Enabling
Things to Talk

Designing loT solutions with the
loT Architectural Reference Model

Enabling Things to Talk

Alessandro Bassi ¢ Martin Bauer °
Martin Fiedler « Thorsten Kramp -

Rob van Kranenburg ¢ Sebastian Lange
Stefan Meissner

Editors

Enabling Things to Talk

Designing IoT solutions with the
IoT Architectural Reference Model

@ Springer

Editors

Alessandro Bassi Martin Bauer
Alessandro Bassi Consulting NEC Europe Ltd.
Nice, France Heidelberg, Germany
Martin Fiedler Thorsten Kramp
Fraunhofer Institute for Material Flow IBM Research

and Logistics IML Riischlikon, Switzerland
Dortmund, Germany
Rob van Kranenburg Sebastian Lange
Internet of People Ltd. Deloitte & Touche GmbH
London, United Kingdom Berlin, Germany

Stefan Meissner

University of Surrey

Centre for Communication Systems Research
Guildford, United Kingdom

ISBN 978-3-642-40402-3 ISBN 978-3-642-40403-0 (eBook)
DOI 10.1007/978-3-642-40403-0
Springer Heidelberg New York Dordrecht London

© The Editor(s) (if applicable) and the Author(s) 2013. The book is published with open access at
SpringerLink.com

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

All commercial rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for commercial use must always be obtained
from Springer. Permissions for commercial use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Dear Reader,

The book that you are holding now in your hands is the result of a European success
story and we want to share with you our feeling of being proud of it. Since 2007, the
concept “Internet of Things” has clearly been driven by research and policy
initiatives in Europe.

The Internet of Things (IoT) is an emerging network superstructure that connects
physical resources and people together with software. It will enable an ecosystem of
smart applications and services that will improve and simplify the life of the citizen
and will contribute to sustainable growth, provided it combines and guarantees trust
and security for people and businesses. At the same time, the IoT will bring hyper-
connectivity to our society, using augmented and rich interfaces and characterised
by higher semi-autonomous system behaviour than today.

Following a workshop in February 2008, co-organised with the European Tech-
nology Platform on Smart Systems (EPoSS),' a corresponding research call was
developed where in particular Internet of Things architectural questions were
pivotal. IoT-A has been the project in the past years in giving an answer by
elaborating the Architectural Reference Model (ARM).

Whereas in the first run the IoT referred to the advent of barcodes and Radio
Frequency Identification (RFID), helping to automate inventory, tracking and basic
identification, the second, current wave of IoT is characterised by a strong verve for
connecting sensors, objects, devices, data and applications. The next wave could be
called a “cognitive IoT”, facilitating object and data re-use across application
domains, leveraging on hyper-connectivity, interoperability solutions and semantic
enriched information distribution. We consider it being very important for Europe
to be able to leverage each wave and to turn the research results into relevant
innovation and products.

The Architectural Reference Model provided aims to connect vertically closed
systems, architectures and application areas for creating open systems and integrated

! www.smart-systems-integration.org

http://www.smart-systems-integration.org/

vi Foreword

environments and platforms. It constitutes the platform from which Europe can
capitalise on the benefits of developing consumer-oriented platforms that closely
involve the telecom, hardware, software and service industries. Innovative Internet
ecosystems going beyond the smart phone must be created, and new multiple
application sectors including potential new players and service providers need to
collaborate in order to take advantage together of the technological progress.

By just accomplishing the goals of the Architectural Reference Model, a success
would be achieved that would far overshadow everything previously created for the
individual application areas. And it really can no longer be doubted that this would be
achievable in the near future with a determined improvement of available engineer-
ing capabilities and with motivated pan-European, multidisciplinary teams ready to
put thorough and serious scientific and technological effort to tackle the practical
treatment of the IoT challenges, although we must not underestimate the extent of the
difficulties that still have to be overcome. This will be the goal of the Internet of
Things Objective in Horizon 2020 to build upon success stories like the Architecture
Reference Model in order to rise up to today’s and tomorrow’s societal challenges.

European Commission Vice-President Neelie Kroes is committed to embody
and promote a strong leadership presence in IoT technologies and applications in
Europe, given the great opportunities they offer to both EU businesses and citizens
in areas of general interest like the prediction, monitoring and alerting of natural
hazards, the automation of processes in healthcare, utilisation of home metering
solutions to assist in independent living, and support of the disabled persons. The
Commission will continue to support research and innovation in this domain in the
context of “Horizon 2020”, the forthcoming EU research and innovation framework
programme starting in 2014.%

If you start entering complex subjects you need both a framework and an
explanation on how to advance and gain rapidly benefits. This “cookbook” provides
you with all what you need for starting your IoT endeavour or refocus your current
IoT activities. You will find the IoT Architectural Reference Model and compelling
use cases — it is now in your hand to use this book and to expand the knowledge of
the worldwide IoT community.

We enthusiastically invite you to read this book and opt-in to the Internet of
Things! With your engagement, motivation and interactions, the future of the
Internet of Things in Europe will be bright and successful.

Gérald Santucci

Head of Unit “Knowledge Sharing”,

Directorate General CONNECT, European Commission
Peter Friess

Scientific Officer Internet of Things,

Directorate General CONNECT, European Commission

2 http://ec.europa.eu/research/horizon2020

http://ec.europa.eu/research/horizon2020

Acknowledgements

Many thanks are due to Gerrit Muller, Buskerud University College and the
Embedded Systems Innovations by TNO, for joining us in a one-day intense
discussion on architecture methodology and architecture propaedeutics in January
2013. This event helped us with assessing the quality of our work and also it opened
our eyes to ways of improving the accessibility of this document with rather simple
measures. Many of of the structural changes in this manuscript were triggered
by our discussion with Gerrit Muller. One of these changes is the introduction of
a “red-thread” example that now nits the many parts of the IoT Architectural
Reference Model (ARM) together.

Special thanks goes to Miguel—Angel Monjas from Ericsson who, as part of the
BUTLER project, did a deep analysis of the ARM, also taking into account related
documents from other IoT-A work packages. He provided a large number of review
comments, including for example the proposal to provide some examples for
interactions between applications and different functional components to realize a
use case, which we have taken up as part of the Guidelines section.

We would also like to thank Cosmin-Septimiu Nechifor from Siemens who
greatly supported our reverse mapping activities in the context of the IERC AClI
discussions at NEC in Heidelberg in April 2013. Also, we would like to thank Ivana
Trickovic from SAP who guided our Business Process Model and Notation
extensions in a way that they have a chance of becoming part of the official
standard. Patrick Garrell and Yves David from Groupe Casino have contributed
significantly to the final definition of the cold chain use case that implements many
of the features and architectural constructs developed in IoT-A.

Furthermore, we would like to thank Stefan Ferber for the opportunity of
organizing a workshop at Bosch in Waiblingen. The attendees from different
Bosch departments engaged in interesting discussions and valueable feedback
towards the ARM.

We would like to thank Christoph Thuemmler from Edinburgh Napier
University, Armin Schneider from Technical University Munich, Thomas Jell
from Siemens and Abou Sofyane Khedim from Celestor Ltd. for supporting us in
the reverse mapping activities for the e-Health platform MUNICH.

vii

viii Acknowledgements

A special thanks goes to Francois Carrez, University of Surrey for the huge effort
he spent for editing and reviewing large parts of the book.

Last but not least we would like to thank the former IoT-A participants, Ralf
Kernchen, Martin Strohbach, Stephan Haller and Alexandru Serbanati for their
valuable contributions.

Contents

1

Introduction to the Internet of Things. 1
Thorsten Kramp, Rob van Kranenburg, and Sebastian Lange

Part I General Concepts of the Architecture Reference Model (ARM)

2

The Need for a Common Ground for the IoT: The History

and Reasoning Behind the IoT-A Project. 13
Alessandro Bassi and Sebastian Lange

The 10T Architectural Reference Model as Enabler. 17
Martin Bauer and Joachim W. Walewski

IoT in Practice: Examples: IoT in Logistics and Health. 27

Martin Fiedler and Stefan Meissner

Part II A Guidance to the Architecture Reference Model (ARM)

5

Guidance to the ARM: Overview. 39
Stefan Meissner and Joachim W. Walewski

A Process for Generating Concrete Architectures. 45
Mathieu Boussard, Stefan Meissner, Andreas Nettstriater, Alexis Olivereau,
Alexander Salinas Segura, Matthias Thoma, and Joachim W. Walewski

IoT Reference Model 113
Martin Bauer, Nicola Bui, Jourik De Loof, Carsten Magerkurth,
Andreas Nettstriter, Julinda Stefa, and Joachim W. Walewski

IoT Reference Architecture. 163
Martin Bauer, Mathieu Boussard, Nicola Bui, Jourik De Loof,

Carsten Magerkurth, Stefan Meissner, Andreas Nettstriter,

Julinda Stefa, Matthias Thoma, and Joachim W. Walewski

ix

X Contents

9 The IoT ARM Reference Manual 213
Martin Bauer, Nicola Bui, Christine Jardak, and Andreas Nettstriater
10 Interactions. 237
Martin Bauer, Mathieu Boussard, and Stefan Meissner
11 Toward a Concrete Architecture. 249
Christine Jardak and Joachim W. Walewski
12 ARM Testimonials. 279

Edward Ho, Tobias Jacobs, Stefan Meissner, Sonja Meyer,
Miguel-Angel Monjas, and Alexander Salinas Segura

13 Summary and Outlook 323
Alessandro Bassi

AppendiX A 327

Appendices B-E 341

References. e 343

Chapter 1
Introduction to the Internet of Things

Thorsten Kramp, Rob van Kranenburg, and Sebastian Lange

The expression “Internet of Things” (IoT), coined back in 1999 by Kevin Ashton,
the British technology pioneer who cofounded the Auto-ID Center at the
Massachusetts Institute of Technology, is becoming more and more mainstream.
In opening the IoT Week 2013' with a pre-recorded video message,” Ashton
insisted on the realization that IoT is here now; it is not the future but the present.
While Gartner identifies IoT as one of the top ten strategic technology trends,’
Cisco forecasts 50 billion devices connected by 2020,* a potential market in excess
of $14 trillion,” and also claims that IoT is actually already here.® Similarly, it is not
only companies with a technological focus, such as Ericsson, Bosch or Siemens that
use IoT to advertise their cutting edge technologies — media companies such as the
BBC are conducting research activities and have plans for IoT deployment. In short,
we are currently on the verge of witnessing the emergence of a “mega-market”,
where markets such as home and building automation, electricity generation and

! http://www.iot-week.eu

2 hitp://kevinjashton.com/2013/06/17/pre-recorded-opening-talk-for-internet-of-things-week-helsinki-
june-17-2013/

3 http://www.gartner.com/newsroom/id/2209615

4 http://share.cisco.com/internet-of-things.html

3 http://iotevent.eu/cisco-sees- 14-trillion-opportunity-in-iot/

6 http://newsroom.cisco.com/press-release-content?type=webcontent&articleld=1158640
T. Kramp (P<)

IBM Research, Saumerstrale 4, 8803 Riischlikon, Switzerland
e-mail: thk@zurich.ibm.com; www.zurich.ibm.com

R. van Kranenburg
Internet of People Ltd., Suite 3, 32-38 Scrutton Street, London EC2A 4RQ, UK
e-mail: kranenbu@xs4all.nl; www.theinternetofpeople.eu

S. Lange
Deloitte & Touche GmbH, Kurfiirstendamm 23, 10719 Berlin, Germany
e-mail: sebastian.lange@web.de

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_1, 1
© The Author(s) 2013

mailto:thk@zurich.ibm.com
mailto:www.zurich.ibm.com
mailto:kranenbu@xs4all.nl
mailto:www.theinternetofpeople.eu
mailto:sebastian.lange@web.de
http://www.iot-week.eu/
http://kevinjashton.com/2013/06/17/pre-recorded-opening-talk-for-internet-of-things-week-helsinki-june-17-2013/
http://kevinjashton.com/2013/06/17/pre-recorded-opening-talk-for-internet-of-things-week-helsinki-june-17-2013/
http://www.gartner.com/newsroom/id/2209615
http://share.cisco.com/internet-of-things.html
http://iotevent.eu/cisco-sees-14-trillion-opportunity-in-iot/
http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1158640
http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1158640
http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1158640

2 T. Kramp et al.

distribution, logistics, automotive, as well as telecommunications and information
technology will steadily converge. As yet, we do not know the consequences of
connecting all of these smart objects (smart meter, e-vehicle, cargo container,
fridge etc.) to the Internet.’

At the same time, the Internet of Things (IoT) is not something you will
experience as such itself. What you will see is that more and more objects become
connected. If you are selling products, you will be negotiating with providers of
connectivity. If you are building, selling or inventing models or tools for providing
services or applications, you will notice that the convergence of IoT, big data and
energy efficiency, combined with cheap hardware, software, data storage and
analytics, favours open standards, innovation and interoperability. Daily activities
that were distinct become interwoven in new formats and business models.

Thus, in effect, the Internet of Things is a combination of a technological push
and a human pull for more and ever-increasing connectivity with anything happen-
ing in the immediate and wider environment — a logical extension of the computing
power in a single machine to the environment: the environment as an interface. This
push-pull combination makes it very strong, unstoppable, fast and extremely
disruptive.

Mireille Hildebrandt, a Dutch professor working on the implications of
emerging technologies and the rule of law, states that “we may need to develop
an Ambient Law that is embodied in the algorithms and human machine interfaces
that support Ambient Intelligence and for this we will have to break through our
paralysis, ready to become literate in terms of a new script.”® In a speech to the
Pittsburgh Technology Council in 2009, Eric Schmidt, an American software
engineer and executive chairman of Google, focused on the negative effects of
(what he called) institutional fragmentation on innovation and integration. He
wondered whether governments — and the very process of policy and policymaking
itself — could benefit from the iterative cycles of measuring success and failure that
characterize the engineering and design prototyping cycles. With this amount of
real-time tracking and aggregated data and information rather than heuristics, the
act of governing itself could benefit. Specific laws could take effect for 3 months
and be evaluated and adjusted and then, based on real data rather than estimates, be
adjusted again. It is this process that can lead to combinatorial and system
innovation.

Two dominant characteristics unite these different perspectives: firstly, a sense
that Internet connectivity is becoming increasingly ubiquitous and pervasive; and
secondly, the idea that eventually everything — including mundane physical
artefacts — will be connected.

7On the LinkedIn Group “Internet of Things” strueker@iig.uni-freiburg.de.

8 Hildebrandt, Mireille and Koops, Bert-Jan, The Challenges of Ambient Law and Legal Protec-
tion in the Profiling Era, Modern Law Review, Vol. 73, Issue 3, pp. 428-460, May 2010.

1 Introduction to the Internet of Things 3

IoT Application Example 1: Transport/Logistics

In transport logistics, IoT improves not only material flow systems but also
the global positioning and automatic identification of freight. It also increases
energy efficiency and thus decreases energy consumption.

In conclusion, IoT is expected to bring profound changes to the global
supply chain via intelligent cargo movement. This will be achieved by means
of continuous synchronisation of supply chain information and seamless real-
time tracking and tracing of objects. It will make the supply chain transparent,
visible and controllable, enabling intelligent communication between people
and cargo/goods.

IoT Application Example 2: The Smart Home

Future smart homes will be conscious about what happens inside a building,
mainly impacting three aspects: resource usage (water conservation and
energy consumption), security and comfort. The goal is to achieve better
levels of comfort while cutting overall expenditure.

Moreover, smart homes also address security issues by means of complex
security systems for detecting theft, fire or unauthorized entry. The
stakeholders involved in this scenario constitute a very heterogeneous group.

Different actors will cooperate in the user’s home, such as Internet
companies, device manufacturers, telecommunications operators, media ser-
vice providers, security companies, electricity utility companies, etc.

IoT Application Example 3: Smart Cities

While the term smart city is still a fuzzy concept, there is general agreement
that it is an urban area which creates sustainable development and high
quality of life. Giffinger et al.’s model elucidates the characteristics of a
smart city, encompassing economy, people, governance, mobility, environ-
ment and living.” Outperforming in these key areas can be achieved through
strong human or social capital and/or ICT infrastructure. For the latter, an
initial business analysis concludes that several sectors/industries will benefit
from more digitalised and intelligent cities (examples for a city of one million
people):'©

(continued)

o http://www.smart-cities.eu/download/smart_cities_final_report.pdf
1% http://de.slideshare.net/rInicholson2/smart-cities-proving-ground-for-the-intelligent-economy

http://www.smart-cities.eu/download/smart_cities_final_report.pdf
http://de.slideshare.net/rlnicholson2/smart-cities-proving-ground-for-the-intelligent-economy

4 T. Kramp et al.

(continued)

(a) Smart metering, 600,000 m, $120 million opportunity

(b) Infrastructure for charging electric vehicles, 45,000 electric vehicles,
$225 million opportunity

(c) Remote patient monitoring (diabetes), 70,000 people, $14 million
opportunity

(d) Smart retail, 4,000 stores, $200 million opportunity

(e) Smart bank branches, 3,200 PTMs, $160 million opportunity

IoT Application Example 4: Smart Factory

In a global supply chain, companies will be able to track all of their products
by means of radio frequency identification (RFID) tags. As a consequence,
companies will reduce their operating expenses (OPEX) and improve their
productivity due to tighter integration with enterprise resource planning
(ERP) and other systems. Also, maintenance of machinery will be facilitated
by connected sensors, allowing for real-time monitoring of the health and
performance of the factory equipment.

Generally, IoT will provide automatic procedures that imply a drastic
reduction in the number of employees needed. Workers will be replaced by
bar code scanners, readers, sensors and actuators, and in the end by complex
robots as efficient as a human being.

Without any doubt, these technologies will bring opportunities for white-
collar workers and a large number of technicians will be required to program
and repair these machines. This is synonymous to a transfer to maintenance
jobs, but it also constitutes a new challenge for providing all blue-collar
workers with an opportunity to move toward these types of jobs and to
avoid unemployment.

As the developments got closer to the market and the everyday lives of citizens,
the need for non-technical research in the area of machine to machine (M2M)
communication and the Internet of Things was acknowledged in the 1996 EU Call
for Proposals of i’: Intelligent Information Interfaces, an Esprit Long-Term
Research initiative. The aim of i’ (pronounced “eye-cubed”) was to develop new,
human-centred interfaces for interacting with information, aimed at the future
broad population. This approach was also the starting point and rationale for the
EU-funded proactive initiative “The Disappearing Computer”, a cluster of
17 projects conducted by interdisciplinary research groups. Its mission was “to
see how information technology can be diffused into everyday objects and settings,
and to see how this can lead to new ways of supporting and enhancing people’s lives

1 Introduction to the Internet of Things 5

that go above and beyond what is possible with the computer today.”'" The third
research iteration of this approach was Convivio (2003-2005), a thematic network
of researchers and practitioners developing a broad discipline of human-centred
design of digital systems for everyday life. The coordinator of Convivio stated that
human-centred design “still has little influence either on governmental and super-
national policies or on industrial strategies. As a result, it also has little impact on
the quality of ICT in public and private life.”'?

However, in 2013, some 50 % of respondents'® to a European Commission
Public Consultation fell into the “interested citizen” category rather than belonging
to a particular industrial, academic or other sector.'*

Andreas Kirsch in the IoT Expert Group commented that the main point that
emerged from the work of the subgroup on privacy was that everyone will be
affected by IoT but many people will not realise it. It is vital that this realization is
handled well. By default, the Internet of Things may involve function creep or have
unintended consequences: “It was noted that most people use the same concepts
when discussing IoT as when discussing the Internet in general. There is a signifi-
cant difference, however. IoT involves objects talking to each other without user
consent, with possibly un-envisaged functionalities. Cameras, for example, might
take on functions that are different from their overt primary functions. These
possibilities, once perceived, may cause user anxieties to rise. Moreover, what is
the role of user consent if objects may be able to talk to each other spontaneously? It
will be very difficult to backtrack after the deployment of million of chips
employing a passive approach to connectivity.”

Privacy, security and ideas in society about data storage and tracking could stall
adoption when, for example, by combining the analysis of supply and demand,
energy enterprises are able to supply more efficient demand shaping. They will not
just give incentives to consumers; they will actually turn off devices that are not
needed (e.g. turn off the freezer for 20 min). Furthermore, these actions must take
place automatically. In IoT we always face a heterogeneous scenario involving
diverse stakeholders. The main actors are of course energy utility companies, but
public entities will also be important players. These services need to be coupled
with educational programs that explain what is happening in reality.

"' The Disappearing Computer IT (DC) Proactive Initiative http://cordis.europa.eu/ist/fet/dc2-in.
htm

121 etter to the Convivio community, Giorgio De Michelis, Convivio network coordinator, http://
daisy.cti.gr/webzine/Issues/Issue%201/Letters/index.html

13 Additional responses have been received since the last report, with the total number rising from
500 to more than 600. These additional responses did not affect the statistics for the exercise as a
whole.

4 Tenth Meeting of the Internet of Things Expert Group, Brussels, 14 November 2012. Tom
Wachtel, rapporteur.

http://cordis.europa.eu/ist/fet/dc2-in.htm
http://cordis.europa.eu/ist/fet/dc2-in.htm
http://daisy.cti.gr/webzine/Issues/Issue%201/Letters/index.html
http://daisy.cti.gr/webzine/Issues/Issue%201/Letters/index.html

6 T. Kramp et al.

IoT Application Example 5: Retail

IoT realises both customer needs and business needs: price comparison of a
product; looking for other products of the same quality at lower prices; with
shop promotions, giving information not only to customers but also to shops
and businesses. Having this information in real time helps enterprises to
improve their business and to satisfy customer needs.

Obviously, big retail chains will take advantage of their dominant position
to enforce the future IoT retail market, as was the case with RFID adoption,
which was enforced by Walmart in 2004 (Wu et al. 2006). In particular,
companies with controlling positions, such as Carrefour, Metro, Migros,
Walmart, etc. will be able to push the adoption of IoT technology due to
their sizable market shares.

IoT Application Example 6: E-Health

Control and prevention are two of the main goals of future health care.
Already today, people have the option of being tracked and monitored by
specialists even if the patient and specialist are not in the same place. Tracing
peoples’ health history is another aspect that makes IoT-assisted e-health very
versatile. Business applications could offer the possibility of medical services
not only to patients but also to specialists, who need information to proceed in
their medical evaluation. In this domain, IoT makes human interaction much
more efficient because it permits not only localization, but also tracking and
monitoring of patients. Providing information about the state of a patient
makes the whole process more efficient, and also makes people much more
satisfied.

The most important stakeholders in this scenario will be public and private
hospitals and institutes such as the Institute of Applied eHealth at Edinburgh
Napier University, which participated in the first stakeholder session of
IoT-A. It is worth mentioning that telecommunications operators are quite
active in e-health (for instance, O2 UK).

The IoT Expert Group claims that, “As IoT will introduce new difficulties for
contextual integrity, the principle whereby information supplied for use in one
context (e.g. a meeting with one’s doctor) is not expected by the owner of the data
to be used in a different context (e.g. the doctor applying for a mortgage). There will
be a social contract between people and objects, and the ethical ramifications of a
contract of this kind must be considered”."®

' Internet of Things Expert Group (E02514), Commission Decision of 10 August 2010 setting up
the Expert Group on the Internet of Things. OJ C 217, 11.8.2010, p. 10-11, http://ec.europa.eu/
transparency/regexpert/index.cfm?do=groupDetail.groupDetail&grouplD=2514

http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=2514
http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=2514
http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=2514
http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=2514

1 Introduction to the Internet of Things 7

All current computing and IoT paradigms position connectivity and content-
centric networking centrally as an ecology of devices, protocols, services and
networks, such as RFID, active sensors, biometrically-related smart camera data,
2D and 3D bar codes and 6LoWPAN (IPv6 over Low power Wireless Personal Area
Networks) or ZigBee. At the core of this ecology there is a seamless flow between:

e The BAN (body area network): e.g. the ambient hearing aide, the smart T-shirts

e The LAN (local area network): e.g. the smart meter as a home interface

« The WAN (wide area network): the bike, car, train, bus

* The VWAN (very wide area network): the smart city as e-government services
everywhere; no longer tied to physical locations

Traceability, sustainability and security linking the gateways of these different area
networks cannot be ensured without interoperability at architectural, domain-specific
and application level. (see also the box on page 9 — The hierarchy of networks)

It is also highly likely that monitoring mechanisms will be built into devices
themselves: for example, “if a guest is charging their electric car at a friend’s house,
we should consider applications that will understand that the charge should appear
on the guest’s electric bill and not that of the friend.”'® But there is a clear deadlock:
clients do not know what they can expect, nor do they know what they could ask.

M2M vendors cannot interface their sensor capabilities beyond an optimizing
function. No one is asking for an Internet of Things. People have no idea about what
they can expect and why they should hand over their washing machines to a local
grid to ensure energy efficiency, for example. Is a positive outcome feasible?

A successful IoT means the best possible feedback on our physical and mental
health, the best possible deals based on real-time monitoring for resource alloca-
tion, the best possible decision-making based on real-time data and information
from open sources, and the best possible alignments of our local providers with the
global potential of wider communities.

Now that we have introduced the basic ideas of the Internet of Things concept
and pointed out some aspects of the current discussion taking place in the Internet of
Things community, you can see that the whole field is very much “in motion”. New
ideas, concepts and new technologies are appearing constantly, whereas others are
disappearing, being ruled out as incompatible or not feasible. In the IoT concept,
which is itself disruptive, other potential “disruptive” technologies (e.g. Google
Glass etc.) strongly influence the direction of technological development as well as
the related societal and political discussion.

Despite the high-level discourse that is necessary to assess the socio-economic
impact of IoT in general, in this book we will focus on the underlying technological
concepts, network architecture approaches and connectivity and interoperability
requirements that are required to provide and realise the fundamental connectivity
that will ultimately allow for the emergence of the Internet of Things to the benefit
of mankind in general.

18 hitp://tools.ietf.org/id/draft-roychowdhury-6lowappsip-00.txt

http://tools.ietf.org/id/draft-roychowdhury-6lowappsip-00.txt

8 T. Kramp et al.

With a strong focus on network architectures, architecture models and guidelines
for building a truly interoperable Internet of Things, this book summarises the results
of the IoT-A'” project, funded by the European Union and conducted between 2010
and 2013. More than 50 scientists and researchers contributed to the development of
an “Architectural Reference Model” (ARM) for the Internet of Things.

This book is in two parts (I and II). Part I (Chaps. 2, 3, 4) introduces, on a more
general level, the concepts developed over the course of the IoT-A project. It is
targeted at a general audience including end users who want to employ IoT
technologies, managers interested in understanding the opportunities generated by
the new technologies, and system architects who are interested in an overview of
the models developed. In Chap. 2 we explain the history behind and origin of the
IoT-A project. In Chap. 3 we introduce the ARM as enabler, its terminology and
methods for employing it. Chapter 4 then highlights use cases that exemplify how
the ARM has been used in real life scenarios.

Part IT (Chaps. 5, 6, 7, 8, 9, 10, 11, 12) contains Chap. 5, which provides an
overview on guidance to the ARM, followed by Chap. 6 with very detailed and
elaborate description of a process to generate concrete architectures. In Chap. 7 the
IoT Reference Model is aiming at establishing a common grounding. Based on this,
in Chap. 8 the IoT Reference Architecture is presented. Chapter 9 provides reference
manuals with guidelines how to use the various Models and Perspectives presented
in creating a concrete architecture. In Chap. 10 an interaction analysis on some
selected scenarios is given to provide a general understanding on the interactions to
be considered. The best practices and guidelines relating to how system engineers or
other end users can use the ARM to develop specific [oT architectures for dedicated
IoT solutions and how users can apply the concepts presented to develop a dedicated
IoT architecture for a specific application case are illustrated in Chap. 11 and
exemplified in reverse mapping exercises of existing standards and platforms to
the IoT ARM up to a business case evaluation in Chap. 12.

In contrast to Part I, Part IT addresses the topic on a very scientific and technical
level and is targeted at the knowledgeable scientific or technical reader.

IoT Application Example 7: Smart Energy/Smart Grid

This field has many overlaps with other scenarios, such as smart home and
smart city. The key issue in these scenarios is to detect ways to save energy.
We are basically referring to what is known as a smart grid. In this application
area, initiatives that imply a more distributed energy production must be
highlighted, as many houses today have a solar panel, for example. As a
vital constituent, smart metering is considered a prerequisite for enabling
intelligent monitoring, control and communication in grid applications. The
use of [oT platforms in smart metering will provide the following benefits:

(continued)

7 www.iot-a.eu

http://dx.doi.org/10.1007/978-3-642-40403-0_2
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_2
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_5
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_10
http://dx.doi.org/10.1007/978-3-642-40403-0_11
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_5
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_10
http://dx.doi.org/10.1007/978-3-642-40403-0_11
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://www.iot-a.eu/

1 Introduction to the Internet of Things 9

(continued)

a. An efficient network of smart meters allows for faster outage detection and
restoration of service. Such capabilities abound to the benefit of customers.

b. Customers will have greater control over their energy or water consump-
tion, providing them with more choices for managing their bills.

c. IoT deployment of smart meters is expected to reduce the need for building
power plants. Building power plants that are necessary only for occasional
peak demand is very expensive: a more economical approach is to enable
customers to reduce their demand through time-based rates or other incen-
tive programs, or to use automatic recording of consumption to temporar-
ily turn off devices which are not in use.

Finally, by combining the analysis of supply and demand, energy
enterprises will able to supply more efficient demand shaping. They will
not just give incentives to consumers, but will actually turn off devices that
are not needed (e.g. turn off the freezer for 20 min). Furthermore, these
actions must take place automatically. Here, we again face a heterogeneous
scenario involving diverse stakeholders. The main actors are of course energy
utility companies, but public entities will also be important players.

The Hierarchy of Networks: BAN (Body Area Network): The Ambient
Hearing Aide, the Smart T-shirts

Control and prevention are two of the main goals of future health care.
Already today, people have the option of being tracked and monitored by
specialists even if patient and specialist are not in the same place. Tracing
peoples’ health history is another aspect that makes loT-assisted e-health very
versatile. Business applications could offer the possibility of medical services
not only to patients but also to specialists, who need information to proceed in
their medical evaluation. In this domain, IoT makes human interaction much
more efficient because it permits not only localization, but also tracking and
monitoring of patients. Providing information about the state of a patient
makes the whole process more efficient, and also makes people much more
satisfied. Trust is a key issue in this relationship. Patient to patient networks
become more empowered as well.

LAN (local area network): the smart meter as a home interface

Future smart homes will be conscious about what happens inside a build-
ing, mainly impacting three aspects: resource usage (water conservation and
energy consumption), security and comfort. The goal is to achieve better
levels of comfort while cutting overall expenditure. Moreover, smart homes

(continued)

10 T. Kramp et al.

(continued)

also address security issues by means of complex security systems to detect
theft, fire or unauthorized entry. The stakeholders involved in this scenario
constitute a very heterogeneous group. Different actors will cooperate in the
user’s home, such as Internet companies, device manufacturers, telecommu-
nications operators, media service providers, security companies, electricity
utility companies, etc.

WAN (wide area network): the bike, car, train, bus,

In transport logistics, IoT improves not only material flow systems but also
global positioning and automatic identification of freight. It also increases
energy efficiency and thus decreases energy consumption.

Prof. Dr. Michael ten Hompel, Managing Director at Fraunhofer-Institut
for “Materialfluss und Logistik”, describes the consequences for something as
“solid” as logistics: “The logical consequence of the Internet of Things is not
just a new philosophy of how we can control our production and logistics. It
completely changes the paradigms of conventional supply chain manage-
ment. Within the Internet of Things the supply chain will be created in real
time: Entities, consisting of objects and a piece of (agent based) software,
generates the resulting supply chain ‘on the move.” Therefore the sequences
of operations are not predicted. This leads to a new understanding of how to
handle our logistic management which won’t be a supply chain (!) anymore.”

IoT is thus expected to bring profound changes to the global supply chain
via intelligent cargo movement. This will be achieved by means of continu-
ous synchronisation of supply chain information and seamless real-time
tracking and tracing of objects. It will make the supply chain transparent,
visible and controllable, enabling intelligent communication between people
and cargo.

VWAN (very wide area network): the smart city as e-government
services everywhere; no longer tied to physical locations

While the term smart city is still a fuzzy concept, there is general agree-
ment that it is an urban area which creates sustainable development and high
quality of life. Giffinger et al.’s model elucidates the characteristics of a smart
city, encompassing economy, people, governance, mobility, environment and
living (Giffinger 2007). Outperforming in these key areas can be achieved
through strong human or social capital and/or ICT infrastructure. There are a
number of critics who question whether the smart city as it is conceived now
can be inclusive and educational.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Part I
General Concepts of the Architecture
Reference Model (ARM)

Chapter 2

The Need for a Common Ground for the IoT:
The History and Reasoning Behind the IoT-A
Project

Alessandro Bassi and Sebastian Lange

The Internet of Things concept has evolved rapidly in recent years. It can be seen as
an umbrella term for interconnected technologies, devices, objects and services.
Nevertheless, after many years of heavy discussion, there is still no clear and
common definition of the concept. And yet the application scenarios and market
opportunities offered by objects communicating actively and autonomously extend
far beyond the foreseeable horizon.

Looking at websites such as kickstarters.com and indiegogo.com, new
applications and services envisaged by innovators and researchers are astonishing
and clearly show the vast opportunities our future society will be confronted with.

The concept of IoT as introduced in Chap. 1 emerged primarily from the
convergence of different technological developments and fields. In particular, it
builds on the emergence of innovative enabling functionalities that stem from
identification technologies such as RFID and bar codes, as well as from the
development of networked sensors and actuators. In the early 2000s, RFID tech-
nology was developed and rolled out mainly across the logistics sector for tracking
and tracing goods. At the same time, research was conducted on sensor networks
and miniaturized smart systems. Sensors were becoming increasingly small and
computing power dramatically increased. Nevertheless, innovative solutions were
always developed for specific application cases, and there was no true interopera-
bility and interconnectivity between different application areas.

For instance, in some fields such as manufacturing and logistics, communication
and tagging solutions are well-established as they provide a clear business benefit in
terms of asset tracking and supply chain management. However, the same solutions

A. Bassi ()
Alessandro Bassi Consulting, 3, Avenue de Cannes, 09160 Juan Les Pins, France
e-mail: alessandro@bassiconsulting.eu

S. Lange
Deloitte & Touche GmbH, Kurfiirstendamm 23, 10719 Berlin, Germany
e-mail: sebastian.lange@web.de

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_2, 13
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_1
mailto:alessandro@bassiconsulting.eu
mailto:sebastian.lange@web.de

14 A. Bassi and S. Lange

do not apply for other fields such as domotics, where business synergies could
provide services with clear added-value benefits.

As the IoT domain covers such a wide spectrum of application fields with very
little in common, the development cycles and technologies used can be completely
different. Often, early technological developments are driven by visionary small
and medium-sized enterprises (SME) that are able to innovate faster and to catch
emerging trends. However, the target is usually a product or service with a narrow
scope, and as the focus and window of opportunity are slim, the solutions developed
are usually non-interoperable, and while successful, they do not produce a common
abstract infrastructure capable of marking significant progress in the whole field.
The same holds true for large industry companies that often develop specialized
solutions for dedicated business opportunities without implementing generally
applicable concepts.

Therefore, current solutions can still be seen as island solutions, implementing
some sort of “INTRAnRet of Things” rather than an “INTERnet of Things”.

While quite logical at this point, in the long term, this situation is unsustainable.
Today, we can observe a similar situation to that in the networking field, where
several solutions emerged at its infancy but were subsequently abandoned in favour
of a unified communication infrastructure, the TCP/IP protocol suite.

The emergence of a common “lingua franca” for the IoT domain, representing
the narrow central point in the Internet protocol suite, is a prerequisite for quick and
pervasive development of innovative solutions that can leverage different
technologies developed for different targets in different application domains.

After much discussion about the core concepts of the IoT for several years, in
2009 a group of researchers from more than 20 large industrial companies and
research institutions joined forces to lay the foundation for the much needed
common ground or a common “architecture” for the Internet of Things: the IoT-
Architecture project (IoT-A) was born. IoT-A has become the European
Commission’s flagship project in the European Union’s Seventh Framework Pro-
gram for Research and Development with respect to establishing an architecture for
the Internet of Things.

Leaving aside business considerations, and considering only the technical point
of view, it was clear for the project partners that the existing solutions did not
address the scalability requirements of a future IoT, both in terms of communica-
tion between smart devices and the orchestration and management of complex
services. Furthermore, the IoT domain comprises several different governance
models, which are often incompatible. This leads to a situation where privacy and
security are treated on a per case and per legislation basis, retrofitting solutions to
existing designs — this severely hampers portability, interoperability and
deployment.

Of course, the spread of the IoT domain is so huge that it would be naive to
consider a “one-size-fits-all” protocol, such as IP, or even a single layer where
interoperability between all sorts of smart device communication can take place.
However, it soon became clear that within this area, there was a need for a common
ground in a more abstract layer.

2 The Need for a Common Ground for the IoT: The History and Reasoning Behind. . . 15

We are convinced that different classes of devices will always co-exist.
Taxonomies can be created according to different principles, such as critical or
non-critical, or distributed or centralised. These classes can foster different profiles
according to the specific needs and requirements of applications and domains.

As it is impossible to specify one single design pattern that can satisfy all
application domains, the common ground has to be found at a more abstract
level. We believe that the identification of a reference model for the entire IoT
domain will provide the common ground. By reference model we mean an
abstract framework that comprises a minimal set of unifying concepts, axioms
and relationships for understanding significant relationships between the entities
of an environment. This framework should enable the development of specific
architectures which may have different levels of abstraction. At this level of
abstraction we are independent of specific standards, technologies, implementations,
or other concrete details.

This high-level work then drives the realisation of a framework for identifying
specific reference architectures that subsequently describe both essential building
blocks as well as design choices for dealing with conflicting requirements regarding
functionality, performance, deployment and security. Interfaces need to be
standardised, and best practices need to be provided in terms of functionality and
information usage.

The central decision of the IoT-A project was to base its work on the current state
of the art, rather than applying a clean slate approach. As a result, common traits
have been derived to form the baseline of the IoT Architectural Reference Model
(ARM). This has the major advantage of ensuring that the model is backward-
compatible, as well as the adoption of established, working solutions for various
aspects of the IoT.

It is no longer possible to build architectures in the lab or without real world
input. IoT-A acknowledged this new reality, where the lines between R&D,
innovation and emergent technologies are blurred, at a very early stage. With the
help of end users, organised into the IoT-A stakeholders group, new requirements
for IoT have been collected and introduced in the main model-building process.
This stakeholder group was one of the most important sources for obtaining
external input as well as feedback on the current status of project work. Thus far,
the stakeholder contributions have been a main feature of the project, as the
stakeholder requirements collected in an initial workshop formed the basis for the
initial draft of the ARM, particularly the domain model and the functional decom-
position. Each building block of the ARM was then developed to meet all
requirements and enable the IoT-A holistic approach. Further stakeholder
workshops and questionnaires were employed to review the progress of the ARM
development and to fine tune the concepts and models.

Currently, the prevailing practice domain for stakeholder engagement is largely
characterized by complex and dynamic environments that cover a wide range of
stakeholders, from hostile to conciliatory, from obstructive to collaborative.

This is an apt characterisation of the Internet of Things: complex and dynamic
environments containing a wide range of stakeholders. As such, it is an open and

16 A. Bassi and S. Lange

ongoing ecology of environments, characterized by change and real-time combina-
torial innovation.

For all their different backgrounds — automotive, health, logistics, retail. . . — the
stakeholders were surprised to see that their requirements were often very similar.
In their real world cases, the same principles and same abstract level required that
“in this IoT world things become active participants”’; the goal is a seamless chain
of real-time tracking and tracing, in which the elite of expensive high-level item
tracking and the multitude of low-level items should be balanced for cost efficiency.
Interoperability was validated by the stakeholders in the independently generated
use cases as the number one requirement.

The next chapter introduces the ARM in detail, its language and terminology, as
well as its beneficial role in the IoT application development process.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Chapter 3
The 10T Architectural Reference Model as
Enabler

Martin Bauer and Joachim W. Walewski

As identified in the previous chapter, [oT-A has created an “Architectural Refer-
ence Model” (IoT ARM) as the common ground for the Internet of Things. The core
idea is that the IoT ARM provides a common structure and guidelines for dealing
with core aspects of developing, using and analysing IoT systems. The first part of
this chapter provides a non-exclusive list of the beneficial uses of the [oT ARM. In
the second part we focus on the role of the [oT ARM in the architecture develop-
ment process.

3.1 Using the IoT ARM

In the following we present a non-exclusive list of the beneficial uses of the IoT
ARM. The order in which they are discussed does not imply any ranking — we list
them according to their degree of abstraction and remoteness from the product:
i.e. the first usage type is concerned more with generic enabling (abstract and
remote), while the last usage type concerns how the IoT ARM can be used for
procuring system solutions (concrete, close to business). The usage type that is
more important to any specific use of the IoT ARM depends on the perspective of
the actors involved. A manager of an IoT development process, for instance, is
more likely to favour the enabling aspects of the IoT ARM, while a procurement
department is more likely to favour concrete advantages that are closer to the
business process itself.

M. Bauer ()

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd.,
Kurfiirsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: Martin.Bauer@neclab.eu; www.nw.neclab.eu

J.W. Walewski
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
e-mail: joachim.walewski@siemens.com; www.siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_3, 17
© The Author(s) 2013

mailto:Martin.Bauer@neclab.eu
mailto:www.nw.neclab.eu
mailto:joachim.walewski@siemens.com
mailto:www.siemens.com

18 M. Bauer and J.W. Walewski
3.1.1 Cognitive Aid

When it comes to product development and other activities, an architectural
reference model is of fourfold use.

Firstly, it helps to guide discussions, since it provides a language everyone involved
can use, and which is intimately linked to the architecture, the system, the usage
domain, etc.

Secondly, the high-level view provided in such a model is of high educational
value, since it provides an abstract but also rich view of the domain. Such a view
can help people new to the field to “find their way” and to understand the special
features and intricacies of IoT.

Thirdly, the IoT ARM can assist [oT project leaders in planning the work at hand
and the teams needed. For instance, the Functionality Groups identified in the
IoT Functional View of the IoT system can also be understood as a list of
independent teams working on an IoT system implementation. The Process
Chapter (Chap. 6) provides more insight on how the IoT ARM can support the
architecture generation process and also about how to separate it into different
activity “islands”. This type of approach is particularly interesting for enterprise
architecture frameworks that incorporate system-architecting processes. Typi-
cally, these enterprise frameworks provide institutional rules and prescriptions
for how the system-architecting process is to be conducted. The IoT ARM can
inform such institutional rules and prescriptions. An example of the latter is the
Zachman framework (Zachman 1987).

Fourthly, the IoT ARM helps to identify independent building blocks for IoT
systems. This constitutes very valuable information when dealing with questions
such as system modularity, processor architectures, third-vendor options, re-use
of components already developed, etc.

3.1.2 Reference Model as a Common Ground

Establishing a common ground for a field is not an easy task. In order to be
effective, it has to capture as many pertinent vantage points as possible.
Establishing the common ground for the IoT encompasses defining IoT entities
and describing their basic interactions and relationships with each other. The IoT
ARM provides exactly such a common ground for the IoT field.

3.1.3 Generating Architectures

One of the main benefits is the use of the IoT ARM for generating compliant
architectures for specific systems. This is done by providing best practices and

http://dx.doi.org/10.1007/978-3-642-40403-0_6

3 The IoT Architectural Reference Model as Enabler 19

guidance for translating the IoT ARM into concrete architectures. For an overview
on this, see Chap. 5. The benefit of this type of generation scheme for IoT
architectures is not only a certain degree of automation in this process, and thus
lower R&D efforts, but also that the decisions made follow a clear, documented
pattern as described in Chap. 6.

3.1.4 Identifying Differences in Derived Architectures

When using the aforementioned IoT ARM-based architecture process, any
differences in the derived architectures can be attributed to the special features of
the use case in question and the design choices related to this case (Shames and
Yamada 2004). When applying the IoT ARM, a list of system function blocks, data
models, etc., together with predictions of system complexity, etc. can be derived for
the architecture generated. Furthermore, the IoT ARM defines a set of tactics and
design choices for meeting qualitative system requirements (for more details, see
Chap. 6, Design choices). All of these facts can be used to predict whether two
derived architectures will differ and where they will do so.

The IoT ARM can also be used for reverse mapping. System architectures can be
cast in the “IoT ARM” language and the resulting “translation” of the system
architectures is then stripped of incompatible language and system partitions and
mappings. The differences that remain are then true differences in architecture.

3.1.5 Achieving Interoperability

As we explain later on in this book (see Chap. 6 on design choices), fulfilling
qualitative requirements through the architecting process inevitably leads to design
challenges. Since there is usually more than one solution to each of the design
challenges (we refer to these solutions as design choices), the [oT ARM cannot
guarantee interoperability between any two concrete architectures, even if they
have been derived from the same requirement set. Nevertheless, it is an important
tool in helping to achieve interoperability between IoT systems. This is facilitated
by the design-choice process itself. During this process, one identifies and tallies the
design choices made. By comparing the design choices made when deriving two
architectures, one can readily identify where in the architecture measures are
necessary to achieve interoperability. Interoperability may be achieved a posteriori
by integrating one IoT system as subsystem in another system, or by building a
bridge through which key functionalities of the respective other IoT system can be
used. Notice though that these workarounds often fall short of achieving full
interoperability. Nevertheless, building bridges between such systems is typically
much more straightforward than completely re-designing either system and usually
fair interoperability can be achieved.

http://dx.doi.org/10.1007/978-3-642-40403-0_5
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

20 M. Bauer and J.W. Walewski
3.1.6 System Roadmaps and Product Life Cycles

Above we discussed how the design choices made in order to derive a particular
architecture, and also the features selected, are instrumental in describing the
difference between two architectures. As well as identifying the differences
between two “foreign” architectures, this approach can also be used to map the
evolution of architectures. For instance, design choices are tied to qualitative
requirements. Let us assume that during the requirements process (see Chap. 6,
Sect. 6.4), two disjoint “design choice” islands are identified, i.e. groups of design
choices that lead to non-interdependent functionalities, data models, etc. In this
case, it is possible to embody only one “design choice” island in the systems
produced and to embody the full set of design choices in the next product genera-
tion. Thus, the IoT ARM can be used to devise system roadmaps that lead to
minimum changes between two product generations while still guaranteeing a
noticeable enhancement in system capability and features. This approach also
helps the designer to formulate clear and standardised, requirements-based
rationales for the system roadmap chosen and the product life cycles that result
from the system roadmap.

3.1.7 Benchmarking

Another important use of the [oT ARM is benchmarking. For example, NASA used
a reference architecture that described its envisaged exploration vehicle in order to
receive better benchmarking tenders during a public bidding process for the said
exploration vehicle (Tamblyn et al. 2007). While the reference model prescribed
the language to be used in the systems/architectures to be assessed, the reference
architecture stated the minimum (functional) requirements for the systems/
architectures. By standardising the description and also the ordering and delineation
of system components and aspects, this approach also provided the benchmarking
process with a high level of transparency and inherent comparability. Using this
approach, besides just “ticking” off the minimum features each tender has to fulfil,
even more insight can be gained into the proposed system. For instance, the number
and “richness” of functional components belonging to the system and their interac-
tion patterns allow an appreciation of the system complexity both in terms of
composition and structure but also in terms of interaction. This information can
be gleaned from the IoT Functional View (functional decomposition, interactions),
the IoT Information View (data flow, data complexity) and the IoT Deployment
View. It makes judging the overall system complexity easier during the tender
review phase.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

3 The IoT Architectural Reference Model as Enabler 21

3.2 Architecture Development Process Based on the IoT
ARM

Following the overview of the different cases of usage in which the [oT ARM plays
a beneficial role, we will now focus on how the IoT ARM can be used during the
process of generating concrete IoT architectures suitable for specific applications
and use cases. We will first discuss the idea behind reference models and reference
architectures and the underlying methodology.

The process of developing an architecture is about finding a solution to a
pre-defined goal. In turn, the development and description of architectures is a
modelling exercise. It is important to point out that the modelling itself does not
take place in a vacuum but is based on a thorough understanding of the domain to be
modelled. In other words, any architecture development is contingent on the
understanding of the domain in question. The same is true for a generalisation of
this process, i.e. the derivation of reference architectures. Thus, reference
architectures, such as the one presented in this book, also have to be based on a
detailed understanding of the domain in question. This understanding is commonly
provided in the form of a reference model.

3.2.1 Reference Model and Reference Architecture

Reference models and reference architectures provide a description that is more
abstract than what is inherent to actual systems and applications. They are more
abstract than concrete architectures that have been designed for a particular appli-
cation with particular constraints and choices. From literature, we can extrapolate
the dependencies between a reference architecture, architectures and actual systems
(see Fig. 3.1) (Muller 2008). Architectures do help in designing, engineering,
building and testing actual systems. At the same time, a better understanding of
system constraints can provide input for the architecture design, and this allows
future opportunities to be identified. The structure of the architecture can be made
explicit through an architecture description, or it is implicit through the system
itself. Extracting essential components of existing architectures, such as
mechanisms or the use of standards, allows the definition of a reference
architecture.

Guidelines can be linked to a reference architecture in order to derive concrete
architectures from the reference architecture (Fig. 3.2, left). These general archi-
tecture dependencies apply to the modelling of the IoT domain as well.

The transformation step from an application-independent model to a platform-
independent model is informed by guidelines. The step from platform-independent
model to platform-specific model is discussed later in this chapter.

While the model presented in Fig. 3.1 stops at the reference architecture, the
IoT-A Architectural Reference Model goes one step beyond this and also defines a

22 M. Bauer and J.W. Walewski

Extracting essentials Constraints, opportunities and feedback

Architect Design, engineer, build, test

Reference : Actual
‘f. Architectures
architecture systems

Fig. 3.1 Relationship between a reference architecture, architectures and actual systems (Adapted
from Muller (2008))

Architectural Guidelines Concrete
reference model architecture Implementation

[

Fig. 3.2 Derivation of implementations (platform-specific models) from an architectural refer-
ence model (application-independent model) via the intermediate step of a concrete architecture
(platform-independent model)

reference model. As already discussed, a reference model provides the ground for a
common understanding of the IoT domain by modelling its concepts and their
relationships. A detailed description of the IoT Reference Model can be found in
Chap. 7.

3.2.2 Generating Architectures

Now that we have a general understanding about reference models, reference
architectures and their relationships, the important question is how to derive the
appropriate concrete architecture from the reference architecture. We dedicate an
entire chapter to this issue, namely the Process Chap. 6, where we describe all
aspects in great detail. However, the reader needs at least some appreciation of the

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_6

3 The IoT Architectural Reference Model as Enabler 23

role of the IoT ARM here in order to take full advantage of the IoT Reference
Model and the IoT Reference Architecture in the chapters in-between.

When applying the IoT ARM in designing systems, it is likely that in each
individual case, different architectures will result. Thus, while Fig. 3.2 gives the
impression that the process of translating the reference architecture into a concrete
architecture is independent of the use case itself, this is, in reality, not so — the
guidelines and the engineering practices chosen rely on a use case description and
the requirements. This fact is reflected in Fig. 3.3. The role of the IoT ARM is to
provide transformation rules for translating the rather abstract models into a
concrete architecture. This step is strongly influenced by the use case and the
related requirements. One entry point for this information is during the process of
design choices, i.e. when the architect favours one avenue for realising the func-
tionality or quality needed over another. The IoT ARM also recommends design
patterns for such choices. The IoT ARM does not operate in a design vacuum but
should be applied together with proven design process practices, which in them-
selves are contingent upon the guidelines provided and upon the use case and the
requirements.

In Chaps. 7 and 8 we describe how both the IoT Reference Model and the IoT
Reference Architecture can be used in this design process. Even though we describe
the design process in a linear fashion, remember that in practice this will not always
be the case. Depending on the engineering strategies used, some of the steps can be
done in parallel or may even have to be reiterated due to additional understanding
gained during the process or due to changes in the requirements.

3.2.3 Choice of Design and Development Methodology

The choice of a design and development methodology can be understood in two
ways: firstly, a methodology for the IoT ARM development and secondly, a
methodology for the generation of specific concrete architectures. We have so far
only provided high-level views of either case. In reality, more guidance is required,
i.e. a recipe for how to derive all aspects of the IoT ARM model as well as how to
derive guidelines for the application of the IoT ARM for the generation of
architectures.

In the case of the IoT ARM there are, to our knowledge, no standardised
approaches for developing such a model. Furthermore, compared to typical reference
architecture domains, the IoT usage domain is extremely wide and varied, and
common denominators are thus rather few and abstract. For examples of reference
architectures and models, the reader is directed to the following literature: (Consulta-
tive Committee 2006; MacKenzie et al. 2006; Muller 2008; Open GeoSpatial Con-
sortium 2002; Shames and Yamada 2004; Tamblyn et al. 2007; Usldander 2007). This
high level of abstraction in terms of the domain to be modelled stands in contrast to
the input needed for established and standardised methodologies such as Aspect-
Oriented Programming (AOP), Model-Driven Engineering (MDE), Pattern-Based

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8

24

M. Bauer and J.W. Walewski

«resource»
loT Architectural
Reference Model

T T~
! \\\ <<derived from>>
‘\ <<part of>> S~o

1

\

~| «information»
1

«resource» Transformation | _ <<constrains>> «resource»
\ Guidelin rules < 15721 Architecting
\ e methods
\ \ / ;
! <<informs>> . <<qui <<quid
i - uides>> uides>>
<<informs>> y «input» gui¢ ;Cl/,
\ «resource»
\ «information» Concrete
\ Use cases &

\

architecture
requirements
1

«output»
\
1
' 7 .
\\ <<dep§ndency>> «guides»
’ -~
N -
-
«resource»
strategies

Fig. 3.3 Process for generating concrete architectures

Design and SysML. All of these methodologies were designed for very concrete use
cases and application scenarios. Unfortunately, this high degree of specificity defines
even their inner workings. In other words, if they are applied to generalised use cases,
the result is not generalised models on the abstract level of an [oT ARM — in fact, the
result is nothing. We illustrate this using the example of MDE.
MDE for the generation of Model-Driven Architectures (MDA) is standardised
by the Object Management Group (OMG) (Miller and Mukerji 2003). The main

application area of this methodology is the development of software systems. MDE
prescribes four steps for a development process:

1. Specify a system independently from the platform;
2. Specify platforms;

3. Choose a particular platform for the system;

4. Transform the system specification into that of the particular platform.

The goals behind this approach are portability, interoperability and reusability
through the architectural separation of concerns (Vicente-Chicote et al. 2007).
Thus, on the face of it, this all sounds very similar to the goals of our [oT ARM
development process.

Figure 3.4 summarises the main idea of MDA. A platform-independent model,
i.e. an architecture, is to be transformed into a platform-specific model, i.e. an
implementation. An example for the former is a GUI user interface described in

3 The IoT Architectural Reference Model as Enabler 25

Fig. 3.4 Generalised Concrete

architecture approach architecture Implementation
according to the Model-
Driven Architecture
methodology, otherwise
known as Model-Driven
Engineering (Miller and
Mukerji 2003)

uoNeULIojSuRS |

Table 3.1 Use of standardised architecture methodologies for the development of the IoT ARM

Methodology Aspect adopted in our work

Aspect-oriented Delineation of functionalities by aspects. This is embodied in the concept
programming of functionality groups (see IoT Functional view in Chap. 8)

Model-driven General concept of transformation from a generic to a more specific
engineering model. We use this concept for describing and developing our

guidelines

Views and We adopt the concept of views and perspectives to derive the IoT

perspectives Reference Architecture, i.e. we arrange all aspects of our reference

architecture according to views and perspectives (see IoT Reference
architecture in Chap. 8)

UML, and the latter is an implementation of this interface in a mobile phone model
featuring a particular operating system.

This sounds very much like the transformation introduced in Fig. 3.3, but it
actually takes place at a lower abstraction level, as becomes apparent from Fig. 3.2.
The IoT ARM and the MDE approach are thus linked to each other through
platform-independent models (architectures). While the general idea of a model
transformation, as promoted by MDE, resonates with our IoT ARM approach, the
methodology developed for deriving transformations between platform-
independent and platform-specific models can, alas, not be transferred and adapted
for deriving best practice transformations.

Table 3.1 summarises how we use ideas borrowed from standardised architec-
ture methodologies for our work on the higher abstract level of our IoT ARM.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

Chapter 4

IoT in Practice: Examples: IoT in Logistics
and Health

Martin Fiedler and Stefan Meissner

The previous chapters gave a first impression of the ARM as common ground for
the Internet of Things. In the following sections we will introduce use cases and
sample scenarios (scenes) that have been used as a practical evaluation of the ARM
in specific applications. Using the ARM in a top-down process, starting from an
application description, most of the scenes introduced were realized as
demonstrators within a specific work-package of IoT-A. The second, bottom-up
approach of reverse mapping an existing application to the ARM is shown with a
scene brought in by the stakeholder group of IoT-A.

The use cases described focus on the domains of retail/logistics and healthcare.
This is due to the importance and relevance of these domains, but as [oT-A aims to
provide an ARM for the Internet of Things, the ARM should also be applicable to
other major domains such as manufacturing or entertainment. The denominator that
the two domains considered have in common is that they affect many people — both
now and in the future. There is a connection between nutrition and health, with
many people opting for healthy food to prevent diseases; others act in accordance
with a health plan prepared by their doctor after a diagnosis. Technology can be
used to support both cases and makes it easier to eat and stay healthy.

The first part of this chapter covers the retail and logistics use case. It focuses
more on enterprise-related processes. Here we also introduce a “red thread” exam-
ple, which is used within the technical part of the book (see Chaps. 5, 6, 7, 8, 9,
and 12). The second part introduces the health use case and an existing application
which will be used to reverse map to the ARM.

M. Fiedler (P)

Fraunhofer Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer Str. 2-4,
44227 Dortmund, Germany

e-mail: Martin.Fiedler@iml.fraunhofer.de; www.iml.fraunhofer.de

S. Meissner
University of Surrey, Stag Hill, Guildford GU2 7XH, UK
e-mail: s.meissner@surrey.ac.uk; www.surrey.ac.uk

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_4, 27
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_5
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_12
mailto:Martin.Fiedler@iml.fraunhofer.de
mailto:www.iml.fraunhofer.de
mailto:s.meissner@surrey.ac.uk
mailto:www.surrey.ac.uk

28 M. Fiedler and S. Meissner

In general, we defined day-in-a-life scenes with specific characters living
through them in the storyline.

4.1 Storyline of the IoT-A Use Case “IoT in Retail and
Logistics”

Nearly every single one of us has to do some shopping and in doing so, we gather
experience with the retail industry; therefore it is part of our daily life. As techno-
logical innovations permeate other parts of our lives, retail is also being increas-
ingly penetrated by different technologies that support and help us in many different
situations: for example, smart mobile phones equipped with shopping applications
that manage our shopping lists or our dietary information. This presents retailers
with the new challenge of integrating their business into the consumer’s world and
vice versa.

On one hand, information which is generated by customers (e.g. product ratings)
might be of high interest to retailers, especially product and category managers. On
the other hand, information which is owned by a retailer is not always just of
interest for retailers themselves: for example, looking at the traceability of individ-
ual goods, real-time queries on a mobile device for the customer or the availability
of products in a certain store.

To realize traceability of individual goods during the whole product life cycle
and to create transparency all along the supply chain, the first step is to serialise
each individual item. This takes place at some point during the manufacturing
process. Adding additional sensors to the items to collect various environmental
information as well as counting the carbon emitted by the products itself helps to
increase transparency (Fig. 4.1).

Privacy concerns that arise from tracking the items of customers outside the
store using tags can be addressed by solutions that help both the supply chain and
the customers.

Other examples of serialized objects include an NFC tag on a laptop to track the
ownership and add built-in accelerometers to it to record physical transport damage.
Many kinds of different data are recorded on the way from the point of origin to the
point of destination and are transmitted during the transport or at handover and
could be made visible by the system at any time.

Using smart mobile phones in combination with RFID- or NFC-tagged products
provides advantages not only for manufacturers, retailers and customers, but also
for delivery and anyone involved in logistical processes for these products.

With this scenario in mind, the future Internet of Things applied to the retail
domain could unfold as follows from a user’s perspective:

Ted, the delivery man for a gardener, uses his IoT phone to manage transport orders, scan
tagged items or load carriers and receive status messages from sensors added to the items he
is currently transporting (in our case, sensitive orchids). This way, he knows the

4 IoT in Practice: Examples: IoT in Logistics and Health 29

©Acik / fotolia.com ©Mikael_Damkier / fotolia.com

Fig. 4.1 The retail and logistics domain

circumstances of the products without having to do a visual inspection (i.e. stop his truck,
which would mean a delay).

When he arrives at the local supermarket, Ted lets the load carriers he delivered pass
through an RFID gate which recognizes them automatically. After briefly talking to John,
the store manager, Ted sends the sensor record history saved on his IoT phone to John’s IoT
phone via NFC. The manager can now see that on the way to the store, there was a critical
rise in temperature at one point, which causes him to visually inspect the orchids and decide
whether he still wants to accept the delivery. Since John identifies the orchids as fine, he
sends a message of approval to Ted’s IoT phone.

To look at the customer’s perspective of our scenario, we switch to Salomée, a
young woman representing a customer:

This Saturday, Salomée decides to try out the new supermarket (where John is the store
manager) that opened recently. She is a young lawyer and a single mother. Salomée
recently took up her first position at a big law firm, and therefore has to put in long
hours, leaving her son in day care. Balancing work and family time is difficult. Therefore,
she usually does all of her shopping on Saturday morning, even though she hates the long
queues that usually form then. As a single parent she is very price-conscious, but she still
wants her child to get healthy nutrition and she also cares about the environment, preferring
local products with a small carbon footprint.

As she enters the supermarket, she is positively surprised by its spaciousness and its
calm atmosphere. Salomée has a shopping application installed on her IoT phone — it allows
her to receive information about products when she scans them or when the store’s backend
system recognizes certain behaviour or circumstances. The software also keeps track of
Salomée’s shopping behaviour in order to provide more personalized and thus more
efficient suggestions.

Today, Salomée is looking for cheese, so she enters the refrigerated section. Once she
finds a packet of cheese that catches her interest, she reads its NFC tag to get more
information about it from her virtual Shopping Assistant and to compare it to other kinds
of cheese she has bought before. Thanks to the application, she quickly finds the cheese she
wants to buy.

Now that Salomée has found a cheese she likes, she wants to buy her favourite wine.
The Shopping Assistant on her IoT phone can now tell her about the prices of wines she has
bought before and if one of these wines is out of stock, shows a recommendation for a
similar wine.

Today, Salomée has to acknowledge that there are no affordable wines available that
she likes so she starts to leave. This and the fact that she has got cheese in her shopping cart

30 M. Fiedler and S. Meissner

causes a big TFT display to show an announcement for a 30 % discount on wine for anyone
buying cheese. Salomée is happy to return and buy a bottle of wine she had considered too
expensive earlier.

In parallel, John and his crew have to struggle with the always busy Saturdays. They
have to replenish the empty shelves and need to know what the customers need next.
Cameras on the ceiling and other ways of understanding the customers support them,
helping them to be more efficient and provide the best services to the customers.

Some automatic processes simplify the staff’s tasks. The orchids (delivered by Ted)
have sensors attached to them that monitor environmental features critical to the quality of
the flowers. The sensors send this information to the price tags to enable automatic price
adjustment according to product quality. Since the air conditioning in the store is currently
not set up correctly, the orchids’ price is lowered by 10 % due to a rise in ambient
temperature. Continuing her shopping, Salomée passes the orchids, sees how beautiful
they are, and to her surprise, realises there is a discount on them as displayed on the
electronic shelf labels. She immediately takes one as a present for her neighbour who loves
flowers. As the supermarket is crowded today, she uses her IoT phone to participate in a
virtual queuing system at the checkout, meaning that she can browse the shelves while
already being in the queue for checkout.

After Salomée has finished grocery shopping and is about to return home, she receives a
notification on her IoT phone telling her that Robert, her father, has used his last ampoule of
insulin. The notification recommends that she stops at a pharmacy to buy new medication.
Salomée is glad to see that her IoT phone can show her the location of the closest pharmacy
in the area.

She enters the pharmacy and picks up a package of insulin ampoules. The clerk scans
the medication and is asked by the local pharmacy software to ask for Salomée’s health ID
to verify that she is allowed to buy this kind of drug. Salomée hands over her health ID and
when the clerk scans it, the software confirms that Salomée is permitted to buy the
medication.

In summary, this storyline gives us an impression of how IoT-A components can
help consumers and retailers to handle or manage daily challenges. It shows that
IoT affects the whole supply chain: starting with the production site, through
transport and retail, up to the customer, IoT can facilitate the whole process and
improve the service.

4.2 Introducing the ARM with a Recurring Example
(Logistics)

The ARM itself — and therefore this description as well — has a certain complexity.
In order to ease the process of understanding the overall concepts and the different
components that make up the ARM, we will exemplify concepts of the ARM with a
“recurring use case” scene (also known as a “red thread”) throughout the book. This
allows us to complement the sometimes abstract and top-down discussions of ARM
concepts with a real, tangible use case.

We have selected a modification of the specific IoT-A use case scene of
“Transport monitoring with smart load carriers” that can be found in (Fiedler
et al. 2012), because the issue of transport monitoring in logistics is familiar to

4 IoT in Practice: Examples: IoT in Logistics and Health 31

many readers and offers aspects that are relevant for basically all components in the
ARM, while at the same time not being too complex itself.

The “Transport monitoring with smart load carriers” use case scene shows how
live sensor monitoring of smart load carriers can prevent the goods transported from
being damaged due to environmental influences. The load carrier is equipped with
sensors and can communicate with other devices via wireless radio technology.
With this hardware, every load carrier continuously measures its environmental
parameters and sends all measurements via the embedded event service to the
mobile phone of the truck driver who has subscribed to this service.

The business value of the scene is clear: as around 20 % of perishable goods
never reach the consumer, but are disposed of beforehand, either in the store or in
the supply chain, the utilization of IoT sensors is an interesting concept for
implementing quality control for perishable goods and thus reducing waste and
increasing margin gains at the same time. In transportation, there is a huge potential
for innovative logistics models, such as rescheduling at distribution centres based
on the estimated quality of the goods in order to reduce waste and finally get the
products to the consumers in good shape (see Fig. 4.2).

To make the use case description more concrete and easy to grasp, we present the
use case from a user’s perspective. This description supplements the specific [oT-A
scene with security features:

Ted is a truck driver transporting highly sensitive orchids (can be substituted with any
perishable goods) to a retail store. After loading the orchids on his truck, he attaches an
array of sensors to the load carriers in order to measure the temperature. While he is driving,
Ted gets hungry and decides to stop and have lunch. He parks the truck at a resting spot,
turns off the engine and goes into a nearby restaurant. Unfortunately, Ted forgot that by
turning off the engine, the air conditioning for the transported goods (the highly sensitive
orchids) shuts off too, and since it is a very hot day, the temperature inside the truck starts to
rise. When the temperature reaches a predefined critical level inside one of the load carriers,
one of its sensors notices this and sends an emergency signal to Ted’s IoT phone. Due to its
delicate nature, this signal cannot be received by the phones of other drivers.

On the IoT phone’s display, Ted can now see that the orchids in load carrier number
6 are in danger due to a high temperature. He therefore rushes back to the vehicle and turns
the air conditioning back on. The IoT phone also keeps track of any alert messages it
receives from the load carriers and saves this message history for future inspection in a way
that cannot be altered. When the truck reaches the retail store for delivery, the sensor
history is transferred to the store’s enterprise system and the sensors authenticate them-
selves as not having been tampered with.

4.3 Use of the ARM in the Scene “Sensor-Based Quality
Control” (Retail)

Another short example shows how sensors monitor perishable goods in a store. The
sensor infrastructure measurements are used to estimate the quality of a rare and
expensive form of Chinese orchid. Depending on the luminance, humidity, and
temperature of the environment, the estimated future quality of the orchids is

32 M. Fiedler and S. Meissner

DDaniel_Seidel / fo

Fig. 4.2 The recurring example (“red thread”)

determined and prices are reduced, even before a perceivable degradation of quality
occurs. By applying this sensor-based quality control and combining it with
dynamic pricing, the store can ensure that the goods are sold before quality
degradation is likely to occur.

From a user’s perspective this scene is as follows:

This Saturday, Salomée decides to try out the new supermarket that opened recently. As she
enters, she is positively surprised by its spaciousness and its calm atmosphere. Her mobile
shopping application points her to a special offer of non-food items, namely rare and fragile
orchids from China.

She immediately thinks of her neighbour, Heinrich, who loves flowers and would
appreciate them as a gift from her. Just as she approaches the shelf with the orchids, she
sees their price going down by 10%. Happy about the price reduction, she immediately
picks an orchid and continues shopping.

From a business and industry perspective, the scene demonstrates two important
retail-related concepts: dynamic pricing and quality control of perishable goods.
Dynamic pricing as a real-time tool for price optimization strategies has always
been crucial for profit maximization. In contrast to the state of the art, dynamic
pricing in the use case featured is not performed based on static information such as
best before end dates in the transaction data of the backend Enterprise-Resource-
Planning (ERP) system, but is based on real-time IoT data gathered from a sensor
infrastructure.

4 IoT in Practice: Examples: IoT in Logistics and Health 33

4.4 Storyline of the IoT-A Use Case “IoT in Health and
Home”

Leaving behind the retail and logistics domain, we now introduce the second use
case domain, health and home. This domain focuses more on human-related
processes in the IoT. The patient’s related perspective of the complete day-in-a-
life scenario is as follows:

After having enjoyed a nice dinner with his daughter Salomée the night before, 55 year old
Robert wakes up in the morning. Robert is proud of his daughter, with whom he has good
contact. It’s always nice meeting up with her, as Salomée has a lot to talk about, which
reminds him a little of himself when he was younger and more healthy. Robert suffers from
high blood pressure and has type II diabetes, and since he has already suffered from one
heart attack, he is considered a high-risk patient. He is participating in a program organized
by his health insurance company — the program monitors his health continuously and
remotely. As his wife died a while ago, Salomée is registered at the health insurance
company as a family member who supports Robert with his housekeeping and simple
medical care. This relationship is stored in Robert’s electronic health record (EHR).

This morning, Robert is still thinking about the things Salomée was talking about the
night before, and he leaves his IoT phone behind in his bedroom. The IoT phone is Robert’s
new IoT-capable smart phone which Salomée has told him a lot about. Normally, Robert
carries his IoT phone everywhere he goes. A backend system reminds him to take medical
measurements in a daily routine, usually three times a day. Now, Robert cannot hear the
reminder alarm. Since the alarm is not acknowledged, the system looks for nearby IoT
devices such as lights or buzzers in the vicinity of Robert and uses those devices to attract
his attention. Robert sees the lights flashing in his living room and instantly remembers
what this means, as it has happened before. He goes to his bedroom and picks up the IoT
phone to acknowledge the alarm.

He is guided through the measurements he has to take by the application on his smart
tablet. He has to measure his blood pressure, heart beat, blood glucose level, current weight
and give an indication of the activity he was performing immediately before taking the
measurements. All measurements are stored in the system and are analysed automatically,
with a notification sent to his doctor if any values are outside the normal range. The system
calculates the amount of insulin he must inject. As Robert has to take more insulin than
usual he takes his last NFC-tagged ampoule of insulin out of his medicine cupboard and this
action is recognised immediately. The insulin stock level in Robert’s medicine cupboard is
tracked, and as soon as it reaches a predefined refill level, an alarm is raised. Salomée’s IoT
phone is notified to advise Salomée to buy insulin on behalf of Robert at a nearby pharmacy
as she is registered as a supporting family member. After Robert takes his insulin dose, his
electronic health record is updated accordingly.

Later on, Robert suddenly feels lightheaded and he presses a panic button he is wearing
as part of a bracelet. The system detects that his mother, Jane, who he lives with in the same
flat, is nearby and notifies her of the situation. Jane finds Robert and sees that there is no
need for further action since he has already eaten a candy bar he always carries with him.

In the afternoon, Robert leaves his flat. He is driving to visit his daughter when he is
involved in a car accident. The other driver must have overlooked him in the bad weather
conditions. Luckily, the acceleration sensor of Robert’s IoT phone instantly recognizes that
something dangerous may have happened and queries his condition from his body sensors.
The devices agree that Robert is in danger and, after a short time during which Robert can
confirm he is safe, an emergency message is released, sending the location data of where the
dangerous condition arose as well as his personal ID to the emergency centre. Using
location-based lookup, the nearest emergency centre is alerted and asked to send an

34 M. Fiedler and S. Meissner

ambulance to Robert immediately. The ambulance arrives at the car crash within seven
minutes and picks up Robert and the other driver to take them to a hospital.

Arriving at the hospital, the check-in is quick, even though Robert is unconscious.
Fortunately, the check-in procedures can be performed directly through interactions
between Robert’s identity card or health ID card and the hospital admission desk. The
clerk first looks for Robert’s health ID card but cannot find it. He finds only the identity
card, which he can also use to check Robert in. Using an IoT-enabled mouse, Robert can be
identified by the local hospital software via his national identity number. The software can
be used to grant the hospital access to data from the national identity database that is
required for check-in and also allows the receptionist to look up all necessary medical
insurance data as well as his entire medical file — making it easy to prepare all helpful
information for the doctor beforehand with no time-consuming effort. And again, it pays off
to have signed up for the program as Robert gets precedence over a young man who seems
to have broken his arm but still has to spend time filling in all the paperwork. After the
quick check-in, Robert is looked after by the medical personnel who treat his wounds.

The hospital Robert is staying at is equipped with the Hospital Information System
(HIS). This system continuously monitors the environmental conditions (temperature,
humidity) in the rooms and prevents incorrect medicine being administered to the patients.
Robert had to stay at the hospital overnight as the doctors had to monitor his reaction to the
medical treatment. The next day during the morning routine, the temperature readings for
Robert and a fellow patient in the same room are too high, indicating a small fever.
However, an analysis shows that since the patients shall only be exposed to constant
environment conditions the related room temperature in turn was too low due to a failure
of the heating system. A facility manager is automatically called by the HIS to repair the
defect.

For further medical treatment and to monitor his condition, a nurse visits Robert twice a
day. The nurse administers medication to Robert as he needs this for the pain caused by his
wounds. In the evening, the nurse scans Robert’s identification tag followed by the tag for
the box of medicine (ampoules) and suddenly an alarm is triggered. The medicine the nurse
is about to administer is the correct one, but the dose in the ampoule is too high due to an
error in the hospital pharmacy. The problem occurred could be resolved by the nurse
administering the correct dose manually and documenting the mismatch in her tablet PC.

4.5 Use of the ARM in the Scene “Remote Patient
Notification” (Homecare)

In the first scene of the health use case, the Remote Patient Care application notifies
the patient of actions they have to perform. These actions can be related to
administering medicine or to taking measurements at a regular interval.

Patients carry personal devices such as smart phones or tablets which can
become IoT-enabled. Applications running on these devices can hence make use
of all functions of the IoT-A compliant platform.

In this scene, the patient is notified by an alarm ringing on his IoT phone. This
alarm is not acknowledged and therefore the application looks for nearby resources
such as light switches or buzzers in the vicinity of the last known location of the
patient and uses these devices to attract the patient’s attention. The scene ends when
the patient finally acknowledges the alarm.

4 IoT in Practice: Examples: IoT in Logistics and Health 35

Fig. 4.3 The MUNICH scene of tracking stomach towels during surgery © Technical University
of Munich

4.6 Reverse Mapping of the ARM in the Scene “In-Surgery
Tracking of RFID-Tagged Stomach Towels” (Hospital)

This scenario will be used to reverse map an existing real-world implementation to
the ARM. Further details on reverse mapping of the reverse mapping of the
MUNICH platform can be found in Chap. 12. This scenario was included by Prof.
Christoph Thiimmler, who is actively contributing in the e-health area. The specific
application was implemented with help of the MUNICH platform by Celestor,
Napier University Edinburgh, Technical University of Munich and Siemens.

This use case scene is about counting stomach towels used inside the abdomen
during surgery on a patient. After the operation, no towels may be left in the
abdominal cavity (the human body) and assurance is required that this is the case.
Therefore, each towel is fitted with an RFID tag enabling it to be tracked during
surgery. Figure 4.3 shows ongoing surgery with the blue stomach towels.

The RFID-tagged towels can be tracked by three antennas from different
positions in the operating theatre:

¢ Mayo stand (instrument table): towel is unused.
e Operating table: towel is in use.
e Used towel container: towel is used.

Each towel is used in a specific order. Initially, a batch of “unused” stomach
towels is located on the instrument table. Towels which are put into the patient’s
body are “in use”. Finally, towels which are not needed any more after the surgery
are put into the towel container and are attributed status “used”.

http://dx.doi.org/10.1007/978-3-642-40403-0_12

36 M. Fiedler and S. Meissner

Assurance is required that no towels are left inside the patient’s abdomen when
the operation has finished. In more technical terms, this means that after the
operation has finished, all the towels that were “in use” must be in status “used”,
meaning in the waste bin.

From a business perspective, up to 100 stomach towels can be used within one
single surgical procedure. Towels left in the patient’s abdomen can cause severe
and even fatal infections. As there are no official numbers, e.g. no central databases
on towels left in a patient’s body, the numbers differ: studies indicate 6,000-9,000
incidents per year. A business case evaluation example based on its use case can
also be found in Chap. 12.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0_12

Part 11
A Guidance to the Architecture
Reference Model (ARM)

Chapter 5
Guidance to the ARM: Overview

Stefan Meissner and Joachim W. Walewski

A major goal of this Guidance Chapter is to provide guidance for system architects.
In other words, we aim at explaining the usage of the IoT ARM. One of the major
focus areas of this guidance is the derivation of domain-specific architectures from
the ARM. For other potential usages of the [oT ARM see Chap. 3. The structure of
the technical part B of this book is depicted in Fig. 5.1.

On about 250 pages, this book provides a technical description of the IoT ARM
together with multifaceted guidance to the user of the IoT ARM. In the various
chapters, we cover various interests of the user, such as generating architectures by
aid of the IoT ARM (Chaps. 6, 11 and 12), and how to use the IoT Reference
Models presented in Chap. 7. We also shed light on how other IoT architectures
relate to the IoT ARM (Chap. 12 sections about reverse mapping ETSI M2M, EPC
Global, Ucode, BUTLER), and we also illustrated, how already existing systems
can be mapped onto the [oT ARM (Chap. 12, Sect. 12.6). Notice that by its very
nature this part of the book is not an insulated part of the IoT ARM, but it provides
many pointers back to the IoT Reference Model (Chap. 7) and the IoT Reference
Architecture (Chap. 8 including Carrez et al. 2013). Also notice that while many of
the Sections of the Chapter are oriented toward the generation of concrete
architectures, they can also be consulted when using the [oT ARM along any of
the other avenues listed in Chap. 3. One example is Chap. 6, Sect. 6.9, which covers
the design-choice process for translating qualitative requirements into view
requirements. This process is not only of importance for the generation of concrete
architectures but comes also to pass when identifying the differences between
architectures (Chap. 3, Sect. 3.5), outlining avenues toward interoperability
(Chap. 3, Sect. 3.6), and generating system roadmaps (Chap. 3, Sect. 3.7).

S. Meissner (P<))
University of Surrey, Stag Hill, Guildford GU2 7XH, UK
e-mail: s.meissner@surrey.ac.uk; www.surrey.ac.uk

J.W. Walewski
Siemens AG, Otto-Hahn-Ring 6, Munich 81739, Germany
e-mail: joachim.walewski@siemens.com; www.siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_5, 39
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_11
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
mailto:s.meissner@surrey.ac.uk
mailto:www.surrey.ac.uk
mailto:joachim.walewski@siemens.com
mailto:www.siemens.com

S. Meissner and J.W. Walewski

40

9S8O 9SN AILIY)[BAY

ordwrexe uonenyeAd ssoursng
NATLN G Surddew os1oaay
HDINNIA Surddew as1oaoy
9poo Surddepy as1oaay
189010 DdH Surddejy asoady

AydeiSoaroyo
QO1ATRS SuIdeuey .
SQOIATAS SULIDA0DSI(] .
SOLIBUQDS JLIJUII-IOIAIIS .
uoneINIIFU0d

901A9p Jurduey) .
QO1AQp ® SuIppy .

NIV 2y) 03 9oueping ay) Joj armjonns 1aydey)

T's 814

soAnoadsiog

MaTA uoneradQ 2 yuswkorda(101
MIIA uoTeWIOU] 101

MIIA [euonOUN O]

WYV LI

Q) Ul S9ANOadSIo pue SMAIA JO a3es)
TN ISLE Surdde iy as10ny SOLIEUQDS JLIUD JUIWSEURIA .
S[eruOWNSa], SuonoRIU] QINJOAIYOTY 9OUAIJNY 10T
71 1deyD 01 deyd { 1ydey)
ased asn Funyred 9ye[d-osuadr-Ag- Aed © 10J 2IN109)IYDIER J,0] 9J2I0UO0D B JeISUIT sao10yD) uSIsa(q

QINJOAIYOIY 9)I0U0D)

soanoadsiod Jo a3es)

[°POIN

uonedIUNWWO)) [0] jo adesn
[9POJAl UonRWIOJU] 10T JO 95es)
[OPOJAl Urewo(J .07 Jo a8esn)

[°POIN
KoeATld ‘AItImoeg 9sniy, 101 o
[OPOJAl UOTBIIUNWWO)) O] .
[9POIA TeUOTOUN,] 10] .
[SPOJAl UOTIeWIOJU] J.0T .

[oPOIN urewo(J .01 .

sIsATeue jeary,

sjuowaanbay] payyiun) jo a3es)
(SMIIA

19130, pue ssao01d sjuowraiinbay]
SanIAnoe

PaJe[I pUE UOTJEIAUSS 2IN)OIYdIe 0]
spoyjowt

Sunoayyore 1oyjo Pim Aiquedwo)
SQIN}OAIYOIE

10T e1ouas 03 sdois $$0001g

[ENUBIA] 90UQIOJOY

[OPOIAl 90URIJY L.O]

$S9001g

6 1dey)D

L 1dey)

9 131dey)

5 Guidance to the ARM: Overview 41
5.1 Chapter Structure

As you can see in Fig. 5.1, the technical part of this book consists of seven chapters
in total. The starting point to guide and architect through the development of
concrete architectures based on the ARM is Chap. 6, “Process”. Chapters 7 and
8 describe the ARM specification by their IoT Reference Model and IoT Reference
Architecture. Adjacent to Chap. 7, “loT Reference Model” you will find the
Chap. 9, “Reference Manual” in which the usage of the respective models is
explained further. For guidance on the IoT Reference Architecture Chap. 9 provides
material about the usage of perspectives. Typical management and service-centric
scenarios are illustrated in Chap. 10, “Interactions”. Chapter 11, “Concrete Archi-
tecture” illustrates the process of creating a domain specific concrete architecture
along the process described in Chap. 6 for an example use case. The technical part
of this book is concluded by Chap. 12, “Testimonials” that contains reverse
mappings to IoT related standards and initiatives as well as an example for a
business case evaluation of an IoT enabled use case.

5.1.1 Chapter 6 “A Process for Generating Concrete
Architectures Process”

Provides the reader with detailed guidance on how to derive concrete architectures
from the IoT ARM as briefly introduced in Chap. 3. It presents the process steps
architects need to follow in order to generate an IoT architecture. That chapter also
contains extensive treatises on how to use the IoT-A unified requirements (UNIs;
see [Appendix, requirements]); on the common contents of an IoT threat analysis;
and, last but not least, on how qualitative requirements are translated into design
choices concerning their impact on designing the functional view, the information
view, and the deployment view (see Chap. 8). Furthermore it is analysed in that
chapter how compatible the presented [oT architecture generation process is with
other well-known architecting methods.

5.1.2 Chapter 7 “IoT Reference Model”

Contains several sub-models the IoT Reference Model is made of, such as the IoT
Domain Model, the IoT Functional Model, the IoT Information Model, the
IoT Communication Model, as well as the IoT Trust, Security, Privacy Model.
The IoT Reference Model provides the concepts and definitions on which the IoT
Reference Architecture (see Chap. 8) can be built.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_10
http://dx.doi.org/10.1007/978-3-642-40403-0_11
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

42 S. Meissner and J.W. Walewski
5.1.3 Chapter 8 “IoT Reference Architecture”

Provides architectural views and perspectives that are relevant for IoT systems.
After a short introduction about views and perspectives the chapter presents the IoT
Functional View, the IoT Information View and the Deployment & Operation View
of the ARM. As explained in Sect. 8.3 of that chapter, the functional view of a
concrete architecture typically consists of three viewpoints: functional decomposi-
tion (viz. the logical structure), interfaces, and behaviour. In Sect. 8.4.1 of Chap. 8,
we provide an overview of the functional decomposition of an IoT system. More
information on this logical viewpoint is provided in Carrez et al. (2013) of the ARM
[Use cases, sequence charts and interfaces], and the interfaces of the FCs proposed
in the functional decomposition are detailed in the same Appendix. That Appendix
also contains a rudimentary interaction analysis, viz. illustrations of how the FCs
can be interacted with and what the outcome of each interaction is. Chapter 8 also
presents the architectural perspectives of the ARM which address quality aspects of
the system to be designed, e.g. scalability and availability.

5.1.4 Chapter 9 “Reference Manual”

Contains reference manuals on the IoT Domain Model, the IoT Information Model,
the IoT Communication Model, and the usage of Perspectives. While the Process
Chapter outlines, how and when the modules of the IoT ARM (for instance the
information model) can instruct the architecting process, the pertinent Section in
the Reference Model, viz. Section 7.4, might not contain sufficient information on
how to use the models of the IoT ARM. The respective reference manual section
complements the guidance on the use of the model.

5.1.5 Chapter 10 “Concrete Architecture”

In order to further elucidate the guidance provided in the Process chapter, we
discuss for a concrete example (pay-by-license-plate parking) how the IoT ARM
can be utilised for the generation of a domain-specific architecture.

5.1.6 Chapter 11 “Interactions”

As can be appreciated by looking at already existing IoT systems, the operation of
such systems generally involves sequences of FC interactions. Since the [oT ARM
covers a huge range of usage domains and an even larger range of architectures that

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7

5 Guidance to the ARM: Overview 43

can be derived from it, it is, unfortunately, beyond our capabilities to detail every
possible FC interaction sequence for every possible architecture. However, in order
to provide the reader at least with a general understanding of how such interactions
can look like, we provide analyses for some few usage scenarios. These scenarios
are divided into management-centric and service-centric scenarios.

5.1.7 Chapter 12 “Testimonials”

As discussed in Chap. 3, generating domain-specific architectures is not the only
purpose of an ARM. Another important use is the identification of differences in
architectures (see Chap. 3, Sect. 3.5). In Chap. 12 we provide examples for this
usage. We looked at two IoT-related standards (ETSI M2M, EPC Global, uCode,
and BUTLER), and we also showed how an already existing system, viz. the
MUNICH platform, can be analysed with the concepts provided by the IoT
ARM. The numerous examples provided in Chap. 12 are meant as an inspiration
for how the reader can perform her own reverse mapping of existing architectures
onto the IoT ARM. Furthermore, the high degree to which the mapping of our new
framework onto already existing architectures and systems actually works is an
initial indication for both the comprehensiveness and the utility of the IoT ARM.
Additionally Chap. 12 presents a business evaluation example for an IoT enabled
use case in the healthcare domain.

5.2 ARM History and Evolution

This third and final full version (v3) of the IoT Architectural Reference Model
builds upon the intermediary version (v2) release end October 2012. Following its
dissemination a third feedback process took place and eventually led to this version,
where much technical improvements and new material can also be found. Therefore
this version is not only a great improvement to the former full version 2 but also a
consolidated version that takes into account many received comments (spread
among three distinct feedback processes) from external stakeholders, from external
technical experts, from internal partners involved into the other technical Work
Packages of IoT-A and finally from the projects involved in the IERC AC1 activity
chain on Architecture.'

Compared to [oT ARM v2, the technical improvements touch all aspects of the
Models, Views and Perspectives — respectively found in Chaps. 7 and 8 — already
introduced in former versions of the ARM. But it is also worth mentioning that
Chaps. 6,9, 10, 11, and 12 on Guidance has been drastically improved; for instance

!http://www.internet-of-things-research.eu/activity_chains.htm

http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_10
http://dx.doi.org/10.1007/978-3-642-40403-0_11
http://dx.doi.org/10.1007/978-3-642-40403-0_12
http://www.internet-of-things-research.eu/activity_chains.htm

44 S. Meissner and J.W. Walewski

it provides now also a very precise and comprehensive description of the whole
process about deriving a concrete architecture out of the ARM (see Chap. 6). This
chapter is a central part of this ARM master piece (300+ pages); it is fully dedicated
to making this ARM useful to IoT system developers, by providing best-practice
guidance and a large set of Design Choices that provide the system architects with
concrete option when designing a concrete architecture out of the IoT ARM. This
chapter also provided some elements of validation materialised through a “reverse
mapping” exercise, applied to existing IoT Architectures.

As said above, this book is the final version of the ARM from the IoT-A “era”.
Still the project reckons that the ARM should live longer than just those 3 years
project life-time; ensuring the sustenance of the ARM is therefore a major concern
for IoT-A, and something that we definitely must organise and drive.

The IoT ARM is not a “Style exercise” aiming at staying on the corner of
someone’s desk. In order to fully reach its objective, which is wide-spread adoption
by IoT system architects, the IToT ARM needs to be challenged even more and
eventually improved. Only then it will reach its full maturity. From November 2013
onward, the ARM will be taken care of by the IoT Forum (which was officially
founded in June 2013), within the “Technology” Working Group. Through this
work, we will identify specific ARM “profiles” and make relevant design and
technology choices needed to specify the profiles (e.g. “Semantic Interoperability”
profile with a number of related technologies, functional components and
interfaces, languages, semantic information model, etc.).

It is of the utmost important that industrial actors step into this activity and drive
it, as they are the ones which will put the ARM into practice in the context of their
own businesses. Sustaining the ARM and specifying profiles is a compulsory step
on the path leading to standardisation.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0_6

Chapter 6
A Process for Generating Concrete
Architectures

Mathieu Boussard, Stefan Meissner, Andreas Nettstrater, Alexis Olivereau,
Alexander Salinas Segura, Matthias Thoma, and Joachim W. Walewski

This chapter addresses the question of how to generate concrete architectures with
the IoT ARM, which is one of the many uses to which an architectural reference
model can be put (see Chaps. 3 and 4). This topic was already touched upon in
Section “Generation of Architectures” in Chap. 3, but it is covered in greater depth
in this section.

Note that we do not prescribe any specific architecting methodology for
generating concrete architectures. Instead, this section outlines how and where

M. Boussard (X))
Alcatel-Lucent Bell Labs France, Route de Villejust, 91620 Nozay, France
e-mail: mathieu.boussard@alcatel-lucent.com; www.alcatel-lucent.com

S. Meissner
University of Surrey, Stag Hill, Guildford GU2 7XH, UK
e-mail: s.meissner@surrey.ac.uk; www.surrey.ac.uk

A. Nettstriter

Fraunhofer Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer Str. 2-4,
44227 Dortmund, Germany

e-mail: andreas.nettstraetter@iml.fraunhofer.de; www.iml.fraunhofer.de

A. Olivereau
Commissariat a I’Energie Atomique, Avenue des Martyrs 17, 38054 Grenoble, France
e-mail: alexis.olivereau@cea.fr; www.cea.fr

A. Salinas Segura
University of Wiirzburg, Josef-Stangl-Platz 2, 97070 Wiirzburg, Germany
e-mail: alexander.salinas@uni-wuerzburg.de; www.bwl.uni-wuerzburg.de

M. Thoma
SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
e-mail: Matthias.thoma@sap.com; www.sap.com

J.W. Walewski
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
e-mail: joachim.walewski@siemens.com; www.siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_6, 45
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_3
mailto:mathieu.boussard@alcatel-lucent.com
mailto:www.alcatel-lucent.com
mailto:s.meissner@surrey.ac.uk
mailto:www.surrey.ac.uk
mailto:andreas.nettstraetter@iml.fraunhofer.de
mailto:www.iml.fraunhofer.de
mailto:alexis.olivereau@cea.fr
mailto:www.cea.fr
mailto:alexander.salinas@uni-wuerzburg.de
mailto:www.bwl.uni-wuerzburg.de
mailto:Matthias.thoma@sap.com
mailto:www.sap.com
mailto:joachim.walewski@siemens.com
mailto:www.siemens.com

46 M. Boussard et al.

during the architecting process the IoT ARM can provide help and input for the
architect. We return to this topic of “methodology agnosticism” in Sect. 6.2.

As can be seen in Chap.3 Figure “Process for the generation of concrete
architectures”, the IoT ARM informs the engineering strategies for the design of
a concrete IoT system, and the transformation rules are derived from the entirety of
the IoT ARM. Also, the IoT ARM informs the requirement-generation process. In
this section we are focusing in greater detail on the generation of requirements and
on the transformation of these requirements into a concrete architecture. Notice that
a concrete architecture implies that it meets a selected use case and application
scenario.

6.1 Process Steps to Generate IoT Architectures

What are the main building blocks of a domain-specific architecture that adheres to
the IoT ARM framework? The answer is: architectural views. As discussed at the
beginning of Chap. 7 and Sect. 8.1 “Short Definition of Views and Perspectives” in
Chap. 8, we chose to arrange a system architecture according to views, with the
totality of all views constituting the architecture description. Figure 6.1 outlines
how the views are related to each other and how they contribute to the system
design. All views shaded yellow are covered in detail in the IoT Reference
Architecture (see Chap. 8) or in this Section. These views are:

« Physical Entity view
¢ Deployment view
e Operational view
* IoT Context view

* JoT Domain Model

* Functional view
e Information view

In this figure:

¢ In dark red: views that are treated in Chap. 8 and in Carrez et al. (2013) or in this
section;
» In orange: related models (see Chap. 7).

Note that since the IoT Domain Model also encompasses the role of users, it
actually implicitly covers the enterprise view as advocated by RM-ODP (Raymond
1995) (see Chap. 3 for a discussion of the enterprise view and Sect. 7.3 for a
discussion of roles in the IoT Domain Model). Note also that although the other
views shown in Fig. 6.1 (... view”) are not covered in the IoT ARM, this does not
imply that they are not important for generating concrete architectures. This

http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_7

6 A Process for Generating Concrete Architectures

47

prevides input for impact assessment

defines scope, conted, System
extemal entities and need of——] design
interfaces for

based upon informs

Trust, Security, and loT Functional Model IaT Communication
Privacy Model

defines runtime environment and rollout for

based upon

IaT Information Model

informs

Fig. 6.1 Relationship of architectural views (based on Fig. 15-1 in Rozanski and Woods 2011)

Create Physical-Entity
\ View
s
L4
rd

<

s
s
s

£

. Create lot
Business goals %' 5
e Context View

%C Requirement process)

Derive other views

Fig. 6.2 UML activity diagram of the IoT architecture generation process (generation of
requirements and transformation of requirements into a concrete architecture)

becomes clearer when we look at the architecture generation process in more detail.
Figure 6.2 outlines the activities involved in generating an architecture. These are:

* Create Physical Entity view
¢ Create IoT Context view

» Requirements process

e Derive other views

48 M. Boussard et al.

In this figure, dashed arrows represent dependency, while solid arrows represent
control flow (can be understood as either the next step or expressing a logical
contingency of the target on the source).

As you can see, the creation of the Physical Entity View and IoT Context View
(see Fig. 6.1) are explicit activities in the architecting process. All other views are
comprised in the activity “derive other views”. Before we look at each of these
activities in more depth, let us return to the question of architecture methodologies
and how the IoT ARM relates to them.

6.2 Compatibility with Other Architecting Methodologies

Figure 6.2 could give rise to the impression that we prescribe a sequential approach
for generating architectures: (1) Define the scope, i.e. the business goals; (2) Create
the Physical Entity View and the IoT Context View; (3) Define requirements; and
(4) Generate the remaining views. This type of sequential approach to architecting
lies, for instance, at the heart of the waterfall approach (Royce 1970). This inter-
pretation of Fig. 6.2 is indeed true if all arrows in Fig. 6.2 are understood as arrows
in time. However, they can also be understood as logical dependencies. For
instance, in order to conduct the requirements process, we need a set of formulated
business goals, an IoT Context View and a Physical Entity View. If we interpret the
process described in this Section in the latter way, it can be mapped onto a plethora
of popular architecting methodologies, such as Model-Driven Engineering (MDE)
(Miller and Mukerji 2003), Pattern-Based Design (Gamma et al. 1994), and the
Spiral Model (Boehm 1988).

The only limitation we see is in the choice of views. Some architectural
methodologies prescribe different sets of views. Some of them, for instance the 4
+1 approach, lack some of the views we prescribe (mainly the information and
context views) (Kruchten 1995). In this case we could choose to embed the 4+1
framework into the process described in this Section. On the other hand, other
methodologies comprise views that are not part of the [oT ARM set. In this case, the
option is to integrate the IoT ARM views (and the manner in which they are
derived) into this other methodology.

6.3 IoT Architecture Generation and Related Activities

Since neither the IoT Context View nor the Physical Entity View are addressed in
the IoT Reference Architecture (see Chap. 8), and since they are integral parts of the
architecting process (Fig. 6.2), we need to look more closely at both of these views
and understand how they inform the architecting process.

http://dx.doi.org/10.1007/978-3-642-40403-0_8

6 A Process for Generating Concrete Architectures 49
6.3.1 Physical Entity View

Before we describe the Physical Entity View we need to discuss what it is not:
i.e. the “traditional” physical view in system architecting — a well-established view
in software system architectures (see, for instance, Kruchten 1995). “It is concerned
with the topology of software components on the physical layer, as well as the
physical connections between these components. This view is also known as the
deployment view.” (Wikipedia 2013a; 4+1 view). As Fig. 6.1 implies, we are not
using the term physical view for the deployment view in order to avoid semantic
tension with the Physical Entity View.

The Physical Entity View does of course refer to the Physical Entity in the IoT
Domain Model (see Sects. 7.3.2 and 9.1). The Physical Entity is “any physical
object that is relevant from a user or application perspective” (Appendix). For a
concrete use case and application scenario, this is of course a well-defined set of
physical objects. For instance, in the recurring example (see Sect. 4.2), the Physical
Entities are the orchids that are transported in a truck and these orchids are subject
to environmental monitoring.

It is obvious for many reasons why the architecture of an IoT system also needs
to include a Physical Entity View. Firstly, the dimensions, the distribution and the
properties of the Physical Entities have various implications. Examples of these
implications are:

¢ Devices: the sensors/actuators needed and where are they situated; their
relationship to the Physical Entity (directly mounted; touching; remote but in
sight .. .), etc. Note that the device choice is influenced by the Physical Entity. In
the recurring example, it is too expensive (in relation to the market price of the
Physical Entity) to measure the temperature of each orchid. Instead, sensors that
measure the air temperature are situated inside the cargo area. It is then assumed
that the air temperature equals that of the orchids. In other words, the Physical
Entity model also needs to include a sensing and/or an actuating model.

» Information view: what physical quantities are monitored by the sensors; how
are the quantities related to each other, etc.? In the recurring example the
quantity that is handled by the system is the air temperature in the cargo area
of the truck.

Secondly, in some use cases, the devices might be incorporated inside the
Physical Entity, which can have a range of implications for the IoT system. For
instance, if sensors are deployed inside a human body and the wireless sensor signal
is to be relayed to an outside reader, we need to understand the in-body propagation
characteristics of this signal. It may be the case that the strong attenuation caused by
the body tissue calls for a scenario in which signal repeaters are deployed. This has
implications for the communication aspect of the architecture (— functional view).

Thirdly, the type of the Physical Entity — in combination with the application
scenario — can have implications for the Trust, Security, and Privacy Perspective
(see Sect. 8.2.3). Let us look again at the recurring example. Since orchids can be

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_8

50 M. Boussard et al.

very expensive, and since this can increase the likelihood of the truck being raided
while, for instance, parked during a coffee break or overnight, it is paramount that
the wireless signal emanated by the orchid monitoring system cannot be identified
as such nor be deciphered. If this were to happen, it could, for instance, inform a
burglar how many orchids are in the shipment.

Although the Physical Entity View is obviously very central to the IoT ARM, it
is not covered in the IoT Reference Architecture. This apparent contradiction is
attributed to the overwhelming range of Physical Entities in the IoT: they can range
from the nano- and micrometre scale to truly macroscopic dimensions (e.g. glacier
monitoring); they can be gaseous or liquid; they can be animate or inanimate or a
mixture of both; they can be stationary or mobile. “Mobile” can include walking,
running, moving on wheels, flying, coasting under water, flying through interplan-
etary space, and so on. Also, there is no ONE physical quantity to be monitored — in
one use case it can be the temperature of orchids, in another the occupancy of a
room (automated light switch), in another case blood sugar levels. This overwhelm-
ing range of Physical Entities provides for the generation of generic yet compre-
hensive viewpoints and thus models for the Physical Entity View. This lack of
“least common denominator” is the reason why it was not possible to devise
Physical Entity models at the reference architecture level and thus integrate them
into the IoT ARM.

The user of the IoT ARM is advised to use his own domain understanding to
devise the Physical Entity view. Where required, pertinent models (for instance,
freshness vs. room temperature model for orchids) either need to be developed by
the architecture team or they can be extracted from outside sources (literature,
standards, etc.).

6.3.2 IoT Context View

As indicated in Fig. 6.1, the IoT Context View consists of two parts: the context
view and the IoT Domain Model. The context view is an architecture view that is
generated at the very beginning of the architecture process. It describes “the
relationships, dependencies, and interactions between the system and its environ-
ment (the people, systems, and external entities with which it interacts)” (Rozanski
and Woods 2011). To be more specific, the context view describes “what the system
does and does not do; where the boundaries are between it and the outside world;
and how the system interacts with other systems, organizations, and people across
these boundaries” (Rozanski 2013). The concerns addressed by the context view are
(Rozanski 2013):

* “System scope and responsibilities

« Identity of external entities and services and data used
» Nature and characteristics of external entities

» Identity and responsibilities of external interfaces

6 A Process for Generating Concrete Architectures 51

» Nature and characteristics of external interfaces

¢ Other external interdependencies

» Impact of the system on its environment

* Overall completeness, consistency and coherence”

Note that at least one of the concerns, i.e. “impact of the system on its environ-
ment” also applies to the Physical Entity, and investigating this concern thus
requires input from the Physical Entity View (see Fig. 6.2).

A detailed example of a context view, including a context diagram and a
description of the system components, can be found in Chap. 11.

Note that the context view focuses mainly on what lies outside the system and
how the system interfaces to the outside world. This is sufficient for “generic”
architecting processes, but for the IoT domain, not only do we know more about the
system to be devised, we should actually also gather more information about the
system at a very early stage in the architecting process. Why? Firstly, since IoT
systems have many aspects in common by virtue of operation in the same domain, a
lot of concepts are recurring concepts. One of the goals of the IoT ARM is to avoid
“reinventing the wheel”, namely to avoid discovering, analysing and naming the
very same aspects every time an architecture is generated. In order to permeate the
entire architecture description with this understanding, we prescribe its use early on
in the architecting process. This has advantages not only for the architecture
generation itself, but also for other usages, such as architecture reuse. If common
concepts, semantics, structures and relationships are fused into the core of an
architecture description, this makes it much easier to reuse aspects of the architec-
ture description or even the entire architecture. This can, for instance, be interesting
for architecture development within a technology roadmap. Also, trust, security,
privacy and safety are contingent upon system borders and thus on the
functionalities and hardware that reside inside and outside the system border. The
IoT Domain Model readily comprises both the “inside” and the “outside” of a
system, and thus provides a deeper insight into relationships between the system
entities and also interactions with the “outside world”. For all of these reasons, it is
beneficial to conduct a domain model analysis before embarking on actions such as
threat analysis and requirements engineering.

So what other reasons are there for expanding the context view “inward”,
namely also covering the system itself? Why not just add a view to the architecting,
namely the IoT Domain View, to the architecture description? The main reason is
that both models are complementary and need to be applied early on in the
architecting process. This is why we chose to pair the two system views. Note
that the context in the IoT Context View has an extended meaning to that in the
“traditional” context view, where it alludes to the context in which the system finds
itself in relation to its surroundings. The IoT Context View expands on this by also
including the entities within the system and by setting each of these entities in
relation — context! — to the other entities.

The IoT Domain Model, on the other hand, provides a semantic and ontological
overlay for the context view in that it provides guidance on which entities make up
an [oT system and how they relate to each other. It also helps to identify system
boundaries, which is one of the main questions to be addressed in the context view.

http://dx.doi.org/10.1007/978-3-642-40403-0_11

52 M. Boussard et al.

For more information on the IoT Domain Model see Sect. 7.3, and for guidance on
how to generate a concrete IoT Domain Model see Sect. 9.1.

Note, that since all are listed and characterised in the IoT Context View, this is
also the natural place for where to address the roles of all entities. These roles can
for instance, be categorised as permissions, prohibitions, and obligations. For more
information on these categories the reader is referred to elsewhere in the literature
(Raymond 1995). For a discussion of how these roles figure into the system
composition see Sect. 7.5.2.1).

An exhaustive discussion of the context view is available in literature (Woods
and Nick 2008), but in order to enable immediate usability of the IoT ARM, we
provide a short summary below.

6.4 Requirements Process and “Other Views”

6.4.1 Requirements Process

So far, we have shed light on two of the views that constitute an IoT architecture:
Physical Entity View and the IoT Context View. Now we will discuss the remaining
mandatory activities for generating an architecture: the requirements process and
the derivation of “other views” (see Fig. 6.2). Figure 6.3 illustrates the architecture
activities in more detail. How exactly the IoT ARM contributes to each of these
actions is covered in the next Section.

As indicated in Fig. 6.1 and discussed in the previous Section, the context view is
expanded by the IoT Domain Model. Therefore, both the generation of the “tradi-
tional” context view (see Sect. 4.1) and the expansion of this view in the IoT
Domain Model are included in the creation of an IoT context view. As also
explained in Sect. 6.4.1, the Physical Entity View provides input for the generation
of the IoT context view.

With the input from the Physical Entity View and the IoT Context View, we can
conduct a threat analysis. This type of analysis identifies potential weaknesses of
the system use case envisaged, and it also identifies design choices and in some
cases even functionalities that mitigate the risks identified. This analysis also
provides guidance for the requirements engineering action (the security risks that
need to be addressed by requirements).

The requirements process consists of many intermediate steps. The requirements
engineering action generates a list of references that belong to one of three types:
view requirements (i.e. requirements that directly inform one of the architectural
views), qualitative requirements and design constraints. Note that we categorise the
Unified Requirements (see online at http://www.iot-a.eu/public/requirements)
along different dimensions (functional requirement, non-functional requirement,
...) in order to increase the usability of UNIs for users who are not familiar with the

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://www.iot-a.eu/public/requirements

6 A Process for Generating Concrete Architectures 53

Iriaw ——

quu_t::v_u_lumpn consuaing

fqualitative Design checes
sequiremant]

Fig. 6.3 IoT architecture generation (expansion of Fig. 6.2)

IoT ARM taxonomy of requirements. The translation of the UNI requirement types
into IoT ARM process types is described Sect. 6.7.

In the prevailing approaches toward translating qualitative requirements into
view-related requirements, we usually rely on a set of view requirements that is
already available. An example of this type of approach is Quality-Function Deploy-
ment (Erder and Pureur 2003), which, amongst other things, is a central part of the
ISO 9000 standards suite (ISO 2009). The assumption of an existing set of view
requirements is a reasonable one for straight-forward product extensions or the
design of simple systems, but for most IoT systems, this type of approach is not
feasible. In other words, qualitative requirements cannot be translated directly into
view requirements. In typical IoT systems, not only is complexity high, but there is
often a plethora of options for achieving the desired performance of the system to be
built. In other words, there are many sets of view requirements that meet the same
set of qualitative requirements.

In order to overcome this design roadblock, we devised a step-by-step process
through which view requirements can be inferred from qualitative requirements.
The first step is to formulate the rationale of the qualitative requirements as business
principles. For a detailed discussion of business principles, see (Rozanski and
Woods 2011). This step is followed by identification of concerns and related
activities. This action includes identifying each of the qualitative requirements
with one or more architectural perspectives. The next step is to choose design
tactics and then make design choices (covered in more detail in Sect. 6.4.1.8).

If the requirement is a design constraint, then it directly informs the design
choice action.

From the design choices made, it is then possible to formulate implications for
the functional view and other views (see Sect. 6.4.1.8).

54 M. Boussard et al.

If the requirement is of the view type, it can later be mapped directly onto the
architecture description. We have found it very helpful to initially map functional
view requirements onto the functional decomposition (see Sect. 8.1) throughout
the requirements process. This makes it easier to track what parts of the system
architecture are already covered by the requirements and whether more
requirements are needed.

Salient inputs to the requirements process come, of course, from the Physical
Entity View. This view, among others, provides the requirement engineer with
information about special features of the “things” and the device-thing relationship
(see Sect. 6.4). Another important source of information is the IoT Context View.
It not only provides an overview of the system envisaged, but, thanks to the IoT
Domain Model, it also provides the requirement engineer with information about
the entities that are part of the system, what they are called, and how they relate to
and interact with each other.

6.4.2 View Derivation

The remaining views are addressed in the activity “Derive other views”. As shown
in Fig. 6.3, this activity consists at least of the derivation of the functional view, the
information view, the operational view and the deployment view. Where needed,
other views can be addressed. Examples of such views are the concurrency view,
the enterprise view and the engineering view (Wikipedia 2013b; view model). As
indicated in Fig. 6.3, this activity is contingent on the requirements process and it is
also guided by the Physical Entity View and the IoT Context View. For instance,
the IoT Context View might indicate that, due to the different ownership of parts of
the system, a communication firewall is needed (— functional view). In another
example, the Physical Entity View might indicate that, due to the fragility of
the Physical Entity, all devices attached need to be installed all at once
(— deployment view).

In order to accommodate different architecting methodologies, we have detailed
the dependence of each of the actions in Fig. 6.3 on each other in the crib sheet in
Table 6.1. This Table provides an overview of IoT architecting activities and
actions (left columns) and what relevant input one derives from other IoT
architecting activities and actions (horizontal).

Figure 6.3 gives a detailed view of the actions taking place within each activity
(Create context view; Requirement process; Derive other views).

» In Red: actions that are particular to the IoT-A architecting framework and that
directly contribute to the architecture documentation;

» In Orange: actions that are not unique to the IoT-A architecting process, but that
enjoy an emphasis in the [oT-A framework;

* In Green: other activities and documents that directly contribute to the architec-
ture documentation;

¢ In Blue: actions that are not unique to the IoT-A architecting process, but that
enjoy an emphasis in the IoT-A framework

e <<flow>>: information flow into a document.

http://dx.doi.org/10.1007/978-3-642-40403-0_8

55

6 A Process for Generating Concrete Architectures

(ponunuod)
pue wasks JIseq ay) pue
QY ur sannue sannuy [ed sisjpun ssasoud
JO MIIAIAQ -ISAU JO MIIAIAQ oy Juowa.unbay
-
‘sanradoid jo
Sursuos) woyy
im duop 9q
01 ST Jeym pue
13410 Yora 0}
JB[aI SANNUS
asayy moy
pUE 918 MITA
1X9u0) 101
Y ut sapnug sisjpup MIIA
[eorsAyq 12powt xauo)
Y1 1eyM sdugaq o Lo] 221D
‘sonaadoxd
Rl
pue sannud
woIsAs ay) Jo
sdiysuonejar
J1seq
ay) pue ‘ur
PalsAIAUL ST MaIA
auo sontadoxd Qnguy
‘sannug [est P21
-SAyJ JO MITAIAQ - -slyq awa1)
M4 JudU MIIA MIIA syuawaimbal jo SOI0Yd $o1dR) Surouidus sIsA[eue 1eaIy], sisK[eue -
-Kojdap pup UOTJRULIOJUT QALID([euonouny oAl Surddewr smarp u31sop oYR[2s00y) sjudwaIbay [opow-urewo(y
[p-uoyp.rado
aaLa(q
ssaoo1d Juowarbay MIIA JXUOD MarA Amud
1LO[A1) [eatsAyd aear)

SuoIOR PuB SANIATIOR 9s3Y) Jo uonordap e 10J ¢°9

311 99§ ‘(TeIuOZI1IOY)

SUOTIO® PUE SONTANIOE SUNOAIYOIE JOf JOYI0 WOIJ SIALIOP duo jndur JUBAS[aI Jeym pue (SUWIN[OD JJ3]) SUOTIOE PUE SANIATIOE SUNOAIYIIE O JO MAIAIAQ T°9 J[qe],

M. Boussard et al.

56

QAT
-ejnpenb osfe ‘sannuyg
181} 0S SAJI0YO [eo1sAyd
usisop oy} uoaMmIdq
0] 3urpiodoe *$210Y0 suo
sanifeuonouny ugisap -1}03UU0d
Krey Ppajeroosse sannud TeorsAyd
-uowpdwos i [opow-urewop pue
Qonponur «— SYSLI A1Lnoas Jo Sunsou ‘Jo K110
-sjuduaIinbax paynuapt pue ‘Surdnoid -doid ‘jo $2010YD
*$O1108) UISOYD) [euonoung JO IS WNWIUTA ‘uonnqLISIq uonnquusiq uSisap vy
$210D1
asooy)
“SYSII pres
Sunesniu *SI0pI0q W) ‘sonnuyg
10§ sa1391ens -s£s jo uonmu pres jo
Teuon -ga(oIl sdiysuonefar
-ounj uo ndur Koy moy J1seq Yy
ISIL] "sjuAwW pue wajsks pue sannug
-oxmbar oye| QY ur sennue TearsAyq
-NuLIoJ 0} Sey JO MITAIIAO JO MITAIIAO
QUO YIIYM 10] :sjuowaxinbar :syuawaIinbar
SYSII AIINoos Sunenuwuoy Sunenuwuoy
JO ISI] WINWIUTAL 10§ nduy 10§ Induy Suriooursua siuowa.1mbay
*SI9pI0q W)
-s£s Jo uontu ‘sannuyg
-ga("1oeIaul pres jo
Koy moy sdiysuonejar
Ma14 JudU MIIA MIIA sjudwaInbar jo S90I0YD sonoR) SurreaurSua sisA[eur jeary, sisATeue -
-Loydap puv UONBWLIOJUT 9ALID([euonouny ol Surddewr smarp uSIsop BN 9s00yD) sjuowarmbay [opow-urewoq

p-uoyv.iado
2411

ss0001d Juowarmbay

MIIA 1XAIUOD MarA Kmud
LOoJ 2ra1) eatsAyd oear)

(ponunuod) 19 Aqe],

57

6 A Process for Generating Concrete Architectures

‘uonEULIOJUT “MATA
Jo Ayo suonorIIUL
-IRIJNY pue ‘uon woiy

uonerado
uo suonedIpuy

-nqQLISIp ‘9[oAd
QJI] uo uoneuLIoyu]

‘wayy
u2amIaq
padueyoxe
9q 01 uon
~euLIOJUI AU
Pue SO paynuapy

‘suonouny

ojuo

paddewr

(&jrenaed)

e jey)

sjuowanbay

SMITA
01UO 010D
usisop
Jo Surddepy

‘uonerado pue
Juswkordop
0} Juoun

-1od sao10yo uIsoq

‘e)Rp

pue uonew

-1ojul 0} Juaun
-12d saot10yd uIsoq

*MIIA

[euonouny Yy

0} Surureyrad
sa010U2 udIsog

*syuowaxbar

MIAA

‘uonRWLIOJUT
01 paje[ar
sjuawalbay

‘uorjeuLIojul
0} paje[ar
sjudwaIInbay

*sjuawaInbarx
[euonounyg

Juawikordop
pue
uonerodo uo
SYSII AILIND9S
pagnuapt
Jo suoneordwy
‘[opowt
vIRp puR
uonewLIoJut
uo sar3ojens
uonest
-3t paynuapt
pue systI jo 1oedwy

*SYSLI pres
Sunesniu
10§ sarSojens
Teuon

-ouny uo ndur Jsi|

"PAIAA0D 2Tk
siuawannbax

‘s1osn

puUB ‘SIOTAIIS

£§30IM0Sa1
“SOOIASP PAYNUIP]

‘sonnuy
[enIA
pue s32Inosal
paynuopy

‘sonnug
[enMIA
PUR ‘SIDIAIIS
‘$90IN0Sa1
‘S901AQP PAYTIUAP]

‘sannug
pres jo
suonnqLIsIp
pue
sdrysuoneor
J1SBq 3y} pur
sannuyg [eorsAyd

‘JsaI191Ul JO
santadoad [eorsAyg

‘sennug
pies jo
sdiysuoneyar
J1Seq 3Y) pur
sonnug [ed1sAud

sjuawa.nba.

Mann
Juaw
-Lojdap
pup
[puon

-naado 24112

Mot
uoyvut
-10fu1 24112

Mala
[puon SMa1A
-ounf aalaq 1210 24112
Jo

Surddpw maip

M. Boussard et al.

58

S9010U5 USISOP PAJRIJOSSE
pue so1joe) Jo Awouoxe) dAIsuayardwo))

SO1]08) PIJBIOOSSE
pue saanoadsiad Jo 39S wnwWIUIA
sjuowaInbar
woISAS Jo uonerduas oy Hoddns
ued SN [2A9[-Y31Y ay) moy Jo ySisuf
SwRISAs 0] 03 sjeary) AJLnoas
SuneSnIw 10J SA010YD USISAP JO SIST
A11ed A9y douejrodwir jeym
pue SISA[eUe Jea1y) dy) JuLnp Jjunodoe
oJul udYe} 2q 03 spoadse wAIsAS Jo IS
SWA)SAS QINUS puE SANNUD
asay) [opour 03 moy Jo sojdurexa
YIM I9U}230] [OpPON urewo 0]
QU Ul SANNUL Y uo uoneuojul yidop-uy

SANNUQ SII [[& JO UOISSNOSIP yInoioy
€ 3urpnjour [opowl urewop J0J YL,

sjuowdIInbar aanejenb

SurA[ropun oy SurssaIppe I10j

S9010yd U3Isop Ajnuaprt ‘das snoraaxd
U} Ul POYNIUIPT SO1OR) A} JO suedw Ag

Joene

JO saul],, [eIN}OIYOIR S PooIsIopun

9q ued so1ow) A, sanienb pres

SSQIppE 0] MOY 10J $O130B) J[qeIINS JO

uoneIYnUIPI pue (soanoadsiad eye)
sanienb ojuo syuowanmbar jo Surddepy

sjuowaINbar wojsAs Jo uoneIauan)
SYSLI pres jJo uoneSnIw Ioj sa010Yd
uS1Sop 0 SYSII AJLINDSS POYIIUSPI JUI']

WoISAS pagesIAu
oy} Joj sIsA[eue JeaIy) © ULI0JIo]

odoos wdIsAs pue

SALIEPUNOQ WWJSAS JO UOTIROYIIUSPI UB

I0J MQIA JX9Ju0d 9y} ur papiaoid uon

-BULIOJUI 9S() "WISAS [,0] pagesiauo
dY} JO [opOW UIBWOP J 0] Uk 9)ea1)

S9010YD

(69 '109S) soo10yd USISAQ u31sop eI

(¢°8 "109S) soAnoadsiod SO1)08) 9500U))

Surroour3uo
sjuawaIinboy

(L9 1998) (SINN)
sjuowaIinbal payrun asn 0} MO

(8T "199S) $A210Yd USISA(

S[npowr
NIV Ul pap1aoid UoneuLIojul/douepInD

Ayanoe jo odA g,

ssaoo1d
(L'1°% "199S) sisA[eue jeary, SISAJeue Jeary], Juowalnboy
(1°6 '1999)
[SPON Utewoq Lo y
0) Surureyred [enueRW 9OUINJIY
MITA
sisA[eue 1X31U0d
('L "399S) [opow-urewop [.0[[opow-urewio] O dedID
J[npout ARV JusunIog uonoe Kyanoe

Sunoayory Sunooyory

SUOIIOR PUB SIANIATIOR SUIIOANIYIIL O] JO MIAIAIAQ T°9 IqRL

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_9
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_6

59

6 A Process for Generating Concrete Architectures

(ponurnuod)

Mo Uo JY3I[SWOS SB[J& PAYS Ued
Jey) Sw)sAs O] JO SoLeudds agesn
9] QWOS SSNISIP 0} PIPIOAP oM ‘AYY
0] 9y} JO SUIwoolIoys OIWISAS SIy}
9Je3nIW 01 JOPIO U] "[OAJ] 2INJOAIYDIR
-90UQIRJa1 A} Je seouanbas
UOTIRIdUI [BUOIIOUNY A} JO UOHITUYP
QU} MO[[e O} IOPIO UI UOT}ORIISqE JO
[9A3] Y31y 001 IeJ © J& pajenyIs s NV
1O 2y} Inq ‘MIA Teuonjouny Y} jo Jred
[eagojur ue st JurodMalA UOTIORIIUI
Y} ‘77’8 199§ UI passnosIp APoLlq Sy
sorreuads uoneordde
Jo 93uelI Pa1da[as B I0J I JOO]
ued SuoIorIAUI yons moy jo sojdurexa
sap1aold uordag suoroRIAU] Y,
(syreyo oouanbas) suorjouny
JIseq 19y} pue) JO SuondeIaul
AIeJUSWIIO SE [[oMm SE ‘So0BJIUI
[9A9]-y31y pue suorouny H dIseq
Jo suonduosop ‘swrerserp oses-osn
-[B21UYd3] Pajefal ‘S AU} UO 1X) AN
-sneyxa sapraold uonoag xipuaddy ayg,

s pue sn Jo uondrosag

WAy} [9POW 0) MOY PUB SMIIA
asay Jo spoadse oyr1oads-1 0] JO MIIATOAQ

soLreudds a3esn Jurreaard
Ioj sura)ed UOTIORIOIUI QALIS(]

sDd Jo
SUOIORIAUI IPIM-WIASAS Uy

MITA [RUOTIOUN] JOJ SUOT)ORIUI

pUE ‘SOOBJIUI ‘SUOT)OUNJ JISeq AU
POPa9U $90BJIOIUT AJTIUSP]
'sDH 01 (syuswaainbar oAnejifenb jo
“uarpadxe aroym ‘pue) sjuswarnbar

[euonouny jo urddew 31y WIOJIdJ
smarA Teuonerado pue juowkordap
dU) pue MIIA UOHRULIOJUI d) OJUO
(syuowermbar aanelTENb JO JuUAIp
-odx9 a1oym ‘pue) sjuowaImbar mara

[euonoung-uou jo Jurddew js1y wroyrog

suonoerduy,, 011deyd

suonoerajuy,, 0] 1dey)

MIIA
(€107) 'Te 19 Zoue) [RUOIOUNJ JALID(

(MOIA

-[euonound,, 77’8 199§

pue J9poJA [euonound,, ¢
‘["199S) MIIA [eUOT}OUN]

(. Ma1A Juawkorde(y,,
T8 1998 pue MIIA
UoIRULIOJU],, €'7'] "199S) sjuowaIinbax
SMOTA Teuonounj-uoN jo Surddewr morp

SMIIA
IOU10 QAL

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_10
http://dx.doi.org/10.1007/978-3-642-40403-0_10
http://dx.doi.org/10.1007/978-3-642-40403-0_8

M. Boussard et al.

60

9y} 10 0} QIAYM PUE SUOIIN[OS
KI1A1I09UU0D JO uonsanb ay) sasSNOSIp
OS[UOT103S SIY L, "o8pajmouy
juowfo[dop 9[qeUOIIor OIUT SMIIA
9soy) ur uoneWLIOjUI Sue[SULI) Ul Spre
sy [, ‘Juswkodop oy 10§ sjurodmora
se suondLIosap 901AdD PUE SMIIA JOYJO
saynuapt 11 ‘Isir] ‘sureyed pue sordoy
UOWWOD UO SISNI0J SINOD JO UOT)IAS
sy} 307 & A1eA suroped juowkojdop
) 20UIS "SwIsAS 0] Jo Juawkordap

oy 3dop ur sassnosIp uonodas SIy,

9[0AD 9JI] uonEULIOJUT

Q) SISSNOSIP T “PATY], "MITA

Jo jurod OLIRUQS-UOT)ORIOIUI B WIOTJ
pUE -UOI}ORIUI U WO} Y30q sD] JO
Surpuey uonEWIOUI JY) SAJEPION]D I
‘Pu0d9g *(SANNUL [eNJIA PUB SIOIAIOS
uoam)aq suoneroosse ‘suondrrosep
QOTAISS SANNUY [BNIIA JO
uondirosep) suondrrdsep uorewIojur
[e1oua3 Uo soyeIOqR[1 “ISI]
‘UOTJeWLIOJUT [eJoudS Jo so0o1d [e1oAss

sopraoid M1\ uoneWLIOJU] [O] Y],

J[Ing ST 2INJOIIYOIR
9)2I10U0d A} YIIYMm I0J saSesn)

I0J 1] Yoo[Iyt sureyyed yons Moy
10y uonexidsur apraoid osfe Aoy pue
“ay1] JoO[ued surayred uonjorISIUI YoNS

walsAs ayy drerado

0} moy pue Kojdop 01 Moy AUy

(€T'8 1098 995)
s901A9p pue suoneordde yim
o3ueyoxa oy 10J Os[e pue SO [[&

J10J [opoW BJep pue UOTJBULIOJUI dUYS(]

MIIA JuaW

('T'8 1098) -Kojdop pue
ma1A Teuonierado 29 Juowkordoq Teuonerado aALId

(.MTA uoTRWLIONUT JOT,,
€7°8 "199S) MIIA UOHJRULIOJU]

MIIA UOT)
-BULIOJUI QALId(

J[npow
NIV Ut papraoid uonewIofur/aouepIng

Kyiamyoe jo odA T,

J[npoul ARV JUSUNIdJ uonoe Kanoe
Sunoayory SunoAIydIy

(ponunuod) 79 Aqe],

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

61

6 A Process for Generating Concrete Architectures

$'9 "SL] 99s os[e
MIIAIOAO UR I0,] "SS[NPOUI PIES WOIJ PIALIOP 9q UBd Jey) ddueping/indur oy} 1noqe sauIpno sopraoid os[e 9[qe], 9y, ‘SUonoe pue sanianoe pres 1oddns 03 19pIo
UT J[NSUOD UBD SUO JUSWNIOP AN V-LO] S} JO SI[NPOU JeyA SMOYS PUE WISAS J,0] U SUOIYOIe Uaym SUOTOE PUB SSUIAIIOY JO MITAISAO UE SIAIS [qe) STY],

(€100) T8 19
ZolreD) Ul punoj D, UOIIN[OSaY
Amug [eniIrA pue uonnjosdy TAIS
10] 2y Jo suonesyroads ooeyIajul
joeIn)sqe 9y} uo paseq pauyep Aqurerd
-WOX9 SeM Jey) SUIpuIq 90BJIoJUI (1]
-suel1], 9jel§ Jeuoneiussardoy) LS
© S9qLI0Sap yorym (€10 1oneg)
Surpurg 9oeJI9U] AINJONNSLIJU]
uornjosay uo Joded ANMYM FdM
9y} UI pUNoOJ 9q Ued UOT)BULIOJUT IO
‘SIdV SUIALIOP J0J Y00[q 3urue)s pIjos
' SB U99s 9q ued (xipuaddy oures oy}
ur sjreyo aouanbas oy Ym 19Y30307)
— (€107) "[e 12 Zarre) ul papraoid uon
-BUWLIOJUT A} ‘S[JV O} Jud[eamba jou
QI SQ0BLIAIUI [QAS[-USIY 5o} UM
" MITA [euondun [0f,, T°C°8 1998
ur uonisodwodop [euonouny Y} ul
S 9y} [[e J0F SO0BJIUI [0AJ[-YSIY JO MBIIA JUSW
suonuyap sapraoid (€107) e 10 za1e) sDA pAauawedwr oy 10J S|JV Uy (€£102) ‘Te 12 Zowe) -Kopdap aalreQq
uonN[OSaI 9JTAISS pUE 35eI0)S
uorjewIojur jo suonsonb jueirodur
oy uodn saYON0) OS[E J] "SOJTAIOS

http://dx.doi.org/10.1007/978-3-642-40403-0_8

62 M. Boussard et al.

6.5 IoT ARM Contributions to the Generation of
Architectures

After the previous detailed overview of the architecting actions related to the
generation of an [oT architecture, we are now finally ready for a discussion of
how the IoT ARM contributes to the generation of specific architectures. As already
outlined in Sect. 6.2, we do not prescribe a particular methodology for the genera-
tion of the architecture. The choice of a particular methodology is contingent upon
factors such as the organisational structure of the architecting team, its “architecture
history”, international standards or agreements that need to be adhered to, etc.
Rather than prescribing a particular methodology and thus limiting its application
range, the IoT ARM provides support and guidance for almost all of the actions and
activities that are part of any architecting process (Fig. 6.4).

This figure gives a detailed view of the actions taking place within each activity
and what parts of this document contribute to these activities and actions. The
rectangular dark-red boxes represent sections in this document while <<flow>>
represents information flow.

Table 6.2 discusses in more detail what each part of the IoT ARM contributes
exactly to each of these actions and activities. This table also is intended to serve as
a crib sheet for the architecting process.

6.6 Minimum Set of Functionality Groups

One question that we have often received concerns the least common denominator
in terms of Functionality Groups of architectures that are derived from the IoT
ARM. In other words: what Functionality Groups are part of any conceivable IoT
ARM architecture?

The core aspects of IoT are things and communication. The things, i.e. Physical
Entities (see Sect. 7.3) are accessed through devices, and data etc. pertaining to the
Physical Entities is relayed by means of communication. Physical Entities are
represented by Virtual Entities. Usually, the data is accessed via an application.
Since we stipulate a service-oriented architecture framework in which the resources
exposing data etc. about the Virtual Entities (and hence the Physical Entities) are
exposed by IoT services, the minimum set of Functionality Groups is:

* Application Functionality Group

e IoT Service Functionality Group

¢ Communication Functionality Group
¢ Device Functionality Group

63

Carrez et al. (2013) Deployment &
)] JUIEEEATOMIENE
, (Section 8.2.4)

\
<flow> «flow>

6 A Process for Generating Concrete Architectures

Create Physical-Entity
View

Business goals \ / Derive other views

Create IoT Context View Derive)
Deployment &

i I Derive
Contextigh IoT Domain Model | | View View
analysis | Fena el § .])
«flow» <)|
Context view IoT Domain S - -
Model \
— Reference Model
~ (Chapter7) N
J (Section 8.2.2) W (Section 8.2.3)
h - 1
<flow»
| «flow»
Vv VA
~

Requirement process

Design Choices
- (Section 9.6)
= <flow>

T~ «flows.
= Threat)
-
assessment P Vi
-
View mapping of || = diows
Requirements) requirements . «flow s //
engineering [view < YA
- = requirement] Make) //
| [design design «flow»
| constraint] choices ,
«flow» 4 /
/

[qualitative
requirement]

Derive business |.
principles |

Fig. 6.4 IoT architecture generation (expansion of Fig. 6.3) summarises the parts of the IoT ARM
that are relevant to the IoT architecting process and to what particular action

|
U f

= flow»

’
/
Choose
tactics)

Reference
Architecture
UNilfied Use cases, Views | Perspectives
requirements Topics ... (e.g. Functional) (qualities)
loT-A /‘
ARM
Level
1. Deriving Identifying Assessing
specific relevant 2.b impact of
requirements UNIs 2 g requirements on
architecture
components
loT
(concrete)
System
I):evel (Concrete system) Concrete
requirements Architecture

Fig. 6.5 Using IoT-A Unified Requirements and IoT ARM for concrete system architecture work

64 M. Boussard et al.

Note that this does not imply that other Functionality Groups (for instance, the
Management Functionality Group) are optional. Rather, it means that for certain
requirement sets these Functionality Groups are not needed.

6.7 Usage of Unified Requirements

6.7.1 Introduction

This section proposes guidelines to system architects on how to use the (already
existing) Unified Requirement list (UNIs) during the Requirements process activity
of their IoT architecture-generation process (Fig. 6.2). Such usage is by no means
mandatory, as Requirement Engineering can be performed following the process
described in Sect. 6.4 — however the UNIs list can serve as a helper tool to both the
elicitation of requirements and to the system specification.

It is well known to system designers that requirement engineering is a crucial
activity in system and software engineering. In the abundant documentation on the
topic (e.g. Hull et al. 2011; Pohl 2010), one can distinguish three main steps where
requirements play a role in designing complex systems: requirements elicitation
(generally based on stakeholders input); deriving the system’s specification from
these requirements; and validating the implemented architecture.

As part of the work on the IoT Architectural Reference Model, UNIs were
inferred and then published at http://www.loT-a.eu/public/requirements. For more
details on how these Unified Requirements were derived can be found elsewhere in
the literature (Magerkurth et al. 2013). As these requirements do not apply to a
concrete system, but rather to a Reference Architecture and a Reference Model
applicable to all potential IoT systems, the reader needs to keep in mind a number of
specifics before considering these Unified Requirements as input for the process of
architecture translation:

» The Unified Requirement list should be seen as a basis and a living document.
Although it tries to cover the whole spectrum of requirements families that
could be applied to the IoT domain, it cannot be considered to be exhaustive,
as, for instance, future regulation and legislation could impose requirements
unforeseen at the time of publication. Additionally, Unified Requirements are
often formulated on a quite high abstraction level (something largely avoided in
concrete system’s requirement engineering), resulting in requirements that are,
for instance, mapped onto one or several views and possibly perspectives (again,
something that concrete system designers tend to avoid);

¢ Formulation of requirements expressed by external or internal stakeholders
(description field in the used Volere template) may sometimes apply directly
to the IoT ARM (e.g. UNL094 “The Reference Architecture shall support any
IoT business scenario”), but in most cases they apply to a concrete system that
can be implemented using the IoT ARM. In that latter case, they express
characteristics on the system that the IoT ARM should enable to specity,

http://dx.doi.org/10.1007/978-3-642-40403-0

6 A Process for Generating Concrete Architectures 65

Table 6.3 Translation table for UNI requirement types from and to IoT ARM requirement types

UNI requirement type IoT ARM requirement type Indicated by

Design constraint Design constraint -

Functional requirement View requirement -

Non-functional requirement ~ View requirement Mapping of UNI onto a view
Qualitative requirement Mapping of UNI onto one or more

Perspectives

meaning they require to be interpreted by the reader/system designer to see how
they apply to their own case — hence the wording “the system shall . . .” generally
used. Let us take for instance UNI.021 “The user shall be able to control the
radio activity of the system”: depending on the actual usage of radio communi-
cation, on the role of the user and on the importance of controlling the radio
activity of the system in the concrete architecture, this requirement may be
dropped, or specialised. In any case reinterpreting Unified Requirements is
necessary (more on this in the following);

» Mapping to perspectives/views/functional groups and components is done on
a lowest-common-denominator basis — e.g. it indicates which aspects are defi-
nitely impacted by a given Unified Requirement, but the reader should keep in
mind that in certain (concrete system) specific cases, additional components may
need to be considered. For instance, the Device Functionality Group is out of
scope of the [oT ARM (see Figure “Functional-decomposition viewpoint” of the
IoT Reference Architecture in Sect. 8.2.2.) and is therefore not listed in mapping
of functional Unified Requirements, while it clearly needs to be considered when
devising a concrete IoT system. Another instance is the lack of differentiation of
the data plane vs. management plane in the IoT ARM, as this is a clear design
choice (see Sect. 6.9).

* As pointed out in the ARM document, Sect. 6.4 and for the reasons explained
there, the categorisation of the UNIs does not fully match that of the IoT ARM
process and one needs to map the UNI categories onto that of the process in order
to utilise the UNIs for the generation of architectures. Table 6.3 below provides
this mapping information.

In a nutshell, the reader should keep in mind that the IoT ARM in general, and
the Unified Requirement list in particular, should rather be seen as an inspirational
than as a normative document.

6.7.2 Using Unified Requirements

IoT-A Unified Requirements (UNIs) can be used by system designers at two stages
of their work: requirement elicitation and system specification.

http://dx.doi.org/10.1007/978-3-642-40403-0_8

66 M. Boussard et al.

6.7.2.1 Requirement Elicitation

UNIs can be used in a number of ways by system designers to identify
“requirements topics” for their concrete system.

First, UNIs can be seen as seeds for deriving or instantiating concrete (precise)
requirements from the broader, more abstract wording of Unified Requirements
(Fig. 6.5- 1). For instance, UNI.018 reads “The system shall support data processing
(filtering, aggregation/fusion, etc.) on different IoT-system levels (for instance
device level)” (see Appendix). Based on this broad formulation, the system
designer may derive his own requirements, identifying what kind of processing,
on what kind of data, needs to happen where in his system.

Second, the mapping of the UNIs to Use Cases, facets of the [oT ARM (Models,
Functional Groups, and Functional Components) or more informal categories can
be used to filter and identify which topics and related UNIs should be considered by
the system designer as potential candidates for instantiation on their own system.
For example, using the web-based list, one can perform a global search on the word
‘communication’ (search all columns box), or filter all requirements categorised
with the tag communication (Category column filter), or those which are sorted
under the Communication Functionality Group (Functionality Group column filter)
to see which UNIs in general apply to a given system.

6.7.2.2 System Specification

UNIs, and in particular their mapping to the IoT ARM, can also be useful to system
designers during the specification phase. By identifying a UNI generalizing an
already identified (concrete) system requirements (Fig. 6.5- 2.a), the various
mapping on the IoT ARM enable the system designer to identify which IoT ARM
components or more generally aspects are impacted by this requirement, and from
there which concrete systems components or aspects need to be investigated
(Fig. 6.5- 2.b). Figure 6.6 below presents this process using UML Activity diagram
representation. Note that the “No corresponding UNI” case induces “regular”
requirement engineering (i.e. without IoT ARM support).

For UNIs mapped on the Functional View, this enables the system designer to
identify candidate functions in the concrete architecture that will be impacted by
the overarching concern formulated in the UNI. For instance, UNIL.623 reads
“The system shall support location privacy”. This requirement is mapped on the
Security and Privacy Perspective, which means that the system designer should
consider this Perspective when deriving her own system requirements (more on this
below). This UNI is also mapped onto four Functional Components in three
different Functionality Groups of the Reference Architecture (namely IoT Service,
IoT Service Resolution for the IoT Service FG; Authorisation for the Security FG;
and VE Resolution for the Virtual Entity FG). After identifying how these FCs are
instantiated (or not) in a concrete system, the system designer can use such a
mapping to derive where the considered requirement(s) impact the concrete
architecture.

6 A Process for Generating Concrete Architectures 67

?

Identify UNI corresponding
to concrete system requirement

No corresponding UNI

UNILXYZ
found

Retrieve View Retrieve Models mapping Retrieve Perspective
mapping for UNIL.XYZ For UNIL.XYZ mapping for UNL.XYZ

Assess applicability of View Assess applicability of Models Assess applicability of Perspectives
mapping for concrete architecture mapping for concrete architecture mapping for concrete architecture

Cjentify concrete requirement mappingh/

on concrete architecture

.

Fig. 6.6 How to use UNI to IoT ARM mapping to identify impacts of a given requirement on a
concrete system architecture — activity diagram

Similarly, for UNIs assigned to quality aspects of the architecture (captured
through ARM Perspectives), the mapping of UNIs onto design choices mapping
(see Sect. 6.9 allows exploring perspectives and associated design choices that are
impacted by a given UNI, and which therefore should be considered by the system
designer. For instance, UNI.058 which reads “The system shall provide high
availability” is mapped onto the Availability and Resilience ARM Perspective,
and can be instantiated using two Design Choices (namely Cluster by location and
Cluster by type of Resources). A corresponding concrete system requirement would
typically provide more details (such as availability rate, etc.). After identifying
which Perspectives apply (and how) to their concrete system, the system designer
can use such a UNI-to-Perspective mapping to derive which quality aspects of the
concrete architecture are impacted by the considered requirement(s).

6.8 Threat Analysis

As part of the setup of an IoT architecture, risk planning and resulting architectural
decisions are of highest importance. The risk analysis carried out in this section
aims therefore at assessing risks pertaining to the IoT, and at classifying them

68 M. Boussard et al.

according to the underlying mechanisms they apply to, the elements they affect, and
the overall criticality they present.

Risk analysis traditionally begins with a definition of the elements that have to
be protected. Then, an analysis of possible threats is conducted. How identified
threats may actually affect elements to be protected, leads to the definition of risks.
These risks have to be categorised, taking into account parameters such as critical-
ity or probability of occurrence.

Various risk-analysis methods have been promoted in the literature, such as the
French EBIOS (Ebios 2010) and OCTAVE (OCTAVE). The methodology for risk
analysis that has been chosen in 10T-A, and that is used in this section, is based on
Microsoft STRIDE/DREAD (Microsoft 2003). This choice has two reasons: first,
this methodology is designed for assessing risks in the field of communications and
information systems; second, it is mostly based on the analysis of architecture
models and communications flows (instead of, for example, partly relying on
experts interviews such as in EBIOS), which makes it a good fit for the ARM.
The reasons for this are twofold. First, IoT, by it very name, encompasses informa-
tion systems and communication. Second, no loT-A-implementations are available
at the time of writing. Therefore, the analysis has to centre on the Reference
Architecture itself.

This section is organised as follows: first, a list of elements to be protected is
provided. Then, the threats that may affect these elements (risk sources) are
reviewed. The review follows the STRIDE classification. More details on STRIDE
are provided below. The identified risks are then summarised and each risk is
assessed in accordance with the DREAD methodology/metric.

This risk analysis is intended to be used as input for the derivation of
architectures from the IoT ARM and for also for guiding the evolution of such
architectures. By so doing one makes them more resilient against the most critical
risks.

6.8.1 Elements to Protect

What elements need to be protected depends on the considered scenario. However,
the IoT ARM was derived from the synthesis of a wide range of use-case areas, and
identifying elements to be protected becomes rapidly very broad and multi-faceted.
Instead, we decided to focus on the least common denominator of all use-case
scenarios on which the IoT ARM is built. In other words, this analysis only looks at
general elements to be protected, and this study is thus a good but non-exhaustive
starting point for the study of a particular scenario to which the [oT ARM is going to
be applied. The scenarios encompassed by the IoT ARM include:

» Transportation and logistics;
* Smart home;
e Smart city;

A Process for Generating Concrete Architectures 69

Smart factory;
Retail;

eHealth;

Energy (Smart Grid).

The following elements to be protected were identified:

Physical person: This represents the human user. Threats affecting the human
user are usually qualified as relating to ‘safety’ instead of ‘security’. Such threats
may arise if a critical service is diverted or made unavailable by an attacker. An
example for this is a malicious service that returns erroneous information, or
even information specifically shaped to create hazardous situations. The eHealth
scenario is the most critical concerning such attacks. Notice that the level of this
criticality of course depends on the degree of automation. It is likely that most
critical decisions will still require the involvement of a human operator;
Subject’s privacy: This element represents all information elements that a
subject (either a user or a device) does not explicitly agree to make publicly
available, or whose availability shall be restrained to a controlled set of other
subjects;

Communications channel: The communication channel itself has to be
protected. Common threats are attacks against the integrity of the data that are
exchanged over the channel. Examples for such attacks are tampering and replay
attacks. The communication channel shall also be protected against attacks
aiming at the routing functionality of the underlying network (black hole,
worm hole, depletion, etc.) (Mathur and Subbalakshmi 2007);

Leaf devices: [oT-A leaf devices represent the wide variety of IoT elements that
are interconnected by the common IoT-A infrastructure. Tags, readers, sensors,
and actuators are examples for leaf devices. Various protection schemes relevant
to their object class capabilities are to be implemented. These schemes need to
ensure the integrity of the software, hardware, and the location of these devices;
Intermediary devices: Intermediary devices provide services to IoT-A leaf
devices and they also enable communication. A gateway designed to intercon-
nect constrained and unconstrained domains is an example of such an interme-
diary device. Disabling or tampering critical intermediary devices can lead to
denial-of-service attacks against the service infrastructure. Such attacks are
within the scope of our analysis. However, attacks against specific intermediary
devices that offer non-critical facilitating functions are outside the scope of our
analysis and have thus to be considered case by case;

Backend services: Backend services represent server-side applicative elements
(for instance data-collection server communicating with sensor nodes).
Compromising this software or the devices they are deployed on generally
represents a critical threat against specific application systems and has to be
prevented;

Infrastructure services: Discovery, lookup and resolution services are very
critical services as they provide worldwide fundamental functionalities to IoT
systems. In the same way, security services (authorization, authentication,

70

M. Boussard et al.

identity management, key management, and trust and reputation) are essential
for a secure interaction between subjects (as defined above);

Global systems/facilities: This last category of elements to protect considers
entire services in a global manner. For example, there might be a risk that an
attack against the smart home scenario results in the complete disruption of the
service, e.g. through the disruption of underlying communications between
devices. The consequences of this resulting disruption can therefore be consid-
ered through this category.

6.8.2 Risk Sources

The risk sources are categorised following the STRIDE (Microsoft 2003) classifi-
cation, which is a widely used way of classifying threats that relate to information
systems. STRIDE stands for Spoofing identity, Tampering with data, Repudiation,
Information disclosure, Denial of service, and Elevation of privilege. These
categories are quickly summarised below — note, however, that real-world
occurrences usually consist of a combination of these threats.

Identity spoofing means that a peer illegitimately uses the identity of another
peer. Spoofing attacks can happen with respect to all kind of identifiers,
irrespective of whether they are used to designate physical persons, devices, or
communication flows;

Data tampering means that an attacker is able to alter the content of data
exchanged between two or more peers. Data tampering may involve subtle
attack schemes, wherein the attacker is able to trigger specific behaviours of
recipients by finely modifying original data;

Repudiation relates to attacks in which an attacker performs illegitimate actions
and may afterwards deny having performed them, such that other nodes are
unable to prove that the attacker actually behaved maliciously;

Information disclosure means that information is disclosed to unauthorised
peers. It is related to the existence of an authorisation model that defines for each
information element a set of peers that are authorised to access it, possibly under
some specific conditions;

Denial-of-service attacks are carried out for disabling a service offered to
legitimate users (as opposed, for example, to more subtle schemes wherein the
attacked service can be altered, e.g. making a search service return false results,
without the legitimate users being able to notice it);

Elevation of privilege may occur in systems that feature different classes of
users, each class being mapped to a specific set of rights. Illegitimate elevation
of privilege occurs when an attacker manages to acquire rights that would
normally only be granted to more privileged class(es). In the most critical
case, an attacker may obtain administration rights for the entire system, or part
of it, which means that the attacker may perform arbitrary actions on the
elements the attacker has access to, thereby being able to destroy the system
or entirely change its behaviour.

6 A Process for Generating Concrete Architectures 71

The risk sources considered here are restricted according to the following rules:

« Non-human risk sources either global (flood, lightning, fire, electrical, heat) or
local (individual device failure) are not considered. Only human risk sources are.
Note that a human forging a faked device identity in order to impersonate
another device fits within the category of “human risk”;

e Among human risk sources, only theft/loss and hacker-initiated attacks are
considered. Technical staff errors or accidents are not considered. In other
words we are only addressing malicious attacks and not involuntary attacks.

The STRIDE classification is used below in Table 6.4, immediately afterwards,
on STRIDE classification] to identify risks, as intersections between a STRIDE
item (column) and an element to protect (row).

6.8.3 Risk Assessment

Identified risks were assessed using the DREAD methodology based on (simplified)
metrics. DREAD, defines scoring methodology and metrics that help to evaluate the
criticality of an identified threat. DREAD stands for Damage potential, Reproduc-
ibility, Exploitability, Affected users, and Discoverability. It defines the criteria
according to which a threat is evaluated. Each criterion is quantified at levels
between 0 and 10. Eventually, the threat can be globally rated (sum of D, R, E,
A, D ratings), or the threat can be described along with its individual ratings. The
latter approach allows, obviously, for a more precise analysis. A simpler scheme for
DREAD, used in what follows, consists of only three levels, viz. L (low), M
(medium) and H (high) for each DREAD rating.

Note that a ‘High’ rating for Exploitability means that it is easy for an attacker to
carry out an attack leading to the identified threat, whereas a ‘High’ rating in
Discoverability means that it is difficult to discover the threat. This is to ensure a
coherent approach, in which ‘Low’ ratings decrease the overall criticality of a risk,
whereas ‘High’ ratings increase it.

The DREAD methodology and metric is used in Table 6.5, immediately after-
wards, on DREAD assessment] for evaluating the risks identified in Table 6.4, the
previous one, on STRIDE classification]. In addition to the DREAD rating, the
Table 6.5 on DREAD assessment]also provides initial information on specific
threats that may lead to the occurrence of the identified risk. In addition to this
information, initial steps toward threat mitigation are provided. Furthermore, it
links mitigation scenarios to the design choices (noted DC X.n) elaborated on in
Sect. 6.9.

6.8.4 Discussion

Assessing the risks that relate to the Internet of Things and putting them in
perspective with the Design Choices (see Design Choices) leads to interesting

9q A[renjuaAs

= LB} OS payul] °q
5 QOTAQD Jed[Kew IO ‘UoneWLIONUT [[1M Josn & Jey)
.m dJowar So[qesIp 9AT)ISUSS JTF[NAIp Aew 0S JU9JUOD IITAIP
m ArearsAyd 1oyoeny UONBOYNUIPT 1A -Jeo[SId)R IaYoeNy
e QOTAQD Jeo[uoneULIOJUT uoneonUAYINe
= [890] S9[qESIP uoneInsSyuod J10JenIoe Ue Jo [01) J10J Pasn DIAJP [ed
KqreotsAyd 1oxoeny -Q0TAQD JO INSO[OSI(T -uod sures 1oyoeny -1sKyd Jo 1Joy) J0 sso| SQOTAQp JeoT
UOIIBOOAUT QOTAIIS
uodn anfeA uInjax
oy} JO UoneINY
(sooen TeuSIp ou)
Ioyjoue pojerpndar
0] JOAIJS 9q ued 1eY)
QUO WOy SYOBJIE QOTAIOS
Sunegedoid -JO-[eTUdp [BO0[
uorjeuLIOJUT e1ep oSueyoxo 0} SpeJ[S[ouueYD Q0TAISS
uonesLoyne SUOITBITUNTUIOD 9A1ISUSS JO 933 UONEIIUNWIWOd © JO UOIIBO0AUT [ouueyd
Suoipm sydnisip 1oy0eNY -[mouy sured Ioyoeny SsofoIIm Sururuef oy} Jo uoneINY uonEIIUNUIWO))
uoneso| 192d snomifew
s Josn Jo a3pa B [IIM SUOTjOBSUET)
-[mouy] sueo[S I9YoENY Ul POAJOAUT ST JOS()
s1ojowered
ojearrd 19sn Jo o3pa pajoods Koeard
-[aouy Sued[s ISYORNY ST A)uopt s, 198} s,100lqng
oI} TeNSIp woIsAs
© SuIAB9[JnOyIIM SurIoyuoW [BONLIO
Pa[qesIp ST SQOTAQP JTUOIIOJ[© 0] parjddns st
K10Jes s 198N 10] papuajeun asn ejep Suoim Jey
[BONLIO OIAIRS Y JYSTW SI9SN UBWINE ~ OS BIEp SIdJ[e YoeNy uos1ad Ted1sAyg
a8ortand QOTAISS JO [BTUQ(] 2INSO[OSIP UOT)RWLIOJU] uorjerpndoy eyep ym Sumreduwe], Kmuopt Sugoodsg

Jo uoneAd[g

72

([eon1oA) pajoatoad 9q 03 SJUSWS[S Y} £q UMOP USYOIq SYSH PIYNUIPI Y} JO ([BIUOZLIOY) UOTIEOYISSE[d FAMLS +°9 2Iqel

73

6 A Process for Generating Concrete Architectures

QO1AIQS [eqO[3
& Jo uondnisi(g

SOOTAIOS
QINONISEIJUI
01 $5900€
SIOSN JeWNIFI[
SOIUAP IOYOoeNY

J[qe[reARUN
opew
SI 901AIQS puayoeqg

J[qesn
193u0[ou are
SO1AQp AIeIp

-ouIuI 3unsISSY

1018NMO8
ue 0] UONEoIu

-nwwod 1odoxd
sjuanald 1oyoeNy

UONBULIOJUT 1SN

JO QINSO[OSIP QAISSEIA
[eLI)RW
oryder3oyd£A1o pue

SANNUIP] JO AINSO[ISI
sarorjod

$S900® JO 2INSO[ISI

(uondrrosop
29 QOUQ)SIXI) SAJIAIS
deaud Jo aInsofosiq

BIRP Pa1I9[[09 JO
QINSO[ISIP QAISSEIA
uoneurIsap
papuajurun ue je dn
SPUD 11 JeY) 0S AIIAIP
Krerpowwrojur £q
3unNoI-2I UOTIRWLIOJU]

uoRULIOFUT
dreand Sururejuod

901AQP JO oY) IO SSO]
‘suroyed o3esn Jnoqe
UOTRULIOFUT JIQIYXQ

jorj) 1odar

0] 9qe jou aIe
SJURI[O pue A[SNOIO
-I[ew dABYRq

SQJTAJP ATRIPIUWLIdIU]

uoneULIOJUT
Suro3ino sioye

lo/pue soseqelep

mjonmseIjur

suostod 1oxoeny sejeuostodwul 1oeNY

erep
SursioAen 19)fe
SQOIAQp Arerpawu

-191u1 pastwordwo))

S[rej

Anug edrsLyd
® Jo SuLojruouwr
Jet) 0s TP

IOSUQS SIO)E IOORNY
JUQJUOD SNOTOI[EW

€ 0] PIJOAIPAI

sonlIoey
/SWISAS [8qO[D

SOOIAISS 2INJONIS
-exjur Juopuadop
Iayjo Jo/pue
sonIRUONOUN
101 sestworduwod
pUE SOOTAIOS

QInjonIseIjul SOOIAIOS
QIjonISeIuY
payory
JUNOJOE puAdey
9J01 107e1ST SOOIAING
-urwpe jo uonedins puayoeg
SQOTASD

ATerpouLIajuy
Amug [es1sAyd
Surpuodsariod
Ayl pue Ainug
[eNMIA B U9aMIdq
UOTJBIOOSSE
) se3ueyd IOORNY

M. Boussard et al.

74

A)1no9s snowouolne 1/ 1-91'y DA
S$SQ0JB QDIAIdS Paurensal :¢'S DJ
SIoAe]
ISO 11 e s)oene So(J surede
1SNQOI 9peW 9q 0] Sy AIIAIS
[eONLID PUB SN US9M]q WNIPIW
uopedIUNWWOo)) *(Juswageueu
A)11nd3s) sarorjod [013U0I-5SA008
P23ed1pap y3noay) pajuaaald
QI SUOIIOE SNOIJI[RA "SIUSW[
KoY 119y} Jo Aouepunpar y3noiy)
Ppa1o9j01d 9q 0] dARY SIOIAILS [BONLID)
WRISAS YI[-YVV & 1o (Sununodoe
puE ‘uorjesLIoyIne ‘uonednuUIYINe)
VVYV € Jo asn ay) y3noay) ‘39
‘suonerodo uoneonUAYINE
Jjo 3urd3oy Jodoid amsuo :¢1°S D
(L'TT8 1098
99s) Juouodwo)) [euoroun, uoned
-[UAYINY Y} JO INJEJ B SI YOIYM
QWIAYOS UOTIBOTIUAYINE JOSN (oWl
/1eo0]) 1odoid y3noay) ajqessaIppy
IoKe] YuI
1 JUSWIDIOJUS UOTIBIIIUAYINE WOL)
paurelqo uonovjord Ayusaur :61°S DA
sjoo0joxd omyder30)dAio :91°S D
*A11nd3s [020301d jo jred
se popraoxd uonodoxd Kjugour-ejeq

AI31IN03s SUOI)S ADI0JUIE=

T/ T/W/WH

AI1INO3S Yeom 0I0JUSE=

T TH/T

AI1IN03s SUOI)S ADI0JUIE=

T/TW/TH

P2IqesIp ST
Kjoyes s Josn
IOJ [eOTILIO OTAISS

ooen

[eu31p ou SurAe9]

SOOTAQP JIUOIIIJ[

papuajeun asn
JYITw sIosn uewIng

WAISAS

Suriojruowr [eoNLId

® 0) parjddns st
elep Suoim Jey
0s eJep sIo)e Yoeny uosiad [eorsAyd

(6°9 "1098 23S IaNE[A} I0J)
$9010Ud USFISOP JUBAJ[I puE UOBSUIA

sosned Jo sojdwexyg Suner q/v/d/4/d

STy 109101d
01 Juowdg

(uoneoyIsse[d FATYLS 9 SIqRL 995) SYSH PAYNUIPI Y} Jo Juswssasse VHAA §'9 dAeL

http://dx.doi.org/10.1007/978-3-642-40403-0_8

75

6 A Process for Generating Concrete Architectures

(ponurjuod)

(L'7°T'8 1998 299) juou

-odwo) Teuor}OUN,] JUSWAFEUBIA
AmuopT oy Aq papraoid ‘sjun ejep
QAISS00NS 0M] JO AJI[IqeyuI[un pue
AyrwAuoue joq SULINSUD QWAYDS

(soo1a10s Surpuodsariod Jy) Jo
uonnjosa1 ‘dnyoo] ‘A19A02SIp
A3urpioooe Sururroyrad snyy
pue) eyep ureired Surnnbar se
UOTESLIAJORIRYD S Jasn y3noay)

KywAuopnasd 3snqoi e Jo JudwaoIojuy d3eyed] uorjewiojul ajeArid s 19sn)

[ouueyd
paydAIous 1040 uoTIRONUAYINE 11°S D
A)JLIND3S UONNJOSAY
(uS1sop £q AJ1INO3S)
SUOISNIIUI O} AIUAI[ISAI [8qO[3
SIL SB [[oMm SB ‘(L'7°T’] 1998 995)
uoneindoy pue Isniy, pue uored
-nuayny A[feroadse) sjuouodwio))
[euonoun, AJLINOAS I YyInoayy
PIJqrUD ST WRJSAS ITUD)
Jo ssouryiomisni], ‘wolsAs dnyoog
/UOTIN[OSAI/AISA0ISIP AYIIOMISTLL],

0)dA10 oLoWIwAS
UO 9JURI[AI PIOAR ‘S[EIJUSPAID
01dA10 uowwos proae O1°S DA
[ouueyd
paydAIous 1040 uoTIRONUAYINE 11°S DJ
(L'T°T'8 1998 998) Judu
-odwo)) TeuonoUN,j UOHEINUAYINY
Kq papraoid Korjod juswogeuew
srenuapard 1odoid yim ‘syoeyre
J[pprw-ayj-ur-uew 3unuoraxd
21npaoo1d uorednuAYINEe-I1sN ISNqoY

(pa1dye st Sey

JO 1uu0d “3-9) Jursrwordwod

9pou JeJ[10 [duURYd UOTJEdIU

-nwwod uo Jurredwa) elep Aq

pasned aq Aewl UOTIOAIIPAI Y[,
“JUSJUOD SNOIDI[EUL 0] UOTIIAIPIY

yoene

Q[PpIW-ay3-Ul-Uewl 0} J[qeIou
-InaA st Jey) ampadoid uonensigoy

3ur010J-9INIq [ENIUIPAID)

oY) [enUapaI)

£111n09s U0J)S 9DI0JUIE=

H/T/IN/W/N

£11IN99s 3U0I)S 9OI0JUIE=

T/W/H/H/T

£)1IN93s SU0J)S 9DI0JUIE=
W/ T/H/H/T

uoneIngyuod
I9sn Jo 93pe
-[mouy sures 19yoeNy

133d snomrew
B)IM Suonoesuer)
Ul POA[OAUL ST I3[}

pajoods
ST A)uopI s, 108}

Koearrd s 195

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

M. Boussard et al.

76

(A111no3s [020301d jo jred
se papraoid st uonoojord Ayagojur
Blep) SuI[[euSIS SS900B-90IAISS
Jo uonoajoid Ayur3our pus-o3-pug
IoA®[yur|
J€ JUOUIOIOJUD UOTIBOIIUdYINe WOL)
paurejqo uonodjold Au3Aur :61°S DA
KIS Blep paseq-adIAIds ¢¢1°'S DA
(A11moas [000301d jo jred
se popraoid st uonoajoxd Ay3ajur
eJEp) SUI[[RUSIS SSOOB-AITATAS
Jo uonojoid AJI3Aur pus-o3-pug
Koeard
Q0udy ‘A[IqesuI[un Joj pagueyd AJ1
-seo a1ow ‘Anuapt Arerodwdl :1°d DA
(L'TT'8 1098 995)
jusuodwo)) [euonOUNg
juowaSeuR AINUSP] oY Aq
popiaoid swAuopnasd uo aouerjox
y3no1y) uappIy g Ued uonedo[s Jos)

Koeand
Qouay ‘AjfIqeyurjun 1oy pagueyo At
-sed arow ‘Amuapt Arerodwo) :1°d DJ
(310ddns AyrwAuoue 03 30odsar yrm
QuIayds 3s9q) uondArous oxI[-3ur
-JNOJ-UOTUO JO QOUBAJ[I OYr1oads
B I ‘sowayos uondA1ous 01°S DA

“(19sn siy)
Qouay ‘yred siyy) Aqrqeader],
“eJep UTeIed 3urpraoid se
UONBSII3}ORIRYD S Josn YSnoIy)
a3eyeo[uorjewiojur oyeArid s 198

KILIN03S Yeam 20I0JUoE

TTWTT

AI1IND3S YeoM A0I0JUSE

TTIWTT

A1Ind9s
YeoM 0I0JUE
H/T/WN/H/T

UOTBO0AUT
Q01A19s uodn anfea
uInjaI Y} Jo UONBINY

RN EN
€ JO UONBI0AUL [ouueyo
JUQS 9Y) JO UONRIA)[Y UOHEBIIUNWIWO))

uoned0[
s Josn Jo a3pa
-[mouy sures Iayoeny

(6°9 "109S 23S IaNE[A} I0J)
$9010Ud USFISOP JUBAJ[I pUEB UOIBSUIA

sosned jo sojdurexyqg

Sune:r q/v/4/49/d

STy 109101d
01 Juowag

(ponunuod) §'9 Aqe],

http://dx.doi.org/10.1007/978-3-642-40403-0_8

71

6 A Process for Generating Concrete Architectures

(ponurnjuod)

njromod

SSQ[aIB SQUWIAYDS JYSTOMIYST]

IOAIMOY ‘SYOBIIE AJIAIIS-JO-[BIUIP

19)p 0} 9[qe A[[eIouad aIe SWoIsAs
A1nd3s snowouolne :/ 91y DA

yoels uon

-BOTUNWIWOD Y} JO USISOP-AQ-A)I

-No3S YSNOoIY) PAIJJO oIk SAWAYOS

(939 ‘QVIN pooIojud ‘Surururel

-1JuB) pasn A30[0uyd9) uoned

-Tunwiwod Ay} uo spuadop Apiqed

-11dde 1oy [, "9[qe[IRAR QIR SOWAYDIS
uonuAId 9JIAIIS-JO-[BTUSP SNOLIEA
sowayos uondAous :01°S DJ

£31nd3s [0o0301d

y3noIy) paIajjo ‘eyep pagueyox? jo
uonodoxd AJenuepyuod pus-0l-pug

yoene

SIY) SUN99)9p 10§ PI[qRUS 2q pjHod
A31INd9s snowouolne ;£ 1-91'y DA

Towwrel

ASI[RIINOU PUB ISI[BIO] PP ST

JOr)IE QY] A0UO ‘QIURISUI 10 :SUBIUL

reorsAyd ySnoxy) passaIppe oq
ued S)OL)E IDIAISS-JO-[RIUIP SulWIWER[

QOIAIOS Q) MO[aq JoKe] ©

1€ JUSWIDIOJUS UOIIBIIIUAYINE W)
paurelqo uonosjord AuSaur :61°S DA
K)1139yur BIRp POsSEq-90TIAIS

KILIN09S WINIPAW A0I0JUIE=

T/H/TH/N

AJLINDJS WNIPAW 9DIOJUIE=

TTVW TN

AI1INO3S WINIPIW 9DI0JUIE=

N/W/TH/N

SUONELOIUNUOD
sydnusip 130Ny

BIEp padueyoxa
‘QAT)ISUDS JO 93po
-[mouy sures 1Yoy

pajerpndar

9q ued Jey) syoene

Q0TAIOS-JO-TeTUSD

[e20] 0] pea[ued

S[oUUEYD UOTRITUNW
-WOJ SSI[aIIM Furwwref

(1opear umouy '39)

SUONIPUOD UTBLIAD JO JUSW[Y[NJ

uodn A[uo 901A9p ® Jo AJI[Iqepear

— (JIneA Anod9s “3'9) S[erUIPAId
pa103s Jo uonodajord [eorsAyg

parjdde oq jou pinoys uored

-JuUaYINe JO ped)sul UoedYNuapt
Jeu) 910N "uonednuUAYINE (¢1°S DA

(eseaydssed

9p0d NId) Pa109101d soA[asway)
2q prnoys spenuapard dyderdoydAr)

yons se 9JednuayIne

pue 1asn Jewni3o[€ Jureq puojard

0] Ioyoe)e Uk 10J Y3noud 9q jou

pInom 221A3p [ed1sAyd ay) jo ured

) Jey sueow sty [, o[qeoridde
uayMm ‘UonBINUAYINE I0JOBJ-0M],

M. Boussard et al.

(serorjod juoweSe

-uew djenbape ‘u3rsop Aq A1Lndas)
UOIBO0AQI IOJ SMO[E pUE ‘SKaY
dnoi3 jo peojsur (sareoynIad ‘3
-"9) S[ENUAPAID S, [ENPIAIPUT

uorjewIojur ajeArid
AJLINDJS WNIPAW DIOJUIE= Sururejuod 01AP
TVH/ TN Tedtskud Jo 1301 10 ss0]

uorednUAYINE
KI1IND0S Yeom 90IOJUO€= JOJ PAsn OTAJP [edr
TTH/ TN -s&yd e Jo 3joy) Jo sso] 901AQp Jed]

IoUJOUE 0] JOAIDS AUO
woij Sunededoxd

$95BI0AQ] TR} SUOIBITUNWIOD AIIND9S WINIPOW 90I0JUOE= uoreuLIOJul
IOAISS-0)-I0AIAS 10] AILINOds uong W/H/T/TIN uonestoyine SUoIp
(69 109§ 235 113€] AU 10J) sosned jo sojdurexyqg Suner q/v/4/9/A STy 109101d

S9010Y0 USISOp JUBAJ[I PUE UOIESNIA

0} JuUowag

78

(ponunuod) §'9 Aqe],

79

6 A Process for Generating Concrete Architectures

(ponunuod)

QOIAJP IISN UO WRISAS
uonesyuaA YN Iedoxd & y3noy
J[qesSaIppy "pajasie) A[Teoyroads JON
astwoidwos Jo ased ur AJLmnoos
(snowouoine) dA1ORAI 1/ [—91'V Dd
UOTJOLISAT Q008
y3noay ssrwordwos juaraxd :¢'S DJ
A)1moos
[0%0301d jO 11ed Se popraoid
‘uonoajord AyaSojur pus-o3-puyg
(L'TT8 1998 29s) juouodwo))
[euornioun,{ uonesLoyINy Y} Aq
Pa13]jo st dwayds uonesuoyine 1odoig

Papaau sI 010y
u31so(] ou snyj pue yy Y} jo red
Apeaife ST yorym uonesLoyiny pue
uonedNuUAYINY JO suedw Aq wo)
-sAS UOTIN[OSAI 2INJAS © Aq pasieal
9q os[e ueod s joord-radure) yey) st
uosear puodas Y], (VY oy jo red
JOU SI [9AJ] 9J1AP) V- 1.0] 10J 9d0ds
JO INO ST 2IeMpPIEeY Jey) 01ON
‘so[npout arempirey jooid-roduwre)
3ursn £q [oA[-aIBMPIRY B UO
J1 9SI[BAI P[NOD JUO ISII] "SUOSELII
om} 10j papraoid jou st sy Jooxd

-1odurey 103 9o10y) USISA(Y dy10ads v
wa)sAs

dn00[/uonIN[0SAI/AIDAOISIP PAINIAS

QOTAQD © U0 Je) SUOIp)

JUAUOD SNOTO

-IJell & 0] pajdalIpal

9q A[[enjuaad

1M 198N & Jey)

£)1INOJS WINIPAW 9DI0JUIE= 0S JUIIUOD IDIAJP
T/IW/H/IW/IN -Jeo[SId[E IYoRNY

£)1INOJS WNIPIW DI0JUIE= I0JeN)OR UR JO

W/ T/IN/IN/IN ~ [01U0d sured Ioyoeny
waIsAs uonnjosar Juistwordwo)

Anuy rearsAyq

Surpuodsariod oy

pue Ajnug [emIiA €

AJLINDJS WNIPAW DIOJUIE= UIIM]IIQ UOTJRIDOSSE
TH/W/ TN 9y sa5ueyd 1o0eny

http://dx.doi.org/10.1007/978-3-642-40403-0_8

M. Boussard et al.

80

(esind o1ou3eWONI[JANONIISIP
e Jo uonenguern ‘S0 Soene
rearsAyd ay) £q 139] seden ysnoiy)
Ioyoe)je oY) AJIIUOpT) UOTJESTISOAUT
TearsAyd ysnouayy d[qessaippe

AqreordA], -paresie; A[eoyroads JON

(19pear umouy,,
® 0] Jomsue ATUO [[Im Se) o)) Jopeal
® Aq peal 9q ued Je) B 210Joq IAYI0

[oea jo a3pojmouy-aid rened

Surmbar swayos uonodjord yenbapy

Anngeyurun oapraoxd

03 Kmuoprt Arerodwo) jo asn :1°d DA

JeaIy) Iy} Jo AJI[eonILId oY) eI
M (L7278 "199S 99s) Jusuodwo))
[euonoun,f Judwadeury A1NUIP]
) Aq popraoxd ‘9o1A0p owres

3} JO SUOTIOR JUAIQJJIP USIMIOq

Anqiqeyurfun) ‘pajedie; A[eoyroads JON

POYLIOA

A[or0WaI 9q UBd AJLITOIUT JOSUIS
10 ‘sI10SUQs Jo Joquinu d3Ie] ® Aq
paIojruow 9q Aewr sanfea [earsAyd

QATJISURS "Pala3dIe] A[eoyroads JON

uononsop SeJ,

BJEp UTL}I9D 0] SS90
Surpraoid se 901Ap B SAYTIUIPI
pue aweyds AjrwAuop

-nasd ooe[d-ur sossedAq 1oyoeny

AJLIND3S Yeom J0I0JUdE=

TTH/M/T

A)1IND3S WINIPAW 9DI0JUIE=

H/T/N/W/'T

AI1IND3S Jeom 0I0JUOE

H/ T

AJLINDAS Yeom 90I0JUE=

H/T TN/ T

(Teoor)

QDIAJP JBI[SI[qeSIp
KqreorsAyd 1oxoeny

UOTEOYTIUIPT AOTAS(

uoneuLIoJul
uoneIn3yuod

901AJP JO ANSO[ISIJ

s[rey Aimuyg

[eo1s£yq e jo SuLoy
-1uowW JBY) 0S IIAP
I0SUSS SIA[E IRy

(6°9 "109S 23S IaNE[A} I0J)
$9010Ud USFISOP JUBAJ[I pUEB UOIBSUIA

sosned jo sojdurexyqg

Sune:r q/v/4/49/d

STy 109101d
01 Juowag

(ponunuod) §'9 Aqe],

http://dx.doi.org/10.1007/978-3-642-40403-0_8

81

6 A Process for Generating Concrete Architectures

(ponurnuod)

A1moes snowouoine L1971V DA

(A11moas [oo0301d

+ jusuodwo)) Teuorioun,j JusWIaZe

-UBJA puR 93uByOXy A93) Sowayos
£)11nd3s pus-o3-pud urkjdde Aq i

edniu Aew SOPoOU JUI[D ‘SIITAIP

Arerpowrojur £q pauriojrad
uonoe snororfewr 2y} uo Surpuadog
SOOTAQD
Arerpawolul Jo SULIOJIUOUL JOWY
A1noaes snowouoine -9V DA
uondA1oud pus-03-pud :01'S DA
(s901A9p pastworduiod jo uon

~BOUNUSPI) JeRIY) SIYY M Surfesp

JO SUBQW JOYJOUR 9q UBD SIIIAIP
ATRTPIULIoIUT JO SULIOJTUOW 9JOWY

uorjouny

K311n99s [000301d JuBAQ[AI AY)

KQ pa2IOJuR pue (177’8 1098 995)

jusuodwo)) [euonoun, juswose
-UeJA pue a3ueyoxy A3 oy Aq

papraoxd awayos KIN0as pud-03-pusy

(uS1sap £q AI1INdas) owayos
UOT}0BAI/UOTIOIOP DIAISS-JO-[RIU(

uoregTISoAUT
[eorsAyd y3noiy) [qessaippe
AqreordA 1, ‘pejeste; Aqreoyroads JoN

sueaw drjougew
-01109[9 9jowal £q uononIsap SeJ,

AI1IND3S Yeom 0I0JUSE=

H/W/T/W/N

AI1INOJS WINIPAW 9DI0JUIE=

T/W/W/H/N

AI1INO3S WINIPIW 9DI0JUIE=

T/W/TH/WN

AJLINDS Yeom J0I0JUE=
T/H/TH/WN

108}
oy 31odar 03 9[qe
Jou aIe SJUAIO pue
A[snororew aAeYaq
SQOIAQP AIeIpouLIoju]

ySnoxy Surssed eyep
I9)[e SQJTAJP AIerp
-ouLul pastwordwo))

J10jen)oe Ue o) uon
-eorunwod redoid
sjuaaald 1oyoeNY

(Sj0wWwax)
ADIAJP JBI[SA[qeSIp
AqreorsAyd 1exoeny

SQOTAID
ATerpawIau

http://dx.doi.org/10.1007/978-3-642-40403-0_8

M. Boussard et al.

82

(saseqejep)
juowegeurwW AILINDAS YINOIY)
9[qessaIpPY Palasdie] A[eoyroads JON

saro1jod JuswoSeuew S[ENUIPAID
pue juowaSeuew AJLINd9s Y3noIy)
J[qessaIppy pa1ddie) A[[eoyroads JON

saro1jod JuowageurW S[EIIUSPAIO

A)JLINDOS WINIPIW DIOJUIE=

T/H/T/W/H

AI1INOJS WINIPAW 9DI0JUIE=

W/H/T/W/N

Blep Pajod[[od
JO QINSO[OSIP QAISSEIA

payoey
JUNoOdOE puayoryg

pue JuswaeurUw AILINDIS YInoay) Pa210J-91N1q/PIILY/PISO[ISIP AJLIND3S WINIPIW dII0JUIE= uonedinsn SIOIAIDS
J[qessaIppy "paladie; Afreoyroads JoN S[ETUSPAID JOJRNSIUTWPY TH/T/W/H 9[01-10)JeNSIUIWPY puayoeg
(" "90IAIRS
Su1koy 9AIRIOqRT[0D B JsuTeSe
93eqres yim Juowdery Ay
paArodal © Suroe[dar ‘Qo1AIdsS
3urnol e premo) Suipremioy
joyord ou "3'9) swSIuRYOIW
QOUBJSISSB PIA[OAUT Y}
jsuregde syoeyre oy1oads snotrep
A)1INd9s snowouolne :/1-91'y DA J[qesn 193
QwaYyos AJ1IND3S WINIPAW 9DI0JUI€= -UO] OU I8 SIDIAP
UOT]OBQI/UOTIOROP 9JIAIIS-JO-[BITUS] syoe)e uonsneyxq TH/H/W/1 Arerpouwiul Sunsissy
uondAIous pud-03-pus :01'S DJd
uonouny A1LINJ9s
[0o0301d JuBAQd[I 9y} AQ PIOIOJUD
pue ‘(L7278 "109S 99S) judu
-odwo)) TeuonoOUN JUSWOSBUBIA 901Ap
pue a3ueyoxy Aoy oYy Aq 2oerd AJLINDJS WNIPAW DI0JUIE= Arerpowraiur £q
ur Ind owAYds AJLINJSS PuL-0]-puyg IN/IW/IW/H/IN ~ Sunnoi-oI uorjewojuy
(69 109§ 235 113€] AU 10J) sosned jo sojdurexyqg Suner q/v/4/9/A STy 109101d
0] Judwa[g

S9010Y0 USISOp JUBAJ[I PUE UOIESNIA

(ponunuod) §'9 Aqe],

http://dx.doi.org/10.1007/978-3-642-40403-0_8

83

6 A Process for Generating Concrete Architectures

(ponurjuod)

s1ynuapt Areiodwo]
Jo asn a3 ysSnoay uonesniw :1°d OJd
(LT T8 1998 99s) jusuod
-wo)) [euondun, juswaeue|y AN
-uap] Y1 £q popraoid swAuopnosd
U0 QJURI[AI AQ PIAIYIR
2q ued sIy, "(Apiqexurfun)
Amuo 9[3uls & 0] SAIIAIOS
ordnnuw jo urduofaq Yy Surysejy
Iooene
9y Surpn[ox? pue Surkynuapt djoy
Kew 1 ‘ejep paydniiod Surkjruapr
MO[[e JoU S0P STy} YSnoyiy
"[0IUO0D $59008 IIAISS :G'S D
BIEp SNOJUOLId Jo uoneldodoe
pur[q isureSe s3o9101d (177’8 1998
99s) Juouodwo)) [euonoung uone}
-ndoy] pue isniy) [opows Isnij B Jo
JUAWIdDIOJUY "YOrIE SIY) SAje3nIu
(LTT'8 1998 99s) Jusuodwo)
[euonoun, uonesuoyIny Yl Aq
papiaoid swayods uonestoyne radorg
uonednuayIne :¢‘1's DA
(L'TT'8 1998 295) sjuouodwo))
[euonoun, uoresLoyINy
pue uonednuAYINY dA1Ndsar
Yy Aq paoIoJud) sarnpadold
uonesLIoyINE/uoneduUAYINe
Jo asn 1adoxd y3noayy sonbruyooy
uoneuostodwl Jo UONIUAAAI]

AI1Indes snowouoine :/ [—91'y Dd
QWIAYDS UOTJOBAI/UOTIOANP SO

A)1IND3S WINIPIW 9DI0JUIE=

IN/W/H/H/'T

£11IN99s 3U0I)S 90I0JUIE

N/H/'T/H/H

11235 3U0JJS DI0JUIE

/H/T/W/H

A)1INO3S WINIPIW 9DI0JUIE=

TH/W/W/'T

(uondrosop
QIUQJSIXA) SAJIAIIS

djearrd Jo amsoydsIq

UuorewLIO UL
3urogino

SId)[e 10 (uonIippe
/uondnirod spIoJar)
saseqelep 2Injonis

-exyur suosiod 1oYoeNy

SOOIAIOS
QINJoNNSeIJul JUSp
-uadap 19y3j0 Jo/pUue
sonifeuondUNy

101 Sursrwoxdwod
‘SOOIAIRS
AIjonnseIjur

sojeuostodwr 100Ny

Jlqe[reArun
Surwoooq

QOTAISS puaYoRy

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

M. Boussard et al.

84

(L'TT'8 1998 23s) juouodwio))
[euonoun,] AJnodds uoneindoy pue
1sni], 9yl Y3noiy) yons se paynuopl

Q0UO “I9YdR)IR AY) JO UOISN[OXH

(saseqejep)
juowegeurW AILINDAS YINOIY)
J[qessaIppe — pajadie] A[[eoyroads JON
A)1Inoos
snowouoine £q pourrojrad uon
-oea1/uonodlep 3uiqoid 1/ 1-91°'V DA
(syurod uorsroap
A)1noas jo Jurqoxd ren3ar ay) ur
ud)ed snordrfew € 9s1u3odar ¢°39)
£1umoas aandepe ySnoryy ym
J[BSp 9q 0} 2ABY pUE ‘9[IqNs dIoW
QI s19yoByIR [euIdjul pastwolduiod
y3noy ‘pasuroyne £q sarorjod
§5900€ JO AIQA0ISIP 201 “IoyoeNe
[eUIo)IX2 pasuioyineun ue o3 jutod
UOISTOdP 2y} woij sarorjod ssoooe
JO 2Inso[osIp [eqo[3 sjuardxd
QINJONISBIJUL JO JUSWOTRUBW AJLINOAS

AJLINDJS WNIPAW DIOJUIE=

T/W/TH/W

111535 SU0J)S 9DI0JUIE=

T/W/H/H/W

AJLINDJS WNIPAW DI0JUIE=

W/W/H/H/T

SQOTAING
QImjonnseIjuy
0] SSOJ0B SIasN JJeul
-1I39] SAIUAP IAOeNY

[eLIoTeWI
oryder3oidAio pue
SONIIUPT JO AINSO[ISI]

sarorjod
$SQ00® JO INSO[OSI(T

(6°9 1098 998 113®] By} 10J) sosned jo sojdurexg

S9010Y0 USISOp JUBAJ[I PUE UOIESNIA

Sune:r q/v/4/49/d

STy 109101d
01 Juowag

(ponunuod) §'9 Aqe],

http://dx.doi.org/10.1007/978-3-642-40403-0_8

85

6 A Process for Generating Concrete Architectures

(pnopo o ur sjueuodwod Teuor)
-ounj Jo saduelsur Jo uonedrday)
+'d DA pue (A[reo0] syusuodwo))

[euonoun,{ JOo SAJULISUI JO UOTIBD

-11dey) £'d D 90 “Surwoynnu
KQ passaIppe 2q OS[e Ued JBaIY) SIYJ,

juowageuew AJunods 1odoid

+ (LT 1998 99s) syuauodwo)
[euonoun,y AJLINO3S [[€ U0 DUBI[Y

juoweFeURW AILINDIS

Jo 11ed ST SIY}—S9[NI [0I3UOD SSAVIE

pue (AJuUO UONIIIP QUO Ul MOY

©IRp 19] JBY) SIPOIp [[eMaly S°9)

QIMOAIYdIE uondjoid pajesIpap
ym eiep Teuosiad jo a8e10)s 2Indag

£)1IN23s SU0d)S 9DI0JUIE

T/H/T/W/H

£)1IN93s SU0J)S 9DI0JUIE=

TH/TTH

QOIAIOS
QO[3 ® Jo uondnisiq

uoneULIONUT
[euosiad s 1osn
JO QINSO[OSIP QAISSEIA

http://dx.doi.org/10.1007/978-3-642-40403-0_4

86 M. Boussard et al.

synthetic conclusions. First, we recognise in the risks and their mitigation
mechanisms the well-known distinction between internal attacks and external
attacks. This distinction implies the existence of a discrimination function that
makes the system able to distinguish among authorised players (hence, able to
launch internal attacks) and unauthorised players (restrained to external attacks).
Second, it is also noticeable that some risks are not mapped to design choices —
rather, they can be mitigated through dedicated context-dependent or local (entity-
scope) security-by-design decisions. These concepts are elaborated on in what
follows.

The distinction between internal and external attackers pertains to their ability to
undergo an authorisation procedure, at the end of which only authorised players
acquire some rights. These rights in turn enable the attackers to launch internal
attacks. Note that this authorisation procedure may be characterised by more than
the rejected/authorized two levels of granularity and define a full set of access
policies. In this case, all but entirely rejected players are in position to launch
internal attacks.

The defence against external attacks is traditionally based on two means:
topological defence systems that almost spatially keep the attackers out of reach
of the protected resources (e.g. firewalls) and cryptographic mechanisms
(e.g. authentication or encryption algorithms) that logically prevent attackers to
tamper with or otherwise access the protected resources.

e In the framework of IoT, special emphasis is put on one-to-one transactions
wherein a service is accessed by a remote player. These transactions require a
secure transaction set up. The service-access control involves in its most
secure embodiments an authentication phase that can be based on various
authenticating credentials. It has to be noted, though, that these authenticating
credentials have to be mapped to an identity in order to fulfil their role. When the
peer identity is not known prior to establishing a transaction, it has to be securely
retrieved (resolved) from the resolution infrastructure. Likewise, the services
themselves may need to be securely orchestrated;

» Upon successful authentication, access control has to be enforced in order to
bind all data units exchanged between two players to their respective
authenticated identities. This takes usually the form of an authentication proce-
dure being implemented as an authenticated key-exchange (AKE) protocol, and
all subsequent messages exchanged between the same two players are then
integrity protected by the AKE-obtained session key. Various protocols exist
for doing so: at the network layer, the Host Identity Protocol Base Exchange
(HIP BEX) and Internet Key Exchange (IKE) are AKE protocols and IPsec is the
corresponding secure data transport protocol. At the transport layer, TLS hand-
shake is an AKE protocol for subsequent (D)TLS exchanges. Various service-
specific protocols can of course also be used. Eventually, all risks mitigated by
integrity protections should rely on specific cryptographically protected access-
control schemes;

e In parallel with secure transaction set up and access-control-based integrity
protection, protection against internal attacks requires a coherent arrangement

6 A Process for Generating Concrete Architectures 87

of the associated cryptographic primitives which have to be based on an
assessment of the attacker profile and capabilities. Many design choices
proposes different embodiments that provide different security levels. For
example the perfect forward secrecy property is theoretically a more secure
one. However, this additional security property would prove worthwhile only for
an attacker able to (and interested in) accessing data exchanged in the past
(hence possibly obsolete) but that the attacker would nevertheless have stored
under an encrypted form. Clearly, most of attacker models and data criticality do
not fit within this attack scenario. If one decides to envision it, though, the same
attacker capabilities should be assumed for all other risks.

Protection against internal attacks is illustrated in the Table 6.5 on DREAD
assessment by the reliance on autonomous security design choices (DC A.16,17).
Classically, only behavioural analysis can allow identifying misbehaviours of an
otherwise authorised node. Autonomous security can be instantiated under a wide
variety of forms that pertain to the implemented functions in a given IoT infrastruc-
ture. Whenever behavioural patterns can be defined, deviations from these patterns
can be detected and flagged as suspicious. More generically (and more easily), logs
should be enabled as a rudimentary form of reactive security. Logs can be generated
at various places in the network but will generally be aggregated at server-side,
where they will be collected for further uses such as service management
(e.g. dimensioning), lawful requirements or billing preparation. However, logging
user activity or detecting identifying patterns within it countervents privacy.
Autonomous security and privacy are in general mutually contradictory. Pseudo-
nymity can be seen as an intermediary state, although pseudonyms are only
worthwhile as long as they can be resolved to real identities at some point in the
network. Choosing which scheme to favour is a question of high-level design
choice. Diametrically opposed to privacy, non-repudiation plays a specific role
that has to be reviewed here. In general, this security service, which ensures that an
entity will not be in position of denying having performed a given transaction, is
provided at service layer where both signature-based cryptographic primitives and
transaction concept become relevant. Although the associated risk (repudiation) is
part of the STRIDE classification, service-level non-repudiation was not considered
in the previous section, being judged to be pertaining to policies, themselves
associated to particular applications. In fact, services for which non-repudiation
has to be provided are part of highly specific applications (e.g. inter-bank
communications of aggregated banking transactions, or administration of highly-
critical assets), which does not qualify them as generic mitigation means.

Finally, it is worth explaining why some identified risks are “not specifically
targeted” in IoT-A, with no relevant technology being developed and no design
choice being proposed. These non-targeted risks are of two sorts. Some of them are
dependent on highly contextual physical parameters. They depend on the
particularities of the communication technology that is put in place and, as such,
exhibit highly diverse characteristics in terms of involved stakes. Accordingly, the
existing mitigations can only be implemented at the physical layer with variable

88 M. Boussard et al.

costs in terms of, for instance, efficiency. The other non-targeted security risks
pertain to in-entity security-by-design policies. For example, the protection of a
given operating system or the choice to encrypt a user database fit into this category.
As such, they cannot be qualified as being typical for the IoT environment.

6.9 Design Choices

6.9.1 Introduction

By following the architectural methodology according to (Rozanski and Woods
2011) it is recommended to apply the architectural perspectives to the views on an
architecture in order to design systems that satisfy qualities like high performance,
high scalability or interoperability. This step in the architectural methodology is
similar to constructing the interrelationships between customer requirements and
technical requirements in the ‘House of Quality’ matrix as applied in the Quality-
Function Deployment (Erder and Pureur 2003) introduced in Sect. 6.4.

This section guides an architect by giving design choices for the architectural
viewpoints defined in the Reference Architecture in Section 8.2 for each perspec-
tive listed in Sect. 8.3. Figure 6.7 illustrates that the perspectives ‘Evolution &
Interoperability’, ‘Performance & Scalability’, ‘Trust, Security & Privacy’, and
‘Availability & Resilience’ are applied to the ‘Functional View*, the ‘Information
View’ as well as the ‘Deployment & Operation View’ respectively.

While applying perspectives to views not every view is impacted by the
perspectives in the same manner or grade. Rosanski and Woods distinguish
between three grades of applicability (high, medium and low) for each perspective
to each view. Table 6.6 illustrates the perspective to view applicability as presented
in (Rozanski and Woods 2011).

In this section we focus mainly on the perspective and view pairs where the
applicability of the perspective to the view is high. According to the Table 6.6 these
pairs are the following:

None of the perspectives have a high impact when applied to the Operational
View. This is an indicator for not considering the Operational View in the RA
(Sect. 8.2) and therefore in this section respectively. The Concurrency View is not
being considered in the RA Sect. 8.2 either, thus the applicability to this view, even
with a high impact, is not followed up in this section.

Additionally, we do not present design choices for particular platforms
(i.e. recommendations for specific hardware and software) as they would give the
current status of available platforms at the time of editing this document only, but
the recommendations could become obsolete soon after. Software architects are
well advised to look for suitable platform solutions while designing their concrete
architectures. Platforms that were researched during the project (Magerkurth 2011)
are based on the OSGi framework (OSGi 2012). This framework specifies among
others how software can be deployed in form of bundles and how the application
lifecycle can be controlled remotely. The OSGi framework is a recommended

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

6 A Process for Generating Concrete Architectures 89

Perspectives

[Evolution &Interoperability][Performance & Scalability]

Availability & Resilience]

|—| Trust, Security & Privacy

. . . Deployment &
Views Functional > Information > Operation

Fig. 6.7 Applying perspectives to views (Rozanski 2011; Fig. 6.4-1)

Table 6.6 Typical view and perspective applicability (Rozanski and Woods 2011)

Perspective . -
Securit Performance | Availability Evolution
¥ & Scalability | & Resilience
View
Functional Medium Medium Low High
Information Medium Medium Low High
Deployment High High High Low
Operational Medium Low Medium Low
Concurrency Low High Medium Medium
Table 6.7 Focus on high perspective to view ability
Architectural perspective Architectural view
Evolution and interoperability Functional
Information
Availability and resilience Deployment
Performance and scalability Deployment
Trust, security and privacy Deployment

design choice for the Deployment and Operation View. Based on the experience
obtained in the project we recommend OSGi framework as a design choice for the
Deployment and Operation Views with hardware platforms that provide support for
OSGi. However, OSGi framework is not advisable for very constraint computing
platforms.

According to Rozanski/Wood “a tactic is much more general and less
constraining than a classical design pattern because it does not mandate a particular
software structure but provides general guidance on how to design a particular

90 M. Boussard et al.

aspect of your system” (Rozanski and Woods 2011). Following Rozanski and
Wood’s definition this section picks up the tactics addressing the architectural
perspectives listed in Sect. 8.3 and presents technology agnostic design patterns
or other architectural solutions that are suitable to apply the tactics. Architects are
then able to either implement the recommended design choices or to look for
existing solutions that have implemented those choices.

6.9.2 Design Choices Addressing Evolution and
Interoperability

The Evolution perspective addresses the fact that requirements change and software
evolves sometimes rapidly. We identified a second, closely related, perspective
namely Interoperability which plays a crucial role especially in IoT. The vision of
the Internet of Things is still evolving. Many current technologies are not yet
mature enough for operational use and there are many more technologies to come
in the future. The Evolution and Interoperability Perspective is shown in Sect. 8.3.1.
The tactics for evolution and interoperability are the key concepts of the IoT ARM
and will be explained in Table 6.8.

Both, the Reference Model and the Reference Architecture are built to be
extensible and to enable interoperability between Devices and Services. Therefore
the activities listed in Sect. 8.3.1reflect the [oT-A approach in detail:

* Characterize the evolution needs: IoT-A has collected stakeholder and
also internal requirements reflecting the actual and future needs in IoT systems
(see IoT-A 2013);

» Assess the current ease of evolution: Also through the stakeholder workshops
and in addition the use cases from WP7 and the state of the art analysis from
WP1 and all technical work packages, the current status was collected;

e Consider the evolution trade-offs: The evolution trade-offs are heavily
domain- and application-specific and are not part of the IoT-A work. Those
trade-offs must of course be discussed when creating an architecture for a
concrete application;

» Rework the architecture: The main result of IoT-A are the Reference Model
and the Reference Architecture which were designed with interoperability in
focus (see Sect. 7.5 and Chap. 8).

Moreover, Rozanski and Woods (2011) also introduce tactics to deal with
interoperability and evolution. Here also the IoT-A Reference Model and Reference
Architecture adapt the following tactics:

¢ Create extensible interfaces, Apply design techniques that facilitate change:
IoT-A defines common entities, e.g. the [oT Domain Model, see Sect. 7.3, and
entry points, e.g. the IoT Communication Model, see Sect. 7.6, which can be
used to create [oT-A compliant systems;

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7

6 A Process for Generating Concrete Architectures 91

Table 6.8 Tactics addressing evolution and interoperability

Desired The ability of the system to be flexible in the face of the inevitable change that all
quality systems experience after deployment, balanced against the costs of providing
such flexibility
Tactics Create extensible interfaces

Apply design techniques that facilitate change
Apply metamodel-based architectural styles
Build variation points into the software

Use standard extension points

Table 6.9 Tactics identified as not relevant for evolution and interoperability in IoT Systems

Tactic Reason

Contain change Not possible for public IoT-systems, new devices will participate in
the systems
Achieve reliable change =~ Same as above
Preserve development Due to the multiplicity of developers and technology providers, a
environments common development environment will not exist

* Apply metamodel-based architectural styles: The IoT-A Reference Model
and Reference Architecture define interoperability on architectural level. Espe-
cially the Domain Model, see Sect. 7.3, and the IoT Information Model, see
Sect. 7.4, as metamodels are open for further extensions;

« Build variation points into the software, Use standard extension points: By
using standardised protocols and gateways, even legacy devices are able to be
linked to IoT-A systems.

Design Choices for Interoperability and Evolution cannot be named on this
(application and domain independent) level. The IoT Reference Model and Refer-
ence Architecture are built with interoperability and evolution as the main drivers.
To allow a system to evolve and to react to new technology and new requirements
the following general remarks should be kept in mind:

* The IoT-A Reference Architecture is built out of modular blocks to allow
changes and additions. When deriving the IoT-A work to a concrete architecture,
this modularity and also the loose coupling between those blocks should be
kept. This concept is also used in the ‘Dispatcher’ component (Hyttinen P ed
et al. 2013) for the standardized processing of incoming requests without
exposing the internal methods and functions;

* Not all of the systems functionality can be defined in advance. Therefore, some
additional spaces and extensions points, e.g. for upcoming functionality, should
be reserved. This can for example be done in interface definitions or data models,
like the reserved bits in the TCP header definition. This allows the designers and
architects to update the system and to adapt it to new requirements.

The tactics not considered as relevant are listed in Table 6.9.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7

92

Table 6.10 Tactics addressing performance and scalability

M. Boussard et al.

Desired
quality
Tactics

The ability of the system to predictably execute within its mandated performance
profile and to handle increased processing volumes in the future if required

Optimize repeated processing
Replication

Prioritize processing

Distribute processing over time
Minimize the use of shared resources
Reuse resources and results
Partition and parallelize

Scale up or scale out

Degrade gracefully

Use asynchronous processing
Reduce complexity

Make design compromises

Table 6.11 Tactics and corresponding design choices for performance and scalability

Impact on views

Tactic Functional Information Deployment and operation
Replication Replication of functional Replication of gath- Replication of instances of
components ered Information Functional Components
(DC PS.1) (DC PS.2) locally (DC PS.3)
Replication of instances of
functional components in
the cloud (DC PS.4)
Prioritize Functional component Information holder Provide instances of different
Processing offer services for for priority functional components for

Partition and
parallelize

Reduce
computa-
tional
complexity

Distribute
processing
over time

information nec-
essary (DC PS.6)

different priorities
(DC PS.5)

Multi-thread/multipro- Information flow

gramming aware needs to be
Functional parallelizable
components (DC PS.10)
(DC PS.9)

No functional component No Impact
(DC PS.13)

Functional component
with reduced
capabilities
(DC PS.14)

Design components to
schedule processing
(DC PS.16)

Information holder
for deadline
(DC PS.17)

different priorities
(DC PS.7)

Priority-aware functional
components with priority
based processing and net-
working (DC PS.8)

Location-aware deployment of
functional components
(DC PS.11)

Deployment of functional
components need to be
according to data flow
(DC PS.12)

Less functional component
deployed (DC PS.15)

No impact

(continued)

6 A Process for Generating Concrete Architectures 93

Table 6.11 (continued)

Impact on views

Tactic Functional Information Deployment and operation
Minimize the Design functional No impact Minimize communication
use of components to mini- distances (DC PS.19)
shared mize use of shared Deployment to minimize use
resources resources (DC PS.18) of shared resources
(DC PS.20)
Reuse History aware functional Cache results which Storage of information locally
resources components are likely to be (DC PS.23)
and results (DC PS.21) reused Storage of information
(DC PS.22) remotely (DC PS.24)

Storage of information local
and remotely (DC PS.25)

Scale up or Design functional No impact Provision of further resources
scale out Components in a (DC PS.28)
replicable way Use services in the cloud
(DC PS.26) (DC P.29)

Design function
components so that
they can use cloud
support (DC PS.27)

Degrade Functional Components Support of rollback Replication of components
gracefully need to be able to points (DC PS.32)
restart (DC PS.29) (DC PS.31) Redundancy of resources
(DC PS.33)

Functional components
with rollback func-
tionality (DC PS.30)
Use asynchro- Asynchronous-aware No impact No impact
nous functional component
processing (DC PS.35)

6.9.3 Design Choices Addressing Performance and
Scalability

Performance and scalability are closely related. In the Internet of Things, with its
anticipated billion or trillion nodes both performance and scalability will play a
crucial role. In Sect. 8.3.1 the Performance and Scalability Perspective together
with a set of tactics are presented. In the following we applied the tactics from the
Performance and Scalability Perspective to our Design Choices. We furthermore
evaluated their expected impact on the Functional, Information, and Deployment
and Operation Views.

Not all tactics are explained in detail in this section. The tactic “Make Design
compromises”, for example, was omitted, as being too general and as the whole
idea of the design choices it to make compromises. Additionally, as performance is
something that is very dependent on both architecture and implementation it is

http://dx.doi.org/10.1007/978-3-642-40403-0_8

94 M. Boussard et al.

highly advisable to run through the corresponding activities like creating a perfor-
mance model or conduct practical testing with measurements. The full list of
activities are listed in Sect. 8.3.

6.9.3.1 Replication

The functional components (DC PS.1) and the information (DC PS.2) stored can be
replicated to increase performance and scalability (DC PS.3). Having a single
functional component is often against good scalability. The availability of informa-
tion depends on the availability of the IoT device. Having instances of functional
components and information available remotely (for example, in the cloud) usually
increases both scalability and performance (DC PS.4). Nonetheless, in this case one
needs to be enough connectivity and bandwidth provided.

6.9.3.2 Prioritize Processing

To be able to prioritize processing the functional components needs to be aware that
it might be required to prefer one type of processing over the other. Therefore, the
information model needs to be able to provide information that indicates priorities
of processes, for instance high, normal, or low.. In terms of deployment the
prioritized processing can be done with the help of the network stack (DC PS.7)
or there can be different functional components for the different priorities
(DC PS.8).

6.9.3.3 Partition and Parallelize

Partition and Parallelize aims towards increase both scalability, as well as,
performance by making the functional components aware of multi-threading/
multi-programming (DC PS.9). Furthermore the information needs to be
partitionable (reduce interdependencies between information) (DC PS.10). The
deployment can help a lot in partitioning, as in IoT access to IoT services are
often locally distributed. This can be done either location aware (DC PS.11), or
based on a data-flow model (DC PS.12).

As an example, the Virtual Entity resolution could be location-oriented, where a
resolution server (RS) is responsible for indexing all connected things in a certain
geographical area, called indexing scope. A Catalogue server then creates the
Catalogue Index of every RS’ indexing scope. A resolution request is redirected
towards the RS whose indexing scope intersects the search scope of the request.
Large-scale IoT systems are expected to have multiple administrative domains that
must be handled by a federated resolution infrastructure. Different domains interact
with each other by the means of a central domain directory or domain catalogue.
Another possibility would be a federated infrastructure, in which Virtual Entities
are clustered based on similarity. Dedicated places are in charge of the IoT Services

http://dx.doi.org/10.1007/978-3-642-40403-0_8

6 A Process for Generating Concrete Architectures 95

they offer and provide their descriptions as part of a distributed resolution frame-
work. The framework is scalable and fault tolerant because of distribution.

6.9.3.4 Reduce Computational Complexity

Whenever possible the system can reduce the computational complexity, thus
leading to a simpler system which needs less time and often energy. As an example,
instead of a complex intrusion detection system, there could either be no intrusion
detection at all (DC PS.13) or a less complex security by design (DC PS.14), e.g. a
protocol stack with built in threshold-based protection against too many session
initiations.

6.9.3.5 Distribute Processing Over Time

To reduce the number of resources needed it is often possible to distribute some
processing tasks over time, when their results are not immediately necessary
(DC PS.16). In case of hard real-time constrains this might not be always possible,
but many system do not need real-time at all, or do only have soft real-time
constraints. Distributing processing over time can help preventing the system
from scaling or reduce the use of remote (over the web) services.

6.9.3.6 Minimize Used of Shared Resources

In many IoT systems the most scare and most expensive resource is bandwidth,
especially in wireless battery powered systems. It is necessary to design the
functional components accordingly and especially plan the deployment to avoid
bottlenecks on the devices/resources.

6.9.3.7 Reuse Resources and Results

To be able to reuse resources and results the functional components need to be
aware of a history for reuse (DC PS.21). The information model needs be aware of
such caching mechanisms (DC PS.22). In terms of deployment the history can
either be stored locally (DC PS.23), remotely (DC PS.24) or a combination of both
(DC PS.25).

If the information history is stored locally (DC PS.23) the information history is
stored on the IoT device that has produced the information over time. History
information needs to be secured in the same way as the present information to avoid
information leaks. If constrained IoT devices are used, then the storage size of
information history as well as the information processing performance is limited:
Having a local storage place for history information on each IoT Device requires
less device performance and less effort to secure the history, but the single

96 M. Boussard et al.

information host is against good scalability. The availability of information history
depends on the availability of the IoT device hosting the history.

DC PS.24 describes the case, where the information history is not stored on the
IoT Device that has produced the information, but on a different IoT Resource, to
which the information is uploaded to. The additional history resource needs to be
secured too with either the same S&P policies as the original IoT Resource or
different policies. A history resource in the cloud can perform better than IoT
devices; the replication of information allows load balancing between history and
present information which contributes to better scalability. The Information history
still exists when the respective IoT device becomes unavailable.

Furthermore it is possible to combine the two aforementioned approaches
(DC PS.25): The information history is stored on the IoT device that has produced
the information as well as on a different IoT Resource replicating the information.
History information that exceeds the capabilities of the hosting IoT device
capabilities can be offloaded to high performance devices. This design choice
contributes to high scalability as well as higher performance since the remotely
stored history information is a replication of the locally stored information.
Replicating information is cheaper to achieve by the device than retrieving
‘fresh’ information for every replication.

6.9.3.8 Scale Up or Scale Out

Scale up and scale out is one of the traditional ways to ensure scalability. Scale up
(also known as vertical scalability) means providing more resources on a single
system (DC PS.26/DC PS.28), scale out (also known as horizontal scaling) means
providing more computing power by adding resources. In IoT it is usually not that
easy to scale up or to scale out. One obvious possibility is, of course, to use cloud
support (DC PS.27/DC PS.29). Migration in sensor networks is possible to some
extend as well in a heterogeneous network.

6.9.3.9 Degrade Gracefully

Degrade gracefully is a property of a system, which allows it to continue operating
properly even in the event of failure in one ore more components. The functional
components need to be able to restart either completely (reset) or to rollback to a
previous stable state. In case of hardware failures redundancy and replication allow
to continue working even when a device/resource fails.

6.9.3.10 Use Asynchronous Processing
Asynchronous processing is usually intrinsic in IoT systems. All functional

components should be prepared to do asynchronous calculations and synchroniza-
tion needs to be planned accordingly.

6 A Process for Generating Concrete Architectures

Table 6.12 Tactics and corresponding design choices for trust

97

Impact on views

Deployment and

Tactic Functional Information operation
Harden root of The security policy No impact Integration of IoT-A
trust defines how the root of trust and reputation
trust may be accessed. component (DC T.2)
(DCT.1)
Secure implementation No impact Integration of a

Ensure high
quality of
data

Infrastructural
trust and
reputation
agents

Provide high
system
integrity

Avoid leap of
faith

for protecting a root-
of-trust based on hard-
ware implementation
(DCT.3)

Protects data integrity and
freshness by using a
secure network
encryption protocol

(DCT.S5)

Collects user reputation
scores and calculates
service trust levels
(DCT.B)

Web of Trust system to
establish the authen-
ticity of the binding
between a public key
and its owner.
(DCT.11)

Evaluation of trust based
on reputation
(DCT.13)

Utilizes one-way hash
chain to provide
effective and efficient
authentication
(DC T.15)

Improvement of content
dimension and

intellectual dimension

(DC T.6)

Service description
should include rele-
vant aspects for what
concerns trust evalua-
tion (DC T.9)

No impact

No impact

No impact

physically
unclonable function
(PUF) (DC T4)

Integration of a secure
network encryption
protocol (DC T.7)

Integration of IoT-A
trust and reputation
(DC T.10)

Decentralized trust
model (DC T.12)

Integration of a reputa-
tion framework for
high integrity sensor
networks (RFSN)
(DC T.14)

Usage of lightweight
authentication proto-
col (DC T.16)

6.9.4 Design Choices Addressing Trust

In Sect. 8.3.3.1 the Trust Perspective together with a set of tactics is presented.
In Table 6.12 all tactics together with their Design Choices are listed. A detailed
description for each tactic follows the table.

http://dx.doi.org/10.1007/978-3-642-40403-0_8

98 M. Boussard et al.

6.9.4.1 Harden Root of Trust

The root-of-trust is the core component upon which the trust policy is based. The
notion of a root-of-trust exists at multiple abstraction levels in a system, and can be
software (less secure) as well as hardware (higher security). As an example for
hardware realisation is RFID. The tags can be used to support anti-counterfeiting by
using a security protocol based on public key cryptography. In this case their root-
of-trust is based on a Physically Unclonable Device (PUF) (Verbauwhede and
Schaumont 2007).

6.9.4.2 Ensure High Quality of Data

Information quality is improved in the technical dimension (e.g. timeliness and
sampling). The suite of security protocols (SPINS) guarantees that an attack does
not affect the remainder nodes in the network and thus preserves data integrity and
freshness. In the context of the Information view it can be stated that data
containing information is improved in terms of content dimension (e.g. accuracy
or completeness) and intellectual dimension (e.g. reputation and trust). To reach
this level of security a secure network encryption protocol must be implemented
(Perrig et al. 2002).

6.9.4.3 Infrastructural Trust and Reputation Agents

The tactic “Infrastructural Trust and Reputation Agents for scalability” describes
the presence of a Trust and Reputation component FC (Sect. 7.7.1). This impacts
the information view as a Service Description should include relevant aspects for
what concerns trust evaluation (type of deployment, tamper-proof features of
hosting devices, authentication and authorization algorithms, etc. In case of periph-
eral devices the security of the deployment should be evaluated and asserted in the
subject description. Furthermore the web of trust concept to establish the authen-
ticity of the binding between a public key and its owner can be established. Its
decentralized trust model is an alternative to the centralized trust model of a Public
Key Infrastructure (PKI), which relies exclusively on a certificate authority (or a
hierarchy of such).

6.9.4.4 Provide High System Integrity

To provide high system integrity the integration of Reputation framework for high
integrity sensor networks (RFSN) can be considered (Ganeriwal and Srivastava
2004). It is capable of evaluating trust based on reputation and to act accordingly.
Furthermore second hand information (experiences of other parties, e.g. nodes)
about devices can be considered. It might be augmented by a Trust management
system which calculates Trust values as a function of availability and packet
forwarding.

http://dx.doi.org/10.1007/978-3-642-40403-0_7

6 A Process for Generating Concrete Architectures 99

Table 6.13 Omitted tactics for the trust perspective

Tactic Reason

Ensure physical security and Pervasive deployment of IoT devices makes such devices
implement tampering detection accessible to malicious users

Consider device security in the global Devices that are not tamper-proof can be compromised.
system design Although this aspect is related to the deployment view,

it has impacts on the design of the overall system and
trust evaluation

Consider the impact of security/ This must be evaluated for each use case during the design
performance trade-offs on trust phase by means of tests such as simulation. For that
reason, no DC can be proposed
Use security imprinting Out of scope for IoT-A since devices are not covered in the

IoT Reference Architecture
Balance privacy vs. non-repudiation If system requirements include non-repudiation, these will
(accountability) necessarily impact the privacy feature of the designed
system. Privacy can be granted by using an Identity
Management. This component, run by a third party is
trusted for what concerns both privacy protection and
ability to track back malicious actions

6.9.4.5 Avoid Leap of Faith

The avoidance of leap of faith increases the overall security; however, it might limit
the communication between certain parties as strong authentication is not feasible
in each case (e.g. constrained devices). From a functional point of view one option
can be a one-way hash chain to provide effective and efficient authentication. This
feature can be implemented by using a Lightweight Authentication protocol
(Lu and Pooch 2005).

For most of the tactics a design choice proposal is given, however for different
reasons it is not possible to provide appropriate design choices for all tactics. The
tactics not considered are presented in Table 6.13 with reasons for the omission.

6.9.5 Design Choices Addressing Security

In Sect. 8.3.3.2 the Security Perspective together with a set of tactics is presented.
The Design Choices addressing security are presented in Table 6.14 showing the
impact on architectural views by applying tactics relevant for security concerns.

6.9.5.1 Subject Authentication

For subject authentication two options are presented here. The first is the authenti-
cation over an encrypted channel while the other one is a crypto-based authentica-
tion solution over an open channel. The former uses the IoT-A Authentication FC
(Sect. 7.7.2) while for the ladder a peer-to-peer communication is realised over an
insecure channel.

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_7

M. Boussard et al.

100

(0TS OQ) LU

-0dwoo uoneIIUNUILIO)) YI0MISN Y}
ur sjoo0301d 3unnor 2Ind3s Jo uoneISAIU]

(81'S DA

AILINDJS UOTIROTUNUIWIOD SSO[AIIM
aInsud 01 [000301d AJLINO3S PuS-01-pury

(T'L L 1999) (ST'S DA)

D JuowaSeuew pue AZUBYIXD

A9y pue D UOTIBOIUNUIWIOD JI0MIU
‘3 uoneorunwwod doy o3 doy y-10]

(T1's D@

D Juswadeurw pue 9FULYIX

K9y pue D] UOTJBITUNWILIOD YIOMION
D UOTJBITUNWIWOD PUL 0} PUd Y-10]

joedwr oN

(L'som
jusuodwod D] uonesLoyINY V-1.0]

('S DQ) 21qrssod 2q Isnwr [ouuRYd
2INJ3SUT UR JSAO SUOTIBIIUNUIWOD

joedwr oN

(L1°S D) pa1ndas st s30algns
0M] U99M]Qq [QUUBYD UOBOIUNWIIO))

(r1'S DQ) pamas
st uoneorjdde pue 901A9p UdIMIOq
[UUBYD UOISSIWISURI) UOIJBULIOJU]

(IT°S D@ paInoas

st uoneorpdde pue 901ASp UsIMIAq
[oUUBYD UOISSIWSULI) UOTJRUWLIOJU]

(6'S D@
Ppa109j01d J0U ST UOTIRWLIOJUT PAIOIS

(9'S D@) swsTuEydIW

[onuo0d ssadoe j1oddns 03 Aem
® Ul poSeurw 9 JSNW UOHBULIOJUI PAIO)S

(61°S O Sunnor yednnuw
‘uoneonuayIne pue uondAIous 1oke[-yury

(91°S DQ) s1alqns
Jo uoneonuayIne ‘Ajgojur ‘Ajrenuap
-guod Juunsud sjooojoxd oryder3oidLin

(€1°S D) uondAious doy-o3-doyq

(01°S DQ) uondA1dus pus-03-pug

(8°'S D) 991AIIS 0] $SA0J8 PAJILNSAIUN)

('S D(Q) $$999€ IAISS Paseq-Ao1[od

(€S DQ) 1ouueyd

(Sunnor aImoas
‘AILImoas 1oAe[YuIy)
syptomiau Teroydured 21noog

QImjonyseIjur
UOTJEOTUNTUWIO) AINJAS

sarorjod ssa00€ s

pareonuayIne 193d-03-1094 joedwir o uodo 19A0 uoneonIUAYINE paseq-01dL1D
((aele)) (1s 2@
D4 uonednuayIne y-10] Jo uonerdajuy joedwi o [ouueyd paidAIous 10A0 uonednUAYINY uonednuayIne 199[gng
uonerado pue juowkordoq uoneuLIOu] [euonoung onoe],

SMITA U0 Joeduy

KI1noas 10y 301040 uSiIsap Surpuodsariod pue sonoe], HI°9 dqe],

http://dx.doi.org/10.1007/978-3-642-40403-0

6 A Process for Generating Concrete Architectures 101

6.9.5.2 Use Access Policies

The tactic of using access policies is a crucial aspect in IoT. Two main functional
principles can be distinguished. The policy-based service access uses access control
mechanisms to manage to access to information. Therefore the information must be
managed accordingly so that it supports the used mechanism. This option can be
realised by using the IoT-A Authorisation FC component (Sect. 7.7.2). The other
possibility is to grant unrestricted access to services. This should be only done in
those cases in which data security is not relevant.

6.9.5.3 Secure Communication Infrastructure

Securing the communication infrastructure focuses on delivering a secure and
robust environment for the transmission of critical data. This can be obtained by
using end-to-end or hop-to-hop encryption. In both cases the information transmis-
sion channel in which the information flow from a device to an application through
an IoT service happens is completely secured. The end-to-end encryption uses
therefore the IoT-A End to End Communication FC and Key Exchange and
Management FC. Furthermore the Network Communication FC, which takes care
of enabling communication between networks through Locators (addressing) and
ID Resolution, is necessary (Sect. 7.7.2). For the hop-to-hop encryption the only
difference is the usage of the IoT-A hop-to-hop Communication FC. For wireless
communication security the implementation of an end-to-end security protocol
which ensures confidentiality, integrity and authentication of subjects can also be
considered (Perrig et al. 2004).

6.9.5.4 Secure Peripheral Networks (Link Layer Security, Secure
Routing)

To secure peripheral networks a link-layer encryption and authentication combined
with a multipath routing can be considered. This requires the integration of secure
routing protocols in the Network Communication component (Karlof and Wagner
2003).

For most of the tactics a design choice proposal is given, however for different
reasons it is not possible to provide appropriate design choices for all tactics. The
tactics not considered are presented in Table 6.15 with reasons for the omission.

6.9.6 Design Choices Addressing Privacy

In Sect. 8.3.3.3 the Security Perspective together with a set of tactics is presented.
The Design Choices addressing Privacy are presented in Table 6.16 showing the
impact on architectural views by applying tactics relevant for Privacy concerns.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_8

102 M. Boussard et al.

Table 6.15 Omitted tactics for the Security Perspective

Tactic Reason

Harden infrastructural Infrastructural functional components are critical components
functional components that can compromise the whole system if compromised

Avoid wherever possible Wireless communication generally uses a shared medium for
wireless communication communication which, in turn, allows easy interception of

link layer communication

Physically protect peripheral Pervasive deployment of IoT devices makes such devices

devices accessible to malicious users. While how to protect these

devices is outside the scope of the IoT Reference Archi-
tecture (devices not covered!), this vulnerability must be
taken into account in secure designs

Avoid OTA device management No DC proposal possible as most of the devices connected in
IoT must be managed over the air if at all possible

Table 6.16 Tactics and corresponding design choices for privacy

Impact on views

Deployment and

Tactic Functional Information operation

Pseudonymisation Creation of a fictional No impact Integration of IoT-A
identity (root identity management
identity, secondary FC (DC P.2)

identity, pseudonym
or group identity)

(DCP.1)

Avoid transmit- Encryption mechanisms No impact Integration of a wireless
ting identifiers for wireless security algorithm
in clear connections (DC P.4)

(DCP.3)

Minimize unau- Access control Stored Information must IoT-A authorisation FC
thorized management be managed in a way (DCP.7)
access to (DCP.S5) to support access
implicit control mechanisms
information (DC P.6)

Enablement of a scalable No impact Encrypt communication
and secure key with Resolution
distribution between Components and
communicating with Services
subjects (DC P.8) (e.g. KEM FC)

(DCP.9)

Enable the user to Addresses privacy No impact IoT-A identity manage-
control the questions so that a ment FC (DC P.11)
privacy user can operate
settings anonymously

(DC P.10)

Privacy-aware Authentication of the No impact Requires TLS and DTLS

identification responding host, the support (DC P.13)

initiating host can
stay anonymous
(DC P.12)

6 A Process for Generating Concrete Architectures 103

6.9.6.1 Pseudonymisation

The tactic “Pseudonymisation” refers to a procedure by which fields that enable
identification of a user within a data record or subject are replaced by one or more
artificial identifiers. The purpose is to render the subject less identifiable and this
way lower IoT user (e.g. customer or patient) objections to its use. This is function-
ally implemented by the creation of a fictional identity (e.g. root identity, secondary
identity, pseudonym, or group identity) and can be realised by integrating the IoT-A
Identity Management FC (Sect. 7.7.3).

6.9.6.2 Avoid Transmitting Identifiers in Clear

The transmission of identifiers in clear should be avoided in general. In a WSN, a
base station is not only in charge of collecting and analysing data, but also used as
the gateway connecting the WSN with outside wireless or wired network. In order
to have a defence against local adversaries, the location information or identifier of
the base station is sent in clear in many protocols. This information must be hidden
from an eavesdropper, which can be done by traditional cryptographic techniques
(encryption). One option for encrypting wireless connections is the integration of a
wireless security algorithm proposed by (Peris-Lopez et al. 2007).

6.9.6.3 Minimize Unauthorized Access to Implicit Information

Unauthorized access to implicit information (e.g. deriving location information
from service access requests) must be restricted at all events. Access control
management as well as the enablement of a scalable and secure key distribution
between communication subjects can be considered to achieve this objective. In the
former case the information stored must be managed in a way so that the access
control mechanism is supported. For deployment of this function the IoT-A
Authorisation FC can be considered. For the secure key distribution the resolution
components should be augmented by a Key Exchange Management component
such as the one from IoT-A.

6.9.6.4 Enable the User to Control the Privacy Settings

Users should be given the opportunity to control their privacy settings. Hence, one
option is the control of acting anonymously. This function can be realised by
integrating the IoT-A Identity Management FC which creates a fictional identity
(root identity, secondary identity, pseudonym, or group identity) along with the related
security credentials for users and services to use during the authentication process.

http://dx.doi.org/10.1007/978-3-642-40403-0_7

104 M. Boussard et al.

Table 6.17 Omitted tactics for the privacy perspective

Tactic Reason

Validate against requirements Too general, no DC proposal possible

Consider the impact of security/per- This must be evaluated for each use case during the
formance trade-offs on privacy design phase. For that reason, no DC can be proposed

Balance privacy vs. non-repudiation ~ This must be evaluated for each use case during the
(accountability) design phase. For that reason, no DC can be proposed

6.9.6.5 Privacy-Aware Identification

In human-to-thing and thing-to-thing interactions, privacy-aware identifiers might
be used to prevent unauthorized user tracking. Similarly, authentication can be used
to prove membership of a group without revealing unnecessary information about
an individual. Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS) provide the option of only authenticating the responding host.
This way, the initiating host can stay anonymous (Heer et al. 2011).

For most of the tactics a design choice proposal is given, however for different
reasons it is not possible to provide appropriate design choices for all tactics. The
tactics not considered are presented in Table 6.17 with reasons for the omission:

6.9.7 Design Choices Addressing Availability and Resilience

The Chapter in this document concerned with the Availability and Resilience
Perspective (Sect. 8.3.4) lists tactics addressing the desired quality of the system
to be designed as shown in Table 6.18.

In this Section design choices are presented that apply most of the tactics listed
in Table 6.19. The tactics not considered here are given at the end of this
Section with an explanation why they have been omitted. Table 6.19 presents for
each tactic one or more architectural design choices together with their impact on
the architectural views introduced in Chap. 8.

6.9.7.1 Use High Availability Clustering

For design choice ‘VE Resolution location-oriented (DC A.1)’ a resolution server
(RS) is responsible for indexing all connected things in a certain geographical area,
called indexing scope. A Catalogue server then creates the Catalogue Index of
every RS’ indexing scope. A resolution request is redirected towards the RS whose
indexing scope intersects the search scope of the request. Large-scale IoT systems
are expected to have multiple administrative domains that must be handled by a
federated resolution infrastructure. Different domains interact with each other by
the means of a central domain directory or domain catalogue. Communication
between framework domains needs to be secured. The framework performs faster
through a divided search space. Indexing scope can be adjusted according to usage
load. The framework scales by adding more RSs. With this approach it is

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

6 A Process for Generating Concrete Architectures 105

Table 6.18 Tactics addressing Availability and Resilience

Desired The ability of the system to be fully or partly operational as and when required and
quality to effectively handle failures that could affect system availability
Tactics Select fault-tolerant hardware

Use high-availability clustering and load balancing
Log transactions

Apply software availability solutions

Select or create fault-tolerant software

Design for failure

Allow for component replication

Relax transactional consistency

Identify backup and disaster recovery solution

impossible to retrieve things based on identifiers. Fault tolerance is achieved
through data distribution and index data replication. The central domain directory
is potential single point of failure. There is no theoretical limit on indexed things,
but indexing scope is bound to geographic location (De 2012).

In design choice ‘VE Resolution domain-oriented (DC A.2)” a domain-oriented
VE Resolution approach organises the resolution framework in hierarchically
organised domains similar to Domain Name System (DNS). The hierarchy is
built according to the hierarchy of things captured by Virtual Entities from higher
granularity to lower granularity, e.g. country — city — district — building —
room. The resolution framework performs faster than an unclustered resolution
solution through divided search space; its complexity is of O(log n) in best case, and
O(n) in worst case, where n is the number of VEs hosted by the resolution
framework. Load balancing is supported through replication, and a Resource can
be member of different domains at a time. Fault tolerance is supported through
distribution and redundancy; the framework evolves with the number of things
connected (De 2012).

For design choice ‘VE Resolution Semantic Web-oriented (DC A.3)’ Semantic
Web technologies are used to annotate Virtual Entity descriptions in a way
machines can interpret them. This overcomes the need for exact syntactic match-
making between resolution request and search terms in the resolution infrastructure.
The search space of the resolution infrastructure is indexed by an unsupervised
machine-learning technique and clustered through latent factors derived from the
learning. This design is independent from the deployment of the resolution infra-
structure. Distribution and replication is supported by this approach, but depends on
implementation on how it is done. Semantic interoperability is achieved through
shared ontologies, after extending ontologies the training model needs to be
updated (De 2012).

A peer-to-peer infrastructure will maintain no centralised servers in design
choice ‘VE Resolution Peer-to-Peer-oriented (DC A.4)’, all data is distributed in
the network along with sophisticated retrieval and routing mechanisms. There are
several approaches on how to distribute the data (pure, centralised indexing server,
distributed hash tables). The latter approach is the recommended one for IoT

M. Boussard et al.

106

joedwr oN

(6'V 0@
D pasI[enuad 10 D 9[3uIs oN
$90IN0SAI JO junowe 1ay3Iy
sannbar ‘paoserdar 2q 03 spesu
Jomosar Surjerado ue [mun
proy uo 1day are saoosar aredg

s30[
9S1e] 10] popaou a5eI0)s [BUIXH

papeau sSof uonoesuen 10y 95eI0)§
(S'V DQ) S1qerrear q
01 paau sjusuodwod Jo sauo[o
reuonippe yoeoidde jno Jureog

POPASU JOAIDS PISI[ENIUD ON
anbruyooy
SuruIesT-ouryOBW UTEII00
£Qq poxapur 9q 0} SPasu JIom
-oureljy uonNjosal Jo aoeds yoresg
A[reoryorerany
PISTUBSIO ST JIOMIWEI] UOTIN[OSAY

I9JSN[O UOHEI0]
0’9 JOJ SQOURISUI UOTINJOSAT A

SJIWI[JnOdWI) pue
Kouaye| A1oads 0} sueow opIA0Ig
WAISAS
PANQLISIP SSOIOR PUe SO
Jo souo[d 103 anbrun 2q 03 padu
[opoWw UOTJEULIOJUT UT SISYTUP]

joedwr oN

K[reuonippe sAnoRUI

1O 9ATIOR JOUJIQ S PIew 9q 0}
Pa2u suonoBSULI] JNq ‘9A0qQE IYI']

SIOYTIUAPI

anbrun yjm suorjoesues) 10j
$3doou0d spasu [opow UoTjeWIOU]

SHWI peo| pauyop pue

PEO[JT0M JUSLINO AINSBAW 0} OLT
-Jow paau suondrosop jusuodwo))

joeduwr oN

SpIepue)s qom
JNUBWAS 0] SUIPIOdIL PIPOIUD
9q 0} SpPIoU [dpowl UOHBULIOJU]
$921n0sa1 Jo sadA) Suruyap 10§
od4) e1ep spasu [opow uoreULIOJU]
1S9I9JUI JO UOTIEI0]
1oy odoos Suruyep 1oy 2d£y
'Jep sainbal [opow uoneWIOJU]

O1'Vv 00
Kouaje[s1ojTuow Jey) D SPIAOIJ

(€TT'8 1098)
D+ UOTJRIISIYDIO IITAIOS
1940 DY Ayder30a101d 901AIIS 19JaId
(Cagele))
(Z10T 20ULSI[21MAN]) SAUO PafIe)
soepdar pue seomosar areds
QAISSAI 01 AJI[BUOTIOUN] IPIAOI] aInyrej 10y uisaq

(L'v D) (z10T WAD
A391ens Sur33of samore Ajddy

(9'V D (z10T NED
A3o1ens 3urd3of renoxo Addy
wyLo3e Jurouereq
peo] s12331n pue sjuouodwod jo
PpeOo[SIojiuow Jey) uonoung saxmboy

(Z10Z 2@ 'V D)
pajuaLIo-199d-03-100d uonNOSaI FA

suorjoesuer} 30

Suroueleq peo[as)

(Z10Z 2@) (€'V D@ pAud
-110-QM OIJUBWIAS UOTIN[OSAT A

(T10T 2@ (TV
D) PRAUSLIO-UTRWOP UOIIN[OSAT A

(z1oz 2@ (1I'V

D) PIUSLIO-UOIIEI0] UOTIN[OSAI A Sunsnpo Apiqereae ysny asn)

uonerado pue juswkojdeg

uoneuLIojuy

[euonoun,j anoE

SMOTA U0 Joeduy

QOUDI[ISaI pue AJ[Iqe[ieA. SuIssaIppe sad1oy)) u3Isaq 6I°9 dqel

http://dx.doi.org/10.1007/978-3-642-40403-0_8

107

6 A Process for Generating Concrete Architectures

PAIA003I 2q 0] sjuauoduIod
Jo Apuspuadopur pajerado
9q 0] SPa3U ATOA0DAT I3)SBSI(T
palojruow o 03 sjusuoduwod
Jo Apuapuadapur pajerado
9q 0] Spaou SuLIojJTUOW JAJSESI]
PNoO[D Y} UI JIS-}JO P2Io)s
aIe eyep paAIyoIe pue pajeoridey
uorjeorder
USnoIy) SI0IN0SAI AIOW SPIIN

Qouewrograd Y3ty A1o A

9rqissod uonesrjdar
Qwm-eal reau ‘@dueuLIo}dd poon
juouoduwod
ay jo seordar [+4g Ise9] 1B
QAey Jsnw noA sanyrej . poddns oJ,

K10)51
uoneIn3yuod Jo 93e10)s sarmbay
asoy) jo uoneFedord
puE I0J PIYOO] 3] O} SJUIAD
snoxsesip Jo urjopow saxnboy
eyep pajesrjdar
Suoure Aoua)sISUOD sarnbay]

joedwr oN
uoneuojur pajedrjdar
-uou d[qeysmunsipur
uoneuLojul pajedrdor oye
pojerdwos jou 1
‘ysnoy ‘AougisIsSuodUl 0} SpPed|
‘paresrdar oq ued uonBULIOJUL
JO sa3uryd [RIUSWIOUT OS]y

QUIYOBW -9JBIS
Se Pa[[opow o 0} SPAdU D

suorjemn3yuod paddn-yoeq
Arsnoraaid jo Surioisar sarmbay

SJUQAQ SNOIISBSIp 10]

$I0Je0IpUl JO SurIojruow saImbay
Ajpeuonouny

uorjeordaI-eiep sarmbay
Ajreuornjouny

uonn[osal JOIFU0d saxmbay
(€1'V D)

(o¢10T erpadnyip) Auoxyouds
remuara syuowordwr jey) O, opraoig

(T1'V D) (£10T YOSOIIA)
uonjeodrdar feuorjoesuen

juowedwir Jeyl O IpIaoid
(I11'V D) (PE10T BIpadiiim)
uorjeordar (2AnoR) duIyoBW
-oje3s syuawerdwr Jey) D, 9pIaoid

SaInseawl 2A119319(J

(LT'V D@

SAINSLIW SANIAIIO))

01V DD
A3a1e1s

(S1'V D K19A0031 19)SESIP

SQINSEAW 9ANUAALJ pue dnjoeq AJnuapy

(#1'V DQ) Koudlsisuod [euonoesuer) Xe[oy

uonjeordar juouodwod 10§ MO[[Y

108 M. Boussard et al.

Resolution infrastructures. Resolution requests result in traffic complexity of O(n)
in worst case and O(log n) in best case, where n is the number of VEs managed by
the resolution framework. The framework is stable and robust through distribution
and redundancy (De 2012).

6.9.7.2 Load Balancing

The ‘Scale out approach (DC A.5)’ monitors the load of FCs during runtime and
triggers offloading tasks to another less busy instance of the respective FC to avoid
the FC being overloaded and therefore becoming a performance bottleneck or even
out of function. The decision at what limit an FC is considered to be critically busy
and to trigger off-loading to another instance is application specific, but the infor-
mation model needs to provide some metric to specify those parameters for FCs.

Logging Transactions

‘Circular Logging (DC A.6)’ is a strategy that leads to overwriting old data when
designated size of log is reached (IBM 2012). This approach does not support
incremental backup strategy. Transactions need to be logged with unique id and
status of their completion, indicating which functions need redoing and which need
undoing. Apply this Design Choice if storage space for logs is restricted. This
strategy provides better performance compared to archive logging.

‘Archive Logging (DC A.7)’ keeps a complete archive of all transactions (IBM
2012). Recent transactions need to be flagged as active, older transactions as
inactive. The archived logs grow over time so that external storage is needed on
constraint devices. This strategy adds functionality for retrieving the external
archive also for rollback and restore.

Design for Failure

The overall tactic can be further divided into more specific tactics that are presented
as design choices here. The first sub-tactic is ‘Acquiring more resources than
needed and replace failed ones (DC A.8)’. By applying this tactic more resources
are allocated for task execution than normally required. Besides allocating the
resources essentially necessary spare resources are reserved that could execute
the same task as the essential ones but are kept on hold. This is a precaution in
case a resource fails during runtime and a spare resource can take over the task of
the one that failed. Resource in this sense includes all computational resources,
network resources and IoT Resources, meaning all FCs in the ARM. A typical FG
that implements resource reservation is Service Organisation that is responsible for
allocating IoT Services to service requests (see Sect. 8.2.2.3). Applying this tactic
requires a higher number of resources essentially required.

Another approach is to aim at having ‘No FC or centralised FCs (DC A.9)’. The
goal is to develop designs that avoid single points of failure, like centralised FCs or

http://dx.doi.org/10.1007/978-3-642-40403-0_8

6 A Process for Generating Concrete Architectures 109

FCs with just one instance. If a single FC fails no other instance was able to replace
its functionality. By applying this tactic more than one instance of FCs are provided
by the system so that their functionality can still be assured in case one instance
becomes unavailable. For Service Organisation FG the decentralised Service Cho-
reography FC can be preferred over Service Orchestration which requires a central
orchestration engine (see Sect. 8.2.2.3). The decentralised choreography approach
reduces the risk for a single point of failure.

To apply the design choice ‘Treat Long Latency as potential failure (DC A.10)’
the system design provides an FC that treats any long latency as a potential failure.
For instance the round-trip-time for request-response-protocols is measured and a
deadline is set as acceptable. After the deadline has passed the system treats the
behaviour as potential failure and reacts in an appropriate manner, e.g., by querying
another instance of the same FC.

Allowing Component Replication

The design choice ‘State-machine (active) replication (DC A.11)’ allows detection
of faults by replicating service requests and comparing the service results to each
other. If all results are identical no fault is assumed, if they are different it still needs
to be analysed which of the results is faulty and which is correct (Wikipedia 2013d).
To apply this technique some replication functionality needs to be implemented that
multiplies the request to different instances of FCs. To assure fault detection 2F+1
replicas of the tested FC need to be held where F is the number of faults to be
detected. The fault detection algorithm requires the tested FC to be modelled as
state-machine.

‘Transactional replication (DC A.12)’ is used in server-to-server environments
typically, in which incremental information changes need to be propagated to
subscribers in nearly real-time (Microsoft 2013).

The choice ‘Virtual synchrony (DC A.13)’ is especially suitable for systems in
which information evolves extremely rapidly. Applications are executed in process
groups and the processes within the group update each other about execution progress
by sending state updates. Implementing this technique requires functionality to join
process groups, register event handler and send multicasts to group members. Con-
sistency among information replicas can be achieved easily, thus virtual synchrony is
suitable for systems with high evolution of information (Wikipedia 2013e).

Relaxing Transactional Consistency

To follow this tactic the ‘BASE architecture (DC A.14)’ can be applied. The ‘BASE
(Basically Available, Soft-state, Eventually consistent) architecture’ is applicable
in systems supporting distributed transactions with optimistic replication strategy.
In this approach replicas of information are sent through a distributed system via
transactions and ‘eventual consistency’ among the replicas is achieved by either the
update reaches the replica or the replica retires from service (Wikipedia 2013f).
BASE requires some conflict resolution functionality and additional system

http://dx.doi.org/10.1007/978-3-642-40403-0_8

110 M. Boussard et al.

resources in order to find failure in transactions. The approach is applicable for high
performance designs.

Backup and Disaster Recovery Strategy

The following design choices should not be seen as alternative choices to apply one
tactic; the three choices are rather three controls that can help to specify a disaster
recovery plan for the system to be designed (Georgetown 2013). Therefore all three
choices can be applied alongside.

The choice ‘Preventive measures (DC A.15)’ is aimed at preventing disastrous
events, like data-loss, from occurring. To achieve this data is replicated to have
identical copies in reserve in case the original data gets lost. Consistency among the
data replicas needs to be assured by the design. To minimise risks the replicas are
better stored at different locations that the original data, preferably in the cloud.

‘Detective measures (DC A.16)’ aim at detecting or discovering unwanted
events by monitoring indicators for unwanted events, like measured values that
exceed a certain range. This strategy requires an Information Model of those
unwanted events together with their indicators that are used to detect the unwanted
event. The event detection should be operated independent of the subsystem that is
monitored to make sure the unwanted events can be detected.

The design choice ‘Corrective measures (DC A.17)’ is aimed at correcting or
restoring systems after disastrous events have occurred. Assuming the previous two
choices have been implemented, meaning the preventive methods have been
applied and the disastrous event has been detected correctly, the system can be
restored to working order again. Backups of system configurations that have
worked correctly before are restored. A configuration history (Sect. 8.2.2.8)
provides the functionality needed for restoring working configurations. The system
correction process needs to be operated independently of the system to be restored.

Some of the tactics listed in Sect. 8.3 are not considered here because they are
too specific to particular implementations:

* Select fault-tolerant hardware;
« Apply software availability solutions;
« Select or create fault-tolerant software.

6.9.8 Design Choices Conclusion

This section has presented design choices for architects who are driven by
requirements for system quality capabilities like performance and scalability, evo-
lution and interoperability, availability and resilience as well as aspects concerning
trust, security, and privacy. An architect is guided by the presented design choices in
supporting the targeted system quality attributes. In cases where the recommended
design choice is one developed during the IoT-A project a reference is given where
an architect can find more detailed information about the respective design choice.

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

6 A Process for Generating Concrete Architectures 111

The design choices listed in this section are as generic as possible addressing
capabilities that are agnostic of particular functional requirements. The architect is
still left with the choice which system capabilities are the most important ones for
the system to be specified. In general trade-offs need to be made between for
instance security and performance since security always involves more data and
communication overhead that needs to be processed.

The optimal selection of design choices is dependent on the actual use case and
therefore a one-fits-all complete solution cannot be given in this section. It rather
needs to be made by architects according to their functional requirements which are
not known in the context of this document.

What this document can provide instead is an example for a concrete architec-
ture that is designed according to a sample use case. Architects shall find useful
hints for applying the ARM to concrete architectures including a selection of
appropriate design choices presents in this section. The sample concrete architec-
ture is described in Chap. 11.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0_11

Chapter 7
IoT Reference Model

Martin Bauer, Nicola Bui, Jourik De Loof, Carsten Magerkurth,
Andreas Nettstrater, Julinda Stefa, and Joachim W. Walewski

7.1 Introduction

The first major contribution of the loT Architectural Reference Model (10T ARM) is
the IoT Reference Model itself. Besides models, the IoT Reference Model provides
the concepts and definitions on which IoT architectures can be built. This

M. Bauer (<)

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd.,
Kurfiirsten-Anlage 36,

Heidelberg 69115, Germany

e-mail: Martin.Bauer@neclab.eu; www.nw.neclab.eu

N. Bui

Consorzio Ferrara Ricerche, Via Savonarola 9, Ferrara 44122, Italy
e-mail: buincl@unife.it

J. De Loof

Alcatel-Lucent Bell N.V., Copernicuslaan 50, Antwerpen 2018, Belgium
e-mail: jourik.de_loof@alcatel-lucent.com

C. Magerkurth
SAP AG, Dietmar-Hopp-Allee 16, Walldorf 69190, Germany
e-mail: carsten.magerkurth@sap.com

A. Nettstriter

Fraunhofer Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer Str. 2-4,
Dortmund 44227, Germany

e-mail: andreas.nettstraetter@iml.fraunhofer.de

J. Stefa
Universita Sapienza di Roma, P.le Aldo Moro 5, Rome 00185, Italy
e-mail: stefa@di.uniromal.it

J.W. Walewski
Siemens AG, Otto-Hahn-Ring 6, Munich 81739, Germany
e-mail: joachim.walewski@siemens.com; www.siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_7, 113
© The Author(s) 2013

mailto:Martin.Bauer@neclab.eu; www.nw.neclab.eu
mailto:buincl@unife.it
mailto:jourik.de_loof@alcatel-lucent.com
mailto:carsten.magerkurth@sap.com
mailto:andreas.nettstraetter@iml.fraunhofer.de
mailto:stefa@di.uniroma1.it
mailto:joachim.walewski@siemens.com; www.siemens.com

114 M. Bauer et al.

Chapter introduces the IoT Reference Model as a precondition for working with the
Reference Architecture that is introduced in Chap. 8.

The Reference Model consists of several sub-models that set the scope for the
IoT design space and that address architectural views and perspectives discussed in
Chap. 8. As already stated above, the primary and thus the key model is the IoT
Domain Model, which describes all the concepts that are relevant in the Internet of
Things. All other models and the IoT Reference Architecture are based on the
concepts introduced in the IoT Domain Model. While certain models, such as the
IoT Communication Model and the IoT Trust, Security, and Privacy Model might
be less critical in certain application scenarios, the IoT Domain Model is mandatory
for all usages of the IoT ARM. Therefore, it is advised to read Sect. 7.1.3 carefully,
and at least to follow the information given in the Sect. 7.1.2 in order to get an
overview of the different sub-models of the IoT Domain Model and how they relate
to each other. Depending on the individual application of the IoT Domain Model,
the Subsequent sections in this chapter provides details about the other models.

Next, we explain, who the sub-models in the IoT Reference Model relate and
link to each other, and how they form an integrated reference model.

7.2 Interaction of All Sub-Models

The IoT Reference Model aims at establishing a common grounding and a common
language for IoT architectures and IoT systems. It consists of the sub-models shown
in Fig. 7.1, which we explain below. The yellow arrows show how concepts and
aspects of one model are used as the basis for another.

The foundation of the IoT Reference Model is the IoT Domain Model, which
introduces the main concepts of the Internet of Things like Devices, IoT Services
and Virtual Entities (VE), and it also introduces relations between these concepts.
The abstraction level of the IoT Domain Model has been chosen in such a way that
its concepts are independent of specific technologies and use-cases. The idea is that
these concepts are not expected to change much over the next decades or longer.

Based on the IoT Domain Model, the IoT Information Model has been devel-
oped. It defines the structure (e.g. relations, attributes) of IoT related information in
an IoT system on a conceptual level without discussing how it would be
represented. The information pertaining to those concepts of the IoT Domain
Model is modelled, which is explicitly gathered, stored and processed in an IoT
system, e.g. information about Devices, [oT Services and Virtual Entities.

The IoT Functional Model identifies groups of functionalities, of which most are
grounded in key concepts of the IoT Domain Model. A number of these Function-
ality Groups (FG) build on each other, following the relations identified in the IoT
Domain Model. The Functionality Groups provide the functionalities for
interacting with the instances of these concepts or managing the information related
to the concepts, e.g. information about Virtual Entities or descriptions of IoT
Services. The functionalities of the FGs that manage information use the IoT
Information Model as the basis for structuring their information.

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

7 ToT Reference Model 115

‘\\ M I,’
5 g E=— 1
I_.‘h_ _____ _= =(
| Comm.FG I Sec. |
1 1
—— A] FG 1
P
| Fpp—
Information handled by Pl

Functional Components /\. Z X

Concepts as
foundations of
Functional Groups

Concepts explicitly modelled
& represented in loT systems

loT Domain Model

Fig. 7.1 Interaction of all sub-models in the IoT Reference Model. The sub-models are explained
in the text body

A key functionality in any distributed computer system is the communication
between the different components. One of the characteristics of IoT systems is often
the heterogeneity of communication technologies employed, which often is a direct
reflection of the complex needs such systems have to meet. The IoT Communica-
tion Model introduces concepts for handling the complexity of communication in
heterogeneous 10T environments. Communication also constitutes one FG in the
IoT Functional Model.

Finally, Trust, Security and Privacy (TSP) are important in typical IoT use-case
scenarios. Therefore, the relevant functionalities and their interdependencies and
interactions are introduced in the IoT TSP Model. As in the case of communication,
security constitutes one FG in the Functional Model.

7.3 Domain Model

7.3.1 Definition and Purpose

The IoT-A project defines a domain model as a description of concepts belonging to
a particular area of interest. The domain model also defines basic attributes of these

116 M. Bauer et al.

concepts, such as name and identifier. Furthermore, the domain model defines
relationships between concepts, for instance “Services expose Resources”. Domain
models also help to facilitate the exchange of data between domains
(The Consultative Committee 2006). Besides this official definition, and looking
at our interpretation of it, our domain model also provides a common lexicon and
taxonomy of the IoT domain (Muller 2008). The terminology definitions of IoT-A
are provided online (Sect. 6.7).

The main purpose of a domain model is to generate a common understanding of
the target domain in question. Such a common understanding is important, not just
project-internally, but also for the scientific discourse. Only with a common
understanding of the main concepts it becomes possible to argue about architectural
solutions and to evaluate them. As has been pointed out in literature, the IoT
domain suffers already from an inconsistent usage and understanding of the mean-
ing of many central terms (Haller 2010).

The domain model is an important part of any reference model since it includes a
definition of the main abstract concepts (abstractions), their responsibilities, and
their relationships. Regarding the level of detail, the Domain Model should separate
out what does not vary much from what does. For example, in the IoT domain, the
device concept will likely remain relevant in the future, even if the types of devices
used will change over time and/or vary depending on the application context. For
instance, there are many technologies to identify objects: RFID, bar codes, image
recognition etc. But which of these will still be in use 20 years from now? And
which is the best-suited technology for a particular application? Since no one has
the answers to such and related questions, the IoT Domain Model does not include
particular technologies, but rather abstractions thereof.

Before we discuss the main abstractions and relationships of the IoT Domain
Model in detail, let us go back to our recurring example that we introduced in Sect.
4.2 in order to get an understanding of what it means to formulate central concepts
of a use case with the help of the IoT Domain Model.

Figure 7.2 shows an instance diagram of central aspects of the use case scene in
Sect. 4.2. This example was cast in the language of the IoT Domain Model and then
illustrated by use of UML. Information about UML can be found elsewhere in the
literature (Fowler 2003) or by searching for terms such as “UML tutorial” on the web.

As we can see in Fig. 7.2, the important entities that are relevant for our use case
are depicted with blocks of different colours. For instance, there is our truck driver
“Ted” represented by as a yellow box (viz. instance), and the temperature sensor
(that triggers an alarm after Ted had turned off the engine of the truck) is
represented as a blue instance. Already at this stage we can easily deduct that
there is some colour-coding involved that reflects an aspect of the respective entity.
What these colours exactly stand for is discussed in detail in the next Sections.
There is also a categorisation in textual form, as the entity name that we know from
our recurring example is succeeded by an entity category such as Sensor in the case
of the humidity or temperature sensors and Human User in the case of Ted. What
these entity categories mean and how they relate to each other is discussed in detail
in the next sections.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_4

7 ToT Reference Model 117

resolveService :

invokes

Service
Measurement AndroidApp : lookupAssociations :
S—ervice . Service subscribes Active Di |ta| invokes service
Artefact

exposes

Sensor Node :
Alarm : hosts Device
On-Device
Resource
is attached to is attached to
Humidity Sensor : Temperature
Sensor Sensor:
Sensor
Load Carrier : monitors

> physical Entity

Fig. 7.2 Example, instantiated [oT Domain Model for the Red Thread Example (see Sect. 4.2)

In addition to the coloured boxes, the diagram also shows arrows with verbs that
connect the boxes. If we look very closely to the arrows, we see that they have
different terminators such as diamond shapes or traditional arrow shapes. These
shapes illustrate different kinds of relationships between the objects that are
connected by them. In a similar way as the category names and the colour coding
of the objects are related to each other, the verbs indicate information about the
relationships shown with the arrows. These are all concepts of the UML notation
that will be discussed in the next section.

Even without understanding all of the concepts in detail, we can already under-
stand that the IoT Domain Model helps us structuring an application scenario. We
can use a concise graphical representation to show that for instance Ted, our truck
driver, is a Human User that uses an Android application in order to subscribe to an
Alarm service. This Android Application is an Active Digital Artefact (ADA). We
do not yet know what this exactly means, but as the reader will progresses through
this document and possibly other documents that make use of the IoT Domain
Model, Active Digital Artefacts will come up again and again. By providing a
standardised vocabulary for naming things that relate to the same abstract concepts,
we facilitate and streamline communication of the IoT ARM users.

While several other parts of the IoT Reference Model, for instance the IoT
Information Model, directly depend on the IoT Domain Model, and also several

http://dx.doi.org/10.1007/978-3-642-40403-0_4

118 M. Bauer et al.

views (as we will see in the next chapter), it should already be noted that the IoT
Domain Model also takes a central role in the process of generating concrete
architectures beyond merely providing a common language. As discussed in
Chap. 6, Sect. 6.3, there is a special view called IoT Context View that is central
in the process of generating concrete architectures. This view is an amalgam of the
IoT Domain Model “traditional” context view. The latter is an architecture view
that is usually generated at the very beginning of the architecture process. It
describes “the relationships, dependencies, and interactions between the system
and its environment (the people, systems, and external entities with which it
interacts)” (Rozanski and Woods 2011).

7.3.2 Main Abstractions and Relationships

7.3.2.1 Interpreting the Model Diagram

This section describes the IoT Domain Model used in the IoT-A project. It was
developed by refining and extending two models found in the literature (Haller
2010; Serbanati et al. 2011). The goal behind the IoT Domain Model is to capture
the main concepts and the relationships that are relevant for IoT stakeholders. After
a short introduction to the pertinent UML language (next Section), we expatiate the
IoT terminology and concepts in Sect. 7.1.3.3. A discussion about guidelines and
best practices on how to use the IoT Domain Model are provided in Chap. 9.

UML is used to graphically illustrate the model (Fowler 2003). Generalisation is
used to depict an is-a relationship and should not be misinterpreted as sub-classing.
Only the most important specialisations are shown, others are possible however.
For example, not every Device can be characterised as a Tag, a Sensor, or an
Actuator. The specialisations are, however, generally disjoint, if not noted
otherwise.

Please note that generalisations/specialisations are modelled using a solid line
with a large hollow triangle.

The notation indicates that class A is the Parent or super-class, while class B and
class C are child or subclasses. Objects represented by class B and class C “inherit”
the attributes of the object represented by class A (their parent), while having
additional unique attributes of their own. This relationship is referred to as the
is-a relationship — an object in class B or class C is-a type of class A (see Fig. 7.3).

This notation is not to be confused with an “aggregation or composition
relationships”. Rather, a terminating “open diamond” indicates an aggregation
relationship, whereas a “filled diamond” indicates a composition relationship.
The notation in Fig. 7.4 states that class A is an aggregation of (or contains) objects
of class B and a composition of objects of class C. In other words, class A has-a
class B and also class C is-part of class A. Aggregation and composition are rather
similar, however the lifetime of objects of class C is determined by class A

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_9

7 ToT Reference Model 119

Class A
Class B / \ Class C
Fig. 7.3 UML generalization
Class A
Class B / ‘\ Class C

Fig. 7.4 UML aggregation and composition

(“A brain is part of a student” -> composition), whereas the lifetime of objects of
class B is independent from class A (“A student has a school”).

Finally, an “open arrow” is used to denote a “one-way’ association. The notation
shown in Fig. 7.5 indicates that every object in class A is associated with zero or
more objects in class B, and that every object in class B is associated with exactly
one object in class A. However more importantly, this notation indicates that a class
A object will “know” class B objects with which it is associated, and that a class B
object will “not know” the class A object with which it is associated, ref. Sensor and
Physical Entity in Fig. 7.7.

The cardinalities (“asterisk”, “1”, etc.) are to be read as follows: from the source
read the relation and the cardinality on the target gives the multiplicity with which
the source can be in that relation with the target. For the inverse relation, the
cardinality at the source is relevant. For example (see Fig. 7.7), a Tag identifies
no or one (0..1) Physical Entity — whereas a Physical Entity may be identified by
0 or more Tags. A Virtual Entity may contain 0 or more other Virtual Entities,
whereas a Virtual Entity can optionally be contained in at most one other Virtual
Entity. Concepts depicting hardware are shown in blue, software in green, animate
beings in yellow, and concepts that fit into either multiple or no categories in brown.

7.3.2.2 The Concepts of the IoT Domain Model

The most generic IoT scenario can be identified as that of a generic User needing
to interact with a (possibly remote) Physical Entity (PE) in the physical world

120 M. Bauer et al.

Fig. 7.5 UML association . A - N
ass ass
1
Fig. 7.6 Basic abstraction User _ Physical Entity
of an IoT interaction interacts
0.* with 0

(see Fig. 7.6). In this short description we have already introduced the two key
entities of the IoT. The User is a human person or some kind of a Digital Artefact
(e.g., a Service, an application, or a software agent) that needs to interact with a
Physical Entity.

In the physical environment, interactions can happen directly (e.g., by moving a
pallet from location X to Y manually). In the IoT though, we want to be able to
interact indirectly or mediated, i.e., by calling a Service that will either provide
information about the Physical Entity or act on it. When a Human User is accessing
a service, he does so through a service client, i.e., software with an accessible user
interface. For the sake of clarity, the service client is not shown in Fig. 7.7. For the
scope of the IoT Domain Model, the interaction is usually characterised by a goal
that the User pursues. The Physical Entity is an identifiable part of the physical
environment that is of interest to the User for the completion of her goal. Physical
Entities can be almost any object or environment; from humans or animals to cars;
from store or logistics chain items to computers; from electronic appliances to
jewellery or clothes.

Physical Entities are represented in the digital world by a Virtual Entity. This
term is also referred to as “virtual counterpart” in the literature (Romer et al. 2002),
but using the same root term “entity” in both concepts clearer shows the relation-
ship of these concepts. There are many kinds of digital representations of Physical
Entities: 3D models, avatars, database entries, objects (or instances of a class in an
object-oriented programming language), and even a social-network account could
be viewed as such a representation, because it digitally represents certain aspects of
its human owner, such as a photograph or a list of his hobbies. However, in the [oT
context, Virtual Entities have two fundamental properties:

e They are Digital Artefacts. Virtual Entities are associated to a single Physical
Entity and the Virtual Entity represents this very Physical Entity. While there is
generally only one Physical Entity for each Virtual Entity, it is possible that the
same Physical Entity can be associated to several Virtual Entities, e.g., a
different representation per application domain. Each Virtual Entity must have
one and only one ID that identifies it univocally. Virtual Entities are Digital
Artefacts that can be classified as either active or passive. Active Digital
Artefacts (ADA) are running software applications, agents or Services that
may access other Services or Resources. Passive Digital Artefacts (PDA) are
passive software elements such as database entries that can be digital

7 IoT Reference Model 121
User
0..* 0..*
invokes / Zﬁ
subscribes
Human
User
Digital
Artefact
interacts
with
Active Passive contains
Digital Digital 0.
Artefact Artefact R o
gmented |
1. b\ /4 Entity |0
\ !
\L * \ SN
0.7 is v Ixor] /
Service associated N\ Y 1 1.*
o with N) contains
: contains', / 0.1
qu NS 1 0r .
0.1 o . -
Virtual represents 1| Physical
exposes Entity |1.* Entity < 0.
* 0..*
0..* 0.. <
* 1S + 0.1
0.. attached » 0.
to
0..*
contains__ .
Resource is . 0..*
0.* o..» associated 0.1| Device monitors
- with
hostsH1>
0 ‘f
Network On-Device [[] |0.*
Resource Resource
Actuator Tag reads Sensor
0.* 0.7
’ 0.* LOH* identifies
has Information acts

about / acts on

Fig. 7.7 UML representation of the IoT Domain Model

Colour Scheme

[] Animate objects (humans, animals etc.)
[Hardware

[software

I Not clearly classifiable (e.g., combination)

representations of the Physical Entity. Please note that all Digital Artefacts can
be classified as either Active or Passive Digital Artefacts;

Ideally, Virtual Entities are synchronised representations of a given set of

aspects (or properties) of the Physical Entity. This means that relevant digital
parameters representing the characteristics of the Physical Entity are updated
upon any change of the former. In the same way, changes that affect the Virtual
Entity could manifest themselves in the Physical Entity. For instance, manually
locking a door might result in changing the state of the door in home automation

122 M. Bauer et al.

software, and correspondingly, setting the door to “locked” in the software might
result in triggering an electric lock in the physical world.

At this point it should be noted that while Fig. 7.6, at first sight, seems to suggest
only a Human User interacting with some Physical Entities, it also covers interac-
tion between two machines: in this case, the controlling software of the first
machine is an Active Digital Artefact and thus a User, and the second machine —
or a Device in the terms of the [oT Domain Model — can be modelled as a Physical
Entity. We introduce the concept of an Augmented Entity as the composition of one
Virtual Entity and the Physical Entity it is associated to, in order to highlight the
fact that these two concepts belong together. The Augmented Entity is what
actually enables everyday objects to become part of digital processes, thus, the
Augmented Entity can be regarded as constituting the “thing” in the Internet of
Things.

It should be noted that there might be many types of users, as we have discussed
before. A Human User is a specialisation of the general concept. However, different
kinds of Users, such as maintenance people, owners, or security officers are
plausible as well. It is also worth noting that we have not included different roles
in the IoT Domain Model, for same reason that we have also not introduced
different types of Users. Within the development of concrete architectures, it is
very likely that the Users will take on different roles and these should be modelled
accordingly. As the underlying taxonomies will vary with the use cases addressed,
we do not prescribe a specific taxonomy here. Especially in the enterprise domain,
where security roles are fundamental to practically every single IoT architecture,
one common option for modelling roles can be found in (Raymond 1995). We will
briefly revisit up this taxonomy within the context of the process management
Section (see Sect. 7.1.5.2.1).

The relationship between Augmented, Physical and Virtual Entities is shown in
Fig. 7.7, together with other terms and concepts that are introduced in the remainder
of this section.

The relation between Virtual Entity and Physical Entity is usually achieved by
embedding into, by attaching to, or by simply placing in close vicinity of the
Physical Entity, one or more ICT Devices that provide the technological interface
for interacting with, or gaining information about the Physical Entity. By so doing
the Device actually extends the Physical Entity and allows the latter to be part of the
digital world. This can be achieved by using Devices of the same class, as in the
case of certain similar kinds of body-area network nodes, or by using Devices of
different classes, as in the case of an RFID tag and reader. A Device thus mediates
the interactions between Physical Entities (that have no projections in the digital
world) and Virtual Entities (which have no projections in the physical world),
generating a paired couple that can be seen as an extension of either one, i.e. the
Augmented Entity. Devices are thus technical artefacts for bridging the real world
of Physical Entities with the digital world of the Internet. This is done by providing
monitoring, sensing, actuation, computation, storage and processing capabilities. It
is noteworthy that a Device can also be a Physical Entity, especially in the context

7 ToT Reference Model 123

of certain applications. An example for such an application is Device management,
whose main concern is the Devices themselves and not the entities or environments
that these Devices monitor.

From an IoT point of view, the following three basic types of Devices are of
Interest:

* Sensors provide information, knowledge, or data about the Physical Entity they
monitor. In this context, this ranges from the identity of the Physical Entity to
measures of the physical state of the Physical Entity. Like other Devices, they
can be attached or otherwise embedded in the physical structure of the Physical
Entity, or be placed in the environment and indirectly monitor Physical Entities.
An example for the latter is a face-recognition enabled camera. Information from
sensors can be recorded for later retrieval (e.g., in a storage of Resource);

e Tags are used to identify Physical Entities, to which the Tags are usually
physically attached. The identification process is called “reading”, and it is
carried out by specific Sensor Devices, which are usually called readers. The
primary purpose of Tags is to facilitate and increase the accuracy of the
identification process. This process can be optical, as in the case of barcodes
and QR codes, or it can be RF-based, as in the case of microwave car-plate
recognition systems and RFID. The actual physics of the process, as well as the
many types of tags, are however irrelevant for the IoT Domain Model as these
technologies vary and change over time. These are important however when
selecting the right technology for the implementation of a concrete system;

» Actuators can modify the physical state of a Physical Entity, like changing the
state (translate, rotate, stir, inflate, switch on/off,. . .) of simple Physical Entities
or activating/deactivating functionalities of more complex ones.

Notice though that Devices can be aggregations of several Devices of differ-
ent types. For instance, what we call a sensor node often contains both Sensors
(e.g., movement sensing) as well as Actuators (e.g., wheel engines). In some
cases, Virtual Entities that are related to large Physical Entities might need to
rely on several, possibly heterogeneous, Resources and Devices in order to
provide a meaningful representation of the Physical Entity, c.f. in our Red
Thread example, the values of several temperature Sensors are aggregated to
determine the temperature of the truck.

Resources are software components that provide data from or are used in the
actuation on Physical Entities. Resources typically have native interfaces. There is a
distinction between On-Device Resources and Network Resources. As the name
suggests, On-Device Resources are hosted on Devices, viz. software that is
deployed locally on the Device that is associated with the Physical Entity. They
include executable code for accessing, processing, and storing Sensor information,
as well as code for controlling Actuators. On the other hand, Network Resources are
Resources available somewhere in the network, e.g., back-end or cloud-based
databases. A Virtual Entity can also be associated with Resources that enable
interaction with the Physical Entity that the Virtual Entity represents.

124 M. Bauer et al.

In contrast to heterogeneous Resources — implementations of which can be
highly dependent on the underlying hardware of the Device — , a Service provides
an open and standardised interface, offering all necessary functionalities for
interacting with the Resources / Devices associated with Physical Entities. Interac-
tion with the Service is done via the network. On the lowest level — the one
interfacing with the Resource and closer to the actual Device hardware — , Services
expose the functionality of a Device through its hosted Resources. Other Services
may invoke such low-level Services for providing higher-level functionalities, for
instance executing an activity of a business process. A typical case for this is the
Service alerting “Ted” based on the temperature Service results in the ‘“Red
Thread” example.

Since it is the Service that makes a Resource accessible, the above-mentioned
relations between Resources and Virtual Entities are modelled as associations
between Virtual Entities and Services. For each Virtual Entity there can be
associations with different Services that may provide different functionalities,
like retrieving information or enabling the execution of actuation tasks. Services
can also be redundant, i.e., the same type of Service may be provided by different
instances (e.g. redundant temperature Services provided by different Devices). In
this case, there could be multiple associations of the same kind for the same Virtual
Entity. Associations are important in look-up and discovery processes.

The instance diagrams such as Fig. 7.2 are concrete instantiations of the IoT
Domain Model, i.e. concrete architectures modelled with the concepts of the IoT
Domain Model.

7.3.3 Detailed Explanations and Related Concepts

The IoT Domain Model as explained in the previous section is focusing on the main
concepts at a high level of abstraction, capturing the essence of the IoT Domain.
However, for easier understanding we provide here more detailed explanations.

7.3.3.1 Devices and Device Capabilities

From an IoT Domain-Model point of view, Devices are only technical artefacts
meant to provide an interface between the digital and the physical worlds, i.e. a link
between the Virtual Entities and the Physical Entities. For this reason, Devices must
be able to operate both in the physical and digital world and the IoT Domain Model
only focuses on their capability to provide observation and modification of the
physical environment from the digital environment. If other properties of Devices
were relevant, the Device would be modelled as an entity itself.

The hardware underlying the Devices is very important though and must have at
least some degree of communication, computation and storage capabilities for the
purposes of the IoT. Moreover, power resources are also very important, as they can

7 ToT Reference Model 125

provide operational autonomy to the Devices. Many technologies and products are
available and their capabilities vary noticeably. While these capabilities might not
impact directly the IoT Domain Model, they are very important during the
application-design phase, c.f. the Deployment and Operation view in Sect. 8.2.4
“Deployment & Operation view”.

Communication capabilities depend on the type of data exchanged with the
Device (identifier, identifier + data, sensor data, or commands) and the communi-
cation topology (network, reader-tag, peer-to-peer, etc.). These aspects are very
important in the [oT context and have a large impact on energy consumption, data-
collection frequency, and the amount of data transmitted. Communication
capabilities indirectly impact the location of Resources (on-device or on the
network). Please refer to the IoT Communication Model (Sect. 7.1.6) for a detailed
discussion of this topic. Security features also impact communication capabilities,
since they usually introduce a relevant communication overhead (c.f. Sect. 7.1).

Computation capabilities on the other hand have a huge impact on the chosen
architecture, the implementable security features, and power resources of the
Devices. They are also relevant for what concerns the availability of On-Device
Resources and their complexity, as constrained Devices might not have sufficient
computational resources.

The term storage usually refers to the capability of supporting the firmware/
software running on the Device. This can be accomplished storing data provided by
on-board sensor hardware or data gathered from other Services and needed for
supporting a given Resource. Storage can range from none, as in the case of RFID
technology to kilobytes in the case of typical embedded Devices or even more in
case of unconstrained Devices.

7.3.3.2 Resources

Resources are software components that provide some functionality. When
associated with a Physical Entity, they either provide some information about or
allow changing some aspects in the digital or physical world pertaining to one or
more Physical Entities. The latter functionality is commonly referred to as
actuation. Resources can either run on a Device — hence called On-Device
Resources — or they can run somewhere in the network (Network Resources).
On-Device Resources are typically sensor Resources that provide sensing data or
actuator Resources, e.g. a machine controller that effects some actuation in the
physical world. They thus can be seen as a “bridge” between the digital and
physical world. On-Device Resources may also be storage Resources, e.g., store a
history of sensor measurements, but are limited by the storage capacity of the
Device.

As Network Resources run on a dedicated server in the network or in the
“cloud”, they do not rely on special hardware that allows direct connection to the
physical world. They rather provide enhanced Services that require more system
resources than Devices typical for the IoT can provide. Such Resources can process

http://dx.doi.org/10.1007/978-3-642-40403-0_8

126 M. Bauer et al.

data, for instance they can take sensor information as input and produce aggregated
or more high-level information as output. Also, Network Resources can be storage
Resources, which typically do not suffer from the limitations of their on-device
counterparts. Storage Resources can store information produces by Resources and
they can thus provide information about Physical Entities. This may include
location and state-tracking information (history), static data (like product-type
information), and many other properties. An example of a storage Resource is an
EPCIS repository (Electronic Product Code Information Services (EPC 1.0.13))
that aggregates information about a large number of Physical Entities. Notice that
also Human Users can update the information in a storage Resource, since not all
known information about an entity always is, or even can be, provided by Devices.

7.3.3.3 Services

Services are a widely used concept in today’s IT systems. According to (MacKenzie
et al. 2006), “Services are the mechanism by which needs and capabilities are
brought together”. This definition is very broad, and the Service concept in the [oT
Domain Model is covering this broad definition — but Services are restricted to
technical Services implemented in software (in contrast to general, non-technical
services that e.g. a lawyer or a consultant provides). As such, Services provide the
link between the IoT aspects of a system and other, non-IoT specific parts of an
information system, like e.g. various enterprise systems; loT-related Services and
non-IoT Services can be orchestrated together in order to form a complete system.

As it has been pointed out in (Martin 2012), IoT-related Services need to be
explained in more detail: IoT Services provide well-defined and standardised
interfaces, hiding the complexity of accessing a variety of heterogeneous
Resources. The interaction with a Physical Entity can be accomplished via one or
more Services associated with the corresponding Virtual Entity. This association
becomes important in the process of look-up and discovery. An IoT Service can
thus be defined as a type of Service enabling interactions with the real world.

According to (Martin 2012), IoT Services can be classified according by their
level of abstraction:

* Resource-level Services expose the functionality, usually of a Device, by
accessing its hosted Resources. These kinds of Services refer to a single
Resource. In addition to exposing the Resource’s functionality, they deal with
quality aspects, such as dependability, security (e.g., access control), resilience
(e.g., availability) and performance (e.g., scalability, timeliness). Resources can
also be Network Resources, i.e. the Resources do not necessarily reside on a
Device in the sense of the IoT Domain Model (normal computers are not
regarded as IoT Devices by the IoT Domain Model), but can also be hosted
somewhere else. The concrete location of where the Network Resource is
situated is commonly abstracted away by the Service;

7 ToT Reference Model 127

« Virtual Entity-level Services provide access to information at a Virtual Entity-
level. They can be Services associated to a single Virtual Entity that give access
to attributes for reading attribute information or for updating attributes in order
to trigger associations. An alternative is to provide a common Virtual Entity-
level Service with an interface for accessing attributes of different Virtual
Entities, as, for instance, the NGSI Context Interface (NGSI 2010) provides
for getting attribute information of the Virtual Entities;

» Integrated Services are the result of a Service composition of Resource-level or
Virtual Entity-level Services as well as any combinations of both Service
abstractions.

7.3.3.4 Identification of Physical Entities

In order to track and monitor Physical Entities, they have to be identified. There are
basically two ways for how this can be done, as is very well described in (Furness
2009): Using either natural-feature identification (classified as “primary identifica-
tion”) or using some type of Tags or labels (classified as “secondary identification”)
that are attached to the Physical Entity.

Both means of identification are covered in the IoT Domain Model. Tags
are modelled as Devices that explicitly identify a Physical Entity. Natural-feature
identification can be modelled, for example, by using a camera — a kind of Sensor —
that monitors the Physical Entity and an additional Resource that does the natural
feature extraction (i.e. a dedicated software component). The result of the natural-
feature extraction can be used as search term for looking up the corresponding
Virtual Entity.

RFID Tags are a prominent example in IoT. As they come with their own
electronic circuitry it seems quite natural to classify RFID Tags as Devices in
terms of the IoT Domain Model. The case is less clear-cut regarding the classifica-
tion of a barcode label, however. As pointed out elsewhere (Haller 2010),
classifying a barcode label as a Device seems a little far-fetched; regarding it as a
“natural feature” of the Physical Entity it is attached to, seems to be more appropri-
ate. However, as with many modelling questions, this is a matter of taste — the IoT
Domain Model is not prescribing which variant to use.

7.3.3.5 Context and Location

As the IoT pertains to the physical world, the characteristics of the physical world
play an important role. All elements of the physical world are situated within a
certain context, and location is an essential aspect of this context. All concepts in
the IoT Domain Model that refer to elements of the physical world, i.e., Physical
Entities, Devices, and Human Users inherently have a location. This location may
or may not be known within the IoT system.

128 M. Bauer et al.

The location of a Physical Entity can be modelled as an attribute of a Virtual
Entity. This location can then be provided through Resources. In the case of a
stationary Physical Entity, the Resource providing the location can be an
On-Device (storage) Resource, in the case of a mobile Physical Entity the Resource
could be a positioning system like GPS, or a tracking system like existing indoor
location systems.

7.4 Information Model

The IoT Information Model defines the structure (e.g. relations, attributes, services)
of all the information for Virtual Entities on a conceptual level, see also
Sects. 7.1.3.2.2,7.1.3.3.1 and 7.1.3.3.3. The term information is used along to the
definitions of the DIKW hierarchy (see Rowley 2007) where data is defined as pure
values without relevant or useable context. Information adds the right context to
data and offers answers to typical questions like who, what, where and when.

The description of the representation of the information (e.g. binary, XML, RDF
etc.) and concrete implementations are not part of the IoT Information Model.

The IoT Information Model details the modelling of a Virtual Entity. The Virtual
Entity (VirtualEntity) has attributes with a name (resp. Attribute and
AttributeName) and a type (AttributeType) and one or more values (Value) to
which meta-information (MetaData) can be associated. Important meta-information
is, e.g., at what time a value was measured (i.e. time stamp), the location where a
measurement took place, or the quality of the measurement. Metadata can itself
contain additional metadata, e.g. the unit in which the metadata is measured. The
association (Association) between a Virtual Entity and a Service is detailed in the
sense that is pertains to a certain Attribute of the Virtual Entity. The serviceType
can be set either to INFORMATION, if the Service provides the attribute value to
be read or to ACTUATION, if the Service allows the Attribute value to be set, as
resulting of a corresponding change in the physical world.

7.4.1 Definition of the IoT Information Model

The diagram in Fig. 7.8 shows the structure of the information that is handled and
processed in an IoT System. The main aspects are represented by the elements
VirtualEntity, ServiceDescription and Association. A Virtual Entity models a
Physical Entity and ServiceDescription describes a Service that serves information
about the Physical Entity itself or the environment. Through an Association, the
connection between an Attribute of a Virtual Entity and the ServiceDescription is
modelled, e.g. the Service acts as a “get” function for an Attribute value.

Every Virtual Entity needs to have a unique identifier (identifier) or entity type
(entityType), defining the type of the Virtual Entity representation, e.g. a human, a

7 ToT Reference Model 129

Value
1
VirtualEntity Attribute ValueContainer
entityType <>——— attributeName ~ [<>——
identifier 0..%| attributeType 1.
A
I
Association
---------- serviceType
0..*
Service MetaData metadataMetadata
Description

metadataName
metadataType
metadataValue 0

Resource Device
Description L~ | Description
0..1

Fig. 7.8 IoT Information Model

car or a temperature sensor. Furthermore, a Virtual Entity can have zero to many
different attributes (Attribute class in Fig. 7.8). The entityType of the VirtualEntity
class may refer to concepts in an ontology that defines what attributes a Virtual
Entity of this type has (see, for instance, [Group, W3C OWL]). Each Attribute has a
name (attributeName), a type (attributeType), and one to many values
(ValueContainer). The attributeType specifies the semantic type of an attribute,
for example, that the value represents temperature. It can reference an ontology-
concepts, e.g., qu:temperature taken from “Quantity Kinds and Units”-ontology
(Lefort 2005). This way, one can for instance, model an attribute, e.g. a list of
values, which itself has several values. Each ValueContainer groups one Value and
zero to many metadata information units belonging to the given Value. The
metadata can, for instance, be used to save the timestamp of the Value, or other
quality parameters, such as accuracy or the unit of measurement. The Virtual Entity
(VirtualEntity) is also connected to the ServiceDescription via the
ServiceDescription-VirtualEntity association.

A ServiceDescription describes the relevant aspects of a Service, including its
interface. Additionally, it may contain one (or more) ResourceDescription(s)
describing a Resource whose functionality is exposed by the Service. The

130 M. Bauer et al.

Information
Model:l: Information Model::
VirtualEntity Attribute
. 0..*[- attributeName
- entityType X
- identifier - attributeType
= NR
| \
\\ | N
\
AN Information N
_________ \-————-| Model: AN
\ Association \\
\ \
\\ «is inst\ance of»
«is instance of» N \\
\ \
Information \\ \\ \\
Model::Service \ N AN
Description N N N
= \
Load Carrier : \ hasTemperature :
VirtualEntity __m_ Attribute
\
¢ .
N «is instance of» A\
AN N |
N \ 1
AN \ 1
AN \ |
«is instance of» N
AN Temperature
N Association :
h Association
Temperature
Service :
Servi
Description

Fig. 7.9 Tllustrating example for IoT Information Model

ResourceDescription in turn may contain information about the Device on which
the Resource is hosted.

7.4.2 Modelling of Example Scenario

The IoT Information Model is a meta-model that defines the structure of key aspects
of the information being managed in an IoT system. Therefore, unlike the Domain
Model (see the recurring example in Sect. 7.1.3.1), it would typically not be directly
instantiated (see information view Sect. 8.2.3 and the related Design Choices in
Chap. 6 for this purpose). Nevertheless, for illustration purposes, we sketch here
how the information relevant for our example scenario from Sect. 4.2 could be
modelled (Fig. 7.9).

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_4

7 ToT Reference Model 131

The element of interest for which we can get some information is the Load
Carrier, which is therefore digitally represented by a Virtual Entity. Here, we show
how the temperature aspect of the Physical Entity is modelled by the
hasTemperature attribute of the Virtual Entity. This Figure also features a descrip-
tion of the service that is used to measure this temperature. What is finally needed is
the connection between the hasTemperature attribute and the service that can
provide its value. This is achieved by the Temperature Association.

7.4.3 Relation of Information Model to Domain Model

The IoT Information Model models all the concepts of the Domain Model that are
to be explicitly represented and manipulated in the digital world. Additionally, the
IoT Information Model models relations between these concepts. The IoT Informa-
tion Model is a meta-model that provides a structure for the information being
handled by IoT Systems. This structure provides the basis for all aspects of the
system that deal with the representation, gathering, processing, storage and retrieval
of information and as such is used as a basis for defining the functional interfaces of
the IoT system.

Figure 7.10 shows the relation between the Domain Model concepts and the IoT
Information Model elements. The main Domain Model concepts that are explicitly
represented in an IoT system are the Virtual Entity and the service. The latter also
comprises aspects of the Resource and the Device. As the Virtual Entity is the
representation of the Physical Entity in the digital world, there is no other represen-
tation of the Physical Entity in the IoT Information Model.

7.4.4 Other Information-Related Models in IoT-A

Throughout IoT-A several other information- related models exist. Most of them
are defined in the technical work packages WP2, WP3, WP4 and WP5. More
information can be found in the respective deliverables (see below).

» Entity model: The Entity Model specifies which attributes and features of real
word objects are represented by the virtual counterpart, i.e. the Virtual Entity of
the respective Physical Entity. For every attribute specified in the entity model,
services can be found that are able to either provide information about the
attribute (sensing) or manipulate it, leading to an effect in the real world
(actuating). More information about the entity model can be found in
Sect. 7.1.3.2.2.

* Resource model: The Resource Model contains the information that is essential
to identify Resources by a unique identifier and to classify Resources by their
type, like sensor, actuator, processor or tag. Furthermore the model specifies the

132 M. Bauer et al.

Value |
1
& A
VinualEntity Attribute VaheContainer
orkhyType o amibueName <1
idersfier 0."| amibuteType i
[] i
I : Association
==========seniceType
Service l-
0.
Service MetaData
Desorpiis metadataName
poses Device - etadat e
I > . —
Resource Device
Resource / it c_u_ Description
1
hosts

Fig. 7.10 Relation between the core concepts of the IoT Domain Model and IoT Information
Model

geographic location of the Resource, the Device the Resource is hosted on (if so)
as well as the IoT Services the Resource is exposed through. More information
can be found in (Martin 2012) Sect. 3.3.

¢ Service description model: Services provide access to Resources and are used to
access information or to control Physical Entities. An IoT Service accesses [oT
Resources in order to provide information about attributes of entities or
manipulates them leading to an effect in the real world. A Service Description
describes a Service, using for instance a service description language such as
USDL.' For more information see (Martin 2012) Sect. 4.6.3.

¢ Event Model: Event models are quite essential in today’s IoT architectures,
e.g. in the EPCglobal Information Services. Normally events are used to track
dynamic changes in a (software) system, showing who or what has triggered it
and when, where and why the change occurred. Event representation and
processing is specified in Sect. 4.2 of (Voelksen 2013).

7.5 Functional Model

7.5.1 Functional Decomposition

In the IoT-A project, Functional Decomposition (FD) refers to the process by which
the different Functional Components (FC) that make up the IoT ARM are identified
and related to one another.

!http://www.internet-of-services.com/.

http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://www.internet-of-services.com/

7 ToT Reference Model 133

The main purpose of Functional Decomposition is, on the one hand, to break up
the complexity of a system compliant to the IoT ARM in smaller and more
manageable parts, and to understand and illustrate their relationship on the
other hand.

Additionally, Functional Decomposition produces a superset of functionalities
that can be used to build any IoT system. The output of Functional Decomposition
is described in this document at two levels of abstraction:

e The Functional Model (purpose of this section);
» The Functional View (presented in Sect. 8.2.2).

The definition of the Functional Model is derived by applying the definition of a
Reference Model found in (MacKenzie et al. 2006) to Functional Decomposition:
“The Functional Model is an abstract framework for understanding the main
Functionality Groups (FG) and their interactions. This framework defines the
common semantics of the main functionalities and will be used for the development
of IoT-A compliant Functional Views.”

The definition contains the following concepts that need to be explained in more
detail:

o Abstract: The Functional Model is not directly tied to a certain technology,
application domain, or implementation. It does not explain what the different
Functional Components are that make up a certain Functionality Group;

¢ Functionality Groups and their interactions: The Functional Model contains
both the Functionality Groups and the interaction between those parts. A list of
the Functionality Groups alone would not be enough to make up the Functional
Model. Both the Functionality Groups and their interaction are mandatory;

¢ Functional View: The Functional View describes the system’s runtime Func-
tional Components, including the components’ responsibilities, their default
functions, their interfaces, and their primary interactions. The Functional View
is derived from the Functional Model on the one hand and from the Unified
Requirements on the other hand. Note that various Functional Views could be
derived from the Functional Model. See also Sect. 8.2.2 for more detailed
information on the functional view.

7.5.2 Functional Model Diagram

The Functional Model diagram is depicted in Fig. 7.11 and was derived as follows:

¢ From the main abstractions identified in the Domain Model (Virtual Entities,
Devices, Resources and Users) the “Application”, “Virtual Entity”, “IoT Ser-
vice” and “Device” FGs are derived;

* With regards to the plethora of communication technologies that the IoT ARM
needs to support, the need for a “Communication” FG is identified;

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

134 M. Bauer et al.

Application
Service o Virtual loT
g Process o .
Organisation Entity Service
Management

Management
Security

Communication

Device

Fig. 7.11 Functional Model

¢ Requirements expressed by stakeholders regarding the possibility to build
services and applications on top of the IoT are covered by the “IoT Process
Management” and “Service Organisation” FGs;

¢ To address consistently the concern expressed about IoT Trust, Security and
Privacy, the need for a “Security” transversal FG is identified;

» Finally, the “Management” transversal FG is required for the management of
and/or interaction between the functionality groups.

The Functional Model contains seven longitudinal Functionality Groups (light
blue) complemented by two transversal Functionality Groups (Management and
Security, dark blue). These transversal groups provide functionalities that are
required by each of the longitudinal groups. The policies governing the transversal
groups will not only be applied to the groups themselves, but do also pertain to the
longitudinal groups.

As an example: for a security policy to be effective, it must ensure that there is
no functionality provided by a component that would circumvent the policy and
provide unauthorised access.

Next, the interactions between the FGs are shown. As can be seen from Fig. 7.11,
the Functional Model is a hierarchical model and the main interactions between the
FG’s are depicted with orange arrows. Since the transversal FGs (Management &
Security) interface with most of the other FGs, their interactions with the other FG’s
are not explicitly depicted.

In the remainder of this section, each of the FGs will be described in more detail
(with exception of the Application and Device FGs, since trying to capture their
properties would be so generic that they do not add any value).

7 ToT Reference Model 135

7.5.2.1 10T Process Management

The IoT Process Management FG relates to the conceptual integration of (business)
process management systems with the IoT ARM. The overall aim of this FG is to
provide the functional concepts necessary to conceptually integrate the
idiosyncrasies of the IoT world into traditional (business) processes. By so doing,
enterprises can effectively utilise IoT sub-systems adhering to common standards
and best practices, thus avoiding the overhead and costs of isolated and proprietary
“Intranet-of-Things” island solutions.

In the IoT-A project, the IoT Process Management FG is addressed by WP
2. The IoT Process Management FG provides additions and extensions to industry
standards, for instance BPMN 2.0. The additions feature IoT-specific aspects of
(business) processes, such as the reliability or accountability of sensor data
providing information about Virtual Entities or the required processing capabilities
of Devices hosting certain Resources relevant for the real world. Applications that
interact with the IoT Process Management FG via IoT-augmented process models
can effectively be shielded from IoT-specific details of lower layers of the func-
tional model, which greatly reduces integration costs and thus contributes to an
increased adoption of IoT-A based IoT systems (Meyer et al. 2011).

One important aspect of IoT Process Management is its inherent closeness to
enterprise systems. As it was already introduced in the IoT Domain Model
Sect. 7.1.3, the IoT Process Management FG is where the business objects and
processes are combined with the world of IoT, and especially here the modelling of
processes must take into account not only the idiosyncrasies of the IoT domain, but
also the specificities of the underlying business domain. The different roles of the
business objects and users will be defined here. Again, as discussed in the IoT
Domain Model section, we do not prescribe a specific taxonomy here. However, for
pedagogical purposes we illustrate how this taxonomy looks like in the context of
the RM-ODP context Enterprise View (see the discussion about RM-ODP
(Raymond 1995) and roles in IoT Domain Model Sect. 7.1.3.2.2).

» Permission: what can be done? For instance a self-regulating ventilation system
can be started by a central control system;

« Prohibition: what must not be done? For instance the ventilation system may not
be shut down in its entirety if the outside temperature is above a pre-defined
value and if humans are present in the building;

e Obligations: the central control system needs to save recorded environmental
parameters for each room in the entire building (temperature, humidity, ventila-
tion settings). Such records can, for instance, be required by national
occupational-health laws.

When it comes to the practical realisation of the process management, these
different policies will come into play when the respective business processes are
modelled. In Chap. 5 we pick up the notion of enterprise views and illustrate how
they factor into the requirements process.

http://dx.doi.org/10.1007/978-3-642-40403-0_5

136 M. Bauer et al.

The IoT Process Management FG is conceptually closely related to the Service
Organisation FG and acts as a proxy to applications that integrate an IoT-A-compli-
ant [oT system. Naturally, the IoT Process Management FG has a dependency on the
Service Organisation FG, as a central concept in the execution of (business) pro-
cesses is the finding, binding, and invoking of Services that are used for each process
step. The IoT Process Management FG therefore relies on Service Organisation to
map the abstract process definitions to more concrete Service invocations.

Applications can utilise the tools and interfaces defined for the IoT Process
Management FG in order to stay on the (abstract) conceptual level of a (business)
process, while, at the same time, making use of IoT-related functionality without
the necessity of dealing with the complexities of IoT Services. In this respect, the
IoT Process Management FG provides conceptual interfaces to the IoT ARM, that
are alternatives to the more concrete Virtual Entity FG and Service Organisation FG
interfaces.

7.5.2.2 Service Organisation

The Service Organisation FG is a central Functionality Group that acts as a
communication hub between several other Functionality Groups. Since the primary
concept of communication within the IoT ARM is the notion of the Service (see
Domain Model Sect. 7.1.3), the Service Organisation FG is used for composing and
orchestrating Services of different levels of abstraction. Within the IoT Reference
Architecture, it effectively links the Service requests from high level FGs such as
the IoT Process Management FG, or even external applications, to basic services
that expose Resources (see Domain Model Sect. 7.1.3) (such as services hosted on a
WSN gateway), and enables the association of entities with these services by
utilising the Virtual Entity FG, so that a translation of high-level requests dealing
with properties of entities (e.g., “give me please the temperature in the room 123”)
down to the concrete 10T services (e.g., “sensor service XYZ”) can be realised. In
order to allow for querying Virtual Entities or IoT Services that are associated with
these entities, the Service Organisation FG is responsible for resolving and
orchestrating IoT Services and also deal with the composition and choreography
of Services. Service Composition is a central concept within the architecture, since
IoT Services are very frequently capable of rather limited functionality due to the
constraints in computing power and battery life that are typical for WS&ANs or
embedded Devices comprising the IoT. Service Composition then helps combining
multiple of such basic Services in order to answer requests at a higher level of
Service abstraction (e.g. the combination of a humidity sensing Service and a
temperature Service could serve as input for an air-conditioning). Service Chore-
ography is a concept that supports brokerage of Services so that Services can
subscribe to other Services available in the system.

As discussed in the previous section, the Service Organisation FG is closely tied
to the IoT Process Management FG, since the Service Organisation FG enables
(business) processes or external applications to find and bind Services that can be

7 ToT Reference Model 137

used to execute process steps, or to be integrated in other ways with external
applications. The Service Organisation FG acts as an essential enabler for the IoT
Process Management FG. The Virtual Entities specified during the process
modelling phase are resolved and bound to IoT Service FG needed for process
execution.

7.5.2.3 Virtual Entity and IoT Service

The Virtual Entity and IoT Service FGs include functions that relate to interactions
on the Virtual-Entity and IoT-Service abstraction levels, respectively. Figure 7.12
shows the abstraction levels and how they are related. On the left side of Fig. 7.12,
the physical world is depicted. In the physical world, there are a number of Sensors
and Actuators that capture and facilitate the change of certain aspects of the
physical world. The Resources associated to the Sensors and Actuators are exposed
as IoT Services on the IoT Service level. Example interactions between
applications and the IoT system on this abstraction level are “Give me the value
of Sensor 456 or “Set Actuator 867 to On”. Applications can only interact with
these Services in a meaningful way, if they already know the semantics of the
values, e.g. if Sensor 456 returns the value 20, the application has to be programmed
or configured in such a way that it knows that this is the outdoor temperature of the
car of interest, e.g. Car MXD — 123. So, on this level no semantics is encoded in the
information itself, nor does the IoT system have this information, it has to be
a-priori shared between the Sensor and the application.

Whereas interaction on the IoT Service level is useful for a certain set of
applications that are programmed or configured for a specific environment, there
is another set of applications that wants to opportunistically use suitable Services in
a possibly changing environment. For these types of applications, and especially the
Human Users of such applications, the Virtual Entity level models higher-level
aspects of the physical world, and these aspects can be used for discovering
Services. Examples for interactions between applications and the IoT system on
this abstraction level are “Give me the outdoor temperature of Car MXD — 123” or
“Set lock of Car MXD — 123 to locked”. To support the interactions on the Virtual
Entity level, the relation between IoT Services and Virtual Entities needs to be
modelled, which is done in form of associations. For example, the association will
contain the information that the outdoor temperature of Car MXD — 123 is provided
by Sensor 456. Associations between Virtual Entities and IoT Services are
modelled in the Information Model (Sect. 7.1.4).

Virtual Entity
The Virtual Entity FG contains functions for interacting with the IoT System on the

basis of VEs, as well as functionalities for discovering and looking up Services that
can provide information about VEs, or which allow the interaction with VEs.

138 M. Bauer et al.

Example
Interactions

VE Service Request;
Give me the
outdoor
temperature of
Car MXD - 123

Virtual entity-based loT System
model models relevant
aspects of Physical World

Physical World

VE Service Request:
Set lock

Virtual | ¢ carmxp - 123
Association of loT Services Entlty to “locked"
to modelled Virtual Entities. Level
” loT Service Request:
‘A sensor Give me the
Resources 0“’““0 value of
exposed as loT aumr sensor Temperature
Services measure, nnﬂuz s Sensor 456
observe and loT Service B
actuate on service Level (o7 Barica R y
P Set Actuator 867
to “on”
—_—

Fig. 7.12 ToT-Service and Virtual-Entity abstraction levels

Furthermore, it contains all the functionality needed for managing associations, as
well as dynamically finding new associations and monitoring their validity. This
need can be triggered by the mobility of Physical Entities represented by the Virtual
Entities and/or Devices.

IoT Service

The IoT Service Functional Group contains IoT Services as well as functionalities
for discovery, look-up, and name resolution of IoT Services.

7.5.2.4 Communication

The Communication FG abstracts the variety of interaction schemes derived from
the many technologies (Device FG) belonging to IoT systems and provides a
common interface to the IoT Service FG. It provides a simple interface for
instantiating and for managing high-level information flow. In particular, the
following aspects are taken into account: starting from the top layers of the ISO/OSI
model it considers data representation, end to end path information, addressing
issues (i.e. Locator/ID split), network management and device specific features.
The Communication FG can be customised according to the different
requirements defined in the Unified Requirements list and, in particular, those
related to communication specified within WP3. For instance, integrity and security
can be enforced exploiting many different signature and encryption schemes at
various ISO/OSI layers; reliability is achieved either by means of link layer

7 ToT Reference Model 139

acknowledgements or end to end error correction schemes at the upper layers;
quality of service is realised by providing queue management techniques; finally, in
order to account for communication between different technologies, protocol trans-
lation and context passing functionalities are described.

7.5.2.5 Management

The Management FG combines all functionalities that are needed to govern an IoT
system. The need for management can be traced back to at least four high-level
system goals (Pras 1995):

¢ Cost reduction;

« Attending unexpected usage issues;
¢ Fault handling; and

» Flexibility.

Cost reduction: In order to control the cost of a system, it is designed for a
maximum amount of users and/or use cases. “A way for the designer to deal with
the requirements of multiple groups of users is to abstract from the differences in
[the] requirements and [to] parameterise the design” (Pras 1995). Upon
commissioning or start-up of the system, these parameters will be initialised by
the Management FG.

Attending unexpected events: The 10T system is based on an incomplete model
of reality — as literally all systems are. For example, even for the same type of user,
unforeseen activity patterns in the physical world and thus unforeseen usage may
arise may arise. For instance, errors are introduced into the system through explicit,
erroneous management directives (Harrisburg, Chernobyl). Another example is that
Devices can suddenly just die. The latter is most likely to become prevalent in the
10T, since the cost margins for [oT equipment and thus their reliability can be much
lower than that for traditional telecommunications equipment (back-bone routers,
etc.). The management FG can provide strategies and actions for the mitigation of
impacts from unforeseen situations. Such impacts can be link failure, queue over-
load, etc. In order to better adapt to new situations, it is of course paramount that the
Management FG has a good overview of the system state. To that end the manage-
ment system provides supports collection.

Fault handling: This goal addresses the unpredictability of the future behaviour
of the system itself. This is of special interest in complex IoT systems and also in
IoT systems in which, for instance, the devices in an IoT system do not provide a
model for their behaviour. The measures implied by this goal are:

¢ Prediction of potential failures;

« Detection of existing failures;

* Reduction of the effects of failures;
» Repair.

140 M. Bauer et al.

The first three measures can be achieved by comparing the current behaviour of
system components with previous and/or expected behaviour.

Flexibility: The design of a system is based on use-case requirements. However,
these use-case requirements are not static. Instead of designing a new system every
time the requirements change, some flexibility should be built into the system. Due
to this flexibility, the Management FG of the IoT system will be able to react to
changes in the user requirements. This can take place during boot up,
commissioning or also at run time.

All of the above goals rely on shared common functionality and repositories, as,
for instance, a state repository. Other functionalities are:

¢ Management of the membership and accompanying information of a given
entity to the IoT system. Such entity may be a Functional Component (FC), a
Virtual Entity, an IoT Service, an application, a Device. The information
considered may cover ownership, administrative domain, capabilities, rules,
and rights;

¢ Retrieval of the list of members pertaining to a given property such as the
ownership/administrative domain;
Finally, some more examples for the above goals are provided:

» Enforcing rules attached to the usage of a certain entity e.g.

o Attending unexpected events: A service needs temperature measurements
every microsecond, but the rule file for the associated device says: maximum
measurement frequency of this device is 100 Hz. The rule file also might say:
no continuous operation of said device for more than 1 h (due to energy
constraints);

o Fault handling: A service wants to run a business process that would con-
sume all IoT services and the VE lookup for more than a day. An example for
this is a query for the geo-location of all temperature Sensors on planet Earth.
The rule file may contain instructions about how many resources can be
consumed by an application;

» Cost reduction: Logging entity usage by a user for further processing
(e.g. billing).

Besides the above, “traditional” goals of management, the Management FG also
needs to address needs that arise when IoT systems can actuate and/or if the they are
embedded in critical infrastructure. Examples for such situations are

» Bringing the entire system to an emergency stop, for instance a train;
» Turning the entire system into a sleep/energy-saving mode in order to relax to
load on a failing Smart Grid.

7 ToT Reference Model 141

7.5.2.6 Security

The Security Functionality Group (Security FG) is responsible for ensuring the
security and privacy of IoT-A-compliant systems. It is in charge of handling the
initial registration of a client to the system in a secure manner. This ensures that
only legitimate clients may access services provided by the IoT infrastructure. The
Security FG is also in charge of protecting private parameters of users. This is
achieved by providing anonymity (ensuring that the user’s identity remains confi-
dential when she/he/it accesses a Resource or a service) and ‘“unlink-ability”
(ensuring that the user may make multiple uses of Resources or services without
an attacker being able to establish links between those uses). This privacy support
relies on fine-tuned identity management, which is able to assign various pseudo-
random identifiers to a single user.

The Security FG also ensures that legitimate interaction occurs between peers
that are statically authorised to interact with each other, or that are trusted by each
other. This is achieved through the use of dedicated authorisation functions or
through the reliance on a trust — and-reputation model, which is able to identify
trustworthy peers in a privacy-capable and highly mutable architecture.

Finally, the Security FG enables secure communications between peers by
managing the establishment of integrity and confidentiality features between two
entities lacking initial knowledge of each other.

7.6 Communication Model

The IoT Communication Model aims at defining the main communication
paradigms for connecting elements, as defined in the IoT Domain Model. We
provide a reference set of communication rules to build interoperable stacks,
together with insights about the main interactions among the elements of the IoT
Domain Model. We propose a Communication Model that leverages on the ISO
OSI 7-layer model for networks and aims at highlighting those peculiar aspects
inherent to the interoperation among different stacks, which we will call in what
follows, interoperability features. Further, the application of communication
schemes, such as application layer gateways, transparent proxy, network
virtualization, etc., to different IoT network types is discussed.

In particular, with reference to our Read Thread example of Sect. 4.2, the IoT
Communication Model can be used to model how the monitoring Sensors of the
truck can seamlessly interact with Ted’s phone and how it can communicate with
the store enterprise system.

The IoT Communication Model has multiple usages. For instance, it can guide
the definition of the Communication Functional Components from which the
Communication Functional Group is composed of. Finally, it can be used to derive
the Communication best practices, as depicted in the following pictures (Fig. 7.13):

http://dx.doi.org/10.1007/978-3-642-40403-0_4

142 M. Bauer et al.

Communication
Model

Communication
Model

Guides Guides

Unified
Requirements

Communication
Best Practices

Communication
Functional Group

Fig. 7.13 IoT Communication Model usages: (left) using the CM together with the Unified
Requirements to define the Communication FG; (right) deriving Communication Best Practices
thanks to the CM and the Unified Requirements

7.6.1 IoT Domain Model Element Communications

For the IoT Communication Model, it is important to identify the communication-
system elements and/or the communicating Users among those defined in the IoT
Domain Model. One, if not the main peculiarity of the IoT is that Users can belong
to many disjoint categories: Human Users, Services or Active Digital Artefacts.
While the same picture is emerging in today’s Internet usage, the percentage of
human-invoked communication will be even lower in the IoT. Moreover, entities
can be physical, digital, or virtual. While a Physical Entity cannot directly take part
in communication, it can exploit Services associated to its virtual counterpart.

The communication between these users needs to support different paradigms:
unicast is the mandatory solution for one-to-one connectivity. However, multicast
and anycast are needed for fulfilling many other IoT-application requirements, such
as data collection and information dissemination, etc.

With reference to our “Red Thread” and the IoT Domain Model section, the main
communicating elements are: the Mote Runner Node (Device), the Alarm Service
(Service), the AndroidApp (Active Digital Artefact) and Ted (Human User).

This section provides insight and guidance on the interactions between elements
of the IoT Domain Model. In particular, per possible communicating entity pair, a
discussion about the relevant layer of the IoT Communication Model will be
provided.

7.6.1.1 User-Service / Service-Service Interactions

As shown in Fig. 7.14, the IoT Domain Model entities involved in this interaction
are mainly two: User and Service (circled in solid red lines). For instance, in our
recurring example this interaction models the truck driver, Ted, who needs to
interact with the AndroidApp in order to receive alarms. However, a Service may

7 ToT Reference Model 143

class Domain Model

User

invokes / subscribes

/ Human User \
Digital Artefact \ ’
/<’
/ Active Digital Passive Digital contains
Artefact Artefact

\ 7 } ’ 4 3 Entity —

’
N\ !
\ Cs I
AN XOR /
LN L
~ i
5 I
i’

Ay

Service

is asspciated with

!

Y
contains ™ !
A of 1

relates to

Virtual Entity

Fig. 7.14 DM entities involved in a User-Service / Service-Service interaction (zoom of the
whole IoT Domain Model in Fig. 7.7)

also assume the user role when invoking another Service, thus Users can either be
Human User or Active Digital Artefacts.

This interaction is straightforward, as it is identical to typical Internet
interactions between Users and Services. In fact, in most of the application scenario
the User-Service connection can be established using standard Internet protocols.

However, two main exceptions to this general assumption apply when two
Services communicate one to each other and one or both of the communicating
elements belong to a constrained network.

The latter case, which applies when Services are deployed on constrained
Devices such as Sensor nodes and when the User of a given Service is deployed
on a constrained Device, requires for the use of constrained communication
protocols (see Rossi 2012). Finally, when the two elements belong to different
sub-networks, gateway(s) and/or proxy(ies) must be deployed for ensuring success-
ful end-to-end communication. To this extent, as a general rule, if a Service is
constrained, or if it needs to provide access to constrained Users, it must be
accessible with constrained protocols (e.g., 6(LoOWPAN, UDP, CoAP, etc.).

144

Active

Passive

M. Bauer et al.

contain

Artefact Artefact o
A d Entity|
R 4 0
1 \ !
b !
A B !
b XOR !
Service g g | 1 1
hY)
hY !
hY
0 is associated with % f
contain ;‘
0.* ;
0..1] Virtual Entity relates to
exppses 1.
i ttached
o+ is attache
0.*

Resource

is associated with

Device

Network Resource| On-Device |

Resource

Actuator

Fig.7.15 IoT DM entities involved in a Service / Resource / Device interaction (This is a zoom of
the complete IoT DM highlighting the interested parts, see also Fig. 7.7)

7.6.1.2 Service / Resource / Device Interactions

Figure 7.15 illustrates the entities of the IoT Domain Model involved in the
interactions among Services, Resources and Devices. These interactions can be
exemplified with the communication among the Alarm Service, the Alarm
Resource and the Mote Runner Node of the recurring example. This Figure also
illustrates the interconnections of these entities.

The complexity of this interaction is due to variety of different properties that a
Device can have; in particular, a Device can be as simple and limited as a Tag and
as complex and powerful as a server (Tag Terminal Type (TT3) and unconstrained
Terminal Type (TT1), respectively, in (Rossi 2012)). In fact, while powerful
Devices can easily support the needed software to host and access Services and to
expose the needed Resources for other Services to interact with, simpler Devices

7 ToT Reference Model 145

may only be able to provide access to their own Resources and the simplest may
even not be powerful enough even to support this. In the latter two cases, Resources
and Services must be provided somewhere else in the network, by some other more
powerful Device(s).

Thus the IoT Communication Model helps to model and to analyse how
constrained Devices can actively participate in an [oT-A compliant communication
and to study possible solutions, such as the usage of application layer gateways, to
integrate legacy technologies.

7.6.2 Communication Interoperability Aspects

The model we are going to propose in this section takes its roots from the ISO/OSI
(ISO 1994) stack, the US Department of Defense 4 layer model (DoD4) (Darpa
1970) and, the Internet stack, but it puts its focus on IoT specific features and issues.
All the previous models have a great value, going beyond any discussion, but
simply they have not been conceived with the IoT issues and features in mind.

In Fig. 7.16 we can see the Internet and the DoD4 stacks. It is evident how they
map onto each other, thus in what follows we will address the 4 layers Internet
model only.

The 4-layer Internet stack abstracts from the underlying Physical Layer; in fact its
lowest layer is represented by the Link Layer. This choice is indeed the right one for
the Internet, as the Link Layer is not visible from the Application Layer, and the same
can be applied to fully homogeneous networks, since applications can be totally
agnostic of the underlined common physical technology. However, the Physical
Layer rises to a great importance when talking about the IoT; in fact the IoT is
characterized by a high heterogeneity of hardware and technologies and the necessity
of making different system interoperable. Moreover, this is a clear statement on the
fact that IP is conceived in order to be implemented on top of any hardware
networking technologies, while in the IoT there exist technologies that do not dispose
of the needed resources to manage a complete IP compliant communication. Thus,
solutions such as 6LoWPAN, are needed to extend IP communication to constrained
networks.

Moreover the main objective of the 4-layer Internet model is to let Internet
applications communicate, having intermediate devices understanding the commu-
nication at IP level, without meddling with upper layers. This model is wonderful in
its simplicity, but this simplicity is one of the reasons why it is unsuitable for the
IoT, since it is not able to address the aforementioned interoperability issues.

Obviously this dates back to the beginning of the Internet, when developing an
Application Protocol for each application was best practice. While in principle that
is a reasonable approach, even in the current Internet we can perceive how it is
misleading. We are not here to discuss pros and cons of developing an Application

146 M. Bauer et al.

Fig. 7.16 Four layers

Internet DoD4

Internet stack (left) and
DoD4 stack (right) Application Process
Transport Host to host
P Internet
Link Network access

Protocol for each application but we have just to notice this is not a common
practice anymore, with the majority of applications leveraging on HTTP or even on
more specific HTTP constructs like REST protocols. So nowadays it is crucial to
have a distinction between Applications and the Application Protocols.

Another major issue of the 4 layers Internet model arises from the lack of
expression for the so called security layers, the two major examples being SSL
(IETF 2011)/TLS (IETF 2008) and IPsec (IETF 1998).

The main reference point for communication system developers is the ISO/OSI
stack, and, although its validity as an implementation guideline is out of question, it
fails to depict the overall complexity of IoT systems as it is meant to represent
single technology stacks.

After the considerations on the model discussed so far we felt necessary a
different approach for highlighting the peculiar features of IoT communication,
which are not directly evident using the ISO/OSI model alone.

The model, as depicted in Fig. 7.17 on the left-hand side, stresses the relevance
of the wide range of interoperability aspects that characterise IoT systems. In fact,
instead of focusing on a specific realisation of the communication stack, the IoT
Communication Model provides a transversal approach from which one or more
communication stacks can be derived: in fact a single interoperability aspect can be
used to describe the interactions of stacks belonging to different communicating
systems. Once a system is modelled according to the IoT Communication Model it
is easy to derive a set of ISO/OSI interoperable stacks in order to provide the needed
interoperability features.

Below, the different interoperability aspects are described:

» Physical aspect: This interoperability aspect concerns the physical
characteristics of the communication technologies used in the system. It is
similar to the OSI Physical Layer. This is necessary in order to neither exclude
any available technology, and to prevent emerging solutions from being
integrated into the Reference Model. This aspect does not force the adoption
of any specific technology, but it uses the adopted technologies as a base to
model the remaining of the system. In fact, as per the recurring example the
Mote Runner Node can communicate using some low-power radio transceiver
such as ZigBee, while the AndroidApp can be hosted in an IoT-Phone connected
to the Internet either via WiFi or 3G cellular networks;

7

ToT Reference Model 147

Fig. 7.17 The IoT Aspects ISO Stack

interoperability aspects of

the IoT Communication Applicati
Model (left) compared to ppiication
the ISO/OSI (R :
communication stack : Data 1 Presentation
(right): dashed lines have } ——————————— :
been used for the IoT ! Endtoend : Session
aspects to make them ? ___________ :
graphically different from | Network & ID | Transport
stack layers H)

(T T]

: Link l Network

[]

(]

! Physical | Data Link

o)

Physical

Link aspect: In order to address the heterogeneousness of networking
technologies represented in the IoT field, the Link aspect requires special
attention. In fact, most networks implement similar, but customised communi-
cation schemes and security solutions. In order for IoT systems to achieve full
interoperability, as well as the support of heterogeneous technologies and a
comprehensive security framework, this layer must support solution diversity.
At the same time, it needs to provide upper layers with standardised capabilities
and interfaces. Therefore, this layer needs to abstract a large variety of
functionalities, enabling direct communication. IoT systems do not have to
restrict the selection among data link layers, but must enable their coexistence;
Network and ID aspect: This interoperability aspect combines two communi-
cation aspects: networking, which provides the same functionalities as the
correspondent OSI layer; and identifiers, which are provided using resolution
functionalities between locators and IDs. In order to support global manageabil-
ity, interoperability, and scalability, this aspect needs to provide a common
communication paradigm for every possible networking solution. This is the
narrow waist for the Internet of Things. The difference between identifiers
(unique descriptors of the Digital Artefact; either active or passive), and locators
(descriptors of the position of a given IoT element in the network), is the first
convergence point in the [oT Communication Model. Thus, this interoperability
aspect is in charge of making any two systems addressable from one another
notwithstanding the particular technologies they are adopting. In the case of our
recurring example the AndroidApp must be able to receive alarms generated by
the alarm Service, which in turns, must receive information from the Mote
Runner Device: in order for this to be possible the system must ensure that the
correct identifiers are supported by all the communicating technologies or can be
resolved via appropriate methods;

148 M. Bauer et al.

« End-to-end aspect: this aspect takes care of reliability, transport issues, transla-
tion functionalities, proxies/gateways support and parameter configuration when
the communication crosses different networking environments. By providing
additional interoperability aspects on top of those of the Network and ID aspect,
this aspect provides the final component for achieving a global M2M communi-
cation model. Connections are also part of the end-to-end scope. Also, Applica-
tion Layer aspects are taken care of here. Moreover Application Protocols in the
IoT tend to embed confirmation messages, and congestion control techniques
require being more complex than what is achievable in the Transport Layer in
the legacy models. With reference to the recurring example, this aspect will take
care of modelling the overall communication between the Alarm Service and the
Mote Runner Node and between the AndroidApp and the Alarm Service;

» Data aspect: the topmost aspect of the IoT Communication Model is related to
data definitions and transfers. While the Information Model provides a high-
level description for data of IoT systems, the purpose of this aspect is to model
data exchange between any two actors in the IoT. As described in the IoT
Information Model (see Sect. 7.4), data exchanged in IoT can adopt many
different representations, ranging from raw data to complex structures where
meta-information is added to provide context specific links. Finally, to make this
possible, the data aspect needs to model the following characteristics (Rossi
2013): (1) capability of providing structured attributes for data description;
(2) capability of being translated (possibly by compression/decompression) the
one to each other, e.g. CoAP is translatable to HTTP by decompression or XML
is translatable to EXI by compression, IPv4 is translatable to IPv6 by mapping;
(3) constrained device support. For instance, in the recurring example, the raw
data produced by the Mote Runner Sensors shall be converted into machine-
readable formats in order for the Alarm Service to be able to interpret and
use them.

7.6.3 Composed Modelling Options

Actual networks may need more than a single communication stack that can be
arranged in several configurations: in particular, here we will analyse how two of
the most popular configurations can be modelled according to the IoT Communi-
cation Model. In the following we will refer to (1) gateway configuration as the
composition of two or more protocol stacks that are placed side by side across
different media, and (2) virtual configuration as the composition of two or more
protocol stacks, one on top of the other.

http://dx.doi.org/10.1007/978-3-642-40403-0_7

7 ToT Reference Model 149

7.6.3.1 Gateway Configuration

In this configuration, the IoT Communication Model describes the overall commu-
nication behaviour of the system so that any two communicating element can be
seen seamlessly connected.

Figure 7.18 provides a graphical example of the modelling of three protocol
stacks in gateway configuration. In this example, the two end-point Application
Layers can communicate thanks to the gateways which maps the underline stacks.

In particular, the first gateway (on the left of the figure) bridges the communica-
tion between an Ethernet and a WiFi network, while the second (on the right), in
addition to the bridging functionality between WiFi and ZigBee, adds a translation
functionality for converting IP to 6LoWPAN, TCP to UDP, HTTP to CoAP and
vice versa.

This gateway configuration may be used in the recurring example to let the Mote
Runner Node communicate using ZigBee technology with the Alarm Service
deployed in a server farm thanks to the two gateways.

While the actual configuration of the different protocol stacks is out of the scope
of the model, the overall behaviour of the system can be modelled according to the
five interoperability aspects described above.

7.6.3.2 Virtual Configuration

In this configuration the IoT Communication Model aims at describing the overall
communication behaviour of a system, where the actual communication path is
virtualised by tunnelling the communication using a second protocol stack.

Figure 7.19 exemplifies the modelling of a system behaviour using a virtual
configuration: here, there is an inner communication path composed of an Ethernet
network and a WiFi network using a bridging block and an outer communication
path that is independent of the inner path and allows for the two application layers
to communicate. Such a scheme is usually realised using virtual private network
solutions.

7.6.4 Channel Model for IoT Communication

This model aims at detailing and modelling the content of the channel in the
Shannon-Weaver model in the context of the IoT domain. This model does not
pretend to capture every possible characteristic of IoT technologies, but provides a
common ground to be used to compute overall system performance and for
benchmarking. Further models have to be considered in order to account for more
specific physical aspects.

150 M. Bauer et al.

Data E poprcael > Application i

| [[resdnen a1 [|

I H []

Endto md? i HTTP —lp CoAP i CofP i
=1 TeP : TCP —1{» UDP : upP _s
NeM‘UﬂlBIDi P P —» P E P —tesLowpan || SLOVIPAN ;
Link ! Ethgrmat Ethdmet Wi T w1 Figges | Zighes i
pm.mi Ethgmet Ethqmet Fi Fi Zighee MP" i

H

Fig. 7.18 Gateway configuration for multiple protocol stacks, aligned according to the IoT aspect
model (see Fig. 7.17)

|
i Application > P

Data - .
{__[Nsssniaion Presentation
]
1} H'rrP

Endto end | ¥ 7 HTTP
i.— TCP — Tee TR e
MNetwork & ID E s | P > P f =

r L

Link f L1 endne Ethdmet wiFi wiFi 4
f

Physical | Ethgmet Ethdmet WIFi WIFi

|

Fig. 7.19 Virtual configuration for multiple protocol stacks

Figure 7.20 depicts end-to-end abstraction of a packet delivery between distant
Devices. The information source can be abstracted as a resource in the IoT Domain
Model, and the transmitter as a Device; while the receiver and destination pair can
be mapped as a Device-Service pair.

Following this abstraction, and pushing it forward, we focus on the channel
modelling. In the 10T context, the channel can assume a multiplicity of forms.

Please notice that the following abstraction is useful in order to have an abstract
description but when it comes to apply the Shannon-Hartley theorem it is crucial to
remember this theorem has to be applied independently to each link composing the
path between the sender and the receiver: C;=B; log(/+S;/N;), where C; is the
channel capacity, B; is the channel bandwidth, S;/N; is the signal-to-noise ratio
(or the carrier-to-noise ratio in case of modulated signals), each of them related to
the /-th link. This channel capacity metric is concave and it can be aggregated
according the following rule: C;;=min(C,;,C;), where C; is the aggregated
capacity from i to k, while C;; is capacity of the link from i to j and Cj; is the
capacity of the link between j and &.

Given two adjacent channels, which require to be connected by the means of a
gateway, their aggregated capacity is extremely useful in order to dimension the
gateway itself. Nonetheless, assuming you cannot control the routing on the Inter-
net the scope is limited to the portion of links of which you know the characteristics,
or for a link of which you can suppose to know the lower bound. A valid assumption

7 ToT Reference Model 151

!nfg‘r;m%gcn —p | Transmitter | —p Channel — Receiver |——p | Destination

Noise
Source

Fig. 7.20 Schematic diagram of a general communication system

will be anyway that the aggregated capacity cannot be bigger than the capacity of
the known links, providing a strong tool to avoid over-dimensioning the gateways.
Indeed, this is extremely useful when designing a constrained network and its
ingress and its egress.

It is important to point out that there is a distinction between the channel model
in the current Internet and that of the IoT. The former is depicted in Fig. 7.21 below,
where the Internet block acts as a black-box summarising every channel transfor-
mation that may happen between the two gateways.

To proceed in modelling the channel in IoT it is important to give a definition of
what we call constrained and unconstrained networks:

» Unconstrained networks are characterised by high-speed communication links
(e.g., offering transfer rates in the Mbit/s range or higher) like, for instance, the
wired Internet of today. Link-level transfer latencies are also small and mainly
impacted by congestion events in the network rather than by the physical
transmission technology;

» Constrained networks are characterised by relatively low transfer rates, typi-
cally smaller than 1 Mbit/s, as offered by, e.g., IEEE 802.15.4. These networks
are also characterised by large latencies. These are due to several factors
including: (1) the involved low-bitrate physical layer technology and (2) the
power-saving policy of the terminals populating these networks, which may
imply the periodic power off of their radios for energy-efficiency reasons.

According to this heterogeneous networks can be seen as the combination of
constrained and unconstrained networks linked together via gateways and/or
proxies.

The picture is much different in the IoT. As can be seen in the scenarios depicted
in (Rossi 2013), in the simplest IoT case the channel consists of a single constrained
network (e.g. a WSAN island), as depicted in Fig. 7.22.

In a slightly more complicated case, the IoT channel can consist of several
constrained networks, which can rely on different network technologies (see
Fig. 7.23).

A different case consists of a channel embodied by a constrained network and an
unconstrained one (see Fig. 7.24).

An additional case consists of a channel formed by two constrained networks
intermediated by an unconstrained network. A common implementation of this case
us the most important in the IoT: the one involving two constrained networks linked
by the Internet (see Fig. 7.25).

152 M. Bauer et al.

Network r Gateway I—b Internet r Gateway I—> Network I

Fig. 7.21 Channel model for the current Internet

Constrained
Network

Fig. 7.22 10T channel for a single constrained network

Constrained & B Constrained
Network Gateway Network

Fig. 7.23 10T channel for communication over two constrained networks

What makes IoT very peculiar is the nature of the constrained networks it relies
on. Such networks are formed by constrained Devices and the communication
between the Devices can:

1. Be based on different protocols;
2. Require additional processing in the gateways.

It is important to point out that the characteristics of each network can have a
noticeable impact on the overall end-to-end communication.

In the previous section we tackled the channel capacity using the Shannon-
Hartley theorem and the min operation in order to aggregate multiple hops.
Obviously the channel capacity is not the only important metric when modelling
the IoT communication.

7.7 Trust, Security, Privacy

IoT systems integrate in a seamless way physical objects, data, and computing
devices into a global network of information about ‘smart things’. In this
scenario, services act as bridges through which these ‘smart things’ interact
with each other in an automated way and with as less human intervention as
possible. Towards our aim to provide a Reference Architecture for IoT systems,
it becomes thus mandatory to discuss potential security issues and define a
security model for our architecture. On the way to our goal we proceed as
follows: we identify a few separate classes of security properties that we deem
important for an [oT system and provide, for each class, tools and mechanisms
that serve as solid foundations upon which we can build complex solutions that
guarantee those properties.

7 ToT Reference Model 153

Constrained = » Unconstrained
Network Gatowey Network

Fig. 7.24 10T channel for communication constrained to unconstrained networks

Constrained | _,, Gateway — Internet — Gateway —p | Constrained
Network Network

Fig. 7.25 10T channel for communication over two constrained networks intermediated by the
Internet

Considering the multi-faceted entities that a [oT system is made of, we spot the
following necessary properties: Trust, Security, Privacy, and Reliability. In the
remainder of this chapter we discuss these properties separately and delineate, for
each of them, a reference model within the framework of our architecture.

7.7.1 Trust

An important aspect of IoT systems is the fact that they deal with sensitive
information (e.g. patients’ electronic health records). The entities and services
therein recurrently process, store, retrieve, and take decisions upon this type of
data. In this scenario, enforcing trust — compliance to an expected functional
behaviour — on all entities, protocols, and mechanisms an IoT system is made of
becomes a “must”.

Within this project, we focus on Trust at application-level. In particular, we aim
at defining a Trust Model that provides data integrity and confidentiality, and
endpoint authentication and non-repudiation between any two system-entities that
interact with each other.

Trust Model Mandatory Aspects

Describing all possible trust-model archetypes is out of the scope of this document.
Nonetheless, we list hereafter a few and basic aspects that we believe to be
mandatory for defining a Trust Model for IoT systems:

e The Trust-Model domains: In complex systems that include multi-faceted
entities, like, e.g., the IoT, a model that equally shapes the Trust of all
components is difficult, if not impossible, to define. For this reason, various
domains within the system should be determined, with every domain defining a
specific set of subjects to which certain aspects of the trust model apply;

e Trust-evaluation mechanisms: They define a coherent and safe methodology
for computing the trustworthiness degree of a subject within the system. Evalu-
ation mechanisms are based on information previously collected on the given
subject. Depending on the application scenario, this information can be obtained

154 M. Bauer et al.

by direct experiences with the subject, witness information on the subject
coming from other members of a community, social-network analysis providing
sociological information on the subject and so on. A trust-evaluation mechanism
must take into account the source of the information on which the trust value is
being computed, i.e. the trustworthiness of the source itself, and carefully weight
its information accordingly in computing the final trust value;

« Behaviour policies: They regulate the ways two subjects within the same Trust
Model domain interact according to their trustworthiness value. They define how
subjects that use the system may interact with other subject. E.g., if a wireless
sensor A is asked to handle a multi-hop message coming from a sensor B with a
very low trust value, Sensor A might decide, according to the behaviour policies
defined by the Trust Model, to not accept the message from Sensor B. Though it
is not recommended, a Trust Model can define specific behaviours for
interacting with subjects whose trust-value cannot be computed within that
model;

* Trust anchor: It is a subject trusted by default (possibly after authentication) by
all subjects using a given Trust Model, and exploited in the evaluation of third
parties’ trustworthiness. In the IoT environment the trust anchor can either be
local to a given subnetwork — running on a node in the same peripheral network,
e.g. a gateway — or a global and centralised device that is deployed on the
Internet;

¢ Federation of trust: It delineates the rules under which trust relationships
among systems with different Trust Models can be defined. The federation of
trust is essential in order to provide interoperability between subjects that use
different Trust Models. The federation of trust becomes particularly important
within an IoT system deployed on a large scale, where the coexistence of many
different Trust Models it is very likely;

e M2M support: The interaction among autonomous machines is deemed very
common in [oT systems. Prior dynamically identifying and accessing resources
of one-another, these machines should be able to autonomously, according to the
specifics in the Trust Model, evaluate the trustworthiness of each-other.

7.7.2 Security

Now that we have discussed the fundamental aspects that will be included in our
Trust Model, in this section we provide a generic overview of the Security reference
model in our architecture.

Our Security reference model is made of three layers: the Service Security layer,
the Communication Security layer and the Application Security layer. The former,
described in details in (Gruschka and Gessner 2012), includes the following
components: Authorization, Identity Management, Trust and Reputation, Authen-
tication, and key exchange and management. In the remaining of this section we
detail the two last layers.

7 ToT Reference Model 155

7.7.2.1 Communication Security

IoT systems are heterogeneous. Not only because of the variety of the entities
involved (data, machines, sensors, RFID, and so on), but also because they include
Devices with various capabilities in terms of communication and processing.
Therefore, a Communication Security Model must not only consider the heteroge-
neity of the system, but it also should guarantee a balance between security features,
bandwidth, power supply and processing capabilities (Rossi 2012).

Here we work under the assumption that the IoT device space can be divided into
two main categories: constrained networks (NTU) and unconstrained networks
(NTC) (see Networks and communication entities, Chap. 2 in (Rossi 2012)). The
domain of constrained devices contains a great heterogeneity of communication
technologies (and related security solutions) and this poses a great problem in
designing a model encompassing all of them. Examples for such communication
technologies can be found in (Rossi 2012)).

To mitigate the aforementioned heterogeneities we could provide a Communi-
cation Security Model with a high degree of abstraction. However, it would be
useless, as it would lack the specifics needed in the moment of implementing a
specific IoT architecture. As in the Communication Model (see Sect. 7.1.6), we
address the problem by introducing profiles that group heterogeneous Devices into
groups characterised by given specifications.

Figure 7.26 above depicts our approach to lower-layer security in IoT. We
exploit gateways:

On the edge between the domains of unconstrained and constrained devices,
gateways have the role of adapting communication between the two domains.
Gateways are unconstrained devices; therefore, they can be exploited to boost up
the security of constrained devices by running on their behalf energy-hungry and
complex security mechanisms. In addition, gateways can also be used in order
manage security settings in peripheral NTC networks.

We enable these functionalities in the gateways by extending them with the
following features:

¢ Protocol adaptation between different networks (by definition);

» Tunnelling between themselves and other nodes of the NTU domain. (Optional;
impacts on trust assessment);

e Management of security features belonging to the peripheral network
(Optional);

» Description of security options related to traffic originated from a node attached
to the gateway. (Authentication of source node, cryptographic strength, .. .);

« Filtering of incoming traffic (i.e. traffic sent to one of the nodes attached to the
gateway or vice-versa) according to network policies, user-defined policies, and
destination-node preferences (Optional).

http://dx.doi.org/10.1007/978-3-642-40403-0_2

156 M. Bauer et al.

CDSecFeat

Internet

Constrained

Device Domain

Legend
(Multihop) CD Connections

= with different security features

NTC security features

Fig. 7.26 NTC Constrained Device Network, NTU Unconstrained Device Network, CDSecFeat
Constrained device security feature. The CDSecFeat implementation leverages the extension of
the functionalities of gateway devices

7.7.2.2 Application Security: System Safety and Reliability

IoT systems include, without any doubt, a wide range of application scenarios: from
home-security to structure monitoring of bridges, buildings, and so on, and from
surveillance systems to health monitoring. Most of these scenarios must be reliable:
a single failure in the system can lead to tragic consequences. This is why, besides
from security and privacy mechanisms that guarantee trustworthiness of the system
as a whole, it becomes important to assure also system safety.

System safety is application specific: for an electricity system safety includes
assuring that no harm is done in case of a short circuit. For an elevator system safety
would include making sure that the elevator does not start moving when the
elevator doors are opened. Nonetheless, there is a common approach to achieve
fail-safe systems made of two phases. The first, called the hazard identification
phase, aims at detecting all possible risks that could possibly lead to severe
accidents. The second phase includes the system design according to the fail-safe
philosophy: systems are designed in a way that the far majority of failures will
simply result in a temporary or total loss of service, so to avoid major damage/
accidents. An example of a safe-fail system is the security belt sensor in smart-cars:
If the driver does not fasten it, the car does not start.

While we believe that the classical fail-safe approach to system design can
assure safety in IoT systems, with respect to hazards inside the system (e.g. the

7 ToT Reference Model 157

security belt within the car, the short circuit within the electricity system and so on),
we also believe that often, the safety of the system depends on issues that originate
outside the system. The following scenario gives a representative example of
outside-the-system hazards: A bulldozer aiming at bringing down a tree damages
(by chance) the foundations of a building nearby. Even though the damage is not
visibly spottable right away, at the first slight earthquake it makes the building
crumble down by thus costing human lives.

Clearly, in these cases, threat analysis plays an important role. Despite from
considering only system-insider hazards, the system designer should carefully
examine the ‘outside world’ of the system in order to identify potential outside
hazards. Only after a meticulous analysis of all possible threats (both insiders and
outsiders) proceed with the system design following the fail-safe philosophy.

Lastly, another group of vicious threats imposed to safety, or rather, reliability of
IoT systems are terroristic. These can either aim at bringing down large automatic
systems e.g. a city or country wide electricity system, internet connectivity, border
security monitoring system and so on, or targeting directly the users (e.g. by
wirelessly reprogramming pacemakers of patients®). In the former case, the attack
consequences could be limited by including intrusion/failure detection mechanisms
(e.g. heart-beat protocols) coupled with redundancy that brings the targeted service
up in a short-time period after the attack. In the second case, however, this type of
solution might not work well: If the pacemaker of a patient is stopped, even though
an alarm might be raised in the IoT system, the patient’s life would most probably
end in a short time.

7.7.3 Privacy

Due to the variety of the entities that handle user-generated data in IoT,
guaranteeing data privacy becomes mandatory in these systems. For this reason
we include in our reference model also a Privacy Model, the aim of which is to
describe the mechanisms — e.g. access policies, encryption/decryption algorithms,
security mechanisms based on credentials, and so on — that prevent data of a subject
(either user or entity) to be used improperly.

According to (Weber and Weber 2010), a privacy friendly system should
guarantee the following properties:

* The subject must be able to choose sharing or not sharing information with
someone else;

¢ The subject must be able to fully control the mechanism used to ensure their
privacy;

2 According to a report published at www.secure-medicine.org, peacemakers can be wirelessly
hacked in, and reprogrammed to shut down or to deliver jolts of electricity that would potentially
be fatal to patients.

http://www.secure-medicine.org/

158 M. Bauer et al.

» The subject shall be able to decide for which purpose the information will be
used;

¢ The subject shall be informed whenever information is used and by whom;

» During interactions between a subject and an [oT system, only strictly needed
information shall be disclosed about the subject, and pseudonyms, secondary
identity, or assertions (certified properties of the end-user) shall be used when-
ever possible;

It shall not be possible to infer the subject’s identity by aggregating/reasoning
over information available at various sources;

» Information gained for a specific purpose shall not be used for another purpose.
E.g., the bank issuing a credit card should not use a given client’s purchase
information (logged so to keep track of that client’s account) to send him
advertising on goods similar to his purchases.

To provide the above properties the IoT-A privacy model relies on the following
functional components: Authentication FC, Trust and Reputation FC.

Table 7.1 below briefly summarizes how these components mitigate some of the
privacy threats to privacy, further discussed in the threat analysis performed in
IoT-A (see Appendix).

Central to the Privacy Model is the Identity Management Functional Component.
A description of this FC is provided in deliverable (Gruschka and Gessner 2012).

In our system, any subject (service or user) is univocally mapped to its root
identity. However, a subject might require to be provided with multiple secondary
identities by the Identity Manager. The set of multiple identities associated to a
unique subject is denoted with identity pool (see Fig. 7.27). Secondary identities
can then be used, for privacy or usability purposes, when the subject interacts with
the IoT system. However, the system does log the identities (either secondary/
pseudo or root identities) of the subjects it interacts with so to mitigate possible
Repudiation. The Identity Management FC provides a mapping functionality that
maps (to requesters with the required credentials) root identities to secondary
identities/pseudonyms.

The second corner-stone functionality for ensuring privacy is Authentication
(AuthN component).

Its functionality is to bond a subject to its identity (root identity) or to certify
properties/roles of the subject, or both. If the subject is a user, examples of possible
certified properties can be:

« Has age over 18 years old;
¢ Has valid driving license;
« Has certification level x.

Similarly, certified roles can be:

¢ Management;
¢ Operational;
¢ Maintenance,. ..

7 10T Reference Model

159

Table 7.1 Example of privacy threats mitigation within IoT-A

Threat Result

Mitigation

Identity spoofing User’s identity is spoofed

User is involved in
transactions with a
malicious peer

Information
disclosure

Attacker gains knowledge
of user’s private
parameters

Attacker gains knowledge
of user’s location

Robust user authentication procedure preventing
man-in-the-middle attacks, with proper
credentials-management policy provided by
an Authentication FC

Trustworthy discovery / resolution / lookup sys-
tem. Trustworthiness of the entire system is
guaranteed through its security components
(especially Authentication FC and Trust
and Reputation FC) as well as its global
robustness (security by design)

The Identity Management FC enforces a robust
pseudonymity scheme that ensures anonym-
ity and unlinkability

User’s location can be hidden through reliance
on pseudonyms provided by Identity Man-

agement FC

Identity pool

Root
Identity

Group
Identity 1

Identity 1

Identity 4 Identity 5 Identity 6

Fig. 7.27 Example of an identity pool

So, in our system, a given subject can be granted access to an IoT resource
according to the subject’s identification, or according to the subject’s certified
properties/roles. This enables subjects to still get access to the system yet not
revealing their identity.

The AuthN component proposed by IoT-A offers the Authenticate functionality,
the profile of which is:

assertion: Authenticate (UserCredential)

where UserCredential is any kind of information used by the Authenticate func-
tionality to check the identity of the party to be authenticated (e.g. username —
password pair, PIN code, retinal identification and so on).

160 M. Bauer et al.

assertion (following definition of (Gruschka and Gessner 2012)) is the information
that guaranties the occurrence of an authentication of a user client at a particular
time using a particular method of authentication. The assertion is further used by
the Authorisation (AuthS) component in order to decide upon granting or
denying access to a resource.

Finally, the AuthN component provides also Authorisation (AuthS): It is the
process by which access to information or an IoT Resource is granted to a subject,
according to an access policy and for a specific type of action. In order to guarantee
user-privacy, the end-users should be in control of access policies relating to their
personal data.

The profile of the Authorise function is:

Boolean: Authorise (Assertion, Resource, ActionType),

where Assertion is the result of Authentication, Resource represents the resource to
be accessed, and ActionType represents the action to be performed upon the
resource.

As mentioned earlier, there are various models of authorisation, property-based
access control and assertion-based access control (Gruschka and Gessner 2012).
Both are supported by IoT-A through abstract APIs (Gruschka and Gessner 2012).

Identity Management FC, Authentication FC, and Authorisation FC guarantee
privacy within the IoT system. Nonetheless, if the data within the IoT system’s
database is stored as clear text, nothing prevents hackers from tampering with the
database and accessing the data. To protect the user against these types of attacks,
we believe that the data should be encrypted before storing it in the database.

7.7.4 Contradictory Aspects in IoT-A Security

In distributed systems, including IoT-like ones, one has often to trade-off between
security properties. In particular, trust and privacy, are considered as being two
contradictory properties. From one side, we want to build a system which is
trustworthy. Le., every entity in that system can prove, according to either trust-
building mechanisms or to certificates distributed by some authority, its own trust
value. From the other side, we want the system to provide, to each entity, the
privacy that it requires, without forcing it to disclosure more personal information
that it wants to. This tension between security and privacy emerges also in our
reference model. Indeed, the trust-evaluation mechanisms for example not couple
well with the many pseudonyms an entity might present to protect its privacy in
various scenarios. Indeed, a given malicious entity can fool the system by
presenting, within a given context, the pseudonym with the highest trust value
built so far. It becomes thus very important to strongly bind, somehow, the trust
value of an entity with its root ID. But, from the other side, this imposes problems to
the privacy of the entities: If the trust-value has to be calculated on the fly, based on

7 ToT Reference Model 161

certificates given to that entity in the many interactions it has had in the past, all
bound to its root ID, the entity can be easily traced inside the IoT, even though it
presents different pseudonyms. A solution to this problem is to make the trust value
be recalculated, each time an interaction occurs, by a unique, trustworthy system
component which is also able to bind various pseudonyms to root IDs. This solution
does guarantee correct trust values for all entities in the system, yet preserving their
privacy. However, it has two major drawbacks: (1) The unique component would
become a huge bottleneck in the system; (2) It would become a single point of
failure: By compromising it (or tampering with it) an attacker would be able to
de-anonymize all entities in the system, or even change trust-values to his liking, by
boosting trust-values of malicious entities, and lowering the trust value of others.
For the above reasons, we believe that within the IoT-A system we should opt for
a mechanism which trades-off trust for privacy: Subjects are allowed just one trust-
value, valid for a certain number of pseudo-identities, and included in a trust-
certificate signed by the AuthN component. The trust value is then updated each
time the subject interacts in the system, by the counter-part of this interaction. The
trust value is to be used for sensitive interactions and/or access to sensitive system
resources, data, and services, within which the subject is thus required to present
one of the pseudonyms bound to the trust-certificate. This way, a subject cannot
fake its unique trust value, which is, from the other side not bound to its
pseudonyms “trust-free” — the ones through which the subject can access less
system’s resources, data, and services, that do not require proof of trust values.

7.8 Conclusion

In this Section we introduced the foundation of the IoT ARM, the IoT Reference
Model. The IoT Reference Model defines the basic concepts, models, terminology,
and relationships in the IoT ARM. It demonstrates our thinking, rationale and
design space for structuring the domain of the Internet of Things. It also proposes
the Functional Groups that we deem relevant for IoT architectures, as outlined in
the IoT Functional Model (see Sect. 7.1.5).

Within the IoT Reference Model, the IoT Domain Model was discussed in great
detail, as the [oT Domain Model defines the language, the concepts, and the entities
of the IoT world and how they are related to each other. This is confirmed by the
fact, as we learn in Section (sec: Chap. 6 “IoT Context View”), that the IoT Domain
Model plays a prominent role in IoT-A-guided system architecting. As we will see
in Chap. 12 when we perform a reverse mapping analysis with the concepts defined
in other projects and standards related to the Internet of Things, the definition of a
common understanding is crucial for developing interoperable architectures and
systems. This common understanding permeates every aspect of the architecture,
and will be a key aspect for the widespread acceptance of a future IoT systems and
standards. In that respect it is most important to carefully study the concepts of the

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_12

162 M. Bauer et al.

IoT Domain Model, as it is the foundation of the other models presented in this
chapter and of the IoT Reference Architecture that will be discussed in Chap. 8.

While a common language and common terminology is the precondition for all
other models, this chapter also provided the other models crucial for the develop-
ment of IoT architectures, most importantly the IoT Information Model that relates
to important aspects of information in an IoT system and will be detailed in the IoT
Information View in Sect. 8.2.3 that discusses information on a higher level of
detail.

The IoT Functional Model discussed in this chapter defines several Functional
Groups that pick up the IoT concepts and entities introduced in the IoT Domain
Model and it relates them to common functionalities present in an IoT architecture.
Just as for the IoT Information Model and View, the IoT Functional Model will be
further detailed with concrete functional components in Sect. 8.2.2.

Finally, Communication and Security models, as well as techniques of system
safety and reliability where introduced that address these issues in IoT. The security
and the communication model constitute Functionality Groups in the IoT Func-
tional Model, and will be picked up again in the IoT Reference Architecture (see
Sects. 8.2.4 and 8.3.3).

What we have also addressed in this chapter, is the application of the common
IoT use case introduced in Sect. 4.2 to several models in order to facilitate getting
acquainted with the concepts defined in the respective model by tying their under-
standing together with a common, “Red Thread”. We hope that this application of
the use case helps with understanding the different models. We are aware of the
complexity of the IoT Domain Model and the Trust, Security, and Privacy issues,
but this complexity is inherent in the domain of the Internet of things itself. It is
however crucial to really understand the models introduced in this chapter, before
moving on.

The next Chap. 8, the IoT Reference Architecture, builds upon this foundation
and details it even further, so that concrete IoT-compliant architectures can be
derived. The section uses several ways of projecting the IoT Reference Architec-
ture, and it also presents several “Views” that complement the different models
presented in this section. For instance, we propose Functional Components, which
relate to the IoT Functional Model and the IoT Communication Model, in the
Functional View (see Sect. 8.2.2) that we discussed in this chapter. We also provide
an Information View, which tightly relates to the IoT Information Model discussed
in this chapter.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

Chapter 8
IoT Reference Architecture

Martin Bauer, Mathieu Boussard, Nicola Bui, Jourik De Loof,
Carsten Magerkurth, Stefan Meissner, Andreas Nettstrater, Julinda Stefa,
Matthias Thoma, and Joachim W. Walewski

M. Bauer (P)

NEC Europe Ltd., NEC Laboratories Europe, Software & Services Research Division,
Kurfiirsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: Martin.Bauer@neclab.eu; www.nw.neclab.eu

M. Boussard
Alcatel-Lucent Bell Labs France, Route de Villejust, 91620 Nozay, France
e-mail: mathieu.boussard@alcatel-lucent.com; www.alcatel-lucent.com

N. Bui
Consorzio Ferrara Ricerche, Via Savonarola 9, 44122 Ferrara, Italy
e-mail: buincl@unife.it; www.unife.it

J. De Loof
Alcatel-Lucent Bell N.V., Copernicuslaan 50, 2018 Antwerpen, Belgium
e-mail: jourik.de_loof@alcatel-lucent.com; www.alcatel-lucent.com

C. Magerkurth « M. Thoma

SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

e-mail: carsten.magerkurth@sap.com; www.sap.com; Matthias.thoma@sap.com;
WWW.sap.com

S. Meissner
University of Surrey, Stag Hill, GU2 7XH Guildford, UK
e-mail: s.meissner@surrey.ac.uk; www.surrey.ac.uk

A. Nettstriter

Fraunhofer Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer Str. 2-4,
44227 Dortmund, Germany

e-mail: andreas.nettstractter@iml.fraunhofer.de; www.iml.fraunhofer.de

J. Stefa
Universita Sapienza di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
e-mail: stefa@di.uniromal.it; www.cattid.uniromal.it

J.W. Walewski
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
e-mail: joachim.walewski@siemens.com; www.siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_8, 163
© The Author(s) 2013

mailto:Martin.Bauer@neclab.eu
mailto:www.nw.neclab.eu
mailto:mathieu.boussard@alcatel-lucent.com
mailto:www.alcatel-lucent.com
mailto:buincl@unife.it
mailto:www.unife.it
mailto:jourik.de_loof@alcatel-lucent.com
mailto:www.alcatel-lucent.com
mailto:carsten.magerkurth@sap.com
mailto:www.sap.com
mailto:Matthias.thoma@sap.com
mailto:www.sap.com
mailto:s.meissner@surrey.ac.uk
mailto:www.surrey.ac.uk
mailto:andreas.nettstraetter@iml.fraunhofer.de
mailto:www.iml.fraunhofer.de
mailto:stefa@di.uniroma1.it
mailto:www.cattid.uniroma1.it
mailto:joachim.walewski@siemens.com
mailto:www.siemens.com

164 M. Bauer et al.

In this chapter we present our IoT Reference Architecture. This IoT Reference
Architecture is, among others, designed as a reference for the generation of
compliant IoT concrete architectures that are tailored to one’s specific needs. For
other usages of the IoT Architectural Reference Model see Chap. 3.

The IoT Reference Architecture is kept rather abstract in order to enable many,
potentially different, IoT architectures. Guidance on how to use all the parts of the
IoT Reference Architecture can be found in Chaps. 5, 6, 9, 10, and 11.

Both in devising this chapter and in presenting the outcomes of our deliberations,
we are adhering to the framework of architectural views and perspectives, as
described in the software engineering literature and standards (for more details
see (Rozanski and Woods 2011)). The use of well-known concepts makes it easier
for architects from other domains to feel comfortable in the IoT world and this
framework was thus a rather natural choice. To be more precise, we used the
definitions of views from (Woods 2008), as well as their architectural-perspective
catalogue. We adopted both according to IoT-specific needs. One has to be careful
though, about the definition of views and viewpoints as these differ between
authors. Nonetheless, there are no conceptual differences to traditional approaches
and someone with a background in designing any kind of system should not have a
steep learning curve. Notice though that architectural views and perspectives were
originally defined for concrete architectures and not for reference architectures.
Views that are very use-case dependent, for instance the IoT Physical Entity view
and the context view, are therefore not covered here. For a more detailed discussion
of this aspect see Chap. 5. Furthermore, since a reference architecture covers a wide
range of use cases, it is of course void of use-case-specific details (for instance
usage patterns and the related interactions of the system’s functional components),
such aspects are not covered in the IoT Reference Architecture but have to be
attended during, for instance, the architecture-generation process.

The structure of the chapter is as follows: First, we give a short overview on
architectural views and perspectives. We then go on with presenting views that
constitute the IoT Reference Architecture. The functional view and its viewpoints
are described in great detail. At the time of writing there was indeed so much
information at hand that we decided to only present an overview of the functional
view here and to cover, for instance, the detailed definitions of the functional
components of the functional-decomposition viewpoint in Carrez et al.
(2013). Next, the information view is introduced as well as the deployment and
operational view. The remainder of the chapter is then devoted to architectural
perspectives. We describe four architectural perspectives (evolution and interoper-
ability; performance and scalability; trust, security, and privacy; and availability
and resilience). How architectural perspectives influence the architecting process is
not covered here but in Chap. 6.

http://dx.doi.org/10.1007/978-3-642-40403-0_3
http://dx.doi.org/10.1007/978-3-642-40403-0_5
http://dx.doi.org/10.1007/978-3-642-40403-6
http://dx.doi.org/10.1007/978-3-642-40403-9
http://dx.doi.org/10.1007/978-3-642-40403-10
http://dx.doi.org/10.1007/978-3-642-40403-11
http://dx.doi.org/10.1007/978-3-642-40403-0_5
http://dx.doi.org/10.1007/978-3-642-40403-0_6

8 IoT Reference Architecture 165

8.1 Short Definition of Architectural Views and
Perspectives

A system architecture, and thus by default, a reference architecture, needs to answer
a wide range of questions. Such questions can, for instance, address:

« Functional elements.
 Interactions of said elements.
¢ Information management.

» Operational features.

* Deployment of the system.

What the user of an architecture expects, is an architectural description, viz. “a
set of artifacts that documents an architecture in a way its stakeholders can
understand and that demonstrates that the architecture has met their concerns”
(Rozanski 2005b). Instead of providing these artifacts in a monolithic description,
one often chooses to delineate them by so-called architectural views. The idea
behind so doing is to focus on system aspects that can be conceptionally isolated.
Architectural views make both the derivation of the architecture and its validation
easier. The above bullet-point list provides examples of such views. A more
detailed discussion of views and how we adapted them to the reference-architecture
realm is provided in the next section.

In the past it has been found that views are unfortunately not enough for
describing system architectures and that many stakeholder aspirations are rather
of a qualitative nature (Rozanski and Woods 2011). Such qualitative aspirations cut
across more than one view. Such aspirations are referred to architectural
perspectives, of which privacy is but one example. A more detailed discussion of
architectural perspectives is provided in Sect. 8.8.

The joint use of architectural views and perspectives in architecture descriptions
is described in more detail in the pertinent literature (Rozanski and Woods 2011).

8.2 Architectural Views

Views are used during the design and implementation phase of a concrete system
architecture. They are defined in the following way:

A view is a representation of one or more structural aspects of an architecture
that illustrates how the architecture addresses one or more concerns held by
one or more of its stakeholders (Rozanski and Woods 2011).

166 M. Bauer et al.

A view is composed of viewpoints, which aggregate several architectural
concepts in order to make the work with views easier. The IEEE standard 1471
defines viewpoints as follows:

A viewpoint is a collection of patterns, templates, and conventions for
constructing one type of view. It defines the stakeholders whose concerns are
reflected in the viewpoint and the guidelines, principles, and template models
for constructing its views (IEEE Architecture Working Group 2000).

Some typical examples for viewpoints are:

* Functional view: functional-decomposition viewpoint; interaction viewpoint;
interface viewpoint;

¢ Information view: information-hierarchy viewpoint; semantics viewpoint;
information-processing viewpoint; information-flow viewpoint.

8.2.1 Usage of Views and Perspectives in the IoT Reference
Architecture

As mentioned in the introduction to this chapter, the IoT Reference Architecture is
use-case- and application- independent and is therefore not compatible to the
concept of views and viewpoints one-by-one. But the idea behind the concept is
nevertheless helpful and was thus adopted for the use within the IoT Reference
Architecture. As discussed above the following views were left out from the IoT
Reference Architecture but are discussed in Chap. 5:

« Physical Entity View and
« Context View.

Concerning the Functional View, of the above three viewpoints, interactions are
not covered in the IoT Reference Architecture, since the number of arrangements of
the Functional Components and also their invocation is practically infinite. Instead,
we chose to cover some typical — but yet high-level — interaction patterns (see
Sect. 8.5).

The same is true for the deployment and operational View. However, there are
aspects to both that are practically invariant over the IoT domain and these aspects
are covered in Sect. 8.7. Also, what is an aspect of the deployment view in one
architecture can be an aspect of the operation view in another architecture. Situating
these aspects in either or is contingent on, among others

¢ Requirements (usability; institutional rules and traditions; . ..) and
¢ Design choices made (commission on manufacturing floor; shipment and instal-
lation by experts; operation by experts).

http://dx.doi.org/10.1007/978-3-642-40403-0_5

8 IoT Reference Architecture 167

Fig. 8.1 Functional view
process Functional
Model
Guides
¥
Unified Ster | Functional
Requirements " View

The following sections present the IoT Functional View, [oT Information View,
and the IoT Deployment and Operational view of the IoT Reference Architecture.

8.2.2 Functional View

8.2.2.1 Devising the Functional View

The functional view is defined by applying the methodology defined in Chap. 5 to
functional decomposition as can be seen in Fig. 8.1.

In a first step, the Unified Requirements are mapped to the different Functional-
ity Groups of the IoT Functional Model.

Next, clusters of requirements of similar functionality are formed and a Func-
tional Component for these requirements defined.

Finally, the Functional Components are refined after discussion with the techni-
cal work packages.

The viewpoints used for constructing the IoT Functional View are hence:

1. The Unified Requirements;
2. The IoT Functional Model.

Once all Functional Components are defined, the default function set, system use
cases, sequence charts and interface definitions are made, which all can be found
back in Carrez et al. (2013).

The Functional View diagram is depicted in Fig. 8.2 and shows the nine
functionality groups of the Functional Model. Note that:

» The Application FG and Device FG are out-of-scope of the [oT-A Reference
Architecture and are coloured in yellow;

¢ Management FG and Security FG are transversal FGs and are coloured
dark blue.

For each of the Functionality Groups, the Functional Components (FC) are
depicted.

http://dx.doi.org/10.1007/978-3-642-40403-0_5

168 M. Bauer et al.

Application

Management Service loT Virtual Entity loT Service Security
Organisation Process Management

Process
Modeling

Process
Execution

Service
Composition

Fault Service Key Exchange &
au Orchestration VE & loT Management
Service Monitoring
Reportin: Service
P 9 Choreography

Configuration Authorisation

Trust & Reputation
VE i

| VE Service |

Member Identity Management
loT Service loT Service
State Resolution Authentication
Communication
End To End Network Hop to Hop
c s c ot o o

Device

Fig. 8.2 Functional-decomposition viewpoint of the IoT Reference Architecture

In the following sub-sections, the FC’s of each FG will be described in more
detail.

The Functional View presented in this chapter will give a description of the
Functional Components, but will not describe the interactions taking place between
the Functional Components.

The reason is that these interactions are typically depending on Design Choices
which are not made at this level of abstraction.

Chapter 10 will go more into detail and depict some typical interaction
scenarios.

In addition to the description in this chapter, more detailed information such as
requirement mapping, system use cases, interaction diagrams and interface
definitions can be found in Carrez et al. (2013).

8.2.2.2 10T Process Management

The IoT Process Management FG relates to the integration of traditional process
management systems with the IoT ARM. The overall aim of the FG is to provide the
functional concepts and interfaces necessary to augment traditional (business)
processes with the idiosyncrasies of the IoT world.

The IoT Process Management FG consists of two Functional Components (see
Fig. 8.3 below):

» Process Modelling;
* Process Execution.

http://dx.doi.org/10.1007/978-3-642-40403-0_10

8 IoT Reference Architecture 169

Fig. 8.3 IoT process

loT
management

Process Management

Process
Modeling

Process
Execution

The Process Modelling FC provides an environment for the modelling of
IoT-aware business processes that will be serialised and executed in the Process
Execution FC.

The main function of the Process Modelling FC is to provide the tools necessary
for modelling processes using the standardised notation, i.e. using novel modelling
concepts specifically addressing the idiosyncrasies of the IoT ecosystem (Meyer
2012).

The Process Execution FC executes IoT-aware processes that have been
modelled in the Process Modelling FC described above. This execution is achieved
by utilising IoT Services that are orchestrated in the Service Organisation layer.

The Process Execution FC is responsible for deploying process models to the
execution environments: activities of IoT-aware process models are applied to
appropriate execution environments, which perform the actual process execution
by finding and invoking appropriate IoT Services.

The Process Execution FC also aligns application requirements with service
capabilities. For the execution of applications, IoT Service requirements must be
resolved before specific IoT Services can be invoked. For this step, the Process
Execution FC utilises components of the Service Organization FG.

Finally, the Process Execution FC can run applications: after resolving IoT
Services, the respective services are invoked. The invocation of a service leads to
a progressive step forward in the process execution. Thus, the next adequate process
based on the outcome of a service invocation will be executed.

8.2.2.3 Service Organisation

The Service Organisation FG (see Fig. 8.4) is the central Functional Group that acts
as a communication hub between several other Functional Groups. Since the
primary concept of communication within the IoT ARM is the notion of a Service,
the Service Organisation is used for composing and orchestrating Services of
different levels of abstraction.

The Service Organisation FG consists of three Functional Components:

¢ Service Orchestration;
» Service Composition;
e Service Choreography.

170 M. Bauer et al.

Fig. 8.4 Service Service
organisation Organisation

Service
Composition

Service
Orchestration

Service
Choreography

The Service Orchestration FC resolves the IoT Services that are suitable to
fulfil service requests coming from the Process Execution FC or from Users.

Its only function is to orchestrate IoT Services: resolve the appropriate services
that are capable of handling the IoT User’s request. If needed, temporary resources
will be set up to store intermediate results that feed into Service Composition or
complex event processing.

The Service Composition FC resolves services that are composed of IoT
Services and other services in order to create services with extended functionality.
The Functional Component has two main functions: (1) support flexible service
compositions and (2) increase quality of information.

To support flexible service compositions, the Service Composition FC must
provide dynamic resolution of complex services, composed of other services.
These combinable services are chosen based on their availability and the access
rights of the requesting user.

Quality of information can be increased by combining information from several
sources. For example, an average value — with an intrinsically lower uncertainty —
can be calculated based on the information accessed through several resources.

The Service Choreography FC offers a broker that handles Publish/Subscribe
communication between services. One service can offer its capabilities at the FC
and the broker function makes sure a client interested in the offer will find the
service with the desired capabilities.

Also service consumers can put service requests onto the Choreography FC
while a suitable service is not available at the time when the request was issued. The
service consumer will get notified as soon as a service became available that fulfils
the service request issued before.

8 IoT Reference Architecture 171

Fig. 8.5 Virtual entity loT
Process Management

Virtual Entity

Process
Modeling

Process
Execution

VE & loT
Service Monitoring

VE Resolution VE Service

8.2.2.4 Virtual Entity

The Virtual Entity FG (see Fig. 8.5) contains functions for interacting with the IoT
System on the basis of VEs, as well as functionalities for discovering and looking
up services that can provide information about VEs, or which allow the interaction
with VEs. Furthermore, it contains all the functionality needed for managing
associations, as well as dynamically finding new associations and monitoring
their validity.

The Virtual Entity FG consists of three Functional Components:

* VE Resolution;
¢ VE & IoT Service Monitoring;
* VE Service.

The VE Resolution FC is the Functional Component which provides the
functionalities to the IoT User to retrieve associations between VE’s and IoT
Services.

This includes the discovery of new and mostly dynamic associations between
VE and associated services. For the discovery qualifiers, location, proximity, and
other context information can be considered. If no association exists, the associa-
tion can be created.

The User can also subscribe or unsubscribe to continuous notifications about
association discovery that fit a provided specification of the VE or of the Service. In
case of a notification, a callback function will be called.

Similar, the User can subscribe or unsubscribe to notifications about association
lookup.

The VE Resolution FC also allows to lookup VE-related services, i.e. search for
services exposing resources related to a VE.

Finally, the VE Resolution FC allows managing associations: insert, delete and
update associations between a VE and the IoT Services that are associated to
the VE.

The VE & IoT Service Monitoring FC is responsible for automatically finding
new associations, which are then inserted into the VE Resolution FC. New

172 M. Bauer et al.

associations can be derived based on existing associations, Service Descriptions
and information about VE’s.

The functions of the VE & IoT Service Monitoring FC are to assert static
associations, i.e. create a new static association between VE’s and services
described by the provided association, discover dynamic associations, i.e. create a
new dynamic or monitored association between VE’s and Services, update the
association and delete the association from the VE Resolution framework.

Finally, the VE Service FC handles with entity services. An entity service
represents an overall access point to a particular entity, offering means to learn
and manipulate the status of the entity. Entity services provide access to an entity
via operations that enable reading and/or updating the value(s) of the entities’
attributes. The type of access to a particular attribute depends on the specifics of
that attribute (read only/write only or both).

A specific VE service can provide VE history storage functionality, to publish
integrated context information (VE context information — dynamic and static), VE
state information, VE capabilities.

The two functions currently defined for the VE Service FC are to read and set an
attribute value for the entity.

It is not required to have an explicit register for Virtual Entities, but the VE
Resolution FC could be extended to be used in this way. The important aspect is to
agree on how to assign identifiers to Virtual Entities. For modelling any other aspect
of the Virtual Entity, a Virtual Entity service can be used that gives you access to all
information about a Virtual Entity. This can be current sensor information, as well
as historic information. Historic information would typically be stored in a data-
base, which can be modelled as a Network Resource (see Sect. 7.3.3).

8.2.2.5 IoT Service

The IoT Service FG (see Fig. 8.6) contains [oT services as well as functionalities for
discovery, look-up, and name resolution of IoT Services. It consists of two Func-
tional Components:

¢ JoT Service;
e JoT Service Resolution.

An IoT Service exposes one Resource to make it accessible to other parts of the
IoT system. Typically, IoT Services can be used to get information provided by a
resource retrieved from a sensor device or from a storage resource connected through
a network. An IoT Service can also be used to deliver information to a resource in
order to control actuator devices or to configure a resource. Resources can be
configurable in non-functional aspects, such as dependability security (e.g. access
control), resilience (e.g. availability) and performance (e.g. scalability, timeliness).

http://dx.doi.org/10.1007/978-3-642-40403-0_7

8 IoT Reference Architecture 173

Fig. 8.6 10T service loT
Process Management

Virtual Entity loT Service

Process
Modeling

Process
Execution

VE & loT
Service Monitoring

VE Resolution VE Service

loT Service

Resolution loT Service

IoT Services can be invoked either in a synchronous way by responding to
service requests or in an asynchronous way by sending notifications according to
subscriptions previously made through the service.

A particular type of IoT Service can be the Resource history storage that
provides storage capabilities for the measurements generated by resources.

The main functions of the IoT Service FC are to (1) return information provided
by a resource in a synchronous way, (2) accept information sent to a resource in
order to store the information or to configure the resource or to control an actuator
device and (3) subscribe to information, i.e. return information provided by a
resource in an asynchronous way.

The IoT Service Resolution FC provides all the functionalities needed by the
user in order to find and be able to contact IoT Services. The IoT Service Resolution
also gives services the capability to manage their service descriptions (typically
stored in a database as one entry), so they can be looked up and discovered by the
user. The user can be either a Human User or a software component.

Service Descriptions are identified by a service identifier and contain a service
locator that enables accessing the service. Typically they contain further informa-
tion like the service output, the type of service or the geographic area for which the
service is provided. The exact contents, structure and representation depend on
design choices taken, which is left open at the Reference Architecture level.
Examples for service models (structure) and a service description representations
can be found in (Martin D2.1 2012).

The functionalities offered by the IoT Service Resolution FC in brief are:

¢ Discovery functionality finds the IoT Service without any prior knowledge such
as a service identifier. The functionality is used by providing a service specifica-
tion as part of a query. What can be queried based on a service specification
depends on what is included in the service description. As described above, this
may include the service output, the service type and the geographic area for
which the service is provided. The representation of the service specification will

174 M. Bauer et al.

also be linked to the service description, e.g. if the service description is
represented in RDF, a service specification based on SPARQL would be
appropriate;

» Lookup is a functionality which enables the User to access the service descrip-
tion having prior knowledge regarding the service identifier;

¢ Resolution function resolves the service identifiers to locators through which the
User can contact the Service. A service locators are typically also included in the
service description, the resolution function can be seen as a convenience func-
tion that reduces the amount of information that has to be communicated,
especially if the service description is large and the contained information is
not needed;

¢ Other functionalities provided by the IoT Service Resolution FC are the man-
agement of the service descriptions. IoT Services can update, insert or simply
delete the service descriptions from the IoT Service Resolution FC. It is also
possible that these functions are called by the functional components of the
Management FG and not by the IoT Services themselves.

8.2.2.6 Communication

The Communication FG (see Fig. 8.7 below) is an abstraction, modelling the
variety of interaction schemes derived from the many technologies belonging to
IoT systems and providing a common interface to the IoT Service FG.

The Communication FG consists of three functional components:

e Hop To Hop Communication;
* Network Communication;
¢ End To End Communication.

The Hop To Hop Communication FC provides the first layer of abstraction
from the device’s physical communication technology. The functional component
is an abstraction to enable the usage and the configuration of any different link layer
technology.

Its main functions are to transmit a frame from the Network Communication FC
to the Hop To Hop Communication FC and from a Device to the Hop To Hop
Communication FC. The arguments for the frame transmission can be set; examples
of arguments include: reliability, integrity, encryption and access control.

The Hop To Hop Communication FC is also responsible for routing a frame.
This function allows routing a packet inside a mesh network such as for instance
802.15.4 (mesh-under routing). Note that this function is not mandatory for all
implementations of the Hop To Hop Communication FC. It is required only for
meshed link layer technologies.

Finally, the Hop To Hop Communication FC allows to manage the frame queue
and set the size and priorities of the input and output frame queues. This function
can be leveraged in order to achieve Quality of Service.

8 IoT Reference Architecture 175

Communication

| Network

End To End
Communication

Hop to Hop

Communication | Communication

Fig. 8.7 Communication

The Network Communication FC takes care of enabling communication
between networks through Locators (addressing) and ID Resolution. The FC
includes routing, which enables linking different network address spaces. Moreover
different network technologies can be converged through network protocol
translations.

The functions of the Network Communication FC are to transmit a packet from
the Hop To Hop Communication FC to the Network Communication FC and from
the End To End Communication FC to the Network Communication FC. The
arguments for the packet transmission can be configured and examples of
arguments include: reliability, integrity, encryption, unicast/multicast addressing
and access control.

The Network Communication FC enables as well network protocol translation
where it allows translating between different network protocols. Examples would
be to translate [Pv4 to IPv6 and ID to IPv4. Note that this function is necessary to
implement a Gateway.

In case a packet needs to be routed, the Network Communication FC allows
finding the next hop in a network. It also allows dealing with multiple network
interfaces. The function is not mandatory for all implementations of the Network
Communication FC. It is required only on devices with multiple network interfaces.

Another function of the Network Communication FC is to resolve the locator-to-
ID where it allows getting a locator from a given ID. The resolution can be internal
based on a lookup table or external via a resolution framework.

Finally, the Network Communication FC can manage the packet queue and
setup the size and priorities of the input and output packet queues. This function
can be leveraged in order to achieve QoS.

The End To End Communication FC takes care of the whole end-to-end
communication abstraction, meaning that it takes care of reliable transfer, transport
and, translation functionalities, proxies/gateways support and of tuning configura-
tion parameters when the communication crosses different networking
environments.

The End To End Communication FC is responsible to transmit a message from
the Network Communication FC to the End To End Communication FC and from
(IoT) Service to the End To End Communication FC. The arguments for the
message can be configured and examples include: reliability, integrity, encryption,
access control and multiplexing.

A second function of the End To End Communication FC is to cache and proxy.
The Cache and Proxy function allows to buffer messages in the End To End
Communication FC.

176 M. Bauer et al.

Fig. 8.8 Security

Security

Authorisation

Key Exchange &
Management

Trust & Reputation
Identity Management

Authentication

Another function of the FC is to translate end-to-end protocol. The Translate End
To End Protocol function allows to translate between different End To End
Protocols. An example would be to translate HTTP/TCP to COAP/UDP. Note
that this function is necessary to implement a Gateway.

A last function of the FC is to pass the context of protocol translation between
gateways. The context could be related to addressing, methods specific for a
RESTful protocol, keying material and security credentials.

8.2.2.7 Security

The Security FG (see Fig. 8.8) is responsible for ensuring the security and privacy
of IoT-A-compliant systems.
It consists of five functional components:

o Authorisation;

* Key Exchange & Management;
¢ Trust & Reputation;

¢ Identity Management;

¢ Authentication.

The Authorization FC is a front end for managing policies and performing
access control decisions based on access control policies. This access control
decision can be called whenever access to a restricted resource is requested. For
example, this function is called inside the IoT Service Resolution FC, to check if a
user is allowed to perform a lookup on the requested resource. This is an important
part of the privacy protection mechanisms.

The two default functionalities offered by the Authorization FC are firstly, to
determine whether an action is authorized or not. The decision is made based on the

8 IoT Reference Architecture 177

information provided from the assertion, service description and action type.
Second functionality is to manage policies, such as adding, updating or deleting
an access policy.

The Authentication FC is involved in user and service authentication. It checks
the credentials provided by a user, and, if valid, it returns an assertion as result,
which is required to use the IoT Service Client. Upon checking the correctness of
the credentials supplied by a newly joining node, it establishes secured contexts
between this node and various entities in its local environment.

The two functionalities provided by the Authentication FC are (1) to authenti-
cate a user based on provided credential and (2) to verify whether an assertion
provided by a user is valid or invalid.

The Identity Management FC addresses privacy questions by issuing and
managing pseudonyms and accessory information to trusted subjects so that they
can operate (use or provide services) anonymously.

Only one default function is attributed to this FC: to create a fictional identity
(root identity, secondary identity, pseudonym or group identity) along with the
related security credentials for users and services to use during the authentication
process.

The Key Exchange and Management (KEM) FC is involved to enable secure
communications between two or more IoT-A peers that do not have initial knowl-
edge of each other or whose interoperability is not guaranteed, ensuring integrity
and confidentiality.

Two functions are attributed to this FC:

» Distribute keys in a secure way. Upon request, this function finds out a common
security framework supported by the issuing node and a remote target, creates a
key (or key pair) in this framework and then distributes it (them) securely.
Security parameters, including the type of secure communications enablement,
are provided.

« Register security capabilities. Nodes and gateways that want to benefit from the
mediation of the KEM in the process of establishing secure connections can
make use of the register security capabilities function. In this way the KEM
registers their capabilities and then can provide keys in the right framework.

The Trust and Reputation Architecture FC collects user reputation scores and
calculates service trust levels.
Again, two default functions are attributed to the FC:

* Request reputation information. This function is invocated at a given remote
entity to request reputation information about another entity. As input
parameters, a unique identifier for the remote entity (subject), as well as the
concrete context (what kind of service) is given. As a result a reputation bundle
is provided,;

» Provide reputation information. This function is invocated at a given remote
entity to provide reputation information (recommendations or feedback) about
another entity. As input parameters, a unique identifier for the entity to be

178 M. Bauer et al.

assessed (subject), as well as the concrete context, the given score and a
timestamp are given. As a result, the corresponding reputation is provided.

8.2.2.8 Management

Section 7.5.2.5 provides a high-level discussion for the role and the goals of the
Management FG, but it does not specify how to functionally parse this group. For
guidance on this question we turned to FCAPS, which offers a comprehensive high-
level framework for network management (Flextronics 2005). It was, among others,
incorporated into an ITU-T recommendation (ITU-T 1997) and it has already been
considered for Smart-Grid applications, which are just one example for IoT
(Greenfield 2009). The letters F C A P S stand for the functionalities Fault,
Configuration, Accounting (Administration), Performance, and Security.

Of these functionalities, Fault, Configuration, and Performance cover all the
important goals of the Management FG. In this document we choose to make
Security a separate functionality group in order to emphasise its importance for
IoT. FCAPS was designed with telecommunication applications in mind, while
subscriber-based services will be just one of many business models for the IoT.
Therefore accounting functionalities will be covered by primary services. However,
for administration purposes we introduce the functional components State FC and
Member FC. Performance functionality is related to the monitoring of the state of
the system and to the adaptation of its configuration, and is therefore incarnated into
the Fault, State and Configuration Functional Components. (see Fig. 8.9) illustrates
how the high-level goals motivating the creation of a Management FG (see Sect. 7.
5.2.5) map onto the chosen functional components (Table 8.1).

IoT systems differ from pure networking solutions in that they also offer
low-level services and support for business administration. An IoT system is thus
much more complex than a communication system, and we chose to make the
management of FG-specific FCs part of that very FG, while the Management FG is
responsible for cross-functionality-group task (see Appendix UNL.703). In other
words, it is responsible for the composition and tracking of actions that involve
several of the “core FGs” (i.e. not including Device and Application FG). The
requirement grounding for the Management FG is based on the extrapolation of a
number of communications requirements to system-wide management and
behaviours (these requirements can be found in the description of the individual
functional components). In addition, if the interaction of the Application and/or
Device FG necessitates the composition and tracking of at least two core FGs, such
actions are also candidates for the sphere of responsibility of the Management FG.

By exclusion, the following management activities are thus out of the scope of
the Management FG. First, activities that only pertain to a single functionality
group. An example for this is the management of authorisations in the Security
FG. Second, the management of interactions between functionality groups that do
not require “external” intervention. An example for the latter are requests between
two FGs that can be managed by the requesting FG itself.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7

8 IoT Reference Architecture 179

Fig. 8.9 Management

Management

Configuration

Fault

Reporting

Member

State

Table 8.1 Mapping of the high-level roles of the Management FG (see Sect. 7.5.2.5) onto
functional components

Management FCs

High-level goals Fault Configuration Reporting Member State
Cost reduction X X X X

Attending unforeseeable usage issues X X X X X
Fault handling X X X X X
Flexibility X X X X

The Management FG (see Fig. 8.9) consists of five Functional Components:

¢ Configuration;
e Fault;

¢ Reporting;

« Member;

e State.

The Configuration FC is responsible for initialising the system configuration
such as gathering and storing configuration from FC’s and Devices. It is also
responsible for tracking configuration changes and planning for future extension
of the system.

As such, the main functions of the Configuration FC are to retrieve a configura-
tion and to set the configuration:

» The retrieve configuration function allows to retrieve the configuration of a
system, either from history (latest known configuration) or from the system
(current configuration, including retrieval of the configuration of one or a
group of Devices), enabling tracking of configuration changes. The function

http://dx.doi.org/10.1007/978-3-642-40403-0_7

180 M. Bauer et al.

can also generate a configuration log including descriptions of Devices and FCs.
A filter can be applied to the query;

¢ The set configuration function is mainly used to initialise or change the system
configuration.

The goal of the Fault FC is to identify, isolate, correct and log faults that occur
in the IoT system. When a fault occurs, the respective functional component notifies
the Fault FC. Such notification triggers, for instance, are the gathering of more data
in order to identify the nature and severity of the problem. Another action can
encompass bringing backup equipment on-line.

Fault logs are one input used for compiling error statistics. Such statistics can be
used for identifying fragile functional components and/or devices. Also, “perfor-
mance thresholds can be set in order to trigger an alarm.” (Wikipedia 2012a).
Performance data is provided by the State FC.

The Fault FC contains functions to handle a fault, to monitor a fault and to
retrieve a fault.

The role of the function that handles a fault is to react to fault detection by
generating alarms, logging faults, or applying corrective behaviours. Generated
alarms can be disseminated to other FCs. This function can also analyse faults and,
if requested, start an action sequence that tackles the fault, possibly interfacing with
the changeState () function of the State FC. This usually includes command
messages sent to other FCs. This function can also set the system back to a previous
state by calling the setConfiguration () function in the Configuration FC. One
of the actions this might entail is setting back the system to a previous configuration.

Faults can also be monitored by the Fault FC. This function is mainly used in
subscription mode where it monitors the errors of the system and notifies
subscribers of matching events.

Finally, the Fault FC provides access to the Fault History. For this access, a filter
function can be applied.

The Member FC is responsible for the management of the membership and
associated information of any relevant entity (FG, FC, VE, IoT Service, Device,
Application, User) to an IoT system.

It is typically articulated around a database storing information about entities
belonging to the system, including their ownership, capabilities, rules, and rights.

This FC works in tight cooperation with FCs of the Security FG, namely the
Authorisation and Identity Management FCs.

The Member FC has three default functions: the continuous monitoring of
members, the retrieve member function which allows retrieving members of the
system complying with a given filter and also allows to subscribe to updates of the
membership table fitting a specified filter (e.g. to be notified of all updates to entities
belonging to a given owner) and finally the update member function which allows
to update member metadata in the membership database and to register or
unregister member metadata in the membership database.

The Reporting FC can be seen as an overlay for the other Management FCs. It
distils information provided by them. One of many conceivable reporting goals is to

8 IoT Reference Architecture 181

determine the efficiency of the current system. This is important since by
“collecting and analysing performance data, the [system] health can be monitored.”
(Wikipedia 2012a). Establishing trends enables the prediction of future issues. This
FC can also be utilised for billing tasks.

There is only one default function for the FC: retrieve a report. This function
generates reports about the system. Can either return an existing report from the
Report History, or generate a new on through calls on the other Management FCs.

The State FC monitors and predicts state of the IoT system. For a ready
diagnostic of the system, as required by Fault FC, the past, current and predicted
(future) state of the system are provided. This functionality can also support billing.
The rationale is that Functions/Services such as Reporting need to know the current
and future state of the system. For a ready diagnostic of the system one also needs to
know its current performance.

This FC also encompasses a behaviour functionality, which forces the system
into a particular state or series of states. An example for an action for which such
functionality is needed is an emergency override and the related kill of run-time
processes throughout the system. Since such functionality easily can disrupt the
system in an unforeseen manner this FC also offers a consistency checks of the
commands issued by the changeState functionality in the State FC.

The functions of the State FC are to change or enforce a particular state on the
system. This function generates sequence of commands to be sent to other FCs. This
function also offers the opportunity to check the consistency of the commands
provided to this function, as well as to check predictable outcomes (through the
predictState function).

A second function is to monitor the state. This function is mainly used in
subscription mode, where it monitors the state of the system and notifies subscribers
of relevant changes in state.

Other functions of the FC are to predict the state for a given time, to retrieve the
state of the system through access to the state history and to update the state by
changing or creating a state entry.

8.2.2.9 Mapping of Functional View to the Red Thread Example

In this section, the “Red Thread” example will be mapped on the Functional View
and the main Functional Components used for the example are highlighted as can
be seen in Fig. 8.10:

In Fig. 8.10, Functional Components which are used only once, such as during
the instantiation of the process model or configuration of devices are indicated in
light yellow.

Functional Components which are used at runtime of the use case are indicated
in orange.

The example of this section can be described only at a high level, since a
concrete architecture and implementation are needed to go into further detail.
Also the design choices of the concrete architecture need to be considered.

M. Bauer et al.

182

uopesRuBYINY

juawabeuepy Ayuap|

uonenday B ysniy

jJuawabeuep
1 abueyoxg Aoy

uopesuoyny

fyunoag

ojels

Jaquisy

Bunioday

jineq

uoneinbyuon

8dlneg Josuag ainjesadwa]
uopesuNWWon uonesuNWWoy 13e9] b
doH o) doH }iomi}aN pu3 o) pu3z
uopesuNWWwon
uonn|osa
99IAI3S 10| oo_.\"_ hw ._.M
EITVEIETY uonnjosay IA
AydeisBoaioyn
ELITNEI
Buuiojyuoly a91A198
101® 3N uonesnsayaiQ
ELITNETS
uonnodaxgy uonisodwo)
$s3204d ELITNEI
Buijapoy
ssadoid
juswabeuey ssasoid uonesiuebio
JIAIBS 10| Az jenuip 10| ERTTNETS
sansibo
uoneoiddy pieog-uo

jJuawabeuepy

Fig. 8.10 Red-Thread example

In this example, the embedded sensors (Temperature Sensor) continuously
measure the environmental conditions within the truck. The measurement data is
available to Ted’s IoT-Phone (On-board Logistics Application) since the
IoT-Phone is subscribed to the service exposing the measurement data

8 IoT Reference Architecture 183

(IoT Service). In order to subscribe to the data, the association between the service
exposing the data and the Load carrier needs to be resolved (VE Resolution and IoT
Service Resolution). The communication from sensor to IoT-Phone makes use of
the network protocol stack of the IoT Communication Model (End To End Com-
munication, Network Communication, Hop to Hop Communication, Key Exchange
& Management). All transactions take place in a secure way, meaning that no
operations are allowed unless authentication (Authentication) took place and
explicit authorisation is obtained for the particular operation (Authorisation).

It is beyond the scope of this section but an illustration of the adaption of the
ARM to a specific case and implementation can be found in (Meyer et al. 2013).

8.2.3 Information View

One of the main purposes of connected and smart objects in the IoT is the exchange
of information between each other and also with external systems. Therefore the
way how to define, structure, store, process, manage and exchange information is
very important. The information view helps to generate an overview about static
information structure and dynamic information flow.

Based on the IoT Information Model, this view gives more details about how the
relevant information is to be represented in an IoT system. As we describe a
reference architecture as opposed to a specific system architecture, concrete repre-
sentation alternatives are not part of this view.

Going beyond the IoT Information Model, the information view also describes
the components that handle the information, the flow of information through the
system and the life cycle of information in the system.

The current version of the Information View focuses on the description, the
handling and the life cycle of the information and the flow of information through
the system and the components involved. Given the current level of detail, we will
provide a viewpoint only for modelling the type system of Virtual Entities.

8.2.3.1 Information Description
Description of Virtual Entities

The Virtual Entity is the key concept of any IoT system as it models the Physical
Entity or the Thing that is the real element of interest. As specified in the IoT IM,
Virtual Entities have an identifier (ID), an entityType and a number of
attributes that provide information about the entity or can be used for changing
the state of the Virtual Entity, triggering an actuation on the modelled Physical
Entity. The modelling of the entityType is of special importance. The
entityType can be used to determine what attributes a Virtual Entity instance
can have, defining its semantics. The entityType can be modelled based on a

184

M. Bauer et al.

Driver

Worker

Manager

Box

Pallet

+ licenseNumber
+ name

+ name
+ workPlace

+ groupName
+ name

+ ID
+ stackable

Fig. 8.11 Example for flat entityType model

flat type system or as a type hierarchy, enabling sub-type matching. Figure 8.11
shows a flat ent ity Type model for aspects of the red thread scenario with boxes
and pallets as concrete load carriers. Figure 8.12 shows a hierarchical
entityType model for the same scenario. Here more abstract entityTypes
have been introduced like Human and LoadCarrier. The entityType
Human has an attribute name, which is inherited by all sub-types, i.e. by Driver,
Worker and Manager.

For modelling entityType hierarchies, ontologies or UML class diagrams
can be used. Of course, this choice is related to the design choice on how the overall
Virtual Entity information is represented.

Viewpoint for Modelling entityType Hierarchies

EntityTypes are similar to classes in object-oriented programming, so UML class
diagrams as shown above are suitable for modelling entityTypes. As shown in
Fig. 8.12 the generalization relation can be used for modelling sub-classes of
entityTypes, creating a hierarchy of several entityTypes inheriting attributes from
its super-classes. Alternatively, ontology languages like OWL' also provide the
means for modelling classes and sub-classes, so they can also be used for modelling
type hierarchies. This is especially useful, if information in the IoT system is to be
modelled using ontologies.

Service Descriptions

Services provide access to functions for retrieving information or executing
actuation tasks on IoT Devices. As a basis for finding and interacting with services,
services need to be appropriately described, which is done in the form of Service
Descriptions. Service Descriptions contain information about the interface of the
service, both on a syntactic as well as a semantic level, e.g. the required inputs, the
provided outputs or the necessary pre-conditions as well as post-conditions. Further-
more, the Service Description may include information regarding the functionality
of the resources, e.g. the type of resource, the processing method or algorithm etc., or
information regarding the device on which the resource is running, e.g. it’s hardware

! http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

8 IoT Reference Architecture 185

EntityType
LoadCarrier Human
+ ID + name
+ size
+ weight
Box Pallet Driver Worker Manager
+ stackable + licenseNumber + workPlace + groupName

[\

WoodenPallet PlasticPallet

+ colour

Fig. 8.12 Example for hierarchical entityType model

or its geographical location. Different specification languages for describing
services are available, so again, there are different design choices.

Associations Between Virtual Entities and Services

Services can provide information or enable actuation, but the services themselves
may not be aware of e.g., which Virtual Entities can provide what information or
can enable what kind of actuation. This information is captured by associations that
relate to the Virtual Entity and the Service. The association includes the attribute of
the Virtual Entity for which the Service provides the information or enables the
actuation as a result of a change in its value.

8.2.3.2 Information Handling

Information in the system is handled by IoT Services. IoT Services may provide
access to On-Device Resources, e.g. sensor resources, which make real-time

186 M. Bauer et al.

information about the physical world accessible to the system. Other IoT Services
may further process and aggregate the information provided by IoT Services/
Resources, deriving additional higher-level information. Furthermore, information
that has been gathered by the mentioned IoT Services or has been added directly by
a user of the IoT system can be stored by a special class of IoT Service, the history
storage. A history storage may exist on the level of data values directly gathered
from sensor resources as a resource history storage or as a history storage providing
information about a Virtual Entity as a Virtual Entity history storage.

IoT Services are registered to the IoT system using Service Descriptions. Service
Descriptions can be provided by the services themselves, by users or by special
management components that want to make the service visible and discoverable
within the IoT system. The IoT Service Resolution is responsible for managing
Service Descriptions and providing access to Service Descriptions. In detail, the
IoT Service Resolution provides an interface for discovering Service Descriptions
based on service specifications given by the requestor, for looking up a Service
Description based on the identifier of a service and for resolving a service identifier
to a service locator. The latter can also be seen as a convenience function as the
Service Description also contains the currently valid service locator.

Associations can be registered with the VE Resolution by services that know for
what Virtual Entities they can provide information. The registration can be done by
users, by special management components, or by the VE & IoT Service Monitoring
component. The VE & IoT Service Monitoring component automatically derives
the Associations based on information existing in the system, including Service
Descriptions and other associations.

8.2.3.3 Information Handling by Functional Components

The following section describes how information is handled and exposed by the
functional components in an [oT-system and shows the information flows between
the functional components.

Before going into detail Fig. 8.13 shows the information flow through the
Functional Components based on the recurring example from Sect. 4.2. From the
actuator on device level the temperature information is transferred to the IoT
Service and afterwards to the VE Service. The VE Service itself is described in
Sect. 7.4.2. From the VE Service the temperature value is transferred to the
AndoidApp via the Subscribe/Notify-pattern.

General Information Flow Concepts

There are four message exchanges patterns considered for information exchange
between IoT-A functional components. The first message exchange pattern is the
Push-pattern, the second one is the Request/Response-pattern; the third one is the

http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_7

187

8 IoT Reference Architecture

ordwrexs SuL1INOAI Ay} UO PIsEq MOY UoneULIOJU] €T°8 S

adineg
dopordoy | UoReN ok "ot
== S5 puzoy pu3z A
uonEIUNWWOD
© eomsesior
eapuesaimesadwe)
— EETNT T
Ajnon / equasqns
wawabeuey ssadoig uopesiuebig
#1851 0] fnu3z lenuip 1901 CETNTYS
uopeajddy

J0suas aumesadwa) yum
SpopJeUUNY MO JOIENIdY

anjea aumesadway

wewaebeueyy

188 M. Bauer et al.

Fig. 8.14 Push-pattern

Server Client

push{data)

T
I
1
1

L

i
I
I
I
I
I
I

Subscribe/Notify-pattern, and the fourth one is the Publish/Subscribe-pattern. All
patterns are explained in the following.

Push

The Push-pattern (see Fig. 8.14) is a one-way communication between two parties
in which a server sends data to a pre-defined client that receives the data. The server
hereby knows the address of the client beforehand and the client is constantly
awaiting messages from the server. The communication channel in this pattern is
pre-defined and meant to be applied in scenarios in which the communication
partners do not changed often. For example the server can be a constrained device
that sends data to a gateway dedicated to this device. The gateway is listening
constantly to the device and is consuming the data received from this device.

The Request/Response-pattern (see Figs. 8.15 and 8.16) is a synchronous way of
communication between two parties. A client sends a request to a server. The server
will receive the request and will send a response back to the client. The client is
waiting for the response until the server has sent it.

The server needs some time to prepare the response for the client. In the
meanwhile another client might send a request. When the server is still busy with
preparing the response for the first client it cannot produce the response for the
second client. The second client will be placed into a queue until the server is ready
to prepare its response. Such scenario might lead to unacceptable response times.

Subscribe/Notify

The Subscribe/Notify-pattern (see Figs. 8.17 and 8.18) allows an asynchronous way
of communication between two parties without the client waiting for the server
response. The client just indicates the interest in a service on the server by sending a
subscribe-call to the server. The server stores the subscription together with the
address of the client wants to get notified on and sends notifications to this address
whenever they are ready to be sent.

One advantage of the Subscribe/Notify-pattern over the Request/Response-
pattern is the non-blocking behaviour of the subscribe method. The clients can

8 IoT Reference Architecture 189

Client server

T
I
1
I
I

request()

l :Response]

Fig. 8.15 Request/Response-pattern for one client

request{)
request()
L ‘Response)
= A Response
e el e
I] 1
Fig. 8.16 Request/Response-pattern for clients
Client Server

]

I

: subscribe{)

!

:*G notify()

]

i notify()

K _______________

I

;e notify()
unsubscribe()

I
I
!
I
I
'

Fig. 8.17 Subscribe/Notify-pattern for one client

continue with other task and need to process the notification only when it arrives.
Another big advantage on the server side is that notifications can be multiplied and
sent off to clients if the clients have subscribed to the same kind of notifications. To
implement the Subscribe/Notify-pattern a server is required that is more powerful
compared to the one required for the Request/Response-pattern. The server has to
keep records about its subscribers and the kind of subscriptions if it allows several
of them.

190 M. Bauer et al.

Client 1 Server Client 2
. subscribe{) g :
g > subscribe() :
: notify() notify(} Y
; notify(} notify() :
S Tt Eaiibb bbbt %
I' unsubscribe{) notify()):.

Fig. 8.18 Subscribe/Notify-pattern for two clients

Publish/Subscribe

The Publish/Subscribe-pattern (see Figs. 8.19 and 8.20) allows a loose coupling
between communication partners. There are services offering information and
advertise those offers on a broker component. When clients declare their interest
in certain information on the broker the component will make sure the information
flow between service and client will be established.

Services can publish information to the broker regardless how many clients are
interested in this information; if no client has subscribed to it the broker does not
forward the notification to any client, if more clients have subscribed to the same
information the broker will multiply the information and send out notification to
each subscriber.

Information Flow Through Functional Components

User Requests Information from IoT Service

Figure 8.21 shows the information request from a user to an IoT Service and the
corresponding response.

User Gets Information from Virtual Entity-Level Service

Virtual Entity-level service provides access to Virtual Entity information,
augmenting sensor information with entity information (entityld, entityType or
several attributes), thus changing the abstraction level. Figure 8.22 shows the
Subscribe/Notify-pattern, which can be used to get updates about an Attributes
value.

8 IoT Reference Architecture 191

Client Broker Servics
i ' publish() E
: subscribe() T
r publish() :
: notify() '
‘(————————————— publish() :
I]
1 notify() '
mmmmmm e publish() I
. unsubscribe() b
! publish() :
: ‘
: 1

Fig. 8.19 Publish/Subscribe-pattern

T T subscribe()

| 1 publish() I

________ i — 1
,I(L subscribe() ,-
: g > publish({) '
.'(i notify() ¥
! et e il publish() '
< I notify() 7
: G i e e o e o e i publish(} :
?(E_ unsubscribe() T
' | publish() |
 smiatabe g R R g e R 4
]] I

Fig. 8.20 Publish/Subscribe-pattern two clients

Service Gets Sensor Value from Device

The Sensor Device in Fig. 8.23 pushes an updated sensor value using the Functional
Component Flow Control & Reliability to an [oT Service. Besides the Push-pattern
Request/Response and Subscribe/Notify-pattern are possible. Figure 8.24 shows a
similar situation but the information is pushed up to the VE Service.

Sensor Information Storage

Figure 8.25 shows the special case of using an information storage device which
stores additional, e.g. historic, values. The IoT Service DataStorage requests values
and the StorageDevice sends the corresponding response. The storage policy of the
Storage Device is application-specific, e.g. stores values only for certain duration,
stores values with reduced granularity over time or in an averaged or aggregated
form. Such a storage device can also be used from the VE Service level.

192 M. Bauer et al.

Application Usir |

M

loT Virtual Entity loT Servite Security
Process Management

request

response

Y

loT Service

Fig. 8.21 User requests IoT service

Application
User1
loT Virtual Enﬂt loT Service
Process Management
subscribe notify
h 4
VE Service

Fig. 8.22 User subscribes for updates of VE-attribute

[oT Service Resolution

The Functional Component IoT Service Resolution hosts the Service Descriptions
that are needed for looking up and discovering IoT Services. Thus the resolution
component offers methods to insert, update, and delete Service Descriptions (see
Fig. 8.26) according to the availability of IoT Services. The methods are meant to
be invoked by the IoT Services itself, e.g. upon their deployment, dynamic change
of location due to mobility or their undeployment from the system. It is also

8 IoT Reference Architecture 193

Management Service loT Virtual Entity loT Service
Organisation Process Management

loT Service:
SensorData
A

C

.| EndToEnd ’—|
4 L C
Sensor value | —lc icati | . Hop to Hop

Sensor Device Device

Fig. 8.23 Information flow from sensor device to IoT service using the push-pattern

Management Service loT Virtual Entity loT Service
Organisation Process Management

loT Service:
SensorData

Sensor value End ToEnd
& e o I

| Sensor Device | Device

Fig. 8.24 Information flow from sensor device to VE service using the push-pattern

Hopto Hop
&, Taast

possible for the Service Management component to invoke these methods in order
to maintain the system. For deleting a Service Description its Service ID needs to be
given.

194

Management Service loT Virtual Entity
Organisation Process Management

s

M. Bauer et al.

loT Service

L

Storage Device Device

Fig. 8.25 Usage of sensor information storage device

Management Service loT Virtual Entity
Organisation Process Management

insertService(ServiceDescription):ServicelD

insert
updateService(ServiceDescription) I:;:ma
deleteService(ServicelD R

End To End '—1
A Ci i I Hop to Hop
c
L ——

leT Service

Momber s——| Resolion |€—|m—~'«|

Communication

Fig. 8.26 Insert, update, and delete Service Description

The IoT Service Resolution component offers three methods to find IoT Services

(see Figs. 8.27 and 8.28):

8 IoT Reference Architecture 195

I b

Management Service lo’r | Virtual Entity loT Service
Organisation Process Management

Lookup(ServicelD)
Discover(ServiceSpecification)
Resolve(ServicelD)

Service | | Ser\.riceDescriptiDn,
Orchestration ™ ServiceDescription[]
& | ServiceURL
ServiceDescription, |

ServiceDescription[] !

ServiceURL)
L 4
loT Service
Resolution

Fig. 8.27 Request lookup, discover, and resolve IoT Services

Usar = Application
Service lo’l Virtual Entity loT Service Security
Organisation Process Management

ServiceLdokup(ServicelD,notificationCallback):SubscriptionID
ServiceDiscovery(ServiceSpecification,notificationCallback):SubscriptionlD
ServiceResolution(ServicelD, notificationCallback):SubscriptionID

Sarvios ServiceLookup(SubsciptionID, ServiceDescription)
Orchestration notify| ServiceDiscovery(SubsciptionID, ServiceDescription[])

Y ServiceResolution(SubsciptionID, ServiceURL)

subscribe

o rvice
Y Resolution

Fig. 8.28 Subscribe to lookup, discover, and resolve IoT Services

—_—

. Look-up of Service Description based on service identifier;

2. Discovery of Service Descriptions based on service specification;

3. resolution of service identifier to service locator (contained in Service
Description).

Figure 8.27 shows the different methods in a Request/Response manner, the
component also offers similar functionality realised as Subscribe/Notify-pattern.
The information flow is similar to the one according to Request/Response, but
additionally identifiers for subscriptions and locators for call-back interfaces are
exchanged as shown in Fig. 8.28.

196 M. Bauer et al.

Management Service loT Virtual Entity loT Service
Organisation Process Management
insert
update VE &loT
delete Service Monitoring

Member - % VE Resolution

I

Insert | update | delete

loT Service

Communication

Fig. 8.29 Insert, update, and delete Association

VE Resolution

Associations between Virtual Entities and IoT Services are inserted into VE
Resolution by IoT Services, the Service Management components or the VE &
IoT Service Monitoring. They can later be updated and eventually deleted, e.g.,
when the IoT Service is undeployed. The message exchange is shown in Fig. 8.29.

The VE Resolution component allows retrieving of associations between Virtual
Entities and IoT Services based on VE identifier and VE service specification
through a lookup request as well as discovery of Associations based on VE
specification and VE service specification as depicted in Fig. 8.30.

The VE Resolution component provides a information flow while applying the
Subscribe/Notify-pattern. With this identifiers for subscriptions and locators for
call-back interfaces are exchanged additionally as shown in Fig. 8.31.

8.2.3.4 Information Life Cycle

Information provided by sensor resources is transient in nature and may not even be
measured or observed without a specific request. Information stored by a storage
resource may be permanently stored there or have an expiry date after which the
information is to be removed. For this purpose a storage resource may have to
implement mechanisms that remove such information on a regular basis. It is also
possible to adapt the granularity of information that is stored over time, i.e., for a
certain time interval all the information is stored, for a further time interval only a
fraction of the information is kept whereas the rest is discarded. Such a scheme may

8 IoT Reference Architecture 197

Management Service lo'l Virtual Entity
Organisation Process Management

Lookup(VE-ID,VEServiceSpecification)
Discover(VESpecification,VEServiceSpecification)

Service
| Orchestration } 1 \
Association[]
Association[]
:

Fig. 8.30 Request lookup and discover Associations

= Jq —

Service I Virtual Entity IoT Service Security
Organisation Process Management

AssociationsLookup(VE-ID, VEServiceSpecification, notificationCallback)
:SubscriptipnID
AssociationDiscovery(VESpecification, VEServiceSpecification, notificationCallback)

T . :Subscription|D)
Orchestration 11 1
z . AssociationLookup(SubscriptionID, Association[])
| AssoclationDiscovery(SubscriptionlD, Association[])
— B VE Resolution =

Fig. 8.31 Subscribe to lookup and discover Associations

Subscribe

allow the definition of multiple such time intervals and also requires specific
underlying mechanisms that can implement the scheme.

To avoid keeping Service Descriptions of services that no longer exist, a time-
out mechanism needs to be implemented by the IoT Service Resolution. After the
time-out has been reached without a renewal of the Service Description, the Service
Description should automatically be removed. This in turn requires that the
components originally providing the Service Description renew the registration of
the Service Description before the time-out is reached. The same applies for
associations stored by the VE Resolution.

198 M. Bauer et al.
8.2.4 Deployment and Operation View

Connected and smart objects in the IoT can be realized in many different ways and
can communicate using many different technologies. Moreover, different systems
may need to communicate the one to each other in a compliant way. Hence the
Deployment and Operation view is very important to address how actual system can
be realized by selecting technologies and making them communicate and operate in
a comprehensive way.

The Deployment and Operation view aims at providing users of the IoT Refer-
ence Model with a set of guidelines to drive them through the different design
choices that they have to face while designing the actual implementation of their
services. To this extent this view will discuss how to move from the service
description and the identification of the different functional elements to the selec-
tion among the many available technologies in the IoT to build up the overall
networking behaviour for the deployment.

Since a complete analysis of all the technological possibilities and their combi-
nation falls beyond the scope of this view, this section will identify those categories
that have the strongest impact on IoT systems realization. In particular, starting
from the IoT Domain Model, we found three main element groups (see Fig. 8.32):
Devices, Resources, and Services highlighted in red, blue and yellow, respectively.
Each of them poses a different deployment problem, which, in turn, reflects on the
operational capabilities of the system.

In particular, the viewpoints used in the Deployment and Operation view are the
following:

1. The IoT Domain Model diagram is used as a guideline to describe the specific
application domain; to this extent UML diagrams can be used to further detail
the interaction among the many elements composing the target application;

2. The Functional Model is used as a reference to the system definition; in particu-
lar it defines Functional Groups such as IoT Services and Connectivity groups
which are fundamental for a correct definition of the system;

3. Network connectivity diagrams can be used to plan the connectivity topology to
enable the desired networking capability of the target application; at the deploy-
ment level, the connectivity diagram will be used to define the hierarchies and
the type of the sub-networks composing the complete system network;

4. Device Descriptions (such as datasheets and users manuals) can be used to map
actual hardware on the service and resource requirements of the target system.

First of all, devices in IoT systems include the whole spectrum of technologies
ranging from the simplest of the radiofrequency tags to the most complex servers.
The unifying characteristics are mainly two-fold: on the one hand, every device is
connected with one another forming a part of the IoT; and, on the other hand, every
device is “smart”, even though with different degree of complexity, in that it
provides computational capabilities. These two characteristics are the subject of
the first choices a system designer has to make. Note that, for a given device to be

8 IoT Reference Architecture 199

User
0.* 0.*
imokes ?
subscribes
Human
User
Digital
Artefact
interacts
with
Active Passive contains
Digital Digital 0
Artefact Artefact 5 -

has Inf i
about/acts on

Fig. 8.32 Domain model elements grouped according to their common deployment aspects

fully interoperable in an IoT-A compliant system, it must respect the functionality
definitions of the Functional Model. However, legacy systems that do not fully
support the FM, may implement wrappers and adaptation software to comply to the
model.

Selecting the computational complexity for a given device is somewhat intrinsic
to the target application. However, choosing among the different connectivity types
is not as straightforward as different choices may provide comparable advantages,
but in different areas. For the same reason, it is possible to realize different systems
implementing the same or similar application from the functional view which are
extremely different from the deployment and operation view. In this section, we
will simply detail the main options for device connectivity; further details about
deployment configurations can be found in the Reference Manual (see Chap. 9).
The impact of those configurations onto the architectural perspectives described in

http://dx.doi.org/10.1007/978-3-642-40403-0_9

200 M. Bauer et al.

Sect. 8.8 is discussed in Chap. 6. The following list provides a few of the typical
technologies that can be found in IoT systems:

¢ Sensor & Actuator Networks;

¢ RFIDs and smart tags;

» WiFi or other unconstrained technologies;
e Cellular networks.

As a consequence of the coexistence of different communication technologies in
the same system, the second choice the system designer must account for is related
to communication protocols. In particular, connectivity functionalities for IoT
system are defined in this document in Communication FG of the FM; in addition,
in order to better understand the application, it is important to describe it within the
Functional View. Although, IoT-A and WP3 in particular suggest a communication
protocol suite aimed at the interoperability among different technologies with IP as
the common denominator, the system designer may be forced to make suboptimal
choices (Rossi 2012, 2013). In particular, we identified the following possibilities:

1. IoT protocol suite: This is the main direction supported by this project and
providing the best solution for interoperability;

2. Ad-hoc proprietary solutions: Whenever the performance requirements of the
target application are more important than the system versatility, ad hoc
solutions may be the only way to go;

3. Other standards: Depending on the target application domain, regulations may
exist forcing the system designer to adopt standards, different from those
suggested by the IoT protocol suite, that solved a given past issue and have
been maintained for continuity.

After having selected the devices and their communication methods, the system
designer has to account for services and resources, as defined in the IoT Service FG
section. These are pieces of software that range from simple binary application and
increasing their complexity up to full blown control software. Both in the case of
resources and for services the key point here is to choose where to deploy the
software related to a given device. The options are as follows:

1. On smart objects: This choice applies to simple resource definitions and
lightweight services, such as web-services that may be realized in few tens or
hundreds of bytes;

2. On gateways: Whenever the target devices are not powerful enough to run the
needed software themselves, gateways or other more capable devices have to be
deployed to assist the less capable ones;

3. In the cloud: Software can be also deployed on web-farms. This solution
improves the availability of the services, but may decrease the performance in
terms of latency and throughput.

Note that this choice has to be made per type of resource and service and
depending on the related device. As an example, a temperature sensor can be
deployed on a wireless constrained device, which is capable of hosting the

http://dx.doi.org/10.1007/978-3-642-40403-0_6

8 IoT Reference Architecture 201

temperature resource with a simple service for providing it, but, if a more complex
service (for instance, when the Service Organisation FG is called in) is needed, the
software has to deployed on a more powerful device as per option 2 or 3.

On the same line, it is important to select where to store the information
collected by the system, let their data be gathered by sensor networks or through
additional information provided by users. In such a choice, a designer must take
into consideration the sensitiveness (e.g.: is the device capable of running the
security framework), the needed data availability and the degree of redundancy
needed for data resiliency. The foreseen options are the following:

1. Local only: Data is stored on the device that produced it, only. In such a case, the
locality of data is enforced and the system does not require complex distributed
databases, but, depending on the location of a given request, the response might
take longer time to be delivered and, in the worst case scenario, it may get lost;

2. Web only: No local copy is maintained by devices. As soon as data is sent to the
aggregator, they are dispatched in databases;

3. Local with web cache: A hierarchical structure for storing data is maintained
from devices up to database servers.

Finally, one of the core features of IoT systems is the resolution of services and
entities, which is provided by the Entity and Service Resolution FCs, respectively
and is in charge of semantically retrieving resources and services, discovering new
elements and binding users with data, resources, and services. In particular, this is
performed adopting the definitions of the Virtual Entity FG. This choice, while one
of the most important for the designer, has only two options:

1. Internal deployment: The core engine is installed on servers belonging to the
system and is dedicated to the target application or shared between different
applications of the same provider;

2. External usage: The core engine is provided by a third party and the system
designer has to drive the service development on the third party APIs.

Differently from the other choices, this is driven by the cost associated to the
maintenance of the core engine software. In fact, since it is a critical component of
the system, security, availability and robustness must be enforced. Hence, for small
enterprises the most feasible solution is the external one.

8.2.4.1 Deployment Example

Coming back to our “Red Thread” example, this section analyses the system
deployment for the “Transport monitoring with Smart Load Carriers” scenario.

First of all, we need to define the purpose of the application(s), the functionalities
and their requirements for a correct operating behaviour and the data that needs to
be treated.

202 M. Bauer et al.

Purpose: the application measures several environmental parameters of the load
carrier such as the light, the temperature and the humidity of the truck and monitors
the status of the several installed devices.

Functionalities:

* Monitoring: the application needs to provide the users with means to access
information gathered by many sensors installed in the truck;

¢ Controlling: the application needs to provide users with means to modify the
behaviour of the many installed devices;

« Alarm: the application needs to provide users with means to configure alarms to
be triggered when a given condition is verified (e.g.: the temperature rises over a
threshold value).

Requirements:

« Lifetime: all the installed devices must operate unassisted for more than 2 years;

* Robustness: a maximum data loss of 5 % of the information is tolerated and no
command nor alarm loss can be tolerated;

* Responsiveness: a maximum delay of 10 s is tolerated when issuing a command
and for alarm reporting. A maximum delay of 15 min is tolerated for data
reporting in steady state condition.

Data: all the information managed by the system is not sensitive and does not
require for high security.

As a second step, the system integrator must define the Virtual Entities and the
Services to be used in the application. To keep the example simple, we will define a
single Service and a single Virtual Entity only. The service will be in charge of
monitoring the sensing units and to provide users with interface to access the data.
We will call this service “Monitoring service”. For what concerns the Virtual Entity
we choose to represent a room in the house as a Virtual Entity, which is connected
to the room Physical Entity and with the resources provided by the Sensors (Device)
installed in the truck.

Basically, the application can be simply implemented by allowing the Service to
query the Resources of the associated Virtual Entities periodically. However, many
possibilities are left to the integrator for the actual deployment of the application.

Resources: it is clear that Resources must provide a connection between the
sensing Devices and the Service, but the actual software harmonizing the Sensor
behaviour with the service language can be run either on the sensing Device itself,
in a gateway device connecting the house network with the external network, or
directly in the cloud. The most versatile solution is to run the Resource software
directly on the Device in order to enable any other Service to query directly the
Device for the needed information; however, depending on the actual hardware
capabilities, the other two solutions can be considered.

Service: it must be possible to access the monitoring service from anywhere
there is an Internet connection, and, in particular, from within the house. Note that,
users using the service from within the house may be less tolerant to delays. A
typical service deployment in this case is to have two paired services providing the

8 IoT Reference Architecture 203

same monitoring functionality: one is running in a local server and is able to
directly query the devices in order to fetch up to date information, the second is
running in the cloud and provides accessibility from the Internet. Note that the local
service is also maintaining an information database of the data gathered in the
house; database, which is only accessed by the service in the cloud.

Finally, the system integrator must make decisions about connectivity and data
management: since the time requirements of the application are quite loose, low
power devices can be chosen and low data rate connection can be selected for the
sensing devices.

The first and foremost requirement is the addressability of every Service/
Resource regardless of the Device hosting it. This can be achieved by supporting
IP addressing and its compressed version defined by 6LoWPAN is currently the
most feasible way to implement this in constrained devices. In addition, to make
Resources and Services unambiguously addressable, unique identifier must be
provided. To this extent many solutions have been proposed, but, in order to obtain
the widest interoperability, it is preferable HTTP mappable solutions, such as
CoAP. In such a way it is possible to implement very simple Services on the
most constrained Device by providing web-service like interaction capabilities to
every resource and functionality offered.

However, if the above baseline solution is not realizable, it is important to mimic
its behaviour as close to the source device is located. To this extent Resources,
Services or both can be deployed on other devices such as aggregator servers,
gateways and proxies of the network. In such a way, it is the more powerful Device
providing Resource and Service in the correct format that will interact with
Services and Users on behalf of the final Device; also, this device must ensure
the synchronization between the mimicked functionalities and their actual
counterparts. This workaround allows for the integration of any possible
technologies in the IoT, however it does not grant the full compliance to all the
IoT-A unified requirement list.

However, in order to make the sensing devices interoperable with both, the local
and the cloud services, connectivity gateways or proxies must be considered. A few
possible realizations are the following:

» Cabled sensors with Ethernet/xDSL gateway

— Pros: reliable, possibility to use the same cable for connectivity and power.
— Cons: high installation costs.

* Wireless sensors (802.15.4) with Ethernet/xDSL gateway

— Pros: low cost, easy and cheap installation, moderate robustness, good
lifetime.
— Cons: may suffer from data losses.

* Low power WiFi sensors with WiFi/xDSL gateway

— Pros: moderate costs, easy gateway implementation, easy and cheap installa-
tion, higher data rate is possible.
— Cons: shorter lifetime than 802.15.4.

204 M. Bauer et al.

Internet
e Cloud service
ou i
server Connectivity
Database
Ethernet/xDSL

Local service
Connectivity
Database

Resource software

802.15.4/802.11ah/PLC

Connectivity
Sensing Sensing Virtual Entity
device device Resource software

Fig. 8.33 Transport monitoring example with possible deployment choices highlighted

The figure (Fig. 8.33) shows the deployment example above, highlighting the
several physical devices involved (dark green), the different network type involved
(solid horizontal lines) and the software installed per device (white/cyan rounded
boxes, cyan is for mandatory parts while cyan is for optional elements).

Although this example is quite simple, it can be used as a building block for
more complex scenarios. In particular it is important here to understand how to
separate the different networks in the system, where to deploy each functionality
and which connectivity type to use per sub-network.

8.3 Perspectives

Architectural decisions often address concerns that are common to more than one
view, or even all of them. These concerns are often related to non-functional or
quality properties. We are following the approach described by Rozanski and
Woods (2011), that suggests special perspectives to address these aspects of a
concrete architecture. They emphasize the importance of stakeholder requirements
just like we do within our project. Therefore we are adopting their definition of
perspective for usage within [oT-A:

8 IoT Reference Architecture 205

An architectural perspective is a collection of activities, tactics, and
guidelines that are used to ensure that a system exhibits a particular set of
related quality properties that require consideration across a number of the
system’s architectural views (Woods and Rozanski 2005).

where a quality property is defined as:

A quality property is an externally visible, non-functional property of a
system such as performance, security, or scalability (Rozanski and Woods
2011).

The stakeholder requirements clearly show a need of addressing non-functional
requirements. Based on them, we identified the perspectives which are most
important for IoT-systems:

¢ Evolution and Interoperability;
¢ Availability and Resilience;

e Trust, Security and Privacy and
e Performance and Scalability.

As these requirements are requiring some kind of quality for a real system, the
perspectives aim more on the concrete system architecture, than at a Reference
Architecture.

We got 18 requirements concerning the Evolution and Interoperability perspec-
tive, 15 concerning Availability and Resilience, more than 20 related to Trust,
Security and Privacy, and 17 more related to Performance and Scalability. As can
be seen from the definition above there is a close relationship between Perspectives,
Views and Guidelines.

We will generally follow the structure as suggested by Rozanski and Woods, to
describe the perspectives, but adjusted according to our needs. Each perspective
contains the following information:

Desired Quality The desired quality that the perspective is addressing
IoT-A The IoT-A requirements presented in Appendix this perspective addresses
Requirements
Applicability The Applicability of the perspective, e. g. the types of systems to which the
perspective is applicable
Activities A set of possible activities that are suggested to achieve the desired qualities.

We are reusing existing literature, as well as, our own identified best
practices here.

Tactics Here we list Architectural Tactics, which an architect can use when
designing the system.

206 M. Bauer et al.

An architectural tactic is defined as follows:

An architectural tactic is a design decision for realizing quality goals at the
architectural level.

It can already be seen from the definition of tactic that there is a close relation-
ship to the design decisions as outlined in Chap. 6. We therefore will list high level
design choices as architectural tactics whenever feasible.

We think that taking advantage of perspectives makes a lot of sense for every
software architect, even more in the loT-domain where a lot of Quality parameters
have to be taken into account. Perspectives provide a framework for reusing
knowledge: It is absolutely necessary to apply a systematic approach to ensure
that a certain system fulfils the required quality properties. The use of Perspectives,
combined with Views and Guidelines is a step towards that. In the Guidelines
chapter in Sect. 9.4 we present a suggested usage of the perspectives in conjunction
with Design Choices.

8.3.1 Evolution and Interoperability

The Evolution and Interoperability perspective addresses the fact that requirements
change and software evolves sometimes rapidly and need to interoperate not only
with today’s technologies, but also needs to be prepared to interoperate with later
technologies. Interoperability therefore plays especially in IoT a crucial role. The
vision of the Internet of Things is still evolving itself. There are, for example, not
yet all used technologies mature enough, and there are for sure many more
technologies to come in the future (Table 8.2).

8.3.2 Performance and Scalability

This perspective addresses two quality properties which are closely related: Perfor-
mance and Scalability. Both are, compared to traditional information systems, even
harder to cope with in a highly distributed scenario as we have it in IoT (Table 8.3).

8.3.3 Trust, Security and Privacy

This chapter addresses fundamental properties of IoT systems for what concerns
their relation to the user. They are inter-related and, often, the evaluation or the
improvement of one of these qualities is necessarily related to the others.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_9

8 IoT Reference Architecture 207

Table 8.2 Evolution and interoperability (adopted from (Rozanski and Woods 2011)), extended
with IoT specific aspects

Desired Quality The ability of the system to be flexible in the face of the inevitable change
that all systems experience after deployment, balanced against the costs
of providing such flexibility

IoT-A UNILO003, UNIL.010, UNI.O12, UNL.023, UNL042, UNL047, UNL0438,
Requirements UNLO071, UNL093, UNL094, UNL096, UNIL.417, UNL.422, UN1.432,
UNIL509, UNL.701, UNL712, UNL720
Applicability Important for all systems to some extent; more important for longer- lived

and more widely used systems. IoT systems are expected, as an emerging
technology, to be highly affected by evolution and interoperability issues
Activities Characterize the evolution needs
Assess the current ease of evolution
Consider the evolution trade-offs
Rework the architecture
Tactics Contain change
Create extensible interfaces
Apply design techniques that facilitate change
Apply metamodel-based architectural styles
Build variation points into the software
Use standard extension points
Achieve reliable change
Preserve development environments

8.3.3.1 Trust

Trust in the IoT environment is a fundamental yet difficult to obtain quality. As the
security one, this quality is highly dependent on the computation and communica-
tion performance of the system. In the frame of IoT moreover, M2M subjects must
be enabled to evaluate this quality in order to obtain autonomous systems
(Table 8.4).

8.3.3.2 Security

Security is an essential quality of an IoT system and it is tightly related to specific
security features which are often a basic prerequisite for enabling Trust and Privacy
qualities in a system (Table 8.5).

8.3.3.3 Privacy

There are usually different concepts conveyed with the term privacy, some being
more from the technical side and some more from the legal perspective, without
forgetting ethical aspects (Table 8.6).

208 M. Bauer et al.

Table 8.3 Performance and scalability (adopted from (Rozanski and Woods 2011)), extended
with IoT specific aspects

Desired Quality The ability of the system to predictably execute within its mandated per-
formance profile and to handle increased processing volumes in the
future if required

IoT-A UNILO008, UNIL026, UNI.027, UNL.028, UNL066, UNIL.089, UNI.101,
Requirements UNI.102, UNIL.234, UNL511, UNL512, UNL615, UNL706, UNL708,
UNIL711, UNL716, UNL.717
Applicability Any system with complex, unclear, or ambitious performance requirements;

systems whose architecture includes elements whose performance is
unknown; and systems where future expansion is likely to be significant.
IoT systems are very likely to have unclear performance characteristics,
due to their heterogeneity and high connectivity of devices
Activities Capture the performance requirements

Create the performance models

Analyze the performance model

Conduct practical testing

Assess against the requirements

Rework the architecture

Tactics Optimize repeated processing

Reduce contention via replication

Prioritize processing

Consolidate related workload

Distribute processing over time

Minimize the use of shared resources

Reuse resources and results

Partition and parallelize

Scale up or scale out

Degrade gracefully

Use asynchronous processing

Relax transactional consistency

Make design compromises

8.3.4 Availability and Resilience

As we are dealing with distributed IoT systems, where a lot of things can go wrong,
the ability of the system to stay operational and to effectively handle failures that
could affect a system’s availability is crucial (Table 8.7).

8.4 Conclusion

The chapter has given an overview about the current state of the IoT Reference
Architecture that is proposed to be applied to any loT-architecture. The IoT
Reference Architecture abstracts from domain specific use cases; it rather focuses
on the domain agnostic aspects that IoT Architectures may have in common. It does

8 IoT Reference Architecture 209

Table 8.4 Trust perspective (extension of concepts originally found in (Rozanski and Woods
2011))

Desired Quality A complex quality related to the extent to which a subject expects (subjec-
tively) an IoT system to be dependable regarding in all the aspects of its
functional behaviour

IoT-A UNL062, UNILO065, UNI.099, UNL407, UNL408, UNL602, UNL604,
Requirements UNL605, UNL620, UNL622
Applicability Relevant to the systems that share the use of resources with subjects that are
not a priori trusted
Activities Capture trust requirements

Perform risk analysis

Check interoperability requirements and their impact on trust between het-
erogeneous subjects

Define trust model

Consider risks derived from malicious or unintentional misuse of IoT
systems”

Tactics Harden root of trust

Ensure physical security and implement tampering detection

Ensure and check data freshness

Consider the impact of security/performance trade-offs on trust

Use (trusted) infrastructural Trust and Reputation Agents for scalability

Use security imprinting

Check system integrity often

Balance privacy vs. non-repudiation (accountability)

“For example, simulating traffic by broadcasting car-to-infrastructure signals or inducing emer-
gency maneuvers in ships or planes by simulating adverse environmental conditions. Generally, it
is possible to make a fictional situation credible if the assumption that Physical and Virtual Entities
are always and securely synchronized is overlooked

not mean that every IoT-architecture has to implement every feature listed here, but
in this report we have covered functional as well as non-functional aspects that are
important to support in today’s IoT-solutions on one hand and that are important to
the stakeholders we have interviewed on the other hand. Following our architectural
methodology we presented several views and perspectives of the IoT Reference
Architecture.

The Functional View describes the functional building blocks of the architecture
and the Deployment and Operation View explains the operational behaviour of the
functional components and the interplay of them.

The Information View shows how the information flow is routed through the
system and what requests are needed to query for or to subscribe to information
offered by certain functional components.

The perspectives listed in this chapter tackle the non-functional requirements
IoT-architectures might have. The perspectives are categorised according to the
non-functional requirements that have been extracted from the unified requirements
(UNIs) presented in Appendix. As a result of the requirement analysis we have
categorised the required system attributes into the four perspectives “Evolution and
Interoperability”, “Performance and Scalability”, “Trust, Security and Privacy”,
and “Availability and Resilience”.

210 M. Bauer et al.

Table 8.5 Security perspective (adopted from (Rozanski and Woods 2011), extended with IoT
specific aspects)

Desired Quality Ability of the system to enforce the intended confidentiality, integrity and
service access policies and to detect and recover from failure in these
security mechanisms

IoT-A UNL062, UNL407, UNIL.408, UNL410, UNL412, UNL413, UNL424,
Requirements UNI.502, UNIL.507, UNIL604, UNIL609, UNIL611, UNIL.612, UNIL.617,
UNIL618, UNL624, UNL.719
Applicability Relevant to all IoT systems
Activities Capture the security requirements

Check interoperability requirements for impacts on security processes
between heterogeneous peers

Conduct risk analysis

Use infrastructural Authentication components that support more Identity
Frameworks for scalability and interoperability

Use infrastructural or federated Key Exchange Management to secure com-
munication initiation and tunnelling between gateways for
interoperability

Use an Authorization component to enable interoperability with other
systems

Define security impact on interaction model

Address all aspects of Service and Communication Security

Integrate the trust model and support privacy features

Identify security hardware requirements

Consider performance/security trade-offs

Validate against requirements

Tactics Use an extended Internet Threat Model for which takes into account specific

IoT communication vulnerabilities

Harden infrastructural functional components

Authenticate subjects

Define and enforce access policies

Secure communication infrastructure (gateways, infrastructure services)

Secure communication between subjects

Secure peripheral networks (data link layer security, network entry, secure
routing, mobility and handover)

Avoid wherever possible wireless communication

Physically protect peripheral devices or consider peripheral devices as
available to malicious users in the attacker model

Avoid Over-The-Air device management; if necessary secure properly

For each of the perspectives we list a number of tactics to achieve the desired
attribute of the system, e.g. anonymous usage. The tactics are state-of-the art
methodologies commonly used in today’s systems architectures.

In Chap. 6 we present examples of Design Choices for the respective tactics
listed in the perspectives section as example solutions for non-functional architec-
tural requirements. The Design Choices will help the architect with selecting
suitable solutions for non-functional architectural problems to focus on the
domain-specific functional aspects.

http://dx.doi.org/10.1007/978-3-642-40403-0_6

8 IoT Reference Architecture 211

Table 8.6 Privacy perspective (adopted from (Rozanski and Woods 2011), extended with IoT
specific aspects)

Desired Quality Ability of the system to ensure that the collection of personally identifying
information be minimized and that collected data should be used locally
wherever possible

IoT-A UNILO001, UNL002, UNL410, UNIL.412, UNIL.413, UNL.424, UNL501,
Requirements UNL606, UNL611, UNI.623, UNL.624

Applicability Relevant to all IoT systems

Activities Capture the privacy requirements

Conduct risk analysis
Evaluate compliancy with existing privacy frameworks.

Tactics Use an Identity Management component that supports pseudonymization
Avoid transmitting identifiers in clear especially over wireless connections
Minimize unauthorized access to implicit information (e.g. deriving location

information from service access requests)

Validate against requirements
Consider the impact of security/performance trade-offs on privacy
Enable the user to control the privacy (and thus security and trust) settings
Balance privacy vs. non-repudiation (accountability)

Table 8.7 Availability and resilience (adopted from (Rozanski and Woods 2011), extended with
IoT specific aspects)

Desired Quality The ability of the system to be fully or partly operational as and when
required and to effectively handle failures that could affect system

availability
IoT-A Uni.040, UNI.050, UNIL058, UNI.060, UNI.064, UNI.065, UNI.092,
Requirements UNI.230, UNI.232, UNI.233, UNIL601, UNI.604, UNI.610, UNIL.616,
UNIL.718
Applicability Any system that has complex or extended availability requirements, com-
plex recovery processes, or a high profile (e.g., is visible to the public)
Activities Capture the availability requirements

Produce the availability schedule
Estimate platform availability
Estimate functional availability
Assess against the requirements
Rework the architecture
Tactics Select fault-tolerant hardware
Use high-availability clustering and load balancing
Log transactions
Apply software availability solutions
Select or create fault-tolerant software
Design for failure
Allow for component replication
Relax transactional consistency
Identify backup and disaster recovery solution

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Chapter 9
The IoT ARM Reference Manual

Martin Bauer, Nicola Bui, Christine Jardak, and Andreas Nettstrater

Whereas we explained the process of creating an IoT architecture with the support

of the IoT ARM in Chap. 6 [Process Chapter] and gave an example how a concrete

architecture can be defined based on different models and views of the IoT ARM in

Chap. 11 [Concrete Architecture Chapter], we now provide reference manuals with

guidelines how to use the IoT Domain Model, the [oT Information Model, the IoT

Communication Model and the Perspectives when creating a concrete architecture.
Starting with the IoT Domain Model.

9.1 Usage of the IoT Domain Model

This section is intended for architects who want to apply the [oT Domain Model on
a specific use case. We discuss typical instantiations of the IoT Domain Model.
These model cases can be used as basic patterns when doing concrete modelling.

M. Bauer (P)

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd,
Kurfiirsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: Martin.Bauer@neclab.eu; www.nw.neclab.eu

N. Bui
Consorzio Ferrara Ricerche, Via Savonarola 9, 44122 Ferrara, Italy
e-mail: buincl@unife.it; www.unife.it

C. Jardak
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
e-mail: christine.jardak@siemens.com; www.siemens.com

A. Nettstriter

Fraunhofer Institute for Material Flow and Logistics IML, Joseph-von-Fraunhofer Str. 2-4,
44227 Dortmund, Germany

e-mail: andreas.nettstraetter@iml.fraunhofer.de; www.iml.fraunhofer.de

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_9, 213
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_11
mailto:Martin.Bauer@neclab.eu
mailto:www.nw.neclab.eu
mailto:buincl@unife.it
mailto:www.unife.it
mailto:christine.jardak@siemens.com
mailto:www.siemens.com
mailto:andreas.nettstraetter@iml.fraunhofer.de
mailto:www.iml.fraunhofer.de

214 M. Bauer et al.
9.1.1 Identification of Main Concept Instances

Similar to the identification of stakeholders and actors in standard software engi-
neering practices, the IoT Domain Model is used in a first step of the architectural
design process in order to:

. Identify Physical Entities and related Virtual Entities;

. Identify Resources (at least from a functionality perspective);
. Identify Devices (or device options);

. Identify Services;

. Identify Users.

N AW N =

The identification of Resources and Devices is used together with the IoT
Communication Model to define the communication paradigms and how these
devices and resources interact. This is comparable to interaction models in standard
software engineering practices. The Services to be used and where they should be
deployed are analysed and finally the Users of these services are identified.

9.1.2 Modelling of Non-IoT-Specific Aspects

It is important to understand that the IoT Domain Model is not attempting to be a
domain model for all types of ICT systems. Rather, it focuses on the IoT-specific
parts. When modelling a complete system, many of the aspects to be covered are
not IoT-specific. For these aspects, the IoT Domain Model will provide only
little help.

For example, the Service concept in the Domain Model is primarily focused on
modelling IoT Services that directly or indirectly expose Resources; however, the
Service concept also can be used to provide a link to general services in the ICT
domain.

9.1.3 Identifiers and Addresses

Identifiers and addresses are logically two different concepts, which unfortunately
however are often confused in practice, in particular in the discussions about IoT
(Haller 2010). While in some cases the address might be used in the role of an
identifier, it is important to distinguish between these terms.

Identifiers are used to identify something, for example a Physical Entity. In this
case, the identifier is an attribute of the related Virtual Entity. Examples include URIs
(Uniform Resource Identifiers as used on the Web, e.g. foo://example.com/building1/
room3), EPCs (Electronic Product Codes, e.g. 01.23G3D00.8886A3.365000A03)

9 The IoT ARM Reference Manual 215

(EPC Tag Data Standard) and ulDs (uCode Identifiers,’'
e.g. 0123456789ABCDEF0123456789ABCDEF).

Addresses, on the other hand, are means for locating, accessing or communica-
tion with something, e.g., a service or a device. Addresses manifest themselves as
attributes of the corresponding concepts, i.e., attributes of a service or a device.
Examples include IPv6 or MAC addresses.

As mentioned above, there are cases in which it can make sense to use addresses
as identifiers, e.g. when the address uniquely identifies the Physical Entity. For
example, a street address is good identifier for a building, but not for a human being.
An e-mail address on the other hand provides a unique way of identifying people.

Modelling An address can be used as an identifier for a Physical En-
Option 1 tity (and the corresponding Virtual Entity) if it uniquely
identifies it.

Overall, identification and addressing are very important aspects of IoT systems.
When designing an IoT system the different options should be evaluated and
decided on early in the process, but as the decision depends on various
requirements, assumptions and even technology choices, we cannot give specific
recommendation on the reference model level.

9.1.4 Granularity of Concepts

In the IoT Domain Model, concepts like Device, Resource, and User have
specialisations. Pertinent examples for Devices are Sensors and Actuators. When
modelling a concrete scenario, one can use either the general concepts or their
specialisations; the IoT Domain Model does not prescribe anything. For example,
instead of using a concrete concept like Sensor it is also possible to use a more
general concept like Device. However, the specialisations are more precise and are
therefore preferable where they apply. In other words, if at the time of modelling it
is not (yet) clear what type of device is used, then just use Device.

Modelling Model as precisely as possible based on the domain mod-
Rule 1 el concepts at the time of modelling. Use the more concrete,
more fine-granular concepts and instances whenever possi-
ble, but only to the granularity that appears reasonable for

the given purpose.

! http://www.uidcenter.org/spec#UID-00010.

http://www.uidcenter.org/spec#UID-00010

216 M. Bauer et al.

loT Domain Model::
Augmented Entity

1

Domain Model:: Domain Model:: loT Domain Model::
Network Resource is associated with Virtual Entity relates to Physical Entity

A A A

1 1 |
«is instance of» «is instance of» «is instance of»
| | |
| | |
Asset DB :Network is stored in Building 1 DB relates to Building 1 :Physical
Resource Record :Virtual Entity
Entity

Fig. 9.1 Data-base pattern as an example for an augmented entity

9.1.5 Common Patterns

9.1.5.1 Augmented Entities

As described in Sect. 7.3.2.2, Augmented Entities are the composition of a Physical
Entity with its related Virtual Entity. In many cases though, the Augmented Entity
is of little practical relevance and will have no concrete instantiation, as the
example in Fig. 9.1 shows. In this figure, a typical pattern is shown for how Physical
Entities are mapped to data base records: In a data base of assets (a Network
Resource in terms of the IoT Domain Model), a data base record (Virtual Entity,
and also a Passive Digital Artefact) is stored for every building (Physical Entity).

Modelling The Virtual Entity for a given Physical Entity can be a
Option 2 data base record stored in a Network Resource.

A different case is truly smart objects, i.e., intelligent devices that have embed-
ded logic seemingly able to act autonomously. In this case, the Augmented Entity is
the smart object itself, and the associated Virtual Entity is an Active Digital
Artefact, namely, the embedded logic (e.g., the software agent).

Figure 9.2 shows an example of a smart object: an Unmanned Aerial Vehicle
(UAV). The body of the UAV can be considered the Physical Entity, while the

http://dx.doi.org/10.1007/978-3-642-40403-0_7

9 The IoT ARM Reference Manual 217

loT Domain Model::
Augmented Entity

<t----—— - 1
|
|

B |
1 1.
|
|
1 1 |
|
Active Z’,g',:a; :\rteifract loT Domain Model:: !
Qi Al relates to Physical Entity :
loT Domain Model:: |
Virtual Entity 1.* 1 |
|
|
L A .
|
| |
1 | |
«is instance of» «is instance of» |
i I «is instance of»
L L |
UAV Controller : controls UAV Body :Physical
Virtual Entity Entity

Unmanned Aerial
Vehicle :Augmented
Entity

Fig. 9.2 Smart-object pattern. UAV: unmanned aerial vehicle

UAYV controller is the related Virtual Entity. Together they form the Augmented
Entity, the smart object.

Modelling | When modelling an autonomous object, an Augmented

Rule 2 | Entity is used, consisting of a device (Physical Entity) and
| its software controller (Virtual Entity).

Finally, the question often arises if something should be modelled as a Physical
Entity or not. While possibly every real-world object could be modelled as a
Physical Entity, this does not make sense. Not every sand corn needs to be
represented in an [oT system. Hence we can deduce:

218 M. Bauer et al.

Modelling Only model something as a Physical Entity if it is rele-
Rule 3 vant in the IoT system so that the representing Virtual Entity
is also modelled.

9.1.5.2 Multiple Virtual Entities

In order to understand the case of multiple Virtual Entities, we take the example of a
customer buying a new car. The customer visits the exhibition of an automobile
manufacturing company and buys a new car. He then registers it under his name at
the department of motor vehicles. In order to protect himself from unexpected
financial expenses resulting from traffic collisions, he decides to buy a car insur-
ance. In this small scenario we notice that the same car, which is the Physical
Entity, is registered at three stakeholders: the manufacturer, the vehicle-registration
department, and the insurance company. As depicted in Fig. 9.3 each of the three
stakeholders maintains a unique entry in its database identifying the car. These
entries are multiple Virtual Entities representing the same car.

In practice, the number of Virtual Entities depends on the systems and domains,
where the Physical Entity is represented and of course also which stakeholders are
involved. We note that the characteristics of the Physical Entity change and,
therefore, many of the Virtual Entities need to be maintained and kept up-to-date.
Notice that the IoT Domain Model does not explicitly spell out any requirements on
the maintenance of single and multiple Virtual Entities.

9.1.5.3 Smart Phones and Other Mobile User Devices

Smart phones are a very common element in many IoT-related scenarios. They are
on the one hand Devices containing a multitude of sensors, but they also host apps
(Active Digital Artefacts), Services, and Resources. Figure 9.4 shows this in
exemplary fashion: John’s smart phone is used as a Device to track the location
of John, its owner. The GPS sensor is embedded in the phone itself. It is thus
embedded sensor hardware. Its data is made accessible through the related
On-Device Resource and the location service that exposes it. An app can be used
to display the location information.

Note that in this example (see Fig. 9.4), both the service as well as the applica-
tion are shown to be hosted on the phone itself. While this depicts a common case,
other instantiations are possible.

Instead of a smart phone other mobile user devices could be used, e.g. tablets or
PDAs. The general modelling would be the same.

9 The IoT ARM Reference Manual 219

Automobile manufacturer data base
-.
VE ::I Chassis number | Manufacturing plant | Manufacturing datel ‘

Vehicle registration station data base

j Plate number |Mode|| Color | Owner name | ‘

Insurance company data base

Fig. 9.3 Multiple virtual entities (data-base entries) for a single physical entity (car)

—

Plate number‘ Model l Owner name l Insurance type‘ ‘

John :Physical Entity has location information about

Tracking App :Active
is attached to Digital Artefact
host/ uses
SmartPhone :Device hosts Location Service :
Service
hosts exposes
contains

GPS Sensor :Sensor Location :On-Device

Resource

relates to

Fig. 9.4 Exemplary modelling of a smart phone that is used as tracking device

9.1.5.4 IoT Interactions

The IoT paradigm enables mediated interactions between Users and the physical
world. This complements the direct interactions in the physical world that are

220 M. Bauer et al.

possible between Human Users and Physical Entities. It also enables the digital
world, i.e. Active Digital Artefacts, to interact with the physical world.

9.1.5.5 Simple Mediated Interactions

A common case is that a User needs to access a Resource exposed through a Service
in order to attain a given goal. Such goals may range from observing a Physical
Entity by using a Sensor, to modifying its state by leveraging an Actuator device.
We differentiate the following cases:

* Retrieving information: In this case a user would invoke a Service for retriev-
ing some information. There are different options for the Service to get this
information, which may be pull or push based. In case the Resource pushes the
information, the Service would cache the information and provide it on request

* Subscribing for information: In the subscription case, the User subscribes to
the Services and asynchronously receives notifications. After subscription, the
Resource (e.g., on a Device) will detect the events of interest according to the
specification provided by the user. The Service providing access to the Resource
will then forward the event to the interested User. In an alternative implementa-
tion, the Service is performing the event detection by processing all the raw data
from the Resource;

» Actuation: In the case, the User wants to control some aspect of the physical
world mediated through the IoT system, it would call an Acutation service. In
this case, the Service would interact with the Resource which would trigger the
Actuator to execute the actuation.

9.1.5.6 M2M Interaction

Machine-to-Machine (M2M) communication is a technological approach for
enabling meaningful information exchange between networked machines that
show a certain degree of smartness. The term machine is generally related to an
autonomous application while the smartness is related to the capability of
controlling its own behaviour and communicating. This reflects the capability of
making decisions on the basis of information retrieved from outside the system and
being able to receive and execute commands. This approach is very relevant to the
IoT and a specific definition of IoT Machine can be provided. In the terms of the IoT
Domain Model, we define an IoT Machine as a composition of:

e An Augmented Entity whose Virtual Entity component is an Active Digital
Artefact. In this way, it can start interactions (being a User, it can invoke
Services) and can control the behaviour of the machine;

9 The IoT ARM Reference Manual 221

¢ One or more Resources and the underlying Devices which are used by the
Active Digital Artefact to monitor/control the Physical Entity. Note that,
because Resources are internal functionalities and the Active Digital Artefact
is generally co-located on the same hardware, the interaction can happen even
without the use of Services;

¢ The Services that are used for exposing Resources.

The example shown in Fig. 9.5 shows how a car interacts with a road barrier in
order to speed up the passage through the barrier, i.e. that the barrier is removed as
early as possible to enable the passage of the car. The incoming car is modelled as
IoT Machinel, the automated barrier operator as IoT Machine2. The
Machinel Controller, an instantiation of an Active-Digital-Artefact
Virtual-Entity, will access as a User (Active Digital Artefact can be Users) Ser-
vice2 and will require the activation of the barrier. Service2 provides access to
Functionality?2 (Resource) related to Machine2 and thus, by accessing
Service?2, the car can retrieve the information about the barrier status which is
needed in turn to decide whether it needs to slow down or can pass through without
danger.

As M2M is about the communication-based interaction between machines, it is
important to clarify that [oT Machines can also interact with non-IoT Machines. For
example, an loT-Machine could need certain information provided by an autono-
mous web application, a non-IoT Machine, in order to make decisions.

However, as the controlling program of Machinel is a User according to the
IoT Domain Model, it can also communicate with other Machines by calling
appropriate embedded Services on another Machine, as shown in a simplified
way in Fig. 9.6.

Object identification and tracking with RFID. The term “Internet of Things” was
originally coined by the MIT Auto-ID Centre around 1999 (Ashton 2009), the
precursor to what is now known as EPCglobal. EPCglobal is a standardization
organization set up for achieving the worldwide adoption of the Electronic Product
Code (EPC). It is based on RFID technology and the sharing of related information
over the Internet. Due to its importance, it is worthwhile to map one of the most
common scenarios of EPCglobal to the IoT Domain Model: the tracking of goods —
pallets, cases, etc. — throughout the supply chain, from the manufacturer via
distribution centres to the retail stores. A reverse mapping of EPCglobal onto the
ARM can be found in Sect. 12.9.

A first thing to note is that we often have a hierarchy of Physical Entities and the
related Virtual Entities. A large boxed pallet is identified by a shipping company as
PES5 with its corresponding Virtual Entity VES5. As depicted in Fig. 9.7, the large
boxed pallet contains multiple other cases that are identified as (PE1l, VE1),
(PE2, VE2), (PE3, VE3), and (PE4, VE4).

We note that the granularity of identifying PEs contained in other PEs is not
defined by the IoT Domain Model, since it intimately depends on the application. In
this example, if the large box contains four boxes of similar goods, e.g., shoes, the
interest of the shipping company usually stops at identifying PE5 and thus tracking

http://dx.doi.org/10.1007/978-3-642-40403-0_12

222 M. Bauer et al.

[mm e _—

Machine1 ! Machine2

Digital Artefact|
User|

IoT Domain Model::
Active Digital Artefact

e,

exposes

i
|
I
i
|
I
I
i
|
I
i
|
I
i
Augmented Entity Augmented Entity| |
Smart Machine1 Smart Machine2 |
I
I
i
|
I
I
|
I
! i
/ \ 5 3
: y ! i I
Physical Entity Virtual Entity| | Service| s associated Virtual Entity] relates 7)
- " . Physical Entity
Machine1 Body | relates to 1C accesses Service2 with (provides) Machine2 to S 2 Bo. d}; i
H Controller !
1
! |
! i
| . . is attached |
is attached i Is‘tahssoclated to (monitor :
to (monitors | wi / acts on) !
/ acts on) | !
' 5 |
! On-Dewc.e. S hosts |
| |
! |
: |
: |
L !

,_____
R

Fig. 9.5 IoT domain model instantiation for a M2M communication scenario

Service

Service

service-based access

Resource Resource

Device Device

Fig. 9.6 M2M communication

Fig. 9.7 Shipping box containing multiple packets. The VE-to-PE mapping is exemplified by
paper tags

223

9 The IoT ARM Reference Manual

35IN0Soy
82I1A8Q-UO
TAIoJUSAU sasodxa
aigg
T
sjsoy
mv (eoep8)UI 21N}dRD
SI10d3) seyoaul
JOoSusg
- 1opesy aidd
speal speal 35BS
Vi \/ TSDd3 e
(e0B MBI
bel per Aienb
The] osen Toied SI10d3)
sasn
yim saynuap! Uim saluap!
pa)elooSSE S| po)eloosse S|
Anug Jasn uewnH
TesrsAud TIIOM d
_ﬁm SUIBJU0D < (sanow) | ssnoyarem S50
; Uim sjoessiul
N o _/ 0}
sojelal wm_Hm_Q
AmugTenyip | Ol__ | Kjug [enyin
T pi0day aseH si8jal | Tpiodey joled
33In0say
MIOMION
Taseg
(ur pauois si) ejeq 0d3

UM pajeloosse si

Fig. 9.8 Domain modelling of a typical EPC-based RFID scenario (pallet containing cases)

224 M. Bauer et al.

it by using VE5. Now if each of the four boxes contains different goods, e.g., shoes,
hats, earrings, and bags, it might be of interest for the shipping company to
additionally identify the four boxes as PE1, PE2, PE3, and PE4. The aim behind
this higher granularity is to facilitate the process of sorting out the goods after
delivery by checking VE1, VE2, VE3, and VE4.

The result of the whole mapping of the RFID logistics scenario, for only the
pallet plus everything it contains, is depicted in Fig. 9.7.

In this example, the Virtual Entities take the form of database records (Fig. 9.8)
stored in a Network Resource, the EPC Database. This database is exposed for
querying and updating through the EPCIS service (EPC Information Service).

The logistics manager, a Human User, can use the SCM application in order to
view the status of the tracked items (pallets and cases). The SCM application is
invoking the EPCIS query interface in order to get the necessary data.

Both pallet and cases have RFID tags attached that identify them. A RFID reader
— a type of sensor — reads the EPCs on the tags and hosts a resource that makes the
RFID inventory data accessible. A special service, the EPC Capturing Service, is
exposing this resource and is updating the EPC Data Base by invoking the EPCIS
capture interface of the EPCIS service. The EPCIS capture interface and the EPCIS
query interface are standardized and defined by EPCglobal (EPC 1.0.13).

In principle other technologies for identification, e.g. visual ones like bar codes
could be used. In this case, there is no hardware Device of type Tag involved and
the Sensor would be a camera or barcode reader. The identifies relation (as in
the IoT Domain Model) would then be directly between the Sensor and the Physical
Entity. The other aspects would be modelled in the same way.

Finally note that also physical interactions with the pallet can take place: a
warehouse worker — a Human User — moves around the pallet.

9.1.6 Examples for IoT Domain Model Concepts

In this section we give examples on different concepts in the IoT Domain Model.
For each concept we discuss a practical example and, where applicable, we
highlight the dependency of the concept on other concepts and also provide some
general information.

9.1.6.1 User

A User interacts with a Physical Entity, physically or mediated through the IoT
system. In the case of a mediated interaction, a User invokes or subscribes to a
Service.

9 The IoT ARM Reference Manual 225

Application

— Example: A WSN installed in a wine cellar monitors environmental factors such
as temperature, humidity, and light intensity. These factors play an essential role
in defining the quality of the final wine product. Therefore, the winegrower has
an intelligent application running on his smart phone. The application allows
him to periodically visualize the status of the cellar. In this example, the
application is a user and the cellar is a Physical Entity.

— Note: An application is one kind of Active Digital Artefact.

Human User

— Example: The employee in a supermarket loads the fridge with meat instead of
cheese. Therefore, he regulates the temperature of the fridge accordingly. In this
example, the employee is a Human User and the fridge is a Physical Entity.

— Note: The case of multiple Human Users for one Physical Entity is possible as
well. We take the example of the safe in a bank. For security reasons, more than
one high-ranked employee is required to identify themselves simultaneously at
the safe in order to be able to open it. In this example the eligible employees are
Human Users and the safe is the Physical Entity.

9.1.6.2 Physical Entity

A Physical Entity is a discrete, identifiable part of the physical environment which
is of interest to the User for the completion of his goal. In the following different
kinds of Physical Entities are discussed.

Environment

— Example: An optical fog sensor measures the density of water particles in the air
that limit visibility. This sensor is used for traffic-control purposes, where it is
often installed on the side of roads for monitoring visibility impairment through
fog. The information about the fog is sent to a traffic management system where
itis analyzed. In this example the near surrounding above the road is the Physical
Entity.

Living Being

— Example: A WSN for agricultural monitoring. The network targets to report on
the growth of fruits. To this end growth monitors are deployed. They are
equipped with fruit-growth sensors as depicted in Fig. 9.9. In this example, the
fruits are Physical Entities that are living beings.

226 M. Bauer et al.

Fig. 9.9 Growth fruit Physical entity
sensor © 2010 Phyto-Sensor 30 to 160 mm
Group

15 to 90 mm

-«—— Sensor device
7 to 45 mm !

Structural Asset

— Example: Equipping bridges with electrochemical fatigue sensors that reveal
flaws in metal (Phares 2007). This works much the same way as an electrocar-
diogram tests the human heart. First, bridge inspectors identify parts of the
bridge that are more susceptible to cracks. Second, they equip these areas with
electrochemical fatigue sensors. Third, they apply a constant electrical current
that runs between the sensors and the bridge. By monitoring the amplitude of the
current passing through the metal, sensors can detect cracks. In this example, a
susceptible area of the bridge is a structural-asset Physical Entity.

9.1.6.3 Resource

Resources are software components that provide information about or enable the
actuation on Physical Entities. We explain two examples for Resources, one
illustrating an On-Device Resource and the other a Network Resource.

On-Device Resource

— Example: TinyOS is an event-based OS for embedded networked sensors (Levis
and Gay 2009). TinyOS provides predefined software components that manage
the access and control of i.e., local LEDs, radio, or sensors. In this example, the
software components are On-Device Resources.

9 The IoT ARM Reference Manual 227

Network Resource

— Example: HBase? is an open-source, distributed, column-oriented database.
HBase offers a set of functionalities that allow the management of distributed
information. In this example the HBase software libraries and components are
-Network Resources.

9.1.6.4 Service

A Service provides a well-defined and standardised interface, offering all necessary
functionalities for interacting with Physical Entities and related processes. Often it
exposes a functionality provided by a Resource to the overall IoT system.

Interacting Services

— Example: A system for home-patient monitoring. The system is composed of a
body sensor network (BSN) attached to the body of the patient. Bioelectric chips
monitor the status of the patient and require no direct involvement from a human
being. As depicted in Fig. 9.10, the intelligence of the system resides not only in
the hardware but also in three main services. First, the BSN monitoring service
that evaluates the readings of the bioelectric chips i.e., a blood pressure. Second,
the automatic service call, which alerts the relatives of the patient whenever his
situation deteriorates. Third, another automatic service call that alerts the ambu-
lance. The diagram in Fig. 9.10 shows the conditions to be fulfilled for one
service to invoke another service.

— Note: A service demanding high processing and storage capabilities can be
divided into multiple subservices running on different machines that invoke
each other. In comparison to the original service, each of these subservices
requires less storage and processing capabilities. Therefore, a trade-off exists
between the number of subservices and the power consumption of the hosting
machines. Distributed subservices induce an inter-communication overhead that
increases the power-consumption of the hosting machines. This trade-off should
be taken into consideration when dealing with low-power communicating
devices (Polastre et al. 2005).

Service Associated with a Virtual Entity

— Example: Services can be associated with Virtual Entities and these associations
are stored and can be discovered in the IoT system. The management of these
associations can be handled in a centralized database or in a highly distributed
fashion as in a peer-to-peer system, depending on the characteristics of the
underlying system.

2 http://hbase.apache.org/

http://hbase.apache.org/

228 M. Bauer et al.

Fig. 9.10 Interacting
services for a home-patient
monitoring scenario

—| Service: BSN monitoring

Highblood
pressure?

o : \Q(\SE
Automatic service: call family ,\f’ A¥

Familiy
available?

Automatic service: call ambulance i fp -B}l

Service Accessing a Resource

— Example: A service for monitoring air pollution. Sensor nodes are semi-
randomly distributed in a city and measure the percentage of CO in the air. A
remote server runs software that periodically queries the readings from the
sensor nodes, analyses the readings, and monitors the evolution of the air
pollution. In this example, the monitoring software is a service that accesses
multiple resources. The latter are the components and functions running on
sensor nodes, and these components allow operations such as reading from the
Sensors.

9.1.6.5 Device

Devices are technical artefacts, i.e. hardware, for bridging the real world of Physical
Entities with the digital world of the Internet. Often a Device hosts Resources,
which represent the software counterpart.

9 The IoT ARM Reference Manual 229

Devices

— Example: Typical devices are sensors, like temperature, noise or light sensors,
but also more complex ones like cameras — or actuators, like switches, door
openers or more complex ones like air conditioning systems.

Hierarchical Devices

— Example: As depicted in Fig. 9.11, a Telos node contains three types of
integrated sensors (photodiode, humidity and temperature), several expansion
pins to mount external sensors, and three integrated LEDs (Polastre 2005). Two
views of the node exist: The node as a whole may be seen as a single device or it
can be seen as a composition of multiple sensors and actuators acting as
individual devices.

— Note: A device can be seen as a single unit as well as a composition of multiple
devices. This granularity of modulating a device is not specified in the IoT
Domain Model due to the fact that it is application dependent.

9.1.6.6 Deployment Configurations

Figure 9.12 shows a range of deployment configurations for resources, services, and
users. In Fig. 9.12 (a) resource, service, and the user (application) are running on the
same device. This is a configuration in which we have a powerful device, and the
interaction with the user is local. In Fig. 9.12 (b) the service of the user is running
somewhere else, e.g., in the cloud, and the interaction is thus not local. The API
used between the service client and the service, however, is the same. In Fig. 9.12
(c) the service is not running on the device, but in the cloud. This is a typical
configuration for a constrained device that may not be able to expose a user
interface across the network. For example, due to energy constraints or other
limiting factors, such a device may sleep most of the time and is therefore not
able to always handle user requests. The interface between the service and the
resource may be very specific and proprietary.

Network-based resources are not shown in Fig. 9.12, as they can be regarded as
being hidden behind cloud-based services.

Of course, in a real IoT system all these different configurations may be realized
at the same time and there could be interactions between users and services from the
different configurations.

230 M. Bauer et al.

Fig. 9.11 Telos ultra-low
power wireless module ©
2008 University of
California, Berkeley

TSR photodiode

LEDs ». PAR photodlode. .
. . SHT11 humidity/temp
8 6 pin expansion
USB-serial ; 10 pin expansion
Reset support

(bottom) by
TI MSP430 F1611
ST M25P80 flash .}
Serial ID

CC2420 IEEE 802.15.4 radio i

Pack for two AA batterieé

9.1.7 Generating a Specific IoT Domain Model

As discussed in Sect. 6.3, the IoT Domain Model is an integral part of the IoT
architecting process. In the following we provide a six-step process that supports
the generation of use-case specific IoT Domain Models. In the following, we
illustrate the answers with examples from the recurring example that we introduced
in Sect. 4.2.

In order to proceed with the modelling of a system, its usage from the perspec-
tive of each User needs to be analysed. For each of the Users identified, the architect
needs to answer six simple questions, and create suitable instance diagrams from
the Domain Model based on the answers.

Q1: What does a User invoke or subscribe to?

Al: The answer determines the Service(s) that the user invokes or subscribes to —
In the recurring example the user subscribes to the alarm service (using an
Android app).

Q2: Which part of the environment does the User want to interact with?

A2: The answer determines the PE(s) — in the recurring example the user wants
to be kept informed about the status of the load carrier.

Q3: What is used to identify/monitor this PE in the physical world?

A3: The answer determines the Device(s) — in the recurring example, the load
carrier can be identified with an RFID, a humidity sensor and a temperature
sensor can monitor relevant state information.

Q4: What is used to identify the PE in the digital world?

A4: The answer determines the VE(s) — in the digital world the identifier
provided by the RFID can be used for the VE modelling the load carrier.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_4

9 The IoT ARM Reference Manual 231

Fig. 9.12 Various
deployment configurations ~ beniiiiians
of devices, resources, and
services

a

<
H
o
<
8l 2
c)
Q Q
I o

o - o
&l e
=] © E
Sl EL
o| &€
8=
o
°©
£
b

0
internal
©

Human
Software
(running on
Underlying HW)
Hardware

232 M. Bauer et al.

QS: What software can provide information or allow changing aspects related to
PE?

AS: The answer determines the Resource(s) — the Alarm Resource can trigger a
notification if the temperature or the humidity are no longer within the
required range.

Q6: What exposes this Resource and/or makes it accessible?

A6: The answer determines Resource-level Service(s) — the Alarm Service
exposes the Alarm Resource.

9.2 Usage of the IoT Information Model

The IoT Information Model cannot be instantiated directly like the IoT Domain
Model. Moreover the IoT Information Model defines an abstract framework or
meta-model that is technology agnostic and restricted to a minimum. The model is
just enough to accommodate the relationships defined in the [oT Domain Model and
to model the key concepts that are used as a basis for defining interfaces of
functional components. Thus only the skeleton of an information model is provided
in the ARM that IoT-A compliant architectures will have in common. A common
model on the other hand can serve as a bridge between more specific -but different
-information models to be used in concrete architectures.

The way to work with the IoT Information Model is split into three steps (see
also Fig. 9.13 below):

1. Use the IoT Information Model, viz. meta-model, as a basis explaining the
common information structure and the core elements defined in the IoT Domain
Model, like Virtual Entities, Attributes and Services;

2. Generate a domain-specific information model out of the meta-model, which
defines a minimal set of attributes and Services for your application domain.
Attributes which every VE needs to have (e.g. EntityIdor EntityType as
in Chap. 7 Fig. 9.10 “IoT Information Model”) are defined but not necessarily
described in detail. Additionally the Service Descriptions can already be defined
as interfaces with input and output parameters.

3. Several (different) representations of the domain-specific model can be
generated, implementing the defined Attributes and Services. The use of differ-
ent representations is useful when there are different implementation-specific
requirements, like binary storage of information for constrained sensor nodes
and XML storage for the backend server storage.

The IoT Information View in Sect. 8.2.3, and especially the Sect. 8.2.3.1, give
some examples how the concrete modelling of the domain-specific model can look
like. An additional example for an information model used to model events is
shown in (Voelksen 2013; Sect. 4.2).

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_4

9 The IoT ARM Reference Manual 233

1. Information Model

* Shows common concepts from the Domain Model, like
Virtual Entities and Services with Services Description

2. Domain-specific model
* Defines global Attributes and Services (as Interfaces)

3. Different Representations
of Domain-specifi
= Concretelmplementi of Domain-specific model

* Concrete Implementation

3. Different Representations

Fig. 9.13 Three steps to use the IoT information model

9.3 Usage of the IoT Communication Model

Extending the analysis performed using the other models the IoT Communication
Model is used in the architectural design process to:

1. Identify homogeneous sub-systems and their capabilities and constraints;

2. Identify suitable protocol stacks and network topologies to be merged in a
common system view;

3. Define gateways and other bridging solutions.

9.3.1 Guidelines for Using the IoT Communication Model

Since the IoT Communication Model aims at providing an overall framework for
communication in IoT systems, it requires well-defined domain and information
definitions. This can be achieved following the examples of the previous sections.
Starting from those, it is possible to identify all the sub-systems, the complete
system is composed of, where we define homogeneous sub-system as a set of
system elements sharing the same communication technology and sharing similar
hardware capability.

Once the sub-systems have been defined, it is possible to analyse capabilities and
constraints for each of them. By capabilities and constraints we intend communi-
cation specific parameters such as data rate, delays, medium reliability (channel
errors) and technology specific parameters such as the available memory, compu-
tational power and supported functionalities.

234 M. Bauer et al.

Modelling I Identify homogeneous sub-systems from the complete

Rule 4 1 domain model and determine their capabilities and con-
| straints.

Subsequently, it is possible to analyse communication requirements deriving
from both services in the domain definition and interaction patterns from the
information model. The main goal of the IoT Communication Model is to identify
a set of interoperable protocol stacks and topologies with the following
characteristics:

1. Each stack must grow from a specific communication technology;

2. Interoperability shall be enforced in the lowest possible layer of stack;

3. The combination of identified stacks and topologies must satisfy all the
requirements.

Modelling I Use existing standard communication mechanisms and re-
Rule 5 lated protocols whenever possible. If this is not possible then

each of the sub-system is the starting point for building a
protocol stack which is both technology specific and interop-
I erability prone.

This rule enforces technology optimizations and ensures feasibility in all the
subsystems.

Modelling | Interoperability shall be enforced in the lowest possible

Rule 6 | layer.

This rule enforces simplicity and interoperability, because it avoids stack dupli-
cation and makes it possible to reuse the same protocols (and their
implementations) horizontally in the system. Usually, the most effective interoper-
ability point is the Network & ID aspect in the IoT Communication Model (or the
Network layer in the ISO/OSI model) as it is the lowest common point in the stack
which is not technology specific and, thus, it can be the same across different
sub-systems.

For such a reason the selection of the protocols governing the Network & ID
aspect is of paramount importance, since they must satisfy the requirements from
services and respect the technology constraints.

The next aspect in the IoT Communication Model is the end-to-end aspect: this
considers every possible interaction path among any couple of sub-systems. Again,
technology dependent constraints and service dependent requirements will push the
system architect in two opposite directions and often there is no single rule for all

9 The IoT ARM Reference Manual 235

the systems: in fact, even though the Network & ID aspect is capable of making two
sub-systems communicate to one another, it is the end to end aspect which
harmonizes the overall system behaviour. For such a reason, this is the place
where gateways and proxies are mostly needed.

Modelling In order to allow seamless interaction between sub-
Rule 7 systems, gateway and proxies shall be designed for the
whole system.

Finally, the Data interoperability aspect of the IoT Communication Model,
which accounts for the highest layer of the ISO/OSI communication stack,
considers the remaining aspects of data exchange, compression and representation.
Although application layer gateways can always be designed to map two different
data representations, it is not always advisable to do so. Most often adopting a
compressed format which fits constrained network capabilities provides two
advantages, (1) simpler network interactions, and (2) lower traffic.

9.4 Usage of Perspectives

Perspectives are used to help an architect in designing software architectures. Their
purpose is threefold (Rozanski and Woods 2011):

1. Standardised store of knowledge about a given quality property;
2. As a guide for architects not experienced with a given quality property, and
3. As a memory aid for the experienced architecture.

The actual use of perspectives in an architectural design process is shown in
Fig. 9.14. Within the IoT-A project we extended the use of perspectives by adding
another layer: the Design Choices catalogue. Design Choices which are very
concrete usages of the IoT Reference Architecture applied to Functionality Groups
and Functional Components. An architect can consider solutions provided by the
Design Choices when creating the initial candidate architecture and later on when
he is modifying the architecture to resolve the problems with unacceptable quality
properties.

The architect designing should always keep the desired use of the system into
account. For example, the architect designing the system used in the “Red Thread”
example from Sect. 4.2 would go through the scenarios with a specific “hat” for all
perspectives. He would first extract the non-functional requirements (e. g. the
reliability needs of the sensors, security concerns) and then, once he has a candidate
architecture, use the perspectives to ensure that on all the non-functional
requirements have been taken care of. He would, for example, have a specific
look at the safe storage of the sensor history and select a Design Choice which
ensures that it cannot be altered. The perspectives then will help him making sure

http://dx.doi.org/10.1007/978-3-642-40403-0_4

236 M. Bauer et al.

Analyse and understand
key requirements

Create a candidate architecture Design Choice Catalog

unacceptable

Apply Perspective Modify Architecture

Unacceptable

— Acceptable properties

Perform Formal Architectural

Evaluation e.g. ATAM/SAAM

Fig. 9.14 Using perspectives (Adopted from (Rozanski 2011))

that still all other requirements are fulfilled, and if not, at least can help making the
trade-offs explicit.

Applying a perspective is more than a review process: the outcome of applying a
perspective is cross-view changes to the architecture. As an additional outcome of
the perspectives there might be additional documents like performance analysis
data etc.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Chapter 10
Interactions

Martin Bauer, Mathieu Boussard, and Stefan Meissner

As discussed in Sect. 8.2.2 and found in the literature, the functional view of a
concrete architecture typically consists of three viewpoints: functional decomposi-
tion (viz. the logical structure), interfaces, and behaviour. Despite its significantly
more abstract nature, we provide an analysis of these viewpoints for the IoT
Reference Architecture in Sect. 8.2.2 and in Carrez et al. 2013: Annex C. However,
only rudimentary interaction analysis is presented in the latter section, focusing
mostly on technical use cases within a single FG.

Nevertheless, as can be appreciated by looking at already existing IoT systems,
the operation of such systems generally involves sequences of FC interactions from
all FGs. To help the reader better understand how common system-wide scenarios
can be realised using the IoT ARM, and further apply this knowledge to their
concrete architecture, this section provides the reader with an analysis of
interactions between FCs across different FGs for some selected scenarios.

As explained earlier, the very nature of the IoT ARM is to cover all usage
domains and architectures that can be derived from it — therefore it is not feasible to
describe every possible FC interaction sequence for every possible scenario and
architecture combination. Furthermore, instantiating a given scenario implies in
most cases taking some clear Design Choices, before one can illustrate them in
terms of FC interactions.

M. Bauer (<)

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd.,
Kurfiirsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: Martin.Bauer@neclab.eu

M. Boussard
Alcatel-Lucent Bell Labs France, Route de Villejust, 91620 Nozay, France
e-mail: mathieu.boussard@alcatel-lucent.com

S. Meissner
University of Surrey, Stag Hill, GU2 7XH Guildford, UK
e-mail: s.meissner@surrey.ac.uk

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_10, 237
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8
mailto:Martin.Bauer@neclab.eu
mailto:mathieu.boussard@alcatel-lucent.com
mailto:s.meissner@surrey.ac.uk

238 M. Bauer et al.

However, in order to provide the reader at least with a general understanding of
how such interactions can look like, we provide analyses for a few usage scenarios.
The scenarios presented in the following sub-sections address some of the most
representative system-wide general use cases, identifying relevant FCs and propos-
ing an analysis of possible Design Choices when applicable.

The scenarios presented in this section are:

¢ Management-centred scenarios dealing with modification of the IoT system
through

» Configuration of the system when adding a device
» Changing the device configuration

* Service-centred scenarios

» Discovering relevant services using IoT Service Resolution and VE
Resolution

Interworking of Service Choreography and IoT Services in the context of
Complex Event Processing

10.1 Management-Centric Scenarios

This section presents the analysis of a “management-centric” scenario, namely the
auto-configuration of an IoT system when adding a device or group of devices to the
system. This scenario also encompasses the system-triggered configuration of such
device(s) through the Management FG. Although the Device FG is out of the ARM
(see Sect. 7.5.2), system designers have no choice but to consider this FG in the
specification of their concrete systems. In particular, the interactions the FCs of the
Device FG have with the entire system to make devices usable should be defined
(we’ll consider actual devices as distinct FCs here, but a device ensemble could be
modelled likewise by a Device Group FC depending on chosen design choice).

In this section, we describe the interactions taking place across the Device,
Management, Security, Communication, and IoT Service FGs for two
management-centric scenarios, namely (i) what happens when a device is added
to the IoT system and made available to its components, and (ii) what happens when
a device configuration is changed within the system.

10.1.1 Configuration of the System When Adding a Device

From a general point of view, such addition can happen automatically, semi-
automatically or in a manual fashion (which is a clear design choice). Common
examples of these three different design choices are:

http://dx.doi.org/10.1007/978-3-642-40403-0_7

10 Interactions 239

» For automatic joining, typically the handover between cells in a GSM network;
Plug & Play solutions such as those supported by protocols like UPnP or
Bonjour;

» For semi-automatic joining, the connection to a private network with a firewall,
where a network administrator needs to manually grant access through inclusion
of the requester’s MAC address in a white list;

» For manual joining, any system where the complete compulsory information is
manually inserted by an administrator (possibly including physical
intervention).

The automated addition of devices is commonly addressed in concrete IoT
systems through the usage of Plug&Play solutions (or a mix thereof). Extended to
networked systems, Plug & Play conceptually covers addressing and more gener-
ally communication, resource description and discovery, registration and look-up as
well as possibly secure and trusted access (see e.g. (Houyou et al. 2012)). Semi-
automatic would e.g. imply equivalent discovery mechanisms but wait for approval
of a human system manager to actually make the new device available to the rest of
the system. Finally, some systems may not imply any automation at all — human
system engineers perform static provisioning of necessary device information and
trigger the addition of the device to the system when the physical deployment is
performed. Regardless of the selected design choice, a number of actions need to
take place, which are depicted below.

When considering an IoT system, the goal is to go from state A (system in initial
state) to state B (system + new component in a state where this new component is
actually potentially usable by the rest of the system components). In the following,
we describe how the system might make this transition for two of the identified
design choices (automatic or manual), as the semi-automatic case can be inferred as
a mix of these two cases. The transition from state A to state B is caused by two
types of triggers (Ta and Tb below):

e Ta: automatic design choice trigger (dynamic discovery/joining of the new
device); the device is discoverable, e.g. actual (dynamic) appearance of the
device in the range of the system (e.g. turning on the device, mobile device
getting in range of the (e.g. radio) system);

¢ Tb: manual design choice trigger; the system is told to (statically) add a resource
(or this specific resource); such a request can be issued within the system or by a
human user.

Figure 10.1 below illustrates these two possibilities.

Triggers of type Ta) rely primarily on network-level mechanisms (e.g. joining
network when requested from the incoming resource, or discovery when polled by
the existing system communication gateway) that are specific to the concrete
system implementation choices (e.g. Bluetooth discovery mechanisms), or to
service-level mechanisms over a pre-existing network connectivity (e.g. UPnP
over an IP-based local network), or a mix of both. From a concrete system
perspective these mechanisms have to be supported both by the new resource and
the system. Further aspects are discussed below.

240 M. Bauer et al.

Fig. 10.1 Alternate paths Ta: dynamic discovery/joining of the new device
to designing the addition a
Device to an IoT System

! RS
loT System ' Adding a device 2 J%Lﬁ’;sési?e

Thb: static provisioning of the new device

Triggers of type Tb) are typically issued from a management function either
upon explicit human (system manager) provisioning the configuration data for the
new device (e.g. using a management console), or from another (non-management
related) functionality in the system towards the management function (e.g. the IoT
Service Resolution FC asking Management FG to add a new resource when it can’t
find one already available matching a given request)

From the Reference-Architecture point of view, the steps of the process when
going from state A to state B shall include the following activities (represented in
Fig. 10.2). Note that all the following steps should involve the necessary security
measures for access control, namely authentication, authorization through respec-
tively the Authentication and Authorization FCs of the Security FG:

e Update of Management FG components: in particular the Member FC’s
UpdateMember() interface should be called (see (Carrez et al. 2013); 7.4 Mem-
ber)) — as the corresponding entry does not exist in the Member Database, it
actually makes an “add” rather than an “update”). Other Management FCs can
be impacted as well. The Configuration FC may retrieve and store the configu-
ration of the new components, i.e. the resource and the collateral updates to
existing components in the IoT Reference Architecture. The State FC may
reflect the change of state of the system incurred by the addition/updates of
these components. The Fault FC may have to correct related alarms, for instance
if the former absence of the newly added devices incurred an alarm on the
system. For instance in an IoT system controlling water level in a river with
actuators offline due to maintenance, which raises an alarm in the Fault FC: as
actuators go back online after maintenance, the system detects their
re-appearance; the State FC is updated, and the Fault FC restarts regulation
services as a consequence of the clearing of the alarm;

¢ As is the normal way to make use of a device through its associated IoT
Resource, which itself is exposed through an IoT Service FC, the IoT Service
FG needs to be updated, by creating a new IoT Service to represent this new IoT
Resource (if necessary), and by updating the IoT Service Resolution FC (through
its insertService () or updateService () interface);

10 Interactions 241

Perform authentication/authorization
of new device

|

(Establish secure communication with device)

Management FG loT Service FG

i
N Add loT Services for
(Add new deche/to Member FC device resources

(Update other Management FCs (Add entries to loT Service Resolution FC)

Fig .10.2 Adding a new device to the system — activity diagram

If not already available (e.g. the IoT Service is newly created, or was not bound
to the actual resource so far), the communication link between the IoT Service
and the actual resource from the Device FG needs to be established, taking into
account the specificities of the resource (e.g. intermittent availability) and
desired communication patterns (cf Information View Section).

10.1.2 Changing the Device Configuration

In this section, we discuss how a device or a group of devices can be configured
using different FCs of the IoT Reference Architecture. Such process involves the
following steps depicted in Fig. 10.3:

As a pre-requisite, the communication link from the Device FG to the various
IoT Resources should be established, relying on Communication and Security
functions;

The request for a configuration change is issued by a human system manager
through a management console, or by a FC. It results in a call to the Manage-
ment:Member FC (step 1) through the retrieveMember () interface
followed by a call to Management:Configuration FC (step 2) through the
setConfiguration () interface. Naturally, such calls are subject to access
control through the Security: Authentication and Security: Authorization FCs —
not represented);

242 M. Bauer et al.

User | Application

Management Service loT Virtual Entity T Bevics —
Organisa Process Management

tion
1. Retrieve Member Id

-—I‘ 2. Set Configuration for memberld

3. Put Configuration

loT Service

L 4

. - - drrransmitMsg configurationMsg
3. transmitMsg configurationMsg
End ToEnd
Cemmunication

Communication

4. transmit configurationMsg 5. transmit configurationMsg

Device

Fig. 10.3 Device configuration update interactions

* Depending on design choices made (e.g. whether the configuration of the
associated resource is part of the related IoT Service or not), the actual configu-
ration update on the device can be realized by either communicating directly
with the device (e.g. sending a configuration message, steps 3, 4’) or through the
IoT Service associated with the resource (steps 3-5).

Please note that prepareConfigurationMsg() and transmit ()
methods are related respectively to the preparation of a usable configuration
message to be transmitted by the End-to-End Communication FC, and to the actual
reception of data on the Device itself, which are both out of scope of the IoT
Reference Architecture, and therefore only shown here as an illustration. Underly-
ing interactions with Security FCs and between End To End Communication FC
and other FCs of the Communication FG are not shown (see ((Carrez et al. 2013); 5)
on Communication FG).

10.2 Service-Centred Scenarios

10.2.1 Discovering Relevant Services Using IoT Service
Resolution and VE Resolution

In existing, small-scale IoT scenarios, applications are often hard-coded or
configured with respect to the sensors and actuators they are going to use. If we
think of truly large-scale IoT scenarios, this is not going to be possible.

10 Interactions 243

Applications should work in any environment, where the necessary infrastructure is
available. This means that the necessary sensors and actuators first need to be
found. The Functional Components responsible for this are the IoT Service Reso-
lution and the VE Resolution. Due to the heterogeneity of the underlying hardware,
and in order to make the functionality accessible in the whole IoT domain, it is
desirable to provide a higher abstraction level than the hardware-level interface of
the sensor. Therefore, the ARM offers a service abstraction level and a virtual entity
abstraction level for the interaction with the IoT system. The IoT Service Resolu-
tion is the functional component responsible for discovering IoT Services based on
a service description, which would typically include the service area; the VE
Resolution is responsible for discovering the IoT Services associated to VEs,
which can either provide information about the represented PEs or enable actuation
on them.

In the following we look at a traffic scenario, but the interactions shown also
apply to a large number of other scenarios. We have modelled the roads in form of
road segments, where each road segment is a VE, and for each road segment, there
is an associated sensor-based service that provides the road condition, e.g. whether
the road there is dry, wet or icy. Figure 10.4 depicts the scenario.

To get to this scenario, the assumption is that either the IoT Services themselves
or a management component, e.g. the Member FC, have registered each service
together with their service area within the IoT Service Resolution. This is depicted
as “Insert Service Description” steps (1)/ (1') in Fig. 10.5. For the service areas only
a few examples are shown. To simplify the discovery, road segments are modelled
as Virtual Entities and associations between the road segments and the services are
introduced. The respective IoT Services have service areas overlapping with the
area of the road segment. The associations may be explicitly introduced by a service
management component, e.g. the Member FC. (see Fig. 10.5 (2)) or they may be
automatically discovered by the VE & IoT Service Monitoring component (see
Fig. 10.5 (2/)), e.g. as the result of applying some rule on existing service
descriptions from IoT Service Resolution and existing associations from Virtual
Entity Resolution. The VE & IoT Service Monitoring component would then insert
the newly created Association into the Virtual Entity Resolution component.

Now that the relevant information is available in the IoT Service Resolution and
Virtual Entity Resolution, a car acting as a User that is driving along the road could
then discover the services that provide information about the road conditions in the
direction in which it is driving. Such a scenario is depicted in Fig. 10.6. The car
would specify the geographic scope based on its current position and the driving
directions, possibly taking map information into account. The scope is then used
discover the associations between the upcoming Road Segments and the sensor
services providing the respective road condition. Based on the service identifier,
which is part of the associations, the service descriptions can be retrieved, so that
the service can be accessed (Fig. 10.7).

The Application first discovers associations from the Virtual Entity Resolution
looking for Virtual Entities of type road segment, with attribute road condition,
within the geographic scope specifying an area that covers the road in the driving

244 M. Bauer et al.

{777 Road Segment

[] Sensor Service

Fig. 10.4 Road condition scenario

Application

Management Service laT Virtual Entity loT Service Security

2. insert
Association
1'. insert Service 1.insertService
Description Description
Member loT Service JoT Serv
Communication

Fig. 10.5 Insertion of service descriptions and associations

direction (see Fig. 10.4 (1)). The returned associations contain the identifiers of the
services that can provide the respective information. Based on these service
identifiers, the service descriptions are looked up from the IoT Service Resolution
(see Fig. 10.4 (2)). The returned service descriptions contain the information
needed by the application to contact the respective IoT Services (see Fig. 10.4 (3)).

10 Interactions

245

P— .
i

(e i Road Segment
@ Sensor Senice

E Discovery Scope

Fig. 10.6 Discovery of services providing information about the road conditions for the road
segment in the direction the car is driving

Application

Application

Service

Organisation Prof

1. Discover Associations
(road segments, road
conditions, geographic
scope)

Virtual Entity loT Service

Invoke
Service

2. Lookup
loT Service
(service id)
VE Resolution

loT Service

Resolution loT Service

Fig. 10.7 Discovery and invocation of services providing the road conditions based on a geo-

graphic scope

246 M. Bauer et al.

| User Application

Sor T
Management] :ﬂn cn Virtual Entity IeT Service Security
3. subscribe C
i A 1. subscribe A
Service R 2. subscribe B
Choreography [€ e - CEP Service C
L
5. publish B
4. publish A
loT Service A loT Service B
‘Communication
Device
Fig. 10.8 Interactions CEP Service C subscribe
User | Application
»
s loT
Management o"m =0 o Virtual Entity 16T Service Security
9. publish C |
6. publish A ‘7
7. publish B
Service
CEP Service C
Choreography 1 8. publish C
@ 5, publish B
4. publish A
‘Communication

Davice

Fig. 10.9 Interactions CEP Service C publish

10 Interactions 247
10.2.2 Managing Service Choreography

The FG Service Organisation contains the FC Service Choreography that supports
Publish/Subscribe-functionality for IoT Services. In contrast to the IoT Service
Resolution FC (Sect. 8.2.2.5) the Service Choreography FC contains a broker that
can find suitable services for service requests given by potential service consumers.
The service requests declaring an interest in certain IoT Service functionality are
stored within the broker even if a suitable service is not available at the time the
service request was given to the FC. As soon as a suitable service becomes available
the broker receives the information the services publishes and forwards the infor-
mation to the service consumer. On the other hand services can advertise their
capabilities at the broker to await usage of potential service users. IoT Services can
also publish information to the broker even if no service consumer is present.

In case multiple service consumers are interested in the information one partic-
ular service provides, the broker distributes the information to all subscribers (Sect.
8.2.3).

This Publish/Subscribe functionality allows using IoT services for CEP. In the
scenario depicted in Fig. 10.8 the Design Choice has been made to provide CEP
functionality as IoT Service, identified as CEP Service C. Such CEP services
compute complex event based on simple events produced by other IoT Services
(IoT Service A and B in Fig. 10.9). For this CEP Services need to subscribe to the
IoT Services publishing the simple events (steps 1 and 2 in the figure below).

When the simple events are published to the Service Choreography FC (steps
4 and 5) the broker forwards the events to the CEP Service C (step 6 and 7). The
CEP Service C is then able to process them to a complex event that is again
published to the Service Choreography FC as illustrated in step 8 in Fig. 10.9

Since the user has subscribed to get notified if and when the complex event
occurs (step 3 in Fig. 10.8) the Service Choreography FC publishes the event
notification to the User as depicted in step 9 in Fig. 10.9.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Non-
commercial License, which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

Chapter 11
Toward a Concrete Architecture

Christine Jardak and Joachim W. Walewski

11.1 Objective and Scope

This Section serves to illustrate how the IoT ARM can be used for the generation of
concrete architectures. This goal is pursued by applying the [oT ARM to a concrete
use case and application scenario. This Section serves thus as a complement to Sect.
6.3. Notice that we are not providing all the details that would usually be part of an
architecture description, rather, the idea is to illustrate aspects of the architecture
actions elaborated on in Sect. 6.3.

Throughout this Section we provide summaries of how the description
provided here illustrates statements made elsewhere in the document, for
instance Sect. 6.3. In such summaries we occasionally also discuss how
complementary actions to those laid out in Sect. 6.3 can enhance the
architecting process. All such meta-commentary is set apart in light-grey
boxes like this one.

The targeted use case of this architecture is a combination of Pay-By-License-
plate (PBL) parking and Recognise-By-License-plate (RBL) parking enforcement.
The core idea of such a system is to use the license plate of a car as a unique
identifier for on-street parking. Upon purchase of a time-parking permit, the
customer provides the license-plate number of her car for identification. This
parking feature shall be available to time parkers and residents. Examples for
time parkers are tourists, and locals from a suburb who visit the city centre for
shopping, restaurant visits, etc. Residents are defined as denizens of a municipality,

C. Jardak (D<) « J.W. Walewski
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
e-mail: christine.jardak@siemens.com; joachim.walewski@siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_11, 249
© The Author(s) 2013

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
mailto:christine.jardak@siemens.com
mailto:joachim.walewski@siemens.com

250 C. Jardak and J.W. Walewski

and they are purchasing a parking permit for an extended period of time for
on-street parking in the vicinity of their residence. By using the license-plate
number as ID for the parked car, paper copies of the parking permit do not longer
have to be placed on the dash board of the parked cars. In such a system, the license
plate is also used by the parking enforcement for checking the permit of the car
against a data base provided by the parking service itself. More information on PBL
and RBL can be found elsewhere in the literature (Digital Payment Technologies
2013; Genetec 2013). In the remainder of this Section we refer to this envisaged
system as a PBL system.

It should be also noted that the entire system is to be designed in a way that it can
be made part of a version update of an already existing central system that manages
municipal on-street parking lots.

Notice that scopes usually are part of the business goals. Depending on the
complexity of the use case such description can be rather complex and long.
Besides describing the goal of the system, the description also needs to
include a sketch of how one intends to achieve this goal. Without a spelled-
out approach, it is impossible to generate an architecture.

Also notice that due to resource and time constriction we were not able to
dedicate the same level of attention to all the steps in the architecting process
as laid out in Sect. 6.3. In particular, no Functional Decomposition,
Interactions, nor interface definitions are provided. Also, neither the Deploy-
ment nor the Operational Views are touched upon.

11.2 Physical Entity View and IoT Context View

11.2.1 Physical Entity View

This Section relates to Sect. 6.3 and Chap. 6 Figure 3. In the referenced
Section, the content and the importance of the Physical-Entity View are
discussed. Here, we provide a concrete example of the PE View for the
PBL system presented in the previous Section. Notice that this view can be
much more complex for other use cases. For instance, if the state of the
Physical Entity is going to be inferred from a wide range of measured
physical quantities, one not only needs to catalogue these quantities
(viewpoints!), but also their range and how these ranges translate into the

(continued)

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

11 Toward a Concrete Architecture 251

(continued)

qualitative states that are to be inferred from the measured quantities. An
illustrative use case for this is the Red-Thread example (see Sect. 4.2), viz. the
transport of orchids. One needs a rather fine-tuned model of the orchids in
order to infer their current condition from environmental quantities such as
air temperature and humidity and the duration for which the orchids have
been exposed to these conditions.

As briefly described in Sect. 11.1, the thing at the core of the IoT system is the
car. More specifically, the entity of interest is the parked car. Therefore, the
Physical Entity in the IoT Domain Model (see Sect. 7.3) is the parked car. An
example of the Physical Entity is shown in Fig. 11.1.

Notice that the parking lot itself is not the Physical Entity but the car. That
this is the case is not an intrinsic property of the Physical Entity, rather of
what the business goals behind the envisaged architecture are, and how they
will be achieved (the aforementioned approach).

As described in Sect. 11.1, the goal of the envisaged IoT system is to implement
one service for both time and resident parkers, and the car’s license plate was
chosen upfront as the unique identifier for both use cases. The parking lot becomes
an entity of interest when, for instance, the parking enforcement enquires whether a
parked car is authorised to park at that specific location. However, since this is only
one of the envisaged use-case scenarios (see below) where the parking lot could
qualify as the Physical Entity, the parked car and not the parking lot is chosen. This
does not imply that there can only be one Physical Entity per IoT system. Rather,
one Physical Entity type turns out to be sufficient in order to meet the system goal as
described in Sect. 11.1.

Notice that the process provided in Chap. 6 indicates that the Physical View
is contingent on the business goals: once the goals are chosen the Physical
Entity can be identified together with the properties about the Physical
Entities that are of interest for the IoT system. This dependency is illustrated
in the above example.

Notice that since only the license plate is used to identify the parked car, the
envisaged system can readily encompass the parking of motor bicycles and the like.
What is paramount is that it is a vehicle that is identifiable through its license plate.

http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_6

252

Fig. 11.1 A car parked in
the Gatwick North Terminal
Flightpath long stay car
park (Whittington 2010)

C. Jardak and J.W. Walewski

As shown in Chap. 6 Figure 3, both the Physical View and the business goals
inform the IoT Context View. In the next section we illustrate this inter-
relatedness for the PBL architecture.

11.2.2 IoT Context View

As already stated in Sect. 11.1, the envisaged system is to be integrated with an
existing system for the control of parking-payment systems, which we refer to as
Control Centre. In other words, the system envisaged is an extended version of the
existing system. Future extensions are very likely.

The context diagram of the PBL system is shown in Fig. 11.2.

As described in Sect. 6.3.2, the context view describes “the relationships,
dependencies, and interactions between the system and its environment”
(Rozanski and Woods 2011). While we describe some inner structure of the
envisaged system, viz. an enhanced version of the Control Centre, this level
of detail is not mandatory. What is mandatory though is to provide an
information about (Rozanski 2013).

System scope and responsibilities

Identity of external entities and services and data used
Nature and characteristics of external entities

Identity and responsibilities of external interfaces
[Nature and characteristics of external interfaces]
Other external interdependencies

(continued)

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

11 Toward a Concrete Architecture 253

E Q,@ 2§ &

T
=)
<

. . Resident-parking
Purchase of time-parking -)
P‘;_‘ el registration
|
=
_________________ |
PDM :Monnonng Centre Parking-White- L|s<
% | | \
| | -
| |
| |
PDM I I Registry off
S egistry office
= Control Centre
=
=i

Parking enforcement

Fig. 11.2 Context diagram of the PBL IoT system. The dashed box indicates the border of the
Control Centre (© comeo.de)

(continued)

» [Impact of the system on its environment]
e [Overall completeness, consistency, and coherence]

Note that for the sake of brevity of this section we will ignore the aspects
between brackets.

The nature of external interfaces was not addressed since this information was
not available at the time of writing. Besides the mission statements in
Sect. 11.1 we cannot yet predict how this system impacts its environments.
This question can often only be addressed when the system is implemented
and tested. The overall completeness, consistency, and coherence of the
system was not addressed here, since, due the simplicity of the use case,
and the strong boundaries put onto it by the business model (for instance,
off-street parking is excluded), we felt that this item is fulfilled by default.
Also notice that system scope already was provided in Section O In a regular
architecture description, the scope is part of the business goals. There is thus a
natural overlap of context view and business goals. In case the business goal
already contains the full information about system scope and responsibilities,

(continued)

254 C. Jardak and J.W. Walewski

Table 11.1 Types of parkers and the services to be offered

Type Description Services to be offered

Resident parker Lives in the vicinity of the PBL on a subscription basis. Subscription
parking lot used. Needs to shall be possible via walk in at the
park on a frequent but not local Registry Office. Other access
necessarily on a daily basis. modalities include mail, email, web
Purchases a subscription for services, and calls
this type of parking

Time parker Needs to park for a limited time PBL on a pay-by-need basis. This type of
interval on a location that is permits shall be purchasable at PDMs,
typically not in the vicinity but also through web services (for
of the driver’s residence. instance, a smart-phone application)

Envisaged usages encom-
pass short-time city parking
(for instance for shopping)
but also extended-stay
parking at, for instance,
airports

(continued)

this information does of course not need to be repeated in the context view,
but can rather be cross-referenced. Notice that the context view can be kept
rather descriptive, but this cannot be done at the expense of completeness.

The Control Centre, which is the focus of the IoT architecture to be devised, is
seen at the centre of Fig. 11.2. Also shown are purchase/transaction operations by
the time parkers and the resident-parkers. The two types of parkers and what
services shall be offered to each of them are summarized in Table 11.1. Figure 11.2
also contains on-street Pay-and-Display Machines (PDMs), parking enforcement,
and the registry office. The latter maintains a database on resident parkers (name,
address, permit purchased, etc.). What is inside and outside the scope of the IoT
architecture to be generated is summarised in Table 11.2.

Notice that Table 11.1 can alternatively be part of the business goals
(description of end customers and the services to be offered to them).

As shown in Chap. 6 Figure 3, the IoT Context View consists of two parts,
the context view and the IoT Domain Model. In many cases it will be easier to
construct the context view first, since (a) one does not yet need to understand
the inner workings of the envisaged IoT system, and (b) the context view

(continued)

http://dx.doi.org/10.1007/978-3-642-40403-0_6

Toward a Concrete Architecture 255

Table 11.2 Overview of what components and interfaces in the context diagram (see Fig. 11.2)
are part of the architecture to be devised

Within scope of the system architecture Outside the scope of the system architecture

Control Centre; interfaces to PDMs, parking ~ PDMs; web services for interacting with Control
enforcement, and Registry Office. Parker; Centre (online time-parking tickets) and with
car Registry Office (Resident Parking Registra-

tion); Enforcement system

(continued)

focuses on the interfaces and what lies outside of the IoT system. The amount
of detail on “outside interfaces” and the outside itself is usually much less
than that of the IoT system itself.

11.2.2.1 Business Goals Revisited

As already mentioned the envisioned IoT system extends and improves
existing car parking system. In the following we provide more information
about the actors and devices involved, and also how their functionalities and
roles are going to change due to the envisaged system enhancement. Such a
detailed discussion is valuable not only from a mission-statement point of
view, but also from an IoT-Domain-Model point of view, since it provides
valuable additional information about the entities that form the IoT Domain
Model, and how these entities interact.

Notice that contrary to the partition prescribed in Chap. 6 Figure 3, busi-
ness goals and the IoT Context View (and the Physical Entity View) can of
course be provided in one contiguous part of the architecture description.
Such an aggregate presentation can make sense since all three (as in the
example provided here) are characterised by a strong interdependence
(chicken-and-egg problem!)]. If these two/three descriptions are indeed
bunted together this needs of course to be clearly flagged in the table of
content of the architecture description.

In this section, we shed more light on the planned improvement of the parking

system by comparing the current functionalities of the entities in the context
diagram with how they are going to look like after the planned improvement.

http://dx.doi.org/10.1007/978-3-642-40403-0_6

256 C. Jardak and J.W. Walewski
Pay-and-Display Machines (PDM)

Today: Parking Ticket Identification

PDMs are mounted on the side of public roads and have a major task of managing
on-street parking places (Wikipedia 2013g). They allow a driver to buy a time-
limited parking permit for a defined geographic region of on-street parking lots.
After paying the parking fee, the PDM prints out the corresponding parking ticket.
The driver is tasked to place the parking ticket visibly on the dashboard of her car.

Enhancement: Pay-by-License Plate

Our target is to simplify on-street parking by allowing the driver to head toward the
nearest PDM, to type in the license plate number of her car, and to pay the parking
fee. In this scenario she does not need to place a printed parking permit on the
dashboard of her car. Instead the information entered (license plate) and the
information about the permit (begin, end, zone) is communicated from the PDM
to the Control Centre (see Fig. 11.2), where it is stored in a Parking-White-List
database. The information stored in the database can be accessed by the parking-
enforcement authority operating in the pertinent precinct of the municipality (see
the below entry on the Registry Office).

Control Center

Today: PDMs Monitoring Centre

The Control Centre is a monitoring centre for multiple PDMs. It supplies PDMs
with new parameter data such as current parking fees. It also monitors the PDM
transaction data, cash-box status, and it provides statistical data (e.g., # of tickets
sold) and status messages about the monitored PDMs to the users of the Control
Centre.

A Control Centre is not always managed by the municipality itself. In many
cases the management of the system is outsourced to a private company, but the
municipality remains the owner of the data.

Notice that ownership of the system parts (Control Centre) and also of the
out-of-system parts (Registry Office, parking enforcement ...) has direct
implications for the requirements engineering (functional view, information
view, security-risk analysis .. .).

11 Toward a Concrete Architecture 257

Enhancement: Connection to Web, and to the Registry Office

Instead of buying a paperless time-parking permit from a PDM, drivers are given
the possibility to execute the purchase online. To do so, a driver logs in to the
corresponding webpage or installs an app on her smart device. The driver provides
her license plate number, the parking zone, the parking time interval, and finalises
her purchase by paying parking fee. The aforementioned information is then stored
in the Parking-White-List database.

Registry Office

Today: Registering Residents and “Sticky” Permits

A registry office maintains a municipal database containing information on the
current residence of persons and their permits. Residents can register for a parking
permit by, for instance, providing pertinent information on the Registry-Office’s
Internet website; by sending the information by mail; or even by visiting the
Registry Office in person. A standardised permit is handed to registered resident
parkers. These permits are usually fixed to the car (glued to the inside of the
windshield, etc.).

Enhancement: The municipality offers “immaterial” permits. Here, the license-
plate number is used for the identification of cars that are allowed to park on a
resident-parking term. Information about these cars, viz. their license-plate num-
bers, the zones where they are allowed to be parked, and when they are allowed to
be parked are provided to the Control Centre, which stores this information in a
Parking-White-List database.

Parking-White-List Database

The purpose of this database is to maintain a parking white list, i.e. a list of cars
-identified by their license-plates that are permitted to park within the region
managed by the Central System. Besides the license-plate number, the white list
also provides the geographical region, where the pertinent cars can be parked, and
also when parking commences and when it ends.

Today: No Parking-White-List Database

While statistics about, for instance, how many permits have been purchased from
the PDMs (see, for instance (Island Group 2012) can be retrieved from the database,
no identification about the parked cars is performed in the current system.

258 C. Jardak and J.W. Walewski

Enhancement: Parking-White-List in Control Centre

A Parking-White-List for time-parkers and resident-parkers is made part of the
Control Centre. The content of the Parking-White-List is gathered from three
sources: PDMs, web services, and the Registry Office (see Fig. 11.2). The first
two sources provide the Parking-White-List with information updates about time-
parkers that have booked via PDMs or via the Internet. Information about resident
parkers is provided by the Registry Office.

Enforcer/Handheld

Today: Controlling Parking Tickets and Resident Parking Permits

The task of the enforcer is to control whether a car is authorised to be parked in a
specific zone and at a specific time. In the most common scenario, the enforcer is
equipped with a handheld device that is capable of printing a paper ticket to be left
at the vehicle. The handheld ensures that a variety of checks are executed on the
data in order to eliminate invalid entries such as misspelled street names. The
entered data is then transferred from the handheld either overnight or immediately
via, for instance, GPRS to a back-end office, where the information about issued
parking-violation tickets is stored.

Enhancement: Controlling the License Plate Number Only

The task of the enforcer changes in a sense that she does not need to struggle with
badly visible parking tickets and resident parking permits in order to read and enter
the data in the handheld. Instead, she scans the license-plate number of a parked car
with her handheld. In the next step, she uses the handheld for checking the license-
plate number together with the geographical location of the parked car, against the
Parking-White-List. Notice that in this enhanced scenario, neither time-parkers nor
resident-parkers need to place any permit visibly in their car.

11.2.3 IoT Domain Model as an Expansion of the Context
View

As discussed in Sect. 6.3, in the IoT-A architecting process, the IoT Domain
Model is generated in order to enrich the standard context view with
IoT-specific context and with more details about the inner workings of the
system. The latter is important for, among others, the requirements process

(continued)

http://dx.doi.org/10.1007/978-3-642-40403-0_6

11

Toward a Concrete Architecture

exposes

259

invokes.

Control Centre

+ | " Updafing, efc. the datebase:
. |Qo-Network VE-level loT Service|

[PR—

Entry in the Parking White List:
|passive Digital Atefact for Virtual
Entity

v,

expgses is stored in

g1

Database: Networkd
Resource

represents

Time-Parker: invokes P_anMeége
Human User Time-Parker: Service
Car: Physical }
Enlily eracts with
~——{Besident-Parker: | subscrbes to | Pay:by-License for
] Human User Besidents: Service
is attached to 4
invokes exposes

icense-pla

Begistry Office;
Human User

Enforcement

iandheld: Device uses

T
\ invokes

nforcer: Human|
T

Recognition of P
Sensor: Device "%t {ICEIeSPRle 7 L oreoses sofiware: Active
R Digital Artefact

invokes

Fig. 11.3 IoT Domain Model of the PBL system

(continued)

Besident-Parker
Subscription: Network
Resource

(see Sect. 6.4). Such a domain model also stipulates entity names and
relationships to be used in the requirement process and for the derivation of
other architectural views (functional view, information view, deployment

view ...).

The IoT Domain Model for the PBL system is shown in Fig. 11.3.

Notice that major input for Fig. 11.3 was derived from the previous

Section on business goals.

Next we describe the steps we took for deriving the IoT Domain Model depicted
in Fig. 11.3. After that, we discuss the particularities of the entities in the IoT

Domain Model.

The previous figure provides an enriched and IoT-specific viewpoint to the
context. This relates to the context diagram in Fig. 11.2; The legend reads as

follows:

* In Yellow: human users;
* In Green: software;
¢ In blue: hardware;

» In beige: concept that fits in none of the previous categories.

http://dx.doi.org/10.1007/978-3-642-40403-0_6

260 C. Jardak and J.W. Walewski

e Classes with thick boundary lines: part of the architecture description. The
architecture also covers all associations originating from or terminating at the
Control Centre.

» Dashed boxes: system borders. Notice that only the Control Centre is within the
system scope of the generated architecture.

11.2.3.1 Modelling Steps

System Users

The human/institutional system users can usually readily be inferred from
the business goals and the context view (see above). In the following text we
summarises the available information about the users so that we next can
apply the IoT-Domain-Model mapping exercise in Sect. 9.1.7 (see Sect. 9.8).

Generally, the users of a system are interested in its functionalities. Our system
has three functional outputs: it introduces a simple parking procedure, which is
PBL; it allows to easily identify illegal parkers by means of RBL; and it increases
parking revenues and public order due to quick spotting and processing of parking
violations.

Who is interested in these functional outputs? By answering this question, we
can determine the different categories of system users. In our use-case, the PBL is
an interesting functionality for parkers, the RPL for enforcers, and the increase of
the parking revenues and public order is obviously of a high interest for the
municipality, e.g. the registry office. In the following, we define the users of each
category.

¢ Parkers: human users. We distinguish between two types parkers: A resident-
parker and a time-parker (see Table 11.1). The first is a resident that would like
to have an affordable and easy solution to park his car on the street in his
neighbourhood. The second is a driver that needs to park his car on a street for
a limited period of time in order to accomplish a local activity. The time parker
departs after the local activity is completed.

» Enforcer: The enforcer in this case, could be the human that uses the handheld
or, being more granular, it could even be the application software that runs on the
handheld and which is used by the enforcer. The IoT DM is flexible in terms of
the granularity of modelling. We decided to model the enforcer as a user.

http://dx.doi.org/10.1007/978-3-642-40403-0_9

11 Toward a Concrete Architecture 261

* Registry office: The Registry Office is a municipal office that can be considered
as a system user. For the sake of clarity, we note for the reader that other offices,
such as the public-order office and the police can be also be modelled as system
users. Here, we only model the Registry Office as a user, since the other entities
are not part of the business model. However, in a future extension of the system,
these entities could of course come into the scope of the PBL Service and would
then be added to the IoT Domain Model. This user provides the system with the
newest information of the subscribed cars to the PBL Service.

Notice that the system users can be identified with a similar question as for
the Physical Entity. In the latter case one asks the question what physical
entity the system needs to interact with in order to fulfill its business goal. In
the case of system users one asks who is interested in the output generated
from system. This output encompasses of course also information inferred
from interacting with the Physical Entity.

Procedure Application

In this section we model the different parts of our system (see Fig. 11.3) by
applying the six-step procedure, in Sect. 9.1.7 to each of the four system-
users: resident-parker, time-parker, parking enforcer, and the Registry Office.
This six-step procedure yields six answers (Al to A6), which are discussed
below.

Resident-Parker

In order for a resident-parker to use the parking PBL facility, he needs to subscribe
to it. Hence, we model this facility as Service (A1). The resident-parker is interested
in parking her car. Therefore, we model the car as the PE (A2). The car is identified
in the physical world by a license plate number. The latter is modelled as a Device
of type Tag (A3). In the digital world, the car of a resident-parker is identified with
an entry in a white list. We model an entry in a white list as a VE of type Passive
Digital Artefact (A4). Entries of a white list are stored in a database that allows
accessing the entries in read and write modus. This database is therefore, modelled
as a Network Resource (AS). A software application is responsible for mining the

http://dx.doi.org/10.1007/978-3-642-40403-0_9

262 C. Jardak and J.W. Walewski

database white list, for instance for verifying whether a specific car is allowed to
park in a given city zone, or if it is in unauthorised. This application software is
modelled as an On-network Resource (A6). After the resident-parker successfully
registers to the Resident PBL Service, her information needs then to be inserted in
the white list database of parkers. This results into one Service invoking the other
one as depicted in Fig. 11.3.

Time-Parker

Having the time-parker as an additional user of the system adds only one new part
to the already described entities in the IoT Domain Model. A time-parker needs to
subscribe to the time-parker PBL system. Here, we also model the functionality
provided by the PBL system as a Service (A1l). The remaining answers steps, Viz.
A2 to A6, are exactly the same as the ones for the resident-parker.

Enforcer

The enforcer, i.e. the traffic warden, invokes the application on the handheld (Al).
The enforcer is interested in a parked car, which we have already modelled as a PE
(A2). The car is identified by its license plate number, which we have already
modelled as a Device Tag (A3). The handheld has a sensor that reads the license
plate number to identify the car. The type of this sensor depends on the deployment
and can be, for instance, an RFID reader or a camera. In any case, we model the
handheld as a generic device and the sensor as a Sensor Device (A3) that reads the
Device Tag. A car which is allowed to park, is identified in the digital world with an
entry in a white list. We have already modelled this entry as a VE of type Passive
Digital Artefact (A4). The handheld runs software that computes the sensor
readings in order to identify the license plate. For example, in case of a Device
camera, this software processes the images taken for a license plate. We model this
software as an On-device Resource (AS5). This Resource is then directly accessible
by the user. Therefore, we do not have a Resource-level Service.

Registry Office

In order to feed the system with the newest information of the registered cars, the
registry office invokes software to maintain/query the database. This is done by

11 Toward a Concrete Architecture 263

invoking the same service as resident parkers, but with different user rights (right to
delete entries; right to change payment status, etc. We have already modelled this
software as an On-network Service (A1). Answers (A2) to (A6) are also the same as
for the resident parker.

11.3 Requirement Process and “Other Views”

11.3.1 Requirement Process

As discussed in detail in Sect. 6.4, the requirements process generates view
requirements. Major inputs into this activity are

» Business goals
» Physical Entity View
e IoT Context View

All three of them have already been discussed in greater detail above, and
we are now progressing to the requirements-engineering step.

11.3.2 Requirements

Notice that we do not prescribe any particular requirement-engineering
process for how to generate requirements. Rather, the IoT ARM offers a set
of aids that ease the translation of requirements into architecture features. For
the generation of the requirements a wealth of engineering approaches and
aids is described in the pertinent literature. Just one example are the Volere
requirements templates (Volere 2013).

An abridged list of requirements is provided in Appendix [requirements for
concrete architecture].

Notice that for the sake of brevity, the list in Appendix [:requirements for
concrete architecture] only contains an illustrative list of requirements that

(continued)

http://dx.doi.org/10.1007/978-3-642-40403-0_6

264 C. Jardak and J.W. Walewski

(continued)

shed light on the IoT ARM supported architecting process. In praxis,
unabridged requirement lists can readily contain several hundred
requirements. Most of the view requirements are related to the fact that this
architecture is an upgrade to an existing system (see Sect. 11.1).

In this section we are not simply repeating the requirements in the Appendix,
rather we discuss where and how they enter the architecting process.
As explained in Sect. 6.4, we organise requirements along three disjunct topics:

* View requirements
¢ Design constraints
¢ Qualitative requirements

The type of each requirement is listed in the second column to the left in
Appendix [requirements for concrete architecture]. Let us have a look at each of
the requirement types.

Notice that one does not create requirements ex nihilo, rather they are based
on business principles (as indicated in the rationales of the requirements in
Appendix [requirements for concrete architecture]). Also, the IoT-A Unified
Requirements (see Appendix [requirements]) can be consulted for generating
requirements for a concrete architecture (see Sect. 6.7).

11.3.2.1 View Requirements

Examples for view requirements are BPL #5 and #14, viz.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

Toward a Concrete Architecture 265

11

JsT] 93ym Surspred
© 0] $s900e apiaoid pue ure)
-ureul 0} SPAdU AUI)) [0NUOD)
Yy (Juowodojud Junyred
Yy 10J TG Se [[om se ‘xodred
JuapIsal pue 1oyIed swry
K10y1sodax 10} Tgd) soSesn pagesiaua ‘waIsAs oyl Aq
Amuo e AINUD [BNJIIA QUON UOIBWLIOJU] M3U) [[e 2JeII[Ioe] 0] JopIo U] papraoid st IsI] ayym 3uryied MITA Il
(ordrounid ssoursnq)
“T# 1dd Ya 19TUOD JoU S30p
J1 0S ‘pIEpUE]S [EUOTJEUIIUL UR
ST “osTy “(sqresop yrured ‘([
Ied) A1UD)D) [01UOD) AY) PIM

paSueyoxa oq 03 sad£) uonew ‘pIepue)s

-IOJUT MU Y} SIJEPOWIOII. ZLIDO 9y} 0} A13Ype [[eys

UOT)EITUNWIOD A[Ipeal)] SWISAS JuaLINd souryoew Aedsip-pue-Aed
puQ 0] pug UONEIIUNWIIOD) QUON [euonounj 9y} UI Pasn pIepuels ay) I SIYJ, QU YIIM UOTIEITUNIWO)) MITA S
juouodwod dnoi3 oanoadsioq MITA Jreuoney uondrosaq adKy #
[euonoung Ajeuonoung juowermbay Tdd

266 C. Jardak and J.W. Walewski

As already stated above, the [oT ARM does not offer any specific support in
deriving requirements (besides the inspiration provided by the Unified
Requirements; see Sect. 6.7), rather the IoT ARM provides support in
mapping the requirements onto the IoT-ARM concepts. This is exemplified
in Section View requirements by the yellow-coloured columns. These
columns are populated during the initial mapping of the requirements onto
concepts used in the IoT ARM. The core concepts used in the IoT ARM are
views and perspectives, and these are shown to the far left.

What view these requirements map onto is indicated in the fifth column from the
left, viz. the view column. Here we have an example for a functional-view and an
information-view requirement. Both of them can — already at this stage- be mapped
onto the functional decomposition that was introduced in Sect. 8.2.2. PBL #5 can be
mapped onto the End to End Communication FC in the Communication FG, while
PBL #14 can be mapped onto the Virtual Entity FG. Mapping requirements at this
early stage speeds up the population of the various architecture views with concrete
goals.

Notice that PBL #14 is not mapped onto any of the FCs listed in Sect. 8.2.2,
rather onto a new FC, i.e. a Virtual Entity repository. This reflects a design choice
made, viz. to not include the Parking White List in the VE Resolution FC, rather in
its own FC. One of the main reasons behind this design decision is the evolvability
of the system. By keeping the white list apart from the Virtual Entity Resolution FC,
it is easier to extend and change the system during future version iterations. This
mapping is thus actually attributable to several of the qualitative requirements, viz.
PBL #4, #11, #13, who all address the evolvability of the PBL system. See more on
this in the below Section on qualitative requirements.

11.3.2.2 Design Constraints

Design constraints define constraints in the design of an architecture. An example
for this is PBL #3, viz.

As one can see, this requirement is indeed a constraint in that it tells the
architecture not to include payment transactions in the architecture, something
that is tacitly covered in the IoT Context View (see above), but in order to avoid
slips during the architecting process, it is often very helpful not only to state what is
within the system scope but also what is outside of the system scope. An example
for a design constraint at the reference-architecture level is UNL.O71, viz. “A system
built using the ARM shall provide standardised and semantic communication
between services”. Here, it is emphasised to standardise interfaces. In other
words, non-standardised interfaces do not lie within the scope of the architecture.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8

Toward a Concrete Architecture 267

11

(erdrourid ssaursnq) ‘wo)sAs

U} JO UOISIOA PIPUIXD UOISUIX
‘MU) UT pasueyd oq WISAS
0} 3ur03 jou st 1pueredo snpowr oy Jo adoods jo
siy) pue Ayred pIryy e Aq wo)sAs no are
ogroads oygroads oyroads juowAed 9y UO SI[I WAISAS suorjoesuer) JUTRIISUOD
SQUON SUON SUON QuoN Juowedeuew-3unyred juermd Ay, Jjuowked ugsoq €
juouodwod dnoi3 oanoadsiog MOTA qreuoney uondirosaq adKy #
[euonoung Ajeuonoung Juawainbay 14d

268 C. Jardak and J.W. Walewski

11.3.2.3 Qualitative Requirements

As discussed above and in Sects. 8.3 and 6.9, qualitative have impacts on more than
one view. What is not mentioned in these Sections though, is that qualitative
requirements can inform the same architectural design decision. In order to eluci-
date this point let us look at the three qualitative requirements that inform the
decision to store the Parking White List in a Virtual Entity Repository instead of
Virtual Entity Resolution FC. These requirements are listed below.

Notice that although all of these requirements are mapped onto the Evolution
and Interoperability Perspective, none of them is openly mapped onto the Virtual
Resolution Functional Component. This is because perspectives by default do not
map on one view nor one FC. So how does one map such qualitative requirements?
As discussed in Sect. 6.5, the IoT ARM follows the framework of Rozanski and
Woods in that it advocates the choice of tactics in order to successfully map
qualitative requirements onto architecture descriptions. Furthermore, as discussed
in Sect. 6.9, the IoT ARM also provides guidance in terms of the desing-choice
process, viz. what design choices are at hand after a certain tactics has been chosen.
One of the design choices spelt out (see Sect. 6.9) is to build the architecture out of
models and to couple the blocks loosely. In the context of the PBL architecture this
design choice was translated into the decision not to store the Parking White List in
the Virtual Entity Resolution FC, but rather to create a new FC, viz. the Virtual
Entity Repository. By so doing one decouples, for instance, the evolution of the
Virtual Entity Resolution FC from the Parking White List during future PBL
version cycles, as long as the interfaces between both are kept up to date. In other
words, instead of creating strong ties between resolution and the white list, the
coupling is rather loose, and the respective FCs can thus evolve independently of
each other.

As discussed above, most of the requirements in Appendix [requirements for
concrete architecture] are qualitative in nature. This is mostly due to the fact
that the business principles from which these requirements stem are
behavioural requirements toward the entirety of the system. An example of
this is requirement PBL #1, which stipulates that the system shall be deploy-
able in many countries. Such a requirement has repercussions for many
views, for instance information view and deployment view, and it is thus of
a qualitative nature.

The Table in Appendix [requirements for concrete architecture] features
requirements that are mapped onto perspectives that are not part of the IoT
Reference Architecture (see Sect. 8.3). Examples for such requirements are
PBL #1 (internationalisation and usability perspective) and PBL #2 (regula-
tion perspective). These requirements are not covered in the IoT Reference
Architecture (and thus in the design-choice process) because they are not

(continued)

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_8

269

Toward a Concrete Architecture

11

(panunuoo)

ogroads
JuoN

ogroads
QuoN

oyroads suoN

ogroads auoN

(erdrourid ssautsnq)
‘sonirediorunw 39 ‘0)
PaI12]Jo s01A19s Suryred Jo
SSQUOATIORIIIE QU] ASBAIOUI
1M SIYT, "POPUAIXD 9q UL
ANUAY) [01UOD) A YIIM
pajeIouas 9q ued Jey) dnu
-QAQ1 []0] Y] SNY) pue a1}
-ue) [01U0)) Y} J0j Iseq
IowoIsnod Ay ‘Surtop os Ag
‘Tood Suryred-juaprsar oy
ur soruedwoos Juryedronred
Jo soakordwo jo uorsnjour
oy st o[dwrexo uy "9d1A “WRISAS AU} JO SUOISIOA dInIng
Aniqerado -19s Funyred-juopIsar oyl ur s1oyred own pue sioyred
-19)u1 oyroads 10J poSeSIAUQ e S[opoul JUSPISAL 0] PAIWI] 3 J0U
pue uonnjorg QUON SSQUISNG MAU INNJ 9Y) U] [[BYS WRISAS 3] 10J 9seq Iosn Y], dAneend) 11
(erdrourxd
SSauIsSNQ) “JudWZE
-uew Junyred-jeams-Jjo
10} swAsAs Ayred-pamy
s 9reradooos A[ssoruress
0] 9[qe 9q [[BYS WAISAS oY)
Anmiqerado 10 PaIofJo 2q Os[e ST Suryred joams-Jj0
-1o1u] oyroads Sunyred joams-}jo ‘W) ssedwooud 03 2[qISUAIX
pue uonnjoAg QUON -SAS QU JO UOISIOA dIninj & uJ A[Ipear oq [reys wlsAs oy, QAnelEend) ¥

Juauodwod
[euonoung

dnoi3
Ajpeuonoung

aanoadsiog MOTA Jreuoney uondirose odKy #1494
juowaInbay]

C. Jardak and J.W. Walewski

(erdrourxd ssoutsnq) *(*030
‘SWIAISAS JUSWADIOJUD
-Sunyred Sunsrxo

s Aiqueduwoo)
9pISINO OS[e Inq W)

-SAS QU UIyIIM drempIey
SunsTxe Jo osner wnur

270

Aypiqeredo -IXew AqQ 20Ud)) [0NU0D
oyroads -Iou| oyroads padueyue Y} Jo [OY Y ‘WNWIXRW B 0} Pasnal
QUON oyroads QUON pue uonN[oAg QUON 9SBAIOUI PUE SO AU} 9SBAIDQ(9] [[BYS 2IBM}JOS WISAS Sunsixg aanelend) €1
jusuodwod dnoi3 aanoadsiog MITA Jreuoney uondrosaq odKy #149d
[euonoun,g Kyreuonoun,y JuswaInbay

11 Toward a Concrete Architecture 271

(continued)

important for IoT systems. Rather, we were unable to find IoT-specific
aspects and these and other perspectives. Notice that this does not mean
that one cannot formulate a design-choice process for these perspectives.
Rather, the architect is asked to rely on tactics provided in the literature and to
formulate here own design choices. More insight on these and other
perspectives and thereto related tactics can be found elsewhere in the litera-
ture (Rozanski and Woods 2011).

11.3.2.4 “Other Views”
Information View

The IoT IM details the structure of the information that constitutes a VE and the
Service Description of a Service that acts on the VE (see Sect. 7.4.1). In this section
we will describe the modelling of these two elements for the PBL use case. Notice
that the information view does not cover data formats. These lie within the purview
of the deployment view.

Modelling the VE

Following the IoT Information Model (see Sect. 7.4) a VE can have one or more
attributes, each having an attribute Name and an attribute Type. In the PBL use
case, a VE is an entry in the Parking-White-List database identifying a car that is
allowed to use the PBL parking facility. Since we have considered two types of
parking cars (the car of a resident-parker and the car of a time-parker), the VE for
one car type is slightly different than the other one. The first two attributes (License
plate numbers and Parking zone) depicted in Fig. 11.4 are common attributes for
both types of VEs, while the third attribute (Parker type) is part of the VE resident-
parker. Notice though that we only chose the license plate number as the VE and did
not include in the parking zone. This design decision is based on several previous
decisions. First, one of the main business principles behind the PBL system is its
future extensibility. As discussed in the requirements Section above, there are many
requirements that stipulate the evolvability of the PBL system. This, among others,
boiled down into loose coupling rather independent FCs. One example for the latter
is the choice to introduce a Virtual Entity Repository for the White List in the
system architecture. In the information model we drive this modularisation one step
further in that we chose a single piece of information, the license-plate number, as
the VE. All the other entries in the Parking List are then associated to the VE. By so

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7

272

C. Jardak and J.W. Walewski

doing one can, for instance, include more attributes in future version of the PBL
system.

In the following we define each of the three attributes and discuss their
decomposition:

« License plate number

attributeName: License plate number;

attributeType: Car information;

Description: It is a common attribute for both VEs. In essence, it is a
numerical and alphabetical registration identifier that officially and uniquely
identifies the car within an issuing region such as the entire country or entire
state;

Values: A resident-parker or a time-parker may own and may have parked
more than one car on the street. Therefore, it is necessary that this attribute
has one or more Values, each one containing the License plate number of a
registered car. The example in Fig. 11.4 states the registration of two license
plate numbers: “M CJ 1234 and “M JW 5678”.

» Parking zone

attributeName: Parking zone;

attributeType: Parking information;

Description: It is a common attribute for both VEs. This attribute identifies
the parking zone, where this car is allowed to park;

Value: corresponds to the name or the identifier of a parking zone. The
example in Fig. 11.4 depicts the registration Zone A.

e Parker type

attributeName: Parker type;

attributeType: Parking information;

Description: It is an exclusive attribute in the VE of a resident-parker. This
attribute identifies the time during which, this car is allowed to park. Cur-
rently we differentiate between a full time parker (24/7) and a night parker
(12/7);

Value: it is either 24/7 or 12/7. The example in Fig. 11.4 shows a registered
night parker.

For the sake of clarity, we note for the reader that other attributes can be added
for each VE as well as other Values and MetaData. These highly depend on the
deployment of the PBL facility, which definitely changes e.g., from one city to
another.

11 Toward a Concrete Architecture 273

Control Centre

Passive Digital Artefact =
(Virtual Entity): entry in the &y Value Container: -
Parking White List i License Plate 1

i

is stored in

\Value Container: Value n
1 License Platen [} =~ {7 riwsors

£

Network Resource:
Database
associated to
exposes associated to
T Value Container: Value 1
[porang zoni> Parkingzone. [{7z 1
On-network VE-level loT
Service: software fr—— >
application for mining r]0 Value Container: | Value 1 |
and updating the | Parker type Parker type <}-= 5 ng_h_«-pa'rk_er_mn_'
database L il

Fig. 11.4 IM of the VE for resident-parker and time-parkers (Orange edge: unique to resident-
parking)

11.3.2.5 Functional View

Technical Scenarios

Besides the rather static descriptions provided by the Physical Entity View,
the IoT Context View, and the business goals (see previous Sections), we
have found that the semi-dynamic view of UML use-case diagrams is very
helpful in the identifying salient FCs in the functional decomposition and also
the interactions and interfaces of said FCs. Below we provide use-case
diagrams for all major technical use-case scenarios of the PBL system.

Notice that the system-boundary boxes in the use-case diagrams are not
synonymous to the boundary of the PBL system. Rather, they allude to
entities in the context view (see Fig. 11.2). All thick-lined boundary boxes
are part of the PBL system (see Fig. 11.3).

Purchase (and Change) of Parking Permit
See Fig. 11.5

This diagram summarises how the time-parker interacts with the Control
Centre. It has implications for manipulations and thus the interface of the
Virtual Entity Repository, but also for the VE Resolution, because in order to
extend a permit it first has to be located in the system (Fig. 11.6).

(continued)

274

C. Jardak and J.W. Walewski

Access
predicated on
authentication

!
]
1

add to Parking
White List

Control Centre

change
Parking-White
-List entry

remove from
Parking White List

I
: I
i)

<<include>>
1

T

<<include>> <<include>>
1

1

per

purchase

Li

PDM / vJIebservice I

cancel -
mit extend per mit

purchase

///

Time-parker

Fig. 11.5 Technical use case — purchase of parking permit by time-parker

Access
predicated on
authentication

White List

Offered access
methods: email,

add to Parking

<<include>>

Control Centre

change
Parking-White
-List entry

remove from
Parking White List

<<include>>

mail, phone, walk-
in, web.

I
|
! .
: <<include>>

L

/

Registry Ibffice

change
subscription

Resident-parker

Fig. 11.6 Technical scenario — subscribe/unsubscribe/change by resident-parker

11 Toward a Concrete Architecture 275

(continued)

This technical use case summarises how the resident parker interacts with
the Control Centre. Notice that the actions on the primary-service level are
not part of the PBL system. It has implications for manipulations and thus the
interface of the Virtual Entity Repository, but also for the VE Resolution,
because in order to extend a permit it first has to be located in the system.

On-Street Parking

This technical use case summarises the actions triggered when time-parkers
and resident parkers actually park their car. Since the time-parking scenario is
of an ad-hoc nature (all pertinent actions conducted shortly prior to or during
parking), while the resident-parking scenario is of a recurring nature (pay-
ment of fees, etc. well in advance to individual parking events), the former
incorporates many more use cases then the latter. This technical use case has
implications for the interface of the VE FC and the Security FC and the
interface the PBL exposes toward the PDM/webserver (Figs. 11.7 and 11.8).
This use case has no implications for the architecture.

Parking Enforcement

See (Fig. 11.9)

This use-case diagram summarises the parking-enforcement scenario.
Notice that the “get licence plate” use case includes the parked car as an
empty system. This technical use case has implications for the interface of the
VE FC and the Security FC and the interface the PBL exposes toward the
PDM/webserver.

276 C. Jardak and J.W. Walewski

Car PDM/Webserver Control Centre

parkonstreet p=f = = = = = = = -
| et <<include>>

Time-parker [~

register with
parking id &
psswd

authentication of
parking ID &

<<include>> password

]
<<include>>

end on-street

parking !

'Add to Parking
White List

Fig. 11.7 Technical scenario — on-street parking by time-parker

Car

park on street

|

-

. g b
Resident-parker A

parking

Fig. 11.8 Technical scenario — on-street parking by resident-parker

Parking-enforcement handheld | Parked Car I

get license plate

Parking-enforcement server
<<include>>

_ >lenquire parking per mit J- = = o = = = = = L
enquire parking per mit] =~ 7| Zdinclude>>

Fig. 11.9 Technical scenario — parking enforcement

Traffic Warden

Control Centre

parking-enforcement
server

license plate &
lookup:

Modelling the Service Description

Following the mapping of the IoT DM to Service Description explained in (Martin
2012; Sect. 4.6.3), we model the VE-level IoT software application for mining the
Parking-White-List database. Notice that multiple other software applications may
act on attributes of VEs and can be modelled as well. Examples of these software
applications are updates of attributes; running statistical inference on VEs; applying
mathematical operations on VEs; and representing attribute values on graphs and
charts. Here we focus on the modelling of the mining software.

http://dx.doi.org/10.1007/978-3-642-40403-0_4

11 Toward a Concrete Architecture

All parking zones

in a city

hasinput

License-plate number and
parking zone of a car

\

hasServiceArea

Service

exposes

hasOutput

Service Model: Software application for mining Database

Car is (not) in the
white list

are part of

Database: Network

Resource

in stored in

Entry in the Parking White

List: Passive Digital Artefact

Fig. 11.10 Service description for the PBL system

277

Figure 11.10 depicts the Service Description of the mining software. In the
following, we will highlight the service specifications:

» hasServiceArea: This service runs in the Control Centre that is generally respon-
sible of managing PDMs in a single city. Consequently, all parking zones in a

city are affected by this service;

« hasInput: In order for the mining service to verify if a car is allowed to park, the
enforcer needs to provide the service with three input data: The current time, the
geographical location or the zone of a parked car, and the license plate number of

the parked car;

¢ hasOutput: Having the three aforementioned input data of the parked car, the
mining service verifies all the VEs in the Parking-White-List database. After the
verification, two results are possible:

» The given license plate number is matched in one of the VEs: In this case, the
service compares the given geographical parking place and parking time with
the corresponding attributes of this VE. If the car is not allowed to park at this
place and/or at this time, the service decides that it is a violator. Otherwise

this car is allowed to park;

» The given license plate number is not found in the database: In this case, the
service decides that the parked car is a violator.

278 C. Jardak and J.W. Walewski

Exposes: As previously explained in the domain modelling of the PBL (see
ARM document Sect. 11.2.3), this service exposes the Parking-White-List database
as Network Resource.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Non-commercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Chapter 12
ARM Testimonials

Edward Ho, Tobias Jacobs, Stefan Meissner, Sonja Meyer,
Miguel-Angel Monjas, and Alexander Salinas Segura

This chapter shows how the IoT ARM is perceived by the [oT community and how
the ARM can be placed in relation to existing IoT related standards and research
projects. The first sections of this chapter present reverse mappings of existing
standards and platforms to the IoT ARM and the last section of this chapter shows a
business case evaluation for an example use case in the healthcare domain.

E. Ho (59)
University of St.Gallen, Dufourstrasse 40a, CH-9000 St.Gallen, Switzerland
e-mail: edward.ho@unisg.ch

T. Jacobs

NEC Laboratories Europe, Software & Services Research Division, NEC Europe Ltd.,
Kurfiirsten-Anlage 36, 69115 Heidelberg, Germany

e-mail: tobias.jacobs@neclab.eu

S. Meissner
University of Surrey, Stag Hill, GU2 7XH Guildford, UK
e-mail: s.meissner@surrey.ac.uk

S. Meyer
SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
e-mail: sonj.meyer@sap.com

Miguel-Angel Monjas

Ericsson Spain, Madrid R&D Center, Technology and Innovation, Via de los Poblados, 13,
28033 Madrid, Spain

e-mail: Miguel-Angel.Monjas@ericsson.com

A. Salinas Segura
University of Wiirzburg, Josef-Stangl-Platz 2, 97070 Wiirzburg, Germany
e-mail: alexander.salinas@uni-wuerzburg.de

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_12, 279
© The Author(s) 2013

mailto:edward.ho@unisg.ch
mailto:tobias.jacobs@neclab.eu
mailto:s.meissner@surrey.ac.uk
mailto:sonj.meyer@sap.com
mailto:Miguel-Angel.Monjas@ericsson.com
mailto:alexander.salinas@uni-wuerzburg.de

280 E. Ho et al.
12.1 Introduction to Reverse Mapping

In the course of its own project roadmap, our sister project — the Internet of Things
Initiative (IoT-i) — has targeted three different (but connected) activities directly
relating to the IoT-A architecture work as shown below:

1. To review and categorise existing reference models having a connection to the
IoT field (or underlying disciplines, as IoT as such is more a technology
umbrella). Example of the reference models reviewed by IoT-i are ETSI
M2M, IETF Core, EPCglobal, Ucode and NFC to name just a few (IoT-A D1.2);

2. To put online a survey, the goal of which was to capture, people understanding
and expectation, as far as reference models are concerned. This exercise was
very important because people have generally different understanding about
what are reference models, architectures and what they should consist of;

3. Finally, to come back on reference models introduced and summarised in
previous versions of this deliverable and to do a reverse mapping exercise
towards the IoT Reference Model. The goal of this exercise was to show that
the reference model as defined by IoT-A is expressive enough in order to allow a
modelling of those (pre- [oT-A) existing IoT reference models using the IoT-A
one. In other words, if we would consider that [oT-A does not attempt to define
what is an IoT system using sentences and words, but defining models where any
IoT system (from the IoT understanding) shall fit, then all those existing
reference models would be IoT systems reference models.

In this Section we aim at giving some details about this reverse mapping exercise
applied to ETSI M2M, EPCglobal and ulD. Some of the material in this
Section comes directly from the IoT-A D1.5 deliverable (Carrez et al. 2013)
(especially the UML figures and concept tables). In order to improve readability,
we do not use direct citations, although the work presented in the following
Section was performed by the IoT-A project and reported in their deliverable D1.5.

In addition to the standards that we have mentioned above, we also apply the IoT
Architectural Reference Model to a concrete architecture, namely the architecture
of the MUNICH (MUNICH 2010) project in order to validate the IoT ARM against
a real system in contrast to an abstract standard. Furthermore we show a reverse
mapping to the information model of the IoT-related research project BUTLER .

12.2 Reverse Mapping ETSI M2M

Within the IoT-A D1.5 deliverable, Sect. 3.1.1 discusses the ETSI M2M standard
(ETSI TS 102 690). In this section we analyse the ETSI M2M standard. The
acronym ETSI stands for European Telecommunications Standards Institute

! http://www.iot-butler.eu/

http://dx.doi.org/10.1007/978-3-642-40403-0_3

12 ARM Testimonials 281

(ETSI), viz. the standardisation body responsible for this standard. The acronym
M2M stands for Machine-to-Machine, which is a pointer to the application field this
standard addresses, viz. machine-to-machine communications. Release 1 of this
standard was published in October 2011 (ETSI TS 102 690), this discussion within
IoT-A also takes the later update (ETSI TS 103 092) into account that was released
in May 2012.

The purpose of the ETSI M2M functional architecture is to define a service-
capability layer which serves as middleware between applications in the Internet
and Devices or gateways residing in local-area networks. The current release is
mainly concerned with secure and reliable data transport.

In what follows, we give a more detailed description of a possible reverse
mapping of ETSI M2M to the IoT Domain Model and IoT Communication
Model as well as their management information model and how it maps to our
management model. We also have a brief look at the ETSI M2M security model and
how it compares to our threat analysis.

12.2.1 Mapping to the IoT Domain Model

As everything above the ETSI M2M Service Capability Layer is considered an
application, there is no explicit concept of a User in ETSI M2M. In particular,
Human Users are out of scope, as the standard focuses on machine-to-machine
communication. The role of an IoT-A User would typically be taken by ETSI
network applications, in some cases also by ETSI gateway applications, because
these applications use the information provided by sensing M2M Devices and
control the actuation capabilities of Devices.

ETSI M2M defines Sensors and Actuators in a similar way as the IoT Domain
Model. However, there is a subtle difference regarding the concept of a Device.
While in IoT-A there is a “is-a” relationship between Sensor/Actuator and Device,
ETSI M2M defines a Device to be a unit comprising Sensors and Actuators, as well
as embedded processing and communication capabilities — so here Sensors and
Actuators are part of Devices.

The ETSI M2M defines a Service Capability Layer with standardised interfaces.
Since this layer includes similar functionalities to the IoT-A Service level
(e.g. registration), it is reasonable to map these functionalities to IoT Services.
There are also some differences between ETSI and IoT-A terminology. For exam-
ple, the ETSI Services are not only exposed towards actors which IoT-A would
consider as Users, but also towards (ETSI) applications residing on Devices.
Additionally, the concept of IoT Resource (IoT-A) as a native software interface
of Devices does not explicitly exist in ETSI M2M — although software components
on legacy Devices could be considered as IoT Resources. Instead the term of
Resources in ETSI is exclusively used to describe the RESTful interface exposed
by the Service Capability Layer.

282

E. Ho et al.

Table 12.1 Mapping ETSI M2M concepts to the IoT-A Domain Model

IoT Domain

ETSI M2M Model Comments
Device Device Sensors and Actuators are hosted on Devices, they are not
special cases of Devices
Sensor Sensor The Sensor in ETSI M2M is not a Device
Actuator Actuator The Actuator in ETSI M2M is not a Device
Network User In ETSI M2M, there are no Human Users, but only applications
application that process the data coming from the “Device and Gateway
Domain”. This concept of an application as a User is
reflected in IoT-A
Gateway User In ETSI M2M, there are no Human Users, but only applications
application that process the data coming from the “Device and Gateway
Domain”. This concept of an application as a User is
reflected in IoT-A
Service Service In ETSI M2M, Services are not defined as exposing Resources
on Devices, but can interact with the Devices. A Resource
concept as in IoT-A does not exist
Resource Service Resources in ETSI M2M are defined in analogy to RESTful

Service Interfaces

The mapping of ETSI M2M concepts to the IoT Domain Model is shown in

Table 12.1.

As the current ETSI M2M release is rather concerned with data transport than
with real-world modelling, the (physical, virtual, augmented) entity concept is not
defined in (ETSI TS 103 092).

12.2.2 Mapping to the Management FG

Management functionalities are an inherent part of both of IoT-A and ETSI M2M.
Both architectures distribute and cluster the management functions into different
packages or functional components.

In (ETSI TS 102 690), the following packages are defined for management:

e General Management (GEN): Allows retrieving general information of the
M2M Device or gateway, and provides generic mechanism applicable to differ-
ent specific management functions;

e Configuration Management (CFG): Allows configuration of the device
capabilities and features for supporting M2M Services and applications, includ-
ing activating/deactivating device hardware components or I/Os in the M2M
Device or gateway;

» Diagnostic & Monitoring Management (D&M): Allows running specific diag-
nostic tests on a device and collecting the results or alerts from the M2M Device
or gateway. This package is also called Fault and Performance Management;

12 ARM Testimonials 283

» Software/Firmware Management (SFW): Allows installation/update/removal of
application specific or SCL related software/firmware in M2M Device or
gateway,

e Area Network Management (ANW): Allows M2M Gateway-specific configura-
tion and M2M Area Network and Device management through a M2M gateway;

¢ SCL Management (SCL): Allows remote configuration and retrieval of M2M
Device or gateway service capability layer parameters.

In a similar fashion, Sect. 8.2.2 of this document identifies different Functional
Components used for management functionalities. These include:

e Configuration: Initialising the system configuration. Gathering and storing
configurations from FCs and Devices, tracking configuration changes;

¢ Fault: The goal of the Fault FC is to identify, isolate, correct and log faults that
occur in the IoT system;

* Member: This FC is responsible for the management of the membership and
associated information of any relevant entity (FG, FC, VE, IoT Service, Device,
Application, and User) to an IoT system;

* Reporting: The Reporting FC can be seen as an overlay for the other Manage-
ment FCs. It distils information provided by them. One of many conceivable
reporting goals is to determine the efficiency of the current system;

» State: The State FC monitors and predicts state of the IoT system. For a ready
diagnostic of the system, as required by Fault FC, the past, current and predicted
(future) state of the system are provided.

When mapping these different management components, it becomes obvious
once again that the focus of ETSI M2M is narrower in terms of its scope and
therefore it is more detailed in the definition of its management capabilities and
does not include all of the functionality defined by IoT-A. For instance, there is no
equivalent to State FC in terms of its temporal distribution and the related billing
capabilities. This aspect is not really central, as it is not contradictory and could be
built upon the D&M package. In general however there is a strong overlap, as D&M
roughly relates to the Reporting FC, CFG closely resembles Configuration, and
both D&M and Fault deal with monitoring functionalities. Error and fault handling
as such is handled specifically in the Fault FC, whereas D&M also handles
performance management. On the other hand, and in line with the general focus
of ETSI-M2M, the different aspects of the Configuration FC are handled in more
specific packages in ETSI M2M, such as SCL, ANW, and SFW which each deal
with specific functionalities that are subsumed under Configuration in IoT-A. As
the different architectures naturally have different levels of abstraction, it is not
surprising to not have a 1:1 relationship between the two architectures, but a
mapping can be performed easily in both directions.

http://dx.doi.org/10.1007/978-3-642-40403-0_8

284 E. Ho et al.
12.2.3 Mapping to the IoT Communication Model

The ETSI M2M standard defines a Service Capability Layer in order to enable
seamless, secure, and reliable end-to-end communication in M2M networks. The
ETSI Service Capability Layer can therefore be mapped to the end-to-end layer of
the IoT Communication Model (see Sect. 7.6). (ETSI) applications, communicating
via the Service Capability Layer, would accordingly be associated to the IoT-A
Data Layer (see Sect. 7.6.2), although they do not only exchange data, but also
control and management information.

A Network and ID group (see Sect. 7.6.2) is not in the focus of ETSI M2M, and
the current bindings to HTTP and CoAP do not assume such a layer. However, in
cases where the Service Capability Layer enables a direct connection of mobile
Device applications to network applications, an ID layer that describes the Device
independently from its network location could assist the Service Capability which
provides seamless connectivity. The three communication layers at the bottom of
Fig. 7.17 can be considered as identical in ETSI M2M and IoT-A.

From the point of view of ETSI M2M, all actors making use of the Service
Capability Layer are applications. The model distinguishes between device
applications, gateway applications, and network applications. ETSI M2M also
considers so-called legacy Devices; these are Devices that have no own Service
Capability Layer and therefore need to be integrated via a gateway application into
the M2M system (M2M system is a term implicitly used in ETSI M2M to refer to
the overall architecture).

The IoT-A term IoT Device is used more or less in the same way in ETSI M2M,
but the concept of an [oT Application does not directly exist in ETSI M2M — mainly
because the concept of an application is more broadly defined in ETSI M2M.

12.2.4 Mapping to the Security Model

One of the purposes of the ETSI M2M Service Capability Layer is to address all
security requirements of M2M communication. The standard defines a key hierar-
chy of three levels. The ETSI M2M Root Key is used for mutual authentication
between device or gateway nodes and the M2M Service Provider. It is also used for
deriving and agreeing on the key of the next layer of the hierarchy — the ETSI M2M
Connection Key which is used for every service connection procedure. Finally, the
ETSI M2M Application Key is used for securing sessions between specific
applications. This largely maps to the IoT-A Key exchange and management
functionality in IoT-A with respect to key management is not yet explicitly defined
in this document.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0_7

12 ARM Testimonials 285

Most of the communication security and Service security aspects of the IoT-A
security model are implicitly addressed in ETSI M2M — although the terminology
of IoT-A is not explicitly used. The ETSI M2M standard describes a range of
variants that depend on the security characteristics of the underlying network layers
and on the relationships between the M2M service provider and the network
operator. For example, if these stakeholders are identical, key provisioning can be
significantly simplified. One issue clearly not addressed in ETSI M2M are trust
models.

12.2.5 Threat Analysis Mapping

(ETSI TR 103 167) deals with a threat analysis related to the ETSI M2M standard.
In a similar way as the risk analysis provided in this document in Section.
[Chapter 6 Sect. 6.8] ETSI M2M defines those threats that are most relevant for
the standard, and discusses respective countermeasures. Here, the different focus of
ETSI M2M in terms of network security becomes obvious again, because most of
the threats identified by ETSI M2M deal with keys or message exchange. That
means that the scope of IoT-A is broader, as it also includes, for instance, Human
Users that do not behave correctly. Consequently, IoT-A refers to a general risk
analysis that includes by definition non-malicious behaviour that still imposes a risk
on the system. As the scope of IoT-A is broader, not all the risks identified within
IoT-A are applicable to ETSI M2M, but the threats of ETSI M2M map well to the
risks identified within Sect. 6.8. This is shown in Table 12.2 below.

As we can see in Table 12.2, there is a slight difference between both models
regarding the consequence or the cause of a risk, as ETSI M2M has a stronger focus
on what actions are actually applied in order to impose a risk on the system, whereas
IoT-A focuses more on the consequences of these actions. Nevertheless, there is a
good mapping between the two models. The granularity of ETSI M2M is naturally
higher, as it focuses on a more narrow class of threats.

12.2.6 Conclusion

If we consider that the aim of the ETSI M2M standard is to provide an M2M
architecture with a generic set of capabilities for M2M Services and to provide a
framework for developing Services independently of the underlying network, it
becomes clear that the scope of IoT-A is much broader, taking the entire Internet of
Things domain into account, esp. by explicitly modelling entities and also
providing a much more fine-grained set of relationships between the different

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6

286

E. Ho et al.

Table 12.2 Mapping ETSI M2M threat analysis to the IoT-A risk analysis

ETSI M2M

IoT-A

Threat 1: Discovery of long-term service-layer
keys stored in M2M devices or M2M
gateways

Threat 2: Deletion of long-term service-layer
keys stored in M2M devices or M2M
gateways

Threat 3: Replacement of long-term service-
layer keys stored in M2M devices or M2M
gateways

Threat 4: Discovery of long-term service-layer
keys stored in the SCs of the M2M core

Threat 5: Deletion of long-term service-layer
keys stored in the SCs of an M2M core
Threat 6: Discovery of long-term service-layer

keys stored in MSBF or MAS

Threat 7: Deletion of long-term service-layer
keys stored in the MSBF/MAS

Threat 8: Discover keys by eavesdropping on
communications between entities

Threat 9: Modification of data stored in the M2M
service capabilities

Threat 10: Provisioning of non-legitimate keys
Threat 11: Unauthorised or corrupted application
and service-layer software in M2M

Threat 12: Subverting the M2M device/gateway
integrity-checking procedures

Threat 13: Unauthorised or corrupted software in
M2M core

Threat 14: Subverting the integrity-checking
procedures in the M2M core

Threat 15: General eavesdropping on M2M
service-layer messaging between entities

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Disruption of a global Service

Disruption of a global Service

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Disruption of a global Service

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Alteration of the return value upon service
invocation

Attacker alters leaf-device content so that a
user will eventually be redirected to a
malicious content

Attacker alter sensor device so that monitoring
of a Physical Entity fails

Disruption of a global Service

Attacker impersonates infrastructure Services,
compromising IoT functionalities and/or
other dependent infrastructure services

Alteration of the invocation of a Service

Attacker impersonates infrastructure Services,
compromising IoT functionalities and/or
other dependent infrastructure services

Alteration of the invocation of a Service

Attacker gains knowledge of sensitive
exchanged data

(continued)

12 ARM Testimonials

Table 12.2 (continued)

287

ETSI M2M

IoT-A

Threat 16: Alteration of M2M service-layer
messaging between entities

Threat 17: Replay of M2M service-layer mes-
saging between entities

Threat 18: Breach of privacy due to inter-
application communications

Alteration of the invocation of a Service

Compromised intermediary devices alter tra-
versing data

Alteration of the invocation of a Service

User is involved in transactions with a mali-
cious peer

Attacker gains knowledge of user private
parameters

User is involved in transactions with a mali-
cious peer

Attacker gains knowledge of user private
parameters

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Attacker gains knowledge of sensitive
exchanged data

Disclosure of identities and cryptographic
material

Threat 19: Breach of privacy due to attacks on
M2M device/gateway service capabilities

Threat 20: Discovery of M2M long-term service-
layer keys from knowledge of access-
network keys

Threat 21: Transfer of module containing access-
network keys and/or M2M long-term keys to
a different terminal/device/gateway

kinds of devices, resources and services. While ETSI M2M makes different
assumptions, especially in terms of security and communication, the basic concepts
are somewhat compatible, at least on an abstract level of discussion. The major
difference is that [oT-A is based on the assumption that the IoT Device space can be
divided into the two main categories of constrained networks (NTU) and uncon-
strained networks (NTC), and the security measurements mainly need to address
the boundaries between them, whereas ETSI focusses so far on the M2M Service
Layer and its interfaces (ETSI TR 103 167) and not on the M2M Area Network
Layer, so that [oT-A has a more network centred view of security than ETSI M2M.
That being said, the functionalities discussed in Sect. 6.8 largely represent in (ETSI
TR 103 167; Sect. 10.2), so that a mapping is feasible on the same abstraction level
as the IoT Domain Model can be mapped to the ETSI M2M Service Capability
Layer.

12.3 Reverse Mapping EPCglobal

The EPCglobal high-level architecture was introduced briefly in D1.5 deliverable
of the IoT-i project (Haller 2012) Figure 12.1 gives a simplified view of the
EPCglobal system architecture, taken from [EPCglobal]. It is worth noting that
the tag itself is not represented as this figure ends up (at the bottom) with the air
interface.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_10

288 E. Ho et al.

EPC Network Services

CDiscovery Services) CONS Root>
T T

Application

EPCIS Captunng ilf

—Discovery i/f l 'J‘LDiscovew if——
End User A ‘
\
EPCIS Accessing ons if Local ONS
Application
EPCIS Query inf EPCIS Query i
A |
EPCIS Repository Ej i EPCIS Accessing
) i L

~

EPCIS
Capturing Application
J

Application Level Event ilf

Fllterlng &
Collectlons

Reader inf

Data Capture Data Capture
Device Reader Mngt i/f Device Management
(i.e. RF Reader (i.e. RF Reader Mngt)

Air protocol

RFID Tag

Fig. 12.1 EPCglobal system architecture (simplified)

12.3.1 Mapping to the Domain Model

In the EPCglobal architecture, the unique identifier associated with a physical
object is the Electronic Product Code (EPC). It is defined by the EPCglobal Tag
Data Standard, which defines its structure and encoding rules. Uniqueness of
encoding structure (in order to avoid name collisions) is ensured by the use of a
central Registration Authority.

The EPC Network Services in Fig. 12.1 are under the responsibility of the
EPCglobal central authority and they are responsible for respectively providing
discovery service to EPCglobal parties (end-users). The Object Naming Service
(ONS) root management is also under the responsibility if the central authority

12 ARM Testimonials 289

since it is the one allocating the EPC blocks. Local ONS are under the responsibility
of the EPC manager (one per registered end-user).

After getting the address of an Electronic Product Code Information Service
(EPCIS) responsible for the EPC of interest, an EPCIS Accessing Application will
use the EPCIS query interface (i/f) to query additional information about an EPC
(like class level/instance level or transactional data about a particular EPC). EPCIS
query interface uses both push and pull mode, which means that it can be also used
to receive notifications of observations concerning a particular EPC.

EPCIS Repository is the functional block, located at the “end-user A” side, deals
with storage of information (of any nature) it wants to share with other parties
(e.g. end-user B) of the EPC Global network. Of course all interfaces have to be
implemented following the EPCglobal standards, however a certain level of free-
dom is left to “end-users” as for how those block shall be implemented.

The ONS block is a simple look-up Service that will map an EPC to the address
of a designated EPCIS Service by which information about the EPC can be found.

The Filtering & Collection functional block is responsible for collecting raw tag
data following policies defined by the EPCIS Capturing Application box. Example
of such policy is: gathering all EPC of a certain class that have been read on a
certain date, location and time interval.

The EPCIS Capturing Application supervises the operation at the lower level of
the model and provides business context by coordinating with other components
involved in a given business process. Again, a lot of freedom is left to the end-user
for implementing this box, as far as the Application Level Event (ALE i/f) and
capturing i/f are implemented according to the EPCglobal standards.

To finish up with the lower level, the Data Capture Device box (Tag Reader) is
the one observing events relating to RFID Tags. The corresponding Reader i/f
provides those events to the Filtering & Collection box.

The purpose of the reverse mapping is to check if the EPCglobal architecture is
compatible with the IoT Reference Model.

The EPCglobal architecture illustrated in Fig. 12.1 is not exactly an EPCglobal
domain model (as we understand IoT Domain Model in IoT-A), but rather a high-
level diagram of a concrete architecture. Because the two models are not exactly
similar in nature (i.e. IoT Domain Model is clearly at the “concept” level while the
EPCglobal is a high level system architecture description) the reverse mapping of
the EPCglobal architecture towards the IoT Domain Model is not a straightforward
or simple process.

So in the following we use the EPCglobal system architecture in order to extract
the EPCglobal concepts and then build an EPCglobal domain model taking a basis
the generic IoT DM (meaning we try linking the EPCglobal concepts using the IoT

290

E. Ho et al.

Table 12.3 Mapping EPCglobal concepts to the IoT Domain Model

EPCglobal IoT ref. model

concept concept Comments

Entity Physical entity Is the Physical object been tracked by the EPCglobal
system

End-user User The user managing and using the EPCIS, and reading the
EPC

Partner user User The user willing to access EPC information for their own

Physical entity

Location

RFID tag

Tag reader
Reader interface
EPC manager

EPCIS accessing
application
EPCIS service

EPCIS query
interface

EPCIS capture
interface

EPCIS
repository

EPC record

EPC data base

EPCIS capturing
application

Filtering &
collection

Physical entity
(special case
of)

Physical entity
(special case
of)

Tag

Device/Sensor

Service

Service

User

Service

Service
Service

Service/Resource

Virtual entity

Network resource
Service

Service/Resource

business
Corresponds to physical objects like parcels, objects
etc.. ..

Places, room, lift,. ..

The physical tag embedding the EPC

Is granted a portion of the naming space and assigns EPC
to products

Located at end-user side that is willing to access EPC
related information

Service that encompasses interfaces for data exchange
(through the EPCIS Query Interface e.g.) and specifi-
cation of Data (EPCIS data standard)

Interface exposed by the EPCIS and accessed by the
EPCIS Accessing Application

Exposes the EPCIS Query Interface. Stores info about
EPCs events. . .The actual functionality of storing
(e.g. in a data base) could/should be modelled as a
Resource whereas the component that exposes the
interface would be a Service. Of course that could be
implemented tightly coupled as one software
component

Consists of all info related to EPC (stored in EPC Data
Base)

Exposes the EPCIS capture interface

Exposes the filtering and collection interface. Collects tag
reads over time intervals constrained by events defi-
nition by the EPCIS Capturing Application. Filtering
functionality may be modelled as a Resource, whereas
exposing the interface as a Service

DM relationships, and try mapping the EPCglobal concepts to the IoT-A concepts)
Nevertheless, we still executed to reverse mapping by building an EPCglobal
domain model taking a basis the generic IoT DM (meaning we linked the

12 ARM Testimonials

Partner User (User)

vokes

EPCIS Accessing Application (Service)

/
/

EPC Records (Virtual entity)

vokes
IsAssociatedWil

Invokes

291

[EPCIS Repository (Service)

ONS (Service) Expases J Lookup i/f (Resource)
! |
| —
| Discovery Service (service) | EXPoses Discovery iff

Exposes

EPCIS Query i/f (Resource)

4

=

EPCIS Capturing Appl (Service) Exposes EPCIS Capture i/f (Resource)
Ipvokes
Filtering & Collection (Service) Exposes = iff
Helates Ifrvokes
RFID Reader (Service) Exposes Reader i/f (Resource)

Entity (Physical Entity)

i

.

/Ha;uﬁmammbout

Attached

Location (Physical Entity)

Physical Entity (Physical Entity)

{5\09&

Reader (Device)

—

Fig. 12.2 EPCglobal domain model fit into the IoT Domain Model

EPCglobal concepts using the IoT DM relationships, and mapped the EPCglobal
concepts to the IoT-A concepts).

First we identified a list of concepts that can be extracted from the EPCglobal
system architecture and mapped them to the corresponding IoT DM concepts. This
mapping is illustrated in Table 12.3.

Then according to the IoT Domain Model, the kind of concepts it handles and
how those concepts are connected through relationships, the following (see
Fig. 12.2) and consistent UML EPCglobal domain model could be extracted. As
it fits the IoT Domain Model framework it can be argued that EPCglobal fits the IoT

292 E. Ho et al.

Domain Model and that EPCglobal is truly an IoT system from the IoT-A definition
point of view.
However, during this reverse mapping exercise [oT-A raised few comments:

1. Difficulties to model interfaces in general, as interfaces are not part of the IoT
Domain Model in IoT-A. But it can also be argued that “interface” is purely a
software concept which makes great sense in an architecture but making no sense
at the concept level (i.e. in a domain model). Again this can be due to the fact that
they (IoT-A) tried to fit somehow a system architecture into a domain model;

2. EPCglobal does not emphasise the need for Augmented Entities. They are
therefore not part of the model;

3. Difficulties to model that a User can be responsible for managing a Tag (there-
fore End-user has not been included in the model);

4. There is a need for introducing end-users formally in the model with roles. It
must be possible to express the fact that end-users with management role can
associate information to a tag for instance.

5. It should be possible to express the fact that User can discover Services, that
Services can discover Resources, that Resources can discover Resources (to be
discussed which combinations make most sense);

6. Some links between IoT Domain Model and IoT Information Model should be
explicitly described within the IoT Domain Model, like “*-description
publishing”

7. Discovery and publishing are important concepts in IoT they should be very
visible in the IoT Domain model as said in 7/ and 8/

8. We don’t show here the reverse mapping to the IoT Information model, but it
was pretty clear that the IoT Information Model is a meta-model that cannot
really be used to model the class structure of the EPCglobal data handled at the
different levels in the architecture (e.g. at Tag level, reader level, Filtering &
Collection etc.. . .), in particular the IoT Information Model does not consider
events (and EPCglobal is intensively using the notion of event). We reckon that
most likely this is not the role of the IoT Information Model to model in a fine-
grained way the class structure of a software system, especially when the class
structure is clearly not IoT-specific.

12.3.2 Mapping to Information Model

As far as information is concerned, the main input in the EPCglobal reference
architecture is the description of the EPC Information Service and the description of
data the end user can share through the EPCIS interface.

EPCIS data within a so-called EPCIS record can be divided in several categories
as follows” (see also Table 12.4):

2 Excerpt from the EPCglobal Architecture document.

12 ARM Testimonials 293

Table 12.4 Mapping of the EPCglobal information model to the IoT Information Model

EPCglobal IoT ref. model

concept concept Comments

RFID tag Device/Tag Virtual entity representing RFID tag associated with the Phys-
ical Entity

EPC Virtual entity Electronic product code. It is encoded on the RFID tag

EPCIS event Value Might be just a wrapping of IPCIS data in the form of an
event. ..

EPCIS data Value Is the data associated with the Physical Object and therefore

contained in the EPCIS Virtual Entity
EPC record Virtual entity ~ Consists of all info related to Physical Object identified by EPC
(stored in EPCIS Data Base), i.e. IPCIS Data

EPCIS static Value Contains class level Data and Instance level Data
data
EPCIS transac- Value Relates to observations (instances, quantity within a class)

tional data

» Static Data: class level and instance level data, which do not change over time
during the physical object life span

— Class Level Data: there remain identical to any object which is an instance of
that class

— Instance-Level Data: the data may vary within objects instance of a class.
Typical examples are lot number, expiry date, number within a lot, S/N
etc.. ..

* Transactional Data: which changes and grows over the physical object life
span, possibly created by more than one actor along a supply chain for instance:

— Instance observation: it records events concerning the Physical Objects and
often relates to dimensions like time, location, other EPC, and business
process steps

— Quantity observation: records events concerned with measuring the quan-
tity of objects within a particular class. Five dimensions: time, location,
object class, quantity, business step.

— Business Transaction Observation: records association between one or
more EPC and a business transaction. Four dimensions time, one or more
EPCs, business process step, business transaction id.

12.3.3 Security Model

As explained in the EPCglobal Architecture Framework document [EPCglobal],
the EPCglobal Architecture Framework allows for many different authentication
technologies across the different interfaces. It is however recommended in the
EPCglobal architecture document, that the X.509 certificate-based method should

294 E. Ho et al.

be used by end-users when accessing the EPCIS interface for example. Typical case
occurs when the EPCIS Accessing Application of an accessing end-user (referred as
Partner user in the architecture framework) is willing to access the EPCIS service of
the primary end-user (the one owning the EPCIS data for instance). If used the
X.509 certificates are expected to comply with the X.509 Certificate Profile
[Cert1.0] which provide minimum level of security.

At the network level some network standards within EPCglobal rely on Trans-
port Layer Security (TSL), some others EPCglobal standards rely on HTTPS
(HTTP over TLS) for the purpose of Data protection.

At higher level both EPCIS Capturing I/f and EPCIS Query i/f standards are
allowing authentication of client’s identity so that companies (owners of the data)
can decide very precisely whether access to that data can be granted or denied. For
the query interface, Applicability Statement 2 (AS2) is used for communication
with external partners. This RFC (4130) specifies how to securely transport data
over Internet and allows in particular for mutual authentication, data confidentiality
and integrity and non-repudiation. Those security qualities are required in the
ARM. AS2 uses x.509 certificate as defined above.

The high level interface (AuthX) used for Authentication in the ARM Security
Model does authorise for the use of X.509 certificates.

12.4 Reverse Mapping Ucode

The Ubiquitous ID (ulD) architecture is an architecture proposed by Prof.
Sakamura (from the University of Tokyo) (Koshizuka, Sakamura 2010) to imple-
ment the concept of Ubiquitous Computing (ubicomp). Ubiquitous computing is a
paradigm coined initially by Mark Weiser in the late 80s (see Weiser 1991). It
touches many aspects of computing, like OS’s, displays, intelligent user interfaces,
wireless communication and networking. In the vision of ubicomp, the computer as
we use to know it today, has mostly (if not totally) disappeared. It has become
invisible and ambient. While IoT as such is not ubicomp (for instance intelligent
user interfaces are not clearly part of IoT field) it can be argued that IoT offers
means for implementing partly the ubicomp concept, spreading intelligence among
objects of extremely different natures, enabling for cooperation between objects
and humans and creating awareness about the surrounding (Context awareness) in a
fully connected environment.

The intelligent features or Services implemented through this paradigm can be
enabled only if information about the objects, places, Devices, etc. is available to
those Services. We therefore talk about “intelligent” “smart” or more specifically
“context-aware” Services. This only works if those objects, places, Devices of
interest can be uniquely identified at any point in time. The ulD architecture relies
on an identification technique called ucode (ubiquitous code) which can be consid-
ered as the cornerstone of the ulD architecture. The ucode model is a descriptive
technique that establishes relationships between Physical and Virtual Entities
through relationships between ucodes.

12 ARM Testimonials 295

Fig. .12.3 Ubiquitous ID Y
architecture

Ucode
Resolution
Server

N~

Ucode ©

User Terminal

N
Ucode ©

ik

Application
Information
Servcie

N

The basic principles of the ulD architecture consist of uniquely identifying
entities of interest with ucodes, maintaining databases that contain information
about the entities, ensuring data and privacy protection and opening this platform
through open APIs.

In order to enable those principles fundamental technologies and mechanisms
such as ucode structure, ucode tag, ucode readers and terminals, ucode relational
databases managing the entities information and ucode information servers are used.
These different components are detailed in the following subsections. The simplified
architecture shown in Fig. 12.3 is taken from (Koshizuka, Sakamura 2010).

12.4.1 uCode Model

In the ucode model [UID Architecture], unique identifiers are assigned to:

* Objects: tangible objects of the real world (industrial product, piece of art,
everyday objects,..) as well as intangible ones like pieces of digital media or
source code;

. Spaces: monuments, streets, etc.

» Concepts: relationships between objects and spaces of the real world, which are
also named “entities”. Those relationships are used to define complex context
information, and are defined using a description framework called ucode Rela-
tion (ucR) model. Simple context information relates to objects and places
directly.

It is worth noting that the uniquely assigned code does not contain any informa-
tion about the entity. Relevant information about the tagged entity is stored in an
application Information Service which can be located by resolving the ucode. A
distinction is made between physical ucode which are by definition stored in a Tag
attached to the entity, and logical ucode which are not stored in any Tag and are
mainly used for identifying intangible objects as described above (including
relationships between ucodes).

The main idea behind allocating ucode to relationships between entities comes
from the Resource Description Format used to model knowledge. RDF knowledge

296 E. Ho et al.

is made of triple <subject, relation, object> where each constituent of the triple is
made of a URI. In the case of ucode relationship each ucR unit is a triple of ucodes.
Information associated with the two entities and the relation can therefore be found
querying the ucode resolution server.

In addition resulting from this establishment of relations between entities, are
graphs (ucR graph) where single “subject” ucode gets linked to many “object”
ucode via various “relations”. Objects which are not ucodes are called “atoms”. A
subject ucode pointing via a relation towards a URL is a typical example of such
rules involving atoms.

12.4.2 ucode Resolution Server

The resolution of ucode is achieved in the ucode Resolution Server The simplified
resolution consists of taking the ucode read by the reader, searching for ucR units
that correspond to that ucode and returning to the mobile terminal the addresses of
content associated with the ucode via the relational database introduced earlier
(similar to a triple store).

The Ubiquitous ID architecture can be simply described as follows (Fig. 12.3):

From the descriptions of the various entities of the architecture (see Fig. 12.3)
above, the following table of concepts could be derived (Table 12.5):

In turn, the reverse mapping produced the following UML (see Fig. 12.4) below:

The ulD architecture uses the uCR to describe complex context information via
relationships between real-world entities (Koshizuka, Sakamura 2010). So-called
uCR units consist of a triple of ucodes: subject ucode, relation ucode, and object
ucode. The object ucode can be replaced by simple literals, hence it becomes
possible to express attributes of a real-world entity as a uCR unit, e.g., <ucode X,
“hasBrandName”, “GoldenTea”>.

It is not feasible to try to map the uCR model directly to IoT Information Model.
The IoT Information Model provides a vocabulary for describing IoT systems and it
does not, explicitly prescribe how information should be represented. The uCR, on
the other hand, can be used to represent relations between any kinds of objects
identified with ucodes much in the same way as RDF is used to represent resources
identified with URIs. Therefore, the relation between IoT-A information model and
the uCR model is actually complementary by nature and the uCR should be seen as
a an alternative way (for XML, RDF, binary etc.) to represent IoT Information
Model concepts.

12.4.3 Conclusion

To conclude, when mapped to the generic IoT-A the ulD provides implementations
for only a small subset of the functionalities defined in IoT ARM. First, the ucode
provides a globally unique way identify physical (and virtual) objects. These

12 ARM Testimonials

297

Table 12.5 Mapping of ulD concepts to the IoT reference model

ulD concept

10T reference
model concept

Comments

Tangible object
Intangible object

Location

uCR model
ucode

ucode resolution
gateway

ucode signature
server

ucode manage-
ment server

ucode issue
gateway

ucode entry
update
gateway

Top level domain
server

Second level
domain server

ucode resolution
server

Application infor-
mation service

ucode tag
User terminal

Reader

Physical entity
Digital artefact

Physical entity

Relates to informa-

tion model
No direct relation

Network-based
resource
Network-based
resource
Network-based
resource
Network-based
resource
Network-based
resource

Network-based
resource
Network-based
resource
Network-based

resource /
Service
Service

Tag
(Device)

Device/Sensor

If the intangible object is a representation of a tangible
object, then it is also a Virtual Entity

Location is not modelled explicitly in the IoT Domain
Model. However, a specific (possibly tagged) place
can be regarded as a Physical Entity

uCR can be used for representing [oT-A Information
Model instances

The ucode can be used as an globally unique identifier
for any instance of the IoT-A RM concept

Provides a ucode resolution over HTTP

Prevents ucode counterfeiting by verifying and
generating signatures
Manages the allocated ucode space

Provides a HTTP interface for obtaining ucode issued by
ucode management server

Provides a HTTP interface for updating ucode resolution
entry

Hierarchical component of the ucode resolution server
Hierarchical component of the ucode resolution server

The resource would be exposed through a resolution
service

Provides infrastructure and application services

Is a device that reads ucodes and provides services based
on the ucode to a user. A user terminal that is just
used to run an application or display some informa-
tion is not in the scope of the IoT Domain Model.
However, a user terminal containing a reader is in the
terms of the IoT Domain Model a Device with an
embedded Sensor Device

ucodes can be used as identifiers for any instance of the IoT ARM concept. Second,
the uID provides a way to resolve the address of the information service hosting
data about the object identified with a ucode. This functionality is basically a subset
of the functionality defined for the IoT-A resolution infrastructure. Third, the ulD
provides methods (i.e. the ucode Relational Model) for representing relations

298 E. Ho et al.

ucode Resolution

User Terninal

oxpos
iotwork Resource
o
is asociated with / is stored in

ltests |

relatesto

Fig. 12.4 ulD architecture fit into the IoT Domain Model

between ucodes. This functionality can be used for representing IoT Information
Model concepts.

12.5 Reverse Mapping BUTLER Information Model

12.5.1 Introduction

BUTLER’s mission is to provide context-aware services within an IoT environ-
ment’. What is really striking about that is that there does not seem to be an explicit
and widely accepted definition of what context-awareness really means. Although
an intuitive definition of what context means can be found easily (“the conditions
and circumstances that are relevant to an event, fact, etc.”) (Dey 2001), a more
formal definition is needed. If we look at other projects within the FP7 umbrella, we
can see what FI-WARE" provides — a data/context management section. Although
not straightforward, it states that “Context [..] is represented through context
elements” and that these elements “are typically created containing the value of
attributes characterising a given entity at a given moment”. Therefore, we can state
that the context “characterises a given entity at a given moment”. That definition
gives rise to a discussion of what an entity is and the extent to which
characterisation must take place.

3 http://www.iot-butler.eu/

*FI-WARE (http://www.fi-ware.eu/) is a European FP7 Research Project aiming to foster the
emerging Future Internet by creating an open architecture and a reference implementation of a
novel service infrastructure, building upon generic and reusable building blocks developed in
earlier research projects.

http://www.fi-ware.eu/

12 ARM Testimonials 299
12.5.2 Reverse Mapping of IoT Domain Model

With regard to the first issue, the IoT-A Domain Model (IoT-A DM) fits perfectly
within such a definition, as it introduces the concept of Virtual Entity. These Virtual
Entities are the main concept handled by the IoT-A model since they represent the
entities in the real world that designers of IoT applications consider relevant. The
remaining main concepts introduced by the IoT-A DM (Resources and Services)
are naturally associated to the Virtual Entities. A straightforward conclusion is that
context should also be “associated” to Virtual Entities. However, the IoT-A DM
does not explicitly consider the context. This is irrelevant; we will return to this
issue later.

The second issue (what the context means for a given entity) is actually related to
the deployment and implementation of a given IoT scenario and not to the definition
of the model. However, it is worth mentioning that the components of the context
(the “context elements” mentioned by FI-WARE) are totally dependent on the
needs and requirements of the consumers of the functionality exposed by entities
(again, in a specific scenario). In BUTLER, we introduce a model in which, given a
Virtual Entity, it is possible for the consumer of the functionality (usually an
application developer) to define at any time the relevant context for this entity.
This type of context declaration operation defines the context elements and the data
sources these context elements will depend on. It is also important to acknowledge
that a given entity context relies not only on the information that devices can gather
about it but also (and sometimes mainly) on dynamic data sources that are not
actually “device-originated”.

BUTLER has taken the IoT-A DM as its main inspiration. However, it has been
simplified somewhat to increase the readability and clarity of the model. For
instance, the Augmented Entity is not considered; Digital Artefacts — and therefore
a non-Human User — have been removed as well; Network Resources have been
also dismissed and therefore, the BUTLER model contemplates only On-Device
Resources. UML has been used to illustrate the model graphically similarly to the
way the IoT-A DM does. We will highlight the main differences and additions we
have considered.

The relationship between Users, Physical and Virtual Entities is almost identical
to the ones suggested by the IoT-A DM. Besides the simplification already men-
tioned, it is worth noting that the BUTLER Domain Model introduces additional
relationships that are not expressed by the IoT-A DM. For instance, there can be
additional relationships between Users and Physical Entities. The most obvious is
the “ownership” (or at least entitlement to the management of the Physical Entity).
The relevance of this relationship relies on the access permissions it derives (that is,
the owner of a house will have the “right” to get information about his home and to
adjust the desired temperature, while a stranger will not, at least not until the owner
gives him the right to). On the other hand, the BUTLER Domain Model introduces
the BUTLER terminology and therefore, instead of talking about Devices, we

300 E. Ho et al.

interacts with

owns

0..1 contains

: 1
relates to 1

0..*

is attached to

contains

1*<; 0..1
contains Q..*
Virtual Entity
0.* 0..*
0..1
Smart Object

4 monifors

Actuator Tag reads Sensor

identifies

acts on

Fig. 12.5 Relationships between users, physical and virtual entities

introduce the Smart Object concept, which is equivalent to the Device concept
within the IoT-A DM (Fig. 12.5).

As with the IoT-A DM, Resources are introduced to bridge the gap between the
Virtual Entities and the Smart Objects, enabling the monitoring and manipulation of
Physical Entities from the digital world. Resources are the software components
that actually provide information about, or enable the actuation on Physical
Entities. BUTLER simplifies the management of Resources, focusing on On-
Device Resources (those deployed locally on the Smart Object attached to the
Physical Entity; these types of Resources are typically sensor Resources that

12 ARM Testimonials 301

interacts with

0.*
0.*
owns
0..1 contains
0..*
1
relates to

0..*

is attached to

contains
1..*{5 0..1

contains (Q..*

Resource 0.* 0..* | Virtual Entity
0..* 0..*
is associated 0.1
with Smart Object
1.* 0.*
- <)
osts 1 43 monitors
Actuator Tag reads Sensor
0..* 1.% 0..*
0..* 0.*
identifies
acts on
has information about / acts on

Fig. 12.6 Introduction of the resource concept and its relationship to devices and physical entities

provide sensing data, or actuator Resources). It is possible to model other Resources
deployed externally to Smart Objects that run somewhere in the network as generic
Network Resources. These Resources can process data, for example, taking sensor
information as input and generating aggregated or higher-level information as
output (for instance, a dynamic data source providing dynamic weather forecasts
or energy consumption estimates). Also, Network Resources can be storage
Resources storing information coming from On-Device Resources and thus provide
information about Physical Entities (i.e. location and state-tracking information
(history), static data, such as product type information, and many other properties).
Other external data sources, even Human Users, can also update the information in
a storage Resource (Fig. 12.6).

The primary relationship between Physical Entities and their digital
counterparts, the Virtual Entities on one hand, and the Smart Objects and the

302 E. Ho et al.

Resources they host on the other, is achieved by means of associations. Therefore,
Users are enabled to act on or to know about Physical Entities by means of the
associations between Virtual Entities and Resources. For each Virtual Entity there
can be associations with different Resources that may provide different
functionalities, such as retrieving information or enabling the execution of
actuation tasks on the Virtual Entities. When a User wishes to acquire information
about or to actuate on a given Physical Entity, she would perform a discovery
process determining which Resources associated to the Virtual Entities representing
the Physical Entities enable actuation or data access. Next, the User would pick up
the Resources that match her requirements and invoke them. However, it is unlikely
that the User would directly invoke Resources. She would do it instead through a
Service or application that accesses Resources to perform its business logic.

Finally, it is necessary to acknowledge that both Smart Objects and Users can be
modelled as a Physical Entity. The same may happen with Smart Mobiles (the client
device used by users in the BUTLER terminology) (Fig. 12.7).

Here we can see a main divergence from the IoT-A DM, since that model
introduces an explicit relationship between Services and Virtual Entities. Although
the nature of the relationship is not explicit in the model, the IoT-A Information
Model offers additional information about what such a relationship looks like: the
Virtual Entity attributes are used to associate Services to Virtual Entities. We prefer
a model in which the context is made explicit in the BUTLER Domain Model (and
not disguised as the Virtual Entity attributes).

As described in the initial section of this chapter when describing the FI-WARE
data/context, the context elements are associated to the entities the system handles.
BUTLER proposes to associate Contexts to Virtual Entities. Therefore, it will be
possible to handle the context of the Physical Entities represented by the Virtual
Entities the Context is associated to. On the other hand, several Contexts can be
associated to a given Virtual Entity just to reflect the fact that different “consumers”
will have a different need or view of the context associated to a given entity
(Fig. 12.8).

On the other hand, the attributes of Contexts in BUTLER will be mostly created
from data obtained from Resources. Each attribute will be the result of an operation
executed over data elements from one or several Resources. Such Resources may or
may not be associated to the Virtual Entity the Context is associated to (Fig. 12.9).°

Finally, Services will be entitled to use not only low-level Resources when they
need to know about the status of Physical Entities, but also richer Contexts
(Fig. 12.10).

5For instance, the context associated to a house can include the outdoor temperature. This
temperature value can be exposed through a Resource associated to the Weather Service, which
in turn has also been modeled as a Virtual Entity. Although the Resource exposing the temperature
is not associated to the Virtual Entity representing the given house, an element of its context relies
on this “external” Resource.

12 ARM Testimonials 303

invokes/subscribes interacts with

Smart Mobile

owns

0..1 cor

Service tains
0.* 1
relates to
0.*
accesses
is attached to
contains

0..% 1.%¢(>0..1

contains 0Q..*

Resource 0..* 0..* | Virtual Entity j
0.* 0.*
is associated 0.1
* . with Smart Object

1 0..
<)
hosts 1 4 monitors
Actuator Tag reads Sensor
0 1.* 0.*
0 0
identifies
acts on
has information about / acts on

Fig. 12.7 Users to service/resource relationship

12.6 Reverse Mapping MUNICH Platform

The goal of reverse mapping an existing system towards the IoT Reference Model
is to show that an existing system that has been designed without applying the IoT
ARM can be redesigned according to the IoT ARM. By doing so the IoT ARM
shows its potential for being a reference model for any kind of IoT systems.

12.6.1 Use Case Description

The use case is about counting “stomach towels” which are used inside the
abdomen during surgery of a human. After the operation it needs to be assured
that no towels are retained in the abdominal cavity of the patient’s body. Therefore,
each towel is fitted with a 13.56 MHz RFID tag which enables tracing the towels

304 E. Ho et al.

invokes/subscribes interacts with

Smart Mobile

owns

Service tains

describes 1
0.*
0.* relates to 1
Context 0.
accesses 1
is attached to
exposes contains
0.4 1 1.2 0.1
contains Q..*
Resource 0..* 0..* | Virtual Entity
0.* 0.*
is associated 0.1 "
i mart Object
e 0.+ with
<)
hosts 1 4 monitors
Actuator Tag reads Sensor
0.x 1. 0.*
0.* 0.*
identifies
acts on
has information about / acts on

Fig. 12.8 Context to virtual entity relationship

before, during, and after the surgery. The RFID-tagged towels may be tracked by
three antennas from different positions in the operating theatre:

¢ Mayo stand (instrument table): towel is unused;
e Operation table: towel is in use;
* Used towel container: towel is used

Each towel will be used in a specific order: First a batch of “unused” stomach
towels resides on the instrument table. Towels that are put into the abdominal cavity
are declared as “in use”. Finally, towels that are not needed anymore after the
surgery are put into the towel container where their status is set to “used”.

Every time an RFID reader recognises a tagged towel appearing or disappearing
in its range an event is generated and stored in an event-log database hosted in the
cloud.

12 ARM Testimonials 305

invokes/subscribes interacts with

Smart Mobile

owns

Service 0..1 contains
describes E]
0.*
0.* relates to 1
builds .
on Context 0..
accesses
0.* is attached to
exposes contains
0. 0.* PR YE
. contains Q..*
Resource 0.. 0..*| Virtual Entity
0.* 0..*
is associated 0.1
* . with Smart Object

1 0..
<
hosts 1 4 monifors
Actuator Tag reads Sensor
0 1.* 0.*
0.* 0
identifies
acts on
has information about / acts on

Fig. 12.9 Context to resource relationship
12.6.2 Use Case Objective

It must be assured that no towels are left inside the patient’s abdomen when
the operation has finished. In more technical terms it means that after finishing
the operation all the towels that were “in use” must be in state “used” meaning
in the used towel container.

12.6.3 Current System Architecture

So far the use case has been designed to run with a certain type of RFID-readers
only that are connected via USB-cable to a laptop computer that is hosting the
application. The MUNICH-platform (MUNICH 2010) depicted in Fig. 12.11
provides a cloud storage system indicated as ‘Open Nebula Core’ that stores the
events captured every time the ‘Object Inventory Service’ notice a change in the

306 E. Ho et al.

invokes/subscribes interacts with

Smart Mobile

owns

Service accesses 0.1 contains
0.*
describes E]
0.*
0.x 0.* relates to 1
builds .
on Context 0..
accesses
0.* is attached to
exposes contains
0.% 0.” 1 1.7 0..1
. contains 0..*
Resource 0.. 0..*| Virtual Entity
0.* 0..*
is associated 0.1
with Smart Object

1.% 0.*
<
hosts 1 4 monifors
Actuator Tag reads Sensor
0.x 1. 0.*
0.* 0.*
identifies
acts on
has information about / acts on

Fig. 12.10 Service to context relationship

number of towels in their respective range by invoking the ‘Event Service’. The
application that monitors the status of the towels during the operation invokes
methods provided by the ‘Operation Theatre Service’. The API to store and retrieve
information from and to the cloud storage system is technology-specific. If an
architect decides at a later point in time to change from Open Nebula to another
technology the system needs to be adapted to the changes in the API.

12.6.4 Enhancement by Using IoT Reference Architectural
Model

Making the use case demonstrator IoT-A conform means making the system more
evolvable and future-proof. By using RFID reader services a technology agnostic
layer is introduced that is not so much dependent on today’s lifecycle of
technologies. With the current solution the software needs to be updated when a

12 ARM Testimonials 307

Real World

| nte"_net

MUNICH Platform
1. Obpd |I"I\FBI1h:er . 3. Operation
[2. Event Service Theater Service
5
L OpenNebulla Core J
Physical Infrastructure
1. Object Inventory Service 3. Operation Theater Service
- RegisterObject(ld, Name, Description, AddedOn) - GetTowelsNotinUse()
- RemoveObject(ld) - GetTowelsInUse()
- QueryList(byName, byDateTime) - GetTowelsUsed()
- RemoveAllObjects() - GetExceptions()
2. Event Service
- AddEvent(ld, Timestamp, State, Origin)
- RemoveEvent(ld)
- QueryList(byld, byState, byOrigin, byDateTime)
- RemoveAllEvents()

Fig. 12.11 Current architecture of MUNICH platform (MUNICH 2010)

new type of RFID reader needs to replace a current one. Also extending the use case
with another RFID reader or another type of sensor will be much easier once IoT-A
is applied. Thus the IoT ARM contributes towards scalability in this use case too.
The restriction in evolvability applies to the cloud storage component too since the
current system is designed to be used with certain cloud storage software. It is not

308 E. Ho et al.

easy to substitute the component in case the software is discontinued or no longer
appropriate. In case the services are modelled according to technology agnostic
IoT-A specifications the system will be more future proof. In order to make the use
case loT-A-compliant, the following architectural process will be undertaken.

Specification of Business Process Model;

Specification of Domain Model;

Specification of Information Model,

Specification of Functional View;

Specification of Services and Interactions between components.

NS

12.6.5 Specification of IoT Business Process Model

The use case has been formalised as IoT Business Process Model by a domain
expert in Fig. 12.12. The modelling notation used is described in (Meyer
et al. 2011). The operation scenario is a sub-process of the overall Emergency
operation process that may include the arrival of the patient via ambulance and the
availability of data record for the patient in the hospital’s data base. The towels
being used during the surgery are associated to the patient identified in the database
record. This way it is possible to verify which towels have been used for which
patient. The towels are the entities of interest (depicted by the box with the cow
icon) in this scenario. The RFID reading processes are running in parallel on all
three positions in the operating theatre that are equipped with the RFID readers. The
used towel container is denoted as waste bin in Fig. 12.12. Each RFID reader
sub-process sends events to the Event History database upon detection of tagged
towels. The ‘Monitor towel process’ analyses the events that have arrived in the
database, determines the current state for each towel, and calculates the number of
towels that are currently inside the body of the patient.

12.6.6 Specification of IoT Domain Model

Based on the Business Process Model presented before, a domain model can be
derived that identifies the Physical and Virtual Entities, the IoT Services, the
Devices, Resources, and the users that are involved in the use case. The Human
User is the doctor or other medical staff who is responsible to monitor the towels in
the operation theatre. The actual monitoring of the towels by comparing the used
towels with the ones currently in use is done by software implementing the
‘Monitor towel process’ as depicted in Fig. 12.12. The User checks only that no
towels are still in use when the operation is about to end. The software ‘Operation
Theatre Application’ is modelled as Active Digital Artefact. Each towel is a
Physical Entity that has one RFID tag attached so that the number of towels
corresponds to the number of tags. Each physical towel has a digital counterpart

309

12 ARM Testimonials

Start operation

$88001d
uonesadg
Aousbuswsy

Towel

change
detected

0018Q B|qEL JUBWINIISU|

o1neq eiqeL voiesedo

01neq uig B1sEM

§5800.d Wooy uonessdo

$58000d |8MO] JOJUOK

Fig. 12.12 IoT business process model of MUNICH use case

310 E. Ho et al.
1 interacts with Towel n: ical En FAprAzanss Towel n ; Virtual
H User (moves) Entity
| A
is attached to
uses identifies /
\
ni
tagn:Taq numbaer of Towels
number of Tags
Application: Active i
Bttt prctoct A
reads reads reads
77 T nstrument Table | | Operatidn Table | o~ Waste Bin |

BEID Reader RFID Reader
Instrument Table: Operation Table:
Sensor Sensor
hosts hfn hosts
RFID Inventory F n RF 11}
Instrument Table: Waste Bin:
reads event history OnDevice Resource OnDevice Resource [OnDevice Resource|

A

exposes exposes

exposes

|
I
|
|
|
|
I
|
|
|
|
|
|
1 Operation Table:
I
|
|
|
|
I
|
|
|
|
|
|
|
|

Object Inventory Object Inventory Object Inventory
Instrument Table: Operation Table: 'Waste Bin: Service
Service Service
e e i i, e i i S P L sl e et |

stores event stores event stores event

exposes

Event History:
Network Resource

Fig. 12.13 Domain model of MUNICH platform

modelled as Virtual Entity. There are three RFID readers deployed in the scenario
at different significant locations of the operation theatre (Instrument Table, Opera-
tion Table, and Waste Bin) that are modelled as Sensor Devices. Each of the
Sensors hosts an OnDevice Resource that is exposed by an ‘Object Inventory
Service’ as depicted in Fig. 12.11. These services store events by invoking the
‘Event Storage Service’ that exposes the Network Resource ‘Event History’. This
Resource is also exposed to the ‘Operation Theatre Application’ by the Event
History (Fig. 12.13).

12.6.7 Specification of Functional View

The realisation of the use case according to the IoT ARM a Functional View is
tailored to the use case needs to be specified. The Functional View for the MUNICH
platform is depicted in Fig. 12.14. No IoT Service Resolution is required, because
all needed services are already known to the system at design time. A VE Resolu-
tion FC is included in the FV. This FC is able to resolve particular towels to the IoT

12 ARM Testimonials 311

Service they are currently associated with. The ‘VE & IoT Service Monitoring’ FC
is used to update the current state of towels whenever these VEs change their
position in the operating theatre. Whenever VEs change their positions their
associations between the VEs and the IoT Services reading the RFID tags change
too. No Service Organisation functions are required in this use case since the
binding of services is static and can therefore be hardwired. To accommodate IoT
Business Process Management functionality that is required in the MUNICH
platform the respective FG is included in the FV. The process model diagram
depicted in Fig. 12.12 was created by the ‘Process Modelling’” FC and this model
is executed by the ‘Process Execution’ FC. The Functional View of the MUNICH
platform includes IoT Services for the RFID readers and for Event Storage
Resources. The Application in the FV is the use case as described the beginning
of this Section. The Devices are the RFID readers and Tags used in the operational
theatre which communicate to the IoT Services by ‘End To End Communication’
and ‘Network Communication’ FCs. The entire FV is depicted in Fig. 12.14.

12.6.8 Specification of IoT Information Model

The IoT Information Model specified for this use case also addresses relationships
between entities that are not depicted in the IoT Domain Model before. Some more
entities appear in the IoT Business Process Model shown before in Fig. 12.12. For
instance it is depicted that an ‘Operation’ is held for a ‘Patient’ and thus the
‘Patientldentifier’ (valid in the clinic) is assigned to an ‘Operation’. Operations
are processes with a defined status at any point in time: ‘before’, ‘in’, and ‘after
Operation’. There is also an unknown status in case the status cannot be obtained.
The towels are represented as VEs with domain attributes that are essential for the
use case. The towel’s identifier stored into a RFID tag is one of the attributes as well
as the current state of a towel that can be one of ‘unused’, ‘in use’, and ‘used’. Again
there is an ‘unknown’ state specified in case the state cannot be obtained by the
system. The aforementioned designated locations of the operating theatre are
reflected in the Information Model as attributes of the VE ‘“Towel’. For simplifica-
tion the allowed values for this attribute {InstrumentTable; OperationTable;
WasteBin; unknown} are not visualised as ValueContainer. With the aforemen-
tioned attribute values the OperationTheatre Application is able to relate the current
location of the towels (retrieved through the RFID readers) to the respective state of
the towel: {instrument table = ‘unused’; operation table = ‘in use’; waste bin =
‘used’} (Fig. 12.15).

312

loT

Process Management

Process
Modeling

Process
Execution

Application

Virtual Entity

VE & loT
Service Monitoring

VE Resolution

loT Service

End To End
Communication

Communication

Device

Fig. 12.14 Functional view of the MUNICH platform

loT Service

Network
Communication

12.6.9 Specification of 10T Services and Interactions

E. Ho et al.

In the following an example description is given for one of the three ‘Object
Inventory Services’ specified in the IoT Domain Model before (Fig. 12.16).

The sensing service ‘ObjectInventoryServiceOPtable’ exposes the Resource
RFIDInventoryOperationTable hosted on the Sensor that observes the area
OperationTable during the operation. The duration is determined by the
Opl123Schedule. The output of the service is described in a domain specific
operation-ontology by the class ListOfRFID that defines a list of identifiers the
RFID reader has detected. The service can be invoked by accessing the service
endpoint objInventoryOPtableRestSE that provides a RESTful web service on the
endpoint host optablehost. An HTTP GET method call on port 4355 on the root path
/> of this host will return the list of identifiers the RFID sensor has read.

12 ARM Testimonials 313
beforeOperation: inOperation: unknown:
DperationStatus DperationStatus tion DperationStatus

hasStatus hasStatus hasStatus h"S“tU’/
operation123: Operation
e aisL DperationStara patientABC: Patient
- patientABC: Patientldentifier % 5 R i
- towelsInUse: VirtualEntity.identifer[] - patientABC: Patientldenitifier
= towelsUsed: VirtualEntity,identifier[]
rfid: Attibute
+ identifier: RFID
towel in use towel used + rfid: AttributeMame
Towel n: VirtualEntity state: Attibute stateValue:
+ Towel: EntityType kKO——+ towelState: AttributeName Value
+ towel n: Identifier + towelStateType: TowelState
is in state is in state is in state
location: Attribute
+ locationType: OperationTheatreLocation ke urad:
+ towellLocation: AttributeName TowelState Towelstate
indicates indicates
has location
has location
has location
has location
unknown: intrumentTable: operationTable: wasteBin:
ration Location DperationTheatre Location) DperationTheatrelocation| ionTheatrelLocatior

Fig. 12.15 Information model of MUNICH platform

4 objinventoryOPtableRestSE \

hasServ‘nceF_ndpoint

[Op:0pl23Schedule

\ endpointDescription: {descURL}

endpointHost: {optablehost}
endpointPath: {/}
endpointPort: 4355
endpointProtocol: HTTP

supportsMethod

rm:RFIDInventory
OperationTable

Resource Model

I
I
I
I
1
1
L

Fig. 12.16 Service description MUNICH platform

]

1
1! READ
I
1
1

314 E. Ho et al.

The use case is driven by events using asynchronous communication. Events are
sent to the Event History network resource every time an RFID reader recognises a
change in the number of RFID-tags in its observation area by using IoT Service
storeEvent(event). The Event History resource provides another IoT Service that
allows the subscription to notifications about the change in the status of towels,
e.g. from unused to in use.

The structure of an Event data type is given as follows:

e Origin: {RFID reader instrument table; RFID reader operation table; RFID
reader waste bin}

« Type: {RFID tag gone; RFID tag added; unrecognised tag}

¢ Time stamp

The sequence diagram below illustrates the interactions between Physical
Entities and Functional Components of the architecture. The doctor takes a new
towel out of the box on the instrument table and uses it in the patient’s abdomen
located on the operation table. The system detects the move of the towel from the
instrument to the operation table by the disappearance of the respective RFID tag
that is attached to the towel together with the appearance of the same RFID tag on
the operation table. The Event Storage Service evaluates these single events towel
disappeared on instrument table and towel appeared on operation table to a complex
event towel in use (Fig. 12.17).

12.6.10 MUNICH Platform Conclusion

The previous Sections have shown that an existing system can be reverse
engineered by applying the IoT ARM. Beginning from an existing system the
modelling of the IoT Domain Model and Information Model has been
demonstrated. With the help of these models the respective IoT Service
Descriptions have been derived and the interactions between the Resources have
been specified. The exercise did not include all the steps of the process to derive a
concrete architecture based on the IoT ARM. There was neither a requirements
analysis nor a security risk analysis undertaken. The purpose of this exercise is to
demonstrate the usage of the models in first place. Since the functionality of the
system has not changed a comprehensive requirements analysis has been skipped.
Also the security risks are seen as manageable since the operating theatre is a well-
secured and closed environment anyways. Only the event related service makes
connections to external environments, but that was the case for the original system
already and therefore no changes in security risks are expected. Particular platforms
and solutions to implement the use case are not recommended here; technologies
that would be suggested in this document might be outdated by the time of reading
this document and therefore obsolete.

12 ARM Testimonials 315

towel: fidTag: Object Object Event Storag: peration Theatre
PhysicalEntity Tag Instrument Operation Service Application: Active
Table:Service Table:Service Digital Artefact
doctor: HumanUser
1

T T T

T T

I I

| moves(towel123) | : !
I I
rmoves(rfid123) [
] I

!

I

I

[

L

detectz(rfid123
disappaared)

storaEvant(123 disappaarad)

I
I
I
I
I
I
I
I
I
I
I
|
3
i
I
I
!

TR) (R e s e R T

detects(rfid123 appearad)
1

} storeEvent(123 appeared)

notify(towel123
inUsa)

ST)
=

I [
[[
I I
[[
[[
I I
I I

Fig. 12.17 Interactions MUNICH platform

12.7 Conclusions About Reverse Mapping

In this Section we have provided a reverse mapping of the IoT Architectural
Reference Model with several standards from the field of IoT as well as a concrete
architecture in order to provide an architectural validation, namely whether it is
possible to map existing standards to the [oT ARM. If this was not possible, then the
validity of the ARM itself would be questionable.

As we have seen in the detailed discussion of the different standards, whether a
mapping is possible or not largely depends on the level of detail that we apply to the
mapping. Especially for the Domain Model this becomes clear when we pick up the
concept of a “Service”: All the standards we looked at provide services in one way
or the other, so that at a superficial glance a mapping is trivial. However, when we
take the exact definition of that term in the different standards, we realize that there
is not always a 1:1 correspondence between the standards. For instance, in ETSI
M2M a service is not defined as “exposing resources on devices, but can interact
with the devices.” A resource concept as in [oT-A does not exist, so that compared
to the definition of services and resources in the ARM, the distinction between a
resource and the service as it is made in [oT-A does not exist in ETSI M2M. From a
high-level perspective, though, the Domain Model usually maps rather well to the
different standards. Also, the Communication Model and security aspects are rather
compatible between the standards and the ARM. The latter is not surprising, as
security aspects in the world of IoT are commonly derived from a well-established
body of security research with fixed and clear terminology, quite unlike the Internet
of Things domain. Also, it must be noted that the scope of IoT-A is broader than the
scope of any of the individual standards. This is not surprising, as [oT-A aims to
provide a Reference Architecture for all different kinds of specific architectures and
use cases, and therefore must be broader by definition. Different parts of the IoT
ARM are therefore only partially or not covered at all by different standards. For

316 E. Ho et al.

instance, EPCglobal is highly RFID centric and therefore neglects certain aspects
such as the IoT Communication Model, however the mapping to the IoT Domain
Model and also to the Security and Information Model works reasonably well at the
appropriate level of abstraction.

While the mapping of the different standards can be regarded as successful,
when being performed at the appropriate level of detail, the real litmus test is the
mapping of a concrete architecture to the IoT ARM. We have provided such a
mapping for the MUNICH platform and have provided detailed information about
the Domain Model, the Information Model, a process modelling based on the
BPMN extensions developed in IoT-A (Meyer et al. 2013) and have discussed the
service modelling in detail. Of course, we cannot generalize this successful exercise
to any existing concrete architecture, but it still demonstrates nicely, how the IoT
ARM can be applied to a concrete architecture. We are confident that other
architectures from the domain of IoT map equally well to the IoT ARM.

12.8 Business Case Evaluation Example

12.8.1 Introduction

In the healthcare use case, to show the real-world value of the ARM, we focus on an
IoT system that has already been implemented. In combination with the reverse
mapping (see Sect. 12.6), we show that not only can the IoT ARM describe existing
IoT systems (and by extension, help realise such systems), but that these systems
also bring value. We evaluated the operating efficiency and profitability of such an
10T system.

This use case was implemented and carried out by several companies and
universities in the framework for the Initiative for Cloud Computing in Health
Care (henceforth referred to as the “MUNICH platform”). The MUNICH platform
addresses two main problems: debris left in the human body after surgery and time-
consuming process steps with no added value (“non-productive time”). A third
auxiliary problem is the on-going integration of software and solutions from third
party providers, which the IoT-A ARM would address.

Regarding the debris problem, in spite of safety checks already implemented,
debris (tools, towels, consumables) is still left in the body during surgical
procedures in 1:10,000 cases (Kranzfelder et al. 2012). In these cases, 70 % of
the debris comes from surgical towels and 30 % from other surgical equipment
(Kranzfelder et al. 2012). The consequences for the patient are a 40 % morbidity
rate with a 5 % mortality rate (Kranzfelder et al. 2012). Regarding non-productive
time, this refers to steps such as documenting and registering towels before the
operation, subsequent counting of towels during the operation, and searching for
towels when something is amiss; none of these steps add value, but instead address
a problem created by the process itself.

12 ARM Testimonials 317

Short Term Long Term Problem Addressed
- r—»{ Automation Debris in
| Objectives L— Human Body |

[Increase process] 5
effectiveness | Non-Productive

+

[Increase patiéht Jme
safety
Standardized | On-going SW
system architecture | integration

Fig. 12.18 Objectives of the healthcare use case and the problems addressed

Accordingly, a solution that addresses the tracking of surgical towels would
mitigate these problems significantly. We can therefore map the MUNICH
platform’s objectives and solutions as shown in Fig. 12.18.

Real-time monitoring and location of all towels reduces the risk of debris in the
human body because manual error-prone counting and searching is avoided
(MUWS 2013). Therefore, the automation reduces manual errors. The process
improvement increases the transparency of the process and reduces the risk of
documentation errors that can also lead to debris in the human body. Experts
estimate that a 100 % failure protection is possible with this solution (Kranzfelder
et al. 2012). Addressing the debris problem meets short-term objectives of automa-
tion and improved process effectiveness, and in the mid-term, increases patient
safety.

For the non-productive time problem, automation and the resultant process
improvement remove the error-prone steps of documenting and registering towels
before the operation, subsequent counting of towels during the operation, and
searching for towels when something is amiss.

For the long-term problem of integrating new software developments from the
hospital and their third party solution providers, the IoT-A ARM provides a
standardised reference architecture. This would simplify the complexity of the
architecture and make integration of new components into the system easier.

12.8.2 Cost and Benefit Models

The inputs for our analysis consisted of a cost model and a benefit model. The cost
model factored in non-recurring costs (NRC) such as the RFID antenna and readers.
The main cost driver is the hardware investment for the RFID antennas, which
amounts to €49,500 — 58 % of the total non-recurring cost (€85,600). Beyond this
initial investment, the cost model also factored in recurring costs (RC), such as the
RFID-tagged towels, the software and system licensing fee, staff training, and the
maintenance costs. The main cost driver of the recurring cost group is the operating
fees of the system provider. This cost element has the most significant impact on the

318 E. Ho et al.

cost model and accounts for 98 % of the yearly RC of €1,034,000. A price change in
the service fee has a dramatic impact on the total cost structure over time. There-
fore, this price change will be part of a specific sensitivity analysis.

The total cost (NRC+RC) development over a 6 year period was subsequently
computed and input into a combined cost-benefit model (see 0 Cost-benefit
analysis).

The benefit model is composed of three benefits; the calculated yearly benefits
are in brackets: RFID-supported surgery (€815,000), cost savings from prevention
of surgical errors (€370,000), and RFID-supported surgery preparation (€104,000).
The “RFID-supported surgery” model provided the highest benefit, accounting for
63 % of total benefits. Non-tangible benefits not directly linked to a monetary
outcome include an increase in surgical scheduling each year due to reduced
preparation time, and hospital reputation improvements due to improved safety.

The total benefit over a 6 year period was subsequently computed and input into
a combined cost-benefit model (see 0 Cost-benefit analysis).

12.8.3 Cost-Benefit Analysis

Figure 12.19 presents the yearly and cumulative cash flows. The cost-benefit
analysis demonstrates a positive investment result. The discount factor is assumed
at 8 % and the net present value is €805,000. The payback period is less than 1 year.
Within Germany, according to healthcare experts, this would meet the requirement
of a 1 year payback period for new investments in a German hospital.

12.8.4 Sensitivity Analysis

With the sensitivity analysis, we can investigate the impact of changing the major
calculation variables. The following impacts shown in Table 12.6 will be discussed:

The results of the sensitivities are always evaluated with respect to the final
effect on the discounted cumulative cash flow. The sensitivity analysis will be
summarized with a best/worst case scenario.

12.8.4.1 Sensitivity Analysis for the Cost Model

The cost model sensitivity analysis investigates the impacts on the cost model if a
parameter is changed. Reducing the critical risk factors (CRF) by 10 % leads to an
increase in the total cash flow from €805,000 to €1,187,000, which is an increase in
the net present value of 47 %. On the other hand, increasing the CRF by +10 % or
420 % due to higher NRC and RC lowers the net present value to €423,000 or
€41,000 respectively.

12 ARM Testimonials 319

Cost - Benefit Analysis Over Business Case Timeframe, in €

(thousands)
W Cash Flow m Discounted Cash Flow
== umulative Cash Flow == == Cumulative Discounted Cash Flow
‘%" 200€ 4 1,200€
E 180 € W
1,000€
§ 160€ - € E_
vl
£ 0L €800€ T
c 120€- 2§
= 100¢€ - 600 Y9 5
w 9 0
2 80 % £
T 60€- 400 € = ..E.
: -
a 40€ S00E g
O 20€ - (5]
3 0€ -+ - £
°

2013 2014 2015 2016 2017 2018

Fig. 12.19 Cost-benefit analysis over the business case timeframe (healthcare case)

Table 12.6 Models and parameters varied in the sensitivity analysis for the healthcare case

Model element changed

Cost model Benefit model (c) General calculation
assumptions
Change in Critical risk factors: Benefit variation factor Discount Rate (DF)
variables Software risk = SR (BSF) Frequency of surgeries
Hardware (TAoS)
risk = HR
Personnel
risk = PR
Maintenance
risk = MR
System service fee
(SFS)

The main cost driver for recurring costs (RC) is the system service fee. An
increase of 10 % in the service fee per surgery from €20 to €22 reduces the net
present value by two thirds to €270,000. The profitability limit is reached by
increasing the fee to €23/surgery. The cost model sensitivity analysis is depicted
in Fig. 12.20.

320 E. Ho et al.

Cost Model Senitivity Analysis in € (thousands)
CDCF/year basic model CRF -10% —— CRF +10% - - -CRF +20% SFS+2 € SFS+3,01€

1,400€

w 12008 1,187 €

£ _ 1000¢€ :

Ty 805 €

© 2 B800€

£ 8 600€

& 5 a00e s LY,

TE J00¢ . s @ | 270€

o B — 41¢€

= -4 oo - - __ o
200€ 2013 2014 2015 2016 2017 2018

Fig. 12.20 Cost model sensitivity analysis (healthcare case)
12.8.4.2 Sensitivity Analysis Regarding Benefit Model Robustness

This analysis aims to investigate the robustness of the benefit model and the impact
on the cost-benefit results. To demonstrate the development of the model, three
different scenarios are simulated: (1) Benefits increase by 10 % (2) Benefits
decrease by 10 % and (3) Benefits decrease by 15 %. The results of these
simulations are summarized in Fig. 12.21. The net present value is exactly
0 when the benefits are reduced by 12.4 %.

Notably, the net present value is very sensitive to changes in the benefit model;
there are large benefit differences between (1) and (2).

12.8.4.3 Sensitivity Analysis for the Assumptions in the General
Calculation

After the sensitivity analysis of costs and benefits variations, the analysis is
extended to variations of the general calculation assumptions that affect both
models. Two parameters are used to simulate the results. The first is the change
in the discount rate (DF) to reflect different risk perceptions and interest rate
influences. The second parameter concerns the frequency of the surgeries per
year (TAoS), which is a basic quantity variable (see Fig. 12.22).

A variation in the discount rate of -2 % leads to an increase/decrease in the net
present value of +4 %. If a 12 % discount rate is assumed, the net present value falls
to €741,000 (—8 %).

If the hospital performs 25 % fewer surgeries per year, the net present value
decreases to €524,000 (—35 %). In contrast, if the number of surgeries per year
increases by 25 %, the net present value rises by 35 % (€1,087,000). The net present
value is zero if the hospital performs 71.5 % fewer surgeries per year.

12 ARM Testimonials 321

Benefit Model Sensitivity Analysis in € (thousands)

@ CDCF/year basic model ---- BSF10% ~——=BSF-10% - -BSF-15%
1,600€ -
1,400€ -
1,200€ -
1,000€ -
800€ -

1,453 €

805€

Total Cash Flow, in € (thousands)
I
8
]

2013 2014 2015 2016 2017 2018

Fig. 12.21 Benefit model sensitivity analysis (healthcare case)

Cost- Benefit Sensitivity Analysis

W CDCF/year basic models«+« DF = 6% =====DF = 10%== =DF = 12%® o » 1,25 x TAQS ====0,75 x TA0OS

1,200€ -

_ .» 1087¢€
4 1,000¢- L
c o
a ot
3 0" . 842¢€
]] &
£ 800¢€ O 772€
= . 741€
£ goo¢ |
§ 524€
=
£ 400€ -
()
L]
o
£ 200€
h

- € "1 T =T T - T 1

2013 2014 2015 2016 2017 2018

Fig. 12.22 Cost-benefit sensitivity analysis (healthcare case)
12.8.4.4 Best/Worst Case Scenario

By combining cost and benefit variation in the sensitivity analysis, best and worst
case scenarios can be elaborated. For example, if the system service cost is reduced
by €1/surgery (= —5 %) and the hospital performs 25 % more surgeries annually,
then the net present value rises significantly to €1,421,000 (+77 %). The best case
scenario is based on the assumption that the service provider can lower the cost of
the service fee due to cheaper maintenance costs, additional development support

322 E. Ho et al.

Best-Worst Case Scenarioin € (thousands)
CDCF/year basic model ===BestCase ===worstcase
1,600 €
1,400€ 1,421€
1,200€
1,000€
800€

805€

600 €
400€
200€

Total Cash Flow, in € (thousands)

-120€
-200€

2013 2014 2015 2016 2017 2018

Fig. 12.23 Best and worst case scenario (healthcare case)

from using the IoT ARM, and from economies of scale effects. As a result of using
the system and thereby reducing the errors, it is assumed that the hospital gains a
better reputation and is more efficient, and accordingly, the number of surgeries per
year rises.

In a worst case scenario it is assumed that the benefits are lowered by 5 %, the
system service fee is €2/surgery more expensive (+10 %), and the number of the
surgeries is reduced by 25 %. In this worst case scenario, the net present value is
completely destroyed and always negative (see Fig. 12.23).

We observe that the economic feasibility of the case depends to a high degree on
the system service fee of the service provider. The feasibility is also sensitive to
fluctuations in the benefits. Further investigation about the reliability of the cost
estimates is necessary. This information can be gained from the pilot deployments
of the system with RFID-equipped towels. A test case is currently running in
Munich at the university hospital “Rechts der Isar”’. When the pilot case is finished,
a more reliable assessment of cost and benefits will be possible. The service
provider would then also have better information for the calculation of the cost of
the service fee.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Chapter 13
Summary and Outlook

Alessandro Bassi

Five years ago, when we organised the very successful meeting “Beyond RFID: the
Internet of Things”,' we were pioneering a new space. At that time, a global
network of interconnected objects was just a very fancy and rather fuzzy concept.
Today, this topic is clearly mainstream.

Cisco” and Ericsson® have published white papers clearly showing the relevance
and the importance of IoT-related technologies for their strategic offering; to
mention just a few numbers, for whatever they are worth, apart from the famous
forecast of 50 billion interconnected devices by 2020,4 Cisco foresees a related
market value of $14.4 trillion.” These companies are just the tip of the iceberg:
McKinsey, for instance, recently published a report® estimating the IoT impact on
the global GDP as between $2.7 and $6.2 trillion annually by 2025, an impact
which is beyond that of big data. In 2012, Gartner Research identified the IoT as one
of the top ten technology trends for the years to come.’

As members of the IoT-A consortium, we are rather proud to be at the forefront
of this wave. Back in 2009, we clearly identified the main technological
showstoppers for the development of a global IoT vision. The problems we faced
back then were threefold.

As early developments were clearly not coherent, and showed little if any
possibility of integration in bigger systems, scalability capabilities or an ability to

!http://www.smart-systems-integration.org/public/internet-of-things

2 http://share.cisco.com/internet-of-things.html

3 http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf
*http://share.cisco.com/internet-of-things.html

3 http://iotevent.eu/cisco-sees-14-trillion-opportunity-in-iot/

S http://www.mckinsey.com/insights/business_technology/disruptive_technologies
7 http://www.gartner.com/newsroom/id/2209615

A. Bassi (<)

Alessandro Bassi Consulting, 3, Avenue de Cannes, 09160 Juan Les Pins, France
e-mail: alessandro@bassiconsulting.eu

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_13, 323
© The Author(s) 2013

mailto:alessandro@bassiconsulting.eu
http://www.smart-systems-integration.org/public/internet-of-things
http://share.cisco.com/internet-of-things.html
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf
http://share.cisco.com/internet-of-things.html
http://iotevent.eu/cisco-sees-14-trillion-opportunity-in-iot/
http://www.mckinsey.com/insights/business_technology/disruptive_technologies
http://www.gartner.com/newsroom/id/2209615

324 A. Bassi

adopt strong security policies, the need was very evident: to define a common IoT
ground where services, applications and products could have solid roots. This
common ground is established by making different technologies talk to each
other, allowing existing and new IoT-related developments to belong to the same
space.

Furthermore, it is important to define a way of moving from ground-breaking
ideas to real products and services.

Finally, we needed to show not only the research community but the whole
community of innovators that IoT technologies can actually be used to implement
their projects, providing innovation managers and architects with the necessary
tools to do so.

The IoT-A project tackled the first point by upgrading existing technological
developments. Communication protocols related to constrained devices were stud-
ied and extensions were proposed, tested and promoted in the appropriate
standardisation fora.

As far as defining ways of moving from ground-breaking ideas to real products
and services is concerned, in many formal and informal meetings we see reactions
such as “what the heck?” when we explain what IoT can do for a business domain.
There is a clear need for education and information that is missing at the moment.
Innovation directors may have a very clear vision of what they want to achieve, but
there is no way for them to understand the complexity of their challenges, to select
the best architectural design patterns that can solve their issues, and to decide which
technologies to use to implement a solution in practice. We see this as a vertical
challenge: from a vision to a product, designing the right set of models,
architectures and tools. This point was addressed by the development of the
Architectural Reference Model (ARM), which includes all necessary models and
design patterns for developing a real product.

Finally, after tackling both of these dimensions, as already stated, we needed to
show not only the research community but the whole community of innovators that
IoT technologies can actually be used to implement their projects, giving
innovation managers and architects the necessary tools to do so. A silver bullet in
a drawer does not solve any issues; we needed to “go out” and reach the widest
possible range of most diversified audiences in order to make our work worthwhile.
This book clearly addresses this third aspect of communication.

We are also aware, however, that all dimensions need further work. From the
very beginning, we intended the ARM to be an iterative effort. The set of models
and architectural choices will evolve, and the project partners are seeking suitable
ways of making the concepts long-lasting, well beyond the project’s lifetime. What
is important is that the ARM and all related developments cannot be “locked” in the
sole ownership of one single organisation or group — every instrument that can
promote and develop the architectural development of the IoT further must be able
to use the ARM work done in IoT-A as a base.

The horizontal integration between different technologies will also require
updates. As different IoT-related technologies evolve, there will be a need to
develop different interfaces at any level, from device level to services. Further

13 Summary and Outlook 325

investigation and efforts will be required: in particular, considering possibly revo-
lutionary developments such as quantum technologies. Within IoT-A, we tried to
provide guidelines for developments in some areas, such as protocols; however, as
long-term forecasts are very often off-target, only time will tell exactly which areas
will need closer attention.

Last, but certainly not least, a considerable amount of work must be done to
develop sustainable security and privacy policies. Even before the IoT, RFID
technologies were subject to a very negative “big brother” image. These
considerations are very topical today, with the disclosure of the US government’s
PRISM program, and any technology for interconnected objects may be rejected on
the basis that it violates basic privacy principles. Therefore, governance schemes
that on one hand are privacy-friendly, and on the other hand secure, must be agreed
upon and implemented, along with widespread education on the societal benefits
of IoT.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Non-commercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix A

Terminology

This appendix aims at defining the terminology introduced in this book. Please,
always refer to the online version of the IoT-A terminology webpage at http://www.
iot-a.eu/public/terminology. Note also, words written in ifalic in the Definition
column own an entry in the table providing their specific definition in IoT context.

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0, 327
© The Author(s) 2013

http://www.iot-a.eu/public/terminology
http://www.iot-a.eu/public/terminology

Appendix A

328

[euwoqiez,
‘Surystiqng uaIeH ueA T's “uoissarduwy ISIL] “po
U6 ‘Tenuew € — 6 U0ISIaA JVDOL (8007) dnoip uado oy,

SWQ)SAS QAISUIUI-0IEMIJOS JO UONALIOSAP [LINJOAIIYOIE
Joy eonderd papuowrtuoddr FHHT (000¢—1LiT) AHAL

[euIoiu]

Jpd'd102¢L 188 112/09 T0/E€LT/661 001

/137 1S19/I0AT[OP/S10 1810 MM A//:dNY :euT[UO 9[qe[TeAY

‘suopesrjdde erpawmnui 10j [opour feuonoun, {(g.1)
juowdimbyg TeurwIoy, ‘¢/ 1 YILA Wodal [eoruyos], [SIH

[euIaluf

[euIojuy

24112231410 1931}) JO Ma1a Teuonjelidse ‘[oA9[-ySIy v,
-, .uonn[oas pue
ugrsop sit Surping sopdrourid oY) pue ‘JUIWIUOIIAUS)
0 pue ‘10y30 Yoea 0} sdiysuoneyar oy} ‘sjuouoduwod
SI1 UI PAIpOquIo /2S4S © JO uoneziuesIio [ejuswepuny ay[,,,
‘sjuowarinbaz
JIOpIOYaYeIS [BUI)XS pUER [BUIJUL JO Sn dy) Surpnjour
‘PAALIOP QIB INJOAIYDIE JOUISJOI AU} pue [opow
S0URIJAI AY) YOIyM [IIm ASo[opoyIoul a1 SqLIOSIP
J1 “QIOWLISYLIN, "9INJONIYIIE OUAIJAI J,0] Paje[al oyl
UM JI SQUIQUIOD PUE [OPOW SOUAIQJAI [O] Sy} JO uUonIu
-1JOp AU} SMO[[0J [OPOW JOUIQJAI [BINJOANIYIIR V-[O] YL,
- eep
pue swreigoid jo pasodwod s1 pue urewop erpowradAy
JIo/pue eipawmnw oy ur uonesridde ue o3 oyroads st Iy
"5 Y} 0) 2014428 uonedrdde ue sapraoid jey) aremijos,,
“JUQISIJIP ATk A3
A[renidoouod nq “aures 9y} aq Ued SSAIPPY Yl pue ([
AU} ‘SOSBD QWIOS U] “2214.L2§ © IO ‘20.110SIY © ‘9I109(] € —
.01 Suny[ey,, — Surssaooe pue Jureoo] 10§ pasn SI SSAIPpe Uy
“saunus [pI1s£y 4 dI0W I0 U0 JO
q1e3s TeorsAyd oy ur a3ueyd B S9INJ9X9 JeY) 20149(7 [e10adS
JoDJo1.1y 1181 2410V SI PAsn 9q 0} UL}
Y} :919[0SqQ 215077 SSaUISNG B 0) TUIPIOJOE FUIIOR

UOISIA QINJONIYIIY

QINJOANIYIIY

[OPOJA @0UAIRJAY [EINJINIYIIY

aremyjos uoneorddy

SSAIPpY

10jen)dy

[euIojuy Aqrensn ‘wrer3oxd a1em3jos 10 9pod dATIOR Jo adK) Auy Amug 1en3iq ANy
"$20.U10S2Y
10 $2214.10§ ISYJ0 $S300€ KBWI JBY) $2014.10§ 10 SJUaSe
reuroyu ‘suonjeorjdde aremijos Juruuni are sJopfa11y PISIJ 24110y JORJOUY [BNSI(J QATIOY
90In0g uonIuyaq wIo

http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_88173e01p.pdf
http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_88173e01p.pdf

329

Appendix A

(ponunuod)

*SONSSI SSauIsnq 0} SuUoIN[os ApIm-astidiaua apraod
0] UOIJRUIqUIOD Ul PIsn U}JO dIe sAIF0[ouyddl NIV
Srdnniy "serSofouyd9) NTV 2I0W IO U0 AQ PIAISS
159q 2q Aew suoneordde ‘1oyjey ‘A3ojouyo9y ,1s9q,,
ou ST 219y} SUIUBAW — SUONBIIWI] PUB §}Judq oy1oads
umo sJ1 sey A[iuej £30[0uyd9) NIV U Jo Jaquiawr yoeyg
*sped£ay 10 SU9IOS YONo) ‘@dT0A BIA BIEp JO Anjud J0jerado
y3noiy) se [[om Se SIOLLIED Blep WOL Blep JO UOnediu
-nWWwod 1o ‘uone[ndiuewr ‘Uono[[0d dY) AeI[I0.] Jey)
$901A9p Sunndwod 9[Iqow apNn[oul Os[e SAIo[ouydd NIV
'sasn , 2onoead 1s9q,, pue ‘sanijiqedes
‘$1010BJ W0 ‘sanoeded vjep JUAIAIP YIm
[oed ‘suonn[os Jo o3uel 9pIm B dpN[oul sA130[0uyod) NIV
‘BJEP JO AIUQ pue
Uo1I[[00 JJeIndoe pue Jsej Suipraold ‘suaisds orem
-1J0s 9s11d191ud JO pud JUOLY A} SB JAISS SAIS0[OUYI)
NIV ‘soseod jsow uf “eyep jonpoid Jo ‘[euosiod ‘ssou
-ISNq [eTIUASSY JUNEIIUNWIWOD pue JULI0)s ‘SUTPIOIAI
‘Sunyoen ‘Surknuopr jo asodind uowrwod ayy areys
/310 TRqO[SWIIE MMM //:dNY 1T QuT[uO Jey) SAI30[0UYd9) JO A[IWIB] ISIQAIP B 1B SIAIF0[0Uuyd)
‘A)ITIqow pue UoIBdYNULPI djBWOoINY 10) UOHEBIO0SSY (ATV) AI[IQOJA puE UONEOYIIUdP] dnjewony,,
“Knpug (R
[eUIIU] PIIRIOOSSE S pue A1njuz 02154y 4 & Jo uonisoduiod ay |,
‘puey I2y10 Y}
uo £1nus [p21s{y 4 e puER PuBY SUO) UO 20110521 PUL
[PUIU] 2214428 B US9M]OQ UOTIB[AI d) SOYSI[qEISO UOTIBIOOSSE Uy
Jopraoxd
[uny uonjesdse-1opjoy s uonejuowedwi [wagsds] reuy Ayl Jey) S2014.498)
yels/sbej/z-armoayore-oy)/nuaw-dol/jou-aurjuo 10J $.19p]0Y2yDIs SNOLIEA JU} JO SAIISIP Pue suone}oadxo

-owredy mmm//:dny :ye surpuo drqefreae ‘pofoid FINVIA-A oyl ssa1dxe jey) sjuowdiels aae suonendsy Lopjoyaynis,,

sar3ojouyd9],
ANNqo pue qromy

Amug payuowsny

UOTJBIO0SSY

uonendsy

http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.aimglobal.org/

Appendix A

330

Teurajuy

[euIaluf

[euIojuy

[euIoIu]

[euIoiu]

[euIaiuf

[euIaluf

"Jonfary
[P1181(J ST pasn 9q 0] ULId) MAU dY) :919[0SqQ) W)
-sAs paseq-D [Ue Jo Judwa[o ejep Jo [euoneindwod Auy
-oAIssed 10 9A1IOR JOUIIQ SB
PAYISSB[O 9q UBD 1Y) $10Df21.LY [P11S1(J Xe Sa1UT [DNLIIA
*KyTuIoTA S31 Ut K117u5 [p21s£Y g € 10)TUOW IO ‘A71jU5]
215Ky 4 © 9PISUI PIPPAqUId IO 0) PAYJeIIe IS 9q
ued 22142p Yy "swIsAs D 1] Ioyjo o3 senifiqeded uored
-Tunwwod ym (drempirey)) jusuodwod [eorsAyd [eoruyos],
‘)1 SutAow IO 9Je3s SIT Surueyd NI
‘Cpngusg o158y 4 © 10933 03 Afiqeded ay) sey eyl SurgAuy
"ased asn Teonoerd e 0y parjdde
NV 24} JO UOTIBNUBISUL UR ST 2INJOIYIIE JAIOU0D Y
‘[opowr
urewop dYj Jo SJUAWI[S Y} Suowe SUONIBINUI UTEW
Ay Inoqe sYIIsul yIm 19y1a303 ‘syoels sqerodorajur
PIINg 0] S9[NI UOTIEBIIUNWILIOD JO J3S € sap1aold [opowr
SIY, "[OpOUl UIBWOp JY} Ul PaUYIp ‘dsed y-10] dy} ul
‘Se ‘SJUWIAA FUrOAUU0D JoJ swFrpered UONEIIUNWWOD
urewr oy} Suruyep je swire [9poul UOHEIIUNWWOd Y],
*ssaooxd
ssaursng 9)o[dwod € 10 ‘sannuy [edIsAyd o(dnnw
10 9[3UIS © JO INOIABYQQ) UYP OS[e Ued 2150]
ssauisng -osodind ssoursng Jefnoned e soAIdS 2150]
ssauisng “s3u1y J SUIAJOAUT WRISAS © JO INOIARYQQ IO [BOD)
. ’se13o[ouyo9) NIV JO asn
AU} dULYAP 01 ISIX3 Os[e sprepuels uonedrjdde Ansnpur
10 [BUOIIRU ‘[BUOIIBUIU] "SPIEpUR]S [EJIUYD) [RUOTIBU
pue [euoreuIUI £q PoUYIp Ik $AIS0[0UYdd) NIV ISOIN

Anuyg rensiq

ey [ENsiq

01A9Qq
I9[[o1uo))

QINJONYIIY AJRIIUOD)

[OPOJAl UOLJBOIUNIWO))

013077 ssouisng

90IN0S

uonuyaq

wo,

331

Appendix A

(ponunuod)

€107 AINf 77 PIssa00y "SunsoAley A3Ioug/mim/310
erpadyim-ug//:dyy “erpadookous a1y oy ‘erpadryipy

‘SunsoArey A310ug (¢107) sionqruo)) erpadiyipn

€10¢ 1dy (g passdody
Jpd*80£0900T WISBI ™ SPSO/[OPOIN()T%OIUID

JM0T% V1/SIawWnd0q0z%WeId/VI-VES/so0p/eas/310
'SPso0-amd//:dny (0-D-0"21€ SASDD [OPOW U)X
QINOANTYITY ()G UOTIRUWLIOFUT "SWISAS elep aoeds 103 99)

-JIWWOD JATBINSUOD YL, (9Q(QT) SSNIWWO)) IATIEI[NSUO))

[euraluf

pue juasaid A[eInjeu ST s19)SoATRY ASIQUQ I0J , Jony,, oY)
(939 ‘[0 ‘[10) KQUOW $]SOD UONLIAUAF [Lds A3Ie[O}
[eng indur oy} oIy AN "SOTUOMI A310Ua-Mmo] Furromod
10} 1om0d JO Junowre [fewss AIoA opraoid pesjsur

nq “yIom [eorueyoow wroyrad o) A31ous JuaroyyNsS
Jonpoid jou op AJUaLIND S19)SAATRY AZISUF ‘AOUID
-1JJo JeaI3 yim 31 axnydes 0 ISIXQ Jou op sAIFo[ouyd)
g o[qe[reA. A[OpIM SI ‘SOPI} PUB PUIM ‘UNS SB Yons
‘310U JuaTqUIE O[EIS-93IRT I9JeM FUIMOF IO UOTS
-sg Iea[onu ‘sfany [15s0j Aq paromod sjuerd pazijenuad

031e[Ul pareIouds uddq sey Jomod [eoL1109]e ‘A[[euoniper],

*SYL0MIIU AOSUIS SSI[QIIM PUE
SOTUOI}OATA S[qEIEdM UT PIsn SOy} AYI] ‘S20142p Snow
-ouojne SS9[IIM ‘[[ews Jnoqe Juryeads uaym pardde
ST WId) STy} ‘Apjuonboig “parois pue ‘parmded ‘(A31ouo

OTjOUIY pUR ‘SJUAIPRI3 AJIurfes ‘A310ud puim ‘A31ouo fewr

-10y) ‘Iomod IeJos §'9) SI0IN0S [BUI)XS WOIJ PIALIOP
ST 310U yorym Aq ssoo01d oy st (Surduoaeos A31ous

Jo 3unsaarey omod se umouy os[e) Sunsaa.vy-£3.4ouyg,,

" SUTEWOP U0dMIoq
€lep Jo A3URYOX pUE ISN JATJE[ALIOD JBII[IoR) O]

djey osye sjopowr urewop ‘urewop & SUIQLIOSIP SAPISAG
5198 Byep Qonpoid sjuswnmsur,, se yons s399(qo
uoom1aq sAIySUOTIE[aI SOULAP [opOou UTBWOP Y],
“JOYTUSPI PUE SUIRU S [Ins ‘$309[qo asoy) Jo sanqLije
SOUIOP OS[e [OpPOW UTEWIOP Y], “ISOISIUI JO BATE Ien

-onred e 01 Surduo[eq s199[qo s9qLIOSOP [opoW UTBWOP V,,

*K19A00s1p Y} SUNNIAX

UQUM PAIJPISUOD I8 UOIRZLIOYINE I0J S[BIIUIPAID)
"2014.128 IdUjoue 1o uewny e £q pazIjnn oq Kew

J] }[NSAI PAIISAP Ay} Jo uonedoyIdads y3nol e uo paseq

§2214.128 [§22.01052.L UMOUNUN PUY 0] 2014.02S & ST AIDA0ISI(]

sar3o[ouydq, Sunsoaley-A31oug

[9POIAl Urewoq

http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Energy_harvesting

Appendix A

332

*9[qezrugooar

[eurou] pue d[qeuyap 1 saxyew Jeyl A1us ue Jo santadorg
(3us oISy 4 e Jo daInqre
ue SI] Jo 19s S, “A1usgpo1sy 4 awes ay) 10§
S] TeI9A3S 9q UeD IAYJ, "ISYI0 Yyoreo woij sSury) ajen

[euIolU] -SIQUIBSIP O} PAsn 2INJeJ [eInjeu IO PIJeIdUdT A[[RIoynIy
"J10q I0 ‘Way) INOqe UOHBWLIOJUI SPIOJAI 10 Sa1UT]

[euIaIuf po15€y 4 Y s1oexur AjedrsAyd 1oynne 1ey) uvwung
"JoUL2]U] AU} JOAO J[QR[IBAR
SI 28D.101S [PqO]3 U} 0} SSAIOY IS4l JO §I1I1IUI

[euIoIu] Auew JNOQe UOTIRUWLIOJUI [BQO[T SUTBIUOD JBY) 25D.L0IS
*010 ‘SUI[[Iq ‘UONEBSI[BIO[-093 ‘AIOAOISIP AJIA
-19s ‘AyITIqeress ‘Ajunoos 10y 11oddns opraoid osye ued
s€pmaipry “uonejuowd[dwr [000301d UOWWIOD € UT JoKe]
1S9MO[Y} ST YoTyMm uo Jurpuadop ‘SI0Ae[JURISIJIP Ik 108
ued s{pmains ‘sasodind AoudIoYJo 10, "SYOBIS UONEIIU
-nwwod 3y} Jo syred 1omof yim papiaoid are jey) 101
A jo syuny [eroydiad usemiaq uonesuen jodojord

sop1aoid jey) 201427 ur pojuowe[dwir 9q ULd sAemajen)
*Pa102UU0D 3q 0] SHI0MIU

[euIIU] [eJ0[SnoLIeA SUI[qBUD JUOWS[SUIpIeMIO] © ST Aemalen)
pedjsul
pasn 9q p[noys A111u5g (po1s£yJ W) Y} :[OPOW U
-19JaI -0 Y} UI 9J9[0SqO ST WLId) Y], "241102ds.1ad
uoneordde 1o .Lasn © WOIJ JUBAS[I SI Jey) dJels SJI pue

[eUIIU] J1 9QLIOSIP JBY) SAINQLIIE AY) Sk [[om sk 193[qo TedrsAyd Auy
" Sunseopeolq UOISIAJ[Q) pUe OIper Jo
9SNEJ2q JUSWUOIIAUS) UT AZISUS O1JQUSBWOIIIS JO
junowre 93.Ie[& OS[e SI 9I9Y) ‘Seale UBQIN Ul pue duI3ud
uonsnquiod & Jo uonerado Yl WOoIJ ISIX SJUAIPeI
amjerodwa) ‘ojdwrexo 10, *991j PAIOPISUOD AI0JAIAY) ST

Anuopy

(@D reynuspy

uewIng|

a3e101§ [BQO[D

Kemojen

(109) 1se1)u] Jo Aug

90IN0S uonmuyaq

wo,

333

Appendix A

(ponunuod)

oy} A[qeIoU 1SOW ‘SIIIALIS PUB S2I.LNOSI.L UOTIRULIOJUL

Jo AelIe JSeA © SOLLIBD Jou.Laju] Y], "SoIS0[ouyod)

Sunpiomiau [eondo pue o1uond9[e Jo Aele peoiq

© Aq payur a1e Jey) adoos [8qo[S 0 [0 JO SYIoMIaU

JUOWIUIAA0S pue ‘ssaursnq ‘orwapede ‘orqnd ‘ojearrd

JO SUOIJ[IW JO SISISUOD JBY} SHIOMIAU JO SI0MIU B

€107 AINf 7T Possadoy ‘10U SL["OPIMPLIOM S$.LaST JO SUOT[[IQ SAISS 0 (d/dD.L) NS

I9up/ry1m/310 eIpadiim ud//:dny “erpadojoAous do1y [000301d jou.127u] pIEpuUR)S Y} Asn Jey) syIomiau Jojnd
oy “‘erpadyipg 1ouIdU] (£107) SI0INQIIUOD) BIpadIyIpy -WOD PAJOSUUOIIAUI JO WaISAS [8qO[S © ST Jou.Lajuf ayJ,,

JELRE |
[10T dunf] Passdddy “[ZTIPY 108}
nre; /so[y/31o0 Tenredsoo3uado teriod//:dyy -arnodyore
901108 S[Huado oy 171 o1doy uoreoyroads joensqe . Kmuo ue jo
SID uado ayJ, (Zoog) wnntosuo) [enedgoon uad Inoraeyeq oY) 9zLIRORIRYD Jey) suorerado Jo 1S paweN],, Q0BJIU]

" 1O 9} JO SINJEJ [eNUISSI 10J

110ddns opraoid soo1a19s yong “Apradord yrom 0] uonel
[euriu -uow[duwir J0] Aue 10J [BIIUSSSD AT JBY) SAIAISS OY10adS SOOIAIOS AINJONISEIJU]

S[opou eyep pa[res are sgurddew

UoNg ‘J2po UODULIOfU] QUIES QY] WOIJ PIALIOP oq UBD

sSurddewr juarapyip ‘snyJ, ‘uonejuowo[dwi [enjoe ue

0] paddew st uondrosop jeyl moy SUTUIBIISUOD JNOYIIM

urewop oy13ds Jo uondrosop 2y} 0} WSI[BULIO]

sap1aoxd japopy uonpuiiofuy oy ‘AreordA, “waisks

SUI[Iq ® UT Pasn SANNUD AY) Sk Yons [BJI30] IO JIom)au

€ UI SOOIAJD SB yons s309[qo [8a1 2q UBD YOIyM SINNUD

Jo uonejussardar 1oeNISqR UR SI JapOoJy UOyDPULIOfU] Y],

“JX9JU0D

urewop Ay} 10j syuswaInbal uorreWIOUT JO AINJONIS

poziuesio pue ‘9[qels ‘d[qereys opraoid ueds J1 jey s1

[OPOJAl UOTIRWLIOJU] Uk SUISn JO 9FeJUBAPE Y, "9SIN0D

/no -SIp JO UTBWOP UISOYD B JOJ SONUBWAS BJep AJroads

‘10)ne-1s1//:dny :3e QuI[uo J[qe[IeAY ‘[¢ d[qeIAIJ 03 suonesado pue ‘so[nI ‘syurensuod ‘sdiysuoriefor
‘TopoIA uorewoju] 309fo1d (JoIny) JouIuy orwouoiny ‘s3doouod jo uonejuasardar e st japopy uonvuLLofu] uy,, [9POJAl UonBULIOJU]

http://ist-autoi.eu/
http://ist-autoi.eu/
http://portal.opengeospatial.org/files/?artifact_id1221
http://portal.opengeospatial.org/files/?artifact_id1221
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Internet

Appendix A

334

[ewrwoqiez,
‘Jurystqng uareH ueA ‘['s "uorssardwiy sI ¢po

16 ‘[enuew € — ¢ UoIsIoA JyDO.L (800¢) dnorp ued(2y,

[eurojuy

Ay} 9sN 0] pue SWAISAS JOYIO WIOIJ SOOTAIIS SAIIAI
pue opraoid 01 swaisks Jo AI[Iqe dY [, "UOTIBULIOJUI 3N
pue a3ueyox? 03 sjuauoduwiod J0 SUIAISAS 2I0W IO 0M] JO

KIITIQE 9, "SOJTAISS PUE UOTJRWLIOJUT dreys o3 A)[Iqe Y],
'109[qo Jrews Aue Juroeuu0d JI0MIaU [eqO[3 YL,

osnIadxa [eor1uyo9) SUNNQLIUOd Aq YIm

Jjeroosse Kew suoAue jey) sjuedronted reuoneurojur
paer[yje A[soo] jo uoneziuesio 1joid-uou e ‘(J 1 H])
90104 yse], SULIQUISUY Jou.L21u]) Jo AJIALIOR Ue

ST (9Ad] PUe $AJ]) S[020301d 2100 JU) JO UOHIRZIPIEPUR)S
pue Suruurdiopun [edruyod) YL, “(NNVIID

sIaqunN pue saweN pausdissy 10j uorerodio)
JoU.12]U] U} ‘UOTIEZIUBSIO ISUIRIUTRW € AQ PIJOAIIP

AIe ‘w21s£s sureu-urewiop dy) pue odeds ssaIppe
[000301d-72u.123u] QU) ‘1ouL23u] Sy} Ul sadeds Sureu
Tediourid om) 9y Jo suonIUyAp SUIYOBALIIAO Y} A[UQ
‘SpIepue)S UMO SJI S19S JI0MIQU JUSNIIISUOD [Yoed ‘oFesn
pue ssoooe 10 sarorjod 10 uoneyuawedwr [edr3ojou

(03] JOUII0 Ul QOUBUIDAOS PIZI[EIIUID OU SBY JoUL2JU]],

*S9NIS SUIIOMIQU [BID0S PUB ‘SWINIOJ

Jou.t21u] ‘3uISessoW JuBISUI YSNOIY) SUOHORINUI UDUNY
JO SWLIO} MU JO UOTJEAID Y} PAILId[AIE IO PI[qRUd
Sey Jou.laju] Y], 'SPO9) qom pue ‘ur33olq ‘sqls

qom ojut padeysar ueaq sey Jurystqnd 1odedsmoN
*ALdI PUe (JIOA) [090101] J2U.L2]U] JOAO JTOA SB Ons
S2014.125 0) ASU SUIAIS ‘JoUL2]u] SY) JO SIISO[OULD) A}
Sursn pauyopal 10 padeysal aIe ‘sa014.125 UOISIAJ[Q) pue

ouoyda(a) Se yons ‘eIpalll SUOT)EDTUNWIWIOD [EUOTIPEI) JSO]A

‘[Tew d1uon
-0910 11oddns 01 armjonnseryur oyl pue (AMMAM) 9OM
OPIA PIHOA Y3 JO SIUSWNOOP Jx331dAY pasjur[-Iojur

Ayniqeredorajuy
(o) sSury, Jo Jouraluy

90IN0S

uonuyaq

wo,

(ponunuod)

335

€10 AINf 7T PISSAI0Y “I9[[0ONU0D
OIOTIA/I1M /310 _TpadyIm ud//:d)y “erpadorokous oo
oy ‘erpadiyI 1ouI] (€10T) SI0INqLIUO) LIpadIyIp

£10¢
AIN[77 PSS90y "W W/WOD" ATRUOTIOIPINOA™ MMM

//:dny :3e qurjuo 9[qe[reAe ‘uonuye(Areuonoi(Joyndwo))

[euIoiu]

[euIouy

[euIoIu]

Teurajuy

Teurajuy

Appendix A

‘suoneorjdde osodind [erouad

1910 Jo s1ondwod [euosiad ur pasn siossadoxdororun

3y 03 Jsenuod ur ‘suonedridde poppaquid

10J pauSISap e $.0]]0.5U020.01)] "INV Y JO Junoure

[rews Aqreord£) e se [[om se ‘dryo uo popnpour usjjo

osTe ST INOY d.LO 10 ysey JON JO WIoj oy} ur ATowaw

weidoid ‘steroydued indino/indur ojqewrwrersord pue

‘KI0mwoW 0109 10559001d © JUTUTEIUOD JINDITO PAjeIZAIUT
J[3urs & uo 1INdWOD [[RWS © ST .42]]0.4IU0I0LINU Y/,

.sordurexa are s3ey 77,7y pue SUTpeLaI I9joW drjeUIo)Ne

‘Sw23sAs 3uISUAS IAYILOM [RINNOLITY “2JSAS [eNUD ©

0] vjep Sumrusues) A[SNONUNUOD ST Jey) S.LOSUIS JJOWI

JO wi21s{s © 0} SI9JoI UAJO I["UOIIUSAIIUL UDUINY
INOYIIM $20142p UIIMIAQ SUOTIEITUNUIWOD dNJRUWIOINe Y[,

uarfipuapy

10 KoY © SuISN $20.01052Y Uumouy SunNIXd SISSAIPPE
Jey) 2014405 © ST dn-y007 ‘€1240081(7 0) }SLNUOD U]

019

‘STLY ‘SdD "3'9 22149p © JO UOTILOO] AY) JLITUNUIWOD
pue ys1[qels9 o3 st osodind Arewrid osoym sar3ojouyod) [V

*20149p © JO KJIUIOIA Q) UL $2111u5 MIJ € AJUO 10 dUo
JNOQE UOTJBULIOJUT SUTBIUOD JBY) 20.11052y Jo 2dA) [eroadg

*9013 9} JO SOABQ[9} Q1B JIoMIou

) JO SOPOU JINO Y} PUE SAYOURIQ Y} I8 SYUI[IAYM

‘9a11 SunnoI 9y} 0] AOUAISJI YIIM JEI[S 0) PALIQJAI ST
J] “S[Iom3au e Jo eare Junnoi jo jred 1ono ur paoerd opou v

*(S901A19s astdiaud 3

') SOOTAISS ,O[-UOU [} ISY3S0) PajensaydIo aq ue))

"JOUIIU] Y) BIA USJJO ‘Q0BJIIUI PAUYIP-[[oM B YInoy)
§20.410S2.4 Y)Im UOTIORISUI uT[qeus juouodwiod aI1emijos

. 1o1030) A[0ATI09))0

Jrerado 03 wayy 9[qeuD 03 PASUBYIIAUI OS SIJTAISS

IQ[[OTUODOIDTIA

(suryoew 0)
QUIYORW SE 0] PALIAJAI OS[e) INTIA

dn-yoo

sarSo[ouyda], UoNEI0|

93e101§ 1800

01A9(J Jeo]

Q0IAIRS 0]

http://www.yourdictionary.com/m2m
http://www.yourdictionary.com/m2m
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microcontroller

Appendix A

336

€107 AN 80 PSSV */1XQU0D
/siurodmara/awoy/ojursaanoadsiad-pue-sjurodmara
‘mamm//:dny Jurodmara 1xe1u0d Ay, (£107) N ‘DISUBZoy

[euIoIu]

[euIsluy
[euIaluf

[euIoIu]

Ipd'd10T0TOALLYTOT

“1/0910°10°T0/LLYTO1/66¥201 00T01/1 1519

JIQAT[2P/3I0 TSI MMM //:d)IY :Je QUITUO ‘UOTIBITUNWIIOD

astadiayua 10§ ANTIQOIN {(ND) SSIOMION UOTjedTUNUI
-wo29[9) Aerodio) £/ 701 Y19 Moda [eoruyss], [S1H

[euIoIu]

Jo 305 re[nonaed e SIQIYX? w2isAS © Jey) JULINSUS
Jo ssa001d 9y1 9pInS 0] SAUI[OPING PUB $ITIIB] “SISI[NIAYD
‘SOITATIOR JO UOT)O[[0D © ST dAndadsiad [eInjodiyory,,
"1oD a1y
[PISIT 241SSDJ ST PIsN 9q 0] W) Y} :939[0SqQ "WIAISAS
Paseq-1] ue Ul pa1o)s JUIyjawos jo uorjejuasardar [e)sip v
Kz 0215y g Yy Jo suonejuasardar ensp
IOU10 1O SILIUQ 9SEq-BIEP SB YONS SJUAWAQ dIeMIJOS
aarssed are s100[o1.1y (011317 190f21.4Y [DIISI(J 24ISSDJ
113U 102158y g PAIR[AL) 0) SNy} pUe 201497
AU} 01 $$9208 SUI[qRUD PUR 20149(] B IPISUI PAISOY 20.110SIY
"uo1eO0][10 IS SI 1| ‘C1nuy
215Ky 4 & 10)1u0W 0} Afiqedes oy sey Jjey) JuryAuy
. Sa13o1outd9) pajefar-liodsuer)
SurA[ropun woly Juspuadopul aIe SUONOUNJ PIJe[aI-2014
-95 YOIYM Ul pue sa130[ouyd9) odsuen pajqeus-SoQ)
‘pueqpeolq d[dnnw Jo asn ew 0] A[qe PUB SIIIALIS
UOTBIIUNWIWOII[) APIA0Id 0] 9[qe JI0M]aU PIseq-19)oed,,
‘pnoro
Y Ul 39 “YIOMIAU Q) UI AIYMIWOS PIISOY 22.110SY
" Sw2isAs d1U01I9[[eNIIp
-uou [0o1uod 0} papaau syusuodwod Fojeue Furjei3ojur
‘UOWIWOD QB S.42]]0.L1U0I0.L21Ul TRUSTS PIXTIA “SIssad01d
PUR 520142p 2I0W UIAD [013U0D A[[BUSIP 0] [BOIWIOUO0ID
J1 YR S.42]]0.1110J0.121ul ‘S2142p Indino/indur pue
‘Krowowr ‘rosseooxdororur ojeredas e sosn jey) udisop
& 0] paredwoo 1500 pue JzIs Ay} Juronpar Ag ‘sLo1
pue ‘sjoo} 1omod ‘soouerjdde ‘souryorw 901JO ‘S[ONUOD
9JOWAI ‘$22142p [RIIPAW d[qejuedwl ‘swaisds o1
-u0d QuI3Ud A[IqOWOINE SB YINS ‘sad142p pue sponpord
PI[[01U0D A[[EO1BWOINE UT PASN A S.L2]]0.LIUOI0AI1 N

(eanoadsiad ermoryore
S 0] PALIOJAI 0S[e) dAT)OAdsIog

sonnuy [eN31q AISSe]

JoeJolry [eNSI(] QAISSEJ
90IN0SY 9J1AdP-UQ

IOAISSqO

(NDN) SHOMISN UOHBISUID-1XIN

Q2IN0SAI Paseq-}I0MIIN

90IN0S

uonuyaq

wo,

http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/

337

Appendix A

(ponunuod)

. sis1eroads-uou

03 sprepue)s Surure[dxo pue uoIEONP? 10 SISLq B S8
Pasn 9q ABW [SPOW AOUAIQJAI Y "S[IBIOP 9JIOU0J IYI0
Jo ‘suorrejuowd[du ‘sarSojouyody ‘spaepuels oyroads Jo
juapuadaput st pue ‘urewop wepqoid refnonred e uryim
sdiysuonear pue sworxe ‘s3doouod Furkjiun jo 3os
[EWIUIW € JO $JSISUOD [9POUI QOURIJAI Y “JUSUIUOIIAUD
jey) Suntoddns suoneoyroads 1o sprepuels Jua)

-SISUOD SUISN SAINJOJIYOIE IJAIOUOD IO OUIJAI IYIO

Jpd-uux -ads jo juowdo[aAap 2y} SO[qBUD J] “JUSUILUOIIAUD JWOS
-e0S/()'] A/ulI-e0s/310° uado-s1SR0"S00P//:dNY () T 2IN3109) Jo senmue ay) Suowre sdiysuone[ar juedyrusrs Jurpue)s
-IYOIe PAJUSLIO IDTAIDS J0OJ [OPOW JUAIRJANY ‘NY-SISVO ~ -Iopun Ioj JIomaurely JoeIsqe Ue ST [9POW d0UIJAI Y, [OPOIAL 29Uy

"pa1ogie) 9q AW [OPOJA] 9OUIJAY)
yorym 0 sogesn/sesodind JuaIojjip ssaIppe o} ‘[opow
Q0OUAI9JAI UOWIOD B WOIJ PIALIOP 9q ABW SIINIINIYIIR
QOURIJAI 2I0OW IO AU *SAINIINIYIE JO Juawdo[oAdp
a3 10J 9ouepIng op1aoid 0] ST 2INJOAIYOIR OUAIVJI
® Jo osodind urew oy], ‘SWISAS JO UOT}OI[0D & JO
AIN129IYDIE Y] JO OUISSI ay) sarmided 1] “sjuswarnbar
Jo 305 paururiejepaid e sostear sdiysuorjefar
pUE SWISIURYOUI JO 138 10RISQR UB MOY $1BdIpUl B}
[euroiu] ureped uFISOp [BINJOANNYOIL UR SI AINJINYDIE JOUIJAI Y QINJOANIYIIY OUIJY
‘sjuouuoAUS uado
10 pasoro 0} saouerdde oruono9ye woly s19nduwod
0] SWAI Ureyd sonsI3o[Jo 9101S WOLJ SIBd 0] S[ewWlue
1O SUBWINY WOJJ SJUSWUOIIAUD IO 193[qo Aue jsowe
9q ued sannuy [ed1sAyq ‘[eos 1oy jo uonardwod
10J I9sn 9y} 0] ISAINUI JO ST Jey) JUSWUOIIAUD [edrsAyd
[eurdyuf Ay jo 1ed 9[qBYIIUSPI ‘DJAIOSIP © ST AU [edISAY] V Amug [eorsAyd
Smata
[BINOANIYDIE S, u21SAS AY) JO JoqUINU B SSOIOE UOTIRId
-prsuod axmbar 1ey) sonradoid Ajrenb pajerar £[osofo

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

Appendix A

338

[eurouy
SWOISAS QAISUJUI-oTEMIJOS JO UOndIIOSap [eInjoIyoIe
Joj 2onoeid papuswiwodar gL (0002—1Lp1) HHAI
[eurojuy
Jeuojuy
67T L=ToquNusduy
‘[Te19pon3o[e)es/o) an3ofejed/on3ofeied 0s1/0s1/310

‘osTmmm//:d1Y :Je SUI[UO ‘SWLIS) [ejudwepUN, 1] Med
— Are[nqedso A — A3ojouyoa) uoneuwojuy [-z8€z DFI/OSI

[euraluf

[euIaluf

6 AVOOL (6007) dnoxn uadp

D RN ELgelif]
Ul J0 991A9pP-UO Joyid pako[dop oq ued Koy) ‘s20.0nosay
QI $28D.401S SY 2041052y A} AQ PII0IS UOHJRULIOJUT
Ay ssa001d 03 $2014.495 Opnyoul OS[e Aewt KU [, ‘SonnuUy
JNOQE UONBULIOJUI SOPIACI pue $20.0n10s2Y WOIJ

SUTWod UOT)BULIOJUT SAI0]S JeY) 2201052y Jo adA) [eroadg
. WQAISAS © ‘0] QATIR[QI SUIOOUOD JO “UT SISQIUI 1M

(Joaray) sassB[O 10) UOIIRZIUBSIO IO ‘Wed) ‘[ENPIAIPUI UV,
‘Kem Juapuadopur-uuopeld e ur pasn

9q ueod Jeyy Anus reuoneindwod juspuadopur-wIojie[d
"sannusg 10214y J dI0W 10 U0

JO sonsLIdloeIRYD [eIISAYd saInsedw Jey) 201427 [e1oads
«'SeL gy ue
Jo &mpuapt oY) pear A[onbrun 0y soweyos Surpoous pue
uone[npow jo £KjaLeA ® Y3no1y) Se) e woij 1o 0} 9Jed
-Tunwwod 03 wnnoads ayp jo uoniod Kousnbaiy orpex

9y ur 3urpdnos 9AT}ONPUI IO OTJAUTLWOIIOI JO asn AL,
*K[0A110dS2I $.10JpNIIY PUR SLOSUIS
JO 9Sed A} Ul SUOIEN]OR PUE SJUSWAINSBIUL O SSIJB
op1aoxd ey 10 ‘saunus [pI1sLy g I0W 10 dUO INOqe
uoTjeULIOJUI IO BIep $s9001d 10 210)s Jey) sjusuodwod

a1eM]JOs ‘Og10ads-wIdIsAs A[[eIoud3 ‘SnoauasoIdloy
"a3pajmouy Lotid B Uo paseq SI UOTIN[OSY "$2142(]
PRJRIDOSSE Y} JO $22.41053Y] AY) IUISSI0OE AqQ FuIy)
QU YIIM UOTIORIDUI JOAIP J[QBUD SIOIAIIS UOTJORIAUI
9[ym ‘uonsanb ur Jury) ay) Jnoqe uoneuwIojur Sulppe
pue Surdueyo ‘Surkionb mo[e s2014.49§ UoIIRULIOJU]
'§2014.19§' UOT)ORIUI PUER UOTJRWLIOJUI JO SISSUPPY

JO 19S ® YIIM PRJBIOOSSE SI (J] USAIS B YOIym AQq 2014008
.oSeyord yI10Mm IO 2.4mpoa11yd.4p Jenonted v Aq 10w

9q ISNW Jey) padu Ssaulsng Jo JUAWEIS dAneIIuenb v,

93eI101S
(1op[oyayeIs wdlsAs
SE 0] PALIoJal OS[B) Jop[oyayelS

QOIAIRG

10SUQS

[QIER

201n0SY

uonnjosay

juowIInbay

90IN0S

uonuyaq

wo,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229

339

Appendix A

(ponunuod)

€10C AINf 7T Passdddy 'ssof
QI AN /I 1M /310 BTpadiIm uo//:dyy “erpadojokous ooy
oy ‘erpadiyIp 1ouIU] (€107) SI0IMqLIU0) LIpadiyIp

Teurajuy

6 AVOOL (6007) dnoxn uadp

6 AVDOLL (6007) dnoxn uadp

[euIaluf

Teurajuy

[euIaluf
SWIA)SAS QAISUIUI-AIBM]JOS JO UONIALIOSIP [BINJOAIYOIR
Joj oonoeid papuawiodar FHHT (000Z-1Ly1) HAHI

.’ SUOTJEITUNWIWOII[)
JO YoueIq ® 9q 0} PAIIPISUOD A[[eIoUAT SI
UOTIBITUNIUWOD SSA[AIIA * SSI[AIIM,, 0] PIUSLIOYS UIJO
ST ULI9) AU} ‘IB3[D ST IXAUOD AY) USYA) *(SUOTIEITUNIWOD
OIpEI J0J SATAWIO[IY JO SUOI[[IW 10 SpuBsnoyl) uof
10 (JONUOD IJOWRI UOISIAJ[I) Ul SB SIW MIJ B) 1I0YS
9q AWl PIAJOAUL SIIURISIP Y, ° SAIIM,, 10 SI0ONPUOD
[€OL1}O9[0 PAOUBYUD JO 9SN Y} INOYIIM JURISIP B IIAO
UOTJBULIOJUT JO I9JSUBI] JU} ST UOBIIUNUILIOD SSI[AIIA,,
‘s1o0fa1.0y 01181
QAISSBJ 10 9ANIY IOYIIQ 9q UBD Sanuy [eniIA “A1yusg
o158y 4 e Junuosaidar Juowd[e eyep 1o [euoneindwo))
*..99s NOA JeyMm SUTULIAOP Jey) aAnjoadsiad 10
jurod ao3ejuea Y] - woiy Surjoo[a1e nok dIayYMm ST jurod
-M214 © 23S NOA Jeym ST Ma1a y "(je[dwo) 10 BUIdYOS
drenrdordde ue jo sueow £q U93j0) Mara © Juisn pue
3unonnNsuod I0j SUOIIUAAUOD A} JO uonedyIdads © s1 1]
‘uaYe) ST Ma14 © YoTyMm woif aandaedsiod oyl Jo uonuysp v,,
" Injeu ul [eorydel3 1o [ensiA 9q 0] dARY JOU S0P Ml
Y "2IN]OdIYDIR Y] UL JSAUJUL JO SBAIER I19Y] SIOP[OYNRIS
0] 9JensUOUWIAp 0] [opour & Aq pajussairdar aq Aew
M214 INJOAIYDIE UY “JUI0dMI1A B WUOIJ UIIS ST Jeym
SI M214 Y/ "SUIIOUOD JO J3S PIje[l & Jo uonejuasaidar oy,
1099[qo TeorsAyd remnonred e yyim Sunoerojur ur
PISAIUI ST JeY) JODJ21.4Y (P11 24110} QWOS 10 UDUWNY
‘Cnuyg pajuawsny ue se 1doouod sures Y} sAJoUP
J1 ‘SpIOM IQUIO U] “UOnDIUISaLda.L [p)ISIp ST YIm
UuoTRUIqUIOD UT 122[qo [po1s€yd Aue ‘Suryeads A[ferousn)
“PAYOEIE ST I YIIYM O3 K11uu5]
[p2158y g 9y} AJTIuapt 03 pasn 309[qo [earsAyd 1930 10 [oqe]
.. ’suonouny Jo 19s 10 uonouny oyroads
e ysijdwoooe 03 paziuesio sjusuodwod Jo UONIL[0 VY,

sa13o10uyoa)
UOTIBOTUNTUIOD SSI[IA

Anuy renp

Jutodmarp

MITA

Ios)

Suryy,
Sel,

WAISAS

http://en.wikipedia.org/wiki/Wireless
http://en.wikipedia.org/wiki/Wireless

340

Appendix A

uo=3ue[

*A1esSO[3 JTUYISSAN-10Z19S (0107) JTUYIASSIAN-19Z19S

(dyd-Aresso[3-j1/uaSe[puni3/ie ()])7 TUYOISSIN

.’ SUOTIBOTUNITIOD]}
-10Z)0S" MmM//:d1NY :1e QuI[uO J[qe[TeAY

10J (se1qy [eondo 10/pue) $10JONPUOD AIIM OI[eIoUW
SOSN JeY) [BUTULIA) JO JIOMIQU B [)IM PIJBIOOSSE ULId) V/,,

< JUSUIUOITAUD

Surpunoxmns a3 pue s1ojndwod 10 spdoad

U99M)q UOTIORIIUI SUT[QRUD SYUI| SSO[AIIM YSNoIy)
Ipd € 116LET1/29/6€/PI20eIep/310° P00 mmm//:d1y UOIBULIOJUT 2} JEITUNWIWIOD A2], “JUSUIUOIIAUD I1d)

‘Je QUIUO [qR[IBAY YIMOI3 UdaI3 1oJ suoneordde [onuod ‘A[renuajod ‘pue sUIS JeY) SOPOU JO SHIOMIU
pue sa1S0[ouydd) SYI0MISU JOSUSS eWS (6002) ADHO I8 (SNVPSA) SSHOMION] L0JpNIIY PUR LOSUIS SSI[AITM,,

sa13o[ouyd9)
UOTIEOTUNWITIOD QUITII A

NI0MIDN
SI0JENJOY PUE SIOSUQS SSO[AIIA

90IN0S uonmuyaq

wo,

http://www.oecd.org/dataoecd/39/62/44379113.pdf
http://www.Setzer-Messtechnik,2010.at/grundlagen/rf-glossary.php?lang=en
http://www.Setzer-Messtechnik,2010.at/grundlagen/rf-glossary.php?lang=en
http://www.Setzer-Messtechnik,2010.at/grundlagen/rf-glossary.php?lang=en

Appendices B-E

Appendix B

Requirements (available at http://www.iot-a.eu/public/requirements)

Appendix C

Use cases, sequence charts and interfaces (available at http://www.iot-a.eu/public/
public-documents/d1.5/view)

Appendix D

Process and Methodology (available at http://www.iot-a.eu/public/public-
documents/d1.5/view)

Appendix E

Requirements for the Concrete Architecture (available at http://www.iot-a.eu/
public/public-documents/d1.5/view)

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0, 341
© The Author(s) 2013

http://www.iot-a.eu/public/requirements
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view

References

Activiti BPM Platform (2012) Activiti

IEEE Architecture Working Group (2000) IEEE Std 1471-2000, Recommended practice for
architectural description of software-intensive systems

Ashton K (2009) That ‘Internet of Things’ thing. RFID J, http://www.rfidjournal.com/articles/
view?4986

Association for Automatic identification and mobility, online at: http://www.aimglobal.org/

Barnaghi P, Meissner S, Presser M, Moessner K (2009) Sense and sens’ability: semantic data
modelling for sensor networks. In: ICT Mobile Summit 2009, 10 June 2009—-12 June 2009,
Santander, Spain

Bauer M, De S, Longo S (2013) “WP4 white paper on resolution infrastructure interface binding”.
www.iot-a.eu/public/public-document/WhitePaperWP4/view

Bell-La Padula (1976) Secure computer system: unified exposition and multics interpretation.
MITRE report ESD-TR-75-306. http://csrc.nist.gov/publications/history/bell76.pdf

Ben Saied Y, Olivereau A (2012) HIP Tiny Exchange (TEX): a distributed key exchange scheme
for HIP-based internet of things. 3rd International Conference on Communications and
Networking (ComNet), Hammamet/Tunisia

Ben Saied Y, Olivereau A (2012) D-HIP: a distributed key exchange scheme for HIP-based
internet of things. First IEEE WoWMoM workshop on the internet of things: smart objects
and services, IoT-SoS, San Francisco, CA, USA

Boehm BW (1988) A spiral model of software development and enhancement. Computer
21(5):61-72

Brucker AD et al (2012) SecureBPMN: modeling and enforcing access control requirements in
business processes. ACM, New York, pp 123-126

Bui N (ed) (2011) Project deliverable D1.1 — SOTA report on existing integration frameworks/
architectures for WSN, RFID and other emerging IoT related Technologies. http://www.iot-a.
eu/public/public-documents/project-deliverables/1/1/110304_D1_1_Final.pdf/at_download/
file. Accessed 09 June 2011

Business Process Model And Notation (BPMN) (2011) OMG specification. Object Management
Group

BUTLER (2011) Ubiquitous, secure internet-of-things with location and contex-awareness.
Project homepage, http://www.iot-butler.eu/. Accessed 11 July 2013

Carrez F (ed), Bauer M, Boussard M, Bui N, Jardak C, De Loof J, Magerkurth C, Meissner S,
Nettstrater A, Olivereau A, Serbanati A, Stefa J, Thoma M, Walewski JW (2013) Final
architectural reference model for the IoT v3.0. Internet of things — Architecture — Project
Deliverable D1.5

Computer Dictionary Definition, online at: http://www.yourdictionary.com/computer/m2-m

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0, 343
© The Author(s) 2013

http://dx.doi.org/http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-a.eu/public/public-document/WhitePaperWP4/view
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0

344 References

PISA Consortium (2003) Handbook of privacy and privacy-enhancing technologies: the case of
intelligent software agents. http://www.cbpweb.nl/downloads_technologies/pisa_handboek.pdf

Consorzio FR (2011) Internet of things architecture — Project Deliverable D1.1

Consultative Committee (2006) The consultative committee for space data systems. Information
Architecture reference model. CCSDS_312.0-G-0. http://cwe.ccsds.org/sea/docs/SEA-IA/Draft
9%20Documents/IA%?20Reference%20Model/ccsds_rasim_20060308.pdf. Accessed 30 Apr 2013

NGSI Context Management Specification (2010) Open mobile alliance. http://www.
openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-
NGSI_Context_Management-V1_0-20100803-C.pdf. Accessed 11 June 2012

DARPA (1970) DoD networking model. http://www.freesoft.org/CIE/Course/Section1/5.htm

De S (2012) Concepts and solutions for entity-based discovery of IoT resources and managing
their dynamic associations. EC FP7 IoT-A Deliverable 4.3

de las Heras R (ed) (2011) Project deliverable D4.1 — Concepts and solutions for identification and
lookup of IoT resources, December 2011. Available at: http://www.iot-a.eu/public/public-
documents/documents-1/

De S, Barnaghi P, Bauer M, Meissner S (2011) Service modelling for the Internet of Things.
Computer Science and Information Systems (FedCSIS), Federated Conference on IEEE

De S, Elsaleh T, Barnaghi P, Meissner S (2012) An internet of things platform for real-world and
digital objects. Scalable Comput: Pract Ex 13(1):45-57, West University of Timisoara

Dey AK (2001) Understanding and using context. Pers Ubiquit Comput 5(1):4-7

Digital Payment Techno (2013) Digital payment pechnologies, “Pay-by-Licence Plate”. http://www.
digitalpaytech.com/products/operational-modes/pay-by-plate.aspx. Accessed 12 Apr 2013

Ebios (2010) Agence Nationale de la Sécurité des Systémes d’Information (ANSSI). Ebios 2010 —
expression of needs and identification of security objectives. Technical report. 2010

EC FP7 1oT-A Project Deliverable D1.5. Available online at: http://www.iot-a.eu/public/public-
documents/d1.5/view

EC FP7 1oT-A project deliverable D2.6 — events representation and processing, http://www.iot-a.
eu/public/public-documents/documents- 1

E-FRAME project, available online at: http://www.frame-online.net/top-menu/the-architecture-2/
fags/stakeholder-aspiration.html

EPC Information Services (EPCIS) Version 1.0.13 Specification

EPC Tag Data Standard (TDS), current version v.16 (2011 September 9), online at : http://www.
gsl.org/gsmp/kc/epcglobal/tds

Erder M, Pureur P (2003) QFD in the architecture process. IT Professional 5(6):44-52

Eschenauer L, Gligor VD (2002) A key-management scheme for distributed sensor networks.
Proceedings of the 9th ACM conference on Computer and communications security.
Washington, DC, pp 41-47

ETSI Corporate telecommunication Networks (CN); Mobility for enterprise communication,
online at: http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_
102477v010101p.pdf

ETSI Technical report ETR 173, Terminal Equipment (TE); Functional model for multimedia
applications. Available online: http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_
173e01p.pdf

Fiedler M (ed), Bui N, De Loof J, Haller S, Hinkelmann M, Ho E, Magerkurth C, Mittig B, Martin
Romero G, Savry O, Serbanati A, Zeybek E (2012) Internet of things — architecture — project
deliverable D7.2 — exact definition use case 1 and use case 2

Flextronics (2005) Software systems FCAPS White Paper http://marco.uminho.pt/~dias/
MIECOM/GR/Projs/P2/fcaps-wp.pdf

Fowler M (2003) UML distilled: a brief guide to the standard object modeling language, 3rd edn.
Addison-Wesley Professional, Boston

Furness A (2009) Ontology for identification. CASAGRAS Final Report, Annex C. http://www.
grifs-project.eu/data/File/Casagras_Final%20Report.pdf. Accessed 18 Apr 2012

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/http://www.iot-a.eu/public/public-documents/documents-1/
http://dx.doi.org/http://www.iot-a.eu/public/public-documents/documents-1/
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/documents-1
http://www.iot-a.eu/public/public-documents/documents-1
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0

References 345

Gambetta D (2000) Can we trust trust? Trust: making and breaking cooperative relations,
electronic edition. Department of Sociology, University of Oxford, pp 213-237

Gamma E et al (1994) Design patterns: elements of reusable object-oriented software. 1. s.l. :
Addison-Wesley Professional

Ganeriwal S, Srivastava MB (2004) Reputation-based framework for high integrity sensor
networks. 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, Washington,
DC, pp 66-77

Genetec (2013) Parking enforcement and management.http://www.genetec.com/Solutions/Pages/
parking-enforcement-and-inventory.aspx. Accessed 12 Apr 2013

Georgetown University (2013) Disaster recovery http://continuity.georgetown.edu/dr/. Accessed
12 Apr 2013

Greenfield N (2009) FCAPS management for smart grid — high-level summary. AEP IT Security
Engineering. http://osgug.ucaiug.org/UtiliComm/Shared%20Documents/AMI-NET/FCAPS %
20Management%20for%20the %20Smart%20Grid.pdf

Gruschka N, Gessner D (2012) EC FP7 IoT-A Project Deliverable D4.2. Available online at:
http://www.iot-a.eu/public/public-documents/d4.2/view

Haller S (2010) The things in the internet of things. Tokyo: s.n

Heer T, Garcia-Morchon O, Hummen R, Keoh SL, Kumar SS, Wehrle K (2011) Security
challenges in the IP-based internet of things. Wireless Pers Commun 61(3):527-542. ISSN
0929-6212 (doi: 10.1007/s11277-011-0385-5)

Houyou AM et al (2012) D2.3 — Plug & work support mechanisms. loT@Work

Hull E, Jackson K, Dick J (2011) Requirements engineering, 3rd edn. Springer Publishing
Company, New York

Hyttinen P (ed), Azzabi R, Bauer M, Christophe B, Saied YB, Boudguiga A, De S, Gessner D,
Hyttinen P, Kiljander J, Longo S, Olivereau A, Serbanati A, Stefa J (2013) Internet of things —
Architecture — Project deliverable D4.4 — Final Design and Implementation Report

IBM (2012) Circular versus Archive transactional logging. http://www-01.ibm.com/support/
docview.wss?uid=swg21087828. Accessed 12 Apr 2013

IEEE (1471-2000) IEEE recommended practice for architectural description of software-intensive
systems

IETF (1998) IETF RFC 2401 security architecture for the internet protocol. http://www.ietf.org/
rfc/rfc2401.txt 1998

IETF (2008) IETF RFC 5246 The Transport Layer Security (TLS) protocol http://tools.ietf.org/
html/rfc5246

IETF (2011) IETF RFC 6101 The Secure Sockets Layer (SSL) protocol version 3.0. http://tools.
ietf.org/html/rfc6101

Information architecture reference model. Online at: http://cwe.ccsds.org/sea/docs/SEA-IA/Draft
9%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf

Information Model, Deliverable D3.1, Autonomic Internet (Autol) Project. Online at: http://ist-
autoi.eu/autoi/d/Autol_Deliverable_D3.1_-_Information_Model.pdf

Information technology — vocabulary — part 1: fundamental terms. Online at: http://www.iso.org/
iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229

International Organization for Standardization (2009) Selection and use of the ISO 9000 family of
standards http://www.iso.org/iso/home/store/publications_and_e-products/publication_item.
htm?pid=PUB100208. Accessed 23 May 2013

IoT-I Deliverable D1.5 Final white paper defining a reference model for IoT, Stephan Haller (ed).
http://www.iot-i.eu/public/public-deliverables/

IoT-A FP7 Project (2012) Terminology — IOT-A: internet of things architecture. http://www.iot-a.
eu/public/terminology. Accessed 12 Apr 2013

IoT-A FP7 Project (2013) Requirements — IoT-A: internet of things architecture. http://www.iot-a.
eu/public/requirements. Accessed 21 June 2013

Island Group (2012) PRESTO 1000 pay & display monitoring software http://www.islandgroup.
co.uk/ParkingSolutionsPaD.aspx. Accessed 12 Apr 2013

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-a.eu/public/public-documents/d4.2/view
http://dx.doi.org/10.1007/s11277-011-0385-5
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-i.eu/public/public-deliverables/
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0

346 References

ISO (1994) Information technology — open system interconnection — basic reference model: the
basic model. http://www.ecma-international.org/activities/Communications/TG11/s020269e.
pdf. Accessed 21 June 2013

ITU-T (1997) M.3400 TMN management functions

Karlof C, Wagner D (2003) Secure routing in wireless sensor networks: attacks and
countermeasures. Ad Hoc Netw 1(2-3):293-315

Koshizuka N, Sakamura K (2010) Ubiquitous ID: standards for ubiquitous computing and the
internet of things. IEEE Pervasive Comput 9(4):98-101

Kozel T (2010) BPMN mobilisation. Proceedings of the European conference of systems: World
Scientific and Engineering Academy and Society (WSEAS), Puerto De La Cruz, Tenerife

Kranzfelder M, Zywitza D, Jell T, Schneider A, Gillen S, Friess H, Feussner H (2012) Real-time
monitoring for detection of retained surgical sponges and team motion in the surgical operation
room using RFID technology: a preclincial evaluation. J Surg Res 175(5):191-198

Kruchten PB (1995) The 4+1 view model of architecture. IEEE Software 12(6):42-50

Lefort L (2005) Ontology for quantity kinds and units: units and quantities definitions. W3
Semantic Sensor Network Incubator Activity

Levis P, Gay D (2009) Tiny OS programming. 1. s.l. Cambridge University Press, Cambridge, UK

Lu B, Pooch UW (2005) A lightweight authentication protocol for mobile Ad Hoc Networks. Int J
Inf Technol 11(2):119-135

MacKenzie CM, Laskey K, McCabe F, Brown P, Metz R (2006) Reference model for service
oriented architecture 1.0. Available online at: https://www.oasis-open.org/committees/down
load.php/19679/

Machine-to-Machine Communications (M2M) Threat analysis and counter-measures to M2M
service layer. Available at http://www.etsi.org

Magerkurth C (ed), Bauer M, Boussard M, Bui N, Carrez F, Giacomin P, Ho E, Jardak C, De
Loof J, Magerkurth C, Meissner S, Nettstriater A, Olivereau A, Serbanati A, Thoma M,
Walewski J W (2012) Internet of things — architecture — project deliverable D1.4 — Converged
architectural reference model for the IoT v2.0

Magerkurth C (ed), Salinas Segura A, Vicari N, Boussard M, Meyer S (2013) Internet of things —
architecture — project deliverable D6.3 — final requirements list

Magerkurth C, Sperner K, Meyer S, Strohbach M (2011) Towards context-aware retail
environments: an infrastructure perspective. Mobile Interaction in Retail Environments
(MIRE 2011), Stockholm, Sweden

Martin G (ed) (2012) Resource description specification. IoT-A deliverable D2.1

Mathur CN, Subbalakshmi KP (2007) Security issues in cognitive radio networks. In: Cognitive
networks: towards self-aware networks. Wiley, Chichester, pp 284-293

Menezes AJ, Vanstone SA, Van Oorschot PC (1996) Handbook of applied cryptography. CRC
Press, Boca Raton

Meyer S (2012) Concepts for modeling loT-Aware processes. EC FP7 IoT-A Deliverable 2.2.

Meyer S, Sperner K, Magerkurth C, Pasquier J (2011) Towards modeling real-world aware
business processes. Proceedings of the Second International Workshop on Web of Things,
p 8. ACM

Meyer S, Ruppen A, Magerkurth C (2013) Internet of things-aware process modeling: integrating
IoT devices as business process resources. In: Proceedings of 25th International Conference on
Advanced Information Systems Engineering (CAISE ’13), Valencia

Microsoft Corporation (2003) Threat modeling. http://msdn.microsoft.com/en-us/library/
ff648644.aspx. Accessed 13 May 2013

Microsoft Corporation (2013) Transactional replication. http://msdn.microsoft.com/en-us/library/
ms151176.aspx. Accessed 12 Apr 2013

MUNICH Platform Workshop (MUWS) (2013) Klinikum rechts der Isar

Miller J, Mukerji J (eds) (2003) MDA guide version 1.0.1. Framingham, Massachusetts

Muller G (2008) A Reference Architecture Primer. Available at: http://www.gaudisite.nl/info/
ReferenceArchitecturePrimer.info.html

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
https://www.oasis-open.org/committees/download.php/19679/
https://www.oasis-open.org/committees/download.php/19679/
http://www.etsi.org/
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.gaudisite.nl/info/ReferenceArchitecturePrimer.info.html
http://www.gaudisite.nl/info/ReferenceArchitecturePrimer.info.html

References 347

Multi-National Initiative for Cloud Computing in Health Care (MUNICH) (2010) http://
munichplatform.eu/. Accessed 08 July 2013

OASIS-RM. Reference model for service oriented architecture 1.0 http://docs.oasis-open.org/soa-
rm/v1.0/soa-rm.pdf

OCTAVE® Information Security Risk Evaluation

OECD (2009) Smart sensor networks: technologies and applications for green growth. December,
online at: http://www.oecd.org/dataoecd/39/62/44379113.pdf

Open GeoSpatial Consortium (2002) The open GIS abstract specification topic 12: the openGIS
service architecture. http://portal.opengeospatial.org/files/?artifact_id=1221. Accessed 14 June
2011

Open GeoSpatial portal, the OpenGIS abstract specification topic 12: the OpenGIS Service
architecture. Online at: http://portal.opengeospatial.org/files/?artifact_id=1221

Open Group (2009) TOGAF 9

OSGi Alliance (2012) OSGi alliance specifications. http://www.osgi.org/Specifications/
HomePage. Accessed 29 May 2013

Pastor A, Alcatel-Lucent Bell Labs France (eds) (2011) Internet of things — architecture — project
deliverable D6.2 — updated requirements list

Peris-Lopez P, Hernandez-Castro JC, Estevez-Tapiador JM, Ribagorda A (2007) Solving the
simultaneous scanning problem anonymously: clumping proofs for RFID Tags. security,
privacy and trust in pervasive and ubiquitous computing, SECPerU 2007. Third International
Workshop, pp 55-60

Perrig A, Szewczyk R, Tygar JD, Wen V, Culler DE (2002) SPINS: security protocols for sensor
networks. http://www.cs.berkeley.edu/~tygar/papers/SPINS/SPINS_wine-journal.pdf

Perrig A, Stankovic J, Wagner D (2004) Security in wireless sensor networks. Communications of
the ACM — Wireless Sensor Networks, 47(6), http://dl.acm.org/citation.cfm?id=990707

Phares B (2007) Demonstration of the electrochemical fatigue sensor system at the Transportation
Technology Center Facility. Calgary, Alberta, Canada: s.n.

PIA (2013) The privacy impact assessment handbook. http://www.ico.gov.uk/for_organisations/
data_protection/topic_guides/privacy_impact_assessment.aspx. Accessed 29 May 2013

Pohl K (2010) Requirements engineering: fundamentals, principles, and techniques, 1st edn.
Springer Publishing Company, New York

Polastre J, Szewczyk R, Culler D (2005) Telos. Enabling ultra-low power wireless research. IEEE
Press, Piscataway

Pras A (1995) Network management architectures. PhD Thesis, University of Twente

Raymond K (1995) Reference Model of Open Distributed Processing (RM-ODP): introduction.
http://dl.dropbox.com/u/40619198/rmodpwiki/files/Tutorials/ODP_Tutorial-icodp95.pdf.
Accessed 08 May 2013

Reliable Software Inc (2012) Designing for failure. http://www.reliablesoftware.com/DasBlog/
PermaLink,guid,33102321-b3e5-48d4-8de6-62175b9ad09¢.aspx. Accessed 12 Apr 2013

Rescorla E (1999) Diffie-Hellman key agreement method. Network Working Group. http://tools.
ietf.org/html/rfc2631

Romer K, Mattern F, Diibendorfer T, Senn J (2002) Infrastructure for virtual counterparts of real
world objects. Technical Report, ETH Ziirich

Rossi M (ed) (2012) IoT-A D3.3 deliverable: protocol suite http://www.iot-a.eu/public/public-
documents

Rossi M (ed) (2013) IoT-A D3.6 deliverable: IoT protocol suite definition

Rowley J (2007) The wisdom hierarchy: representations of the DIKW hierarchy. J Inf Sci 33
(2):163-180

Royce WW (1970) Managing the development of large software systems. Proceedings IEEE
WESTCON, Los Angeles (August 1970) Reprinted in 1t Proceedings of the ninth international
conference on software engineering, March 1987, pp 328-338

Rozanski N (2013) The context viewpoint http://www.viewpoints-and-perspectives.info/home/
viewpoints/context/. Accessed 08 July 2013

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.reliablesoftware.com/DasBlog/PermaLink,guid,33102321-b3e5-48d4-8de6-62175b9ad09e.aspx
http://www.reliablesoftware.com/DasBlog/PermaLink,guid,33102321-b3e5-48d4-8de6-62175b9ad09e.aspx
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0

348 References

Rozanski N, Wodds E (2005-2013) Applying viewpoints and views to software architecture.
http://www.viewpoints-and-perspectives.info/vpandp/wp-content/themes/secondedition/doc/
VPandV_WhitePaper.pdf. Accessed 08 May 2013

Rozanski N, Woods E (2011) Software systems architecture — working with stakeholders using
viewpoints and perspectives. Addison Wesley, Boston

SAP Research, S. AGA.P. Internet of Services: about USDL

Scheer A, Cameron I (1992) Architecture of integrated information systems: foundations of
enterprise modelling. Springer, Berlin/Heidelberg

Sclater N (2007) Mechanisms and mechanical devices sourcebook, 4th edn. McGraw-Hill,
New York, 25

Serbanati A, Medaglia CM, Ceipidor UB (2011) Building blocks of the internet of things: state of the
art and beyond. In: Dr. Turcu C (ed) Deploying RFID — challenges, solutions, and open issues
ISBN: 978-953-307-380-4, InTech, online at: http://www.intechopen.com/books/deploying-rfid-
challenges-solutions-and-open-issues/building-blocks-of-the-internet-of-things-state-of-the-art-
and-beyond

Setzer-Messtechnik (2010) Setzer-Messtechnik glossary. July, online at: http://www.Setzer-
Messtechnik,2010.at/grundlagen/rf-glossary.php?lang=en

Shames P, Yamada T (2004) Reference architecture for space data systems. s.l. : DSpace at Jet
Propulsion Laboratory. http://trs-new.jpl.nasa.gov/dspace-oai/request

Signavio GmbH (2012) Signavio core components

Silver B (2009) BPMN method and style. Cody-Cassidy Press, Dallas

SPARQL (2008) W3C. SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-
query/. Accessed 07 Nov 2012

Sperner K, Meyer S, Magerkurth C (2011) Introducing entity-based concepts to business pro-cess
modeling. Business Process Model and Notation, pp 166—171

Tamblyn S, Hinkel H, Saley D (2007) NASA CEV reference GN&C architecture

The Consultative Comm (2006) The Consultative Committee for space data systems. Information
Architecture Reference Model. CCSDS_312.0-G-0. http://cwe.ccsds.org/sea/docs/SEAIA/
Draft%20Documents/IA%?20Reference%20Model/ccsds_rasim_20060308.pdf. Accessed
15 June 2011

The Open Group (2008) TOGAF version 9 — a manual, 9th edn, First Impression. s.l. Van Haren
Publishing, Zaltbommel

UID Center Specifications, online at: http://www.uidcenter.org/spec#UID-00010

Usldnder T (ed) (2007) Reference model for the orchestra architecture (RM-OA) V2. Open
Geospatial Consortium Inc., OGC 07-024

Verbauwhede I, Schaumont P (2007) Design methods for security and trust. http://cecs.uci.edu/
~papers/date07/PAPERS/2007/DATE(07/PDFFILES/05.1.1_2.PDF. Accessed 11 May 2013

Vicente-Chicote C, Moros B, Alvarez JAT (2007) REMM-Studio: an integrated model-driven
environment for requirements specification, validation and formatting. J Object Technol
6(9):437-454

Voelksen G (ed) (2013) EC FP7 IoT-A project deliverable D2.6 — events representation and
processing, http://www.iot-a.eu/public/public-documents/documents- 1

Volere (2013) Atlantic Systems Guild Ltd. Volere Requirements Resources. 1995-2003 http://
www.volere.co.uk/. Accessed 04 June 2013

Wang Yang, Kobsa Alfred (2008) Privacy-enhancing technologies. CMU School of Computer
Science

Wang Q, Jantti R, Ali Y (2012) On network management for the internet of things. 8th Swedish
National Computer Networking Workshop (SNCNW). http://users.tkk.fi/wangql/SNCNW _
OnNetworkManagement.pdf

Weber RH, Weber R (2010) Internet of things: legal perspectives. ZIK no 49. Springer, Berlin

Weiser M (1991) The computer of the 21st century. http://www.ubiq.com/hypertext/weiser/
SciAmDraft3.html. Accessed 11 July 2013

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.intechopen.com/books/deploying-rfid-challenges-solutions-and-open-issues/building-blocks-of-the-internet-of-things-...
http://www.intechopen.com/books/deploying-rfid-challenges-solutions-and-open-issues/building-blocks-of-the-internet-of-things-...
http://www.intechopen.com/books/deploying-rfid-challenges-solutions-and-open-issues/building-blocks-of-the-internet-of-things-...
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://cecs.uci.edu/~papers/date07/PAPERS/2007/DATE07/PDFFILES/05.1.1_2.PDF
http://cecs.uci.edu/~papers/date07/PAPERS/2007/DATE07/PDFFILES/05.1.1_2.PDF
http://www.iot-a.eu/public/public-documents/documents-1
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0

References 349

Whittington P (2010) A car parked in the Gatwick North Terminal Flightpath long stay car park
http://www.geograph.org.uk/photo/2350033. Accessed 13 Apr 2013

Energy Harvesting page on Wikipedia (2010) Online at: http://en.wikipedia.org/wiki/Energy_
harvesting

Internet page on Wikipedia (2010) Online at: http://en.wikipedia.org/wiki/Internet

Microcontroller page at Wikipedia (2010) Online at: http://en.wikipedia.org/wiki/Microcontroller

Wireless page on Wikipedia (2010) Online at: http://en.wikipedia.org/wiki/Wireless

Wikipedia Contributors (2012a) FCAPS. Wikipedia, the free encyclopedia https://en.wikipedia.
org/wiki/Fcaps. Accessed 01 Oct 2012

Wikipedia Contributors (2012b) State machine replication. Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/State_machine_replication. Accessed 12 Apr 2013

Wikipedia Contributors (2012c) Virtual synchrony. Wikipedia, the free encyclopedia http://en.
wikipedia.org/wiki/Virtual_synchrony. Accessed 12 Apr 2012

Wikipedia Contributors (2012d) Eventual consistency. Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Eventual_consistency. Accessed 12 Apr 2012

Wikipedia Contributors (2013a) 4+1 architectural view model. Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=4%2B1_architectural_view_model&oldid=548663
664. Accessed 11 Apr 2013

Wikipedia Contributors (2013b) View model. Wikipedia, the free encyclopedia http://en.
wikipedia.org/w/index.php?title=View_model&oldid=543215912. Accessed 12 Apr 2013

Wikipedia Contributors (2013c) Zachman framework. Wikipedia, the free encyclopedia http://en.
wikipedia.org/w/index.php?title=Zachman_Frameworké&oldid=541396757. Accessed
10 May 2013

Wikipedia Contributors (2013d) Pay and display. Wikipedia, the free encyclopedia http://en.
wikipedia.org/w/index.php?title=Pay_and_display&oldid=547120864. Accessed 20 May 2013

Wikipedia Contributors (2013e) Virtual synchrony. Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Virtual_synchrony. Accessed 12 Apr 2012

Wikipedia Contributors (2013f) Eventual consistency. Wikipedia, the free encyclopedia, http://en.
wikipedia.org/wiki/Eventual_consistency. Accessed 12 Apr 2012

Wikipedia Contributors (2013g) Pay and display. Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Pay_and_display&oldid=547120864. Accessed 20 May
2013

Woods E, Nick R (2008) The system context architectural viewpoint. Software Architecture, 2009
& European Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/
IFIP Conference on IEEE. 2009

Woods E, Rozanski N (2005) 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), Pittsburgh, pp 25-35

Wu NC, Nystrom MA, Lin TR, Yu HC (2006) Challenges to global RFID adoption. Technovation
26(12):1317-1323

Zachman JA (1987) A framework for information systems architecture. IBM Syst J, 26(3). IBM
Publication G321-5298

Zocher W (2013) RFID in OP. https://www.youtube.com/watch?v=8PK-jpds2qk&
feature=youtu.be. Accessed 25 May 2013

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0

	Foreword
	Acknowledgements
	Contents
	Chapter 1: Introduction to the Internet of Things
	Part I: General Concepts of the Architecture Reference Model (ARM)
	Chapter 2: The Need for a Common Ground for the IoT: The History and Reasoning Behind the IoT-A Project
	Chapter 3: The IoT Architectural Reference Model as Enabler
	3.1 Using the IoT ARM
	3.1.1 Cognitive Aid
	3.1.2 Reference Model as a Common Ground
	3.1.3 Generating Architectures
	3.1.4 Identifying Differences in Derived Architectures
	3.1.5 Achieving Interoperability
	3.1.6 System Roadmaps and Product Life Cycles
	3.1.7 Benchmarking

	3.2 Architecture Development Process Based on the IoT ARM
	3.2.1 Reference Model and Reference Architecture
	3.2.2 Generating Architectures
	3.2.3 Choice of Design and Development Methodology

	Chapter 4: IoT in Practice: Examples: IoT in Logistics and Health
	4.1 Storyline of the IoT-A Use Case ``IoT in Retail and Logistics´´
	4.2 Introducing the ARM with a Recurring Example (Logistics)
	4.3 Use of the ARM in the Scene ``Sensor-Based Quality Control´´ (Retail)
	4.4 Storyline of the IoT-A Use Case ``IoT in Health and Home´´
	4.5 Use of the ARM in the Scene ``Remote Patient Notification´´ (Homecare)
	4.6 Reverse Mapping of the ARM in the Scene ``In-Surgery Tracking of RFID-Tagged Stomach Towels´´ (Hospital)

	Part II: A Guidance to the Architecture Reference Model (ARM)
	Chapter 5: Guidance to the ARM: Overview
	5.1 Chapter Structure
	5.1.1 Chapter 6 ``A Process for Generating Concrete Architectures Process´´
	5.1.2 Chapter 7 ``IoT Reference Model´´
	5.1.3 Chapter 8 ``IoT Reference Architecture´´
	5.1.4 Chapter 9 ``Reference Manual´´
	5.1.5 Chapter 10 ``Concrete Architecture´´
	5.1.6 Chapter 11 ``Interactions´´
	5.1.7 Chapter 12 ``Testimonials´´

	5.2 ARM History and Evolution

	Chapter 6: A Process for Generating Concrete Architectures
	6.1 Process Steps to Generate IoT Architectures
	6.2 Compatibility with Other Architecting Methodologies
	6.3 IoT Architecture Generation and Related Activities
	6.3.1 Physical Entity View
	6.3.2 IoT Context View

	6.4 Requirements Process and ``Other Views´´
	6.4.1 Requirements Process
	6.4.2 View Derivation

	6.5 IoT ARM Contributions to the Generation of Architectures
	6.6 Minimum Set of Functionality Groups
	6.7 Usage of Unified Requirements
	6.7.1 Introduction
	6.7.2 Using Unified Requirements
	6.7.2.1 Requirement Elicitation
	6.7.2.2 System Specification

	6.8 Threat Analysis
	6.8.1 Elements to Protect
	6.8.2 Risk Sources
	6.8.3 Risk Assessment
	6.8.4 Discussion

	6.9 Design Choices
	6.9.1 Introduction
	6.9.2 Design Choices Addressing Evolution and Interoperability
	6.9.3 Design Choices Addressing Performance and Scalability
	6.9.3.1 Replication
	6.9.3.2 Prioritize Processing
	6.9.3.3 Partition and Parallelize
	6.9.3.4 Reduce Computational Complexity
	6.9.3.5 Distribute Processing Over Time
	6.9.3.6 Minimize Used of Shared Resources
	6.9.3.7 Reuse Resources and Results
	6.9.3.8 Scale Up or Scale Out
	6.9.3.9 Degrade Gracefully
	6.9.3.10 Use Asynchronous Processing

	6.9.4 Design Choices Addressing Trust
	6.9.4.1 Harden Root of Trust
	6.9.4.2 Ensure High Quality of Data
	6.9.4.3 Infrastructural Trust and Reputation Agents
	6.9.4.4 Provide High System Integrity
	6.9.4.5 Avoid Leap of Faith

	6.9.5 Design Choices Addressing Security
	6.9.5.1 Subject Authentication
	6.9.5.2 Use Access Policies
	6.9.5.3 Secure Communication Infrastructure
	6.9.5.4 Secure Peripheral Networks (Link Layer Security, Secure Routing)

	6.9.6 Design Choices Addressing Privacy
	6.9.6.1 Pseudonymisation
	6.9.6.2 Avoid Transmitting Identifiers in Clear
	6.9.6.3 Minimize Unauthorized Access to Implicit Information
	6.9.6.4 Enable the User to Control the Privacy Settings
	6.9.6.5 Privacy-Aware Identification

	6.9.7 Design Choices Addressing Availability and Resilience
	6.9.7.1 Use High Availability Clustering
	6.9.7.2 Load Balancing
	Logging Transactions
	Design for Failure
	Allowing Component Replication
	Relaxing Transactional Consistency
	Backup and Disaster Recovery Strategy

	6.9.8 Design Choices Conclusion

	Chapter 7: IoT Reference Model
	7.1 Introduction
	7.2 Interaction of All Sub-Models
	7.3 Domain Model
	7.3.1 Definition and Purpose
	7.3.2 Main Abstractions and Relationships
	7.3.2.1 Interpreting the Model Diagram
	7.3.2.2 The Concepts of the IoT Domain Model

	7.3.3 Detailed Explanations and Related Concepts
	7.3.3.1 Devices and Device Capabilities
	7.3.3.2 Resources
	7.3.3.3 Services
	7.3.3.4 Identification of Physical Entities
	7.3.3.5 Context and Location

	7.4 Information Model
	7.4.1 Definition of the IoT Information Model
	7.4.2 Modelling of Example Scenario
	7.4.3 Relation of Information Model to Domain Model
	7.4.4 Other Information-Related Models in IoT-A

	7.5 Functional Model
	7.5.1 Functional Decomposition
	7.5.2 Functional Model Diagram
	7.5.2.1 IoT Process Management
	7.5.2.2 Service Organisation
	7.5.2.3 Virtual Entity and IoT Service
	Virtual Entity
	IoT Service

	7.5.2.4 Communication
	7.5.2.5 Management
	7.5.2.6 Security

	7.6 Communication Model
	7.6.1 IoT Domain Model Element Communications
	7.6.1.1 User-Service / Service-Service Interactions
	7.6.1.2 Service / Resource / Device Interactions

	7.6.2 Communication Interoperability Aspects
	7.6.3 Composed Modelling Options
	7.6.3.1 Gateway Configuration
	7.6.3.2 Virtual Configuration

	7.6.4 Channel Model for IoT Communication

	7.7 Trust, Security, Privacy
	7.7.1 Trust
	7.7.2 Security
	7.7.2.1 Communication Security
	7.7.2.2 Application Security: System Safety and Reliability

	7.7.3 Privacy
	7.7.4 Contradictory Aspects in IoT-A Security

	7.8 Conclusion

	Chapter 8: IoT Reference Architecture
	8.1 Short Definition of Architectural Views and Perspectives
	8.2 Architectural Views
	8.2.1 Usage of Views and Perspectives in the IoT Reference Architecture
	8.2.2 Functional View
	8.2.2.1 Devising the Functional View
	8.2.2.2 IoT Process Management
	8.2.2.3 Service Organisation
	8.2.2.4 Virtual Entity
	8.2.2.5 IoT Service
	8.2.2.6 Communication
	8.2.2.7 Security
	8.2.2.8 Management
	8.2.2.9 Mapping of Functional View to the Red Thread Example

	8.2.3 Information View
	8.2.3.1 Information Description
	Description of Virtual Entities
	Viewpoint for Modelling entityType Hierarchies
	Service Descriptions
	Associations Between Virtual Entities and Services

	8.2.3.2 Information Handling
	8.2.3.3 Information Handling by Functional Components
	General Information Flow Concepts
	Push
	Subscribe/Notify
	Publish/Subscribe

	Information Flow Through Functional Components
	User Requests Information from IoT Service
	User Gets Information from Virtual Entity-Level Service
	Service Gets Sensor Value from Device
	Sensor Information Storage
	IoT Service Resolution
	VE Resolution

	8.2.3.4 Information Life Cycle

	8.2.4 Deployment and Operation View
	8.2.4.1 Deployment Example

	8.3 Perspectives
	8.3.1 Evolution and Interoperability
	8.3.2 Performance and Scalability
	8.3.3 Trust, Security and Privacy
	8.3.3.1 Trust
	8.3.3.2 Security
	8.3.3.3 Privacy

	8.3.4 Availability and Resilience

	8.4 Conclusion

	Chapter 9: The IoT ARM Reference Manual
	9.1 Usage of the IoT Domain Model
	9.1.1 Identification of Main Concept Instances
	9.1.2 Modelling of Non-IoT-Specific Aspects
	9.1.3 Identifiers and Addresses
	9.1.4 Granularity of Concepts
	9.1.5 Common Patterns
	9.1.5.1 Augmented Entities
	9.1.5.2 Multiple Virtual Entities
	9.1.5.3 Smart Phones and Other Mobile User Devices
	9.1.5.4 IoT Interactions
	9.1.5.5 Simple Mediated Interactions
	9.1.5.6 M2M Interaction

	9.1.6 Examples for IoT Domain Model Concepts
	9.1.6.1 User
	Application
	Human User

	9.1.6.2 Physical Entity
	Environment
	Living Being
	Structural Asset

	9.1.6.3 Resource
	On-Device Resource
	Network Resource

	9.1.6.4 Service
	Interacting Services
	Service Associated with a Virtual Entity
	Service Accessing a Resource

	9.1.6.5 Device
	Devices
	Hierarchical Devices

	9.1.6.6 Deployment Configurations

	9.1.7 Generating a Specific IoT Domain Model

	9.2 Usage of the IoT Information Model
	9.3 Usage of the IoT Communication Model
	9.3.1 Guidelines for Using the IoT Communication Model

	9.4 Usage of Perspectives

	Chapter 10: Interactions
	10.1 Management-Centric Scenarios
	10.1.1 Configuration of the System When Adding a Device
	10.1.2 Changing the Device Configuration

	10.2 Service-Centred Scenarios
	10.2.1 Discovering Relevant Services Using IoT Service Resolution and VE Resolution
	10.2.2 Managing Service Choreography

	Chapter 11: Toward a Concrete Architecture
	11.1 Objective and Scope
	11.2 Physical Entity View and IoT Context View
	11.2.1 Physical Entity View
	11.2.2 IoT Context View
	11.2.2.1 Business Goals Revisited
	Pay-and-Display Machines (PDM)
	Today: Parking Ticket Identification
	Enhancement: Pay-by-License Plate

	Control Center
	Today: PDMs Monitoring Centre
	Enhancement: Connection to Web, and to the Registry Office

	Registry Office
	Today: Registering Residents and ``Sticky´´ Permits

	Parking-White-List Database
	Today: No Parking-White-List Database
	Enhancement: Parking-White-List in Control Centre

	Enforcer/Handheld
	Today: Controlling Parking Tickets and Resident Parking Permits
	Enhancement: Controlling the License Plate Number Only

	11.2.3 IoT Domain Model as an Expansion of the Context View
	11.2.3.1 Modelling Steps
	System Users
	Procedure Application
	Resident-Parker
	Time-Parker
	Enforcer
	Registry Office

	11.3 Requirement Process and ``Other Views´´
	11.3.1 Requirement Process
	11.3.2 Requirements
	11.3.2.1 View Requirements
	11.3.2.2 Design Constraints
	11.3.2.3 Qualitative Requirements
	11.3.2.4 ``Other Views´´
	Information View
	Modelling the VE

	11.3.2.5 Functional View
	Technical Scenarios
	Purchase (and Change) of Parking Permit
	On-Street Parking
	Parking Enforcement

	Modelling the Service Description

	Chapter 12: ARM Testimonials
	12.1 Introduction to Reverse Mapping
	12.2 Reverse Mapping ETSI M2M
	12.2.1 Mapping to the IoT Domain Model
	12.2.2 Mapping to the Management FG
	12.2.3 Mapping to the IoT Communication Model
	12.2.4 Mapping to the Security Model
	12.2.5 Threat Analysis Mapping
	12.2.6 Conclusion

	12.3 Reverse Mapping EPCglobal
	12.3.1 Mapping to the Domain Model
	12.3.2 Mapping to Information Model
	12.3.3 Security Model

	12.4 Reverse Mapping Ucode
	12.4.1 uCode Model
	12.4.2 ucode Resolution Server
	12.4.3 Conclusion

	12.5 Reverse Mapping BUTLER Information Model
	12.5.1 Introduction
	12.5.2 Reverse Mapping of IoT Domain Model

	12.6 Reverse Mapping MUNICH Platform
	12.6.1 Use Case Description
	12.6.2 Use Case Objective
	12.6.3 Current System Architecture
	12.6.4 Enhancement by Using IoT Reference Architectural Model
	12.6.5 Specification of IoT Business Process Model
	12.6.6 Specification of IoT Domain Model
	12.6.7 Specification of Functional View
	12.6.8 Specification of IoT Information Model
	12.6.9 Specification of IoT Services and Interactions
	12.6.10 MUNICH Platform Conclusion

	12.7 Conclusions About Reverse Mapping
	12.8 Business Case Evaluation Example
	12.8.1 Introduction
	12.8.2 Cost and Benefit Models
	12.8.3 Cost-Benefit Analysis
	12.8.4 Sensitivity Analysis
	12.8.4.1 Sensitivity Analysis for the Cost Model
	12.8.4.2 Sensitivity Analysis Regarding Benefit Model Robustness
	12.8.4.3 Sensitivity Analysis for the Assumptions in the General Calculation
	12.8.4.4 Best/Worst Case Scenario

	Chapter 13: Summary and Outlook

	Appendix A

	Terminology

	Appendices B-E

	Appendix B
	Appendix C
	Appendix D
	Appendix E

	References

