that domain in terms of
generic features which literally marks a distinct service, operation or function visible by
users and application developers of the domain. FORM/BCS specifies a feature model of a
domain as a business reusable component of that domain which captures the commonalities
and differences of applications in that domain in terms of features (Figure 2).

The type Feature specifies business activities. A business activity is caused by an event which
is applied to a target set of objects. Features have a generalization (in the sense of object-
oriented analysis) and decomposition. A feature’s decomposition gives the set of its
common (sub) features which indicate reuse opportunity, the set of its optional (sub)
features and the set of its groups of alternate (sub) features.

Fig. 2. The feature business component model

2.2.2 Subsystem architecture business component

A subsystem architecture business component (Figure 3) describes a system in terms of
abstract high level subsystems and the relationships between them. Graphically, the
solution of a subsystem architecture business component is represented as a symmetric
boolean matrix in which rows and columns represent the different subsystems of the
business component and the values of the matrix indicate the existence of links between
these subsystems.

Fig. 3. The subsystem business component model

Software Product Line – Advanced Topic

46

supposed to be solved. The context of a business component details its main business
activity (domain) in terms of atomic and non atomic sub activities (process) and explains
the choice of one alternative and not the other (common, optional, variabilities).

 Realizations provide solutions to the modeling problems expressed in the descriptor
sections. Solutions are the reusable part of the business component; they may have
adaptation points that are parameters whose values are fixed at the reuse moment.

We use the formal language Z to formalize this business component model in order to allow
a rigorous study of its properties. Due to space constraints, this model cannot be given here.
Figure 1, gives the specification skeleton, where A denotes the set of finite subsets of A and
Class is the set of classes of objects (as used in the object-oriented terminology). The detailed
specification is given in (Fouda & Amougou, 2009).

 BusinessComponent = =[name: Text; descriptor:Descriptor; realization: Realization]
 Descriptor = = [intention : Intention ; context : Context]
 Intention = = [action: EnginneeringActivity; target: Interest]
 Context = = [domain : Domain ; process : Context]
 Realization = = [solution: Solution; adaptationpoints : AdaptationPoints ]
 Interest = Domain  BusinessObjects
 Domain = = [action: BusinessActivity; target : BusinessObjects ]
 BusinessActivity == [common: BusinessActivity ;
 optional: BusinessActivity;
 variabilities: BusinessActivity
 atomic: Boolean]
 BusinessObjects = = Class
Fig. 1. A formal specification of a business component

The types of solutions depend on the types of the business components. A solution can be a
system decomposition, an activity organization or an object description, or anything else
depending on the intention of the component. If this intention is to implement an activity of
a product line engineering method (e.g. feature analysis), then the type of the solution is
necessarily a kind of asset produced by the method (e.g. a feature model).

The BCS approach for adaptable business system architecture, which is advocated here, is a
way to envelop assets of a product line engineering method with a domain knowledge
layer. This layer, which indicates the purpose intended by the asset and the constraints it
solve, provides the context in which it can be reused. It formally defines the extent to which
the asset adapts to change in its environment. This additional layer is in fact an “adaptability
information layer”.

2.2 Business architecture description language

FORM/BCS architecture description language is specified through the description of its four
main concepts: feature business components, subsystem architecture business components,
process architecture business components, module business components and adaptable
system architectures.

Transformational Variability Modeling Approach to Configurable Business System Application

47

2.2.1 Feature business component

In FORM, a feature model of a domain gives the “intention” of that domain in terms of
generic features which literally marks a distinct service, operation or function visible by
users and application developers of the domain. FORM/BCS specifies a feature model of a
domain as a business reusable component of that domain which captures the commonalities
and differences of applications in that domain in terms of features (Figure 2).

The type Feature specifies business activities. A business activity is caused by an event which
is applied to a target set of objects. Features have a generalization (in the sense of object-
oriented analysis) and decomposition. A feature’s decomposition gives the set of its
common (sub) features which indicate reuse opportunity, the set of its optional (sub)
features and the set of its groups of alternate (sub) features.

Fig. 2. The feature business component model

2.2.2 Subsystem architecture business component

A subsystem architecture business component (Figure 3) describes a system in terms of
abstract high level subsystems and the relationships between them. Graphically, the
solution of a subsystem architecture business component is represented as a symmetric
boolean matrix in which rows and columns represent the different subsystems of the
business component and the values of the matrix indicate the existence of links between
these subsystems.

Fig. 3. The subsystem business component model

Software Product Line – Advanced Topic

48

2.2.3 Process architecture business component

A process architecture business component represents a concurrency structure in terms of
concurrent business activities to which functional elements are allocated; the deployment
architecture shows an allocation of business activities to resources (Figure 4).

The type ProcessArchitecture specifies process architectures. A process architecture is a set of
business activities (tasks) and classes of objects (data). Each business activity operates on a
class of objects (data accesses) and business activities exchange messages between them in
the form of actions call or with the environment (null).

Fig. 4. The process business component model

2.2.4 Module business component

Module business components are refinements of process business architecture components.
A module business component may be associated with a set of relevant features. Also,
alternative features may be implemented as a template module or a higher level module
with an interface that could hide all the different alternatives (Figure 5).

Fig. 5. The module business component model

A business module has a name, a list of parameters, a code in a pseudo language and a
description which defines the task done by the module and the modules required for its
execution, some of them are included in the module and some others are external.

Transformational Variability Modeling Approach to Configurable Business System Application

49

2.2.5 Adaptable system architecture

FORM-based adaptable business architectures (Figure 6) have four perspectives or views:

 The service view, which is a set of feature business components (the functional
perspectives), provides the solution for the analysis of the service provided by a
business organization.

 The system view, which is a set of subsystem business components (the structural
perspectives), gives the solution for the decomposition of a business organization.

 The process view, which is a set of process business components (the procedural
perspectives), provides the solution for the description of the processes of a business
organization.

 The logical view, which is a set of module business components (the logical
perspectives), gives the solution for the specification of application modules associated
to sub processes or tasks of a business organization.

The reusable business components defining adaptable system architectures can be stored in
a database which can be requested using engineering by reuse operators developed by P.
Ramadour (Ramadour, 2001): search, selection, adaptation, and composition operators.

Fig. 6. The Adaptable business architecture model

3. Adaptable architectures engineering
In this section, we describe a system engineering methodology for the production and use of
adaptable business architectures. Systems engineering focuses on stakeholder needs and the
required functionality early in the development cycle to synthesize an overall system design
that captures those requirements from a total life-cycle perspective. Our approach is an
integrated system product line approach, like PLUSS+ (Eriksson et al., 2010), in the sense
that it extends traditional systems engineering by incorporating ideas from software
product line engineering. It integrates a product line method managing variability with a
software engineering methodology. It is based on the traditional domain engineering–
application engineering view of software product line development (van der Linden et al.,
2007; Weiss & Lai, 1999).

The purpose of domain engineering is to develop a product line’s reusable core assets to
provide a production capability for products (Northrop, 2002) and the purpose of
application engineering is to generate new systems utilizing the assets developed by domain
engineering. We refer to the domain engineering activities of our methodology as horizontal
engineering process and the application engineering activities as vertical engineering process to

Software Product Line – Advanced Topic

48

2.2.3 Process architecture business component

A process architecture business component represents a concurrency structure in terms of
concurrent business activities to which functional elements are allocated; the deployment
architecture shows an allocation of business activities to resources (Figure 4).

The type ProcessArchitecture specifies process architectures. A process architecture is a set of
business activities (tasks) and classes of objects (data). Each business activity operates on a
class of objects (data accesses) and business activities exchange messages between them in
the form of actions call or with the environment (null).

Fig. 4. The process business component model

2.2.4 Module business component

Module business components are refinements of process business architecture components.
A module business component may be associated with a set of relevant features. Also,
alternative features may be implemented as a template module or a higher level module
with an interface that could hide all the different alternatives (Figure 5).

Fig. 5. The module business component model

A business module has a name, a list of parameters, a code in a pseudo language and a
description which defines the task done by the module and the modules required for its
execution, some of them are included in the module and some others are external.

Transformational Variability Modeling Approach to Configurable Business System Application

49

2.2.5 Adaptable system architecture

FORM-based adaptable business architectures (Figure 6) have four perspectives or views:

 The service view, which is a set of feature business components (the functional
perspectives), provides the solution for the analysis of the service provided by a
business organization.

 The system view, which is a set of subsystem business components (the structural
perspectives), gives the solution for the decomposition of a business organization.

 The process view, which is a set of process business components (the procedural
perspectives), provides the solution for the description of the processes of a business
organization.

 The logical view, which is a set of module business components (the logical
perspectives), gives the solution for the specification of application modules associated
to sub processes or tasks of a business organization.

The reusable business components defining adaptable system architectures can be stored in
a database which can be requested using engineering by reuse operators developed by P.
Ramadour (Ramadour, 2001): search, selection, adaptation, and composition operators.

Fig. 6. The Adaptable business architecture model

3. Adaptable architectures engineering
In this section, we describe a system engineering methodology for the production and use of
adaptable business architectures. Systems engineering focuses on stakeholder needs and the
required functionality early in the development cycle to synthesize an overall system design
that captures those requirements from a total life-cycle perspective. Our approach is an
integrated system product line approach, like PLUSS+ (Eriksson et al., 2010), in the sense
that it extends traditional systems engineering by incorporating ideas from software
product line engineering. It integrates a product line method managing variability with a
software engineering methodology. It is based on the traditional domain engineering–
application engineering view of software product line development (van der Linden et al.,
2007; Weiss & Lai, 1999).

The purpose of domain engineering is to develop a product line’s reusable core assets to
provide a production capability for products (Northrop, 2002) and the purpose of
application engineering is to generate new systems utilizing the assets developed by domain
engineering. We refer to the domain engineering activities of our methodology as horizontal
engineering process and the application engineering activities as vertical engineering process to

Software Product Line – Advanced Topic

50

indicate that the purpose of application engineering is to refine business architectures at
more low levels of abstraction (Figure 7).

Specific
module

architecture
business

component

Specific
feature

business
component

Specific
Process

architecture
business

component

Service view
refinement

System view
refinement

Logical view
refinement

Domain Component Database

Reusable feature
business component

database

Reusable process
architecture business
component database

Reusable subsystem
architecture business
component database

Module
Architecture

Business
Component

Feature
Business

Component

Process
Architecture

Business
Component

Domain
Analysis

System view
design Logical view

design

Selected
Feature

Business
Component

Selected Subsystem
Architecture Business

Component

Selected Module
Architecture

Business
Component

Horizontal Engineering Process

V
ertical E

ngineering P
rocess

Database

Activity

Component storage

Component reuse

Legend:

Domain refinement

Reusable module
architecture business
component database

Process view
designSubsystem

Architecture
Business

Component

Specific Domain Component Database

Reusable specifique feature
business component database

Reusable specific process
architecture business
component database

Reusable specific
subsystem architecture
business component

database

Reusable specific
module architecture

business
component
database

Process view
refinement

Specific
Subsystem
architecture

business
component

Selected Process
Architecture Business

Component

Domain

Application
Domain

Fig. 7. The adaptable business architecture engineering process

The horizontal process, which corresponds to the “engineering for reuse” approach, gives
the possibility to analyze a product line domain and develop adaptable architectures of that
domain. These abstract reusable models can be refined (“engineering by reuse” approach)
by the vertical engineering process in order to derive the specific business components of an
application domain, which is to configure a suitable application from domain engineering.

3.1 Horizontal engineering process

The horizontal engineering process has been done in (Fouda & Amougou, 2010). It is a
transformational method (Partsch, 1992; Rotenstreich, 1992), based on a set of provably
semantics-preserving derivation rules called constructors.

Transformational Variability Modeling Approach to Configurable Business System Application

51

The aim of a constructor is to transform, according to a formal rule called the construction
schema, a kind of architectural artifact (the input type of the constructor) to another kind of
architectural artifact (the output type of the constructor) by preserving all the system
properties incorporated in any given input. The definition of a constructor therefore has
three parts: the specification of the input type, the specification of the output type and, the
specification of the construction rule which defines, through a construction schema and a set
of semantics rules, how to build a semantics preserving output from a given input.

The horizontal engineering process has three constructors: the system view constructor which
supports the system view design activity, the process view constructor which supports the
process view design activity and the logical view constructor which support the logical view
design activity. The service view of a system is the starting point of the process; this view is
therefore obtained by applying any relevant requirement analysis technique.

3.1.1 System views design

The purpose of the system view design activity is to derive system views from service
views. This activity is carried by the total function SVC, the system view constructor, whose
purpose is to construct structural perspectives from functional perspectives of
organizations. Figure 8, which intensively uses the adaptable business architecture model
defined in section 2, specifies the system view constructor. In that figure, any text inside
/* */ is a comment which explains the formal notation.

Input: A functional perspective fp of an organization.
Output: A structural perspective SVC(fp) of the organization.
Construction schema:
 SVC (fp) = (SVC.name(fp), SVC.descriptor(fp), SVC.realization(fp))
Semantics rules:
1. SVC.name(fp) = text

/* text is any text used by the designer to name the reusable business component
modeling the structural perspective */

2. SVC.descriptor(fp) = (SVC.intention(fp), SVC.context(fp))
2.1. SVC.intention(fp) = <(decompose)ACTION (domain(descriptor(fp))TARGET)>,

/* The intention of the structural perspective SVC(fp) is to decompose the
business domain of fp */

2.2. SVC.context(fp) = context(descriptor(fp))
/* The context of SVC (fp) is the same as the context of fp */

3. SVC.realization(fp) = (SVC.solution(fp), SVC.adaptation_points(fp))
3.1. SVC.solution(fp) = (SVC.subsystems(fp), SVC.links(fp))

3.1.1. SVC.subsystems(fp) is the partition of the solution of the realization of fp
defined as follows:
3.1.1.1. SVC.subsystems(fp)  Feature
3.1.1.2. (F  SVC.subsystems(fp)) = decomposition(solution(realization(fp)))
3.1.1.3.  F1, F2  SVC.subsystems(fp) , F1  F2  F1 F2 = ))
3.1.1.4.  F SVC.subsystems(fp),  f Feature , g Feature,

((f  F  g  F) 
( h  F  (objects(f)  objects(h)  )  (objects(g)  objects(h)  ))).

Software Product Line – Advanced Topic

50

indicate that the purpose of application engineering is to refine business architectures at
more low levels of abstraction (Figure 7).

Specific
module

architecture
business

component

Specific
feature

business
component

Specific
Process

architecture
business

component

Service view
refinement

System view
refinement

Logical view
refinement

Domain Component Database

Reusable feature
business component

database

Reusable process
architecture business
component database

Reusable subsystem
architecture business
component database

Module
Architecture

Business
Component

Feature
Business

Component

Process
Architecture

Business
Component

Domain
Analysis

System view
design Logical view

design

Selected
Feature

Business
Component

Selected Subsystem
Architecture Business

Component

Selected Module
Architecture

Business
Component

Horizontal Engineering Process

V
ertical E

ngineering P
rocess

Database

Activity

Component storage

Component reuse

Legend:

Domain refinement

Reusable module
architecture business
component database

Process view
designSubsystem

Architecture
Business

Component

Specific Domain Component Database

Reusable specifique feature
business component database

Reusable specific process
architecture business
component database

Reusable specific
subsystem architecture
business component

database

Reusable specific
module architecture

business
component
database

Process view
refinement

Specific
Subsystem
architecture

business
component

Selected Process
Architecture Business

Component

Domain

Application
Domain

Fig. 7. The adaptable business architecture engineering process

The horizontal process, which corresponds to the “engineering for reuse” approach, gives
the possibility to analyze a product line domain and develop adaptable architectures of that
domain. These abstract reusable models can be refined (“engineering by reuse” approach)
by the vertical engineering process in order to derive the specific business components of an
application domain, which is to configure a suitable application from domain engineering.

3.1 Horizontal engineering process

The horizontal engineering process has been done in (Fouda & Amougou, 2010). It is a
transformational method (Partsch, 1992; Rotenstreich, 1992), based on a set of provably
semantics-preserving derivation rules called constructors.

Transformational Variability Modeling Approach to Configurable Business System Application

51

The aim of a constructor is to transform, according to a formal rule called the construction
schema, a kind of architectural artifact (the input type of the constructor) to another kind of
architectural artifact (the output type of the constructor) by preserving all the system
properties incorporated in any given input. The definition of a constructor therefore has
three parts: the specification of the input type, the specification of the output type and, the
specification of the construction rule which defines, through a construction schema and a set
of semantics rules, how to build a semantics preserving output from a given input.

The horizontal engineering process has three constructors: the system view constructor which
supports the system view design activity, the process view constructor which supports the
process view design activity and the logical view constructor which support the logical view
design activity. The service view of a system is the starting point of the process; this view is
therefore obtained by applying any relevant requirement analysis technique.

3.1.1 System views design

The purpose of the system view design activity is to derive system views from service
views. This activity is carried by the total function SVC, the system view constructor, whose
purpose is to construct structural perspectives from functional perspectives of
organizations. Figure 8, which intensively uses the adaptable business architecture model
defined in section 2, specifies the system view constructor. In that figure, any text inside
/* */ is a comment which explains the formal notation.

Input: A functional perspective fp of an organization.
Output: A structural perspective SVC(fp) of the organization.
Construction schema:
 SVC (fp) = (SVC.name(fp), SVC.descriptor(fp), SVC.realization(fp))
Semantics rules:
1. SVC.name(fp) = text

/* text is any text used by the designer to name the reusable business component
modeling the structural perspective */

2. SVC.descriptor(fp) = (SVC.intention(fp), SVC.context(fp))
2.1. SVC.intention(fp) = <(decompose)ACTION (domain(descriptor(fp))TARGET)>,

/* The intention of the structural perspective SVC(fp) is to decompose the
business domain of fp */

2.2. SVC.context(fp) = context(descriptor(fp))
/* The context of SVC (fp) is the same as the context of fp */

3. SVC.realization(fp) = (SVC.solution(fp), SVC.adaptation_points(fp))
3.1. SVC.solution(fp) = (SVC.subsystems(fp), SVC.links(fp))

3.1.1. SVC.subsystems(fp) is the partition of the solution of the realization of fp
defined as follows:
3.1.1.1. SVC.subsystems(fp)  Feature
3.1.1.2. (F  SVC.subsystems(fp)) = decomposition(solution(realization(fp)))
3.1.1.3.  F1, F2  SVC.subsystems(fp) , F1  F2  F1 F2 = ))
3.1.1.4.  F SVC.subsystems(fp),  f Feature , g Feature,

((f  F  g  F) 
( h  F  (objects(f)  objects(h)  )  (objects(g)  objects(h)  ))).

Software Product Line – Advanced Topic

52

3.1.2. SVC.links(fp)= {(F,G) SVC.subsystems(fp)×
SVC.subsystems(fp)/(f,g)F×G  decomposition(f)  decomposition(g) ≠ }

3.2. SVC.adaptation_points(fp) = {(ss,subsystemrealizations(ss))  ss
SVC.subsystems(fp)  ss  adaptation_points(realization(fp)) ≠ }
3.2.1. subsystemrealizations(ss) = {ss’:Subsystem   f ss,g ss’ / g 

featurerealizations(f)   g ss’, f  ss / g  featurerealizations(f)}
3.2.2. featurerealizations(f) = { g:Feature  common(f)  common(g) V 

variabilities(f), (  h  common(g)  h  V)  optional(g)  optional(f)}

Fig. 8. The system view construction rule

3.1.2 Process view design

The purpose of the process view design activity is to derive process views from system
views of organizations. This activity is carried by the total function PVC, the process view
constructor, whose purpose is to construct procedural perspectives from structural
perspectives of organizations. Figure 9 defines the process view constructor.

Input: A structural perspective sp of an organization.
Output: A set of procedural perspectives PVC(sp) of the organization.
Construction schema:
 PVC(sp) = {(PVC.name(p), PVC.descriptor(p), PVC.realization(p))  p  process(sp)}
Semantics rules:
1. PVC.name (p) = text.

/* text is any text used by the designer to name the reusable business component
modeling the procedural perspective */

2. PVC.descriptor(p) = (PVC.intention(p), PVC.context(p))
2.1. PVC.intention(p) = (describe)ACTION (p)TARGET

/* The intention of the process architecture built from p  process(sp) is to
describe p */

2.2. PVC.context(p) = (domain(sp), {p})
/* The business activity of the process architecture constructed from the
process p process (sp) is the same as the main activity of sp and it has only
one sub activity p */

3. PVC.realization(p) = (PVC.solution(p), PVC.adaptation_points(p))
3.1. PVC.solution(p) =

 (PVC.tasks(p), PVC.datas(p), PVC.dataaccess(p), PVC.messages(p))
3.1.1. PVC.tasks(p) = decomposition(action(domain(p)))

/* Tasks of the process architecture constructed from p process (sp) are
obtained by decomposing the action of the domain of p */

3.1.2. PVC.data(p) = target(domain(p))
/* The data of the process architecture constructed from p  process(sp)
are the business objects of the target of the domain of p */

3.1.3. PVC.dataaccess(p) = {(t, c)  decomposition(action(domain(p))) ×
target(domain(p)) / decomposition(t)  operations(c) ≠}
/* The task t of the process architecture constructed from p process (sp)
can operate on a class of object c only if some subtasks of t are operations

Transformational Variability Modeling Approach to Configurable Business System Application

53

of the class c */
3.1.4. PVC.messages(p) = {(t1, t2)  (decomposition (action(domain(p)))) 2 /

decomposition (t1)  decomposition (t2) ≠}
/* Two tasks t1 and t2 of the process architecture constructed from p
process (sp) can exchange messages only if some subtasks of t1 are
subtasks t2 */

3.1.5. PVC.adaptation_points(p)) = {(t1, A)  t1 PVC.tasks(p)  A = {t2 :
BusinessActivity  common(t1)  common(t2) ( V  variabilities(t1),   g
 common(t2)  g  V) 
optional(t1)  optional(t2)}  #A > 1}
/* Adaptation points of the process architecture constructed from p in
process(sp) are tasks of the process architecture for which we have more
than one realization */

Fig. 9. The process view construction rule

3.1.3 Logical view design

The purpose of the logical view design activity is to derive logical views from process views.
This activity is carried by the total function LVC, the logical view constructor, whose
purpose is to derive logical perspectives from procedural perspectives of organizations.
Figure 10 defines the logical view constructor.

Input: A procedural perspective pp of an organization.
Output: A set of logical perspectives LVC(pp) of the organization.
Construction schema:

 LVC.descriptor(t), LVC.realization(t)) 
 t  process(p), p process(pp)}
Semantics rules:
1. LVC.name (t) = text

/* text is any text used by the designer to name the reusable business component
modeling the logical perspective */

2. LVC.descriptor(t) = (LVC.intention(t), LVC.context(t))
2.1. LVC.intention(t) = <(implement)ACTION (t)TARGET>

/* The intention of the module architecture built from a task t process(p) and
p process(pp), is to implement t */

2.2. LVC.context(t) = (domain(pp), {t})
3. LVC.realization(t) = (LVC.solution(t), LVC.adaptation_points(t))

3.1. LVC.solution(t) = (LVC. pseudonym (t), LVC.parameters(t), LVC.task(t),
LVC.included(t),), LVC.external(t), LVC.specification(t))
3.1.1. LVC. pseudonym (t) = text’

/* text’ is any text used by the designer to name the solution of the
module architecture component constructed from the task t process(p),
for any p process(pp) */

3.1.2. LVC.parameters(t) is a set of business objects of the domain of t.
3.1.3. LVC.task(t) = action(domain(t))

/* The task of the solution of the module architecture constructed from

Software Product Line – Advanced Topic

52

3.1.2. SVC.links(fp)= {(F,G) SVC.subsystems(fp)×
SVC.subsystems(fp)/(f,g)F×G  decomposition(f)  decomposition(g) ≠ }

3.2. SVC.adaptation_points(fp) = {(ss,subsystemrealizations(ss))  ss
SVC.subsystems(fp)  ss  adaptation_points(realization(fp)) ≠ }
3.2.1. subsystemrealizations(ss) = {ss’:Subsystem   f ss,g ss’ / g 

featurerealizations(f)   g ss’, f  ss / g  featurerealizations(f)}
3.2.2. featurerealizations(f) = { g:Feature  common(f)  common(g) V 

variabilities(f), (  h  common(g)  h  V)  optional(g)  optional(f)}

Fig. 8. The system view construction rule

3.1.2 Process view design

The purpose of the process view design activity is to derive process views from system
views of organizations. This activity is carried by the total function PVC, the process view
constructor, whose purpose is to construct procedural perspectives from structural
perspectives of organizations. Figure 9 defines the process view constructor.

Input: A structural perspective sp of an organization.
Output: A set of procedural perspectives PVC(sp) of the organization.
Construction schema:
 PVC(sp) = {(PVC.name(p), PVC.descriptor(p), PVC.realization(p))  p  process(sp)}
Semantics rules:
1. PVC.name (p) = text.

/* text is any text used by the designer to name the reusable business component
modeling the procedural perspective */

2. PVC.descriptor(p) = (PVC.intention(p), PVC.context(p))
2.1. PVC.intention(p) = (describe)ACTION (p)TARGET

/* The intention of the process architecture built from p  process(sp) is to
describe p */

2.2. PVC.context(p) = (domain(sp), {p})
/* The business activity of the process architecture constructed from the
process p process (sp) is the same as the main activity of sp and it has only
one sub activity p */

3. PVC.realization(p) = (PVC.solution(p), PVC.adaptation_points(p))
3.1. PVC.solution(p) =

 (PVC.tasks(p), PVC.datas(p), PVC.dataaccess(p), PVC.messages(p))
3.1.1. PVC.tasks(p) = decomposition(action(domain(p)))

/* Tasks of the process architecture constructed from p process (sp) are
obtained by decomposing the action of the domain of p */

3.1.2. PVC.data(p) = target(domain(p))
/* The data of the process architecture constructed from p  process(sp)
are the business objects of the target of the domain of p */

3.1.3. PVC.dataaccess(p) = {(t, c)  decomposition(action(domain(p))) ×
target(domain(p)) / decomposition(t)  operations(c) ≠}
/* The task t of the process architecture constructed from p process (sp)
can operate on a class of object c only if some subtasks of t are operations

Transformational Variability Modeling Approach to Configurable Business System Application

53

of the class c */
3.1.4. PVC.messages(p) = {(t1, t2)  (decomposition (action(domain(p)))) 2 /

decomposition (t1)  decomposition (t2) ≠}
/* Two tasks t1 and t2 of the process architecture constructed from p
process (sp) can exchange messages only if some subtasks of t1 are
subtasks t2 */

3.1.5. PVC.adaptation_points(p)) = {(t1, A)  t1 PVC.tasks(p)  A = {t2 :
BusinessActivity  common(t1)  common(t2) ( V  variabilities(t1),   g
 common(t2)  g  V) 
optional(t1)  optional(t2)}  #A > 1}
/* Adaptation points of the process architecture constructed from p in
process(sp) are tasks of the process architecture for which we have more
than one realization */

Fig. 9. The process view construction rule

3.1.3 Logical view design

The purpose of the logical view design activity is to derive logical views from process views.
This activity is carried by the total function LVC, the logical view constructor, whose
purpose is to derive logical perspectives from procedural perspectives of organizations.
Figure 10 defines the logical view constructor.

Input: A procedural perspective pp of an organization.
Output: A set of logical perspectives LVC(pp) of the organization.
Construction schema:

 LVC.descriptor(t), LVC.realization(t)) 
 t  process(p), p process(pp)}
Semantics rules:
1. LVC.name (t) = text

/* text is any text used by the designer to name the reusable business component
modeling the logical perspective */

2. LVC.descriptor(t) = (LVC.intention(t), LVC.context(t))
2.1. LVC.intention(t) = <(implement)ACTION (t)TARGET>

/* The intention of the module architecture built from a task t process(p) and
p process(pp), is to implement t */

2.2. LVC.context(t) = (domain(pp), {t})
3. LVC.realization(t) = (LVC.solution(t), LVC.adaptation_points(t))

3.1. LVC.solution(t) = (LVC. pseudonym (t), LVC.parameters(t), LVC.task(t),
LVC.included(t),), LVC.external(t), LVC.specification(t))
3.1.1. LVC. pseudonym (t) = text’

/* text’ is any text used by the designer to name the solution of the
module architecture component constructed from the task t process(p),
for any p process(pp) */

3.1.2. LVC.parameters(t) is a set of business objects of the domain of t.
3.1.3. LVC.task(t) = action(domain(t))

/* The task of the solution of the module architecture constructed from

Software Product Line – Advanced Topic

54

the context t is the action of the domain of t */

3.1.4. LVC.included(t) = {m:Module  task(m)  decomposition(action
(domain(t)))  specification(m)   }
/* Modules included in the module architecture constructed from the
context t are modules for which the task is a subtask of t and the
specification is not empty*/

3.1.5. LVC.external(t) = {m:Module  task(m)  decomposition(action (domain(t)))
 specification(m) =  }
/* External modules in the module architecture constructed from the
context t are module for which the task is a subtask of t and the
specification is empty */

3.1.6. LVC.specification(t) = {specification(m)  m  LVC.included(t) 
LVC.required(t)}
/* The specification of the module architecture constructed from the
context t is the set of specifications of subtasks of t */

3.2. LVC.adaptation_points(t) = {(m1, A)  m1 LVC.included(t)  A = {m2 : Module
 common(task(m1))  common(task(m2))  ( V  variabilities(task(m1)),   g 
common(task(m2))  g  V)  optional(task(m1))  optional(task(2))}  #A > 1}
/* Adaptation points of the module architecture of a context t are modules
included in the module architecture of t for which we have more than one
realization */

Fig. 10. The logical view construction rule

3.2 Vertical engineering process

The purpose of the vertical engineering process is to generate new systems utilizing the assets
developed by horizontal engineering. Its ultimate goal is to configure a suitable business
application from domain engineering. It refines architectural assets of a domain to low level
assets of an application domain of that domain. This engineering process is also a
transformational method based on a set of provably semantics-preserving refinement rules
called refiners. The process has four refiners: the service view refiner which supports the service
view refinement activity, the system view refiner which supports the system view refinement
activity, the process view refiner which support the process view refinement activity and the
logical view refiner which supports the logical view refinement activity (see Figure 7).

3.2.1 Service view refinement

The purpose of the service view refinement activity is to derive a service view of an
application domain of a domain from the service view of that domain. This activity is
carried by a total function FMR, the functional model refiner, defines in Figure 12, which
refines feature business components, i.e. functional perspectives, of a domain to specific
business components of an application domain by using decompositions of non atomic
services of input feature business components. A service view refinement is triggered by a
decomposition of an abstract service of the service view. Any decomposition defines an
application domain since it specifies a specific manner to implement the service.
Decompositions define how abstract (common and optional) services of domains are
implemented in application domains.

Transformational Variability Modeling Approach to Configurable Business System Application

55

Figure 11 shows an example of a decomposition of an abstract service (career management
of state personnel governed by the general status of the public service or the labor code: C11)
of the Cameroon civil servant management information system which has been used as a
case study for the method (Atsa et al., 2010). In this decomposition, the abstract service C11 is
implemented only by four common actions; one of these actions (the recruitment process:
C111) is itself decomposed in four optional actions.

common(C11) = { C111 = (recruit = [{}, {absorb by qualification, absorb by competitive examination,
contractualize, engage}, {}}])ACTION(candidates, applications, competitive examinations,
civil servants governed by the general status or the labor code, decisions)TARGET(If the
candidate has succeeded a competitive examination or has obtained a diploma giving the
right to absorption or the Presidency of the Republic has given the authorization)DETAIL

 C112 = (advance)ACTION (applications, civil servants governed by the general
status or the labor code, decisions) TARGET

 C113 = (liquidate) ACTION (applications, civil servants governed by the general
status or the labor code, decisions) TARGET

 C114 = (transfer) ACTION (civil servants governed by the general status or the
labor code, decisions) TARGET }

optional(C11) = {}
variabilities(C11) = {}

Fig. 11. Decomposition of the non atomic service C11

The refinement of a service view (see Figure 12 for the formal definition) replaces the
decomposed service by its decomposition and integrates the new variability constraints in
the new model.

Input:
- A functional perspective fp of an organization
- A decomposition D of an abstract service s of fp

Output: A specific functional perspective FMR(fp,D) of an application domain
Construction schema:
FMR (fp,D)= (FMR.name(fp,D), FMR.descriptor(fp,D), FMR.realization(fp,D))
Semantics rules:
1. FMR.name(fp,D) = name(fp)
2. FMR.descriptor(fp,D) = (FMR.intention(fp,D), FMR.context(fp,D))

2.1. FMR.intention(fp,D) = intention(descriptor(fp))
2.2. FMR.context(fp,D) = (FMR.domain(fp,D), FMR.process(fp,D))

2.2.1. FMR.domain(fp,D) = domain(context(descriptor(fp)))
2.2.2. FMR.process(fp,D) = {(f, )  f  D}

 if process(context(descriptor(fp))) = 
/* In this case, s is the main activity of fp and D defines its sub
activities */

and
FMR.process(fp,D) = process(context(descriptor(fp)))
 if process(context(descriptor(fp)))  .
/* A refinement of a sub activity of fp doesn’t change the context of fp */

Software Product Line – Advanced Topic

54

the context t is the action of the domain of t */

3.1.4. LVC.included(t) = {m:Module  task(m)  decomposition(action
(domain(t)))  specification(m)   }
/* Modules included in the module architecture constructed from the
context t are modules for which the task is a subtask of t and the
specification is not empty*/

3.1.5. LVC.external(t) = {m:Module  task(m)  decomposition(action (domain(t)))
 specification(m) =  }
/* External modules in the module architecture constructed from the
context t are module for which the task is a subtask of t and the
specification is empty */

3.1.6. LVC.specification(t) = {specification(m)  m  LVC.included(t) 
LVC.required(t)}
/* The specification of the module architecture constructed from the
context t is the set of specifications of subtasks of t */

3.2. LVC.adaptation_points(t) = {(m1, A)  m1 LVC.included(t)  A = {m2 : Module
 common(task(m1))  common(task(m2))  ( V  variabilities(task(m1)),   g 
common(task(m2))  g  V)  optional(task(m1))  optional(task(2))}  #A > 1}
/* Adaptation points of the module architecture of a context t are modules
included in the module architecture of t for which we have more than one
realization */

Fig. 10. The logical view construction rule

3.2 Vertical engineering process

The purpose of the vertical engineering process is to generate new systems utilizing the assets
developed by horizontal engineering. Its ultimate goal is to configure a suitable business
application from domain engineering. It refines architectural assets of a domain to low level
assets of an application domain of that domain. This engineering process is also a
transformational method based on a set of provably semantics-preserving refinement rules
called refiners. The process has four refiners: the service view refiner which supports the service
view refinement activity, the system view refiner which supports the system view refinement
activity, the process view refiner which support the process view refinement activity and the
logical view refiner which supports the logical view refinement activity (see Figure 7).

3.2.1 Service view refinement

The purpose of the service view refinement activity is to derive a service view of an
application domain of a domain from the service view of that domain. This activity is
carried by a total function FMR, the functional model refiner, defines in Figure 12, which
refines feature business components, i.e. functional perspectives, of a domain to specific
business components of an application domain by using decompositions of non atomic
services of input feature business components. A service view refinement is triggered by a
decomposition of an abstract service of the service view. Any decomposition defines an
application domain since it specifies a specific manner to implement the service.
Decompositions define how abstract (common and optional) services of domains are
implemented in application domains.

Transformational Variability Modeling Approach to Configurable Business System Application

55

Figure 11 shows an example of a decomposition of an abstract service (career management
of state personnel governed by the general status of the public service or the labor code: C11)
of the Cameroon civil servant management information system which has been used as a
case study for the method (Atsa et al., 2010). In this decomposition, the abstract service C11 is
implemented only by four common actions; one of these actions (the recruitment process:
C111) is itself decomposed in four optional actions.

common(C11) = { C111 = (recruit = [{}, {absorb by qualification, absorb by competitive examination,
contractualize, engage}, {}}])ACTION(candidates, applications, competitive examinations,
civil servants governed by the general status or the labor code, decisions)TARGET(If the
candidate has succeeded a competitive examination or has obtained a diploma giving the
right to absorption or the Presidency of the Republic has given the authorization)DETAIL

 C112 = (advance)ACTION (applications, civil servants governed by the general
status or the labor code, decisions) TARGET

 C113 = (liquidate) ACTION (applications, civil servants governed by the general
status or the labor code, decisions) TARGET

 C114 = (transfer) ACTION (civil servants governed by the general status or the
labor code, decisions) TARGET }

optional(C11) = {}
variabilities(C11) = {}

Fig. 11. Decomposition of the non atomic service C11

The refinement of a service view (see Figure 12 for the formal definition) replaces the
decomposed service by its decomposition and integrates the new variability constraints in
the new model.

Input:
- A functional perspective fp of an organization
- A decomposition D of an abstract service s of fp

Output: A specific functional perspective FMR(fp,D) of an application domain
Construction schema:
FMR (fp,D)= (FMR.name(fp,D), FMR.descriptor(fp,D), FMR.realization(fp,D))
Semantics rules:
1. FMR.name(fp,D) = name(fp)
2. FMR.descriptor(fp,D) = (FMR.intention(fp,D), FMR.context(fp,D))

2.1. FMR.intention(fp,D) = intention(descriptor(fp))
2.2. FMR.context(fp,D) = (FMR.domain(fp,D), FMR.process(fp,D))

2.2.1. FMR.domain(fp,D) = domain(context(descriptor(fp)))
2.2.2. FMR.process(fp,D) = {(f, )  f  D}

 if process(context(descriptor(fp))) = 
/* In this case, s is the main activity of fp and D defines its sub
activities */

and
FMR.process(fp,D) = process(context(descriptor(fp)))
 if process(context(descriptor(fp)))  .
/* A refinement of a sub activity of fp doesn’t change the context of fp */

Software Product Line – Advanced Topic

56

3. FMR.realization(fp,D) = (FMR .solution(fp,D), FMR. adaptation_ points (fp,D))
3.1. FMR.solution(fp,D) = solution(realization(fp))  decomposition(s) =D

/* D is the decomposition of the service s in the solution of the new business
component */

3.2. FMR. adaptation _points (fp,D) = adaptationpoints (realization(fp))
 if (optional(D) =   variabilities(D) = )
/* The set of adaptation points of fp doesn’t change if D decomposes s
only in common sub services */

and
FMR. adaptation _points (fp,D) = adaptationpoints (realization(fp)) 
 {(s,variants(s,D))}
 if optional(D) ≠   variabilities(D) ≠ 
/* A new adaptation point based on the variants of s induced by the
decomposition D is created if D defines optional or variable subservices of s */

Fig. 12. The service view refinement rule

Figure 14 shows the result of the refinement of the service view of the civil servant
management information system (Figure 13) based on the decomposition given in Figure 11.

Name :Functional model of the Cameroonian civil servant management information system
Descriptor :
 Intention :(Analyze)ACTION((manage)ACTION(State personals and salaries)TARGET)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail, system)TARGET
 Process : C1 = (manage)ACTION(civil servants career)TARGET
 C2 = (manage)ACTION(salaries)TARGET
 C3 = (manage)ACTION(training)TARGET
 C4 = (manage)ACTION(attributions)TARGET
 C5 = (manage)ACTION(mail)TARGET
 /* sub-process of C1 */
 C11 = (manage)ACTION(decisions, personnels governed by the general status or the
 labor code)TARGET
 C12 = (manage)ACTION(decisions, magistrates)TARGET
 C13 = (manage)ACTION(decisions, university lecturers)TARGET
 C14 = (manage)ACTION(decisions, police officers)TARGET
 C15 = (transfer)ACTION(decisions)TARGET
 /* sub-process of C2 */
 C21 = (transfer)ACTION(decisions)TARGET
 C22 = (calculate)ACTION(salaries)TARGET
 C23 = (manage)ACTION(workstation)TARGET
 C24 = (manage)ACTION(profiles, workstations)TARGET
 C25 = (manage)ACTION(connections, workstations)TARGET
 /* sub-process of C4 */
 C41 = (manage)ACTION(workstations)TARGET
 C42 = (manage)ACTION(profiles, workstations)TARGET
 C43 = (manage)ACTION(connections, workstations)TARGET
 C44 = (manage)ACTION(transactions, workstations)TARGET

Transformational Variability Modeling Approach to Configurable Business System Application

57

Realization :
 Solution :

c

c1 c3 c5

c11 c12 c13

c41 c42 c43

c2 c4

c44c21 c22 c23 c24c14
c15 c25

 Adaptation points : {
 (c, {{c1, c3, c4, c5}, {c1, c2, c3, c4, c5}}),
 (c1, {{c11, c15}, {c11, c15, c12}, {c11, c15, c13}, {c11, c15, c14}, {c11, c12, c13, c15}, {c11,
 c13, c14, c15}, {c11, c12, c14, c15} et {c11, c12, c13, c14, c15}}),
 (c2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (c4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 13. Service view of Cameroon civil servant management IS

 . . .
 /* sub-process of C11 */
C111 = (recruit = [{}, {absorb by qualification, absorb by competitive examination, contractualize,

engage}, {}}])ACTION(candidates, applications, competitive examinations, civil servants
governed by the general status or the labor code, decisions)TARGET(If the candidate has
succeeded a competitive examination or has obtained a diploma giving the right to
absorption or the Presidency of the Republic has given the authorization)DETAIL

C112 = (advance)ACTION (applications, civil servants governed by the general status or the labor
code, decisions) TARGET

C113 = (liquidate) ACTION (applications, civil servants governed by the general status or
the labor code, decisions) TARGET

C114 = (transfer) ACTION (civil servants governed by the general status or the labor code, decisions)
TARGET

…
Realization :
 Solution :

c

c1 c3 c5

c11 c12 c13

c41 c42 c43

c2 c4

c44c21 c22 c23 c24c14
c15 c25

c111 c112 c113 c114
 . . .

Fig. 14. A refined service view of Cameroon civil servant management IS

3.2.2 System view refinement

The purpose of the system view refinement activity is to derive a system view of an
application domain of a domain from the system view of that domain. This activity is

Software Product Line – Advanced Topic

56

3. FMR.realization(fp,D) = (FMR .solution(fp,D), FMR. adaptation_ points (fp,D))
3.1. FMR.solution(fp,D) = solution(realization(fp))  decomposition(s) =D

/* D is the decomposition of the service s in the solution of the new business
component */

3.2. FMR. adaptation _points (fp,D) = adaptationpoints (realization(fp))
 if (optional(D) =   variabilities(D) = )
/* The set of adaptation points of fp doesn’t change if D decomposes s
only in common sub services */

and
FMR. adaptation _points (fp,D) = adaptationpoints (realization(fp)) 
 {(s,variants(s,D))}
 if optional(D) ≠   variabilities(D) ≠ 
/* A new adaptation point based on the variants of s induced by the
decomposition D is created if D defines optional or variable subservices of s */

Fig. 12. The service view refinement rule

Figure 14 shows the result of the refinement of the service view of the civil servant
management information system (Figure 13) based on the decomposition given in Figure 11.

Name :Functional model of the Cameroonian civil servant management information system
Descriptor :
 Intention :(Analyze)ACTION((manage)ACTION(State personals and salaries)TARGET)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail, system)TARGET
 Process : C1 = (manage)ACTION(civil servants career)TARGET
 C2 = (manage)ACTION(salaries)TARGET
 C3 = (manage)ACTION(training)TARGET
 C4 = (manage)ACTION(attributions)TARGET
 C5 = (manage)ACTION(mail)TARGET
 /* sub-process of C1 */
 C11 = (manage)ACTION(decisions, personnels governed by the general status or the
 labor code)TARGET
 C12 = (manage)ACTION(decisions, magistrates)TARGET
 C13 = (manage)ACTION(decisions, university lecturers)TARGET
 C14 = (manage)ACTION(decisions, police officers)TARGET
 C15 = (transfer)ACTION(decisions)TARGET
 /* sub-process of C2 */
 C21 = (transfer)ACTION(decisions)TARGET
 C22 = (calculate)ACTION(salaries)TARGET
 C23 = (manage)ACTION(workstation)TARGET
 C24 = (manage)ACTION(profiles, workstations)TARGET
 C25 = (manage)ACTION(connections, workstations)TARGET
 /* sub-process of C4 */
 C41 = (manage)ACTION(workstations)TARGET
 C42 = (manage)ACTION(profiles, workstations)TARGET
 C43 = (manage)ACTION(connections, workstations)TARGET
 C44 = (manage)ACTION(transactions, workstations)TARGET

Transformational Variability Modeling Approach to Configurable Business System Application

57

Realization :
 Solution :

c

c1 c3 c5

c11 c12 c13

c41 c42 c43

c2 c4

c44c21 c22 c23 c24c14
c15 c25

 Adaptation points : {
 (c, {{c1, c3, c4, c5}, {c1, c2, c3, c4, c5}}),
 (c1, {{c11, c15}, {c11, c15, c12}, {c11, c15, c13}, {c11, c15, c14}, {c11, c12, c13, c15}, {c11,
 c13, c14, c15}, {c11, c12, c14, c15} et {c11, c12, c13, c14, c15}}),
 (c2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (c4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 13. Service view of Cameroon civil servant management IS

 . . .
 /* sub-process of C11 */
C111 = (recruit = [{}, {absorb by qualification, absorb by competitive examination, contractualize,

engage}, {}}])ACTION(candidates, applications, competitive examinations, civil servants
governed by the general status or the labor code, decisions)TARGET(If the candidate has
succeeded a competitive examination or has obtained a diploma giving the right to
absorption or the Presidency of the Republic has given the authorization)DETAIL

C112 = (advance)ACTION (applications, civil servants governed by the general status or the labor
code, decisions) TARGET

C113 = (liquidate) ACTION (applications, civil servants governed by the general status or
the labor code, decisions) TARGET

C114 = (transfer) ACTION (civil servants governed by the general status or the labor code, decisions)
TARGET

…
Realization :
 Solution :

c

c1 c3 c5

c11 c12 c13

c41 c42 c43

c2 c4

c44c21 c22 c23 c24c14
c15 c25

c111 c112 c113 c114
 . . .

Fig. 14. A refined service view of Cameroon civil servant management IS

3.2.2 System view refinement

The purpose of the system view refinement activity is to derive a system view of an
application domain of a domain from the system view of that domain. This activity is

Software Product Line – Advanced Topic

58

carried by a total function SMR, the structural model refiner, defines in figure 16, which
refines subsystem business components, i.e. structural perspectives, of a domain to specific
business components of an application domain by using decompositions of non atomic
services in subsystems of input subsystem business components. A system view refinement
is triggered by a decomposition of an abstract service in a subsystem of the subsystem view.
Any decomposition defines an application domain since it specifies a specific manner to
implement the service. Decompositions define how abstract services of domains are
implemented in application domains. Figure 15 shows an example of a decomposition of an
abstract service (career management of state personnels: C1) of the Cameroon civil servant
management information system.

 common(C1) = {C11 = (manage)ACTION(decisions, personnels governed by the general
 status or the labor code)TARGET }

 optional(C1) = { C12 = (manage)ACTION(decisions, magistrates)TARGET,
 C13 = (manage)ACTION(decisions, univerties’s lecturers)TARGET,
 C14 = (manage)ACTION(decisions, police officers)TARGET,
 C15 = (transfer)ACTION(decisions)TARGET }
 variabilities(C1) = {}

Fig. 15. Decomposition of the non atomic service C1

In this decomposition, the abstract service C1 is implemented by one common action and
four optional actions.

The refinement of a system view (see Figure 16 for the formal definition) replaces the
decomposed service by its decomposition and integrates the new variability constraints in
the new model.

Input:
- A structural perspective sp of an organization,
- A decomposition D of a non atomic service c in a subsystem ss of sp.

Output: A specific system view perspective SMR(sp,D) of an application domain
Construction schema:
SMR (sp,D)= (SMR .name(sp,D), SMR .descriptor(sp,D), SMR .realization(sp,D))
Semantics rules:
1. SMR .name(sp,D) = name(sp)
2. SMR .descriptor(sp,D) = (SMR .intention(sp,D), SMR .context(sp,D))

2.1. SMR .intention(sp,D) = intention(descriptor(sp))
2.2. SMR .context(sp,D) = (SMR .domain(sp, D), SMR .process(sp,D))

2.2.1. SMR .domain(sp,D) = domain(context(descriptor(sp)))
2.2.2. SMR .process(sp,D) = {(f, )  f  D}

 if process(context(descriptor(sp))) = 
and
SMR .process(sp,D) = process(context(descriptor(sp)))
 if process(context(descriptor(sp)))  

Transformational Variability Modeling Approach to Configurable Business System Application

59

3. SMR .realization(sp,D) = (SMR .solution(sp,D), SMR . adaptation _points (sp,D))
3.1. SMR .solution(sp,D) = (SMR .subsystems(sp,D), SMR .links(sp, D))

3.1.1. SMR .subsystems(sp,D) = subsystems(solution(realization(sp)))
/* A system view refinement of a system doesn’t change its subsystems */

3.1.2. SMR .links(sp,D) = links(solution(realization(sp)))
 {(ss, t), t  subsystems(solution(realization(sp))) 
  g  t, D  decomposition(g) ≠ }

 /* A refinement of the subsystem ss triggered by the decomposition D creates a
new link between ss and any other subsystem which is not disjoint with D */

3.3. SMR . adaptation _points (sp,D) = adaptationpoints (realization(sp))
 if (optional(D) =   variabilities(D) = )
/* The set of adaptation points of sp doesn’t change if D decomposes c only in
common sub services */

and
SMR . adaptation _points (sp,D) = adaptationpoints (realization(sp)) 
 {(ss, variants(ss,D))}
 if optional(D) ≠   variabilities(D) ≠ 
/* A new adaptation point based on the variants of ss induced by the decomposition D is
created if D defines optional or variable subservices of c */

Fig. 16. The system view refinement rule

Figure 18 shows the result of the refinement of the system view of the civil servant
management information system (Figure 17) based on the decomposition of Figure 15.

Name :Structural Model of the Cameroonian civil servant management information system
Descriptor :
Intention :(Decompose)ACTION((manage)ACTION(career, salaries, training, natwork, mail,
 system)TARGET)TARGET
Context :
Domain : C = (manage)ACTION(career, salaries, training, network, mail, system)TARGET
Process : C1 = (manage)ACTION(career)TARGET
 C2 = (manage)ACTION(salaries)TARGET
 C3 = (manage)ACTION(training)TARGET
 C4 = (manage)ACTION(attributions)TARGET
 C5 = (manage)ACTION(mail)TARGET
 /* sub-process of C2 */
 C21 = (transfer)ACTION(decisions)TARGET
 C22 = (calculate)ACTION(salaries)TARGET
 C23 = (manage)ACTION(workstation)TARGET
 C24 = (manage)ACTION(profiles, workstations)TARGET
 C25 = (manage)ACTION(connections, workstations)TARGET
 /* sub-process of C4 */
 C41 = (manage)ACTION(workstations)TARGET
 C42 = (manage)ACTION(profiles, workstations)TARGET
 C43 = (manage)ACTION(connections, workstations)TARGET
 C44 = (manage)ACTION(transactions, workstations)TARGET
 …

Software Product Line – Advanced Topic

58

carried by a total function SMR, the structural model refiner, defines in figure 16, which
refines subsystem business components, i.e. structural perspectives, of a domain to specific
business components of an application domain by using decompositions of non atomic
services in subsystems of input subsystem business components. A system view refinement
is triggered by a decomposition of an abstract service in a subsystem of the subsystem view.
Any decomposition defines an application domain since it specifies a specific manner to
implement the service. Decompositions define how abstract services of domains are
implemented in application domains. Figure 15 shows an example of a decomposition of an
abstract service (career management of state personnels: C1) of the Cameroon civil servant
management information system.

 common(C1) = {C11 = (manage)ACTION(decisions, personnels governed by the general
 status or the labor code)TARGET }

 optional(C1) = { C12 = (manage)ACTION(decisions, magistrates)TARGET,
 C13 = (manage)ACTION(decisions, univerties’s lecturers)TARGET,
 C14 = (manage)ACTION(decisions, police officers)TARGET,
 C15 = (transfer)ACTION(decisions)TARGET }
 variabilities(C1) = {}

Fig. 15. Decomposition of the non atomic service C1

In this decomposition, the abstract service C1 is implemented by one common action and
four optional actions.

The refinement of a system view (see Figure 16 for the formal definition) replaces the
decomposed service by its decomposition and integrates the new variability constraints in
the new model.

Input:
- A structural perspective sp of an organization,
- A decomposition D of a non atomic service c in a subsystem ss of sp.

Output: A specific system view perspective SMR(sp,D) of an application domain
Construction schema:
SMR (sp,D)= (SMR .name(sp,D), SMR .descriptor(sp,D), SMR .realization(sp,D))
Semantics rules:
1. SMR .name(sp,D) = name(sp)
2. SMR .descriptor(sp,D) = (SMR .intention(sp,D), SMR .context(sp,D))

2.1. SMR .intention(sp,D) = intention(descriptor(sp))
2.2. SMR .context(sp,D) = (SMR .domain(sp, D), SMR .process(sp,D))

2.2.1. SMR .domain(sp,D) = domain(context(descriptor(sp)))
2.2.2. SMR .process(sp,D) = {(f, )  f  D}

 if process(context(descriptor(sp))) = 
and
SMR .process(sp,D) = process(context(descriptor(sp)))
 if process(context(descriptor(sp)))  

Transformational Variability Modeling Approach to Configurable Business System Application

59

3. SMR .realization(sp,D) = (SMR .solution(sp,D), SMR . adaptation _points (sp,D))
3.1. SMR .solution(sp,D) = (SMR .subsystems(sp,D), SMR .links(sp, D))

3.1.1. SMR .subsystems(sp,D) = subsystems(solution(realization(sp)))
/* A system view refinement of a system doesn’t change its subsystems */

3.1.2. SMR .links(sp,D) = links(solution(realization(sp)))
 {(ss, t), t  subsystems(solution(realization(sp))) 
  g  t, D  decomposition(g) ≠ }

 /* A refinement of the subsystem ss triggered by the decomposition D creates a
new link between ss and any other subsystem which is not disjoint with D */

3.3. SMR . adaptation _points (sp,D) = adaptationpoints (realization(sp))
 if (optional(D) =   variabilities(D) = )
/* The set of adaptation points of sp doesn’t change if D decomposes c only in
common sub services */

and
SMR . adaptation _points (sp,D) = adaptationpoints (realization(sp)) 
 {(ss, variants(ss,D))}
 if optional(D) ≠   variabilities(D) ≠ 
/* A new adaptation point based on the variants of ss induced by the decomposition D is
created if D defines optional or variable subservices of c */

Fig. 16. The system view refinement rule

Figure 18 shows the result of the refinement of the system view of the civil servant
management information system (Figure 17) based on the decomposition of Figure 15.

Name :Structural Model of the Cameroonian civil servant management information system
Descriptor :
Intention :(Decompose)ACTION((manage)ACTION(career, salaries, training, natwork, mail,
 system)TARGET)TARGET
Context :
Domain : C = (manage)ACTION(career, salaries, training, network, mail, system)TARGET
Process : C1 = (manage)ACTION(career)TARGET
 C2 = (manage)ACTION(salaries)TARGET
 C3 = (manage)ACTION(training)TARGET
 C4 = (manage)ACTION(attributions)TARGET
 C5 = (manage)ACTION(mail)TARGET
 /* sub-process of C2 */
 C21 = (transfer)ACTION(decisions)TARGET
 C22 = (calculate)ACTION(salaries)TARGET
 C23 = (manage)ACTION(workstation)TARGET
 C24 = (manage)ACTION(profiles, workstations)TARGET
 C25 = (manage)ACTION(connections, workstations)TARGET
 /* sub-process of C4 */
 C41 = (manage)ACTION(workstations)TARGET
 C42 = (manage)ACTION(profiles, workstations)TARGET
 C43 = (manage)ACTION(connections, workstations)TARGET
 C44 = (manage)ACTION(transactions, workstations)TARGET
 …

Software Product Line – Advanced Topic

60

Realization :
 Solution:
 Sub-systems: {SS1 = {c1}, SS2 = {c2}, SS3 = {c3}, SS4 = {c4}, SS5 = {c5}}
 Links: {SS2  SS5}
 Adaptation points: {
 (SS2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (SS4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 17. A system view of Cameroon civil servant management IS

 . . .
 /* sous-processus de C1 */
 C11 = (manage)ACTION(decisions, personals governed by the general status or
 the labor code)TARGET
 C12 = (manage)ACTION(decisions, magistrates)TARGET
 C13 = (manage)ACTION(decisions, universities’s lecturers)TARGET
 C14 = (manage)ACTION(decisions, police officers)TARGET
 C15 = (transfer)ACTION(decisions)TARGET
 …
 Liens: {SS1  SS2, SS2  SS4}
Adaptation points: {
 (SS1, {{c11, c15}, {c11, c15, c12}, {c11, c15, c13}, {c11, c15, c14}, {c11, c12, c13, c15}, {c11,
 c13, c14, c15}, {c11, c12, c14, c15}, {c11, c12, c13, c14, c15}}),
 (SS2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (SS4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 18. A refined system view of Cameroon civil servant management IS

3.2.3 Process view refinement

The purpose of the process view refinement activity is to derive a process view of an
application domain of a domain from the process view of that domain. This activity is
carried by a total function PMR, the procedural model refiner, defines in Figure 20, which
refines process business components of a domain to specific business components of an
application domain by using decompositions of non atomic tasks of input process business
components. A process view refinement is triggered by a decomposition of a task of the
process view. Any decomposition defines an application domain since it indicates a specific
manner to implement the task. Decompositions define how abstract tasks of domains are
implemented in application domains. Figure 19 shows an example of a decomposition of an
abstract task (recruitment of state personnels governed by the general status of the public
service or the labor code: C111, see Figure 11) of the Cameroon civil servant management
information system.

 recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}]

Fig. 19. Decomposition of the non atomic service C111

Transformational Variability Modeling Approach to Configurable Business System Application

61

In this decomposition, the abstract task of C111 is implemented by four optional tasks.

The refinement of a process view (see Figure 20 for the formal definition) replaces the
decomposed task by its decomposition and integrates the new variability constraints in the
new model.

Input:
- A procedural perspective pp of an organization,
- A decomposition D of a non atomic task t of pp.

Output: A specific procedural perspective PMR(pp,D) of an application domain
Construction schema:
PMR (pp,D)= (PMR .name(pp,D), PMR .descriptor(pp,D), PMR .realization(pp,D))
Semantics rules:
1. PMR .name(pp,D) = name(pp)
2. PMR .descriptor(pp,D) = descriptor(pp)
3. PMR .realization(pp, D) = (PMR .solution(pp,D), PMR . adaptation _points (pp,D))

3.1. PMR .solution(pp, D) = (PMR .tasks(pp,D), PMR .datas(pp,D),
 PMR .datasaccess(pp,D), PMR .messages(pp,D))
3.1.1. PMR .tasks(pp,D) = tasks (solution(realization(pp)))
3.1.2. PMR .data(pp,D) = data(solution(realization(pp)))
3.1.3. PMR .dataaccess(pp,D) = dataaccess(solution(realization(pp))) \

 {(t, c)  u tasks(solution(realization(pp))),
 (u, c)  datasaccess(solution(realization(pp))) 
 D  decomposition (u) ≠  }

3.1.4. PMR .messages(pp,D) = messages(solution(realization(pp))) 
 {(t, u)  D  decomposition (u) ≠  }

3.2. PMR. Adaptation_ points (pp,D) = adaptationpoints (realization(pp))
 if (optional(D) =   variabilities(D) = )
and
PMR .adaptation_points(pp,D) = adaptationpoints (realization(pbc)) 
 {(t, variants(t,D))}
 if optional(D) ≠   variabilities(D) ≠ 

Fig. 20. The process view refinement rule

Figure 22 shows the result of the refinement of the process view of the civil servant
management information system (Figure 21) based on the decomposition of Figure 19.

Name: Procedural model of career management of personals governed by the general status or the
 labor code in the Cameroonian civil servant management information system.
Descriptor :
 Intention : (describe)ACTION((manage = [{recruit, advance, liquidate, transfer}, {},
 {}])ACTION(candidates, applications, competitive examinations, civil servants
 governed by the general status or the labor code, decisions)TARGET)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail,
 system)TARGET
 Process : C11 = (manage = [{recruit, advance, liquidate, transfer}, {},

Software Product Line – Advanced Topic

60

Realization :
 Solution:
 Sub-systems: {SS1 = {c1}, SS2 = {c2}, SS3 = {c3}, SS4 = {c4}, SS5 = {c5}}
 Links: {SS2  SS5}
 Adaptation points: {
 (SS2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (SS4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 17. A system view of Cameroon civil servant management IS

 . . .
 /* sous-processus de C1 */
 C11 = (manage)ACTION(decisions, personals governed by the general status or
 the labor code)TARGET
 C12 = (manage)ACTION(decisions, magistrates)TARGET
 C13 = (manage)ACTION(decisions, universities’s lecturers)TARGET
 C14 = (manage)ACTION(decisions, police officers)TARGET
 C15 = (transfer)ACTION(decisions)TARGET
 …
 Liens: {SS1  SS2, SS2  SS4}
Adaptation points: {
 (SS1, {{c11, c15}, {c11, c15, c12}, {c11, c15, c13}, {c11, c15, c14}, {c11, c12, c13, c15}, {c11,
 c13, c14, c15}, {c11, c12, c14, c15}, {c11, c12, c13, c14, c15}}),
 (SS2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (SS4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 18. A refined system view of Cameroon civil servant management IS

3.2.3 Process view refinement

The purpose of the process view refinement activity is to derive a process view of an
application domain of a domain from the process view of that domain. This activity is
carried by a total function PMR, the procedural model refiner, defines in Figure 20, which
refines process business components of a domain to specific business components of an
application domain by using decompositions of non atomic tasks of input process business
components. A process view refinement is triggered by a decomposition of a task of the
process view. Any decomposition defines an application domain since it indicates a specific
manner to implement the task. Decompositions define how abstract tasks of domains are
implemented in application domains. Figure 19 shows an example of a decomposition of an
abstract task (recruitment of state personnels governed by the general status of the public
service or the labor code: C111, see Figure 11) of the Cameroon civil servant management
information system.

 recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}]

Fig. 19. Decomposition of the non atomic service C111

Transformational Variability Modeling Approach to Configurable Business System Application

61

In this decomposition, the abstract task of C111 is implemented by four optional tasks.

The refinement of a process view (see Figure 20 for the formal definition) replaces the
decomposed task by its decomposition and integrates the new variability constraints in the
new model.

Input:
- A procedural perspective pp of an organization,
- A decomposition D of a non atomic task t of pp.

Output: A specific procedural perspective PMR(pp,D) of an application domain
Construction schema:
PMR (pp,D)= (PMR .name(pp,D), PMR .descriptor(pp,D), PMR .realization(pp,D))
Semantics rules:
1. PMR .name(pp,D) = name(pp)
2. PMR .descriptor(pp,D) = descriptor(pp)
3. PMR .realization(pp, D) = (PMR .solution(pp,D), PMR . adaptation _points (pp,D))

3.1. PMR .solution(pp, D) = (PMR .tasks(pp,D), PMR .datas(pp,D),
 PMR .datasaccess(pp,D), PMR .messages(pp,D))
3.1.1. PMR .tasks(pp,D) = tasks (solution(realization(pp)))
3.1.2. PMR .data(pp,D) = data(solution(realization(pp)))
3.1.3. PMR .dataaccess(pp,D) = dataaccess(solution(realization(pp))) \

 {(t, c)  u tasks(solution(realization(pp))),
 (u, c)  datasaccess(solution(realization(pp))) 
 D  decomposition (u) ≠  }

3.1.4. PMR .messages(pp,D) = messages(solution(realization(pp))) 
 {(t, u)  D  decomposition (u) ≠  }

3.2. PMR. Adaptation_ points (pp,D) = adaptationpoints (realization(pp))
 if (optional(D) =   variabilities(D) = )
and
PMR .adaptation_points(pp,D) = adaptationpoints (realization(pbc)) 
 {(t, variants(t,D))}
 if optional(D) ≠   variabilities(D) ≠ 

Fig. 20. The process view refinement rule

Figure 22 shows the result of the refinement of the process view of the civil servant
management information system (Figure 21) based on the decomposition of Figure 19.

Name: Procedural model of career management of personals governed by the general status or the
 labor code in the Cameroonian civil servant management information system.
Descriptor :
 Intention : (describe)ACTION((manage = [{recruit, advance, liquidate, transfer}, {},
 {}])ACTION(candidates, applications, competitive examinations, civil servants
 governed by the general status or the labor code, decisions)TARGET)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail,
 system)TARGET
 Process : C11 = (manage = [{recruit, advance, liquidate, transfer}, {},

Software Product Line – Advanced Topic

62

 {}])ACTION(candidates, applications, competitive examinations, civil servants
 governed by the general status or the labor code, decisions)TARGET
 /* sub process of the process C11*/
 C111 = (recruit)ACTION(candidates, applications, competitive examinations, civil
 servants governed by the general status or the labor code, decisions)TARGET(If
 the candidate has succeeded a competitive examination or has obtained a
 diploma giving the right to absorption or the Presidency of the Republic has
 given the authorization)DETAIL
 C112 = (advance)ACTION (applications, civil servants governed by the general
 status or the labor code, decisions) TARGET
 C113 = (liquidate) ACTION (applications, civil servants governed by the general
 status or the labor code, decisions) TARGET
 …
Realization :
 Solution :
 tasks: decomposition(action(C11))
 data: target(C11)
 dataaccess: {(t, c)  decomposition(action(C11)) × target(C11) /
 decomposition(t)  operations(c) ≠}
 messages: {(t1, t2)  decomposition (action(C11)) × decomposition
 (action(C11)) /
 decomposition (t1)  decomposition (t2) ≠}

 Adaptation points: {}

Fig. 21. A prrocess view of Cameroon civil servant management IS

 Process :
 . . .
 C111 = (recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}])ACTION(candidates, applications,
 competitive examinations, civil servants governed by the general status or the
 labor code, decisions)TARGET(If the candidate has succeeded a competitive
 examination or has obtained a diploma giving the right to absorption or the
 Presidency of the Republic has given the authorization)DETAIL
 . . .
Realization :
 Solution :
 . . .
 Adaptation points:
 {(recruit, {{absorb by qualification}, {absorb by competitive
 examination}, {contractualize}, {engage}, { absorb by qualification, absorb by

competitive examination }, { absorb by qualification, contractualize},
{ absorb by qualification, engage}, {absorb by competitive examination, contractualize},
{ absorb by competitive examination, engage}, {contractualize, engage},{ absorb by
qualification, absorb by competitive examination, contractualize}, { absorb by qualification,
absorb by competitive examination, engage}, { absorb by competitive examination,
contractualize, engage}, { absorb by qualification, contractualize, engage}, { absorb by
qualification, absorb by competitive examination, contractualize, engage}}) }

Fig. 22. A refined process view of Cameroon civil servant management IS

Transformational Variability Modeling Approach to Configurable Business System Application

63

3.2.4 Logical view refinement

The purpose of the logical view refinement activity is to derive a logical view of an application
domain of a domain from the logical view of that domain. This activity is carried by a total
function LMR, the logical model refiner, defines in Figure 24, which refines module business
components of a domain to specific business components of an application domain by using
decompositions of non atomic business activities of input module business components.

A logical view refinement is triggered by a decomposition of a business activity of the
logical view. Any decomposition defines an application domain since it specifies a specific
manner to implement the business activity. Decompositions define how (common business
activities, optional business activities, variability) abstract business activities of domains are
implemented in application domains. Figure 23 shows example of a decomposition of an
abstract business activity (absorption by qualification belonging to optional(action (C111))) of
the Cameroon civil servant management information system.

 absorb by qualification = [{}, {prepare = [{initiate, validate, append visa,
 remove validation, modify, delete}, {}, {}], sign}, {}]

Fig. 23. Decomposition of the non atomic business activity "absorption by qualification"

In this decomposition, the abstract business activity "absorption by qualification" is
implemented by two optional business activities.

The refinement of a logical view (see Figure 24 for the formal definition) replaces the
decomposed business activity by its decomposition and integrates the new variability
constraints in the new model.

Input:

- A logical perspective lp of an organization,
- A decomposition D of a non atomic business activity a of lp.

Output: A specific logical view perspective LMR(lp, D) of an application domain
Construction schema:
 LMR (lp,D)= (LMR .name(lp,D), LMR.descriptor(lp,D), LMR .realization(lp,D))
Semantics rules:
1. LMR .name(lp,D) = name(lp)
2. LMR.descriptor(lp,D) = descriptor(lp)
3. LMR .realization(lp,D) = (LMR .solution(lp,D), LMR . adaptation _points (lp,D))

3.1. LMR .solution(lp,D) = solution(realization(lp))
3.2. LMR. Adaptation_ points (lp,D) = adaptationpoints (realization(lp))

 if (optional(D) =   variabilities(D) = )
and
LMR . adaptation _points (lp,D) = adaptationpoints (realization(lp)) 
 {(m, variants(m))}
 if optional(D) ≠   variabilities(D) ≠ 

Fig. 24. The logical view refinement rule

Software Product Line – Advanced Topic

62

 {}])ACTION(candidates, applications, competitive examinations, civil servants
 governed by the general status or the labor code, decisions)TARGET
 /* sub process of the process C11*/
 C111 = (recruit)ACTION(candidates, applications, competitive examinations, civil
 servants governed by the general status or the labor code, decisions)TARGET(If
 the candidate has succeeded a competitive examination or has obtained a
 diploma giving the right to absorption or the Presidency of the Republic has
 given the authorization)DETAIL
 C112 = (advance)ACTION (applications, civil servants governed by the general
 status or the labor code, decisions) TARGET
 C113 = (liquidate) ACTION (applications, civil servants governed by the general
 status or the labor code, decisions) TARGET
 …
Realization :
 Solution :
 tasks: decomposition(action(C11))
 data: target(C11)
 dataaccess: {(t, c)  decomposition(action(C11)) × target(C11) /
 decomposition(t)  operations(c) ≠}
 messages: {(t1, t2)  decomposition (action(C11)) × decomposition
 (action(C11)) /
 decomposition (t1)  decomposition (t2) ≠}

 Adaptation points: {}

Fig. 21. A prrocess view of Cameroon civil servant management IS

 Process :
 . . .
 C111 = (recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}])ACTION(candidates, applications,
 competitive examinations, civil servants governed by the general status or the
 labor code, decisions)TARGET(If the candidate has succeeded a competitive
 examination or has obtained a diploma giving the right to absorption or the
 Presidency of the Republic has given the authorization)DETAIL
 . . .
Realization :
 Solution :
 . . .
 Adaptation points:
 {(recruit, {{absorb by qualification}, {absorb by competitive
 examination}, {contractualize}, {engage}, { absorb by qualification, absorb by

competitive examination }, { absorb by qualification, contractualize},
{ absorb by qualification, engage}, {absorb by competitive examination, contractualize},
{ absorb by competitive examination, engage}, {contractualize, engage},{ absorb by
qualification, absorb by competitive examination, contractualize}, { absorb by qualification,
absorb by competitive examination, engage}, { absorb by competitive examination,
contractualize, engage}, { absorb by qualification, contractualize, engage}, { absorb by
qualification, absorb by competitive examination, contractualize, engage}}) }

Fig. 22. A refined process view of Cameroon civil servant management IS

Transformational Variability Modeling Approach to Configurable Business System Application

63

3.2.4 Logical view refinement

The purpose of the logical view refinement activity is to derive a logical view of an application
domain of a domain from the logical view of that domain. This activity is carried by a total
function LMR, the logical model refiner, defines in Figure 24, which refines module business
components of a domain to specific business components of an application domain by using
decompositions of non atomic business activities of input module business components.

A logical view refinement is triggered by a decomposition of a business activity of the
logical view. Any decomposition defines an application domain since it specifies a specific
manner to implement the business activity. Decompositions define how (common business
activities, optional business activities, variability) abstract business activities of domains are
implemented in application domains. Figure 23 shows example of a decomposition of an
abstract business activity (absorption by qualification belonging to optional(action (C111))) of
the Cameroon civil servant management information system.

 absorb by qualification = [{}, {prepare = [{initiate, validate, append visa,
 remove validation, modify, delete}, {}, {}], sign}, {}]

Fig. 23. Decomposition of the non atomic business activity "absorption by qualification"

In this decomposition, the abstract business activity "absorption by qualification" is
implemented by two optional business activities.

The refinement of a logical view (see Figure 24 for the formal definition) replaces the
decomposed business activity by its decomposition and integrates the new variability
constraints in the new model.

Input:

- A logical perspective lp of an organization,
- A decomposition D of a non atomic business activity a of lp.

Output: A specific logical view perspective LMR(lp, D) of an application domain
Construction schema:
 LMR (lp,D)= (LMR .name(lp,D), LMR.descriptor(lp,D), LMR .realization(lp,D))
Semantics rules:
1. LMR .name(lp,D) = name(lp)
2. LMR.descriptor(lp,D) = descriptor(lp)
3. LMR .realization(lp,D) = (LMR .solution(lp,D), LMR . adaptation _points (lp,D))

3.1. LMR .solution(lp,D) = solution(realization(lp))
3.2. LMR. Adaptation_ points (lp,D) = adaptationpoints (realization(lp))

 if (optional(D) =   variabilities(D) = )
and
LMR . adaptation _points (lp,D) = adaptationpoints (realization(lp)) 
 {(m, variants(m))}
 if optional(D) ≠   variabilities(D) ≠ 

Fig. 24. The logical view refinement rule

Software Product Line – Advanced Topic

64

Figure 26 shows the result of the refinement of the logical view of the civil servant
management information system (Figure 25) based on the decomposition of Figure 23.

Name: Logical model of the recruitment of personals governed by the general status or the labor
 code in the Cameroonian civil servant management information system.
Descriptor :
 Intention : (specify) ACTION ((recruit = [{}, { absorb by qualification, absorb by
 competitive examination, contractualize, engage}, {}}])ACTION(candidates,
 applications, competitive examination, civil servants governed by the general
 status or the labor code, decisions)TARGET(If the candidate has succeeded a
 competitive examination or has obtained a diploma giving the right to
 absorption or the Presidency of the Republic has given the authorization)DETAIL
)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail,
 system)TARGET
 Process: C111 = (recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}])ACTION(candidates, applications,
 competitive examinations, civil servants governed by the general status or the
 labor code, decisions)TARGET(If the candidate has succeeded a competitive
 examination or has obtained a diploma giving the right to absorption or the
 Presidency of the Republic has given the authorization)DETAIL
 /* sub process of the process C111 */
 (absorb by qualification)ACTION ({decision, civil servants governed by the
 general status}) TARGET
 (absorb by competitive examination)ACTION ({decision, civil servant governed
 by the general status}) TARGET
 (contractualize)ACTION ({decision, civil servant governed by the labor code})

 TARGET
 (engage)ACTION ({decision, civil servant governed by the labor code }) TARGET

Realization :
 Solution :
 pseudonym : recruit;
 parameters: {candidates, applications, competitive examination, civil servants,
 decisions};
 task: < {}, {absorb by qualification, absorb by competitive examination, contractualize,
 engage}, {}>;
 include: Module;
 external: Module]
 specification: PseudoCode
 Adaptation points :
 {}

Fig. 25. A logical view of Cameroon civil servant management IS

Transformational Variability Modeling Approach to Configurable Business System Application

65

 . . .
Realization :
 Solution :
 pseudonym : recruit;
 parameters: {candidates, applications, competitive examinations, civil servants, decisions};
 task: < {}, {absorb by qualification = [{}, {prepare = [{initiate, validate, append visa, remove

validation, modify, delete}, {}, {}], sign}, {}], absorb by competitive examination,
contractualize, engage}, {}>;

 include: Module;
 external: Module]
 specification: PseudoCode
 Adaptation points :
 {(absorb by qualification,
 {{prepare},
 {sign},
 {prepare, sign}})
 }

Fig. 26. A refined logical view of Cameroon civil servant management IS

4. Conclusion
Until the last decade, variability could be defined either as an integral part of development
artefacts or in a separate variability model. Concerning the first trend, many research
contributions have suggested the integration of variability in traditional software
development diagrams or models such as use case models (Oliviera et al., 2005), feature
models (Kang et al., 2002; Bashroush et al., 2008), message sequence diagrams (Ziadi, 2004),
class diagrams (Clauss, 2001; Ziadi, 2004), and activity diagrams (Razavian et al., 2008) to
represent variability. Many others approaches have been proposed that suggest to define the
variability information in a separate “orthogonal variability model” (OVM) which,
according to Pohl et al. (2005), is a model that explicitly defines the variability of a software
product line. In this chapter, we have presented an approach that tries to reconcile the two
precedent orientations. The main idea is to envelop assets of a domain-specific design
method managing variability with a domain knowledge layer which provides for each asset
the context in which it can be reused. The domain knowledge layer is in fact an OVM that
highlights the variability of the assets.

The resulting SPL engineering methodology has domain engineering activities, referred to
as the horizontal engineering process, whose aim is to develop a product lines’s reusable
core assets to provide a production capability for products, and application engineering
activities, referred to as the vertical engineering process, whose aim is to generate new
systems utilizing the assets developed by horizontal engineering; The ultimate goal of the

Software Product Line – Advanced Topic

64

Figure 26 shows the result of the refinement of the logical view of the civil servant
management information system (Figure 25) based on the decomposition of Figure 23.

Name: Logical model of the recruitment of personals governed by the general status or the labor
 code in the Cameroonian civil servant management information system.
Descriptor :
 Intention : (specify) ACTION ((recruit = [{}, { absorb by qualification, absorb by
 competitive examination, contractualize, engage}, {}}])ACTION(candidates,
 applications, competitive examination, civil servants governed by the general
 status or the labor code, decisions)TARGET(If the candidate has succeeded a
 competitive examination or has obtained a diploma giving the right to
 absorption or the Presidency of the Republic has given the authorization)DETAIL
)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail,
 system)TARGET
 Process: C111 = (recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}])ACTION(candidates, applications,
 competitive examinations, civil servants governed by the general status or the
 labor code, decisions)TARGET(If the candidate has succeeded a competitive
 examination or has obtained a diploma giving the right to absorption or the
 Presidency of the Republic has given the authorization)DETAIL
 /* sub process of the process C111 */
 (absorb by qualification)ACTION ({decision, civil servants governed by the
 general status}) TARGET
 (absorb by competitive examination)ACTION ({decision, civil servant governed
 by the general status}) TARGET
 (contractualize)ACTION ({decision, civil servant governed by the labor code})

 TARGET
 (engage)ACTION ({decision, civil servant governed by the labor code }) TARGET

Realization :
 Solution :
 pseudonym : recruit;
 parameters: {candidates, applications, competitive examination, civil servants,
 decisions};
 task: < {}, {absorb by qualification, absorb by competitive examination, contractualize,
 engage}, {}>;
 include: Module;
 external: Module]
 specification: PseudoCode
 Adaptation points :
 {}

Fig. 25. A logical view of Cameroon civil servant management IS

Transformational Variability Modeling Approach to Configurable Business System Application

65

 . . .
Realization :
 Solution :
 pseudonym : recruit;
 parameters: {candidates, applications, competitive examinations, civil servants, decisions};
 task: < {}, {absorb by qualification = [{}, {prepare = [{initiate, validate, append visa, remove

validation, modify, delete}, {}, {}], sign}, {}], absorb by competitive examination,
contractualize, engage}, {}>;

 include: Module;
 external: Module]
 specification: PseudoCode
 Adaptation points :
 {(absorb by qualification,
 {{prepare},
 {sign},
 {prepare, sign}})
 }

Fig. 26. A refined logical view of Cameroon civil servant management IS

4. Conclusion
Until the last decade, variability could be defined either as an integral part of development
artefacts or in a separate variability model. Concerning the first trend, many research
contributions have suggested the integration of variability in traditional software
development diagrams or models such as use case models (Oliviera et al., 2005), feature
models (Kang et al., 2002; Bashroush et al., 2008), message sequence diagrams (Ziadi, 2004),
class diagrams (Clauss, 2001; Ziadi, 2004), and activity diagrams (Razavian et al., 2008) to
represent variability. Many others approaches have been proposed that suggest to define the
variability information in a separate “orthogonal variability model” (OVM) which,
according to Pohl et al. (2005), is a model that explicitly defines the variability of a software
product line. In this chapter, we have presented an approach that tries to reconcile the two
precedent orientations. The main idea is to envelop assets of a domain-specific design
method managing variability with a domain knowledge layer which provides for each asset
the context in which it can be reused. The domain knowledge layer is in fact an OVM that
highlights the variability of the assets.

The resulting SPL engineering methodology has domain engineering activities, referred to
as the horizontal engineering process, whose aim is to develop a product lines’s reusable
core assets to provide a production capability for products, and application engineering
activities, referred to as the vertical engineering process, whose aim is to generate new
systems utilizing the assets developed by horizontal engineering; The ultimate goal of the

Software Product Line – Advanced Topic

66

vertical engineering process is therefore to configure a suitable business application from
domain engineering.

5. References
Atsa, E.R., Fouda, N.M., Priso, E.N. & Abessolo, A.G. (2010). Improving the quality of

service of a public service workflow based on ant theory: A case study in
Cameroon. The Electronic Journal of Information Systems in Developing Countries,
Vol.41(1),pp. 1-15.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, T.J., Gillan, C. (2008). Multiple Views Models
for Variability Management in Software Product Lines. Second International
Workshop on Variability Modeling of Software Intensive System (VaMoS’08), Essen,
Germany.

Bernus, P. (2003). Enterprise Models For Enterprise Architecture and ISO9000:2000. Annual
Reviews in Control, 27, pp. 211-220.

Clauss, M. (2001). Generic Modelling Using UML Extensions for Variability. Workshop on
Domain Specific Visual Languages, pp 11-18.

Eriksson, M., Börstler, J. & Borg, K. (2010). A Systems Product Line Approach, In: Applied
Software Product Line Engineering, Kyo C. Kang, Vijayan Sugumaran, Sooyong Park,
pp. 109-139, Crc Press, Taylor & Francis Group, ISBN 978-1-4200-6841-2, Boca
Raton.

Fouda, N.M. & Amougou, N. (2009). The Feature Oriented Reuse Method with Business
Component Semantics. International Journal of Computer Science and Applications, Vol.
6, No. 4, pp 63-83.

Fouda, N.M. & Amougou, N. (2010). Product Lines’ Feature-Oriented Engineering for
Reuse: A Formal Approach. International Journal of Computer Science Issues, Vol. 7,
Issue 5, pp 382-393.

Fox, M.S. & Gruninger, M. (1998). Enterprise Modeling, AI Magazine Fall 1998, pp. 109-
121.

Kang, K.C., Lee, K., Lee, J. & Kim, S. (2003). Feature-Oriented Product Line Software
Engineering: Principles and Guidelines. Domain Oriented Systems Development:
Perspectives and Practices, K. Itoh et al., eds., pp. 29-46.

Kang, K.C., Sugumaran, V. & Park, S. (2010). Software Product Line Engineering: Overview
and Future Direction, In: Applied Software Product Line Engineering, Kyo C. Kang,
Vijayan Sugumaran, Sooyong Park, pp. 3-14, Crc Press, Taylor & Francis Group,
ISBN 978-1-4200-6841-2, Boca Raton.

Kang, K.C., Kim, S., Shin, E. & Huh, M. (1998). "FORM: A Feature-Oriented Reuse Method
with Domain-Specific Reference Architectures", Annals of Software Engineering, Vol.
5, pp. 143-168.

Kang, K.C., Lee, J. & Donohoe, P. (2002). Feature-Oriented Product Line Engineering. IEEE
Software, Vol. 19, no. 4, pp. 58-65.

Lankhorst, M. (2004). Enterprise Architecture Modeling – The Issue of Integration. Advanced
Engineering Informatics, 18, pp 205-216.

Transformational Variability Modeling Approach to Configurable Business System Application

67

Lee, K., Kang, K.C. & Choi, W. (2000). Feature-Based Approach to Object-Oriented
Engineering of Applications for Reuse. Software-Practice and Experience, 30, pp.1025-
1046.

Northrop, L. (2002). SEI’s software product line tenets. IEEE Software 19 (4): 32–40.
Oliviera, E.A., Gimenes, I., Huzita, E., Maldonado, J.C. (2005). Variability Management

Process for Software Product Lines. In Proc. of CASCON 2005, Toronto, Canada.
Partsch, H.A. (1990). Specification and transformation of programs: A Formal Approach To

Software Development. Springer-Verlag New York, Inc. New York, USA.
Pohl, K., Bockle, G., Linden, F.V.D., (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer-Verlag Berlin, Heidelberg.
Ramadour, P. & Cauvet, C. (2002). Approach and Model for Business Components

Specification, Proceeding of the 13th International Conference on Database and
Expert Systems Applications, Lecture Notes In Computer Science; Vol. 2453, pp 628-
637.

Ramadour, P. (2001). Modèles et langage pour la conception et la manipulation de
composants réutilisables de domaine. PhD thesis, Université d'Aix-Marseille III,
Marseille, France.

Razavian, M., Khosravi, R. (2008). Modeling Variability in Business Process Models Using
UML. Fifth International Conference on Information Technology: New Generations, Las
Vegas, USA.

Recker, J., Mendling, J., van der Aalst, W. & Rosemann, M. (2006). Model-driven Enterprise
Systems Configuration, Proceeding of the 18th International Conference of Advanced
Information Systems Engineering, CAiSE 2006, Luxembourg, Lectures Notes in
Computer Science, Vol. 4001, pp. 369-383, Springer.

Rosemanna, M. & van der Aalst, W.M.P. (2003). A Configurable Reference Modelling
Language. QUT Technical Report, FIT-TR-2003-05, Queensland University of
Technology, Brisbane, Australia.

Rotenstreich, S. (1992). Transformational Approach to Software Design. Information Software
Technology, Volume 34, Issue 2, pp 106-116.

Subramanian, N. & Chung, L. (2001a). Software Architecture Adaptability: An NFR
Approach, Proceeding of the 4th International Workshop on Principles of Software
Evolution, New-York, USA, ACM Digital Library.

Subramanian, N. & Chung, L. (2001b). Metrics for Software Adaptability, Software Quality
Management Conference.

van der Linden, F., Schmid, K. & Rommes, E. (2007). Software product lines in action: The best
industrial practice in product line engineering, Berlin: Springer-Verlag.

Vernadat, F.P. (2002). Enterprise Modeling and Integration (EMI): Current Status and
Research Perspectives. Annual Reviews in Control, 26, pp. 15-25.

Weiss, D.M. & Lai, C.T.R. (1999). Software product line engineering: A family-based software
development process, Boston: Addison-Wesley Longman.

Whitten, J.L., Bentley, L.D. & Dittman, K.C. (2001). Systems Analysis and Design Methods, 5th
ed., McGraw-Hill Companies, Inc.

Zachman, J. (1987). A Framework for Information System Architecture. IBM Systems Journal,
Vol. 26(3).

Software Product Line – Advanced Topic

66

vertical engineering process is therefore to configure a suitable business application from
domain engineering.

5. References
Atsa, E.R., Fouda, N.M., Priso, E.N. & Abessolo, A.G. (2010). Improving the quality of

service of a public service workflow based on ant theory: A case study in
Cameroon. The Electronic Journal of Information Systems in Developing Countries,
Vol.41(1),pp. 1-15.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, T.J., Gillan, C. (2008). Multiple Views Models
for Variability Management in Software Product Lines. Second International
Workshop on Variability Modeling of Software Intensive System (VaMoS’08), Essen,
Germany.

Bernus, P. (2003). Enterprise Models For Enterprise Architecture and ISO9000:2000. Annual
Reviews in Control, 27, pp. 211-220.

Clauss, M. (2001). Generic Modelling Using UML Extensions for Variability. Workshop on
Domain Specific Visual Languages, pp 11-18.

Eriksson, M., Börstler, J. & Borg, K. (2010). A Systems Product Line Approach, In: Applied
Software Product Line Engineering, Kyo C. Kang, Vijayan Sugumaran, Sooyong Park,
pp. 109-139, Crc Press, Taylor & Francis Group, ISBN 978-1-4200-6841-2, Boca
Raton.

Fouda, N.M. & Amougou, N. (2009). The Feature Oriented Reuse Method with Business
Component Semantics. International Journal of Computer Science and Applications, Vol.
6, No. 4, pp 63-83.

Fouda, N.M. & Amougou, N. (2010). Product Lines’ Feature-Oriented Engineering for
Reuse: A Formal Approach. International Journal of Computer Science Issues, Vol. 7,
Issue 5, pp 382-393.

Fox, M.S. & Gruninger, M. (1998). Enterprise Modeling, AI Magazine Fall 1998, pp. 109-
121.

Kang, K.C., Lee, K., Lee, J. & Kim, S. (2003). Feature-Oriented Product Line Software
Engineering: Principles and Guidelines. Domain Oriented Systems Development:
Perspectives and Practices, K. Itoh et al., eds., pp. 29-46.

Kang, K.C., Sugumaran, V. & Park, S. (2010). Software Product Line Engineering: Overview
and Future Direction, In: Applied Software Product Line Engineering, Kyo C. Kang,
Vijayan Sugumaran, Sooyong Park, pp. 3-14, Crc Press, Taylor & Francis Group,
ISBN 978-1-4200-6841-2, Boca Raton.

Kang, K.C., Kim, S., Shin, E. & Huh, M. (1998). "FORM: A Feature-Oriented Reuse Method
with Domain-Specific Reference Architectures", Annals of Software Engineering, Vol.
5, pp. 143-168.

Kang, K.C., Lee, J. & Donohoe, P. (2002). Feature-Oriented Product Line Engineering. IEEE
Software, Vol. 19, no. 4, pp. 58-65.

Lankhorst, M. (2004). Enterprise Architecture Modeling – The Issue of Integration. Advanced
Engineering Informatics, 18, pp 205-216.

Transformational Variability Modeling Approach to Configurable Business System Application

67

Lee, K., Kang, K.C. & Choi, W. (2000). Feature-Based Approach to Object-Oriented
Engineering of Applications for Reuse. Software-Practice and Experience, 30, pp.1025-
1046.

Northrop, L. (2002). SEI’s software product line tenets. IEEE Software 19 (4): 32–40.
Oliviera, E.A., Gimenes, I., Huzita, E., Maldonado, J.C. (2005). Variability Management

Process for Software Product Lines. In Proc. of CASCON 2005, Toronto, Canada.
Partsch, H.A. (1990). Specification and transformation of programs: A Formal Approach To

Software Development. Springer-Verlag New York, Inc. New York, USA.
Pohl, K., Bockle, G., Linden, F.V.D., (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer-Verlag Berlin, Heidelberg.
Ramadour, P. & Cauvet, C. (2002). Approach and Model for Business Components

Specification, Proceeding of the 13th International Conference on Database and
Expert Systems Applications, Lecture Notes In Computer Science; Vol. 2453, pp 628-
637.

Ramadour, P. (2001). Modèles et langage pour la conception et la manipulation de
composants réutilisables de domaine. PhD thesis, Université d'Aix-Marseille III,
Marseille, France.

Razavian, M., Khosravi, R. (2008). Modeling Variability in Business Process Models Using
UML. Fifth International Conference on Information Technology: New Generations, Las
Vegas, USA.

Recker, J., Mendling, J., van der Aalst, W. & Rosemann, M. (2006). Model-driven Enterprise
Systems Configuration, Proceeding of the 18th International Conference of Advanced
Information Systems Engineering, CAiSE 2006, Luxembourg, Lectures Notes in
Computer Science, Vol. 4001, pp. 369-383, Springer.

Rosemanna, M. & van der Aalst, W.M.P. (2003). A Configurable Reference Modelling
Language. QUT Technical Report, FIT-TR-2003-05, Queensland University of
Technology, Brisbane, Australia.

Rotenstreich, S. (1992). Transformational Approach to Software Design. Information Software
Technology, Volume 34, Issue 2, pp 106-116.

Subramanian, N. & Chung, L. (2001a). Software Architecture Adaptability: An NFR
Approach, Proceeding of the 4th International Workshop on Principles of Software
Evolution, New-York, USA, ACM Digital Library.

Subramanian, N. & Chung, L. (2001b). Metrics for Software Adaptability, Software Quality
Management Conference.

van der Linden, F., Schmid, K. & Rommes, E. (2007). Software product lines in action: The best
industrial practice in product line engineering, Berlin: Springer-Verlag.

Vernadat, F.P. (2002). Enterprise Modeling and Integration (EMI): Current Status and
Research Perspectives. Annual Reviews in Control, 26, pp. 15-25.

Weiss, D.M. & Lai, C.T.R. (1999). Software product line engineering: A family-based software
development process, Boston: Addison-Wesley Longman.

Whitten, J.L., Bentley, L.D. & Dittman, K.C. (2001). Systems Analysis and Design Methods, 5th
ed., McGraw-Hill Companies, Inc.

Zachman, J. (1987). A Framework for Information System Architecture. IBM Systems Journal,
Vol. 26(3).

Software Product Line – Advanced Topic

68

Ziadi, T. (2004). Manipulation de Lignes de Produits en UML. Phd Thesis, Université de
Rennes I, France. Part 2

Analysis

Software Product Line – Advanced Topic

68

Ziadi, T. (2004). Manipulation de Lignes de Produits en UML. Phd Thesis, Université de
Rennes I, France. Part 2

Analysis

 4

Integrating Performance Analysis in Software
Product Line Development Process

Rasha Tawhid and Dorina Petriu
Carleton University

Canada

1. Introduction
A Software Product Line (SPL) is a set of similar software systems that share a common set
of features satisfying a particular domain, and are built from a shared set of software assets
using a common means of production. Experience shows that by adopting a SPL
development approach, organizations achieved increased quality and significant reductions
in cost and time to market [Clements & Northrop, 2001].

Model-Driven Development (MDD) is a well-known paradigm that aims at capturing every
important aspect of software development through models. An emerging trend apparent in
the recent literature is that the SPL development moves toward adopting a MDD paradigm,
which means that models are increasingly used to represent software artifacts of the family
or of individual products [Groher & Voelter, 2009]. MDD plays an important role in the
verification of non-functional properties (such as performance, reliability, security) of UML
software models extended with information specific to the property to be evaluated
[Woodside et al., 2005]. UML software models can be annotated with performance
properties by using the UML Performance Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE) [OMG, 2011] recently standardized by OMG.

This chapter presents a comprehensive methodology for integrating performance analysis in
the early phases of SPL model-driven development process, whose goal is to evaluate the
performance characteristic of different products by generating and analyzing quantitative
performance models [Tawhid & Petriu, 2008a, 2008b]. We start by adding generic
performance annotations expressed in MARTE to the UML model representing the set of
core reusable SPL assets. A model transformation realized in the Atlas Transformation
Language (ATL) derives the UML model of a specific product with concrete MARTE
performance annotations from the SPL model. The product derivation process binds the
variability expressed in the SPL to a specific product, and also the generic SPL performance
annotations to concrete values provided by the designer for this product. The proposed
model transformation approach can be applied to any existing SPL model-driven
development process using UML for modeling software.

It is known that one of the main concepts of software product line development is to take
advantage of the reusability of the set of core assets shared among the members of a family
of products, instead of building each product from scratch. In this work, we apply the same

 4

Integrating Performance Analysis in Software
Product Line Development Process

Rasha Tawhid and Dorina Petriu
Carleton University

Canada

1. Introduction
A Software Product Line (SPL) is a set of similar software systems that share a common set
of features satisfying a particular domain, and are built from a shared set of software assets
using a common means of production. Experience shows that by adopting a SPL
development approach, organizations achieved increased quality and significant reductions
in cost and time to market [Clements & Northrop, 2001].

Model-Driven Development (MDD) is a well-known paradigm that aims at capturing every
important aspect of software development through models. An emerging trend apparent in
the recent literature is that the SPL development moves toward adopting a MDD paradigm,
which means that models are increasingly used to represent software artifacts of the family
or of individual products [Groher & Voelter, 2009]. MDD plays an important role in the
verification of non-functional properties (such as performance, reliability, security) of UML
software models extended with information specific to the property to be evaluated
[Woodside et al., 2005]. UML software models can be annotated with performance
properties by using the UML Performance Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE) [OMG, 2011] recently standardized by OMG.

This chapter presents a comprehensive methodology for integrating performance analysis in
the early phases of SPL model-driven development process, whose goal is to evaluate the
performance characteristic of different products by generating and analyzing quantitative
performance models [Tawhid & Petriu, 2008a, 2008b]. We start by adding generic
performance annotations expressed in MARTE to the UML model representing the set of
core reusable SPL assets. A model transformation realized in the Atlas Transformation
Language (ATL) derives the UML model of a specific product with concrete MARTE
performance annotations from the SPL model. The product derivation process binds the
variability expressed in the SPL to a specific product, and also the generic SPL performance
annotations to concrete values provided by the designer for this product. The proposed
model transformation approach can be applied to any existing SPL model-driven
development process using UML for modeling software.

It is known that one of the main concepts of software product line development is to take
advantage of the reusability of the set of core assets shared among the members of a family
of products, instead of building each product from scratch. In this work, we apply the same

Software Product Line – Advanced Topic

72

reusability concept to the performance annotations, by integrating software performance
engineering techniques in the early phases of SPL development. Instead of annotating from
scratch each UML model of each product, we propose to annotate the SPL model once with
generic annotations, and to provide binding information when deriving the annotated
model of a desired product from the generic SPL model.

Focus of the chapter
Application engineering

Spreadsheets for
specific product

Performance
Feedback

Model - to - model
Transformation

-

Part 1

Domain engineering
Feature model

PC-Feature model
UML+MARTE+PL

SPL Model

Mark model for
Feature configuration

UML+MARTE
Product Model

LQN Performance
Model

Diagnosis

LQN
Solver

Mark model for
PC-Feature configuration

Binding directives for
PC-Features &

performance annotation

Model - to - model
Transformation

-

Part 2

PUMA
Transformation

Performance
Results

Fig. 1. Approach for deriving a product performance model

The objective of the research presented in this chapter is to automatically generate a
performance model for a given product from a performance-annotated SPL model. The
main research challenge originates from the mismatch between the meanings of the two
models. While a SPL model is a set of core “generic” asset models that are building blocks
for many different products with all kind of options and alternatives, a performance model
is an instance-based representation of a runtime system, focusing on how the system is
using available resources and how competition for resources impacts the system
performance (response time, throughput, utilization, etc.) The derivation of a performance
model requires two model transformations, as shown in Fig.1: a) from the annotated SPL
model to a product model with performance annotations, and b) from the outcome of the
first step to a performance model. The work presented here focuses on the first
transformation as illustrated by the shaded area in Fig.1, whereas the second transformation
for deriving automatically a Layered Queueing Network (LQN) performance model for a
specific product applies the PUMA transformation approach previously developed in our
research group [Woodside et al., 2005].

The automatic derivation of a specific product model based on a given feature configuration
is enabled through the mapping between features from the feature model and their
realizations in the design model. In this chapter, an efficient mapping technique is used,
which aims to minimize the amount of explicit feature annotations in the UML design
model of SPL. Implicit feature mapping is inferred during product derivation from the
relationships between annotated and non-annotated model elements as defined in the UML
metamodel [Tawhid & Petriu, 2011a].

Performance is a runtime property of the deployed system and depends on two types of
factors: some are contained in the design model of the product (obtained from the SPL
model) while others characterize the underlying platforms and runtime environment.
Performance models need to reflect both types of factors. Woodside et al. proposed the

Integrating Performance Analysis in Software Product Line Development Process

73

concept of performance completions to close the gap between abstract design models and
external factors [Woodside et al., 2002]. Performance completions provide a means to extend
the modeling constructs of a system by including the influence of the underlying platforms
and execution environments in performance evaluation models. Since our goal is to
automate the derivation of a performance model for a specific product from the SPL model,
we propose to deal with performance completions in the early phases of the SPL
development process by introducing a so-called Performance Completion feature (PC-
feature) model, which characterizes the variability in platform choices, execution
environments, different types of communication realizations, and other external factors that
have an impact on performance, such as different protocols for secure communication
channels [Tawhid & Petriu, 2011b]. Performance model helps software developers explore
various design alternatives. It also addresses the problem of domain evolution arising when
an existing product runs on a new platform. In this chapter, we explain how this evolution
can be propagated to the performance model through the PC-feature model.

The chapter is organized as follows: section 2 discusses related work; section 3 presents the
domain engineering process where the SPL model and two different kinds of feature models
are created; the model transformation approach for generating a given product model is
illustrated with a case study in section 3; section 4 analyzes the performance effects of
different security levels for communication channels running on two different architectures;
and section 5 presents the conclusions.

2. Related work
This section presents related research on product derivation approaches and different
feature mapping techniques. Work related to performance analysis of software system,
addressing quality attributes in SPL is also discussed.

Voelter et al. propose an approach that integrates aspect-oriented (AOSD) and model-driven
software development (MDSD) techniques to support variability management and product
derivation [Groher & Voelter, 2009]. Two different ways of dealing with variability are
identified: a) negative variability which selectively removes parts of a model based on the
presence or absence of features in the configuration model; b) positive variability which
starts with a minimal core of common SPL artifacts and selectively adds additional product-
specific parts through model weaving. Our approach applies a similar concept of positive
variability through automatic model transformation. In [Stoiber & Glinz, 2009], aspect-
orientation is combined with table-based modeling by using the ADORA modeling
language. An approach for deriving the architecture of a product by selectively copying
elements from the SPL architecture (which covers all possible product aspects) based on a
product-specific feature configuration is proposed in [Botterweck et al., 2009]. This approach
is concerned only with the derivation of the high-level product architecture, while our
approach derives both the structural and behavioural views of the product design model.
An Eclipse-based tool called FeatureMapper that defines the mapping of features in the
problem space to model elements realizing these features in the solution space is proposed
in [Heidenreich et al., 2007, 2008]. The set of selected features for a product combined with
the mapping model are interpreted by the FeatureMapper transformation component to
derive a product model.

Software Product Line – Advanced Topic

72

reusability concept to the performance annotations, by integrating software performance
engineering techniques in the early phases of SPL development. Instead of annotating from
scratch each UML model of each product, we propose to annotate the SPL model once with
generic annotations, and to provide binding information when deriving the annotated
model of a desired product from the generic SPL model.

Focus of the chapter
Application engineering

Spreadsheets for
specific product

Performance
Feedback

Model - to - model
Transformation

-

Part 1

Domain engineering
Feature model

PC-Feature model
UML+MARTE+PL

SPL Model

Mark model for
Feature configuration

UML+MARTE
Product Model

LQN Performance
Model

Diagnosis

LQN
Solver

Mark model for
PC-Feature configuration

Binding directives for
PC-Features &

performance annotation

Model - to - model
Transformation

-

Part 2

PUMA
Transformation

Performance
Results

Fig. 1. Approach for deriving a product performance model

The objective of the research presented in this chapter is to automatically generate a
performance model for a given product from a performance-annotated SPL model. The
main research challenge originates from the mismatch between the meanings of the two
models. While a SPL model is a set of core “generic” asset models that are building blocks
for many different products with all kind of options and alternatives, a performance model
is an instance-based representation of a runtime system, focusing on how the system is
using available resources and how competition for resources impacts the system
performance (response time, throughput, utilization, etc.) The derivation of a performance
model requires two model transformations, as shown in Fig.1: a) from the annotated SPL
model to a product model with performance annotations, and b) from the outcome of the
first step to a performance model. The work presented here focuses on the first
transformation as illustrated by the shaded area in Fig.1, whereas the second transformation
for deriving automatically a Layered Queueing Network (LQN) performance model for a
specific product applies the PUMA transformation approach previously developed in our
research group [Woodside et al., 2005].

The automatic derivation of a specific product model based on a given feature configuration
is enabled through the mapping between features from the feature model and their
realizations in the design model. In this chapter, an efficient mapping technique is used,
which aims to minimize the amount of explicit feature annotations in the UML design
model of SPL. Implicit feature mapping is inferred during product derivation from the
relationships between annotated and non-annotated model elements as defined in the UML
metamodel [Tawhid & Petriu, 2011a].

Performance is a runtime property of the deployed system and depends on two types of
factors: some are contained in the design model of the product (obtained from the SPL
model) while others characterize the underlying platforms and runtime environment.
Performance models need to reflect both types of factors. Woodside et al. proposed the

Integrating Performance Analysis in Software Product Line Development Process

73

concept of performance completions to close the gap between abstract design models and
external factors [Woodside et al., 2002]. Performance completions provide a means to extend
the modeling constructs of a system by including the influence of the underlying platforms
and execution environments in performance evaluation models. Since our goal is to
automate the derivation of a performance model for a specific product from the SPL model,
we propose to deal with performance completions in the early phases of the SPL
development process by introducing a so-called Performance Completion feature (PC-
feature) model, which characterizes the variability in platform choices, execution
environments, different types of communication realizations, and other external factors that
have an impact on performance, such as different protocols for secure communication
channels [Tawhid & Petriu, 2011b]. Performance model helps software developers explore
various design alternatives. It also addresses the problem of domain evolution arising when
an existing product runs on a new platform. In this chapter, we explain how this evolution
can be propagated to the performance model through the PC-feature model.

The chapter is organized as follows: section 2 discusses related work; section 3 presents the
domain engineering process where the SPL model and two different kinds of feature models
are created; the model transformation approach for generating a given product model is
illustrated with a case study in section 3; section 4 analyzes the performance effects of
different security levels for communication channels running on two different architectures;
and section 5 presents the conclusions.

2. Related work
This section presents related research on product derivation approaches and different
feature mapping techniques. Work related to performance analysis of software system,
addressing quality attributes in SPL is also discussed.

Voelter et al. propose an approach that integrates aspect-oriented (AOSD) and model-driven
software development (MDSD) techniques to support variability management and product
derivation [Groher & Voelter, 2009]. Two different ways of dealing with variability are
identified: a) negative variability which selectively removes parts of a model based on the
presence or absence of features in the configuration model; b) positive variability which
starts with a minimal core of common SPL artifacts and selectively adds additional product-
specific parts through model weaving. Our approach applies a similar concept of positive
variability through automatic model transformation. In [Stoiber & Glinz, 2009], aspect-
orientation is combined with table-based modeling by using the ADORA modeling
language. An approach for deriving the architecture of a product by selectively copying
elements from the SPL architecture (which covers all possible product aspects) based on a
product-specific feature configuration is proposed in [Botterweck et al., 2009]. This approach
is concerned only with the derivation of the high-level product architecture, while our
approach derives both the structural and behavioural views of the product design model.
An Eclipse-based tool called FeatureMapper that defines the mapping of features in the
problem space to model elements realizing these features in the solution space is proposed
in [Heidenreich et al., 2007, 2008]. The set of selected features for a product combined with
the mapping model are interpreted by the FeatureMapper transformation component to
derive a product model.

Software Product Line – Advanced Topic

74

An approach for expressing variability in a family model based on a feature-based model
template by mapping features to model elements realizing them is introduced in [Czarnecki
et al., 2005a, 2005b]. Each model element is annotated with a presence condition (PC),
indicating whether the element should be present in a template instance or not. The model
template is automatically instantiated by evaluating the PCs for a given feature
configuration. The concept of negative variability is applied, by removing model elements
whose PC evaluates to false. A drawback of this approach is that the model template is
cluttered with variability specifications for each model element. Some issues related to the
behavioural derivation of a given product model are discussed in [Istoan et al., 2011]. It is
shown that the composition order is significant when using Aspect-Oriented modeling,
since different orders for composing sequence diagrams leads to different derived products.

A model-driven approach for SPL evolution is proposed in [Gamez & Fuentes, 2011], which
automatically propagates the evolution changes of a cardinality-based FM into existing
configurations.

The Product Line UML-Based Software Engineering (PLUS) method introduced in [Gomaa,
2005] provides several concepts and stereotypes to express variability in multiple views of
SPL. The mapping between features and the model elements realizing them is introduced
through a separate tabular representation of feature/use case and feature/class
relationships. Our approach introduces a different mapping technique by annotating each
class and use case with the feature(s) requiring it. The automatic derivation of a concrete
product from the SPL model according to a set of chosen features is not addressed in
[Gomaa, 2005]. The PLUS method is extended in [Street & Gomaa, 2006] to specify
performance requirements by introducing several stereotypes specific to model performance
requirements such as «optional» and «alternative performance feature». Although feature
modeling is essential in SPL, the concept of “feature” is not a first-class model element in
UML. In order to overcome this problem, different stereotypes for representing features and
feature dependency have been defined in literature (however, none is standard yet). Our
variability profile is based on Gomaa’s work, especially on PLUS [Gomaa, 2005]. However,
our approach has the following main differences from PLUS: a) we proposed an automatic
derivation of a product model from a SPL model; b) we deal with MARTE performance
annotations, both in the source and target models; c) we use sequence diagrams for
behaviour representation taking advantage of their enhanced modeling power,; d) we
introduce variability within a sequence diagram through Combined Fragments; e) we
introduce the so-called Performance Completion feature model.

Several works have been done on performance analysis addressing quality attributes in SPL.
A method for designing parametric performance completions that are independent of a
specific platform is proposed in [Happe et al., 2010]. The completions can be instantiated for
different environments by explicitly coupling the transformations to performance models
and implementation to add the necessary details to both.

Model-driven development and SPL paradigms are integrated together to model embedded
software systems in [Belategi et al., 2010a]. An analysis method taking into account
scenarios, platform, and variability for embedded SPL has been proposed. Although the
authors consider the SPL architecture as a critical asset for representing quality attributes
and their compliance to quality goals, they have not addressed how quality attributes are

Integrating Performance Analysis in Software Product Line Development Process

75

modeled in the architecture. In [Belategi et al., 2010b], the MARTE profile is analyzed to
identify the variability mechanisms of the profile in order to model variability in embedded
SPL models. Although MARTE was not defined for product lines, the paper proposes to
combine it with existing mechanisms for representing variability, but it does not explain
how this can be achieved. A model analysis process for embedded SPL is presented in
[Belategi et al., 2011] to validate and verify quality attributes variability. The concept of
multilevel and staged feature model is applied by introducing more than one feature models
that represent different information at different abstraction levels; however, the traceability
links between the multilevel models and the design model are not explained. In [Bartholdt
et al., 2009] the authors propose an integrated tool-supported approach that considers both
qualitative and quantitative quality attributes without imposing hierarchical structural
constraints. The integration of SPL quality attributes is addressed by assigning quality
attributes to software elements in the solution domain and linking these elements to
features. An aggregation function is used to collect the quality attributes depending on the
selected features for a given product. An approach called Svamp is proposed to model
functional and quality variability at the architectural level of the SPL [Raatikainen et al.,
2008]. The approach integrates several models: a Kumbang model to represent the
functional and structural variability in the architecture and to define components that are
used by other models; a quality attribute model to specify the quality properties and a
quality variability model for expressing variability within these quality attributes. The
Model-Driven Architecture approach is extended in [Cortellessa et al., 2007] with non-
functional modeling and analysis concepts by adding new models and transformations for
validation activities. The concepts of platform independent and platform specific are used
through the new type of models to obtain an accurate validation.

To the best of our knowledge, in the context of SPL, no work has been done previously to
evaluate and predict the performance of a given product by generating a formal
performance model. Most of the existing work aims to model non-functional requirements
(NFRs) in the same way as functional requirements. The related works mentioned above are
concerned with the interactions between selected features and the NFRs and propose
different techniques to represent these interactions and dependencies.

3. Domain engineering process
The SPL development process is separated into two major phases: 1) domain engineering for
creating and maintaining a set of reusable artifacts and introducing variability in these
software artifacts so that the next phase can make a specific decision according to the
product’s requirements and 2) application engineering for building products that are family
members from reusable artifacts created in the first phase, instead of starting from scratch.

The domain engineering process is a development cycle for reuse and includes, but is not
limited to, creating the requirement specifications, domain models , architecture, reusable
software components [Clements & Northrop, 2001].

The SPL assets created by the domain engineering process which are of interest for our
research are represented by a multi-view UML design model of the family, called the SPL
model, consisting of a superimposition of all variant products. The creation of the SPL model
employs two separate UML profiles: a product line profile for specifying the commonality

Software Product Line – Advanced Topic

74

An approach for expressing variability in a family model based on a feature-based model
template by mapping features to model elements realizing them is introduced in [Czarnecki
et al., 2005a, 2005b]. Each model element is annotated with a presence condition (PC),
indicating whether the element should be present in a template instance or not. The model
template is automatically instantiated by evaluating the PCs for a given feature
configuration. The concept of negative variability is applied, by removing model elements
whose PC evaluates to false. A drawback of this approach is that the model template is
cluttered with variability specifications for each model element. Some issues related to the
behavioural derivation of a given product model are discussed in [Istoan et al., 2011]. It is
shown that the composition order is significant when using Aspect-Oriented modeling,
since different orders for composing sequence diagrams leads to different derived products.

A model-driven approach for SPL evolution is proposed in [Gamez & Fuentes, 2011], which
automatically propagates the evolution changes of a cardinality-based FM into existing
configurations.

The Product Line UML-Based Software Engineering (PLUS) method introduced in [Gomaa,
2005] provides several concepts and stereotypes to express variability in multiple views of
SPL. The mapping between features and the model elements realizing them is introduced
through a separate tabular representation of feature/use case and feature/class
relationships. Our approach introduces a different mapping technique by annotating each
class and use case with the feature(s) requiring it. The automatic derivation of a concrete
product from the SPL model according to a set of chosen features is not addressed in
[Gomaa, 2005]. The PLUS method is extended in [Street & Gomaa, 2006] to specify
performance requirements by introducing several stereotypes specific to model performance
requirements such as «optional» and «alternative performance feature». Although feature
modeling is essential in SPL, the concept of “feature” is not a first-class model element in
UML. In order to overcome this problem, different stereotypes for representing features and
feature dependency have been defined in literature (however, none is standard yet). Our
variability profile is based on Gomaa’s work, especially on PLUS [Gomaa, 2005]. However,
our approach has the following main differences from PLUS: a) we proposed an automatic
derivation of a product model from a SPL model; b) we deal with MARTE performance
annotations, both in the source and target models; c) we use sequence diagrams for
behaviour representation taking advantage of their enhanced modeling power,; d) we
introduce variability within a sequence diagram through Combined Fragments; e) we
introduce the so-called Performance Completion feature model.

Several works have been done on performance analysis addressing quality attributes in SPL.
A method for designing parametric performance completions that are independent of a
specific platform is proposed in [Happe et al., 2010]. The completions can be instantiated for
different environments by explicitly coupling the transformations to performance models
and implementation to add the necessary details to both.

Model-driven development and SPL paradigms are integrated together to model embedded
software systems in [Belategi et al., 2010a]. An analysis method taking into account
scenarios, platform, and variability for embedded SPL has been proposed. Although the
authors consider the SPL architecture as a critical asset for representing quality attributes
and their compliance to quality goals, they have not addressed how quality attributes are

Integrating Performance Analysis in Software Product Line Development Process

75

modeled in the architecture. In [Belategi et al., 2010b], the MARTE profile is analyzed to
identify the variability mechanisms of the profile in order to model variability in embedded
SPL models. Although MARTE was not defined for product lines, the paper proposes to
combine it with existing mechanisms for representing variability, but it does not explain
how this can be achieved. A model analysis process for embedded SPL is presented in
[Belategi et al., 2011] to validate and verify quality attributes variability. The concept of
multilevel and staged feature model is applied by introducing more than one feature models
that represent different information at different abstraction levels; however, the traceability
links between the multilevel models and the design model are not explained. In [Bartholdt
et al., 2009] the authors propose an integrated tool-supported approach that considers both
qualitative and quantitative quality attributes without imposing hierarchical structural
constraints. The integration of SPL quality attributes is addressed by assigning quality
attributes to software elements in the solution domain and linking these elements to
features. An aggregation function is used to collect the quality attributes depending on the
selected features for a given product. An approach called Svamp is proposed to model
functional and quality variability at the architectural level of the SPL [Raatikainen et al.,
2008]. The approach integrates several models: a Kumbang model to represent the
functional and structural variability in the architecture and to define components that are
used by other models; a quality attribute model to specify the quality properties and a
quality variability model for expressing variability within these quality attributes. The
Model-Driven Architecture approach is extended in [Cortellessa et al., 2007] with non-
functional modeling and analysis concepts by adding new models and transformations for
validation activities. The concepts of platform independent and platform specific are used
through the new type of models to obtain an accurate validation.

To the best of our knowledge, in the context of SPL, no work has been done previously to
evaluate and predict the performance of a given product by generating a formal
performance model. Most of the existing work aims to model non-functional requirements
(NFRs) in the same way as functional requirements. The related works mentioned above are
concerned with the interactions between selected features and the NFRs and propose
different techniques to represent these interactions and dependencies.

3. Domain engineering process
The SPL development process is separated into two major phases: 1) domain engineering for
creating and maintaining a set of reusable artifacts and introducing variability in these
software artifacts so that the next phase can make a specific decision according to the
product’s requirements and 2) application engineering for building products that are family
members from reusable artifacts created in the first phase, instead of starting from scratch.

The domain engineering process is a development cycle for reuse and includes, but is not
limited to, creating the requirement specifications, domain models , architecture, reusable
software components [Clements & Northrop, 2001].

The SPL assets created by the domain engineering process which are of interest for our
research are represented by a multi-view UML design model of the family, called the SPL
model, consisting of a superimposition of all variant products. The creation of the SPL model
employs two separate UML profiles: a product line profile for specifying the commonality

Software Product Line – Advanced Topic

76

and variability between products, and the MARTE profile for performance annotations.
Another important outcome of the domain engineering process is the feature model used to
represent commonalities and variabilities between family members in a concise taxonomic
form. Additionally, the PC-feature model is created to represent the variability space of the
performance completions.

purchaseOrder

catalog

static dynamic

delivery

invoices

on-lineDisplay

printedInvoice

e-commerceKernel

customer

businessCustomer

homeCustomer

payment

customerAttractions

promotions

membershipDiscount

sales

customerInquiries

helpDesk callCenter

shippingType

normal express

packageSlip

internationalSale

dataStorage

electronic

shipping

distributed centralized

creditCard

check

debitCard

switchingMenu

severalLanguage

currencyConversion

tariffsCalculation

I/ELaws

security

<1-1><1-1>
<1-3>

<1-1>
<1-3>

<1-3>

<1-4>

<1-2>

<1-2>

<1-2>

Features composition rules:
• switchingMenu requires debitCard and creditCard
• switchingMenu requires debitCard and check
• switchingMenu requires creditCard and check
•electronic requires on-lineDisplay
• shipping requires printedInvoices

Fig. 2. Feature model of the e-commerce SPL

An e-commerce case study is used to illustrate the construction of the UML model for SPL
that represents the source model of our model transformation approach. The e-commerce
SPL is a web-based product line that can generate a distributed application that can handle
either business-to-business (B2B) or business-to-consumer (B2C) systems. For instance, in
B2B, a business customer can browse and select items through several catalogs. Each
customer has a contract with a supplier for purchases, as well as bank accounts through
which payments can be made. An operation fund is associated with each contract.

3.1 Feature model

Feature models are used in our approach to represent two different variability spaces. This
section describes the regular feature model representing functional variabilities between
products. The feature model of an e-commerce SPL is represented in Fig. 2 in the extended
FODA notation, Cardinality-Based Feature Model (CBFM) [Czarnecki et al., 2005]. However,
this diagram is represented in the source model given as input to our ATL transformation as
an extended UML class diagram, where the features and feature groups are modeled as
stereotyped classes and the dependencies and constraints between features as stereotyped
associations. For instance, the two alternative features BusinessCustomer and HomeCustomer
are mutually exclusive features and hence they are grouped into an exactly-one-of feature
group called Customer. While, the three optional features CreditCard, DebitCard, and Check
are grouped into an at-least-one-of feature group called Payment. Thus, an individual system
can provide at least one of these features or any number of them. In the case of an individual
system providing all of these features, the user can choose one of them during the run-time
execution. In addition to functional features, we add to the diagram another type of features

Integrating Performance Analysis in Software Product Line Development Process

77

characterizing design decisions that have an impact on the non-functional requirements or
properties. For example, the architectural decision related to the location of the data storage
(centralized or distributed) affects performance, reliability and security, and is represented
in the diagram by two mutually exclusive quality features. This type of feature related to a
SPL design decision is part of the design model, not just a platform-related PC-feature
required only for performance analysis.

The regular feature model represents the set of all possible combinations of features for the
products of the family, describing the way features can be combined within this SPL. A
specific product is configured by selecting a valid feature combination from the feature
model, producing the feature configuration based on the product’s requirements. To enable
the automatic derivation of a given product model, the mapping between the features
contained in the feature model and their realizations in a reusable SPL model needs to be
specified, as shown in the next section. Also, each stereotyped class in the feature model has
a tagged value indicating whether it is selected in a given feature configuration or not.

3.2 SPL model

The SPL model should contain, among other assets, structural and behavioural views which
are essential for the derivation of performance models. It consists of: 1) structural
description of the software showing the high-level classes or components, especially if they
are distributed and/or concurrent; 2) deployment of software to hardware devices; 3) a set
of key performance scenarios defining the main system functions frequently executed.

The functional requirements of the SPL are modeled as use cases shown in Fig. 3. The kernel
use cases required by all the family members are shown in white, the optional use cases that
may be used by any member are drawn in light grey, and the alternative use cases used only
by some members are shown in dark grey. In order to avoid polluting our model with extra
annotations and to ensure the well-formedness of the derived product model, we propose to
annotate explicitly the minimum number of model elements within each diagram of our SPL
model. For instance, in the use case diagram, only the optional and alternative use cases are
annotated with the name of the features requiring them (given as stereotype attributes);
since a kernel use case represents commonality, it is sufficient to just stereotype it as
«kernel». Other model elements, such as actors, associations, generalizations, properties, are
mapped implicitly to feature through their relationship with the use cases, so there is no
need to clutter the model with their annotations. The evaluation of implicit mapping during
product derivation is explained in section 4. The structural view of the SPL is presented as a
class diagram; Fig. 4 depicts a small fragment. The classes that are common to all members
of the SPL are stereotyped as «kernel». The variability that distinguishes the members of a
family from each other is explicitly modeled by classes stereotyped as «optional» or
«variant»; such classes are also annotated with the name of the feature(s) requiring them
(given as stereotype attributes). This is an example of mapping between features and the
model elements realizing them.

In cases where a class behaves differently in different product (such as CustomerInterface in
B2B and B2C systems) a generalization/specialization hierarchy is used to model the
different behaviours of this class. The two subclasses B2BInterface and B2CInterface are used
by B2B systems and B2C systems, respectively. The same happens with the superclass
SupplierInterface, which is specialized into two variants POSupplier and Supplier.

Software Product Line – Advanced Topic

76

and variability between products, and the MARTE profile for performance annotations.
Another important outcome of the domain engineering process is the feature model used to
represent commonalities and variabilities between family members in a concise taxonomic
form. Additionally, the PC-feature model is created to represent the variability space of the
performance completions.

purchaseOrder

catalog

static dynamic

delivery

invoices

on-lineDisplay

printedInvoice

e-commerceKernel

customer

businessCustomer

homeCustomer

payment

customerAttractions

promotions

membershipDiscount

sales

customerInquiries

helpDesk callCenter

shippingType

normal express

packageSlip

internationalSale

dataStorage

electronic

shipping

distributed centralized

creditCard

check

debitCard

switchingMenu

severalLanguage

currencyConversion

tariffsCalculation

I/ELaws

security

<1-1><1-1>
<1-3>

<1-1>
<1-3>

<1-3>

<1-4>

<1-2>

<1-2>

<1-2>

Features composition rules:
• switchingMenu requires debitCard and creditCard
• switchingMenu requires debitCard and check
• switchingMenu requires creditCard and check
•electronic requires on-lineDisplay
• shipping requires printedInvoices

Fig. 2. Feature model of the e-commerce SPL

An e-commerce case study is used to illustrate the construction of the UML model for SPL
that represents the source model of our model transformation approach. The e-commerce
SPL is a web-based product line that can generate a distributed application that can handle
either business-to-business (B2B) or business-to-consumer (B2C) systems. For instance, in
B2B, a business customer can browse and select items through several catalogs. Each
customer has a contract with a supplier for purchases, as well as bank accounts through
which payments can be made. An operation fund is associated with each contract.

3.1 Feature model

Feature models are used in our approach to represent two different variability spaces. This
section describes the regular feature model representing functional variabilities between
products. The feature model of an e-commerce SPL is represented in Fig. 2 in the extended
FODA notation, Cardinality-Based Feature Model (CBFM) [Czarnecki et al., 2005]. However,
this diagram is represented in the source model given as input to our ATL transformation as
an extended UML class diagram, where the features and feature groups are modeled as
stereotyped classes and the dependencies and constraints between features as stereotyped
associations. For instance, the two alternative features BusinessCustomer and HomeCustomer
are mutually exclusive features and hence they are grouped into an exactly-one-of feature
group called Customer. While, the three optional features CreditCard, DebitCard, and Check
are grouped into an at-least-one-of feature group called Payment. Thus, an individual system
can provide at least one of these features or any number of them. In the case of an individual
system providing all of these features, the user can choose one of them during the run-time
execution. In addition to functional features, we add to the diagram another type of features

Integrating Performance Analysis in Software Product Line Development Process

77

characterizing design decisions that have an impact on the non-functional requirements or
properties. For example, the architectural decision related to the location of the data storage
(centralized or distributed) affects performance, reliability and security, and is represented
in the diagram by two mutually exclusive quality features. This type of feature related to a
SPL design decision is part of the design model, not just a platform-related PC-feature
required only for performance analysis.

The regular feature model represents the set of all possible combinations of features for the
products of the family, describing the way features can be combined within this SPL. A
specific product is configured by selecting a valid feature combination from the feature
model, producing the feature configuration based on the product’s requirements. To enable
the automatic derivation of a given product model, the mapping between the features
contained in the feature model and their realizations in a reusable SPL model needs to be
specified, as shown in the next section. Also, each stereotyped class in the feature model has
a tagged value indicating whether it is selected in a given feature configuration or not.

3.2 SPL model

The SPL model should contain, among other assets, structural and behavioural views which
are essential for the derivation of performance models. It consists of: 1) structural
description of the software showing the high-level classes or components, especially if they
are distributed and/or concurrent; 2) deployment of software to hardware devices; 3) a set
of key performance scenarios defining the main system functions frequently executed.

The functional requirements of the SPL are modeled as use cases shown in Fig. 3. The kernel
use cases required by all the family members are shown in white, the optional use cases that
may be used by any member are drawn in light grey, and the alternative use cases used only
by some members are shown in dark grey. In order to avoid polluting our model with extra
annotations and to ensure the well-formedness of the derived product model, we propose to
annotate explicitly the minimum number of model elements within each diagram of our SPL
model. For instance, in the use case diagram, only the optional and alternative use cases are
annotated with the name of the features requiring them (given as stereotype attributes);
since a kernel use case represents commonality, it is sufficient to just stereotype it as
«kernel». Other model elements, such as actors, associations, generalizations, properties, are
mapped implicitly to feature through their relationship with the use cases, so there is no
need to clutter the model with their annotations. The evaluation of implicit mapping during
product derivation is explained in section 4. The structural view of the SPL is presented as a
class diagram; Fig. 4 depicts a small fragment. The classes that are common to all members
of the SPL are stereotyped as «kernel». The variability that distinguishes the members of a
family from each other is explicitly modeled by classes stereotyped as «optional» or
«variant»; such classes are also annotated with the name of the feature(s) requiring them
(given as stereotype attributes). This is an example of mapping between features and the
model elements realizing them.

In cases where a class behaves differently in different product (such as CustomerInterface in
B2B and B2C systems) a generalization/specialization hierarchy is used to model the
different behaviours of this class. The two subclasses B2BInterface and B2CInterface are used
by B2B systems and B2C systems, respectively. The same happens with the superclass
SupplierInterface, which is specialized into two variants POSupplier and Supplier.

Software Product Line – Advanced Topic

78

Feature=Business
Customer

«optional»
International Sales
{VP=International}

«optional»
Customer Inquiry

{VP=Inquiries}

«optional»
Customer Attractions

{VP=Attractions}

«optional»
Deliver Purchase

Order

«optional»
Prepare Purchase

Order

«alternative»
Check Customer

Account

«kernel»
Make Purchase

Order

«kernel»
Confirm Shipment

«alternative»
Send Invoice

Customer

Authorization
Center

Supplier

Wholesaler

Bank

Feature=Business
Customer

Feature=Home
Customer

Feature=Home
Customer

«optional»
DebitCard

«extend»
«extend»

«alternative»
Bill Customer

{ext point=Payment}

Feature=Purchase
Order

Feature=Purchase
Order

Feature=Business
Customer

«kernel»
Browse Catalog

{VP=Catalog}

«alternative»
Create Requisition
{VP=DataStorage}

«extend»

«kernel»
Process Delivery Order
{ext point=Delivery}

«extend»

«optional»
Electronic «optional»

Shipping

Feature=Electronic
Delivery Feature=Shipping

Delivery

«alternatiive»
Confirm Delivery

{VP=Data Storage}

Feature=Credit
Card

Feature=Check

Feature=International
Sale

Feature=Customer
Inquiries

Feature=Customer
Attractions

«optional»
CreditCard

«optional»
Check

«extend»

Feature=Debit
Card

Fig. 3. Use case model of the e-commerce SPL

Fig. 4. A fragment of the class diagram of the e-commerce SPL

The behavioural SPL view is modeled as sequence diagrams for each scenario of each use
case. Fig. 5 illustrates the alternative scenario Create Requisition. Variability in the sequence
diagram may be expressed by using alt or opt fragments stereotyped as «variation point».
For example, the alt fragment stereotyped with «variation point» {vp=Data Storage} gives
two alternative choices based on the value of the Data Storage feature (Distributed or
Centralized). The stereotypes in Fig. 5 are MARTE performance annotations [OMG, 2011].
«GaAnalysisContext» is a stereotype indicating that the entire interaction diagram is to be
considered for performance analysis. Each lifeline is stereotyped as «PaRunTInstance»,
providing an explicit connection at the annotation level between a role in a behavior

Integrating Performance Analysis in Software Product Line Development Process

79

definition (a lifeline) and a runtime instance of a process or thread (active object). For
example, the tag {instance= CBrowser} indicates which runtime instance of a process
executes the lifeline role, while the tag {host=$CustNode} indicates the physical node from
the deployment diagram on which the instance is running, given by the variable
$CustNode. (For convenience, we use names starting with ‘$’ for all MARTE variables).
Conceptually, a scenario represented by a UML sequence diagram is composed of units of
execution named steps. MARTE defines two kinds of steps for performance analysis:
execution step (stereotyped «PaStep») and communication step (stereotyped
«PaCommStep»). «PaStep» may be applied to an Execution Occurrence (represented as a
thin rectangle on the lifeline) or to the message that triggers it. For instance, in Fig. 5, the
message requisitionRequest is stereotyped as an execution step:

«PaStep» {hostDemand = ($ReqSD,ms), respT = (($ReqT,ms, percent95), calc)}

where hostDemand indicates the execution time required by the step, given by the variable
$ReqSD in time units of milliseconds. The same message requisitionRequest is also
stereotyped as a communication step:

«PaCommStep» { msgSize = ($MReq,KB)}

where the message size is the variable $MReq in KiloBytes. Note that since the SPL model is
generic, covering many products and containing variation points with variants, the MARTE
annotations need to be generic as well. We use MARTE variables as a means of
parameterizing the SPL performance annotations; such variables (parameters) will be
assigned (bound to) concrete values during the product derivation process. The workload of
a scenario is defined as a stream of events driving the system; a workload may be open or
closed. In our example the workload is closed with a number of users $N1 and user think
time for a user $Z1:

«GaWorkloadEvent» {pattern=(closed (population=$N1),(extDelay=$Z1))}

3.3 Performance completions

In SPL, different members may vary from each other in terms of their functional
requirements, quality attributes, platform choices, network connections, physical
configurations, and middleware. Many details contained in the system that are not part of
its design model, but still affecting the performance at run-time, need to be added to the
performance model. Performance completions, as proposed by Woodside [Woodside et al.,
2002], are a manner to add platform details, closing the gap between the high-level design
model and its different implementations. Performance completions provide a general
concept to include low-level details of execution environments in performance models.

Since performance analysis depends on the software to hardware allocation, another
structure diagram that is not usually represented in SPL models has to be provided in our
approach. The deployment diagram for the SPL is built assuming maximum distribution,
which means providing the largest number of processors that might ever be used for any
product of the SPL. However, it doesn’t mean providing a processor for every single artifact
manifesting an instance of an active or passive class. If it is known that some instances have
to run always on the same processor, they will be co-allocated on the same node. The

Software Product Line – Advanced Topic

78

Feature=Business
Customer

«optional»
International Sales
{VP=International}

«optional»
Customer Inquiry

{VP=Inquiries}

«optional»
Customer Attractions

{VP=Attractions}

«optional»
Deliver Purchase

Order

«optional»
Prepare Purchase

Order

«alternative»
Check Customer

Account

«kernel»
Make Purchase

Order

«kernel»
Confirm Shipment

«alternative»
Send Invoice

Customer

Authorization
Center

Supplier

Wholesaler

Bank

Feature=Business
Customer

Feature=Home
Customer

Feature=Home
Customer

«optional»
DebitCard

«extend»
«extend»

«alternative»
Bill Customer

{ext point=Payment}

Feature=Purchase
Order

Feature=Purchase
Order

Feature=Business
Customer

«kernel»
Browse Catalog

{VP=Catalog}

«alternative»
Create Requisition
{VP=DataStorage}

«extend»

«kernel»
Process Delivery Order
{ext point=Delivery}

«extend»

«optional»
Electronic «optional»

Shipping

Feature=Electronic
Delivery Feature=Shipping

Delivery

«alternatiive»
Confirm Delivery

{VP=Data Storage}

Feature=Credit
Card

Feature=Check

Feature=International
Sale

Feature=Customer
Inquiries

Feature=Customer
Attractions

«optional»
CreditCard

«optional»
Check

«extend»

Feature=Debit
Card

Fig. 3. Use case model of the e-commerce SPL

Fig. 4. A fragment of the class diagram of the e-commerce SPL

The behavioural SPL view is modeled as sequence diagrams for each scenario of each use
case. Fig. 5 illustrates the alternative scenario Create Requisition. Variability in the sequence
diagram may be expressed by using alt or opt fragments stereotyped as «variation point».
For example, the alt fragment stereotyped with «variation point» {vp=Data Storage} gives
two alternative choices based on the value of the Data Storage feature (Distributed or
Centralized). The stereotypes in Fig. 5 are MARTE performance annotations [OMG, 2011].
«GaAnalysisContext» is a stereotype indicating that the entire interaction diagram is to be
considered for performance analysis. Each lifeline is stereotyped as «PaRunTInstance»,
providing an explicit connection at the annotation level between a role in a behavior

Integrating Performance Analysis in Software Product Line Development Process

79

definition (a lifeline) and a runtime instance of a process or thread (active object). For
example, the tag {instance= CBrowser} indicates which runtime instance of a process
executes the lifeline role, while the tag {host=$CustNode} indicates the physical node from
the deployment diagram on which the instance is running, given by the variable
$CustNode. (For convenience, we use names starting with ‘$’ for all MARTE variables).
Conceptually, a scenario represented by a UML sequence diagram is composed of units of
execution named steps. MARTE defines two kinds of steps for performance analysis:
execution step (stereotyped «PaStep») and communication step (stereotyped
«PaCommStep»). «PaStep» may be applied to an Execution Occurrence (represented as a
thin rectangle on the lifeline) or to the message that triggers it. For instance, in Fig. 5, the
message requisitionRequest is stereotyped as an execution step:

«PaStep» {hostDemand = ($ReqSD,ms), respT = (($ReqT,ms, percent95), calc)}

where hostDemand indicates the execution time required by the step, given by the variable
$ReqSD in time units of milliseconds. The same message requisitionRequest is also
stereotyped as a communication step:

«PaCommStep» { msgSize = ($MReq,KB)}

where the message size is the variable $MReq in KiloBytes. Note that since the SPL model is
generic, covering many products and containing variation points with variants, the MARTE
annotations need to be generic as well. We use MARTE variables as a means of
parameterizing the SPL performance annotations; such variables (parameters) will be
assigned (bound to) concrete values during the product derivation process. The workload of
a scenario is defined as a stream of events driving the system; a workload may be open or
closed. In our example the workload is closed with a number of users $N1 and user think
time for a user $Z1:

«GaWorkloadEvent» {pattern=(closed (population=$N1),(extDelay=$Z1))}

3.3 Performance completions

In SPL, different members may vary from each other in terms of their functional
requirements, quality attributes, platform choices, network connections, physical
configurations, and middleware. Many details contained in the system that are not part of
its design model, but still affecting the performance at run-time, need to be added to the
performance model. Performance completions, as proposed by Woodside [Woodside et al.,
2002], are a manner to add platform details, closing the gap between the high-level design
model and its different implementations. Performance completions provide a general
concept to include low-level details of execution environments in performance models.

Since performance analysis depends on the software to hardware allocation, another
structure diagram that is not usually represented in SPL models has to be provided in our
approach. The deployment diagram for the SPL is built assuming maximum distribution,
which means providing the largest number of processors that might ever be used for any
product of the SPL. However, it doesn’t mean providing a processor for every single artifact
manifesting an instance of an active or passive class. If it is known that some instances have
to run always on the same processor, they will be co-allocated on the same node. The

Software Product Line – Advanced Topic

80

Fig. 5. SPL Scenario Create Requisition

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

us
tD

B
.

ho
st

=$
C

us
tD

B
N

od
e}

:C
us

to
m

er
D

B

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=R

eq
ui

si
tio

n,
ho

st
=$

R
eq

N
od

e}
:R

eq
ui

si
tio

n

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=R

eq
D

B
,

ho
st

=$
R

eq
D

B
N

od
e}

:R
eq

ui
si

tio
nD

B

re
qu

is
iti

on
R

eq
ue

st
«G

aW
or

kl
oa

dE
ve

nt
»

{c
lo

se
d(

po
pu

la
tio

n=
$N

1)
,(e

xt
D

el
ay

=$
Z1

)}
«P

aS
te

p»
«P

aC
om

m
S

te
p»

{h
os

tD
em

an
d=

($
R

eq
S

D
,m

s)
,

re
sp

T=
((

$R
eq

T,
s,

pe
rc

en
t9

5)
,c

al
c)

,
m

sg
S

iz
e

=
($

M
R

eq
,K

B
),

co
m

m
R

cv
O

vh
=

($
M

R
eq

R
cv

,m
s/

K
B

),
co

m
m

Tx
O

vh
=

($
M

R
eq

S
,m

s/
K

B
)}

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=O

pr
Fu

nd
,

ho
st

=$
O

pF
N

od
e}

:O
pe

ra
tio

nF
un

d

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=O

pr
Fu

nd
D

B
,

ho
st

=$
O

pF
B

D
N

od
e}

:O
pF

un
dD

B

st
or

e

re
se

rv
eF

un
ds

«P
aS

te
p»

«P
aC

om
m

S
te

p»
{h

os
tD

em
an

d=
($

O
pr

FD
,m

s)
,

m
sg

S
iz

e
=

($
R

es
Fu

nd
,K

B
)}

ch
ec

k

«k
er

ne
l-a

bs
tra

ct
-v

p»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

B
ro

w
se

r,
ho

st
=$

C
us

tN
od

e}
:C

us
to

m
er

In
te

rfa
ce

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

on
tra

ct
s,

ho
st

=$
C

on
tN

od
e}

:C
on

tra
ct

s

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

on
tD

B
,

ho
st

=$
C

on
tD

B
N

od
e}

:C
on

tD
B

co
nf

irm

co
nt

ra
ct

Q
ue

ry
«P

aS
te

p»
«P

aC
om

m
S

te
p»

{h
os

tD
em

an
d=

($
C

on
tD

,m
s)

, m
sg

S
iz

e
=

($
C

on
tQ

,K
B

)}

av
ai

la
bl

eC
on

tra
ct

s
«P

aC
om

m
S

te
p»

{m
sg

S
iz

e
=

($
C

on
tR

ep
,K

B
)}

re
se

rv
e

co
nf

irm

fu
nd

sR
es

er
ve

d
«P

aC
om

m
S

te
p»

{m
sg

S
iz

e
=

($
C

on
f,K

B
)}

re
qu

is
iti

on
S

ta
tu

s
«P

aC
om

m
S

te
p»

{m
sg

S
iz

e
=

($
C

on
f,K

B
)}

sd
 C

re
at

e
R

eq
ui

si
tio

n

al
t

al
t

[D
is

tri
bu

te
d]

[C
en

tra
liz

ed
]

al
t

[D
is

tri
bu

te
d]

[C
en

tra
liz

ed
]

ch
ec

k
co

nf
irm

co
nf

irm
re

se
rv

e

st
or

e

[D
is

tri
bu

te
d]

[C
en

tra
liz

ed
]

«v
ar

ia
tio

n
po

in
t»

 {v
p=

D
at

a
S

to
ra

ge
}

«v
ar

ia
tio

n
po

in
t»

 {v
p=

D
at

a
S

to
ra

ge
}

«v
ar

ia
tio

n
po

in
t»

 {v
p=

D
at

a
S

to
ra

ge
}

«G
aA

na
ly

sis
Co

nt
ex

t»
 {c

on
te

xt
=[

]}

Integrating Performance Analysis in Software Product Line Development Process

81

deployment diagram contains all the possible artifacts contained in all the products, even
artifacts corresponding to optional or variant classes. During the domain engineering
process for our case study, two different deployment diagrams for the SPL system are
provided, distributed and centralized, corresponding to the two alternative architectures.

This section covers the variability space of the performance completions and represents it
through the Performance Completion feature model (PC-feature model) shown in Fig. 6.
Each feature from the PC-feature model may affect one or more performance attributes. For
instance, data compression reduces the message size and at the same time increases the
processor communication overhead for compressing and decompressing the data. Thus, it is
mapped to the performance attributes message size and communication overhead through
the MARTE attributes msgSize, commTxOvh and commRcvOvh, respectively. The mapping
here is between a PC-feature and the performance attribute(s) it affects, which are MARTE
stereotype attributes associated to model elements. Table 1 illustrates this type of mapping
between PC-features and the design model, set up through the MARTE stereotypes attached
to model elements.

Adding security solutions requires more resources and longer execution times, which in turn
has a significant impact on system performance. We introduce a PC-feature group called
secureCommunication that contains two alternative features secured and unsecured. The secured
feature offers two security protocols: Secure Socket Layer (SSL) and Transport Layer Security
(TLS) that can be augmented to the applications. Furthermore, we introduce three security
level alternatives depending on the size of the key used in the handshake phase and on the
strength of the encryption and message digest algorithms used in the data transfer phase, as
proposed in [Menasce et al., 2004]. Each security level requires different extra times for
sending and receiving secure messages. These overheads are mapped to the communication
overheads in the deployment diagram through the attributes commRcvOvh and commTxOvh,
which represent the host demand overheads for receiving and sending messages, respectively.

Each type of communication channel has different capacity for the amount of information
that can be transmitted over this channel. As the channel’s capacity increases, the time for
data transmitted over this channel decreases. Our example provides three different
communication channels with three alternative connections for the Internet. The capacity
and latency for each physical channel type are respectively mapped to the attributes capacity
and blockT stereotyping each communication node in the deployment diagram.

PC-feature Affected
Performance
Attribute

MARTE
Stereotype

MARTE
Attribute

secureCommunication Communication
overhead

GAExecHost commRcvOvh
commTxOvh

channelType Channel
Capacity
Channel Latency

GaCommHost capacity
blockT

dataCompression Message size
Communication
overhead

PaCommStep
GAExecHost

msgSize
commRcvOvh
commTxOvh

externalDeviceType Service Time PaStep extOpDemand

messageType Communication
overhead

GAExecHost commTxOvh

Table 1. Mapping of PC-features to affected performance attributes

Software Product Line – Advanced Topic

80

Fig. 5. SPL Scenario Create Requisition

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

us
tD

B
.

ho
st

=$
C

us
tD

B
N

od
e}

:C
us

to
m

er
D

B

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=R

eq
ui

si
tio

n,
ho

st
=$

R
eq

N
od

e}
:R

eq
ui

si
tio

n

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=R

eq
D

B
,

ho
st

=$
R

eq
D

B
N

od
e}

:R
eq

ui
si

tio
nD

B

re
qu

is
iti

on
R

eq
ue

st
«G

aW
or

kl
oa

dE
ve

nt
»

{c
lo

se
d(

po
pu

la
tio

n=
$N

1)
,(e

xt
D

el
ay

=$
Z1

)}
«P

aS
te

p»
«P

aC
om

m
S

te
p»

{h
os

tD
em

an
d=

($
R

eq
S

D
,m

s)
,

re
sp

T=
((

$R
eq

T,
s,

pe
rc

en
t9

5)
,c

al
c)

,
m

sg
S

iz
e

=
($

M
R

eq
,K

B
),

co
m

m
R

cv
O

vh
=

($
M

R
eq

R
cv

,m
s/

K
B

),
co

m
m

Tx
O

vh
=

($
M

R
eq

S
,m

s/
K

B
)}

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=O

pr
Fu

nd
,

ho
st

=$
O

pF
N

od
e}

:O
pe

ra
tio

nF
un

d

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=O

pr
Fu

nd
D

B
,

ho
st

=$
O

pF
B

D
N

od
e}

:O
pF

un
dD

B

st
or

e

re
se

rv
eF

un
ds

«P
aS

te
p»

«P
aC

om
m

S
te

p»
{h

os
tD

em
an

d=
($

O
pr

FD
,m

s)
,

m
sg

S
iz

e
=

($
R

es
Fu

nd
,K

B
)}

ch
ec

k

«k
er

ne
l-a

bs
tra

ct
-v

p»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

B
ro

w
se

r,
ho

st
=$

C
us

tN
od

e}
:C

us
to

m
er

In
te

rfa
ce

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

on
tra

ct
s,

ho
st

=$
C

on
tN

od
e}

:C
on

tra
ct

s

«o
pt

io
na

l»
«P

aR
un

TI
ns

ta
nc

e»
{in

st
an

ce
=C

on
tD

B
,

ho
st

=$
C

on
tD

B
N

od
e}

:C
on

tD
B

co
nf

irm

co
nt

ra
ct

Q
ue

ry
«P

aS
te

p»
«P

aC
om

m
S

te
p»

{h
os

tD
em

an
d=

($
C

on
tD

,m
s)

, m
sg

S
iz

e
=

($
C

on
tQ

,K
B

)}

av
ai

la
bl

eC
on

tra
ct

s
«P

aC
om

m
S

te
p»

{m
sg

S
iz

e
=

($
C

on
tR

ep
,K

B
)}

re
se

rv
e

co
nf

irm

fu
nd

sR
es

er
ve

d
«P

aC
om

m
S

te
p»

{m
sg

S
iz

e
=

($
C

on
f,K

B
)}

re
qu

is
iti

on
S

ta
tu

s
«P

aC
om

m
S

te
p»

{m
sg

S
iz

e
=

($
C

on
f,K

B
)}

sd
 C

re
at

e
R

eq
ui

si
tio

n

al
t

al
t

[D
is

tri
bu

te
d]

[C
en

tra
liz

ed
]

al
t

[D
is

tri
bu

te
d]

[C
en

tra
liz

ed
]

ch
ec

k
co

nf
irm

co
nf

irm
re

se
rv

e

st
or

e

[D
is

tri
bu

te
d]

[C
en

tra
liz

ed
]

«v
ar

ia
tio

n
po

in
t»

 {v
p=

D
at

a
S

to
ra

ge
}

«v
ar

ia
tio

n
po

in
t»

 {v
p=

D
at

a
S

to
ra

ge
}

«v
ar

ia
tio

n
po

in
t»

 {v
p=

D
at

a
S

to
ra

ge
}

«G
aA

na
ly

sis
Co

nt
ex

t»
 {c

on
te

xt
=[

]}

Integrating Performance Analysis in Software Product Line Development Process

81

deployment diagram contains all the possible artifacts contained in all the products, even
artifacts corresponding to optional or variant classes. During the domain engineering
process for our case study, two different deployment diagrams for the SPL system are
provided, distributed and centralized, corresponding to the two alternative architectures.

This section covers the variability space of the performance completions and represents it
through the Performance Completion feature model (PC-feature model) shown in Fig. 6.
Each feature from the PC-feature model may affect one or more performance attributes. For
instance, data compression reduces the message size and at the same time increases the
processor communication overhead for compressing and decompressing the data. Thus, it is
mapped to the performance attributes message size and communication overhead through
the MARTE attributes msgSize, commTxOvh and commRcvOvh, respectively. The mapping
here is between a PC-feature and the performance attribute(s) it affects, which are MARTE
stereotype attributes associated to model elements. Table 1 illustrates this type of mapping
between PC-features and the design model, set up through the MARTE stereotypes attached
to model elements.

Adding security solutions requires more resources and longer execution times, which in turn
has a significant impact on system performance. We introduce a PC-feature group called
secureCommunication that contains two alternative features secured and unsecured. The secured
feature offers two security protocols: Secure Socket Layer (SSL) and Transport Layer Security
(TLS) that can be augmented to the applications. Furthermore, we introduce three security
level alternatives depending on the size of the key used in the handshake phase and on the
strength of the encryption and message digest algorithms used in the data transfer phase, as
proposed in [Menasce et al., 2004]. Each security level requires different extra times for
sending and receiving secure messages. These overheads are mapped to the communication
overheads in the deployment diagram through the attributes commRcvOvh and commTxOvh,
which represent the host demand overheads for receiving and sending messages, respectively.

Each type of communication channel has different capacity for the amount of information
that can be transmitted over this channel. As the channel’s capacity increases, the time for
data transmitted over this channel decreases. Our example provides three different
communication channels with three alternative connections for the Internet. The capacity
and latency for each physical channel type are respectively mapped to the attributes capacity
and blockT stereotyping each communication node in the deployment diagram.

PC-feature Affected
Performance
Attribute

MARTE
Stereotype

MARTE
Attribute

secureCommunication Communication
overhead

GAExecHost commRcvOvh
commTxOvh

channelType Channel
Capacity
Channel Latency

GaCommHost capacity
blockT

dataCompression Message size
Communication
overhead

PaCommStep
GAExecHost

msgSize
commRcvOvh
commTxOvh

externalDeviceType Service Time PaStep extOpDemand

messageType Communication
overhead

GAExecHost commTxOvh

Table 1. Mapping of PC-features to affected performance attributes

Software Product Line – Advanced Topic

82

securityLevel

highSecuritymediumSecuritylowSecurity

secureCommunication

secured unsecured

SSL Protocol TLS Protocol

channelType

LAN Internet PAN

internetConnection

WirelessDSLPower-line

externalDeviceType

diskmonitor

USBDVDCD Hard Disk

<1-1>

<1-1>

<1-1>

<1-1>

<1-1>

dataCompression

compressed uncompressed

<1-1><1-1>

<1-1>

messageType

withGuaranteedDelivery withoutGuaranteedDelivery

<1-1>

Enterprise JavaBeans

platformChoice

.NETCORBAWeb-services

<1-1>

Fig. 6. Part of the Performance-Completion feature model of the e-commerce SPL

Data compression requires extra operations which increase the processing time, but at the
same time compression helps reducing the use of resources, such as hard disk space or
communication channel bandwidth. Data compression/decompression is adding an
overhead when sending and receiving a message, which is mapped to the attributes
commTxOvh and commRcvOvh, respectively. However, compression reduces the amount of
data to be transferred and decreases the delivery time (e.g., a compression algorithm may
reduce the size of data to 60% [Happe et al., 2010]). Thus, the amount of compressed data
transmitted over a physical channel is mapped to the performance attribute message size
through the attribute msgSize of a stereotype «PaCommStep» annotating a communication
step in the sequence diagram. Similarly, the delivery time of a message may vary if the
communication is with or without guaranteed delivery [Happe et al., 2010], which affects
the attribute commTxOvh.

Mapping a platform independent to a platform specific model has an impact on the system
performance. The PC-feature group platformChoice includes different alternative types of
middleware such as CORBA, Web-services, etc., which will affect also the communication
overheads.

MARTE provides specifically the concept of “external service calls” to represent resources
that are not explicitly modeled within the UML design model, but may have an impact on
performance. Examples of such external calls are disk operations hidden in database calls.
The feature externalDeviceType represents different choices of storage devices, such as disk
and monitor and different disk types. Each device has different speed to “read” and “write”
a block of data. These features are mapped to the service time of external resources through
the attribute externalOpCount stereotyping an execution step.

It is important to note that some of the performance-affecting attributes are contained
directly in the MARTE annotations in the design model. For instance, the message size
corresponding to a message from a sequence diagram may be indicated by the attribute
msgSize of the stereotype «PaCommStep» extending the message. Similarly, CPU execution
times of different scenario steps are indicated by the attribute hostDemand of the stereotype
«PaStep». The product model obtained by the transformation presented next will include

Integrating Performance Analysis in Software Product Line Development Process

83

both the performance attribute contained directly in the design model and the platform
factors corresponding to PC-features.

4. Model transformation approach
The automatic derivation of a concrete product model based on a given feature
configuration is enabled through the mapping between features from the feature model and
their realizations in the design model of the SPL. In this section, we present an efficient
mapping technique that aims to minimize the amount of explicit feature annotations in the
UML design model of SPL. The product model corresponding to the desired feature
configuration is instantiated automatically through a model-to-model transformation, where
the transformation process evaluates the SPL model elements’ annotations for the selected
feature configuration. The model transformation process and its implementation in ATL are
presented as well.

4.1 Mapping technique

Modeling variability in SPL models can be achieved in different ways: 1) annotating
different diagrams of the reusable SPL model with variability specifications mapping
features from the feature model to model elements realizing them; and 2) using a separate
model for variability that can be linked to different model elements of the reusable SPL
model. In our work, we apply the first approach by using a product line (PL) profile similar
to [Gomaa, 2005]. We are aiming to annotate the UML model of SPL with a minimum
amount of variability specifications.

The annotation approach has a number of advantages over the separate variability
modeling: a) model elements subject to variability are clearly noticeable; b) the consequence
of selecting a feature is directly shown on the design model; c) the mapping is easier to
retrace and understand; and d) the expressive capability is enhanced. However, a significant
drawback of the annotation approach that makes it error-prone is the fact that the SPL
models become cluttered with variability specifications, which becomes worse as models
grow in size and complexity.

The annotation approach proposed in this research mitigates this drawback by reducing the
type and number of explicitly annotated model elements as much as possible. The decision
what types of elements to annotate explicitly depends on the application domain and should
be taken early in the domain engineering process. The mapping of features to non-annotated
model elements is implicit, and can be inferred from their relationships with annotated
model elements. Such relationships are defined in the UML metamodel and are explored in
the transformation rules during product derivation by navigating the model according to
the UML metamodel and well-formedness rules. For instance, in a class diagram of the SPL
reusable model, we annotate explicitly the variability of classes with the names of the
features requiring each class, but leave the associations without variability annotations. The
unspecified mapping of features to each association can be inferred from the annotations of
the two classes connected to the association ends. Thus, the mapping of features to classes is
explicit and that of features to associations is implicit. Whenever a model element is not
explicitly annotated with corresponding feature(s) through a stereotype or its attributes in
the SPL model, the automatic transformation process needs to decide whether to copy this

Software Product Line – Advanced Topic

82

securityLevel

highSecuritymediumSecuritylowSecurity

secureCommunication

secured unsecured

SSL Protocol TLS Protocol

channelType

LAN Internet PAN

internetConnection

WirelessDSLPower-line

externalDeviceType

diskmonitor

USBDVDCD Hard Disk

<1-1>

<1-1>

<1-1>

<1-1>

<1-1>

dataCompression

compressed uncompressed

<1-1><1-1>

<1-1>

messageType

withGuaranteedDelivery withoutGuaranteedDelivery

<1-1>

Enterprise JavaBeans

platformChoice

.NETCORBAWeb-services

<1-1>

Fig. 6. Part of the Performance-Completion feature model of the e-commerce SPL

Data compression requires extra operations which increase the processing time, but at the
same time compression helps reducing the use of resources, such as hard disk space or
communication channel bandwidth. Data compression/decompression is adding an
overhead when sending and receiving a message, which is mapped to the attributes
commTxOvh and commRcvOvh, respectively. However, compression reduces the amount of
data to be transferred and decreases the delivery time (e.g., a compression algorithm may
reduce the size of data to 60% [Happe et al., 2010]). Thus, the amount of compressed data
transmitted over a physical channel is mapped to the performance attribute message size
through the attribute msgSize of a stereotype «PaCommStep» annotating a communication
step in the sequence diagram. Similarly, the delivery time of a message may vary if the
communication is with or without guaranteed delivery [Happe et al., 2010], which affects
the attribute commTxOvh.

Mapping a platform independent to a platform specific model has an impact on the system
performance. The PC-feature group platformChoice includes different alternative types of
middleware such as CORBA, Web-services, etc., which will affect also the communication
overheads.

MARTE provides specifically the concept of “external service calls” to represent resources
that are not explicitly modeled within the UML design model, but may have an impact on
performance. Examples of such external calls are disk operations hidden in database calls.
The feature externalDeviceType represents different choices of storage devices, such as disk
and monitor and different disk types. Each device has different speed to “read” and “write”
a block of data. These features are mapped to the service time of external resources through
the attribute externalOpCount stereotyping an execution step.

It is important to note that some of the performance-affecting attributes are contained
directly in the MARTE annotations in the design model. For instance, the message size
corresponding to a message from a sequence diagram may be indicated by the attribute
msgSize of the stereotype «PaCommStep» extending the message. Similarly, CPU execution
times of different scenario steps are indicated by the attribute hostDemand of the stereotype
«PaStep». The product model obtained by the transformation presented next will include

Integrating Performance Analysis in Software Product Line Development Process

83

both the performance attribute contained directly in the design model and the platform
factors corresponding to PC-features.

4. Model transformation approach
The automatic derivation of a concrete product model based on a given feature
configuration is enabled through the mapping between features from the feature model and
their realizations in the design model of the SPL. In this section, we present an efficient
mapping technique that aims to minimize the amount of explicit feature annotations in the
UML design model of SPL. The product model corresponding to the desired feature
configuration is instantiated automatically through a model-to-model transformation, where
the transformation process evaluates the SPL model elements’ annotations for the selected
feature configuration. The model transformation process and its implementation in ATL are
presented as well.

4.1 Mapping technique

Modeling variability in SPL models can be achieved in different ways: 1) annotating
different diagrams of the reusable SPL model with variability specifications mapping
features from the feature model to model elements realizing them; and 2) using a separate
model for variability that can be linked to different model elements of the reusable SPL
model. In our work, we apply the first approach by using a product line (PL) profile similar
to [Gomaa, 2005]. We are aiming to annotate the UML model of SPL with a minimum
amount of variability specifications.

The annotation approach has a number of advantages over the separate variability
modeling: a) model elements subject to variability are clearly noticeable; b) the consequence
of selecting a feature is directly shown on the design model; c) the mapping is easier to
retrace and understand; and d) the expressive capability is enhanced. However, a significant
drawback of the annotation approach that makes it error-prone is the fact that the SPL
models become cluttered with variability specifications, which becomes worse as models
grow in size and complexity.

The annotation approach proposed in this research mitigates this drawback by reducing the
type and number of explicitly annotated model elements as much as possible. The decision
what types of elements to annotate explicitly depends on the application domain and should
be taken early in the domain engineering process. The mapping of features to non-annotated
model elements is implicit, and can be inferred from their relationships with annotated
model elements. Such relationships are defined in the UML metamodel and are explored in
the transformation rules during product derivation by navigating the model according to
the UML metamodel and well-formedness rules. For instance, in a class diagram of the SPL
reusable model, we annotate explicitly the variability of classes with the names of the
features requiring each class, but leave the associations without variability annotations. The
unspecified mapping of features to each association can be inferred from the annotations of
the two classes connected to the association ends. Thus, the mapping of features to classes is
explicit and that of features to associations is implicit. Whenever a model element is not
explicitly annotated with corresponding feature(s) through a stereotype or its attributes in
the SPL model, the automatic transformation process needs to decide whether to copy this

Software Product Line – Advanced Topic

84

element to the target model or not. This decision is based on several factors: a) the type of
this non-annotated element; b) the specifications and well-formedness constraints of the
modeling language; c) the presence or absence of other annotated elements related to it; d)
the containment hierarchies defined in the metamodel; e) the cardinality of this element.

For example, according to the UML metamodel, a binary association has to be attached to a
classifier at each end. Therefore, the decision whether a binary association has to be copied
or not to the target is based on the selection of both of its classifiers. The binary association is
created in the target model if and only if both of its memberEnd properties have their
classifiers already selected and created. At the same time, if only one of its classifier is
selected and created in the target model, the property attached to this unselected association
and owned by the selected classifier should not be created in the target model. The
interpretations of the implicit mapping will be explained in more detail in the description of
the transformation rules.

The proposed mapping technique ensures that the derived product model is a well-formed
model by enforcing the well-formedness constraints during the transformation process.
Each time a new model element is selected and added to the target model, the verification of
its well-formedness rules is guaranteed by construction, according to the transformation
rules that are based on the UML metamodel.

4.2 Model transformation process

Our model transformation approach takes as input the SPL source model created during the
domain engineering process in section 3 and generates a product target model for a given
member of the SPL. The model transformation consists of two parts as shown in Fig. 1. The
first part generates binding directive spreadsheets, asking the user to enter concrete values
for all generic performance annotations and platform allocations for the given product,
while the second part takes as input the spreadsheets with the concrete values provided by
the user and generates a specific product model with concrete performance annotations that
is deployed on concrete resources and is running on a specific platform. As mentioned
before, our model transformation approach applies the concept of positive variability where
we start by selecting and copying the SPL model elements that represent kernel features to
the target model, then selectively add other elements realizing the desired optional and
alternative features; all this is realized by a model transformation approach described below.

The product derivation process is initiated by specifying a given product through its feature
configuration (i.e., the legal combination of features characterizing the product). The selected
features are checked for consistency against the feature dependencies and constraints in the
feature model, in order to identify any inconsistencies. An example is checking to ensure that
no two mutually exclusive features are chosen. The feature configuration is considered a
parameter for the transformation, which should be set without editing the source model. The
second step in the derivation process is to select the use cases realizing the chosen features. All
kernel use cases are copied to the product use case diagram, since they represent functionality
provided by every member of the SPL. If a chosen feature is realized through extend or
include relationships between use cases, both the base and the included or extending use cases
have to be selected, as well. A use case containing in its scenario variation point(s) required to
realize the selected feature(s) has to be chosen, too. The optional and alternative use cases are

Integrating Performance Analysis in Software Product Line Development Process

85

selected and copied to the target use case diagram if they are mapped to a feature from the
feature configuration. The interpretations of other non-annotated elements will be explained in
the description of the transformation rules. Finally, the use case diagram for the product is
developed after all the PL variability stereotypes were eliminated. The third step is to derive
the product class diagram by selecting first all kernel classes from the SPL class diagram.
Optional and variant classes needed for the desired product are selected next (each is
annotated with the feature(s) requiring it). Moreover, superclasses of the selected optional or
variant classes have to be selected as well. The PL variability stereotypes are not copied to the
target model. An association between two classes is copied to the target model if and only if
both classes are selected.

The SPL deployment diagram has to be tailored to the concrete product in the fourth step.
One of the two types of the deployment diagrams (centralized or distributed) has to be
chosen based on the mutually exclusive feature group DataStorage. For instance, the
centralized architecture is chosen and copied to the target model if the feature centralized is
selected. The final step of the first part in our transformation approach is to generate the
sequence diagrams corresponding to different scenarios of the chosen use cases. Each
scenario of a chosen use case is recognized through a sequence diagram which has to be
selected from the source model and copied to the target one.

The PL variability stereotypes are eliminated after binding the generic roles associated to the
life-lines of each selected sequence diagram to specific roles corresponding to the chosen
features. For instance, the sequence diagram Create Requisition has the generic alternate role
CustomerInterface which has to be bound to the concrete role B2BInterface to realize the
feature BusinessCustomer. However, the selection of the optional roles is based on the
corresponding features. For instance, the generic optional role CustomerDB is selected if the
feature Centralized data storage is chosen.

The mapping between the PC-features and performance attributes takes place during the
first part of the model transformation and requires user input. The transformation extracts
all the information needed for the mapping from the annotated product model and the PC-
feature model, and generates spreadsheets for the given product. The second part of the
model transformation takes as an input the spreadsheets with the values for bindings
directives provided by the user, and produces the given product model with concrete values
for performance annotations.

4.3 ATL implementation of the proposed approach

This subsection presents the implementation of the model transformation described in the
previous subsection in the Atlas Transformation Language (ATL) [ATL], which is
specialized for model transformations. The source model is the SPL model described in
section 3 with two profiles applied, MARTE and PL, and the target model is that of a
particular product. The transformation rules handle the implicit and explicit mapping of
features to SPL design models. The ATL transformation is composed of a set of rules and
helpers. The rules define the mapping between the source and target model, while the
helpers are methods that can be called from different points in the ATL transformation. A
few examples of ATL transformation rules are given bellow, with extensive comments in
natural language.

Software Product Line – Advanced Topic

84

element to the target model or not. This decision is based on several factors: a) the type of
this non-annotated element; b) the specifications and well-formedness constraints of the
modeling language; c) the presence or absence of other annotated elements related to it; d)
the containment hierarchies defined in the metamodel; e) the cardinality of this element.

For example, according to the UML metamodel, a binary association has to be attached to a
classifier at each end. Therefore, the decision whether a binary association has to be copied
or not to the target is based on the selection of both of its classifiers. The binary association is
created in the target model if and only if both of its memberEnd properties have their
classifiers already selected and created. At the same time, if only one of its classifier is
selected and created in the target model, the property attached to this unselected association
and owned by the selected classifier should not be created in the target model. The
interpretations of the implicit mapping will be explained in more detail in the description of
the transformation rules.

The proposed mapping technique ensures that the derived product model is a well-formed
model by enforcing the well-formedness constraints during the transformation process.
Each time a new model element is selected and added to the target model, the verification of
its well-formedness rules is guaranteed by construction, according to the transformation
rules that are based on the UML metamodel.

4.2 Model transformation process

Our model transformation approach takes as input the SPL source model created during the
domain engineering process in section 3 and generates a product target model for a given
member of the SPL. The model transformation consists of two parts as shown in Fig. 1. The
first part generates binding directive spreadsheets, asking the user to enter concrete values
for all generic performance annotations and platform allocations for the given product,
while the second part takes as input the spreadsheets with the concrete values provided by
the user and generates a specific product model with concrete performance annotations that
is deployed on concrete resources and is running on a specific platform. As mentioned
before, our model transformation approach applies the concept of positive variability where
we start by selecting and copying the SPL model elements that represent kernel features to
the target model, then selectively add other elements realizing the desired optional and
alternative features; all this is realized by a model transformation approach described below.

The product derivation process is initiated by specifying a given product through its feature
configuration (i.e., the legal combination of features characterizing the product). The selected
features are checked for consistency against the feature dependencies and constraints in the
feature model, in order to identify any inconsistencies. An example is checking to ensure that
no two mutually exclusive features are chosen. The feature configuration is considered a
parameter for the transformation, which should be set without editing the source model. The
second step in the derivation process is to select the use cases realizing the chosen features. All
kernel use cases are copied to the product use case diagram, since they represent functionality
provided by every member of the SPL. If a chosen feature is realized through extend or
include relationships between use cases, both the base and the included or extending use cases
have to be selected, as well. A use case containing in its scenario variation point(s) required to
realize the selected feature(s) has to be chosen, too. The optional and alternative use cases are

Integrating Performance Analysis in Software Product Line Development Process

85

selected and copied to the target use case diagram if they are mapped to a feature from the
feature configuration. The interpretations of other non-annotated elements will be explained in
the description of the transformation rules. Finally, the use case diagram for the product is
developed after all the PL variability stereotypes were eliminated. The third step is to derive
the product class diagram by selecting first all kernel classes from the SPL class diagram.
Optional and variant classes needed for the desired product are selected next (each is
annotated with the feature(s) requiring it). Moreover, superclasses of the selected optional or
variant classes have to be selected as well. The PL variability stereotypes are not copied to the
target model. An association between two classes is copied to the target model if and only if
both classes are selected.

The SPL deployment diagram has to be tailored to the concrete product in the fourth step.
One of the two types of the deployment diagrams (centralized or distributed) has to be
chosen based on the mutually exclusive feature group DataStorage. For instance, the
centralized architecture is chosen and copied to the target model if the feature centralized is
selected. The final step of the first part in our transformation approach is to generate the
sequence diagrams corresponding to different scenarios of the chosen use cases. Each
scenario of a chosen use case is recognized through a sequence diagram which has to be
selected from the source model and copied to the target one.

The PL variability stereotypes are eliminated after binding the generic roles associated to the
life-lines of each selected sequence diagram to specific roles corresponding to the chosen
features. For instance, the sequence diagram Create Requisition has the generic alternate role
CustomerInterface which has to be bound to the concrete role B2BInterface to realize the
feature BusinessCustomer. However, the selection of the optional roles is based on the
corresponding features. For instance, the generic optional role CustomerDB is selected if the
feature Centralized data storage is chosen.

The mapping between the PC-features and performance attributes takes place during the
first part of the model transformation and requires user input. The transformation extracts
all the information needed for the mapping from the annotated product model and the PC-
feature model, and generates spreadsheets for the given product. The second part of the
model transformation takes as an input the spreadsheets with the values for bindings
directives provided by the user, and produces the given product model with concrete values
for performance annotations.

4.3 ATL implementation of the proposed approach

This subsection presents the implementation of the model transformation described in the
previous subsection in the Atlas Transformation Language (ATL) [ATL], which is
specialized for model transformations. The source model is the SPL model described in
section 3 with two profiles applied, MARTE and PL, and the target model is that of a
particular product. The transformation rules handle the implicit and explicit mapping of
features to SPL design models. The ATL transformation is composed of a set of rules and
helpers. The rules define the mapping between the source and target model, while the
helpers are methods that can be called from different points in the ATL transformation. A
few examples of ATL transformation rules are given bellow, with extensive comments in
natural language.

Software Product Line – Advanced Topic

86

We need to create in the target model all the model element types that compose a class
diagram according to the UML metamodel: Class, Property, Operation, Generalization, and
Association [OMG, 2007]. Since an optional or alternative class is annotated with the
feature(s) requiring it, the class element is selected if and only if the feature given in its
annotation is present in the feature configuration. The following rule is applied to each
model element of type Class from the source model, checking whether to select and copy it
to the target model. We need to distinguish between a property representing an attribute
(related to the class by ownedAttribute) and a property representing an association end
(related to an association by memberEnd). A property representing an attribute has to be
selected if its container is selected. However, the one representing an association end is
selected if and only if its class container and the related association are selected.

In order to select and copy to the target model only the associations between selected classes
as well as their memberEnds, we have to navigate from the property of a selected class that
represents an association end to the other end of the association and check whether the class
on this end is selected or not. Assume that there are two classes: ClassA and ClassB
connected with an association AB. ClassA owns a property PA1 that has an attribute type
referencing the other end of the association, ClassB. In turn, PA1 has an attribute association
referencing the association AB. The rule that interprets this implicit mapping navigates from
the selected ClassA to the other end ClassB though the attribute type of the property PA1 and
checks whether ClassB is selected or not. If ClassB is selected, property PA1 is selected as
well. Last step is to navigate through the attribute association of property PA1 to the
association AB, and to copy it to the target model.

 -- Rule Class checks each model element of this type whether to copy it
 -- to the target model by calling the helper selectedElement()
rule Class {
 from
 s : UML! Class (s.selectedElement())
 -- Copying the class and checking for each property representing an
 -- association end whether the class on the other end of the association
 -- is selected or not
 to
 t : UML!Class(name <- s.name, ownedAttribute <-
 s.ownedAttribute->select(e|e.type.selectedElement())

 -- Whenever the class on the other end is selected, the property
 -- representing a memberEnd is copied to the target model by calling
 -- the lazy rule Property
 -> collect(e|thisModule.Property(e)),

 -- Copying the property owned by the class by calling the lazy rule
 -- Attribute
 ownedAttribute<-s.ownedAttribute->select(e|e.association
 ->oclIsUndefined())->collect(e|thisModule.Attribute(e)),

 -- Copying the operation owned by the class by calling the lazy rule
 -- Operation

Integrating Performance Analysis in Software Product Line Development Process

87

 ownedOperation <- s.ownedOperation ->
 collect(e|thisModule.Operation(e)),
 -- Copying the generalization owned by the class by calling the lazy rule
 -- Generalization
 generalization <- s.generalization
 -> collect(e|thisModule.Generalization(e))) }
 -- This helper returns “true” if the respective element is selected by
 -- checking whether the tagged value of its stereotype’s property
 -- existed in the feature configuration
 Helper context UML!Elementdef: selectedElement() : Boolean = if
 self.hasStereotype('kernel')
 or UML!Class.allInstances()->
 select(class|class.getTagValue('optionalfeature','selected')
 ='true'
 Or class.getTagValue('alternativefeature','selected')
 =‘true')-> collect(c|c.name)->
 includes(self.getTagValue('variant','feature')
 or self.getTagValue('optional','feature') or
 self.getTagValue('alternative','feature'))
 then true else false
 endif;
 -- This helper returns “true” if the respective model element is
 -- stereotyped with the stereotype name given as a parameter
 Helper context UML!Elementdef: hasStereotype(stereotype:String)
 :Boolean = self.getAppliedStereotypes()->
 exists(c|c.name.startsWith(stereotype));
 -- This helper returns the tagged value of a stereotype’s property both
 -- stereotype and property name are given as parameters
 Helper context UML!Elementdef:getTagvalue
 (stereotype:String,tag:String): UML!Element =
 if self.getAppliedStereotypes()-> select(e|e.name=stereotype)
 -> notEmpty() then
 self.getValue(self.getAppliedStereotypes() ->
 select(e|e.name=stereotype) -> first(), tag)
 else OclUndefined
 endif;
 -- This lazy rule is executed when called by the previous rule to copy an
 -- ownedAttribute property with its upper, lower, and default
 -- multiplicity values to the target model
lazy rule Attribute{
 from
 s : UML!Property
 to
 t : UML!Property(name <- s.name, type <- s.type,
 upperValue<-thisModule.LiteralUnlimitedNatural(s.upperValue),
 lowerValue <- thisModule.LiteralInteger(s.lowerValue),
 defaultValue <- thisModule.LiteralString(s.defaultValue)) }

Software Product Line – Advanced Topic

86

We need to create in the target model all the model element types that compose a class
diagram according to the UML metamodel: Class, Property, Operation, Generalization, and
Association [OMG, 2007]. Since an optional or alternative class is annotated with the
feature(s) requiring it, the class element is selected if and only if the feature given in its
annotation is present in the feature configuration. The following rule is applied to each
model element of type Class from the source model, checking whether to select and copy it
to the target model. We need to distinguish between a property representing an attribute
(related to the class by ownedAttribute) and a property representing an association end
(related to an association by memberEnd). A property representing an attribute has to be
selected if its container is selected. However, the one representing an association end is
selected if and only if its class container and the related association are selected.

In order to select and copy to the target model only the associations between selected classes
as well as their memberEnds, we have to navigate from the property of a selected class that
represents an association end to the other end of the association and check whether the class
on this end is selected or not. Assume that there are two classes: ClassA and ClassB
connected with an association AB. ClassA owns a property PA1 that has an attribute type
referencing the other end of the association, ClassB. In turn, PA1 has an attribute association
referencing the association AB. The rule that interprets this implicit mapping navigates from
the selected ClassA to the other end ClassB though the attribute type of the property PA1 and
checks whether ClassB is selected or not. If ClassB is selected, property PA1 is selected as
well. Last step is to navigate through the attribute association of property PA1 to the
association AB, and to copy it to the target model.

 -- Rule Class checks each model element of this type whether to copy it
 -- to the target model by calling the helper selectedElement()
rule Class {
 from
 s : UML! Class (s.selectedElement())
 -- Copying the class and checking for each property representing an
 -- association end whether the class on the other end of the association
 -- is selected or not
 to
 t : UML!Class(name <- s.name, ownedAttribute <-
 s.ownedAttribute->select(e|e.type.selectedElement())

 -- Whenever the class on the other end is selected, the property
 -- representing a memberEnd is copied to the target model by calling
 -- the lazy rule Property
 -> collect(e|thisModule.Property(e)),

 -- Copying the property owned by the class by calling the lazy rule
 -- Attribute
 ownedAttribute<-s.ownedAttribute->select(e|e.association
 ->oclIsUndefined())->collect(e|thisModule.Attribute(e)),

 -- Copying the operation owned by the class by calling the lazy rule
 -- Operation

Integrating Performance Analysis in Software Product Line Development Process

87

 ownedOperation <- s.ownedOperation ->
 collect(e|thisModule.Operation(e)),
 -- Copying the generalization owned by the class by calling the lazy rule
 -- Generalization
 generalization <- s.generalization
 -> collect(e|thisModule.Generalization(e))) }
 -- This helper returns “true” if the respective element is selected by
 -- checking whether the tagged value of its stereotype’s property
 -- existed in the feature configuration
 Helper context UML!Elementdef: selectedElement() : Boolean = if
 self.hasStereotype('kernel')
 or UML!Class.allInstances()->
 select(class|class.getTagValue('optionalfeature','selected')
 ='true'
 Or class.getTagValue('alternativefeature','selected')
 =‘true')-> collect(c|c.name)->
 includes(self.getTagValue('variant','feature')
 or self.getTagValue('optional','feature') or
 self.getTagValue('alternative','feature'))
 then true else false
 endif;
 -- This helper returns “true” if the respective model element is
 -- stereotyped with the stereotype name given as a parameter
 Helper context UML!Elementdef: hasStereotype(stereotype:String)
 :Boolean = self.getAppliedStereotypes()->
 exists(c|c.name.startsWith(stereotype));
 -- This helper returns the tagged value of a stereotype’s property both
 -- stereotype and property name are given as parameters
 Helper context UML!Elementdef:getTagvalue
 (stereotype:String,tag:String): UML!Element =
 if self.getAppliedStereotypes()-> select(e|e.name=stereotype)
 -> notEmpty() then
 self.getValue(self.getAppliedStereotypes() ->
 select(e|e.name=stereotype) -> first(), tag)
 else OclUndefined
 endif;
 -- This lazy rule is executed when called by the previous rule to copy an
 -- ownedAttribute property with its upper, lower, and default
 -- multiplicity values to the target model
lazy rule Attribute{
 from
 s : UML!Property
 to
 t : UML!Property(name <- s.name, type <- s.type,
 upperValue<-thisModule.LiteralUnlimitedNatural(s.upperValue),
 lowerValue <- thisModule.LiteralInteger(s.lowerValue),
 defaultValue <- thisModule.LiteralString(s.defaultValue)) }

Software Product Line – Advanced Topic

88

 -- This lazy rule is called by the previous rule to copy a memberEnd
 -- property with its upper and lower multiplicity values to the target
 -- model as well as copy the association attached to it by calling the
 -- lazy rule Association
lazy rule Property{
 from
 s : UML!Property
 to
 t : UML!Property(name <- s.name, type <- s.type,
 association <- thisModule.Association(s.association),
 upperValue<-thisModule.LiteralUnlimitedNatural(s.upperValue),
 lowerValue <- thisModule.LiteralInteger(s.lowerValue)) }
 -- This lazy rule is executed when called by the previous rule to copy
 -- the Association and its ownedEnd and memberEnd to the target model
unique lazy rule Association{
 from
 s : UML!Association
 to
 t : UML!Association(name<-s.name,ownedEnd<-s.ownedEnd,
 memberEnd <- s.memberEnd) }

Properties related to a class (attributes), generalizations, and operations are elements
contained into a class, so according to the UML containment hierarchies they are selected
whenever their container is selected. The use case diagram is generated similarly to the class
diagram (see [Tawhid & Petriu, 2011a] for more details).

After generating a specific product model, the generic performance specifications
annotating it need to be bound to concrete values. The transformation collects from the
generated UML product model all the generic performance parameters and all the PC-
features from the PC-feature model, and associates each PC-feature to its corresponding
model element(s). For instance, the PC-feature dataCompression is associated to a model
element of type message, since it has an impact on the message size and the communication
overheads. The transformation generates spreadsheets containing all the attributes that need
binding, as seen in the following example.

 -- Rule Message2Row collects all the generic tagged values of the
 -- stereotypes «PaStep» or «PaCommStep» that annotate model element of
 -- type message and transforms them to a row in a table
rule Message2Row {
 from
 s : UML!Message (s.hasStereotype('PaStep')or
 s.hasStereotype('PaCommStep'))
 using {hostDemand_name : Sequence(String) = Sequence {
 'Message', s.name, ‘PaStep', 'hostDemand',
 s.getAttrValue('PaStep','hostDemand').first()};
 msgSize_name : Sequence(String) = Sequence {
 'Message', s.name, 'PaCommStep', 'msgSize',
 s.getAttrValue('PaCommStep','msgSize').first()};} to
 hostDemand_row : Table!Row(

Integrating Performance Analysis in Software Product Line Development Process

89

 cells <- Sequence{ hostDemand_cols }),
 hostDemand_cols : distinct Table!Cell foreach(name in
 hostDemand_name) (content <- name),
 msgSize_row : Table!Row(
 cells <- Sequence{ msgSize_cols }),
 msgSize_cols : distinct Table!Cell foreach(name in
 msgSize_name) (content <- name)}

Fig. 7. Part of the generated Spreadsheet for the scenario Create Requisition

A part of the generated spreadsheet for the scenario Create Requisition is shown in Fig. 7. For
instance, the PC-feature dataCompression is mapped to message size through the MARTE
attribute msgSize annotating a model element of type message. The column titled Concrete
Value is designated for the user to enter the concrete value for each corresponding generic
parameter, while the column Guideline for Value provides a typical range of values to guide
the user. The generated spreadsheet presents a user-friendly format for the users of the
transformation who have to provide appropriate concrete values for binding the generic
SPL annotation variables.

Another kind of mapping that takes place is that of the generic processing nodes from the
SPL deployment diagram to actual nodes for a specific product. Each lifeline in the sequence
diagrams is stereotyped as «PaRunTInstance», providing an explicit connection at the
annotation level between a role in a behaviour definition (a lifeline) and the corresponding
runtime instance of an active object (process or thread), whose tag {host=$CustNode}
indicates the physical node from the deployment diagram on which the instance is running.
Thus, this tag needs to be bound to a concrete node for the product. The generated product
model has either a centralized or distributed deployment diagram with maximum numbers
of processors. The transformation collects all these processors’ name and associates a list of
these processors to each lifeline in the spreadsheets. The user will indicate a specific
processor from this list.

Software Product Line – Advanced Topic

88

 -- This lazy rule is called by the previous rule to copy a memberEnd
 -- property with its upper and lower multiplicity values to the target
 -- model as well as copy the association attached to it by calling the
 -- lazy rule Association
lazy rule Property{
 from
 s : UML!Property
 to
 t : UML!Property(name <- s.name, type <- s.type,
 association <- thisModule.Association(s.association),
 upperValue<-thisModule.LiteralUnlimitedNatural(s.upperValue),
 lowerValue <- thisModule.LiteralInteger(s.lowerValue)) }
 -- This lazy rule is executed when called by the previous rule to copy
 -- the Association and its ownedEnd and memberEnd to the target model
unique lazy rule Association{
 from
 s : UML!Association
 to
 t : UML!Association(name<-s.name,ownedEnd<-s.ownedEnd,
 memberEnd <- s.memberEnd) }

Properties related to a class (attributes), generalizations, and operations are elements
contained into a class, so according to the UML containment hierarchies they are selected
whenever their container is selected. The use case diagram is generated similarly to the class
diagram (see [Tawhid & Petriu, 2011a] for more details).

After generating a specific product model, the generic performance specifications
annotating it need to be bound to concrete values. The transformation collects from the
generated UML product model all the generic performance parameters and all the PC-
features from the PC-feature model, and associates each PC-feature to its corresponding
model element(s). For instance, the PC-feature dataCompression is associated to a model
element of type message, since it has an impact on the message size and the communication
overheads. The transformation generates spreadsheets containing all the attributes that need
binding, as seen in the following example.

 -- Rule Message2Row collects all the generic tagged values of the
 -- stereotypes «PaStep» or «PaCommStep» that annotate model element of
 -- type message and transforms them to a row in a table
rule Message2Row {
 from
 s : UML!Message (s.hasStereotype('PaStep')or
 s.hasStereotype('PaCommStep'))
 using {hostDemand_name : Sequence(String) = Sequence {
 'Message', s.name, ‘PaStep', 'hostDemand',
 s.getAttrValue('PaStep','hostDemand').first()};
 msgSize_name : Sequence(String) = Sequence {
 'Message', s.name, 'PaCommStep', 'msgSize',
 s.getAttrValue('PaCommStep','msgSize').first()};} to
 hostDemand_row : Table!Row(

Integrating Performance Analysis in Software Product Line Development Process

89

 cells <- Sequence{ hostDemand_cols }),
 hostDemand_cols : distinct Table!Cell foreach(name in
 hostDemand_name) (content <- name),
 msgSize_row : Table!Row(
 cells <- Sequence{ msgSize_cols }),
 msgSize_cols : distinct Table!Cell foreach(name in
 msgSize_name) (content <- name)}

Fig. 7. Part of the generated Spreadsheet for the scenario Create Requisition

A part of the generated spreadsheet for the scenario Create Requisition is shown in Fig. 7. For
instance, the PC-feature dataCompression is mapped to message size through the MARTE
attribute msgSize annotating a model element of type message. The column titled Concrete
Value is designated for the user to enter the concrete value for each corresponding generic
parameter, while the column Guideline for Value provides a typical range of values to guide
the user. The generated spreadsheet presents a user-friendly format for the users of the
transformation who have to provide appropriate concrete values for binding the generic
SPL annotation variables.

Another kind of mapping that takes place is that of the generic processing nodes from the
SPL deployment diagram to actual nodes for a specific product. Each lifeline in the sequence
diagrams is stereotyped as «PaRunTInstance», providing an explicit connection at the
annotation level between a role in a behaviour definition (a lifeline) and the corresponding
runtime instance of an active object (process or thread), whose tag {host=$CustNode}
indicates the physical node from the deployment diagram on which the instance is running.
Thus, this tag needs to be bound to a concrete node for the product. The generated product
model has either a centralized or distributed deployment diagram with maximum numbers
of processors. The transformation collects all these processors’ name and associates a list of
these processors to each lifeline in the spreadsheets. The user will indicate a specific
processor from this list.

Software Product Line – Advanced Topic

90

After the user enters concrete values for all the generic performance parameters and selects
an actual processor for each lifeline role provided in the spreadsheets, the second part of the
model transformation takes as input these spreadsheets along with its corresponding
product model, and binds all the generic MARTE tagged values in the product to the
specific values provided in the spreadsheets. The outcome of this part of the transformation
is a specific product model with concrete performance annotations for a specific PC-feature
configuration, which can be further transformed automatically into a performance model.

ReqE Requisition

ContractE Contract OprFundE OprFund

CDBNode

ReqONode

CustE Cust

NetE Net

CustNode

CustDBCustDBELANE LAN

LANNode

NetNode

ReqE Requisition

ContractE Contract OprFundE OprFundLANLANE

ReqNode

CustE Cust

NetE Net

CustNode

NetNode

LANNode

OprFDBE OprFDBContDBE ContDB

ReqDBE ReqDB

ContNode

OprFNode

(2)

Fig. 8. Centralized LQN model Fig. 9. Distributed LQN model

5. Performance analysis
As mentioned before, the derivation of a performance model from a SPL model requires two
model transformations. The first transformation from the annotated SPL model to a product
model with concrete performance annotations while the second one takes the target model
of a concrete product and transforms it into a LQN performance model using the PUMA
transformation approach [Woodside et al., 2005]. This section presents an example of an
LQN performance model for the scenario Create Requisition shown in Fig.5 of a specific B2B
system runs on two different architectures (centralized and distributed). Some performance
analysis experiments conducted with the LQN models obtained for a concrete B2B system
with a given PC-feature configuration is presented as well.

5.1 Performance model

The LQN model [Xu et al., 2003] is an extension of the well-known Queueing Network
model developed for modelling software systems, which able to represent nested services. A
software server often requires services from other servers in order to fulfil the requests of its
own clients. An LQN model consists of a set of tasks that offer services represented by
entries. The entries of a task may send requests to entries of other tasks. Software
components are mapped to tasks while hardware devices mapped to hosts. Graphically, the
software tasks are depicted as thick rectangles and the entries with attached thin rectangles.
The hardware devices are represented as ellipses. LQN is used to model several types of
system behaviour and inter-process communication style.

After obtaining the target model of a concrete product, it will be transformed into a LQN
performance model using the PUMA transformation [Woodside et al., 2005]. The key
performance scenario Create Requisition is transformed into two LQN models shown in Fig.8
and Fig.9 to represent the two different architectures; centralized and distributed,

Integrating Performance Analysis in Software Product Line Development Process

91

respectively. In the centralized architecture, all customer database is allocated to the node
CDBNode while, in the distributed architecture, the customer information is distributed over
the three nodes ReqNode, ContNode, and OprFNode.

5.2 Performance results

Web-based applications, such as an e-commerce system that contains sensitive data and has
many customers, require securing the data transmitted over certain communication
channels. However, adding security may include a performance price. System designers
need to make choices between different security levels and to make security/performance
trade-offs. At the same time, it is important where the data is located in order to fulfill
performance and security requirements. This location problem is examined in two different
architectures: 1) distributed and 2) centralized. In the centralized architecture, all customer
data is contained in one database. The centralized architecture has the advantage that
updating and maintaining the data consistency is easier, but has the disadvantage of
becoming the system bottleneck for large system sizes (when both the number of customers
and the amount of data go up). A distributed architecture represents a solution where
several databases divide the data and the work among them. It has potential for faster
response times and improved performance, but makes the updates and keeping data
consistency more difficult.

In order to illustrate the impact on performance of a secure communication channel between
the browser and the webServer, a performance analysis experiment based on LQN models
derived for B2B systems with different security levels running on two different architectures
(centralized and distributed) is presented.

When a B2B system is generated, a specific configuration has to be selected from the PC-
feature model. The key performance scenario Create Requisition in Fig. 5 is transformed into
the LQN models shown in Fig. 8 and Fig. 9 used for experiments. Two configurations were
chosen. The first configuration is for the centralized architecture where the customer
database is running on the node CDBNode while the roles Requisition, Contracts, and
OperationFund are running on the same node ReqONode as shown in Fig. 8. Furthermore, this
node is linked to the CDBNode through a Local Area Network (LAN) channel with 1.0 ms
latency. The connection between the CustNode and the ReqONode is set up through DSL
Internet channels with 100 ms latency. The data is transmitted uncompressed with an
average message size of 377.6 KB. The CustomerAccount database accesses an external device
(hard disk) with an average read/write time of 77.1 ms. The second configuration is for the
distributed architecture where the roles RequisitionDB, ContDB, and OpFundDB are running
on the different nodes ReqNode, contNode, and optFNode, respectively as shown in Fig. 9.
These nodes are connected through a LAN channel with 1.0 ms latency.

All communication channels in the unsecure system include no security solution, while the
secure system contains certain secure channels using the TLS protocol. TLS has two phases:
the handshake phase is used by the browser and webServer to exchange secrets and to
generate a confidential symmetric key that is used for data exchange during data transfer,
the second phase of the protocol. The public key encryption in the handshake phase may
use keys of different lengths; a longer key provides a higher level of security, but the
performance overhead increases. The strength of the symmetric encryption key and message

Software Product Line – Advanced Topic

90

After the user enters concrete values for all the generic performance parameters and selects
an actual processor for each lifeline role provided in the spreadsheets, the second part of the
model transformation takes as input these spreadsheets along with its corresponding
product model, and binds all the generic MARTE tagged values in the product to the
specific values provided in the spreadsheets. The outcome of this part of the transformation
is a specific product model with concrete performance annotations for a specific PC-feature
configuration, which can be further transformed automatically into a performance model.

ReqE Requisition

ContractE Contract OprFundE OprFund

CDBNode

ReqONode

CustE Cust

NetE Net

CustNode

CustDBCustDBELANE LAN

LANNode

NetNode

ReqE Requisition

ContractE Contract OprFundE OprFundLANLANE

ReqNode

CustE Cust

NetE Net

CustNode

NetNode

LANNode

OprFDBE OprFDBContDBE ContDB

ReqDBE ReqDB

ContNode

OprFNode

(2)

Fig. 8. Centralized LQN model Fig. 9. Distributed LQN model

5. Performance analysis
As mentioned before, the derivation of a performance model from a SPL model requires two
model transformations. The first transformation from the annotated SPL model to a product
model with concrete performance annotations while the second one takes the target model
of a concrete product and transforms it into a LQN performance model using the PUMA
transformation approach [Woodside et al., 2005]. This section presents an example of an
LQN performance model for the scenario Create Requisition shown in Fig.5 of a specific B2B
system runs on two different architectures (centralized and distributed). Some performance
analysis experiments conducted with the LQN models obtained for a concrete B2B system
with a given PC-feature configuration is presented as well.

5.1 Performance model

The LQN model [Xu et al., 2003] is an extension of the well-known Queueing Network
model developed for modelling software systems, which able to represent nested services. A
software server often requires services from other servers in order to fulfil the requests of its
own clients. An LQN model consists of a set of tasks that offer services represented by
entries. The entries of a task may send requests to entries of other tasks. Software
components are mapped to tasks while hardware devices mapped to hosts. Graphically, the
software tasks are depicted as thick rectangles and the entries with attached thin rectangles.
The hardware devices are represented as ellipses. LQN is used to model several types of
system behaviour and inter-process communication style.

After obtaining the target model of a concrete product, it will be transformed into a LQN
performance model using the PUMA transformation [Woodside et al., 2005]. The key
performance scenario Create Requisition is transformed into two LQN models shown in Fig.8
and Fig.9 to represent the two different architectures; centralized and distributed,

Integrating Performance Analysis in Software Product Line Development Process

91

respectively. In the centralized architecture, all customer database is allocated to the node
CDBNode while, in the distributed architecture, the customer information is distributed over
the three nodes ReqNode, ContNode, and OprFNode.

5.2 Performance results

Web-based applications, such as an e-commerce system that contains sensitive data and has
many customers, require securing the data transmitted over certain communication
channels. However, adding security may include a performance price. System designers
need to make choices between different security levels and to make security/performance
trade-offs. At the same time, it is important where the data is located in order to fulfill
performance and security requirements. This location problem is examined in two different
architectures: 1) distributed and 2) centralized. In the centralized architecture, all customer
data is contained in one database. The centralized architecture has the advantage that
updating and maintaining the data consistency is easier, but has the disadvantage of
becoming the system bottleneck for large system sizes (when both the number of customers
and the amount of data go up). A distributed architecture represents a solution where
several databases divide the data and the work among them. It has potential for faster
response times and improved performance, but makes the updates and keeping data
consistency more difficult.

In order to illustrate the impact on performance of a secure communication channel between
the browser and the webServer, a performance analysis experiment based on LQN models
derived for B2B systems with different security levels running on two different architectures
(centralized and distributed) is presented.

When a B2B system is generated, a specific configuration has to be selected from the PC-
feature model. The key performance scenario Create Requisition in Fig. 5 is transformed into
the LQN models shown in Fig. 8 and Fig. 9 used for experiments. Two configurations were
chosen. The first configuration is for the centralized architecture where the customer
database is running on the node CDBNode while the roles Requisition, Contracts, and
OperationFund are running on the same node ReqONode as shown in Fig. 8. Furthermore, this
node is linked to the CDBNode through a Local Area Network (LAN) channel with 1.0 ms
latency. The connection between the CustNode and the ReqONode is set up through DSL
Internet channels with 100 ms latency. The data is transmitted uncompressed with an
average message size of 377.6 KB. The CustomerAccount database accesses an external device
(hard disk) with an average read/write time of 77.1 ms. The second configuration is for the
distributed architecture where the roles RequisitionDB, ContDB, and OpFundDB are running
on the different nodes ReqNode, contNode, and optFNode, respectively as shown in Fig. 9.
These nodes are connected through a LAN channel with 1.0 ms latency.

All communication channels in the unsecure system include no security solution, while the
secure system contains certain secure channels using the TLS protocol. TLS has two phases:
the handshake phase is used by the browser and webServer to exchange secrets and to
generate a confidential symmetric key that is used for data exchange during data transfer,
the second phase of the protocol. The public key encryption in the handshake phase may
use keys of different lengths; a longer key provides a higher level of security, but the
performance overhead increases. The strength of the symmetric encryption key and message

Software Product Line – Advanced Topic

92

digest algorithms used by technology to exchange data may also vary, using strong
encryption and authentication algorithms providing higher security. These algorithms are
computationally intensive and add different performance overheads to the system. We used
the data provided in [Menasce et al., 2004] for performance attribute values, which were
obtained from measurements for three levels of security: the handshake overhead is of
10.2ms, 23.8 ms, 48.0 ms, and the data transfer overhead per KB of data is of 0.104 ms, 0.268
ms, 0.609 ms. The fourth case is for an unsecure system.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 5 10 15 20 25 30

R msec

N

R_Non Secured R_Low Secured
R_Medium Secured R_High Secured

0

2000

4000

6000

8000

10000

12000

1 5 10 15 20 25 30

R msec

N

R_Non Secured R_Low Secured
R_Medium Secured R_High Secured

0

500

1000

1500

2000

2500

1 5 10 15 20 25 30

R msec

N

R_Centralized_Non Secured
R_Distributed_Non Secured

a) For centralized architecture b) For distributed architecture

c) For non-secured system

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 5 10 15 20 25 30

R msec

N

R_Centralized_Low Secured
R_Distributed_Low Secured

d) For low level of secured system

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 15 20 25 30

R msec

N

R_Centralized_Medium Secured
R_Distributed_Medium Secured

e) For medium level of secured system

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 5 10 15 20 25 30

R msec

N

R_Centralized_High Secured
R_Distributed_High Secured

e) For high level of secured system
Fig. 10. Response time in function of the number of users

The LQN performance model is analyzed for different numbers of users with an existing
solver [Franks, 2000]. Fig. 10a shows the response time of a user creating a requisition for
different system choices (unsecure system and three security levels) running on centralized
architecture, while Fig. 10b shows the same for a distributed architecture. Fig. 10c-f show the

Integrating Performance Analysis in Software Product Line Development Process

93

response time in function of the number of simultaneous users executing the same scenario
and running on the two different architectures for different levels of security.

The LQN results show that the secure system has a considerable effect on performance, as
the response time for the secure system is much higher than for the unsecure system. As the
number of users increases, the response time increases significantly due to the competition
for resources. The dataStorage feature which is centralized or distributed has also a
significant effect on performance, as the response time for the centralized architecture is
significantly higher than for the distributed architecture for all levels of security.

This brief example illustrates the potential for performance analysis in early development
stages, by allowing developers to analyze trade-off between two non-functional
requirements, performance and security, and to compare the impacts of different design
alternatives on performance. In general, a quantitative performance model helps the analyst
to verify whether a system has the capacity to meet its performance requirements. It also
helps indentifying the performance “hot spots” (e.g., the resources that will saturate first)
and provides guidance for design or configuration changes in order to solve or mitigate the
problems.

6. Conclusions
In this chapter, we propose to integrate performance analysis in the early phases of SPL
model-driven development process. The goal is to help developers to evaluate the system
performance and to choose better design alternatives as early as possible, so that the systems
being built will meet their performance requirements. We start with a multi-view UML
model of core family assets representing the commonality and variability between different
products, which we call the SPL model. We add another dimension to the SPL model,
annotating it with generic performance specifications expressed in the standard UML profile
MARTE. A first model transformation derives the UML model of a specific product with
concrete MARTE performance annotations from the SPL model. A second transformation
generates a Layered Queueing Network performance model for the given product by
applying an existing transformation approach named PUMA, developed in previous work.
To the best of our knowledge, our research is the first to tackle the problem of generating a
performance model for a specific product out of the SPL model. The main research
challenges are rooted in the fact that a SPL model does not represent a uniquely defined
system that could be implemented, run and measured as a whole, so we cannot talk about
analyzing the SPL performance. A SPL model is instead a collection of core, generic asset
models, which are building blocks for many different products with all kind of options and
alternatives. Hence, we need to derive first a given product model with concrete
performance-related details, and then we can consider transforming it into a performance
model that can be used for performance analysis.

An important factor that distinguishes the SPL development from traditional software
systems is variability modeling, a means of expressing the criteria that differentiate between
SPL members. Different approaches for variability modeling have been proposed in
literature, based on different concepts such as: features, variation points and variants, use
case diagrams, or choices and decisions. Our approach employs the feature model to

Software Product Line – Advanced Topic

92

digest algorithms used by technology to exchange data may also vary, using strong
encryption and authentication algorithms providing higher security. These algorithms are
computationally intensive and add different performance overheads to the system. We used
the data provided in [Menasce et al., 2004] for performance attribute values, which were
obtained from measurements for three levels of security: the handshake overhead is of
10.2ms, 23.8 ms, 48.0 ms, and the data transfer overhead per KB of data is of 0.104 ms, 0.268
ms, 0.609 ms. The fourth case is for an unsecure system.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 5 10 15 20 25 30

R msec

N

R_Non Secured R_Low Secured
R_Medium Secured R_High Secured

0

2000

4000

6000

8000

10000

12000

1 5 10 15 20 25 30

R msec

N

R_Non Secured R_Low Secured
R_Medium Secured R_High Secured

0

500

1000

1500

2000

2500

1 5 10 15 20 25 30

R msec

N

R_Centralized_Non Secured
R_Distributed_Non Secured

a) For centralized architecture b) For distributed architecture

c) For non-secured system

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 5 10 15 20 25 30

R msec

N

R_Centralized_Low Secured
R_Distributed_Low Secured

d) For low level of secured system

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 15 20 25 30

R msec

N

R_Centralized_Medium Secured
R_Distributed_Medium Secured

e) For medium level of secured system

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 5 10 15 20 25 30

R msec

N

R_Centralized_High Secured
R_Distributed_High Secured

e) For high level of secured system
Fig. 10. Response time in function of the number of users

The LQN performance model is analyzed for different numbers of users with an existing
solver [Franks, 2000]. Fig. 10a shows the response time of a user creating a requisition for
different system choices (unsecure system and three security levels) running on centralized
architecture, while Fig. 10b shows the same for a distributed architecture. Fig. 10c-f show the

Integrating Performance Analysis in Software Product Line Development Process

93

response time in function of the number of simultaneous users executing the same scenario
and running on the two different architectures for different levels of security.

The LQN results show that the secure system has a considerable effect on performance, as
the response time for the secure system is much higher than for the unsecure system. As the
number of users increases, the response time increases significantly due to the competition
for resources. The dataStorage feature which is centralized or distributed has also a
significant effect on performance, as the response time for the centralized architecture is
significantly higher than for the distributed architecture for all levels of security.

This brief example illustrates the potential for performance analysis in early development
stages, by allowing developers to analyze trade-off between two non-functional
requirements, performance and security, and to compare the impacts of different design
alternatives on performance. In general, a quantitative performance model helps the analyst
to verify whether a system has the capacity to meet its performance requirements. It also
helps indentifying the performance “hot spots” (e.g., the resources that will saturate first)
and provides guidance for design or configuration changes in order to solve or mitigate the
problems.

6. Conclusions
In this chapter, we propose to integrate performance analysis in the early phases of SPL
model-driven development process. The goal is to help developers to evaluate the system
performance and to choose better design alternatives as early as possible, so that the systems
being built will meet their performance requirements. We start with a multi-view UML
model of core family assets representing the commonality and variability between different
products, which we call the SPL model. We add another dimension to the SPL model,
annotating it with generic performance specifications expressed in the standard UML profile
MARTE. A first model transformation derives the UML model of a specific product with
concrete MARTE performance annotations from the SPL model. A second transformation
generates a Layered Queueing Network performance model for the given product by
applying an existing transformation approach named PUMA, developed in previous work.
To the best of our knowledge, our research is the first to tackle the problem of generating a
performance model for a specific product out of the SPL model. The main research
challenges are rooted in the fact that a SPL model does not represent a uniquely defined
system that could be implemented, run and measured as a whole, so we cannot talk about
analyzing the SPL performance. A SPL model is instead a collection of core, generic asset
models, which are building blocks for many different products with all kind of options and
alternatives. Hence, we need to derive first a given product model with concrete
performance-related details, and then we can consider transforming it into a performance
model that can be used for performance analysis.

An important factor that distinguishes the SPL development from traditional software
systems is variability modeling, a means of expressing the criteria that differentiate between
SPL members. Different approaches for variability modeling have been proposed in
literature, based on different concepts such as: features, variation points and variants, use
case diagrams, or choices and decisions. Our approach employs the feature model to

Software Product Line – Advanced Topic

94

represent variability between the family members, but we have also extended the use of
features to express variability in performance completions.

We have considered developing a user-friendly approach. First, a mapping technique for
explicit and implicit mapping of features to model elements is proposed, which aims to
reduce the clutter of variability specifications in the SPL design model. Secondly, dealing
manually with a huge number of generic performance annotations, by asking the developer
to inspect every diagram in the model to extract these annotations in order to provide
concrete binding values is an error-prone process. In this research, we automate the process
of collecting all the generic parameters from the annotated UML model and present them in
a user-friendly format to the user.

7. Acknowledgment
This research was partially supported by Discovery grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Centre of Excellence for
Research in Adaptive Systems (CERAS).

8. References
Atlas Transformation Language (ATL), www.eclipse.org/m2m/atl
Bartholdt, J., Medak, M. & Oberhauser, R. (2009). Integrating Quality Modeling with Feature

Modeling in Software Product Lines, Proceedings of the 4th International Conference on
Software Engineering Advances (ICSEA2009), pp.365-370, 2009.

Belategi, L., Sagardui, G. & Etxeberria, L. (2010). Variability Management in Embedded
Product Line Analysis, Proceedings of the 2nd International Conference on Advances in
System Testing and Validation Lifecycle (VALID‘10), pp. 69-74, Nice, France, 2010.

Belategi, L., Sagardui, G. & Etxeberria, L. (2010). MARTE mechanisms to model variability
when analyzing embedded software product Lines, Proceedings of the 14th
International Conference on Software Product Line (SPLC‘10), pp.466-470, 2010.

Belategi, L., Sagardui, G. & Etxeberria, L. (2011). Model based analysis process for
embedded software product lines, Proceedings of the 2011 International Conference on
Software and Systems Process (ICSSP '11), 2011.

Botterweck, G., Lee, K. & Thiel, S. (2009). Automating Product Derivation in Software
Product Line Engineering, Proceedings of Software Engineering 2009 (SE09), pp 177-
182, Kaiserslautern, Germany, 2009.

Clements, P. C. & Northrop, L. M. (2001). Software Product Lines: Practices and Products,
Addison Wesley.

Cortellessa, V., Di Marco, A. & Inverardi, P. (2007). Non-Functional Modeling and
Validation in Model-Driven Architecture, Proceedings of the 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA07), pp. 25, Mumbai, 2007.

Czarnecki, K. & Antkiewicz, M. (2005). Mapping Features to Models: A Template Approach
Based on Superimposed Variants, Proceedings of the 4th international conference on
Generative Programming and Component Engineering (GPCE), LNCS vol. 3676, pp.
422–437, Springer, 2005.

Integrating Performance Analysis in Software Product Line Development Process

95

Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau S. & Pietroszek, K. (2005). Model-Driven
Software Product Lines, Proceedings of the Object Oriented Programming Systems
Languages and Applications conference, OOPSLA, San Diego, California, 2005.

Czarnecki, K., Helsen, S. & Eisenecker, U. (2005). Formalizing cardinality-based feature
models and their specialization, Software Process Improvement and Practice, pp.
7–29, 2005.

Franks, G. (2000). Performance Analysis of Distributed Server Systems, Report OCIEE-00-01,
PhD. thesis, Carleton University, 2000.

Gamez, N. and Fuentes, L. (2011). Software Product Line Evolution with Cardinality-based
Feature Models, Proceedings of the 12th International conference on Software reuse
(ICSR 2011), pp. 102-118, 2011.

Gomaa, H. (2005). Designing Software Product Lines with UML: From Use Cases to Pattern-based
Software Architectures, Addison-Wesley Object Technology Series, July 2005.

Groher, I. & Voelter, M. (2009). Aspect-Oriented Model-Driven Software Product Line Engi-
neering, Transactions on Aspect-Oriented Software Development (AOSD) VI, LNCS, pp.
111-152, 2009.

Happe, J., Becker, S., Rathfelder, C., Friedrich, H. & Reussner, R. H. (2010). Parametric
performance completions for model-driven performance prediction, Performance
Evaluation, Volume 67 , Issue 8, pp. 694-716, 2010.

Heidenreich, F. &Wende, C. (2007). Bridging the Gap between Features and Models,
Proceedings of the 2nd Workshop on Aspect-Oriented Product Line Engineering
(AOPLE07) co-located with the 6th International Conference on Generative
Programming and Component Engineering (GPCE‟07), 2007.

Heidenreich, F., Kopcsek, J. & Wende, C. (2008). FeatureMapper: Mapping Features to
Models, Proceedings of the 30th International Conference on Software Engineering
(ICSE08), pp. 943-944, New York, NY, USA, 2008.

Istoan, P., Biri, N. & Klein, J. (2011). Issues in Model-Driven Behavioural Product Derivation,
Proceedings of 5th International Workshop on Variability Modelling of Software-intensive
Systems (Vamos 2011), ACM, p. 69-78, Namur, Belgium, 2011.

Menasce, D., Almeida, V. & Dowdy, L. (2004). Performance by Design: Computer Capacity
Planning by Example, Prentice Hall PTR, Upper Saddle River, NJ 07458, 2004.

Object Management Group, “UML: Super-structure”, Version 2.1.2, OMG document
formal/2007-11-02, 2007.

Object Management Group (2011). UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE),Version 1.1, OMG document formal/2011-06-02,
2011.

Raatikainen, M., Niemelä, E., Myllärniemi, V. & Männistö, T. (2008). Svamp – An Integrated
Approach for Modeling Functional and Quality Variability, Proceedings of the 2nd
International Workshop on Variability Modeling of Software-intensive Systems (VaMoS),
2008.

Stoiber, R. & Glinz, M. (2009). Modeling and Managing Tacit Product Line Requirements
Knowledge, Proceedings of the 2nd Interna-tional Workshop on Managing Requirements
Knowledge (MaRK09), at RE'09, Atlanta, USA, 2009.

Street, J. & Gomaa, H. (2006). An Approach to Performance Modeling of Software Product
Lines, Workshop on Modeling and Analysis of Real-Time and Embedded Systems,
Genova, Italy, October 2006.

Software Product Line – Advanced Topic

94

represent variability between the family members, but we have also extended the use of
features to express variability in performance completions.

We have considered developing a user-friendly approach. First, a mapping technique for
explicit and implicit mapping of features to model elements is proposed, which aims to
reduce the clutter of variability specifications in the SPL design model. Secondly, dealing
manually with a huge number of generic performance annotations, by asking the developer
to inspect every diagram in the model to extract these annotations in order to provide
concrete binding values is an error-prone process. In this research, we automate the process
of collecting all the generic parameters from the annotated UML model and present them in
a user-friendly format to the user.

7. Acknowledgment
This research was partially supported by Discovery grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Centre of Excellence for
Research in Adaptive Systems (CERAS).

8. References
Atlas Transformation Language (ATL), www.eclipse.org/m2m/atl
Bartholdt, J., Medak, M. & Oberhauser, R. (2009). Integrating Quality Modeling with Feature

Modeling in Software Product Lines, Proceedings of the 4th International Conference on
Software Engineering Advances (ICSEA2009), pp.365-370, 2009.

Belategi, L., Sagardui, G. & Etxeberria, L. (2010). Variability Management in Embedded
Product Line Analysis, Proceedings of the 2nd International Conference on Advances in
System Testing and Validation Lifecycle (VALID‘10), pp. 69-74, Nice, France, 2010.

Belategi, L., Sagardui, G. & Etxeberria, L. (2010). MARTE mechanisms to model variability
when analyzing embedded software product Lines, Proceedings of the 14th
International Conference on Software Product Line (SPLC‘10), pp.466-470, 2010.

Belategi, L., Sagardui, G. & Etxeberria, L. (2011). Model based analysis process for
embedded software product lines, Proceedings of the 2011 International Conference on
Software and Systems Process (ICSSP '11), 2011.

Botterweck, G., Lee, K. & Thiel, S. (2009). Automating Product Derivation in Software
Product Line Engineering, Proceedings of Software Engineering 2009 (SE09), pp 177-
182, Kaiserslautern, Germany, 2009.

Clements, P. C. & Northrop, L. M. (2001). Software Product Lines: Practices and Products,
Addison Wesley.

Cortellessa, V., Di Marco, A. & Inverardi, P. (2007). Non-Functional Modeling and
Validation in Model-Driven Architecture, Proceedings of the 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA07), pp. 25, Mumbai, 2007.

Czarnecki, K. & Antkiewicz, M. (2005). Mapping Features to Models: A Template Approach
Based on Superimposed Variants, Proceedings of the 4th international conference on
Generative Programming and Component Engineering (GPCE), LNCS vol. 3676, pp.
422–437, Springer, 2005.

Integrating Performance Analysis in Software Product Line Development Process

95

Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau S. & Pietroszek, K. (2005). Model-Driven
Software Product Lines, Proceedings of the Object Oriented Programming Systems
Languages and Applications conference, OOPSLA, San Diego, California, 2005.

Czarnecki, K., Helsen, S. & Eisenecker, U. (2005). Formalizing cardinality-based feature
models and their specialization, Software Process Improvement and Practice, pp.
7–29, 2005.

Franks, G. (2000). Performance Analysis of Distributed Server Systems, Report OCIEE-00-01,
PhD. thesis, Carleton University, 2000.

Gamez, N. and Fuentes, L. (2011). Software Product Line Evolution with Cardinality-based
Feature Models, Proceedings of the 12th International conference on Software reuse
(ICSR 2011), pp. 102-118, 2011.

Gomaa, H. (2005). Designing Software Product Lines with UML: From Use Cases to Pattern-based
Software Architectures, Addison-Wesley Object Technology Series, July 2005.

Groher, I. & Voelter, M. (2009). Aspect-Oriented Model-Driven Software Product Line Engi-
neering, Transactions on Aspect-Oriented Software Development (AOSD) VI, LNCS, pp.
111-152, 2009.

Happe, J., Becker, S., Rathfelder, C., Friedrich, H. & Reussner, R. H. (2010). Parametric
performance completions for model-driven performance prediction, Performance
Evaluation, Volume 67 , Issue 8, pp. 694-716, 2010.

Heidenreich, F. &Wende, C. (2007). Bridging the Gap between Features and Models,
Proceedings of the 2nd Workshop on Aspect-Oriented Product Line Engineering
(AOPLE07) co-located with the 6th International Conference on Generative
Programming and Component Engineering (GPCE‟07), 2007.

Heidenreich, F., Kopcsek, J. & Wende, C. (2008). FeatureMapper: Mapping Features to
Models, Proceedings of the 30th International Conference on Software Engineering
(ICSE08), pp. 943-944, New York, NY, USA, 2008.

Istoan, P., Biri, N. & Klein, J. (2011). Issues in Model-Driven Behavioural Product Derivation,
Proceedings of 5th International Workshop on Variability Modelling of Software-intensive
Systems (Vamos 2011), ACM, p. 69-78, Namur, Belgium, 2011.

Menasce, D., Almeida, V. & Dowdy, L. (2004). Performance by Design: Computer Capacity
Planning by Example, Prentice Hall PTR, Upper Saddle River, NJ 07458, 2004.

Object Management Group, “UML: Super-structure”, Version 2.1.2, OMG document
formal/2007-11-02, 2007.

Object Management Group (2011). UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE),Version 1.1, OMG document formal/2011-06-02,
2011.

Raatikainen, M., Niemelä, E., Myllärniemi, V. & Männistö, T. (2008). Svamp – An Integrated
Approach for Modeling Functional and Quality Variability, Proceedings of the 2nd
International Workshop on Variability Modeling of Software-intensive Systems (VaMoS),
2008.

Stoiber, R. & Glinz, M. (2009). Modeling and Managing Tacit Product Line Requirements
Knowledge, Proceedings of the 2nd Interna-tional Workshop on Managing Requirements
Knowledge (MaRK09), at RE'09, Atlanta, USA, 2009.

Street, J. & Gomaa, H. (2006). An Approach to Performance Modeling of Software Product
Lines, Workshop on Modeling and Analysis of Real-Time and Embedded Systems,
Genova, Italy, October 2006.

Software Product Line – Advanced Topic

96

Tawhid, R. & Petriu, D.C. (2008). Towards Automatic Derivation of a Product Performance
Model from a UML Software Product Line Model, Proceedings of the 2008 ACM Int.
Work-shop on Software Performance (WOSP08), pp. 91-102, 2008.

Tawhid, R. & Petriu, D.C. (2008). Integrating Performance Analysis in the Model Driven
Development of Software Product Lines, Proceedings of MODELS 2008, LNCS Vol.
5301, pp. 490-504, 2008.

Tawhid, R. & Petriu, D.C. (2011). Product Model Derivation by Model Transformation in
Soltware Product Lines, Proc. 2nd IEEE Workshop on Model-based Engineering for Real-
Time Embedded Systems (MoBE-RTES 2011), Newport Beach, CA, USA, 2011.

Tawhid, R. & Petriu, D.C. (2011). Automatic Derivation of a Product Performance Model
from a Software Product Line Model, Proceedings of the 15th International Conference
on Software Product Line (SPLC’11), Munich, Germany, 2011.

Woodside, M., Petriu, D. C. & Siddiqui, K. H. (2002). Performance-related Completions for
Software Specifications, Proceedings of the 22rd International Conference on Software
Engineering, ICSE 2002, pp. 22-32, Orlando, Florida, USA, 2002.

Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T. & Merseguer, J. (2005).
Performance by Unified Model Analysis (PUMA), Proceedings of the 5th ACM
Int.Workshop on Software and Performance WOSP'2005, pp. 1-12, Palma, Spain, 2005.

Xu, J., Woodside, C.M. & Petriu D.C. (2003). Performance Analysis of a Software Design
using the UML Profile for Schedulability, Performance and Time, TOOLS'2003,
(P.Kemper and W.Sanders, eds.) Springer LNCS Vol. 2794, pp.291-307, 2003.

5

Defects in Product Line Models
and How to Identify Them

Camille Salinesi and Raúl Mazo
CRI, Panthéon Sorbonne University

France

1. Introduction
The history of software and system development shows that abstraction plays a major role
in making complexity manageable (Bosch 2000). Thus, abstracting the common and variable
artefacts of an undefined collection of products and organising them into a model may be a
good option to manage the complexity of a product line. Product line models improve
decision-making processes. In addition, the representation of PLMs in different views
improves communication of the actors participating in the product line management
(Finkelstein et al. 1992). Nuseibeh et al. (1994) describe views as partial representations of a
system and its domain.

Several approaches have been found in literature to represent commonality and variability
of a product line. Most of the approaches use features (Kang et al. 1990) as the central
concept of product line models. However, other modelling approaches exist like Orthogonal
Variability Models (OVM, cf. Pohl et al. 2005), Dopler variability models (Dhungana et al.
2010), Textual Variability Language (TVL, cf. Boucher et al. 2010 and Classen et al. 2010),
and constraint-based product line language (Djebbi et al. 2007, Mazo et al. 2011e; Salinesi et
al. 2010b; 2011).

Quality assurance of PLMs has recently been a prominent topic for researchers and
practitioners in the context of product lines. Identification and correction of PLMs defects, is
vital for efficient management and exploitation of the product line. Defects that are not
identified or not corrected will inevitably spread to the products created from the product
line, which can drastically diminish the benefits of the product line approach (Von der
Maßen and Lichter 2004, Benavides 2007). Besides, product line modeling is an error-prone
activity. Indeed, a product line specification represents not one, but an undefined collection
of products that may even fulfil contradictory requirements (Lauenroth et al. 2010). The
aforementioned problems enforce the urgent need of early identification and correction of
defects in the context of product lines.

Product line models quality has been an intensive research topic over the last ten years (Von
der Maßen & Lichter 2004; Zhang et al. 2004; Batory 2005; Czarnecki & Pietroszek 2006;
Benavides 2007; Janota & Kiniry 2007; Lauenroth & Pohl 2007; Trinidad et al. 2008; Van den
Broek & Galvão 2009; Elfaki et al. 2009; Kim et al. 2011; Liu et al. 2011). Usually, to guaranty a
certain level of quality of a model, this one must be verified against a collection of criteria

Software Product Line – Advanced Topic

96

Tawhid, R. & Petriu, D.C. (2008). Towards Automatic Derivation of a Product Performance
Model from a UML Software Product Line Model, Proceedings of the 2008 ACM Int.
Work-shop on Software Performance (WOSP08), pp. 91-102, 2008.

Tawhid, R. & Petriu, D.C. (2008). Integrating Performance Analysis in the Model Driven
Development of Software Product Lines, Proceedings of MODELS 2008, LNCS Vol.
5301, pp. 490-504, 2008.

Tawhid, R. & Petriu, D.C. (2011). Product Model Derivation by Model Transformation in
Soltware Product Lines, Proc. 2nd IEEE Workshop on Model-based Engineering for Real-
Time Embedded Systems (MoBE-RTES 2011), Newport Beach, CA, USA, 2011.

Tawhid, R. & Petriu, D.C. (2011). Automatic Derivation of a Product Performance Model
from a Software Product Line Model, Proceedings of the 15th International Conference
on Software Product Line (SPLC’11), Munich, Germany, 2011.

Woodside, M., Petriu, D. C. & Siddiqui, K. H. (2002). Performance-related Completions for
Software Specifications, Proceedings of the 22rd International Conference on Software
Engineering, ICSE 2002, pp. 22-32, Orlando, Florida, USA, 2002.

Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T. & Merseguer, J. (2005).
Performance by Unified Model Analysis (PUMA), Proceedings of the 5th ACM
Int.Workshop on Software and Performance WOSP'2005, pp. 1-12, Palma, Spain, 2005.

Xu, J., Woodside, C.M. & Petriu D.C. (2003). Performance Analysis of a Software Design
using the UML Profile for Schedulability, Performance and Time, TOOLS'2003,
(P.Kemper and W.Sanders, eds.) Springer LNCS Vol. 2794, pp.291-307, 2003.

5

Defects in Product Line Models
and How to Identify Them

Camille Salinesi and Raúl Mazo
CRI, Panthéon Sorbonne University

France

1. Introduction
The history of software and system development shows that abstraction plays a major role
in making complexity manageable (Bosch 2000). Thus, abstracting the common and variable
artefacts of an undefined collection of products and organising them into a model may be a
good option to manage the complexity of a product line. Product line models improve
decision-making processes. In addition, the representation of PLMs in different views
improves communication of the actors participating in the product line management
(Finkelstein et al. 1992). Nuseibeh et al. (1994) describe views as partial representations of a
system and its domain.

Several approaches have been found in literature to represent commonality and variability
of a product line. Most of the approaches use features (Kang et al. 1990) as the central
concept of product line models. However, other modelling approaches exist like Orthogonal
Variability Models (OVM, cf. Pohl et al. 2005), Dopler variability models (Dhungana et al.
2010), Textual Variability Language (TVL, cf. Boucher et al. 2010 and Classen et al. 2010),
and constraint-based product line language (Djebbi et al. 2007, Mazo et al. 2011e; Salinesi et
al. 2010b; 2011).

Quality assurance of PLMs has recently been a prominent topic for researchers and
practitioners in the context of product lines. Identification and correction of PLMs defects, is
vital for efficient management and exploitation of the product line. Defects that are not
identified or not corrected will inevitably spread to the products created from the product
line, which can drastically diminish the benefits of the product line approach (Von der
Maßen and Lichter 2004, Benavides 2007). Besides, product line modeling is an error-prone
activity. Indeed, a product line specification represents not one, but an undefined collection
of products that may even fulfil contradictory requirements (Lauenroth et al. 2010). The
aforementioned problems enforce the urgent need of early identification and correction of
defects in the context of product lines.

Product line models quality has been an intensive research topic over the last ten years (Von
der Maßen & Lichter 2004; Zhang et al. 2004; Batory 2005; Czarnecki & Pietroszek 2006;
Benavides 2007; Janota & Kiniry 2007; Lauenroth & Pohl 2007; Trinidad et al. 2008; Van den
Broek & Galvão 2009; Elfaki et al. 2009; Kim et al. 2011; Liu et al. 2011). Usually, to guaranty a
certain level of quality of a model, this one must be verified against a collection of criteria

Software Product Line – Advanced Topic

98

and then, these defects must be corrected. Verifying PLMs entails finding undesirable
properties, such as redundancies, anomalies or inconsistencies (Von der Maßen et al. 2004).
It is widely accepted that manual verification is already tedious and error-prone (Benavides
et al. 2005). This is even worst when several (often millions) of products are represented
altogether in a single specification. Several approaches to automate verification of PLMs
have been proposed in order to overcome this limitation. However, despite the relative
success of these approaches, there is still a number of pending issues that have motivated
the proposal developed in this chapter:

1. Quality assurance techniques from the development of single systems cannot be
directly applied to product line specifications because these specifications contain
variability. As shows the example presented by Lauenroth et al. (2010), a product line
may contain requirements R and ¬R at the same time. When a traditional technique is
used for verifying this specification, even though those requirements are not included
for the same product, a contradiction would be identified since the requirements R and
¬R cannot be fulfilled together. Therefore, it is necessary to take into account the
variability of the product line to check whether contradictory requirements can really
be part of the same product.

2. The current state of the art on verification is mainly focused on feature models (Kang et
al. 1990). Only properties that can be evaluated over feature models represented as
boolean expressions are considered in these works. This brushes aside the non-boolean
elements of the more sophisticated product line specification formalisms (e.g., integer
cardinalities, attributes and complex constraints; cf. Mazo et al. 2011d, Salinesi et al.
2010b, 2011). Current approaches restrict the verification operations to those that can be
solved by boolean solvers. The verification is guided by the pre-selected technology and
not by the verification requirements themselves. As a result, verification techniques are
designed for a limited number of formalisms. These verification techniques are
inadequate for many of the existing formalisms, included some used in an industrial
context (Djebbi et al. 2007; Dhungana et al. 2010).

3. Inadequate support for multi-model specification. The size and complexity of industrial
product line models motivates the development of this one by heterogeneous teams
(Dhungana et al. 2006; Segura 2008). Nevertheless, existing tools provide only little
support for integrating the models developed by different teams and the subsequent
verification of the global model and configurations of products from that model. For
instance, a global model that integrates two models must itself have no defects resulting
from the integration.

Also in the context of PLs specified with several models, we have identified in our literature
review a weak support for verifying the global view of the product line. A product line
model has to change over time and in multi-model PLs a change on one of the models can
make the global view inconsistent. To the best of our knowledge, existing tools do not
provide automated mechanisms for detecting errors on the global PLM as a result of the
changes in the different models of the PLM.

This chapter addresses the fourth problem situations aforementioned. To tackle these
situations, we present in Section 2 the most relevant concepts used in this chapter, a
literature review of related works and the running example to be used in the rest of the
chapter. Section 3 presents our typology of verification criteria, which is developed in

Defects in Product Line Models and How to Identify Them

99

Section 4 for the case of single-view product line models, and Section 5 for the case of multi-
view product line models. Section 6 presents the evaluation of the approach presented in
this chapter.

2. Background and running example
This section presents a literature review on verification of product line models and the
corresponding analysis regarding the gaps and challenges identified in each approach. This
section also presents a UNIX product line and the corresponding model of the whole or a
part of the PL in three different PL modeling languages. The UNIX PL will be used in the
rest of this chapter as our running example.

2.1 Verification of product line models

Verifying PLMs entails several aspects. On the one hand, a product line model,
independently of the language used to express it, must respect certain properties associated
with the domain of product lines. On the other hand, certain properties are associated with
the concepts used in the language in which it is expressed. Therefore, some properties of
PLMs are independent of the language while other ones are particular to each language.
Thus, product line models can be verified from two different points of view. This chapter
proposes an approach for PLM verification (Von der Maßen & Lichter 2004; Lauenroth &
Pohl 2007; Mendonça et al. 2009) in with the engineer selects the verification operations that
he/she want to use according to the language in which the model(s) to be verified are
specified. In this approach, verification consists in “finding undesirable properties, such as
redundant or contradictory information” (Trinidad et al. 2008). For instance, PLMs should
not be void (i.e., they should allow to configure more than one product) and for the
languages with the concept of optionality, elements modeled as optional must be really
optional (i.e., they should not appear in all the products configured from the PLM).

2.2 Related work

Von der Maßen & Lichter (2004) present an approach to identify redundancies, anomalies
and inconsistencies. According to the authors, a feature model contains redundancy, “if at
least one semantic information is modeled in a multiple way”; anomalies, “if potential
configurations are being lost, though these configurations should be possible”; and
inconsistencies, “if the model includes contradictory information”. Several cases of
redundancies, anomalies and inconsistencies on FMs are identified. In order to validate the
approach, the authors use RequiLine, a tool that allows detecting inconsistencies on the
domain and on the product configuration level (Von der Maßen & Lichter 2003). The
approach was evaluated in “a small local software company” and “in a global player of the
automotive industry”. However no information about the automating detection of
redundancies and anomalies, no details about the sizes of the models or about the
technology used to automate the approach or about the results obtained were provided.

Whereas Batory (2005) used grammar and propositional formulas to represent basic FMs
and enable truth maintenance systems and SAT solvers to identify contradictory (or
inconsistency) predicates to verify that a given combination of features effectively defines a
product. In the same line as Batory, Hemakumar (2008) proposed a dynamic solution to find

Software Product Line – Advanced Topic

98

and then, these defects must be corrected. Verifying PLMs entails finding undesirable
properties, such as redundancies, anomalies or inconsistencies (Von der Maßen et al. 2004).
It is widely accepted that manual verification is already tedious and error-prone (Benavides
et al. 2005). This is even worst when several (often millions) of products are represented
altogether in a single specification. Several approaches to automate verification of PLMs
have been proposed in order to overcome this limitation. However, despite the relative
success of these approaches, there is still a number of pending issues that have motivated
the proposal developed in this chapter:

1. Quality assurance techniques from the development of single systems cannot be
directly applied to product line specifications because these specifications contain
variability. As shows the example presented by Lauenroth et al. (2010), a product line
may contain requirements R and ¬R at the same time. When a traditional technique is
used for verifying this specification, even though those requirements are not included
for the same product, a contradiction would be identified since the requirements R and
¬R cannot be fulfilled together. Therefore, it is necessary to take into account the
variability of the product line to check whether contradictory requirements can really
be part of the same product.

2. The current state of the art on verification is mainly focused on feature models (Kang et
al. 1990). Only properties that can be evaluated over feature models represented as
boolean expressions are considered in these works. This brushes aside the non-boolean
elements of the more sophisticated product line specification formalisms (e.g., integer
cardinalities, attributes and complex constraints; cf. Mazo et al. 2011d, Salinesi et al.
2010b, 2011). Current approaches restrict the verification operations to those that can be
solved by boolean solvers. The verification is guided by the pre-selected technology and
not by the verification requirements themselves. As a result, verification techniques are
designed for a limited number of formalisms. These verification techniques are
inadequate for many of the existing formalisms, included some used in an industrial
context (Djebbi et al. 2007; Dhungana et al. 2010).

3. Inadequate support for multi-model specification. The size and complexity of industrial
product line models motivates the development of this one by heterogeneous teams
(Dhungana et al. 2006; Segura 2008). Nevertheless, existing tools provide only little
support for integrating the models developed by different teams and the subsequent
verification of the global model and configurations of products from that model. For
instance, a global model that integrates two models must itself have no defects resulting
from the integration.

Also in the context of PLs specified with several models, we have identified in our literature
review a weak support for verifying the global view of the product line. A product line
model has to change over time and in multi-model PLs a change on one of the models can
make the global view inconsistent. To the best of our knowledge, existing tools do not
provide automated mechanisms for detecting errors on the global PLM as a result of the
changes in the different models of the PLM.

This chapter addresses the fourth problem situations aforementioned. To tackle these
situations, we present in Section 2 the most relevant concepts used in this chapter, a
literature review of related works and the running example to be used in the rest of the
chapter. Section 3 presents our typology of verification criteria, which is developed in

Defects in Product Line Models and How to Identify Them

99

Section 4 for the case of single-view product line models, and Section 5 for the case of multi-
view product line models. Section 6 presents the evaluation of the approach presented in
this chapter.

2. Background and running example
This section presents a literature review on verification of product line models and the
corresponding analysis regarding the gaps and challenges identified in each approach. This
section also presents a UNIX product line and the corresponding model of the whole or a
part of the PL in three different PL modeling languages. The UNIX PL will be used in the
rest of this chapter as our running example.

2.1 Verification of product line models

Verifying PLMs entails several aspects. On the one hand, a product line model,
independently of the language used to express it, must respect certain properties associated
with the domain of product lines. On the other hand, certain properties are associated with
the concepts used in the language in which it is expressed. Therefore, some properties of
PLMs are independent of the language while other ones are particular to each language.
Thus, product line models can be verified from two different points of view. This chapter
proposes an approach for PLM verification (Von der Maßen & Lichter 2004; Lauenroth &
Pohl 2007; Mendonça et al. 2009) in with the engineer selects the verification operations that
he/she want to use according to the language in which the model(s) to be verified are
specified. In this approach, verification consists in “finding undesirable properties, such as
redundant or contradictory information” (Trinidad et al. 2008). For instance, PLMs should
not be void (i.e., they should allow to configure more than one product) and for the
languages with the concept of optionality, elements modeled as optional must be really
optional (i.e., they should not appear in all the products configured from the PLM).

2.2 Related work

Von der Maßen & Lichter (2004) present an approach to identify redundancies, anomalies
and inconsistencies. According to the authors, a feature model contains redundancy, “if at
least one semantic information is modeled in a multiple way”; anomalies, “if potential
configurations are being lost, though these configurations should be possible”; and
inconsistencies, “if the model includes contradictory information”. Several cases of
redundancies, anomalies and inconsistencies on FMs are identified. In order to validate the
approach, the authors use RequiLine, a tool that allows detecting inconsistencies on the
domain and on the product configuration level (Von der Maßen & Lichter 2003). The
approach was evaluated in “a small local software company” and “in a global player of the
automotive industry”. However no information about the automating detection of
redundancies and anomalies, no details about the sizes of the models or about the
technology used to automate the approach or about the results obtained were provided.

Whereas Batory (2005) used grammar and propositional formulas to represent basic FMs
and enable truth maintenance systems and SAT solvers to identify contradictory (or
inconsistency) predicates to verify that a given combination of features effectively defines a
product. In the same line as Batory, Hemakumar (2008) proposed a dynamic solution to find

Software Product Line – Advanced Topic

100

contradictions, “where errors can be detected during usage and silently reported to model
designers”. The author proposes an incremental consistency algorithm that incrementally
verifies some contradiction properties. The approach consists in verify that a model is
contradiction-free if it is k-contradiction free for all k where 0<k≤n (A feature model is k-
contradiction free if every selection of k features does not expose a contradiction, for
example: “unconditionally” dead features are exposed when k=1). When k=n, where n is the
number of user selectable features, the model has been proven to be contradiction free.
However, the incremental consistency algorithm has important practical limits because it is
limited to “verify contradiction freedom of models with about 20 or fewer features”.

In (Benavides et al. 2005a; 2005b; 2006; 2007; Trinidad et al. 2008), authors transform FODA
models with and without attributes into Boolean expressions. These expressions are
executed on Constraint Satisfaction Problem (CSP), Satisfiability (SAT) and Binary Decision
Diagrams (BDD) solvers in order to execute analysis and verification operations over feature
models. In (Benavides et al. 2006) the relationships of the FM are represented as ifThenElse
constrains on CPS. Despite the originality of this proposal, the constraint representing a
feature cardinality (m,n) between the father feature A and its child B (according to their
notation: ifThenElse(A=0;B=0;B in {n,m})) does not consider that the feature A can itself have
a feature cardinality, and in this case the semantic of feature cardinalities is not well
represented in the constraint. Authors performed a comparative test between two off–the–
shelf CSP Java solvers (JaCoP and Choco). The experiment was executed on five FMs with
up to 52 features and in both solvers. The time to get one solution seemed to be linear and
the time to get all solutions seemed to be exponential.

Janota & Kiniry (2007) have formalized in higher-order logic (HOL) a “feature model meta-
model” that integrates properties of several feature modeling approaches such as attributes
and cardinalities. Once the model represented in HOL, author have formulated HOL
expressions for root selectivity, existence of a path of selected features from the root to a
feature that has been selected, and cardinality satisfaction of a selected feature that each
feature model must respect. The approach has been implemented in Mobius program
verification environment, an Eclipse-based platform for designing, testing, performing various
kinds of verification of Java programs and bytecode. Nevertheless, the paper does not
provide evidence about the evaluation of the approach, its scalability and its applicability to
real cases.

Trinidad et al. (2008) mapped FMs into CSP in order to find and diagnose three types of
errors: (i) “dead features” are non-selectable features (features that do not appear in any
product); (ii) “false optional features”, which are features that in spite of being modeled as
optional, are always chosen whenever their parents are chosen; and (iii) “void models”;a
feature model is said to be void if no product can be defined from it. The goal of Trinidad et
al. is to detect the above three errors and provide explanations for the cause of these errors.
In order to achieve the first goal, authors transform the FM into a CSP expression and then,
to query the Choco solver (by means of the FaMa tool) to find the errors. The approach has
been evaluated on five FMs up to 86 features. Unfortunately, no details about the scalability
and the efficiency of the approach and tool are provided.

Van der Storm (2007) transformed feature diagrams into BDDs in order to check
configurations, obtain valid configurations and check consistency of the feature diagram.

Defects in Product Line Models and How to Identify Them

101

Checking the consistency of the feature diagram consists in checking the satisfiability for the
BDD logical formulas. Unfortunately, neither details about implementation nor performance
nor scalability of the approach are provided in the paper.

Yan et al. (2009) proposed an approach that consists in eliminating verification-irrelevant
features and constraints from FMs in order to reduce the problem size of verification, and
alleviate the state-space explosion problem. The authors carried out an experiment in which
they generated FMs with up to 1900 features. The authors verified the consistency of models
and showed that verification is faster when the redundant features had been eliminated. The
problem with this approach is that it only considers as redundant, the constraints that
contain redundant features, whereas it does not consider typical redundancies such as
domain overlapping or cyclic relationships (Salinesi et al. 2010; Mazo et al. 2011). Besides, (i)
the validation of the approach was done with in-house and random build features models,
which does not guaranty that the approach works with real world feature models; and (ii)
the details about the formalisation and implementation of the approach are not revealed.

Van den Broek & Galvão (2009) analyze FODA product line models using generalized
feature trees. In their approach they translate FMs into feature trees plus additional
constraints. Once FMs represented in the functional programming language Miranda, they
detect the existence of products (void models), dead features and minimal set of conflicting
constraints. In FMs with cross-tree constraints, the function to find the number of products
belongs to O(N*2M), where N is the number of features and M is the number of cross-tree
constraints. Unfortunatelly, no evaluation of the theoretical calculations of efficiency is
reported in the paper. The approach was validated with a feature tree of 13 features and two
cross-tree constraints, which is not enough to evaluate the scalability and the usability of the
approach on industrial models.

Elfaki et al. (2009) propose to use FOL to detect dead features and inconsistencies due to
contradictions between include-type and exclude-type relationships in FMs. The innovative
point of their work is the suggestion of expressions dealing with both individuals and sets of
features.

SPLOT (Mendonca et al. 2009b) is a Web-based reasoning and configuration system for
feature models supporting group-cardinalities instead of alternative and or-relations. The
system maps feature models into propositional logic formulas and uses boolean-based
techniques such as BDD and SAT solvers to verify the validity of models (not void) and find
dead features.

2.3 Running example

The example taken in this chapter is that of the UNIX operating system, initially presented
in (Mazo et al. 2011d). UNIX was first developed in the 1960s, and has been under constant
development ever since. As other operating systems, it is a suite of programs that makes
computers work. In particular, UNIX is a stable, multi-user and multi-tasking system for
many different types of computing devices such as servers, desktops, laptops, down to
embedded calculators, routers, or even mobile phones. There are many different versions of
UNIX, although they share common similarities. The most popular varieties of UNIX are
Sun Solaris, Berkeley (BSD), GNU/Linux, and MacOS X.

Software Product Line – Advanced Topic

100

contradictions, “where errors can be detected during usage and silently reported to model
designers”. The author proposes an incremental consistency algorithm that incrementally
verifies some contradiction properties. The approach consists in verify that a model is
contradiction-free if it is k-contradiction free for all k where 0<k≤n (A feature model is k-
contradiction free if every selection of k features does not expose a contradiction, for
example: “unconditionally” dead features are exposed when k=1). When k=n, where n is the
number of user selectable features, the model has been proven to be contradiction free.
However, the incremental consistency algorithm has important practical limits because it is
limited to “verify contradiction freedom of models with about 20 or fewer features”.

In (Benavides et al. 2005a; 2005b; 2006; 2007; Trinidad et al. 2008), authors transform FODA
models with and without attributes into Boolean expressions. These expressions are
executed on Constraint Satisfaction Problem (CSP), Satisfiability (SAT) and Binary Decision
Diagrams (BDD) solvers in order to execute analysis and verification operations over feature
models. In (Benavides et al. 2006) the relationships of the FM are represented as ifThenElse
constrains on CPS. Despite the originality of this proposal, the constraint representing a
feature cardinality (m,n) between the father feature A and its child B (according to their
notation: ifThenElse(A=0;B=0;B in {n,m})) does not consider that the feature A can itself have
a feature cardinality, and in this case the semantic of feature cardinalities is not well
represented in the constraint. Authors performed a comparative test between two off–the–
shelf CSP Java solvers (JaCoP and Choco). The experiment was executed on five FMs with
up to 52 features and in both solvers. The time to get one solution seemed to be linear and
the time to get all solutions seemed to be exponential.

Janota & Kiniry (2007) have formalized in higher-order logic (HOL) a “feature model meta-
model” that integrates properties of several feature modeling approaches such as attributes
and cardinalities. Once the model represented in HOL, author have formulated HOL
expressions for root selectivity, existence of a path of selected features from the root to a
feature that has been selected, and cardinality satisfaction of a selected feature that each
feature model must respect. The approach has been implemented in Mobius program
verification environment, an Eclipse-based platform for designing, testing, performing various
kinds of verification of Java programs and bytecode. Nevertheless, the paper does not
provide evidence about the evaluation of the approach, its scalability and its applicability to
real cases.

Trinidad et al. (2008) mapped FMs into CSP in order to find and diagnose three types of
errors: (i) “dead features” are non-selectable features (features that do not appear in any
product); (ii) “false optional features”, which are features that in spite of being modeled as
optional, are always chosen whenever their parents are chosen; and (iii) “void models”;a
feature model is said to be void if no product can be defined from it. The goal of Trinidad et
al. is to detect the above three errors and provide explanations for the cause of these errors.
In order to achieve the first goal, authors transform the FM into a CSP expression and then,
to query the Choco solver (by means of the FaMa tool) to find the errors. The approach has
been evaluated on five FMs up to 86 features. Unfortunately, no details about the scalability
and the efficiency of the approach and tool are provided.

Van der Storm (2007) transformed feature diagrams into BDDs in order to check
configurations, obtain valid configurations and check consistency of the feature diagram.

Defects in Product Line Models and How to Identify Them

101

Checking the consistency of the feature diagram consists in checking the satisfiability for the
BDD logical formulas. Unfortunately, neither details about implementation nor performance
nor scalability of the approach are provided in the paper.

Yan et al. (2009) proposed an approach that consists in eliminating verification-irrelevant
features and constraints from FMs in order to reduce the problem size of verification, and
alleviate the state-space explosion problem. The authors carried out an experiment in which
they generated FMs with up to 1900 features. The authors verified the consistency of models
and showed that verification is faster when the redundant features had been eliminated. The
problem with this approach is that it only considers as redundant, the constraints that
contain redundant features, whereas it does not consider typical redundancies such as
domain overlapping or cyclic relationships (Salinesi et al. 2010; Mazo et al. 2011). Besides, (i)
the validation of the approach was done with in-house and random build features models,
which does not guaranty that the approach works with real world feature models; and (ii)
the details about the formalisation and implementation of the approach are not revealed.

Van den Broek & Galvão (2009) analyze FODA product line models using generalized
feature trees. In their approach they translate FMs into feature trees plus additional
constraints. Once FMs represented in the functional programming language Miranda, they
detect the existence of products (void models), dead features and minimal set of conflicting
constraints. In FMs with cross-tree constraints, the function to find the number of products
belongs to O(N*2M), where N is the number of features and M is the number of cross-tree
constraints. Unfortunatelly, no evaluation of the theoretical calculations of efficiency is
reported in the paper. The approach was validated with a feature tree of 13 features and two
cross-tree constraints, which is not enough to evaluate the scalability and the usability of the
approach on industrial models.

Elfaki et al. (2009) propose to use FOL to detect dead features and inconsistencies due to
contradictions between include-type and exclude-type relationships in FMs. The innovative
point of their work is the suggestion of expressions dealing with both individuals and sets of
features.

SPLOT (Mendonca et al. 2009b) is a Web-based reasoning and configuration system for
feature models supporting group-cardinalities instead of alternative and or-relations. The
system maps feature models into propositional logic formulas and uses boolean-based
techniques such as BDD and SAT solvers to verify the validity of models (not void) and find
dead features.

2.3 Running example

The example taken in this chapter is that of the UNIX operating system, initially presented
in (Mazo et al. 2011d). UNIX was first developed in the 1960s, and has been under constant
development ever since. As other operating systems, it is a suite of programs that makes
computers work. In particular, UNIX is a stable, multi-user and multi-tasking system for
many different types of computing devices such as servers, desktops, laptops, down to
embedded calculators, routers, or even mobile phones. There are many different versions of
UNIX, although they share common similarities. The most popular varieties of UNIX are
Sun Solaris, Berkeley (BSD), GNU/Linux, and MacOS X.

Software Product Line – Advanced Topic

102

The UNIX operating system is made up of three parts: the kernel, the shell and the
programs; and two constituent elements: files and processes. Thus, these three parts consist
in a collection of files and processes allowing interaction among the parts. The kernel of
UNIX is the hub of the operating system: it allocates time and memory to programs and
handles the file-store and communications in response to system calls. The shell acts as an
interface between the user and the kernel, interprets the commands (programs) typed in by
users and arranges for them to be carried out. As an illustration of the way the shell, the
programs and the kernel work together, suppose a user types rm myfile (which has the effect
of removing the file myfile). The shell searches the file-store for the file containing the
program rm, and then requests the kernel, through system calls, to execute the program rm
on myfile. The process rm removes myfile using a specific system-call. When the process rm
myfile has finished running, the shell gives the user the possibility to execute further
commands.

As for any product line, our example emphasizes the common and variable elements of the
UNIX family and the constraints among these elements. This example is built from our
experience with UNIX operating systems and it does not pretend to be exhaustive, neither
on the constituent elements nor on the constraints among these elements. The idea with this
PL is, for instance, to look at what utility programs or what kinds of interfaces are available
for a particular user. This PL is composed of the following six constraints:

Constraint 1. UNIX can be installed or not and the installation can be from a CDROM, a
USB device or from the NET.

Constraint 2. UNIX provides several hundred UTILITY PROGRAMS for each user. The
collection of UTILITY PROGRAMS varies even when the UNIX product is full-
configured.

Constraint 3. The SHELL is a kind of UTILITY PROGRAM. Different USERS may use
different SHELLS. Initially, each USER has a default shell, which can be overridden or
changed by users. Some common SHELLS are:

 Bourne shell (SH)
 TC Shell (TCSH)
 Bourne Again Shell (BASH)
For the sake of simplicity will consider only two users in this running example:
ROOT_USER and GUEST_USER.

Constraint 4. Some functions accomplished by the UTILITY PROGRAMS are:

 EDITING (mandatory and requires USER INTERFACE)
 FILE MAINTENANCE (mandatory and requires USER INTERFACE)
 PROGRAMMING SUPPORT (optional and requires USER INTERFACE)
 ONLINE INFO (optional and requires USER INTERFACE)

Constraint 5. The USER INTERFACE can be GRAPHICAL and/or TEXTUAL.

Constraint 6. The GRAPHICAL interface is characterized by a WIDTH RESOLUTION
and a HEIGHT RESOLUTION that can have the following couples of values [800,600],
[1024,768] and [1366,768].

Defects in Product Line Models and How to Identify Them

103

2.3.1 Representation of the UNIX product line as a feature model

Feature Models (FMs) were first introduced in 1990 as a part of the Feature-Oriented Domain
Analysis (FODA) method (Kang et al. 2002) as a means to represent the commonalities and
variabilities of PLs. Since then, feature modeling has become a de facto standard adopted by
the software product line community and several extensions have been proposed to
improve and enrich their expressiveness. A FM defines the valid combinations of features in
a PL, and is depicted as a graph-like structure in which nodes represent features, and edges
the relationships between them (Kang et al. 2002). Two of these extensions are cardinalities
(Riebisch et al. 2002; Czarnecki et al. 2005) and attributes (Streitferdt et al. 2003; White et al.
2009). Although there is no consensus on a notation to define attributes, most proposals
agree that an attribute is a variable with a name, a domain and a value. Attributes are
integers, enumerations, and boolean values representing important properties of a feature;
as for instance the price, the cost, the width, the height or the time spent to build the
corresponding feature. In this chapter we use the group cardinalities grouping bundles of
features (cf. Cdrom, Usb and Net in Figure 1). We use the semantic of feature models
proposed by (Schobbens et al. 2007).

The elements of the FM notation used in this chapter are presented and exemplified as
follows:

 Feature: A feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system (Kang et al. 1990). For the sake of simplicity FMs
usually comport only the name of the feature; for instance Editing in Figure 1. Every
FM must have one root, which is called root feature and identifies the product line; for
example UNIX in Figure 1.

 Attribute: Although there is no consensus on a notation to define attributes, most
proposals agree that an attribute is a variable with a name (Name), a domain (Domain),
and a value (consistent with the domain) at a given configuration time. From a technical
point of view an attribute must to be differentiated from the other ones by an identifier
(IdAttribute). For instance in Figure 1, WidthResolution and HeightResolution are two
attributes with a domain determined by the constraint at the bottom of the model.

 Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory relationship
between F1 and F2 means that if the F1 is selected, then F2 must be selected too and vice
versa. For instance in Figure 1, features UtilityProgram and Editing are related by a
mandatory relationship.

 Optional: Given two features F1 and F2, F1 father of F2, an optional relationship
between F1 and F2 means that if F1 is selected then F2 can be selected or not. However,
if F2 is selected, then F1 must also be selected. For instance in Figure 1, features UNIX
and UtilityProgram are related by an optional relationship.

 Requires: Given two features F1 and F2, F1 requires F2 means that if F1 is selected in
product, then F2 has to be selected too. Additionally, it means that F2 can be selected
even when F1 is not. For instance, Editing requires UserInterface (cf. Figure 1).

 Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then
F2 cannot to be selected in the same product. This relationship is bi-directional: if F2 is
selected, then F1 cannot to be selected in the same product.

 Group cardinality: A group cardinality is an interval denoted <n..m>, with n as lower
bound and m as upper bound limiting the number of child features that can be part of a

Software Product Line – Advanced Topic

102

The UNIX operating system is made up of three parts: the kernel, the shell and the
programs; and two constituent elements: files and processes. Thus, these three parts consist
in a collection of files and processes allowing interaction among the parts. The kernel of
UNIX is the hub of the operating system: it allocates time and memory to programs and
handles the file-store and communications in response to system calls. The shell acts as an
interface between the user and the kernel, interprets the commands (programs) typed in by
users and arranges for them to be carried out. As an illustration of the way the shell, the
programs and the kernel work together, suppose a user types rm myfile (which has the effect
of removing the file myfile). The shell searches the file-store for the file containing the
program rm, and then requests the kernel, through system calls, to execute the program rm
on myfile. The process rm removes myfile using a specific system-call. When the process rm
myfile has finished running, the shell gives the user the possibility to execute further
commands.

As for any product line, our example emphasizes the common and variable elements of the
UNIX family and the constraints among these elements. This example is built from our
experience with UNIX operating systems and it does not pretend to be exhaustive, neither
on the constituent elements nor on the constraints among these elements. The idea with this
PL is, for instance, to look at what utility programs or what kinds of interfaces are available
for a particular user. This PL is composed of the following six constraints:

Constraint 1. UNIX can be installed or not and the installation can be from a CDROM, a
USB device or from the NET.

Constraint 2. UNIX provides several hundred UTILITY PROGRAMS for each user. The
collection of UTILITY PROGRAMS varies even when the UNIX product is full-
configured.

Constraint 3. The SHELL is a kind of UTILITY PROGRAM. Different USERS may use
different SHELLS. Initially, each USER has a default shell, which can be overridden or
changed by users. Some common SHELLS are:

 Bourne shell (SH)
 TC Shell (TCSH)
 Bourne Again Shell (BASH)
For the sake of simplicity will consider only two users in this running example:
ROOT_USER and GUEST_USER.

Constraint 4. Some functions accomplished by the UTILITY PROGRAMS are:

 EDITING (mandatory and requires USER INTERFACE)
 FILE MAINTENANCE (mandatory and requires USER INTERFACE)
 PROGRAMMING SUPPORT (optional and requires USER INTERFACE)
 ONLINE INFO (optional and requires USER INTERFACE)

Constraint 5. The USER INTERFACE can be GRAPHICAL and/or TEXTUAL.

Constraint 6. The GRAPHICAL interface is characterized by a WIDTH RESOLUTION
and a HEIGHT RESOLUTION that can have the following couples of values [800,600],
[1024,768] and [1366,768].

Defects in Product Line Models and How to Identify Them

103

2.3.1 Representation of the UNIX product line as a feature model

Feature Models (FMs) were first introduced in 1990 as a part of the Feature-Oriented Domain
Analysis (FODA) method (Kang et al. 2002) as a means to represent the commonalities and
variabilities of PLs. Since then, feature modeling has become a de facto standard adopted by
the software product line community and several extensions have been proposed to
improve and enrich their expressiveness. A FM defines the valid combinations of features in
a PL, and is depicted as a graph-like structure in which nodes represent features, and edges
the relationships between them (Kang et al. 2002). Two of these extensions are cardinalities
(Riebisch et al. 2002; Czarnecki et al. 2005) and attributes (Streitferdt et al. 2003; White et al.
2009). Although there is no consensus on a notation to define attributes, most proposals
agree that an attribute is a variable with a name, a domain and a value. Attributes are
integers, enumerations, and boolean values representing important properties of a feature;
as for instance the price, the cost, the width, the height or the time spent to build the
corresponding feature. In this chapter we use the group cardinalities grouping bundles of
features (cf. Cdrom, Usb and Net in Figure 1). We use the semantic of feature models
proposed by (Schobbens et al. 2007).

The elements of the FM notation used in this chapter are presented and exemplified as
follows:

 Feature: A feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system (Kang et al. 1990). For the sake of simplicity FMs
usually comport only the name of the feature; for instance Editing in Figure 1. Every
FM must have one root, which is called root feature and identifies the product line; for
example UNIX in Figure 1.

 Attribute: Although there is no consensus on a notation to define attributes, most
proposals agree that an attribute is a variable with a name (Name), a domain (Domain),
and a value (consistent with the domain) at a given configuration time. From a technical
point of view an attribute must to be differentiated from the other ones by an identifier
(IdAttribute). For instance in Figure 1, WidthResolution and HeightResolution are two
attributes with a domain determined by the constraint at the bottom of the model.

 Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory relationship
between F1 and F2 means that if the F1 is selected, then F2 must be selected too and vice
versa. For instance in Figure 1, features UtilityProgram and Editing are related by a
mandatory relationship.

 Optional: Given two features F1 and F2, F1 father of F2, an optional relationship
between F1 and F2 means that if F1 is selected then F2 can be selected or not. However,
if F2 is selected, then F1 must also be selected. For instance in Figure 1, features UNIX
and UtilityProgram are related by an optional relationship.

 Requires: Given two features F1 and F2, F1 requires F2 means that if F1 is selected in
product, then F2 has to be selected too. Additionally, it means that F2 can be selected
even when F1 is not. For instance, Editing requires UserInterface (cf. Figure 1).

 Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then
F2 cannot to be selected in the same product. This relationship is bi-directional: if F2 is
selected, then F1 cannot to be selected in the same product.

 Group cardinality: A group cardinality is an interval denoted <n..m>, with n as lower
bound and m as upper bound limiting the number of child features that can be part of a

Software Product Line – Advanced Topic

104

product when its parent feature is selected. If one of the child features is selected, then
the father feature must be selected too. For instance in Figure 1, Cdrom, Usb and Net are
related in a <1..1> group cardinality.

Cdrom

UserInterface
Editing

UNIX

Shell

SH

Usb Net UtilityProgram

<1..1>

BASH
TCSH

File
Maintenance

Programming
Support

OnlineInfo

<1..3>

<1..2>

Graphical

Graphical→ relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]})

WidthResolution
HeightResolution

Fig. 1. User model of the UNIX operating system family of our running example

Figure 1 corresponds to the feature representation of the user model of our running
example. In this model, a user has the possibility to install a UNIX system using one of the
following options: a CD ROM, an USB devise or a network. In addition, users have the
possibility to install or not utility programs for file maintenance, edition, online access, and
user interface. The user interface may be graphical or command-line (Shell) based; there are
three options of command-line interface: SH, TCSH and BASH. The utility programs for
user interface, online information and programming support are optional features.

2.3.2 Representation of the UNIX product line as a dopler variability model

The Decision-oriented (Dopler) variability modeling language focuses on product derivation
and aims at supporting users configuring products. In Dopler variability models (Dhungana
et al. 2010a; 2010b), the product line’s problem space is defined using decision models whereas
the solution space is specified using asset models. An example of Dopler model is presented
in Figure 2. This figure depicts the installation of a UNIX operating system (decision model)
and the associated packages (asset model) that can be selected if the UNIX system is
installed with a graphical interface. The decision model is composed of four decisions. The
first one proposes one of three ways to install a UNIX operating system (with a CD ROM,
with a USB or with the Net). The solution of this decision implies the solution of a second
decision in which the user must select the utility programs to be installed in the particular
UNIX system; in that regard, five utility programs are proposed: one tool for editing, one for
file maintenance, one for programming, one for online information access and one shell. If
the choice contains the utility program for online information, the user must decide what
kind of graphical resolution will be configured and several choices are proposed: 800x600,

Defects in Product Line Models and How to Identify Them

105

1024x768, 1366x768. Depending of each selection, the values of the variables corresponding
to the width and height resolution will be assigned automatically by means of several
decision effects; for instance in Figure 2: if(GraphicalResolution==800x600) then Width=800. To
finish, the assignation of the width and height resolution must respect a certain number of
validity conditions like for instance: Width ≥ 800 and Width ≤ 1366. The asset model is
composed of seven graphical user interfaces and libraries that can be used in a UNIX
graphical interface. The Tab Window Manager asset is available for all UNIX implementations
with a graphical interface and requires the asset Motif; the others assets are optional. The
IRIS 4d window manager is based on Mwm and Motif and therefore requires all of them in
order to work in the same way as the KDE asset requires the Qt widget toolkit to work.

Fig. 2. Example of Dopler Model: Installation of a UNIX System

A decision model consists of a set of decisions (e.g., Which utility programs? with two
attributes: name and expected values) and dependencies among them (i.e., the Visibility
condition isTaken(Means of installation) forcing the answer of the decision Utility program if
the decision Means of installation is taken). Assets allow defining an abstract view of the
solution space to the degree of details needed for subsequent product derivation. In a
domain-specific metamodel attributes and dependencies can be defined for the different
types of assets. Decisions and assets are linked with inclusion conditions defining
traceability from the solution space to the problem space (e.g., the asset Tab Window Manager
must be included in the solution space if the option OnlineInfo of the decision Utility program
is selected in a particular configuration). In our integration approach, these inclusion
conditions are constraints that will be added to the collection of constraints representing the
decision and asset model. Once these constraints are added, both viewpoints of the PL are
integrated, and the model is ready to be verified against the typology of verification criteria
presented in this chapter.

Software Product Line – Advanced Topic

104

product when its parent feature is selected. If one of the child features is selected, then
the father feature must be selected too. For instance in Figure 1, Cdrom, Usb and Net are
related in a <1..1> group cardinality.

Cdrom

UserInterface
Editing

UNIX

Shell

SH

Usb Net UtilityProgram

<1..1>

BASH
TCSH

File
Maintenance

Programming
Support

OnlineInfo

<1..3>

<1..2>

Graphical

Graphical→ relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]})

WidthResolution
HeightResolution

Fig. 1. User model of the UNIX operating system family of our running example

Figure 1 corresponds to the feature representation of the user model of our running
example. In this model, a user has the possibility to install a UNIX system using one of the
following options: a CD ROM, an USB devise or a network. In addition, users have the
possibility to install or not utility programs for file maintenance, edition, online access, and
user interface. The user interface may be graphical or command-line (Shell) based; there are
three options of command-line interface: SH, TCSH and BASH. The utility programs for
user interface, online information and programming support are optional features.

2.3.2 Representation of the UNIX product line as a dopler variability model

The Decision-oriented (Dopler) variability modeling language focuses on product derivation
and aims at supporting users configuring products. In Dopler variability models (Dhungana
et al. 2010a; 2010b), the product line’s problem space is defined using decision models whereas
the solution space is specified using asset models. An example of Dopler model is presented
in Figure 2. This figure depicts the installation of a UNIX operating system (decision model)
and the associated packages (asset model) that can be selected if the UNIX system is
installed with a graphical interface. The decision model is composed of four decisions. The
first one proposes one of three ways to install a UNIX operating system (with a CD ROM,
with a USB or with the Net). The solution of this decision implies the solution of a second
decision in which the user must select the utility programs to be installed in the particular
UNIX system; in that regard, five utility programs are proposed: one tool for editing, one for
file maintenance, one for programming, one for online information access and one shell. If
the choice contains the utility program for online information, the user must decide what
kind of graphical resolution will be configured and several choices are proposed: 800x600,

Defects in Product Line Models and How to Identify Them

105

1024x768, 1366x768. Depending of each selection, the values of the variables corresponding
to the width and height resolution will be assigned automatically by means of several
decision effects; for instance in Figure 2: if(GraphicalResolution==800x600) then Width=800. To
finish, the assignation of the width and height resolution must respect a certain number of
validity conditions like for instance: Width ≥ 800 and Width ≤ 1366. The asset model is
composed of seven graphical user interfaces and libraries that can be used in a UNIX
graphical interface. The Tab Window Manager asset is available for all UNIX implementations
with a graphical interface and requires the asset Motif; the others assets are optional. The
IRIS 4d window manager is based on Mwm and Motif and therefore requires all of them in
order to work in the same way as the KDE asset requires the Qt widget toolkit to work.

Fig. 2. Example of Dopler Model: Installation of a UNIX System

A decision model consists of a set of decisions (e.g., Which utility programs? with two
attributes: name and expected values) and dependencies among them (i.e., the Visibility
condition isTaken(Means of installation) forcing the answer of the decision Utility program if
the decision Means of installation is taken). Assets allow defining an abstract view of the
solution space to the degree of details needed for subsequent product derivation. In a
domain-specific metamodel attributes and dependencies can be defined for the different
types of assets. Decisions and assets are linked with inclusion conditions defining
traceability from the solution space to the problem space (e.g., the asset Tab Window Manager
must be included in the solution space if the option OnlineInfo of the decision Utility program
is selected in a particular configuration). In our integration approach, these inclusion
conditions are constraints that will be added to the collection of constraints representing the
decision and asset model. Once these constraints are added, both viewpoints of the PL are
integrated, and the model is ready to be verified against the typology of verification criteria
presented in this chapter.

Software Product Line – Advanced Topic

106

2.3.3 Representation of the UNIX product line as a constraint program

Constraint Programming (CP) emerged in the 1990’s as a successful paradigm to tackle
complex combinatorial problems in a declarative manner (Van Hentenryck 1989). CP
extends programming languages with the ability to deal with logical variables of different
domains (e.g. integers, reals or booleans) and specific declarative relations between these
variables called constraints. These constraints are solved by specialized algorithms, adapted
to their specific domains and therefore much more efficient than generic logic-based
engines. A constraint is a logical relationship among several variables, each one taking a
value in a given domain of possible values. A constraint thus restricts the possible values
that variables can take.

In modern Constraint Programming languages (Diaz & Codognet 2001; Schulte & Stuckey
2008), many different types of constraints exist and are used to represent real-life problems:
arithmetic constraints such as X + Y < Z, symbolic constraints like atmost(N,[X1,X2,X3],V)
which means that at most N variables among [X1,X2,X3] can take the value V, global
constraints like alldifferent(X1,X2,…,Xn)meaning that all variables should have different
values, and reified constraints that allow the user to reason about the truth-value of a
constraint. Solving constraints consists in first reducing the variable domains by
propagation techniques that will eliminate inconsistent value within domains and then
finding values for each constrained variable in a labeling phase, that is, iteratively
grounding variables (fixing a value for a variable) and propagating its effect onto other
variable domains (by applying again the same propagation-based techniques). The labeling
phase can be improved by using heuristics concerning the order in which variables are
considered as well as the order in which values are tried in the variable domains. Consult
(Schulte & Stuckey 2008) for more details. Mazo et al. (2011e) present a constraint system to
represent product line models by means of abstract constraints where the domain is an
argument of the system.

Our running example can also be represented as a constraint program according to the
method proposed by Salinesi et al. (2010; 2011) and Mazo et al. (2011d). The resulting model
is presented in the following table, where the first column corresponds to each constraint of
our example and the second column its representation as a constraint program.

Constraint CP Representation
C. 1 UNIX ≤ Cdrom + Usb + Net ≤ UNIX
C. 2 UtilityProgram ≤ UNIX
C. 3 Shell = UtilityProgram ˄

Shell  ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH +
ROOT_USERBASH ≤ 3 * ROOT_USER) ˄ (1 * GUEST_USER ≤
GUEST_USERSH + GUEST_USERTCSH + GUEST_USERBASH ≤ 3 *
GUEST_USER))

C. 4 Editing = UtilityProgram ˄
Editing  UserInterface ˄
FileMaintenance = UtilityProgram ˄
FileMaintenance  UserInterface ˄
ProgrammingSupport ≤ UtilityProgram ˄
ProgrammingSupport  UserInterface ˄

Defects in Product Line Models and How to Identify Them

107

Constraint CP Representation
OnlineInfo ≤ UtilityProgram ˄
OnlineInfo  UserInterface ˄
UserInterface ≤ UtilityProgram

C. 5 1 * UserInterface ≤ Graphical + Textual ≤ 2 * UserInterface
C. 6 Graphical = 1  (WidthResolution = W1 ˄ HeightResolution = H1) ˄

Graphical = 0  (WidthResolution = 0 ˄ HeightResolution = 0) ˄
relation([W1, H1], [[800, 600], [1024, 768], [1366, 768]])

Table 1. UNIX PL represented as a constraint program

3. Typology of verification criteria
Verifying PLMs entails several aspects. On the one hand, a product line model,
independently of the language used to express it, must respect certain properties associated
with the domain of product lines. On the other hand, certain properties are associated with
the fact that each PLM respects the syntactic rules of the language in which it is expressed.
Therefore, some properties of PLMs are independent of the language while other ones are
particular to each language. In light of this observation, this chapter proposes a typology of
PLM verification criteria adapted from the initial version presented in (Salinesi et al. 2010a).
The typology presented in Figure 1 is structure in two levels; the top level represents the
three categories of verification criteria and the bottom level represents the corresponding
operations of the two criteria with more than one operation. This figure indicates that not all
PLM verification criteria are equivalent: some are a result of the specification of the PL with
a metamodel, whereas others can be used to verify PL specifications independent of the
formalism used when they were specified. Besides, some criteria help verifying the ability of
PLM to generate all the desired products and only them, whereas others are interested in the
quality of PLMs, independently of their semantics (i.e., the collection of all possible products
that can be generated from it). This is for example the case with the respect of certain rules
providing formality (i.e., absence of ambiguity) at the PLM.

Fig. 3. Typology of verification criteria on PLMs

The outcomes of the typology are multiple:

2. Error-free criteria

Verification criteria

1. Expressiveness
criteria

3. Redundancy-free criteria

Non-void Non-false

Non-attainable
domains

Dead reusable
elements

False optional
reusable elements

Software Product Line – Advanced Topic

106

2.3.3 Representation of the UNIX product line as a constraint program

Constraint Programming (CP) emerged in the 1990’s as a successful paradigm to tackle
complex combinatorial problems in a declarative manner (Van Hentenryck 1989). CP
extends programming languages with the ability to deal with logical variables of different
domains (e.g. integers, reals or booleans) and specific declarative relations between these
variables called constraints. These constraints are solved by specialized algorithms, adapted
to their specific domains and therefore much more efficient than generic logic-based
engines. A constraint is a logical relationship among several variables, each one taking a
value in a given domain of possible values. A constraint thus restricts the possible values
that variables can take.

In modern Constraint Programming languages (Diaz & Codognet 2001; Schulte & Stuckey
2008), many different types of constraints exist and are used to represent real-life problems:
arithmetic constraints such as X + Y < Z, symbolic constraints like atmost(N,[X1,X2,X3],V)
which means that at most N variables among [X1,X2,X3] can take the value V, global
constraints like alldifferent(X1,X2,…,Xn)meaning that all variables should have different
values, and reified constraints that allow the user to reason about the truth-value of a
constraint. Solving constraints consists in first reducing the variable domains by
propagation techniques that will eliminate inconsistent value within domains and then
finding values for each constrained variable in a labeling phase, that is, iteratively
grounding variables (fixing a value for a variable) and propagating its effect onto other
variable domains (by applying again the same propagation-based techniques). The labeling
phase can be improved by using heuristics concerning the order in which variables are
considered as well as the order in which values are tried in the variable domains. Consult
(Schulte & Stuckey 2008) for more details. Mazo et al. (2011e) present a constraint system to
represent product line models by means of abstract constraints where the domain is an
argument of the system.

Our running example can also be represented as a constraint program according to the
method proposed by Salinesi et al. (2010; 2011) and Mazo et al. (2011d). The resulting model
is presented in the following table, where the first column corresponds to each constraint of
our example and the second column its representation as a constraint program.

Constraint CP Representation
C. 1 UNIX ≤ Cdrom + Usb + Net ≤ UNIX
C. 2 UtilityProgram ≤ UNIX
C. 3 Shell = UtilityProgram ˄

Shell  ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH +
ROOT_USERBASH ≤ 3 * ROOT_USER) ˄ (1 * GUEST_USER ≤
GUEST_USERSH + GUEST_USERTCSH + GUEST_USERBASH ≤ 3 *
GUEST_USER))

C. 4 Editing = UtilityProgram ˄
Editing  UserInterface ˄
FileMaintenance = UtilityProgram ˄
FileMaintenance  UserInterface ˄
ProgrammingSupport ≤ UtilityProgram ˄
ProgrammingSupport  UserInterface ˄

Defects in Product Line Models and How to Identify Them

107

Constraint CP Representation
OnlineInfo ≤ UtilityProgram ˄
OnlineInfo  UserInterface ˄
UserInterface ≤ UtilityProgram

C. 5 1 * UserInterface ≤ Graphical + Textual ≤ 2 * UserInterface
C. 6 Graphical = 1  (WidthResolution = W1 ˄ HeightResolution = H1) ˄

Graphical = 0  (WidthResolution = 0 ˄ HeightResolution = 0) ˄
relation([W1, H1], [[800, 600], [1024, 768], [1366, 768]])

Table 1. UNIX PL represented as a constraint program

3. Typology of verification criteria
Verifying PLMs entails several aspects. On the one hand, a product line model,
independently of the language used to express it, must respect certain properties associated
with the domain of product lines. On the other hand, certain properties are associated with
the fact that each PLM respects the syntactic rules of the language in which it is expressed.
Therefore, some properties of PLMs are independent of the language while other ones are
particular to each language. In light of this observation, this chapter proposes a typology of
PLM verification criteria adapted from the initial version presented in (Salinesi et al. 2010a).
The typology presented in Figure 1 is structure in two levels; the top level represents the
three categories of verification criteria and the bottom level represents the corresponding
operations of the two criteria with more than one operation. This figure indicates that not all
PLM verification criteria are equivalent: some are a result of the specification of the PL with
a metamodel, whereas others can be used to verify PL specifications independent of the
formalism used when they were specified. Besides, some criteria help verifying the ability of
PLM to generate all the desired products and only them, whereas others are interested in the
quality of PLMs, independently of their semantics (i.e., the collection of all possible products
that can be generated from it). This is for example the case with the respect of certain rules
providing formality (i.e., absence of ambiguity) at the PLM.

Fig. 3. Typology of verification criteria on PLMs

The outcomes of the typology are multiple:

2. Error-free criteria

Verification criteria

1. Expressiveness
criteria

3. Redundancy-free criteria

Non-void Non-false

Non-attainable
domains

Dead reusable
elements

False optional
reusable elements

Software Product Line – Advanced Topic

108

a. the typology classify the criteria semantic, allowing the identification of similarities and
differences among the criteria;

b. the typology makes easier to identify some defects for which no verification criterion is
available in the literature. Redundancy of relationships among reusable elements is an
example of defect for which no verification criterion has been defined in the literature
(at least to our knowledge).

c. the classification behind the typology makes it easier the proposition of a standard and
reusable approach to verify the domain-specific criteria of PLMs; and

d. the typology can be used to select the criteria that one wants to use to verify a PLM
according to the impact that these criteria have or the expected level of quality of a
particular PLM.

The following sections use the typology of verification criteria presented in Figure 3 to
develop the verification approach proposed in this chapter.

4. Single-model verification
In order to verify models against the verification criteria identified and calcified in the
former section, it is necessary to represent PLMs in a way that is (a) expressiveness-enough
to represent the semantics (i.e. the collection of products that can be configured from the
PLM) of PLMs, (b) consistent with the formalization of the criteria, and (c) easy to parse
with analysis tools. Experience shows that the semantic of every PLM can be represented as
a collection of variables over different domains and constrains among these variables. While
the variables specify what can vary from a configuration to another one, constraints express
under the form of restrictions what combinations of values are allowed in the products.

This section will show how to represent the semantic of PLMs with a constraint based
approach, and to verify each and every criterion shown in the typology of the former section
on a PLM. The approach will be applied to our feature model example to show how to
navigate between the generic specifications of the criteria. The genericity of the approach
will be shown by providing examples with other formalisms (cf. Section 5).

Verifying PLMs is about looking for undesirable properties such as redundant or
contradictory information. This chapter proposes three domain-specific verification criteria:
expressiveness, error-free and redundancy-free. Each domain-specific verification criterion
is defined, formalized and exemplified with our running example (cf. Figure 1 and Table 1)
as follows.

2.1. Expressiveness: every PLM must allow configuring more than one product, i.e., the
model must be not void and the model must be expressive enough to allow configure
more than one product (Benavides et al. 2005). In case the PLM allows configuring only
one product, the PLM, even if it is not considered as a void model, is not expressive
enough to be a PLM. Indeed, the purpose of PLMs is to represent at least two products
–or there is not reuse. Two verification operations can be used to implement this
criterion:

a. Non-void PLMs. This operation takes a PLM as input and returns “Void PLM” if the
PLM does not define any products. Two alternative techniques have been proposed so
far to implement this operation: calculate the number of products (Van den Broek &

Defects in Product Line Models and How to Identify Them

109

Galvão 2009) or ask for a product configuration that meets the constraints of a FM
(Benavides et al. 2005; Trinidad et al. 2008). Our proposal follows along the lines of the
latter alternative and is formalized in the following algorithm. It consists in determining
if there is at least one product that can be generated by means of a query to an off-the-
shelf solver. If the PLM is not void, the solver will return one valid product or false
otherwise.
Non-void _PLM(PLM M, Solver S) {
 S.charge(M);
 Answer = S.getOneSolution();
 If (Answer ≠ “false”) {
 Write (Answer);
 }
 Else {
 Write (“Void PLM”);
 }
}
The execution of this algorithm over the running example gives as result that our UNIX
PL is non-void.

b. Non-false PLMs. This operation takes a PLM as input and returns “False PLM” if at
most one valid product can be configured with it. Although this operation could also
help detect when PLMs are void (our precedent operation), the converse is not true. The
two operations have then a separate implementation. Our approach consists in asking
the solver to generate two products in order to decide if the PLM is false. The algorithm
proposed to automate this operation is as follows:
Non-false_PLM(PLM M, Solver S) {
 S.charge(M);
 Answer1 = S.getOneSolution();
 If (Answer1 ≠ “false”) {
 Answer2 = S.getNextSolution();
 If (Answer2 ≠ “false”) {
 Write (Answer1, Answer2);
 }
 Else {
 Write (“False PLM”);
 }
 }
 Else {
 Write (“False PLM”);
 }
}
The execution of this algorithm over the running example gives as result that our UNIX
PL is a non-false PLM.

2.2. Error-free. The Dictionary of Computing defines an error as “A discrepancy between
a computed, observed, or measured value or condition, and the true, specified, or
theoretically correct value or condition” (Howe 2010). In PLMs, an error represents a

Software Product Line – Advanced Topic

108

a. the typology classify the criteria semantic, allowing the identification of similarities and
differences among the criteria;

b. the typology makes easier to identify some defects for which no verification criterion is
available in the literature. Redundancy of relationships among reusable elements is an
example of defect for which no verification criterion has been defined in the literature
(at least to our knowledge).

c. the classification behind the typology makes it easier the proposition of a standard and
reusable approach to verify the domain-specific criteria of PLMs; and

d. the typology can be used to select the criteria that one wants to use to verify a PLM
according to the impact that these criteria have or the expected level of quality of a
particular PLM.

The following sections use the typology of verification criteria presented in Figure 3 to
develop the verification approach proposed in this chapter.

4. Single-model verification
In order to verify models against the verification criteria identified and calcified in the
former section, it is necessary to represent PLMs in a way that is (a) expressiveness-enough
to represent the semantics (i.e. the collection of products that can be configured from the
PLM) of PLMs, (b) consistent with the formalization of the criteria, and (c) easy to parse
with analysis tools. Experience shows that the semantic of every PLM can be represented as
a collection of variables over different domains and constrains among these variables. While
the variables specify what can vary from a configuration to another one, constraints express
under the form of restrictions what combinations of values are allowed in the products.

This section will show how to represent the semantic of PLMs with a constraint based
approach, and to verify each and every criterion shown in the typology of the former section
on a PLM. The approach will be applied to our feature model example to show how to
navigate between the generic specifications of the criteria. The genericity of the approach
will be shown by providing examples with other formalisms (cf. Section 5).

Verifying PLMs is about looking for undesirable properties such as redundant or
contradictory information. This chapter proposes three domain-specific verification criteria:
expressiveness, error-free and redundancy-free. Each domain-specific verification criterion
is defined, formalized and exemplified with our running example (cf. Figure 1 and Table 1)
as follows.

2.1. Expressiveness: every PLM must allow configuring more than one product, i.e., the
model must be not void and the model must be expressive enough to allow configure
more than one product (Benavides et al. 2005). In case the PLM allows configuring only
one product, the PLM, even if it is not considered as a void model, is not expressive
enough to be a PLM. Indeed, the purpose of PLMs is to represent at least two products
–or there is not reuse. Two verification operations can be used to implement this
criterion:

a. Non-void PLMs. This operation takes a PLM as input and returns “Void PLM” if the
PLM does not define any products. Two alternative techniques have been proposed so
far to implement this operation: calculate the number of products (Van den Broek &

Defects in Product Line Models and How to Identify Them

109

Galvão 2009) or ask for a product configuration that meets the constraints of a FM
(Benavides et al. 2005; Trinidad et al. 2008). Our proposal follows along the lines of the
latter alternative and is formalized in the following algorithm. It consists in determining
if there is at least one product that can be generated by means of a query to an off-the-
shelf solver. If the PLM is not void, the solver will return one valid product or false
otherwise.
Non-void _PLM(PLM M, Solver S) {
 S.charge(M);
 Answer = S.getOneSolution();
 If (Answer ≠ “false”) {
 Write (Answer);
 }
 Else {
 Write (“Void PLM”);
 }
}
The execution of this algorithm over the running example gives as result that our UNIX
PL is non-void.

b. Non-false PLMs. This operation takes a PLM as input and returns “False PLM” if at
most one valid product can be configured with it. Although this operation could also
help detect when PLMs are void (our precedent operation), the converse is not true. The
two operations have then a separate implementation. Our approach consists in asking
the solver to generate two products in order to decide if the PLM is false. The algorithm
proposed to automate this operation is as follows:
Non-false_PLM(PLM M, Solver S) {
 S.charge(M);
 Answer1 = S.getOneSolution();
 If (Answer1 ≠ “false”) {
 Answer2 = S.getNextSolution();
 If (Answer2 ≠ “false”) {
 Write (Answer1, Answer2);
 }
 Else {
 Write (“False PLM”);
 }
 }
 Else {
 Write (“False PLM”);
 }
}
The execution of this algorithm over the running example gives as result that our UNIX
PL is a non-false PLM.

2.2. Error-free. The Dictionary of Computing defines an error as “A discrepancy between
a computed, observed, or measured value or condition, and the true, specified, or
theoretically correct value or condition” (Howe 2010). In PLMs, an error represents a

Software Product Line – Advanced Topic

110

discrepancy between what the engineer want to represent and the result obtained
from the model. For instance, this is the case when the engineer includes a new
reusable element (in a given domain) in a PLM, but this element never appears in a
product. The error-free criterion can be verified by means of three operations: the first
one allows identifying the non-attainable domain values of PLM’s reusable elements;
the second one allows identifying the dead elements, i.e. elements of the PL that are
never used in a product; the third one allows identifying the reusable elements
modeled as optional but that appear in all the products of the PL. These operations
are presented as follows:

c. Non-attainable domains: This operation takes a PLM and a collection of reusable
elements as input (all of them by default) and returns the reusable elements that cannot
attain one of the values of their domain. Reusable elements can have domains
represented as particular values (e.g., 800), intervals of values (e.g., [0..5]), or collections
of values (e.g., {0, 800, 1024, 1280}). A non-attainable value of a domain is the value of
an element that never appears in any product of the product line. For example, if a
reusable element R has the domain [0..1], value 1 is non-attainable if R can never be
integrated in a product line it never take the value of 1. Non-attainable values are
clearly undesired since they give the user a wrong idea about domain of reusable
elements. The approach presented in this chapter can assess the attainability of any
reusable elements for all (or parts of) their domain values. This operation was also
implemented by Trinidad et al. (2008), but only for boolean domains on FMs. Our
proposal goes a step further by offering an algorithm for any domain as e.g. needed
when using attributes or features whit individual cardinality.
Our algorithm to automate this operation evaluates the domain of each variables of the
PLM. For each vale of the domain, the algorithm requests the solver at hand for a
solution. If the solver gives a solution for all the values of the variable’s domain, the
variable is erased from the list of reusable elements with non-attainable domains.
Otherwise, the variable, representing a reusable element, is affected with the non-
attainable value(s) and kept in the list of reusable elements with non-attainable
domains. In each product obtained from the solver, all the variables of the PLM are
affected with a particular value of the corresponding domain. Thus, this algorithm takes
advantage of that fact and records the answers given by the solver in order to avoid
achieving useless requests testing the attainability of domain values that have already
been obtained in precedent tests. The corresponding algorithm is as follows:
NonAttainableDomains(PLM M, Solver S) {
 S.charge(M);
 For (each variable V ∈ M) {
 For(each Di ∈ domain of V AND not in {PrecedentProducts}){
 Product = S.getOneSolution(“V = Di”);
 If (Product = “false”) {
 Write (“The domain ” + Di + “ of ” + V + “ is non-
attainable”);
 }
 Else {
 PrecedentProducts += Product;
 }

Defects in Product Line Models and How to Identify Them

111

 }
 }
}
For instance in our running example, if when asking for a product with
WidthResolution=800 we get a product
P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1,
UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1,
TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0].
This means both that WidthResolution can attain the value of 800, and that the rest of
variables can attain the values assigned by the solver. Thus, for instance, it is not
necessary to ask if the variable UNIX can attain the value of 1 or if HeightResolution can
attain the value of 600.

d. Dead-free reusable elements: A reusable element is dead if it cannot appear in any
product of the product line. This operation takes as input a PLM and a collection of
reusable elements, and it returns the set of dead reusable elements, or false if there is
none in the input list. Reusable elements can be dead because: (i) they are excluded by
an element that appears in all products (also known as full-mandatory or core reusable
elements, c.f. Von der Maßen & Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008;
Van den Broek & Galvão 2009); and (ii) they are wrongly constrained (e.g., an attribute
of the feature is > 5 and < 3 at the same time, or a group cardinality is wrong defined).
Elfaki et al. (2009) detect dead features by searching only for predefined cases, i.e.
defined dead features in the domain-engineering process. Trinidad et al. (2006, 2008)
detect dead features by finding all products and then searching for unused features.
Van den Broek and Galvão (2009) detect dead features by transforming the FM into a
generalized feature tree, and then searching the feature occurrences that cannot be true.
To the better of our knowledge there is not details in literature about the way in which
the other references have implemented this operation. Our approach evaluates each
non-zero value of each reusable element’s domain, and reuses each solution obtained
from the solver in order to avoid useless computations. If a reusable element cannot
attain any of its non-zero values, then the reusable element is dead. The reuse of the
solutions previously obtained makes our dead artefacts detection technique scalable as
showed below, by contrasts to the state of the art. The corresponding algorithm is
presented as follows:
DeadReusableElements(PLM M, Solver S) {
 S.charge(M);
 DeadElementsList = all variables of M;
 For (each variable V ∈ DeadElementsList) {
 Product = S.getOneSolution(“V > 0”);
 If (Product = “false”) {
 Write (“The variable ” + V + “ is dead”);
 }
 Else {
 Erase V and all the other non-zero variables obtained in Product from
DeadElementsList;
 }
 }
}

Software Product Line – Advanced Topic

110

discrepancy between what the engineer want to represent and the result obtained
from the model. For instance, this is the case when the engineer includes a new
reusable element (in a given domain) in a PLM, but this element never appears in a
product. The error-free criterion can be verified by means of three operations: the first
one allows identifying the non-attainable domain values of PLM’s reusable elements;
the second one allows identifying the dead elements, i.e. elements of the PL that are
never used in a product; the third one allows identifying the reusable elements
modeled as optional but that appear in all the products of the PL. These operations
are presented as follows:

c. Non-attainable domains: This operation takes a PLM and a collection of reusable
elements as input (all of them by default) and returns the reusable elements that cannot
attain one of the values of their domain. Reusable elements can have domains
represented as particular values (e.g., 800), intervals of values (e.g., [0..5]), or collections
of values (e.g., {0, 800, 1024, 1280}). A non-attainable value of a domain is the value of
an element that never appears in any product of the product line. For example, if a
reusable element R has the domain [0..1], value 1 is non-attainable if R can never be
integrated in a product line it never take the value of 1. Non-attainable values are
clearly undesired since they give the user a wrong idea about domain of reusable
elements. The approach presented in this chapter can assess the attainability of any
reusable elements for all (or parts of) their domain values. This operation was also
implemented by Trinidad et al. (2008), but only for boolean domains on FMs. Our
proposal goes a step further by offering an algorithm for any domain as e.g. needed
when using attributes or features whit individual cardinality.
Our algorithm to automate this operation evaluates the domain of each variables of the
PLM. For each vale of the domain, the algorithm requests the solver at hand for a
solution. If the solver gives a solution for all the values of the variable’s domain, the
variable is erased from the list of reusable elements with non-attainable domains.
Otherwise, the variable, representing a reusable element, is affected with the non-
attainable value(s) and kept in the list of reusable elements with non-attainable
domains. In each product obtained from the solver, all the variables of the PLM are
affected with a particular value of the corresponding domain. Thus, this algorithm takes
advantage of that fact and records the answers given by the solver in order to avoid
achieving useless requests testing the attainability of domain values that have already
been obtained in precedent tests. The corresponding algorithm is as follows:
NonAttainableDomains(PLM M, Solver S) {
 S.charge(M);
 For (each variable V ∈ M) {
 For(each Di ∈ domain of V AND not in {PrecedentProducts}){
 Product = S.getOneSolution(“V = Di”);
 If (Product = “false”) {
 Write (“The domain ” + Di + “ of ” + V + “ is non-
attainable”);
 }
 Else {
 PrecedentProducts += Product;
 }

Defects in Product Line Models and How to Identify Them

111

 }
 }
}
For instance in our running example, if when asking for a product with
WidthResolution=800 we get a product
P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1,
UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1,
TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0].
This means both that WidthResolution can attain the value of 800, and that the rest of
variables can attain the values assigned by the solver. Thus, for instance, it is not
necessary to ask if the variable UNIX can attain the value of 1 or if HeightResolution can
attain the value of 600.

d. Dead-free reusable elements: A reusable element is dead if it cannot appear in any
product of the product line. This operation takes as input a PLM and a collection of
reusable elements, and it returns the set of dead reusable elements, or false if there is
none in the input list. Reusable elements can be dead because: (i) they are excluded by
an element that appears in all products (also known as full-mandatory or core reusable
elements, c.f. Von der Maßen & Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008;
Van den Broek & Galvão 2009); and (ii) they are wrongly constrained (e.g., an attribute
of the feature is > 5 and < 3 at the same time, or a group cardinality is wrong defined).
Elfaki et al. (2009) detect dead features by searching only for predefined cases, i.e.
defined dead features in the domain-engineering process. Trinidad et al. (2006, 2008)
detect dead features by finding all products and then searching for unused features.
Van den Broek and Galvão (2009) detect dead features by transforming the FM into a
generalized feature tree, and then searching the feature occurrences that cannot be true.
To the better of our knowledge there is not details in literature about the way in which
the other references have implemented this operation. Our approach evaluates each
non-zero value of each reusable element’s domain, and reuses each solution obtained
from the solver in order to avoid useless computations. If a reusable element cannot
attain any of its non-zero values, then the reusable element is dead. The reuse of the
solutions previously obtained makes our dead artefacts detection technique scalable as
showed below, by contrasts to the state of the art. The corresponding algorithm is
presented as follows:
DeadReusableElements(PLM M, Solver S) {
 S.charge(M);
 DeadElementsList = all variables of M;
 For (each variable V ∈ DeadElementsList) {
 Product = S.getOneSolution(“V > 0”);
 If (Product = “false”) {
 Write (“The variable ” + V + “ is dead”);
 }
 Else {
 Erase V and all the other non-zero variables obtained in Product from
DeadElementsList;
 }
 }
}

Software Product Line – Advanced Topic

112

Our algorithm first creates a list of the reusable elements whose dead or non-dead
condition is yet to be assessed. For example:
deadElements=[UNIX, Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing,
UserInterface, Graphical, WidthResolution, HeightResolution, Shell, SH, TCSH, BASH,
OnlineInfor, ProgrammingSupport].
Then, our algorithm queries for a configuration based on reusable elements for which
we still ignore if they are dead or not, and sieves the selected (and thus alive) elements
from this list. For example, to know if UtilityProgram is dead or not, it is sufficient to
query the solver for a product with UtilityProgram=1, which provides a product
P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1,
UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1,
TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0].
This means not only that the reusable element UtilityProgram is not dead, but also that
the other elements with values different from 0 are not dead. Therefore these elements
can be sieved from the list of dead elements. The test can be repeated until all elements
are sieved. For example querying for products with Usb =1, the solver provides another
product which means that this reusable element is not dead either. According to our
algorithm, the variable Usb, and all the other non-zero variables, must be erased from
the list of dead elements. At this point the list of dead elements is empty, which means
that there are no dead elements in the product line model.
The purpose of the aforementioned list is to reduce the number of queries. For instance
in this example, only two queries were necessary to evaluate all reusable elements. In
contrast, 17 queries would have been required in the current state of the art algorithm.
However, it is not possible to calculate in advance how many queries would be needed,
or even, to guaranty that the minimal number of queries will be executed, as this
depends on the configuration generated by the solver.

e. False optional reusable elements: a reusable element is false optional if it is included in
all the products of the product line despite being declared optional (Von der Maßen &
Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008). This operation takes a PLM and
a collection of reusable elements modeled as optional as input, and returns the set of
false optional reusable elements, or false if no one exists. Trinidad et al. (2006, 2009)
detect false optional features based on finding all products and then searching for
common features among those which are not assigned as common. To verify if an
optional reusable element is false optional, we query for a product that does not contain
the reusable element at hand (setting the feature’s value to 0). If there is no such
product, then the reusable element we are evaluating is indeed false optional.
FalseOptionalReusableElements(PLM M, Solver S) {
 S.charge(M);
 FalseOptionalElementsList = all optional elements of M;
 For (each variable V ∈ FalseOptionalElementsList) {
 Product = S.getOneSolution(“V = 0”);
 If (Product = “false”) {
 Write (V + “ is false optional”);
 }
 Else {
 Erase V and all the other variables with a Zero affectation into
Product, from DeadElementsList;

Defects in Product Line Models and How to Identify Them

113

 }
 }
}
For example if we want to know whether the optional reusable component Usb is false
optional of not, it is sufficient to request for a product without this component
(Support_usb=0). The solver, in this case, returns the product P1 = [UNIX=1, Cdrom=1,
Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, UserInterface=1,
Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, TCSH=1,
BASH=0, OnlineInfor=0, ProgrammingSupport=0], which means that this optional
reusable element can take the value of 0, it is, be effectively optional.

2.3. Redundancy-free: according to the Oxford dictionary something redundant is
something “able to be omitted without loss of meaning or function” (Oxford University
2008). Therefore, redundancy in a PLM is about the presence of reusable elements and
variability constraints among them that can be omitted from the PLM without loss of
semantic on the PLM. Redundant constraints in FMs are undesired because, although
they do not alter the space of solutions, they may consume extra computational effort in
derivation and analysis operations (Yan et al. 2009), and they are likely to generate
inconsistencies when the PL evolves. For the sake of evolution, it is certainly better
detect and correct these redundancies. In order to detect them in a PLM this chapter
proposes an operation that takes a PLM and a constraint as input and returns true if
removing the constraint does not change the space of solutions.

Three alternatives can be implemented to check if a relationship is redundant or not.
The naïve algorithm consists in calculating all the products of the PLM with the
constraint to check; then, remove the constraint; and calculate all the solutions of the
new model. If both results are equal (i.e. exact the same products can be configured
with and without the constraint), then the constraint is redundant. This approach is
computationally very expensive as it requires (a) to compute all configurations twice
and (b) to perform an intersection operation between two potentially very large sets
(e.g. 1021 configurations for the Renault PLM according to Dauron & Astesana (2010)).
Not only this algorithm is not scalable, it is typically unfeasible. The second algorithm,
proposed by Yan et al. (2009) defines a redundant constraint of a PLM as a constraint in
which a redundant reusable element takes part. This approach consists in calculating
the redundant reusable elements on feature models — features disconnected from the
FM — and then the redundant constraint in this approach are those in which the
redundant features take part. Though it yields a solution, this algorithm is not
sufficiently general: indeed, only these trivial cases of redundancy are considered. The
approach proposed in this chapter is based on the fact that if a system is consistent, then
the system plus a redundant constraint is consistent too. Therefore, negating the
allegedly redundant relation implies contradicting the consistency of the system and
thus rendering it inconsistent (Mazo et al. 2011a). This approach is more efficient, and
thus more scalable, when applied on large models. Our algorithm is in two steps: first,
it tries to obtain a solution with the set of constraints. Then, if a solution exists, we
negate the constraint we want to check. In the case where no solution is found, the
inspected constraint turns out to be redundant. This alternative to find redundant
constraints can be formalized as follows:

Software Product Line – Advanced Topic

112

Our algorithm first creates a list of the reusable elements whose dead or non-dead
condition is yet to be assessed. For example:
deadElements=[UNIX, Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing,
UserInterface, Graphical, WidthResolution, HeightResolution, Shell, SH, TCSH, BASH,
OnlineInfor, ProgrammingSupport].
Then, our algorithm queries for a configuration based on reusable elements for which
we still ignore if they are dead or not, and sieves the selected (and thus alive) elements
from this list. For example, to know if UtilityProgram is dead or not, it is sufficient to
query the solver for a product with UtilityProgram=1, which provides a product
P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1,
UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1,
TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0].
This means not only that the reusable element UtilityProgram is not dead, but also that
the other elements with values different from 0 are not dead. Therefore these elements
can be sieved from the list of dead elements. The test can be repeated until all elements
are sieved. For example querying for products with Usb =1, the solver provides another
product which means that this reusable element is not dead either. According to our
algorithm, the variable Usb, and all the other non-zero variables, must be erased from
the list of dead elements. At this point the list of dead elements is empty, which means
that there are no dead elements in the product line model.
The purpose of the aforementioned list is to reduce the number of queries. For instance
in this example, only two queries were necessary to evaluate all reusable elements. In
contrast, 17 queries would have been required in the current state of the art algorithm.
However, it is not possible to calculate in advance how many queries would be needed,
or even, to guaranty that the minimal number of queries will be executed, as this
depends on the configuration generated by the solver.

e. False optional reusable elements: a reusable element is false optional if it is included in
all the products of the product line despite being declared optional (Von der Maßen &
Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008). This operation takes a PLM and
a collection of reusable elements modeled as optional as input, and returns the set of
false optional reusable elements, or false if no one exists. Trinidad et al. (2006, 2009)
detect false optional features based on finding all products and then searching for
common features among those which are not assigned as common. To verify if an
optional reusable element is false optional, we query for a product that does not contain
the reusable element at hand (setting the feature’s value to 0). If there is no such
product, then the reusable element we are evaluating is indeed false optional.
FalseOptionalReusableElements(PLM M, Solver S) {
 S.charge(M);
 FalseOptionalElementsList = all optional elements of M;
 For (each variable V ∈ FalseOptionalElementsList) {
 Product = S.getOneSolution(“V = 0”);
 If (Product = “false”) {
 Write (V + “ is false optional”);
 }
 Else {
 Erase V and all the other variables with a Zero affectation into
Product, from DeadElementsList;

Defects in Product Line Models and How to Identify Them

113

 }
 }
}
For example if we want to know whether the optional reusable component Usb is false
optional of not, it is sufficient to request for a product without this component
(Support_usb=0). The solver, in this case, returns the product P1 = [UNIX=1, Cdrom=1,
Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, UserInterface=1,
Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, TCSH=1,
BASH=0, OnlineInfor=0, ProgrammingSupport=0], which means that this optional
reusable element can take the value of 0, it is, be effectively optional.

2.3. Redundancy-free: according to the Oxford dictionary something redundant is
something “able to be omitted without loss of meaning or function” (Oxford University
2008). Therefore, redundancy in a PLM is about the presence of reusable elements and
variability constraints among them that can be omitted from the PLM without loss of
semantic on the PLM. Redundant constraints in FMs are undesired because, although
they do not alter the space of solutions, they may consume extra computational effort in
derivation and analysis operations (Yan et al. 2009), and they are likely to generate
inconsistencies when the PL evolves. For the sake of evolution, it is certainly better
detect and correct these redundancies. In order to detect them in a PLM this chapter
proposes an operation that takes a PLM and a constraint as input and returns true if
removing the constraint does not change the space of solutions.

Three alternatives can be implemented to check if a relationship is redundant or not.
The naïve algorithm consists in calculating all the products of the PLM with the
constraint to check; then, remove the constraint; and calculate all the solutions of the
new model. If both results are equal (i.e. exact the same products can be configured
with and without the constraint), then the constraint is redundant. This approach is
computationally very expensive as it requires (a) to compute all configurations twice
and (b) to perform an intersection operation between two potentially very large sets
(e.g. 1021 configurations for the Renault PLM according to Dauron & Astesana (2010)).
Not only this algorithm is not scalable, it is typically unfeasible. The second algorithm,
proposed by Yan et al. (2009) defines a redundant constraint of a PLM as a constraint in
which a redundant reusable element takes part. This approach consists in calculating
the redundant reusable elements on feature models — features disconnected from the
FM — and then the redundant constraint in this approach are those in which the
redundant features take part. Though it yields a solution, this algorithm is not
sufficiently general: indeed, only these trivial cases of redundancy are considered. The
approach proposed in this chapter is based on the fact that if a system is consistent, then
the system plus a redundant constraint is consistent too. Therefore, negating the
allegedly redundant relation implies contradicting the consistency of the system and
thus rendering it inconsistent (Mazo et al. 2011a). This approach is more efficient, and
thus more scalable, when applied on large models. Our algorithm is in two steps: first,
it tries to obtain a solution with the set of constraints. Then, if a solution exists, we
negate the constraint we want to check. In the case where no solution is found, the
inspected constraint turns out to be redundant. This alternative to find redundant
constraints can be formalized as follows:

Software Product Line – Advanced Topic

114

If (at least 1 product can be configured from PLM M under a collection of constraints C
= {C1,...,Ci}) {
 Write (C |= M);
 Let take Cr ∈ C a constraint to be evaluated;
 If (C without Cr |= M AND C ∪ ¬Cr |≠ M) {
 Write (Cr is redundant);
 }
 Else{
 Write (Cr is not redundant);
 }
}
For example, to check if the constraint UNIX ≥ UtilityProgram (cf. Table 1) is redundant
or not, it is sufficient to query the solver for a product. Then, if a product is found, the
algorithm proceeds to replace the constraint by its negation (UNIX < UtilityProgram)
and ask again for a product. If the solver does not give a solution (as is the case for our
running example), one can infer that the constraint (UNIX ≥ UtilityProgram) is not
redundant.

5. Multi-model verification
Multi-model modeling allows tackling various models and aspects of a system, in particular
in the presence of stakeholders with multiple viewpoints (executives, developers,
distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 1994). For example, a
UNIX product line can be composed of several models, each one developed by a different
team or developing a particular view of the PL. Thus, while the team responsible of the
kernel develops a model, the team responsible of the user interface develops another model.
Motivated by the fact that (a) this practice is current in industry (Dhungana et al. 2010); (b)
even if each individual model is consistent, once the models are integrated, they can easily
be inconsistent; and (c) the lacks in current state of the art in multi-model PL verification,
this chapter proposes a method to verify multi-model PLs. This method is composed of
fourth steps: (i) the base models’ semantic should be transformed into constraint programs;
(ii) once these base models transformed into CP, they may be integrate using the integration
strategies and rules appropriates for each language (cf. Mazo et al. 2011a for further details
about integration of Dopler models, and Mazo et al. 2011d for further details about
integration of constraint-based PLMs; and (iii) once the base models integrated, the
collection of verification criteria, proposed in Section 4 for single models, can be applied on
the integrated model in the same manner as for single models.

The application of these verification criteria over the Dopler model depicted in Figure 2 and
the explanation regarding the minor variants are presented as follows:

1. Non-void model. This model is not a void because it allows configure at least one
product; for instance C1 = {USB, Editing, ProgrammingSupport, Shell}

2. Non-false model. This model is not a false because it allows configure more than two
products; for instance: C2 = {Cdrom, Editing, OnlineInfo, Shell, Twm, KDE, Qt,
GraphicalResolution = “800x600”, Width = 800} and C3 = {USB, Editing}.

3. Non-attainable validity conditions’ and domains’ values. This operation either (i)
takes a collection of decisions as input and returns the decisions that cannot attain

Defects in Product Line Models and How to Identify Them

115

one or more values of its validity condition; or (ii) takes a collection of assets as input
and returns the assets that cannot attain one of the values of its domain. A non-
attainable value of a validity condition or a domain is a value that can never be taken
by a decision or an asset in a valid product. Non-attainable values are undesired
because they give the user a wrong idea of the values that decisions and assets
modeled in the product line model can take. In our example of Figure 2, the validity
condition Width ≥ 800 && Width ≤ 1366 determines a very large range of values that
can take the variable Width, however this variable can really take three values: 800,
1024 and 1366 which means that values like 801, 802,..., 1023, 1025, ..., 1365 are not
attainable values.

4. Dead reusable elements. In Dopler language, the reusable elements are Decisions and
Assets. This operation takes a collection of decisions and assets as input and returns the
set of dead decisions and assets (if some exist) or false otherwise. A decision is dead if it
never becomes available for answering it. An asset is dead if it cannot appear in any of
the products of the product line. The presence of dead decisions and assets in product
line models indicates modeling errors and intended but unreachable options. A
decision can become dead (i) if its visibility condition can never evaluate to true (e.g., if
contradicting decisions are referenced in a condition); (ii) a decision value violates its
own visibility condition (e.g., when setting the decision to true will in turn make the
decision invisible); or (iii) its visibility condition is constrained in a wrong way (e.g., a
decision value is > 5 && < 3 at the same time). An asset can become dead (i) if its
inclusion depends on dead decisions, or (ii) if its inclusion condition is false and it is not
included by other assets (due to requires dependencies to it). Dead variables in CP are
variables than can never take a valid value (defined by the domain of the variable) in
the solution space. Thus, our approach consists in evaluating each non-zero value of
each variable’s domain. If a variable cannot attain any of its non-zero values, the
variable is considered dead. For instance, in the Dopler model of Figure 2, there are not
dead decisions or assets.

5. Redundancy-free. In the asset model (cf. the right side of Figure 2) the asset 4dwn
requires MwM, which at the same time requires the asset Motif, therefore the
dependency 4dwm requires Motif is redundant according to the redundancy-free
algorithm presented in Section 4.

It is worth noting that the domain-specific operation “false optional-free reusable elements”
is not applicable in Dopler models due to the fact that this language does not have explicitly
the concept of optional. Decisions and assets are optional in Dopler models according to the
evaluation of the visibility conditions (in the case of decisions) and inter-assets
dependencies in the case of assets

6. Validation
We performed a series of experiments to evaluate the verification approach proposed in this
chapter. The goal was to measure the effectiveness or precision of the defect’s detection, the
computational scalability and the usability of the approach to verify different kinds of
product line models. These measurements are presented in the next sections, grouped by the
kind of product line models used to evaluate our approach.

Software Product Line – Advanced Topic

114

If (at least 1 product can be configured from PLM M under a collection of constraints C
= {C1,...,Ci}) {
 Write (C |= M);
 Let take Cr ∈ C a constraint to be evaluated;
 If (C without Cr |= M AND C ∪ ¬Cr |≠ M) {
 Write (Cr is redundant);
 }
 Else{
 Write (Cr is not redundant);
 }
}
For example, to check if the constraint UNIX ≥ UtilityProgram (cf. Table 1) is redundant
or not, it is sufficient to query the solver for a product. Then, if a product is found, the
algorithm proceeds to replace the constraint by its negation (UNIX < UtilityProgram)
and ask again for a product. If the solver does not give a solution (as is the case for our
running example), one can infer that the constraint (UNIX ≥ UtilityProgram) is not
redundant.

5. Multi-model verification
Multi-model modeling allows tackling various models and aspects of a system, in particular
in the presence of stakeholders with multiple viewpoints (executives, developers,
distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 1994). For example, a
UNIX product line can be composed of several models, each one developed by a different
team or developing a particular view of the PL. Thus, while the team responsible of the
kernel develops a model, the team responsible of the user interface develops another model.
Motivated by the fact that (a) this practice is current in industry (Dhungana et al. 2010); (b)
even if each individual model is consistent, once the models are integrated, they can easily
be inconsistent; and (c) the lacks in current state of the art in multi-model PL verification,
this chapter proposes a method to verify multi-model PLs. This method is composed of
fourth steps: (i) the base models’ semantic should be transformed into constraint programs;
(ii) once these base models transformed into CP, they may be integrate using the integration
strategies and rules appropriates for each language (cf. Mazo et al. 2011a for further details
about integration of Dopler models, and Mazo et al. 2011d for further details about
integration of constraint-based PLMs; and (iii) once the base models integrated, the
collection of verification criteria, proposed in Section 4 for single models, can be applied on
the integrated model in the same manner as for single models.

The application of these verification criteria over the Dopler model depicted in Figure 2 and
the explanation regarding the minor variants are presented as follows:

1. Non-void model. This model is not a void because it allows configure at least one
product; for instance C1 = {USB, Editing, ProgrammingSupport, Shell}

2. Non-false model. This model is not a false because it allows configure more than two
products; for instance: C2 = {Cdrom, Editing, OnlineInfo, Shell, Twm, KDE, Qt,
GraphicalResolution = “800x600”, Width = 800} and C3 = {USB, Editing}.

3. Non-attainable validity conditions’ and domains’ values. This operation either (i)
takes a collection of decisions as input and returns the decisions that cannot attain

Defects in Product Line Models and How to Identify Them

115

one or more values of its validity condition; or (ii) takes a collection of assets as input
and returns the assets that cannot attain one of the values of its domain. A non-
attainable value of a validity condition or a domain is a value that can never be taken
by a decision or an asset in a valid product. Non-attainable values are undesired
because they give the user a wrong idea of the values that decisions and assets
modeled in the product line model can take. In our example of Figure 2, the validity
condition Width ≥ 800 && Width ≤ 1366 determines a very large range of values that
can take the variable Width, however this variable can really take three values: 800,
1024 and 1366 which means that values like 801, 802,..., 1023, 1025, ..., 1365 are not
attainable values.

4. Dead reusable elements. In Dopler language, the reusable elements are Decisions and
Assets. This operation takes a collection of decisions and assets as input and returns the
set of dead decisions and assets (if some exist) or false otherwise. A decision is dead if it
never becomes available for answering it. An asset is dead if it cannot appear in any of
the products of the product line. The presence of dead decisions and assets in product
line models indicates modeling errors and intended but unreachable options. A
decision can become dead (i) if its visibility condition can never evaluate to true (e.g., if
contradicting decisions are referenced in a condition); (ii) a decision value violates its
own visibility condition (e.g., when setting the decision to true will in turn make the
decision invisible); or (iii) its visibility condition is constrained in a wrong way (e.g., a
decision value is > 5 && < 3 at the same time). An asset can become dead (i) if its
inclusion depends on dead decisions, or (ii) if its inclusion condition is false and it is not
included by other assets (due to requires dependencies to it). Dead variables in CP are
variables than can never take a valid value (defined by the domain of the variable) in
the solution space. Thus, our approach consists in evaluating each non-zero value of
each variable’s domain. If a variable cannot attain any of its non-zero values, the
variable is considered dead. For instance, in the Dopler model of Figure 2, there are not
dead decisions or assets.

5. Redundancy-free. In the asset model (cf. the right side of Figure 2) the asset 4dwn
requires MwM, which at the same time requires the asset Motif, therefore the
dependency 4dwm requires Motif is redundant according to the redundancy-free
algorithm presented in Section 4.

It is worth noting that the domain-specific operation “false optional-free reusable elements”
is not applicable in Dopler models due to the fact that this language does not have explicitly
the concept of optional. Decisions and assets are optional in Dopler models according to the
evaluation of the visibility conditions (in the case of decisions) and inter-assets
dependencies in the case of assets

6. Validation
We performed a series of experiments to evaluate the verification approach proposed in this
chapter. The goal was to measure the effectiveness or precision of the defect’s detection, the
computational scalability and the usability of the approach to verify different kinds of
product line models. These measurements are presented in the next sections, grouped by the
kind of product line models used to evaluate our approach.

Software Product Line – Advanced Topic

116

6.1 Single-view models

We assessed the feasibility, precision and scalability of our approach with 46 models, out of
which 44 were taken from the SPLOT repository (Mendonca et al. 2009b) and the other two
models are the Vehicle movement control system (Salinesi et al. 2010b) and the Stago model
(Salinesi et al. 2011). The sizes of the models are distributed as follows: 32 models of sizes
from 9 to 49 features, 4 from 50 to 99, 5 from 100 to 999 and 6 from 1000 to 2000 features. The
six largest feature models that we have were not considered in this experiment due to the
fact that the solver used does not accept more that 5000 variables. Note that SPLOT models
do not have attributes, on the contrary to our two industrial models. Therefore artificial
attributes were introduced in a random way, in order to have models with 30%, 60% or
100% of their features with attributes. In order to do that, we created a simple tool1 that
translates models from SPLOT format to constraint programs, and we integrate next the
artificial attributes. In order to test that the transformation respects the semantic of each
feature model, we compared the results of our models without attributes with the results
obtained with the tools SPLOT (Mendonca et al. 2009b) and FaMa (Trinidad et al. 2008b). In
both comparisons we obtained the same results in all the shared functions: detection of void
models, dead features, and false optional features. These results show that our
transformation algorithm respects the semantic of initial models.

6.1.2 Precision of the detection

Not only must the transformation of FMs into CPs be correct but also the detection of
defects. As aforementioned, we compared the results obtained with our tool VariaMos
against these obtained with two other tools: SPLOT and FaMa. These comparisons were
made over models without attributes due to the fact that original models taken from SPLOT,
and also available for FaMa, do not have attributes. In these comparisons we find the same
results, for the common verification functions on the three tools, but due to the fact that our
own models contain attributes and group cardinalities <m..n>, for any m and n bellowing to
non negative integer numbers, a manual inspection were necessary. A manual inspection on
two samples of 28 and 56 features showed that our approach identify the 100% of the
anomalies with 0% false positive.

6.1.3 Computational scalability

The execution time of the verification operations in our tool shows that the performance
obtained with our approach is acceptable in realistic situations; because in the worst case,
users can execute any verification operation less than 19 seconds for models up to 2000
features. Figure 4 shows the execution time of each one of the six verification operations in
the 50 models. In Figure 4 each plot corresponds to a verification operation: Figure 4(1)
corresponds to operation 1, Figure 4(2) corresponds to operation 2 and so on. Times in the Y
axis are expressed in milliseconds (ms) and X axis corresponds to the number of features. It
is worth noting that most of the results overlap the other ones; we avoid the use of a
logarithmic scale in the X axis, to keep the real behaviour of the results.

1 parserSPLOTmodelsToCP.rar available at: https://sites.google.com/site/raulmazo/

Defects in Product Line Models and How to Identify Them

117

0

5

10

15

20

0 500 1000 1500 2000

Not Void FMs - VariaMos
N° Features

(1)

ms

0
0,2
0,4
0,6
0,8

1

0 500 1000 1500 2000

False FMs - VariaMos N° Features

(2)

ms

0
5000

10000
15000
20000
25000

0 500 1000 1500 2000

Non Attainable Domains - VariaMos

(3)

N° Features

ms

0
2000
4000
6000
8000

10000

0 500 1000 1500 2000

Dead Features - VariaMos N° Features

(4)

ms
0

10

20

30

40

0 500 1000 1500 2000

Redundant Relationships - VariaMos
N° Features

(5)

ms

0
2000
4000
6000
8000

10000

0 500 1000 1500 2000

False Optional Features - VariaMos N° Features

(6)

ms

Fig. 4. Execution time of the six verification operations, per number of features

Let us now present the results in more detail. For the models with sizes between 9 and 100
features our approach verified all operations in less than 1 second on average. For the
models with sizes between 101 and 500 features verified dead features and false optional
features in 0,4 seconds, 1 second to calculate the non attainable domains and 0 milliseconds
in the rest of verification operations. It is worth noting ant our solver does not provide time
measures of microseconds (10-6 seconds); thus, 0 milliseconds (10-3 seconds) must be
interpreted as less than 1 millisecond. In general, over the 46 FMs, the execution time to
detect dead features, false optional features and non attainable domains is inferior than 8,68,
8,82 and 19,09 seconds respectively. For the rest of verification operations, the execution
time is inferior to 0,02 seconds even for the largest models. Following the projection of our
results, our approach is able to be used in larger FMs with a quadratic increase, in the worst
of cases, of the time to execute any verification operation proposed in this paper. To finish,
the verification operations like redundant relationships, false feature models and void
feature models are executed in less than 0,03 seconds. According to the results of our
experiment, we can conclude that our verification approach presented in this chapter is
scalable to large FMs.

3.6 The case multi-view models

We also tested our verification approach with two Dopler variability models (Mazo et al.
2011a). In both models, we seeded 33 defects in the DOPLER model and 22 defects in the
camera model. The defects cover different types of problems to show the feasibility of the
verification approach. For instance, the decision Wizard_height cannot take the values 1200,
1050, 1024 and 768 and the asset VAI_Configuration_DOPLER cannot take the value 1 (is
never included for any product), even if these values take part in the corresponding
variables’ domain. Furthermore, we measured the execution time of applying the approach
for both models for the different verification operations as presented below.

Applying our verification approach to the DOPLER model has shown that the model is not
void and can generate 23016416 products. However, we discovered 18 defects related with
non-attainable domain values and 15 dead decisions and assets (these together are the 33
defects we have seeded before). By applying our verification approach on the digital camera

Software Product Line – Advanced Topic

116

6.1 Single-view models

We assessed the feasibility, precision and scalability of our approach with 46 models, out of
which 44 were taken from the SPLOT repository (Mendonca et al. 2009b) and the other two
models are the Vehicle movement control system (Salinesi et al. 2010b) and the Stago model
(Salinesi et al. 2011). The sizes of the models are distributed as follows: 32 models of sizes
from 9 to 49 features, 4 from 50 to 99, 5 from 100 to 999 and 6 from 1000 to 2000 features. The
six largest feature models that we have were not considered in this experiment due to the
fact that the solver used does not accept more that 5000 variables. Note that SPLOT models
do not have attributes, on the contrary to our two industrial models. Therefore artificial
attributes were introduced in a random way, in order to have models with 30%, 60% or
100% of their features with attributes. In order to do that, we created a simple tool1 that
translates models from SPLOT format to constraint programs, and we integrate next the
artificial attributes. In order to test that the transformation respects the semantic of each
feature model, we compared the results of our models without attributes with the results
obtained with the tools SPLOT (Mendonca et al. 2009b) and FaMa (Trinidad et al. 2008b). In
both comparisons we obtained the same results in all the shared functions: detection of void
models, dead features, and false optional features. These results show that our
transformation algorithm respects the semantic of initial models.

6.1.2 Precision of the detection

Not only must the transformation of FMs into CPs be correct but also the detection of
defects. As aforementioned, we compared the results obtained with our tool VariaMos
against these obtained with two other tools: SPLOT and FaMa. These comparisons were
made over models without attributes due to the fact that original models taken from SPLOT,
and also available for FaMa, do not have attributes. In these comparisons we find the same
results, for the common verification functions on the three tools, but due to the fact that our
own models contain attributes and group cardinalities <m..n>, for any m and n bellowing to
non negative integer numbers, a manual inspection were necessary. A manual inspection on
two samples of 28 and 56 features showed that our approach identify the 100% of the
anomalies with 0% false positive.

6.1.3 Computational scalability

The execution time of the verification operations in our tool shows that the performance
obtained with our approach is acceptable in realistic situations; because in the worst case,
users can execute any verification operation less than 19 seconds for models up to 2000
features. Figure 4 shows the execution time of each one of the six verification operations in
the 50 models. In Figure 4 each plot corresponds to a verification operation: Figure 4(1)
corresponds to operation 1, Figure 4(2) corresponds to operation 2 and so on. Times in the Y
axis are expressed in milliseconds (ms) and X axis corresponds to the number of features. It
is worth noting that most of the results overlap the other ones; we avoid the use of a
logarithmic scale in the X axis, to keep the real behaviour of the results.

1 parserSPLOTmodelsToCP.rar available at: https://sites.google.com/site/raulmazo/

Defects in Product Line Models and How to Identify Them

117

0

5

10

15

20

0 500 1000 1500 2000

Not Void FMs - VariaMos
N° Features

(1)

ms

0
0,2
0,4
0,6
0,8

1

0 500 1000 1500 2000

False FMs - VariaMos N° Features

(2)

ms

0
5000

10000
15000
20000
25000

0 500 1000 1500 2000

Non Attainable Domains - VariaMos

(3)

N° Features

ms

0
2000
4000
6000
8000

10000

0 500 1000 1500 2000

Dead Features - VariaMos N° Features

(4)

ms
0

10

20

30

40

0 500 1000 1500 2000

Redundant Relationships - VariaMos
N° Features

(5)

ms

0
2000
4000
6000
8000

10000

0 500 1000 1500 2000

False Optional Features - VariaMos N° Features

(6)

ms

Fig. 4. Execution time of the six verification operations, per number of features

Let us now present the results in more detail. For the models with sizes between 9 and 100
features our approach verified all operations in less than 1 second on average. For the
models with sizes between 101 and 500 features verified dead features and false optional
features in 0,4 seconds, 1 second to calculate the non attainable domains and 0 milliseconds
in the rest of verification operations. It is worth noting ant our solver does not provide time
measures of microseconds (10-6 seconds); thus, 0 milliseconds (10-3 seconds) must be
interpreted as less than 1 millisecond. In general, over the 46 FMs, the execution time to
detect dead features, false optional features and non attainable domains is inferior than 8,68,
8,82 and 19,09 seconds respectively. For the rest of verification operations, the execution
time is inferior to 0,02 seconds even for the largest models. Following the projection of our
results, our approach is able to be used in larger FMs with a quadratic increase, in the worst
of cases, of the time to execute any verification operation proposed in this paper. To finish,
the verification operations like redundant relationships, false feature models and void
feature models are executed in less than 0,03 seconds. According to the results of our
experiment, we can conclude that our verification approach presented in this chapter is
scalable to large FMs.

3.6 The case multi-view models

We also tested our verification approach with two Dopler variability models (Mazo et al.
2011a). In both models, we seeded 33 defects in the DOPLER model and 22 defects in the
camera model. The defects cover different types of problems to show the feasibility of the
verification approach. For instance, the decision Wizard_height cannot take the values 1200,
1050, 1024 and 768 and the asset VAI_Configuration_DOPLER cannot take the value 1 (is
never included for any product), even if these values take part in the corresponding
variables’ domain. Furthermore, we measured the execution time of applying the approach
for both models for the different verification operations as presented below.

Applying our verification approach to the DOPLER model has shown that the model is not
void and can generate 23016416 products. However, we discovered 18 defects related with
non-attainable domain values and 15 dead decisions and assets (these together are the 33
defects we have seeded before). By applying our verification approach on the digital camera

Software Product Line – Advanced Topic

118

model we obtained that the model is not void and can generate 442368 products. In this
model, we discovered 11 defects related with non-attainable domain values as well as 11
dead decisions and assets (these together are the 22 defects we have seeded before). It is
noteworthy that the same number of defects was identified in a manual verification of both
models. The automated verification found all of the seeded defects in the DOPLER model
and all of the seeded defects in the camera model.

Table 2 shows the number of defects found and the execution time (in milliseconds)
corresponding to the verification operations on the models. No defects were found
regarding the “Void model”, “False model” and “Redundant relationships” operations and
the execution time was less than 1 millisecond for each one of these operations in each
model. The model transformations from Dopler models to constraint programs took about 1
second for each model.

V
oi

d
m

od
el

Fa
ls

e
m

od
el

N
on

-a
tta

in
ab

le

do
m

ai
ns

D
ea

d
D

ec
is

io
ns

an

d
A

ss
et

s

R
ed

un
da

nt

re
la

tio
ns

hi
ps

DOPLER
81 Variables

Defects No No 18 15 No
Time 0 0 125 47 0

Camera
39 Variables

Defects No No 11 11 No
Time 0 0 16 15 0

Table 2. Results of model verifications: Execution time (in milliseconds) and number of
defects found with each verification operation.

In the same way as for the single-view models, the results obtained on multi-view models
allow concluding that the verification approach presented in this chapter is scalable to
medium Dopler models and give promising expectations on large Dopler models.

5. References
Batory D. (2005). Feature Models, Grammars, and Propositional Formulas. In Proceedings of

the International Software Product Line Conference (SPLC), pages 7-20. Rennes, France.
Benavides D. On the Automated Analysis of Software Product Lines Using Feature Models.

A Framework for Developing Automated Tool Support. (2007). University of
Seville, Spain, PhD Thesis.

Benavides, D., Segura, S., Trinidad, P., and Ruiz-Cortés, A. (2006). Using Java CSP solvers in
the automated analyses of feature models. In Post-Proceedings of The Summer
School on Generative and Transformational Techniques in Software Engineering
(GTTSE). LNCS 4143.

Benavides, D., Segura, S., Ruiz-Cortés, A. (2010). Automated Analysis of Feature Models 20
Years Later: A Literature Review. Information Systems journal, Volume 35 , Issue 6,
Elsevier, PP. 615-636

Defects in Product Line Models and How to Identify Them

119

Benavides, D.; Trinidad, P. & Ruiz-Cortés, A. (2005). Automated Reasoning on Feature
Models. In Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–
503. Springer, Heidelberg.

Benavides, D.; Ruiz-Cortés, A.; Trinidad, P. (2005). Using constraint programming to reason
on feature models. In The Seventeenth International Conference on Software
Engineering and Knowledge Engineering, SEKE 2005, pages 677–682.

Bosch, J. (2000). Design and Use of Software Architectures. Adopting and evolving a product-line
approach. Addison-Wesley.

Cabot, J. & Teniente, E. (2006). Incremental evaluation of ocl constraints. In Dubois, E., Pohl,
K. (eds.) CAiSE’06. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg.

Clements, P. & Northrop, L. (2001). Software Product Lines: Practices and Patterns. Addison
Wesley, Reading, MA, USA.

Czarnecki, K.; Pietroszek, K. (2006). Verifying Feature-Based Model Templates Against
Well-Formedness OCL Constraints, 5th Int. Conference on Generative
Programming and Component Engineering.

Czarnecki, K.; Helsen, S. & Eisenecker, U. W. (2005). Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice, 10(1), pp.
7-29.

Dauron, A. & Astesana, J-M. (2010). Spécification et configuration de la ligne de produits
véhicule de Renault. Journée Lignes de Produits. Université Pantéon Sorbonne,
France.

Dhungana, D.; Grünbacher, P. & Rabiser R. (2010). The DOPLER Meta-Tool for Decision-
Oriented Variability Modeling: A Multiple Case Study. Automated Software
Engineering (in press; doi: 10.1007/s10515-010-0076-6).

Dhungana, D.; Heymans, P. & Rabiser, R. (2010). A Formal Semantics for Decision-oriented
Variability Modeling with DOPLER. Proc. of the 4th International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), Linz, Austria, ICB-
Research Report No. 37, University of Duisburg Essen, 2010, pp. 29-35.

Dhungana, D., Rabiser, R. & Grünbacher, P. (2006). Coordinating Multi-Team Variability
Modeling in Product Line Engineering. In 2nd International Workshop on Supporting
Knowledge Collaboration in Software Development (KCSD), Tokyo, Japan.

Diaz, D. & Codognet, P. (2001). Design and Implementation of the GNU Prolog System.
Journal of Functional and Logic Programming (JFLP), Vol. 2001, No. 6.

Djebbi, O.; Salinesi, C. & Fanmuy, G. (2007). Industry Survey of Product Lines Management
Tools: Requirements, Qualities and Open Issues. Proc. of the International Conference
on Requirement Engineering (RE), IEEE Computer Society, New Delhi, India.

Djebbi, O. & Salinesi C. (2007). RED-PL, a Method for Deriving Product Requirements from
a Product Line Requirements Model. Proc. of the International Conference CAISE’07.
Norway.

Egyed, A. (2006). Instant consistency checking for UML. In: International Conf. Software
Engineering (ICSE’06), pp. 381–390. ACM Press, New York.

Elfaki, A.; Phon-Amnuaisuk, S. & Kuan Ho C. (2009). Using First Order Logic to Validate
Feature Model. Third International Workshop on Variability Modelling of Software-
intensive Systems VaMoS. ICB-Research Report No. 29, Universität Duisburg‐Essen,
pp. 169-172. Spain.

Software Product Line – Advanced Topic

118

model we obtained that the model is not void and can generate 442368 products. In this
model, we discovered 11 defects related with non-attainable domain values as well as 11
dead decisions and assets (these together are the 22 defects we have seeded before). It is
noteworthy that the same number of defects was identified in a manual verification of both
models. The automated verification found all of the seeded defects in the DOPLER model
and all of the seeded defects in the camera model.

Table 2 shows the number of defects found and the execution time (in milliseconds)
corresponding to the verification operations on the models. No defects were found
regarding the “Void model”, “False model” and “Redundant relationships” operations and
the execution time was less than 1 millisecond for each one of these operations in each
model. The model transformations from Dopler models to constraint programs took about 1
second for each model.

V
oi

d
m

od
el

Fa
ls

e
m

od
el

N
on

-a
tta

in
ab

le

do
m

ai
ns

D
ea

d
D

ec
is

io
ns

an

d
A

ss
et

s

R
ed

un
da

nt

re
la

tio
ns

hi
ps

DOPLER
81 Variables

Defects No No 18 15 No
Time 0 0 125 47 0

Camera
39 Variables

Defects No No 11 11 No
Time 0 0 16 15 0

Table 2. Results of model verifications: Execution time (in milliseconds) and number of
defects found with each verification operation.

In the same way as for the single-view models, the results obtained on multi-view models
allow concluding that the verification approach presented in this chapter is scalable to
medium Dopler models and give promising expectations on large Dopler models.

5. References
Batory D. (2005). Feature Models, Grammars, and Propositional Formulas. In Proceedings of

the International Software Product Line Conference (SPLC), pages 7-20. Rennes, France.
Benavides D. On the Automated Analysis of Software Product Lines Using Feature Models.

A Framework for Developing Automated Tool Support. (2007). University of
Seville, Spain, PhD Thesis.

Benavides, D., Segura, S., Trinidad, P., and Ruiz-Cortés, A. (2006). Using Java CSP solvers in
the automated analyses of feature models. In Post-Proceedings of The Summer
School on Generative and Transformational Techniques in Software Engineering
(GTTSE). LNCS 4143.

Benavides, D., Segura, S., Ruiz-Cortés, A. (2010). Automated Analysis of Feature Models 20
Years Later: A Literature Review. Information Systems journal, Volume 35 , Issue 6,
Elsevier, PP. 615-636

Defects in Product Line Models and How to Identify Them

119

Benavides, D.; Trinidad, P. & Ruiz-Cortés, A. (2005). Automated Reasoning on Feature
Models. In Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–
503. Springer, Heidelberg.

Benavides, D.; Ruiz-Cortés, A.; Trinidad, P. (2005). Using constraint programming to reason
on feature models. In The Seventeenth International Conference on Software
Engineering and Knowledge Engineering, SEKE 2005, pages 677–682.

Bosch, J. (2000). Design and Use of Software Architectures. Adopting and evolving a product-line
approach. Addison-Wesley.

Cabot, J. & Teniente, E. (2006). Incremental evaluation of ocl constraints. In Dubois, E., Pohl,
K. (eds.) CAiSE’06. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg.

Clements, P. & Northrop, L. (2001). Software Product Lines: Practices and Patterns. Addison
Wesley, Reading, MA, USA.

Czarnecki, K.; Pietroszek, K. (2006). Verifying Feature-Based Model Templates Against
Well-Formedness OCL Constraints, 5th Int. Conference on Generative
Programming and Component Engineering.

Czarnecki, K.; Helsen, S. & Eisenecker, U. W. (2005). Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice, 10(1), pp.
7-29.

Dauron, A. & Astesana, J-M. (2010). Spécification et configuration de la ligne de produits
véhicule de Renault. Journée Lignes de Produits. Université Pantéon Sorbonne,
France.

Dhungana, D.; Grünbacher, P. & Rabiser R. (2010). The DOPLER Meta-Tool for Decision-
Oriented Variability Modeling: A Multiple Case Study. Automated Software
Engineering (in press; doi: 10.1007/s10515-010-0076-6).

Dhungana, D.; Heymans, P. & Rabiser, R. (2010). A Formal Semantics for Decision-oriented
Variability Modeling with DOPLER. Proc. of the 4th International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), Linz, Austria, ICB-
Research Report No. 37, University of Duisburg Essen, 2010, pp. 29-35.

Dhungana, D., Rabiser, R. & Grünbacher, P. (2006). Coordinating Multi-Team Variability
Modeling in Product Line Engineering. In 2nd International Workshop on Supporting
Knowledge Collaboration in Software Development (KCSD), Tokyo, Japan.

Diaz, D. & Codognet, P. (2001). Design and Implementation of the GNU Prolog System.
Journal of Functional and Logic Programming (JFLP), Vol. 2001, No. 6.

Djebbi, O.; Salinesi, C. & Fanmuy, G. (2007). Industry Survey of Product Lines Management
Tools: Requirements, Qualities and Open Issues. Proc. of the International Conference
on Requirement Engineering (RE), IEEE Computer Society, New Delhi, India.

Djebbi, O. & Salinesi C. (2007). RED-PL, a Method for Deriving Product Requirements from
a Product Line Requirements Model. Proc. of the International Conference CAISE’07.
Norway.

Egyed, A. (2006). Instant consistency checking for UML. In: International Conf. Software
Engineering (ICSE’06), pp. 381–390. ACM Press, New York.

Elfaki, A.; Phon-Amnuaisuk, S. & Kuan Ho C. (2009). Using First Order Logic to Validate
Feature Model. Third International Workshop on Variability Modelling of Software-
intensive Systems VaMoS. ICB-Research Report No. 29, Universität Duisburg‐Essen,
pp. 169-172. Spain.

Software Product Line – Advanced Topic

120

Finkelstein, A.C.W.; Gabbay, D.; Hunter, A.; Kramer, J. & Nuseibeh, B. (1994) Inconsistency
handling in multiperspective specifications. IEEE Transactions on Software
Engineering, pages 569–578.

Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L.; Goedicke, M. (1992). Viewpoints: A
framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering 2(1).

Griss, M.; Favaro, J. & d’Alessandro, M. (1998). Integrating feature modeling with the RSEB.
In Proceedings of the Fifth International Conference on Software Reuse. Vancouver, BC,
Canada.

Hemakumar, A. (2008). Finding Contradictions in Feature Models. Workshop on the
Analysis of Software Product Lines (ASPL).

Howe, D. (2010). The Free On-line Dictionary of Computing, 01.06.2011, Available from
http://foldoc.org

Janota, M.; Kiniry, J. (2007). Reasoning about Feature Models in Higher-Order Logic, in 11th
Int. Software Product Line Conference (SPLC07).

Kang, K.; Cohen, S.; Hess, J.; Novak, W. & Peterson, S. (1990). Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, USA.

Kang, K.; Lee, J.; Donohoe, P. (2002). Feature-oriented product line engineering. Software,
IEEE, 19(4).

Kim, C.H.P.; Batory, D.; Khurshid, S. (2011). Reducing Combinatorics in Testing Product
Lines. Aspect Oriented Software Development (AOSD).

Lauenroth, K.; Metzger, A.; Pohl, K. (2010). Quality Assurance in the Presence of Variability.
S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems
Engineering, Springer-Verlag, Berlin Heidelberg.

Lauenroth, K. & Pohl, K. (2007). Towards automated consistency checks of product line
requirements specifications. Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering ASE'07, USA.

Liu, J.; Basu, S.; Lutz, R. R. (2011). Compositional model checking of software product lines
using variation point obligations. Journal Automated Software Engineering,
Volume 18 Issue 1.

Matthias, R.; Kai, B.; Detlef, S. & Ilka, P. (2002). Extending feature diagrams with UML
multiplicities. Proceedings of the Sixth Conference on Integrated Design and Process
Technology. Pasadena, CA.

Mazo, R.; Grünbacher, P.; Heider, W.; Rabiser, R.; Salinesi, C. & Diaz, D (2011). Using
Constraint Programming to Verify DOPLER Variability Models. In 5th International
Workshop on Variability Modelling of Software-intensive Systems (VaMos'11), pp.97-103,
ACM Press. Belgium.

Mazo, R.; Salinesi, C.; Diaz, D. & Lora-Michiels, A. (2011). Transforming Attribute and
Clone-Enabled Feature Models into Constraint Programs Over Finite Domains. 6th
International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), Springer Press, China.

Mazo, R.; Lopez-Herrejon, R.; Salinesi, C.; Diaz, D. & Egyed, A. (2011). A Constraint
Programming Approach for Checking Conformance in Feature Models. In 35th
IEEE Annual International Computer Software and Applications Conference
(COMPSAC'11), IEEE series, Germany.

Defects in Product Line Models and How to Identify Them

121

Mazo, R.; Salinesi, C.; Djebbi, O.; Diaz, D. & Lora-Michiels, A. (2011). Constraints: the Heard
of Domain and Application Engineering in the Product Lines Engineering Strategy.
International Journal of Information System Modeling and Design IJISMD (accepted), to
appear in November 2011.

Mazo, R.; Salinesi, C.; Diaz, D. (2011). Abstract Constraints: A General Framework for
Solver-Independent Reasoning on Product Line Models. Accepted on INSIGHT -
Journal of International Council on Systems Engineering (INCOSE), to be released
the 15 October 2011.

Mendonça, M.; Wasowski, A. & Czarnecki, K. (2009). SAT–based analysis of feature models
is easy. In D. Muthig and J. D. McGregor, editors, SPLC, volume 446 of ACM
International Conference Proceeding Series, pp. 231-240. ACM.

Nuseibeh, B.; Kramer, J. & Finkelstein A. (1994)A framework for expressing the
relationships between multiple views in requirements specification. IEEE Trans.
Software Eng. 20(10) pp. 760–773.

Oxford University. 2008). Concise Oxford English Dictionary. Oxford University Press, UK.
Pohl, K.; Böckle, G.; van der Linden, F. (2005). Software Product Line Engineering –

Foundations, Principles, and Techniques. Springer, Heidelberg.
Riebisch, M.; Bollert, K.; Streitferdt, D.; Philippow, I. (2002). Extending feature diagrams

with UML multiplicities, in: Proceedings of the Sixth Conference on Integrated
Design and Process Technology (IDPT2002), Pasadena, CA.

Salinesi, C.; Mazo, R. & Diaz, D. (2010). Criteria for the verification of feature models. In
Proceedings of the 28th INFORSID Conference, pp. 293-308. France.

Salinesi, C.; Mazo, R.; Diaz, D. & Djebbi, O. (2010) Solving Integer Constraint in Reuse Based
Requirements Engineering. In 18th IEEE Int. Conference on Requirements Engineering
(RE'10) IEEE Computer Society pp. 243-251. Australia.

Salinesi, C. ; Mazo, R. ; Djebbi, O. ; Diaz, D. ; Lora-Michiels, A. (2011). Constraints: the Core
of Product Line Engineering. Fifth IEEE International Conference on Research
Challenges in Information Science (RCIS), IEEE Press, Guadeloupe-French West
Indies, France.

Schobbens, P.Y.; Heymans, P.; Trigaux, J.C.; Bontemps Y. Generic semantics of feature
diagrams, Journal of Computer Networks, Vol 51, Number 2 (2007).

Schulte, Ch.; Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst., 31(1).

Segura, S. (2008). Automated Analysis of Feature Models using Atomic Sets. First Workshop
on Analyses of Software Product Lines (ASPL'08), SPLC'08. Limerick, Ireland.

Stahl, T.; Völter, M. & Czarnecki, K. (2006). Model-Driven Software Development: Technology,
Engineering, Management. Wiley editors, San Francisco.

Streitferdt, D.; Riebisch, M.; Philippow, I. (2003). Details of formalized relations in feature
models using OCL. In Proceedings of 10th IEEE International Conference on
Engineering of Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE
Computer Society, pages 45–54.

Trinidad, P.; Benavides, D.; Durán, A.; Ruiz-Cortés, A. & Toro, M. (2008). Automated error
analysis for the agilization of feature modeling. Journal of Systems & Software, 81(6)
pp. 883-896, Elsevier.

Trinidad, P., Benavides, D., Ruiz-Cortés, A. (2006), A first step detecting inconsistencies in
feature models. In CAiSE Short Paper Proceedings, Advanced Information Systems

Software Product Line – Advanced Topic

120

Finkelstein, A.C.W.; Gabbay, D.; Hunter, A.; Kramer, J. & Nuseibeh, B. (1994) Inconsistency
handling in multiperspective specifications. IEEE Transactions on Software
Engineering, pages 569–578.

Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L.; Goedicke, M. (1992). Viewpoints: A
framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering 2(1).

Griss, M.; Favaro, J. & d’Alessandro, M. (1998). Integrating feature modeling with the RSEB.
In Proceedings of the Fifth International Conference on Software Reuse. Vancouver, BC,
Canada.

Hemakumar, A. (2008). Finding Contradictions in Feature Models. Workshop on the
Analysis of Software Product Lines (ASPL).

Howe, D. (2010). The Free On-line Dictionary of Computing, 01.06.2011, Available from
http://foldoc.org

Janota, M.; Kiniry, J. (2007). Reasoning about Feature Models in Higher-Order Logic, in 11th
Int. Software Product Line Conference (SPLC07).

Kang, K.; Cohen, S.; Hess, J.; Novak, W. & Peterson, S. (1990). Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, USA.

Kang, K.; Lee, J.; Donohoe, P. (2002). Feature-oriented product line engineering. Software,
IEEE, 19(4).

Kim, C.H.P.; Batory, D.; Khurshid, S. (2011). Reducing Combinatorics in Testing Product
Lines. Aspect Oriented Software Development (AOSD).

Lauenroth, K.; Metzger, A.; Pohl, K. (2010). Quality Assurance in the Presence of Variability.
S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems
Engineering, Springer-Verlag, Berlin Heidelberg.

Lauenroth, K. & Pohl, K. (2007). Towards automated consistency checks of product line
requirements specifications. Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering ASE'07, USA.

Liu, J.; Basu, S.; Lutz, R. R. (2011). Compositional model checking of software product lines
using variation point obligations. Journal Automated Software Engineering,
Volume 18 Issue 1.

Matthias, R.; Kai, B.; Detlef, S. & Ilka, P. (2002). Extending feature diagrams with UML
multiplicities. Proceedings of the Sixth Conference on Integrated Design and Process
Technology. Pasadena, CA.

Mazo, R.; Grünbacher, P.; Heider, W.; Rabiser, R.; Salinesi, C. & Diaz, D (2011). Using
Constraint Programming to Verify DOPLER Variability Models. In 5th International
Workshop on Variability Modelling of Software-intensive Systems (VaMos'11), pp.97-103,
ACM Press. Belgium.

Mazo, R.; Salinesi, C.; Diaz, D. & Lora-Michiels, A. (2011). Transforming Attribute and
Clone-Enabled Feature Models into Constraint Programs Over Finite Domains. 6th
International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), Springer Press, China.

Mazo, R.; Lopez-Herrejon, R.; Salinesi, C.; Diaz, D. & Egyed, A. (2011). A Constraint
Programming Approach for Checking Conformance in Feature Models. In 35th
IEEE Annual International Computer Software and Applications Conference
(COMPSAC'11), IEEE series, Germany.

Defects in Product Line Models and How to Identify Them

121

Mazo, R.; Salinesi, C.; Djebbi, O.; Diaz, D. & Lora-Michiels, A. (2011). Constraints: the Heard
of Domain and Application Engineering in the Product Lines Engineering Strategy.
International Journal of Information System Modeling and Design IJISMD (accepted), to
appear in November 2011.

Mazo, R.; Salinesi, C.; Diaz, D. (2011). Abstract Constraints: A General Framework for
Solver-Independent Reasoning on Product Line Models. Accepted on INSIGHT -
Journal of International Council on Systems Engineering (INCOSE), to be released
the 15 October 2011.

Mendonça, M.; Wasowski, A. & Czarnecki, K. (2009). SAT–based analysis of feature models
is easy. In D. Muthig and J. D. McGregor, editors, SPLC, volume 446 of ACM
International Conference Proceeding Series, pp. 231-240. ACM.

Nuseibeh, B.; Kramer, J. & Finkelstein A. (1994)A framework for expressing the
relationships between multiple views in requirements specification. IEEE Trans.
Software Eng. 20(10) pp. 760–773.

Oxford University. 2008). Concise Oxford English Dictionary. Oxford University Press, UK.
Pohl, K.; Böckle, G.; van der Linden, F. (2005). Software Product Line Engineering –

Foundations, Principles, and Techniques. Springer, Heidelberg.
Riebisch, M.; Bollert, K.; Streitferdt, D.; Philippow, I. (2002). Extending feature diagrams

with UML multiplicities, in: Proceedings of the Sixth Conference on Integrated
Design and Process Technology (IDPT2002), Pasadena, CA.

Salinesi, C.; Mazo, R. & Diaz, D. (2010). Criteria for the verification of feature models. In
Proceedings of the 28th INFORSID Conference, pp. 293-308. France.

Salinesi, C.; Mazo, R.; Diaz, D. & Djebbi, O. (2010) Solving Integer Constraint in Reuse Based
Requirements Engineering. In 18th IEEE Int. Conference on Requirements Engineering
(RE'10) IEEE Computer Society pp. 243-251. Australia.

Salinesi, C. ; Mazo, R. ; Djebbi, O. ; Diaz, D. ; Lora-Michiels, A. (2011). Constraints: the Core
of Product Line Engineering. Fifth IEEE International Conference on Research
Challenges in Information Science (RCIS), IEEE Press, Guadeloupe-French West
Indies, France.

Schobbens, P.Y.; Heymans, P.; Trigaux, J.C.; Bontemps Y. Generic semantics of feature
diagrams, Journal of Computer Networks, Vol 51, Number 2 (2007).

Schulte, Ch.; Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst., 31(1).

Segura, S. (2008). Automated Analysis of Feature Models using Atomic Sets. First Workshop
on Analyses of Software Product Lines (ASPL'08), SPLC'08. Limerick, Ireland.

Stahl, T.; Völter, M. & Czarnecki, K. (2006). Model-Driven Software Development: Technology,
Engineering, Management. Wiley editors, San Francisco.

Streitferdt, D.; Riebisch, M.; Philippow, I. (2003). Details of formalized relations in feature
models using OCL. In Proceedings of 10th IEEE International Conference on
Engineering of Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE
Computer Society, pages 45–54.

Trinidad, P.; Benavides, D.; Durán, A.; Ruiz-Cortés, A. & Toro, M. (2008). Automated error
analysis for the agilization of feature modeling. Journal of Systems & Software, 81(6)
pp. 883-896, Elsevier.

Trinidad, P., Benavides, D., Ruiz-Cortés, A. (2006), A first step detecting inconsistencies in
feature models. In CAiSE Short Paper Proceedings, Advanced Information Systems

Software Product Line – Advanced Topic

122

Engineering, 18th International Conference, CAiSE 2006, Luxembourg,
Luxembourg.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. The MIT Press.
Van den Broek, P. & Galvão, I. (2009). Analysis of Feature Models using Generalised Feature

Trees. Third International Workshop on Variability Modelling of Software-intensive
Systems VaMoS. ICB-Research Report No. 29, Universität Duisburg‐Essen, pp. 169-
172. Spain.

Van der Storm, T. (2007). Generic Feature-Based Composition. In: M. Lumpe and W.
Vandeperren, editors, Proceedings of the Workshop on Software Composition
(SC'07), volume 4829 of LNCS, pp. 66-80, Springer.

Von der Maßen, T. ; Lichter, H. (2003). RequiLine: A requirements engineering tool for
software product lines, Proceedings of International Workshop on Product Family
Engineering PFE-5, Springer LNCS 3014, Siena, Italy.

Von der Maßen, T. & Lichter, H. (2004). Deficiencies in feature models. In Tomi Mannisto and
Jan Bosch, editors, Workshop on Software Variability Management for Product Derivation
- Towards Tool Support.

White, J.; Doughtery, B.; Schmidt, D. (2009). Selecting highly optimal architectural feature
sets with filtered cartesian flattening. Journal of Systems and Software, 82(8):1268–
1284.

Yan, H.; Zhang, W.; Zhao, H. & Mei, H. (2009). An optimization strategy to feature models’
verification by eliminating verification-irrelevant features and constraints. In the
proceedings of the International Conference on Software Reuse (ICSR), pp. 65–75.

Zhang, W.; Zhao, H.; Mei, H. (2004) A Propositional Logic-Based Method for Verification of
Feature Models. In: Proceedings of 6th International Conference on Formal
Engineering Methods, pp. 115–130.

Software Product Line – Advanced Topic

122

Engineering, 18th International Conference, CAiSE 2006, Luxembourg,
Luxembourg.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. The MIT Press.
Van den Broek, P. & Galvão, I. (2009). Analysis of Feature Models using Generalised Feature

Trees. Third International Workshop on Variability Modelling of Software-intensive
Systems VaMoS. ICB-Research Report No. 29, Universität Duisburg‐Essen, pp. 169-
172. Spain.

Van der Storm, T. (2007). Generic Feature-Based Composition. In: M. Lumpe and W.
Vandeperren, editors, Proceedings of the Workshop on Software Composition
(SC'07), volume 4829 of LNCS, pp. 66-80, Springer.

Von der Maßen, T. ; Lichter, H. (2003). RequiLine: A requirements engineering tool for
software product lines, Proceedings of International Workshop on Product Family
Engineering PFE-5, Springer LNCS 3014, Siena, Italy.

Von der Maßen, T. & Lichter, H. (2004). Deficiencies in feature models. In Tomi Mannisto and
Jan Bosch, editors, Workshop on Software Variability Management for Product Derivation
- Towards Tool Support.

White, J.; Doughtery, B.; Schmidt, D. (2009). Selecting highly optimal architectural feature
sets with filtered cartesian flattening. Journal of Systems and Software, 82(8):1268–
1284.

Yan, H.; Zhang, W.; Zhao, H. & Mei, H. (2009). An optimization strategy to feature models’
verification by eliminating verification-irrelevant features and constraints. In the
proceedings of the International Conference on Software Reuse (ICSR), pp. 65–75.

Zhang, W.; Zhao, H.; Mei, H. (2004) A Propositional Logic-Based Method for Verification of
Feature Models. In: Proceedings of 6th International Conference on Formal
Engineering Methods, pp. 115–130.

Software Product Line
Advanced Topic

Edited by Abdelrahman Osman Elfaki

Edited by Abdelrahman Osman Elfaki

Photo by monsitj / iStock

The Software Product Line (SPL) is an emerging methodology for developing software
products. Currently, there are two hot issues in the SPL: modelling and the analysis

of the SPL. Variability modelling techniques have been developed to assist engineers
in dealing with the complications of variability management. The principal goal of
modelling variability techniques is to configure a successful software product by
managing variability in domain-engineering. In other words, a good method for

modelling variability is a prerequisite for a successful SPL. On the other hand, analysis
of the SPL aids the extraction of useful information from the SPL and provides a control
and planning strategy mechanism for engineers or experts. In addition, the analysis of
the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL.
This book presents new techniques for modelling and new methods for SPL analysis.

ISBN 978-953-51-0436-0

Soft
w

are Product Line - A
dvanced Topic

ISBN 978-953-51-5658-1

	Software Product Line - Advanced Topic
	Contents
	Preface
	Part 1
Modelling
	Chapter 1
Handling Variability and Traceability over SPL Disciplines
	Chapter 2
An Approach for Representing Domain Requirements and Domain Architecture in Software Product Line
	Chapter 3
Transformational Variability Modeling Approach to Configurable Business System Application

	Part 2
Analysis
	Chapter 4
Integrating Performance Analysis in Software Product Line Development Process
	Chapter 5
Defects in Product Line Models and How to Identify Them

