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Foreword

Dear Reader,

The book that you are holding now in your hands is the result of a European success

story and we want to share with you our feeling of being proud of it. Since 2007, the

concept “Internet of Things” has clearly been driven by research and policy

initiatives in Europe.

The Internet of Things (IoT) is an emerging network superstructure that connects

physical resources and people together with software. It will enable an ecosystem of

smart applications and services that will improve and simplify the life of the citizen

and will contribute to sustainable growth, provided it combines and guarantees trust

and security for people and businesses. At the same time, the IoT will bring hyper-

connectivity to our society, using augmented and rich interfaces and characterised

by higher semi-autonomous system behaviour than today.

Following a workshop in February 2008, co-organised with the European Tech-

nology Platform on Smart Systems (EPoSS),1 a corresponding research call was

developed where in particular Internet of Things architectural questions were

pivotal. IoT-A has been the project in the past years in giving an answer by

elaborating the Architectural Reference Model (ARM).

Whereas in the first run the IoT referred to the advent of barcodes and Radio

Frequency Identification (RFID), helping to automate inventory, tracking and basic

identification, the second, current wave of IoT is characterised by a strong verve for

connecting sensors, objects, devices, data and applications. The next wave could be

called a “cognitive IoT”, facilitating object and data re-use across application

domains, leveraging on hyper-connectivity, interoperability solutions and semantic

enriched information distribution. We consider it being very important for Europe

to be able to leverage each wave and to turn the research results into relevant

innovation and products.

The Architectural Reference Model provided aims to connect vertically closed

systems, architectures and application areas for creating open systems and integrated

1www.smart-systems-integration.org
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environments and platforms. It constitutes the platform from which Europe can

capitalise on the benefits of developing consumer-oriented platforms that closely

involve the telecom, hardware, software and service industries. Innovative Internet

ecosystems going beyond the smart phone must be created, and new multiple

application sectors including potential new players and service providers need to

collaborate in order to take advantage together of the technological progress.

By just accomplishing the goals of the Architectural Reference Model, a success

would be achieved that would far overshadow everything previously created for the

individual application areas. And it really can no longer be doubted that this would be

achievable in the near future with a determined improvement of available engineer-

ing capabilities and with motivated pan-European, multidisciplinary teams ready to

put thorough and serious scientific and technological effort to tackle the practical

treatment of the IoT challenges, althoughwemust not underestimate the extent of the

difficulties that still have to be overcome. This will be the goal of the Internet of

Things Objective in Horizon 2020 to build upon success stories like the Architecture

Reference Model in order to rise up to today’s and tomorrow’s societal challenges.

European Commission Vice-President Neelie Kroes is committed to embody

and promote a strong leadership presence in IoT technologies and applications in

Europe, given the great opportunities they offer to both EU businesses and citizens

in areas of general interest like the prediction, monitoring and alerting of natural

hazards, the automation of processes in healthcare, utilisation of home metering

solutions to assist in independent living, and support of the disabled persons. The

Commission will continue to support research and innovation in this domain in the

context of “Horizon 2020”, the forthcoming EU research and innovation framework

programme starting in 2014.2

If you start entering complex subjects you need both a framework and an

explanation on how to advance and gain rapidly benefits. This “cookbook” provides

you with all what you need for starting your IoT endeavour or refocus your current

IoT activities. You will find the IoT Architectural Reference Model and compelling

use cases – it is now in your hand to use this book and to expand the knowledge of

the worldwide IoT community.

We enthusiastically invite you to read this book and opt-in to the Internet of

Things! With your engagement, motivation and interactions, the future of the

Internet of Things in Europe will be bright and successful.

Gérald Santucci

Head of Unit “Knowledge Sharing”,

Directorate General CONNECT, European Commission

Peter Friess

Scientific Officer Internet of Things,

Directorate General CONNECT, European Commission

2 http://ec.europa.eu/research/horizon2020
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Chapter 1

Introduction to the Internet of Things

Thorsten Kramp, Rob van Kranenburg, and Sebastian Lange

The expression “Internet of Things” (IoT), coined back in 1999 by Kevin Ashton,

the British technology pioneer who cofounded the Auto-ID Center at the

Massachusetts Institute of Technology, is becoming more and more mainstream.

In opening the IoT Week 20131 with a pre-recorded video message,2 Ashton

insisted on the realization that IoT is here now; it is not the future but the present.
While Gartner identifies IoT as one of the top ten strategic technology trends,3

Cisco forecasts 50 billion devices connected by 2020,4 a potential market in excess

of $14 trillion,5 and also claims that IoT is actually already here.6 Similarly, it is not

only companies with a technological focus, such as Ericsson, Bosch or Siemens that

use IoT to advertise their cutting edge technologies – media companies such as the

BBC are conducting research activities and have plans for IoT deployment. In short,

we are currently on the verge of witnessing the emergence of a “mega-market”,

where markets such as home and building automation, electricity generation and

T. Kramp (*)

IBM Research, Säumerstraße 4, 8803 Rüschlikon, Switzerland

e-mail: thk@zurich.ibm.com; www.zurich.ibm.com

R. van Kranenburg

Internet of People Ltd., Suite 3, 32-38 Scrutton Street, London EC2A 4RQ, UK

e-mail: kranenbu@xs4all.nl; www.theinternetofpeople.eu

S. Lange
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1 http://www.iot-week.eu
2 http://kevinjashton.com/2013/06/17/pre-recorded-opening-talk-for-internet-of-things-week-helsinki-

june-17-2013/
3 http://www.gartner.com/newsroom/id/2209615
4 http://share.cisco.com/internet-of-things.html
5 http://iotevent.eu/cisco-sees-14-trillion-opportunity-in-iot/
6 http://newsroom.cisco.com/press-release-content?type¼webcontent&articleId¼1158640
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distribution, logistics, automotive, as well as telecommunications and information

technology will steadily converge. As yet, we do not know the consequences of

connecting all of these smart objects (smart meter, e-vehicle, cargo container,

fridge etc.) to the Internet.7

At the same time, the Internet of Things (IoT) is not something you will

experience as such itself. What you will see is that more and more objects become

connected. If you are selling products, you will be negotiating with providers of

connectivity. If you are building, selling or inventing models or tools for providing

services or applications, you will notice that the convergence of IoT, big data and

energy efficiency, combined with cheap hardware, software, data storage and

analytics, favours open standards, innovation and interoperability. Daily activities

that were distinct become interwoven in new formats and business models.

Thus, in effect, the Internet of Things is a combination of a technological push
and a human pull for more and ever-increasing connectivity with anything happen-

ing in the immediate and wider environment – a logical extension of the computing

power in a single machine to the environment: the environment as an interface. This
push-pull combination makes it very strong, unstoppable, fast and extremely

disruptive.

Mireille Hildebrandt, a Dutch professor working on the implications of

emerging technologies and the rule of law, states that “we may need to develop

an Ambient Law that is embodied in the algorithms and human machine interfaces

that support Ambient Intelligence and for this we will have to break through our

paralysis, ready to become literate in terms of a new script.”8 In a speech to the

Pittsburgh Technology Council in 2009, Eric Schmidt, an American software

engineer and executive chairman of Google, focused on the negative effects of

(what he called) institutional fragmentation on innovation and integration. He

wondered whether governments – and the very process of policy and policymaking

itself – could benefit from the iterative cycles of measuring success and failure that

characterize the engineering and design prototyping cycles. With this amount of

real-time tracking and aggregated data and information rather than heuristics, the

act of governing itself could benefit. Specific laws could take effect for 3 months

and be evaluated and adjusted and then, based on real data rather than estimates, be

adjusted again. It is this process that can lead to combinatorial and system

innovation.

Two dominant characteristics unite these different perspectives: firstly, a sense

that Internet connectivity is becoming increasingly ubiquitous and pervasive; and

secondly, the idea that eventually everything – including mundane physical

artefacts – will be connected.

7 On the LinkedIn Group “Internet of Things” strueker@iig.uni-freiburg.de.
8 Hildebrandt, Mireille and Koops, Bert-Jan, The Challenges of Ambient Law and Legal Protec-

tion in the Profiling Era, Modern Law Review, Vol. 73, Issue 3, pp. 428-460, May 2010.

2 T. Kramp et al.



IoT Application Example 1: Transport/Logistics

In transport logistics, IoT improves not only material flow systems but also

the global positioning and automatic identification of freight. It also increases

energy efficiency and thus decreases energy consumption.

In conclusion, IoT is expected to bring profound changes to the global

supply chain via intelligent cargo movement. This will be achieved by means

of continuous synchronisation of supply chain information and seamless real-

time tracking and tracing of objects. It will make the supply chain transparent,

visible and controllable, enabling intelligent communication between people

and cargo/goods.

IoT Application Example 2: The Smart Home

Future smart homes will be conscious about what happens inside a building,

mainly impacting three aspects: resource usage (water conservation and

energy consumption), security and comfort. The goal is to achieve better

levels of comfort while cutting overall expenditure.

Moreover, smart homes also address security issues by means of complex

security systems for detecting theft, fire or unauthorized entry. The

stakeholders involved in this scenario constitute a very heterogeneous group.

Different actors will cooperate in the user’s home, such as Internet

companies, device manufacturers, telecommunications operators, media ser-

vice providers, security companies, electricity utility companies, etc.

IoT Application Example 3: Smart Cities

While the term smart city is still a fuzzy concept, there is general agreement

that it is an urban area which creates sustainable development and high

quality of life. Giffinger et al.’s model elucidates the characteristics of a

smart city, encompassing economy, people, governance, mobility, environ-

ment and living.9 Outperforming in these key areas can be achieved through

strong human or social capital and/or ICT infrastructure. For the latter, an

initial business analysis concludes that several sectors/industries will benefit

from more digitalised and intelligent cities (examples for a city of one million

people):10

(continued)

9 http://www.smart-cities.eu/download/smart_cities_final_report.pdf
10 http://de.slideshare.net/rlnicholson2/smart-cities-proving-ground-for-the-intelligent-economy
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(continued)

(a) Smart metering, 600,000 m, $120 million opportunity

(b) Infrastructure for charging electric vehicles, 45,000 electric vehicles,

$225 million opportunity

(c) Remote patient monitoring (diabetes), 70,000 people, $14 million

opportunity

(d) Smart retail, 4,000 stores, $200 million opportunity

(e) Smart bank branches, 3,200 PTMs, $160 million opportunity

IoT Application Example 4: Smart Factory

In a global supply chain, companies will be able to track all of their products

by means of radio frequency identification (RFID) tags. As a consequence,

companies will reduce their operating expenses (OPEX) and improve their

productivity due to tighter integration with enterprise resource planning

(ERP) and other systems. Also, maintenance of machinery will be facilitated

by connected sensors, allowing for real-time monitoring of the health and

performance of the factory equipment.

Generally, IoT will provide automatic procedures that imply a drastic

reduction in the number of employees needed. Workers will be replaced by

bar code scanners, readers, sensors and actuators, and in the end by complex

robots as efficient as a human being.

Without any doubt, these technologies will bring opportunities for white-

collar workers and a large number of technicians will be required to program

and repair these machines. This is synonymous to a transfer to maintenance

jobs, but it also constitutes a new challenge for providing all blue-collar

workers with an opportunity to move toward these types of jobs and to

avoid unemployment.

As the developments got closer to the market and the everyday lives of citizens,

the need for non-technical research in the area of machine to machine (M2M)

communication and the Internet of Things was acknowledged in the 1996 EU Call

for Proposals of i3: Intelligent Information Interfaces, an Esprit Long-Term

Research initiative. The aim of i3 (pronounced “eye-cubed”) was to develop new,

human-centred interfaces for interacting with information, aimed at the future

broad population. This approach was also the starting point and rationale for the

EU-funded proactive initiative “The Disappearing Computer”, a cluster of

17 projects conducted by interdisciplinary research groups. Its mission was “to

see how information technology can be diffused into everyday objects and settings,

and to see how this can lead to new ways of supporting and enhancing people’s lives

4 T. Kramp et al.



that go above and beyond what is possible with the computer today.”11 The third

research iteration of this approach was Convivio (2003–2005), a thematic network

of researchers and practitioners developing a broad discipline of human-centred

design of digital systems for everyday life. The coordinator of Convivio stated that

human-centred design “still has little influence either on governmental and super-

national policies or on industrial strategies. As a result, it also has little impact on

the quality of ICT in public and private life.”12

However, in 2013, some 50 % of respondents13 to a European Commission

Public Consultation fell into the “interested citizen” category rather than belonging

to a particular industrial, academic or other sector.14

Andreas Kirsch in the IoT Expert Group commented that the main point that

emerged from the work of the subgroup on privacy was that everyone will be

affected by IoT but many people will not realise it. It is vital that this realization is

handled well. By default, the Internet of Things may involve function creep or have

unintended consequences: “It was noted that most people use the same concepts

when discussing IoT as when discussing the Internet in general. There is a signifi-

cant difference, however. IoT involves objects talking to each other without user

consent, with possibly un-envisaged functionalities. Cameras, for example, might

take on functions that are different from their overt primary functions. These

possibilities, once perceived, may cause user anxieties to rise. Moreover, what is

the role of user consent if objects may be able to talk to each other spontaneously? It

will be very difficult to backtrack after the deployment of million of chips

employing a passive approach to connectivity.”

Privacy, security and ideas in society about data storage and tracking could stall

adoption when, for example, by combining the analysis of supply and demand,

energy enterprises are able to supply more efficient demand shaping. They will not

just give incentives to consumers; they will actually turn off devices that are not

needed (e.g. turn off the freezer for 20 min). Furthermore, these actions must take

place automatically. In IoT we always face a heterogeneous scenario involving

diverse stakeholders. The main actors are of course energy utility companies, but

public entities will also be important players. These services need to be coupled

with educational programs that explain what is happening in reality.

11 The Disappearing Computer II (DC) Proactive Initiative http://cordis.europa.eu/ist/fet/dc2-in.

htm
12 Letter to the Convivio community, Giorgio De Michelis, Convivio network coordinator, http://

daisy.cti.gr/webzine/Issues/Issue%201/Letters/index.html
13 Additional responses have been received since the last report, with the total number rising from

500 to more than 600. These additional responses did not affect the statistics for the exercise as a

whole.
14 Tenth Meeting of the Internet of Things Expert Group, Brussels, 14 November 2012. Tom

Wachtel, rapporteur.
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IoT Application Example 5: Retail

IoT realises both customer needs and business needs: price comparison of a

product; looking for other products of the same quality at lower prices; with

shop promotions, giving information not only to customers but also to shops

and businesses. Having this information in real time helps enterprises to

improve their business and to satisfy customer needs.

Obviously, big retail chains will take advantage of their dominant position

to enforce the future IoT retail market, as was the case with RFID adoption,

which was enforced by Walmart in 2004 (Wu et al. 2006). In particular,

companies with controlling positions, such as Carrefour, Metro, Migros,

Walmart, etc. will be able to push the adoption of IoT technology due to

their sizable market shares.

IoT Application Example 6: E-Health

Control and prevention are two of the main goals of future health care.

Already today, people have the option of being tracked and monitored by

specialists even if the patient and specialist are not in the same place. Tracing

peoples’ health history is another aspect that makes IoT-assisted e-health very

versatile. Business applications could offer the possibility of medical services

not only to patients but also to specialists, who need information to proceed in

their medical evaluation. In this domain, IoT makes human interaction much

more efficient because it permits not only localization, but also tracking and

monitoring of patients. Providing information about the state of a patient

makes the whole process more efficient, and also makes people much more

satisfied.

The most important stakeholders in this scenario will be public and private

hospitals and institutes such as the Institute of Applied eHealth at Edinburgh

Napier University, which participated in the first stakeholder session of

IoT-A. It is worth mentioning that telecommunications operators are quite

active in e-health (for instance, O2 UK).

The IoT Expert Group claims that, “As IoT will introduce new difficulties for

contextual integrity, the principle whereby information supplied for use in one

context (e.g. a meeting with one’s doctor) is not expected by the owner of the data

to be used in a different context (e.g. the doctor applying for a mortgage). There will

be a social contract between people and objects, and the ethical ramifications of a

contract of this kind must be considered”.15

15 Internet of Things Expert Group (E02514), Commission Decision of 10 August 2010 setting up

the Expert Group on the Internet of Things. OJ C 217, 11.8.2010, p. 10–11, http://ec.europa.eu/

transparency/regexpert/index.cfm?do¼groupDetail.groupDetail&groupID¼2514
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All current computing and IoT paradigms position connectivity and content-

centric networking centrally as an ecology of devices, protocols, services and

networks, such as RFID, active sensors, biometrically-related smart camera data,

2D and 3D bar codes and 6LoWPAN (IPv6 over Low power Wireless Personal Area

Networks) or ZigBee. At the core of this ecology there is a seamless flow between:

• The BAN (body area network): e.g. the ambient hearing aide, the smart T-shirts

• The LAN (local area network): e.g. the smart meter as a home interface

• The WAN (wide area network): the bike, car, train, bus

• The VWAN (very wide area network): the smart city as e-government services

everywhere; no longer tied to physical locations

Traceability, sustainability and security linking the gateways of these different area

networks cannot be ensured without interoperability at architectural, domain-specific

and application level. (see also the box on page 9 – The hierarchy of networks)

It is also highly likely that monitoring mechanisms will be built into devices

themselves: for example, “if a guest is charging their electric car at a friend’s house,

we should consider applications that will understand that the charge should appear

on the guest’s electric bill and not that of the friend.”16 But there is a clear deadlock:

clients do not know what they can expect, nor do they know what they could ask.

M2M vendors cannot interface their sensor capabilities beyond an optimizing

function. No one is asking for an Internet of Things. People have no idea about what
they can expect and why they should hand over their washing machines to a local

grid to ensure energy efficiency, for example. Is a positive outcome feasible?

A successful IoT means the best possible feedback on our physical and mental

health, the best possible deals based on real-time monitoring for resource alloca-

tion, the best possible decision-making based on real-time data and information

from open sources, and the best possible alignments of our local providers with the

global potential of wider communities.

Now that we have introduced the basic ideas of the Internet of Things concept

and pointed out some aspects of the current discussion taking place in the Internet of

Things community, you can see that the whole field is very much “in motion”. New

ideas, concepts and new technologies are appearing constantly, whereas others are

disappearing, being ruled out as incompatible or not feasible. In the IoT concept,

which is itself disruptive, other potential “disruptive” technologies (e.g. Google

Glass etc.) strongly influence the direction of technological development as well as

the related societal and political discussion.

Despite the high-level discourse that is necessary to assess the socio-economic

impact of IoT in general, in this book we will focus on the underlying technological

concepts, network architecture approaches and connectivity and interoperability

requirements that are required to provide and realise the fundamental connectivity

that will ultimately allow for the emergence of the Internet of Things to the benefit

of mankind in general.

16 http://tools.ietf.org/id/draft-roychowdhury-6lowappsip-00.txt
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With a strong focus on network architectures, architecture models and guidelines

for building a truly interoperable Internet of Things, this book summarises the results

of the IoT-A17 project, funded by the European Union and conducted between 2010

and 2013. More than 50 scientists and researchers contributed to the development of

an “Architectural Reference Model” (ARM) for the Internet of Things.

This book is in two parts (I and II). Part I (Chaps. 2, 3, 4) introduces, on a more

general level, the concepts developed over the course of the IoT-A project. It is

targeted at a general audience including end users who want to employ IoT

technologies, managers interested in understanding the opportunities generated by

the new technologies, and system architects who are interested in an overview of

the models developed. In Chap. 2 we explain the history behind and origin of the

IoT-A project. In Chap. 3 we introduce the ARM as enabler, its terminology and

methods for employing it. Chapter 4 then highlights use cases that exemplify how

the ARM has been used in real life scenarios.

Part II (Chaps. 5, 6, 7, 8, 9, 10, 11, 12) contains Chap. 5, which provides an

overview on guidance to the ARM, followed by Chap. 6 with very detailed and

elaborate description of a process to generate concrete architectures. In Chap. 7 the

IoT Reference Model is aiming at establishing a common grounding. Based on this,

in Chap. 8 the IoT Reference Architecture is presented. Chapter 9 provides reference

manuals with guidelines how to use the various Models and Perspectives presented

in creating a concrete architecture. In Chap. 10 an interaction analysis on some

selected scenarios is given to provide a general understanding on the interactions to

be considered. The best practices and guidelines relating to how system engineers or

other end users can use the ARM to develop specific IoT architectures for dedicated

IoT solutions and how users can apply the concepts presented to develop a dedicated

IoT architecture for a specific application case are illustrated in Chap. 11 and

exemplified in reverse mapping exercises of existing standards and platforms to

the IoT ARM up to a business case evaluation in Chap. 12.

In contrast to Part I, Part II addresses the topic on a very scientific and technical

level and is targeted at the knowledgeable scientific or technical reader.

IoT Application Example 7: Smart Energy/Smart Grid

This field has many overlaps with other scenarios, such as smart home and

smart city. The key issue in these scenarios is to detect ways to save energy.

We are basically referring to what is known as a smart grid. In this application

area, initiatives that imply a more distributed energy production must be

highlighted, as many houses today have a solar panel, for example. As a

vital constituent, smart metering is considered a prerequisite for enabling

intelligent monitoring, control and communication in grid applications. The

use of IoT platforms in smart metering will provide the following benefits:

(continued)

17www.iot-a.eu
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(continued)

a. An efficient network of smart meters allows for faster outage detection and

restoration of service. Such capabilities abound to the benefit of customers.

b. Customers will have greater control over their energy or water consump-

tion, providing them with more choices for managing their bills.

c. IoT deployment of smart meters is expected to reduce the need for building

power plants. Building power plants that are necessary only for occasional

peak demand is very expensive: a more economical approach is to enable

customers to reduce their demand through time-based rates or other incen-

tive programs, or to use automatic recording of consumption to temporar-

ily turn off devices which are not in use.

Finally, by combining the analysis of supply and demand, energy

enterprises will able to supply more efficient demand shaping. They will

not just give incentives to consumers, but will actually turn off devices that

are not needed (e.g. turn off the freezer for 20 min). Furthermore, these

actions must take place automatically. Here, we again face a heterogeneous

scenario involving diverse stakeholders. The main actors are of course energy

utility companies, but public entities will also be important players.

The Hierarchy of Networks: BAN (Body Area Network): The Ambient

Hearing Aide, the Smart T-shirts

Control and prevention are two of the main goals of future health care.

Already today, people have the option of being tracked and monitored by

specialists even if patient and specialist are not in the same place. Tracing

peoples’ health history is another aspect that makes IoT-assisted e-health very

versatile. Business applications could offer the possibility of medical services

not only to patients but also to specialists, who need information to proceed in

their medical evaluation. In this domain, IoT makes human interaction much

more efficient because it permits not only localization, but also tracking and

monitoring of patients. Providing information about the state of a patient

makes the whole process more efficient, and also makes people much more

satisfied. Trust is a key issue in this relationship. Patient to patient networks

become more empowered as well.

LAN (local area network): the smart meter as a home interface

Future smart homes will be conscious about what happens inside a build-

ing, mainly impacting three aspects: resource usage (water conservation and

energy consumption), security and comfort. The goal is to achieve better

levels of comfort while cutting overall expenditure. Moreover, smart homes

(continued)
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(continued)

also address security issues by means of complex security systems to detect

theft, fire or unauthorized entry. The stakeholders involved in this scenario

constitute a very heterogeneous group. Different actors will cooperate in the

user’s home, such as Internet companies, device manufacturers, telecommu-

nications operators, media service providers, security companies, electricity

utility companies, etc.

WAN (wide area network): the bike, car, train, bus, . . ..
In transport logistics, IoT improves not only material flow systems but also

global positioning and automatic identification of freight. It also increases

energy efficiency and thus decreases energy consumption.

Prof. Dr. Michael ten Hompel, Managing Director at Fraunhofer-Institut

for “Materialfluss und Logistik”, describes the consequences for something as

“solid” as logistics: “The logical consequence of the Internet of Things is not

just a new philosophy of how we can control our production and logistics. It

completely changes the paradigms of conventional supply chain manage-

ment. Within the Internet of Things the supply chain will be created in real

time: Entities, consisting of objects and a piece of (agent based) software,

generates the resulting supply chain ‘on the move.’ Therefore the sequences

of operations are not predicted. This leads to a new understanding of how to

handle our logistic management which won’t be a supply chain (!) anymore.”

IoT is thus expected to bring profound changes to the global supply chain

via intelligent cargo movement. This will be achieved by means of continu-

ous synchronisation of supply chain information and seamless real-time

tracking and tracing of objects. It will make the supply chain transparent,

visible and controllable, enabling intelligent communication between people

and cargo.

VWAN (very wide area network): the smart city as e-government

services everywhere; no longer tied to physical locations

While the term smart city is still a fuzzy concept, there is general agree-

ment that it is an urban area which creates sustainable development and high

quality of life. Giffinger et al.’s model elucidates the characteristics of a smart

city, encompassing economy, people, governance, mobility, environment and

living (Giffinger 2007). Outperforming in these key areas can be achieved

through strong human or social capital and/or ICT infrastructure. There are a

number of critics who question whether the smart city as it is conceived now

can be inclusive and educational.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 2

The Need for a Common Ground for the IoT:

The History and Reasoning Behind the IoT-A

Project

Alessandro Bassi and Sebastian Lange

The Internet of Things concept has evolved rapidly in recent years. It can be seen as

an umbrella term for interconnected technologies, devices, objects and services.

Nevertheless, after many years of heavy discussion, there is still no clear and

common definition of the concept. And yet the application scenarios and market

opportunities offered by objects communicating actively and autonomously extend

far beyond the foreseeable horizon.

Looking at websites such as kickstarters.com and indiegogo.com, new

applications and services envisaged by innovators and researchers are astonishing

and clearly show the vast opportunities our future society will be confronted with.

The concept of IoT as introduced in Chap. 1 emerged primarily from the

convergence of different technological developments and fields. In particular, it

builds on the emergence of innovative enabling functionalities that stem from

identification technologies such as RFID and bar codes, as well as from the

development of networked sensors and actuators. In the early 2000s, RFID tech-

nology was developed and rolled out mainly across the logistics sector for tracking

and tracing goods. At the same time, research was conducted on sensor networks

and miniaturized smart systems. Sensors were becoming increasingly small and

computing power dramatically increased. Nevertheless, innovative solutions were

always developed for specific application cases, and there was no true interopera-

bility and interconnectivity between different application areas.

For instance, in some fields such as manufacturing and logistics, communication

and tagging solutions are well-established as they provide a clear business benefit in

terms of asset tracking and supply chain management. However, the same solutions
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do not apply for other fields such as domotics, where business synergies could

provide services with clear added-value benefits.

As the IoT domain covers such a wide spectrum of application fields with very

little in common, the development cycles and technologies used can be completely

different. Often, early technological developments are driven by visionary small

and medium-sized enterprises (SME) that are able to innovate faster and to catch

emerging trends. However, the target is usually a product or service with a narrow

scope, and as the focus and window of opportunity are slim, the solutions developed

are usually non-interoperable, and while successful, they do not produce a common

abstract infrastructure capable of marking significant progress in the whole field.

The same holds true for large industry companies that often develop specialized

solutions for dedicated business opportunities without implementing generally

applicable concepts.

Therefore, current solutions can still be seen as island solutions, implementing

some sort of “INTRAnet of Things” rather than an “INTERnet of Things”.

While quite logical at this point, in the long term, this situation is unsustainable.

Today, we can observe a similar situation to that in the networking field, where

several solutions emerged at its infancy but were subsequently abandoned in favour

of a unified communication infrastructure, the TCP/IP protocol suite.

The emergence of a common “lingua franca” for the IoT domain, representing

the narrow central point in the Internet protocol suite, is a prerequisite for quick and

pervasive development of innovative solutions that can leverage different

technologies developed for different targets in different application domains.

After much discussion about the core concepts of the IoT for several years, in

2009 a group of researchers from more than 20 large industrial companies and

research institutions joined forces to lay the foundation for the much needed

common ground or a common “architecture” for the Internet of Things: the IoT-

Architecture project (IoT-A) was born. IoT-A has become the European

Commission’s flagship project in the European Union’s Seventh Framework Pro-

gram for Research and Development with respect to establishing an architecture for

the Internet of Things.

Leaving aside business considerations, and considering only the technical point

of view, it was clear for the project partners that the existing solutions did not

address the scalability requirements of a future IoT, both in terms of communica-

tion between smart devices and the orchestration and management of complex

services. Furthermore, the IoT domain comprises several different governance

models, which are often incompatible. This leads to a situation where privacy and

security are treated on a per case and per legislation basis, retrofitting solutions to

existing designs – this severely hampers portability, interoperability and

deployment.

Of course, the spread of the IoT domain is so huge that it would be naive to

consider a “one-size-fits-all” protocol, such as IP, or even a single layer where

interoperability between all sorts of smart device communication can take place.

However, it soon became clear that within this area, there was a need for a common

ground in a more abstract layer.
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We are convinced that different classes of devices will always co-exist.

Taxonomies can be created according to different principles, such as critical or

non-critical, or distributed or centralised. These classes can foster different profiles

according to the specific needs and requirements of applications and domains.

As it is impossible to specify one single design pattern that can satisfy all

application domains, the common ground has to be found at a more abstract

level. We believe that the identification of a reference model for the entire IoT

domain will provide the common ground. By reference model we mean an

abstract framework that comprises a minimal set of unifying concepts, axioms

and relationships for understanding significant relationships between the entities

of an environment. This framework should enable the development of specific

architectures which may have different levels of abstraction. At this level of

abstraction we are independent of specific standards, technologies, implementations,

or other concrete details.

This high-level work then drives the realisation of a framework for identifying

specific reference architectures that subsequently describe both essential building

blocks as well as design choices for dealing with conflicting requirements regarding

functionality, performance, deployment and security. Interfaces need to be

standardised, and best practices need to be provided in terms of functionality and

information usage.

The central decision of the IoT-A project was to base its work on the current state

of the art, rather than applying a clean slate approach. As a result, common traits

have been derived to form the baseline of the IoT Architectural Reference Model

(ARM). This has the major advantage of ensuring that the model is backward-

compatible, as well as the adoption of established, working solutions for various

aspects of the IoT.

It is no longer possible to build architectures in the lab or without real world

input. IoT-A acknowledged this new reality, where the lines between R&D,

innovation and emergent technologies are blurred, at a very early stage. With the

help of end users, organised into the IoT-A stakeholders group, new requirements

for IoT have been collected and introduced in the main model-building process.

This stakeholder group was one of the most important sources for obtaining

external input as well as feedback on the current status of project work. Thus far,

the stakeholder contributions have been a main feature of the project, as the

stakeholder requirements collected in an initial workshop formed the basis for the

initial draft of the ARM, particularly the domain model and the functional decom-

position. Each building block of the ARM was then developed to meet all

requirements and enable the IoT-A holistic approach. Further stakeholder

workshops and questionnaires were employed to review the progress of the ARM

development and to fine tune the concepts and models.

Currently, the prevailing practice domain for stakeholder engagement is largely

characterized by complex and dynamic environments that cover a wide range of

stakeholders, from hostile to conciliatory, from obstructive to collaborative.

This is an apt characterisation of the Internet of Things: complex and dynamic

environments containing a wide range of stakeholders. As such, it is an open and
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ongoing ecology of environments, characterized by change and real-time combina-

torial innovation.

For all their different backgrounds – automotive, health, logistics, retail. . . – the

stakeholders were surprised to see that their requirements were often very similar.

In their real world cases, the same principles and same abstract level required that

“in this IoT world things become active participants”; the goal is a seamless chain

of real-time tracking and tracing, in which the elite of expensive high-level item

tracking and the multitude of low-level items should be balanced for cost efficiency.

Interoperability was validated by the stakeholders in the independently generated

use cases as the number one requirement.

The next chapter introduces the ARM in detail, its language and terminology, as

well as its beneficial role in the IoT application development process.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 3

The IoT Architectural Reference Model as

Enabler

Martin Bauer and Joachim W. Walewski

As identified in the previous chapter, IoT-A has created an “Architectural Refer-

ence Model” (IoT ARM) as the common ground for the Internet of Things. The core

idea is that the IoT ARM provides a common structure and guidelines for dealing

with core aspects of developing, using and analysing IoT systems. The first part of

this chapter provides a non-exclusive list of the beneficial uses of the IoT ARM. In

the second part we focus on the role of the IoT ARM in the architecture develop-

ment process.

3.1 Using the IoT ARM

In the following we present a non-exclusive list of the beneficial uses of the IoT

ARM. The order in which they are discussed does not imply any ranking – we list

them according to their degree of abstraction and remoteness from the product:

i.e. the first usage type is concerned more with generic enabling (abstract and

remote), while the last usage type concerns how the IoT ARM can be used for

procuring system solutions (concrete, close to business). The usage type that is

more important to any specific use of the IoT ARM depends on the perspective of

the actors involved. A manager of an IoT development process, for instance, is

more likely to favour the enabling aspects of the IoT ARM, while a procurement

department is more likely to favour concrete advantages that are closer to the

business process itself.
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3.1.1 Cognitive Aid

When it comes to product development and other activities, an architectural

reference model is of fourfold use.

Firstly, it helps to guide discussions, since it provides a language everyone involved

can use, and which is intimately linked to the architecture, the system, the usage

domain, etc.

Secondly, the high-level view provided in such a model is of high educational

value, since it provides an abstract but also rich view of the domain. Such a view

can help people new to the field to “find their way” and to understand the special

features and intricacies of IoT.

Thirdly, the IoT ARM can assist IoT project leaders in planning the work at hand

and the teams needed. For instance, the Functionality Groups identified in the

IoT Functional View of the IoT system can also be understood as a list of

independent teams working on an IoT system implementation. The Process

Chapter (Chap. 6) provides more insight on how the IoT ARM can support the

architecture generation process and also about how to separate it into different

activity “islands”. This type of approach is particularly interesting for enterprise

architecture frameworks that incorporate system-architecting processes. Typi-

cally, these enterprise frameworks provide institutional rules and prescriptions

for how the system-architecting process is to be conducted. The IoT ARM can

inform such institutional rules and prescriptions. An example of the latter is the

Zachman framework (Zachman 1987).

Fourthly, the IoT ARM helps to identify independent building blocks for IoT

systems. This constitutes very valuable information when dealing with questions

such as system modularity, processor architectures, third-vendor options, re-use

of components already developed, etc.

3.1.2 Reference Model as a Common Ground

Establishing a common ground for a field is not an easy task. In order to be

effective, it has to capture as many pertinent vantage points as possible.

Establishing the common ground for the IoT encompasses defining IoT entities

and describing their basic interactions and relationships with each other. The IoT

ARM provides exactly such a common ground for the IoT field.

3.1.3 Generating Architectures

One of the main benefits is the use of the IoT ARM for generating compliant

architectures for specific systems. This is done by providing best practices and

18 M. Bauer and J.W. Walewski
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guidance for translating the IoT ARM into concrete architectures. For an overview

on this, see Chap. 5. The benefit of this type of generation scheme for IoT

architectures is not only a certain degree of automation in this process, and thus

lower R&D efforts, but also that the decisions made follow a clear, documented

pattern as described in Chap. 6.

3.1.4 Identifying Differences in Derived Architectures

When using the aforementioned IoT ARM-based architecture process, any

differences in the derived architectures can be attributed to the special features of

the use case in question and the design choices related to this case (Shames and

Yamada 2004). When applying the IoT ARM, a list of system function blocks, data

models, etc., together with predictions of system complexity, etc. can be derived for

the architecture generated. Furthermore, the IoT ARM defines a set of tactics and

design choices for meeting qualitative system requirements (for more details, see

Chap. 6, Design choices). All of these facts can be used to predict whether two

derived architectures will differ and where they will do so.

The IoT ARM can also be used for reverse mapping. System architectures can be

cast in the “IoT ARM” language and the resulting “translation” of the system

architectures is then stripped of incompatible language and system partitions and

mappings. The differences that remain are then true differences in architecture.

3.1.5 Achieving Interoperability

As we explain later on in this book (see Chap. 6 on design choices), fulfilling

qualitative requirements through the architecting process inevitably leads to design

challenges. Since there is usually more than one solution to each of the design

challenges (we refer to these solutions as design choices), the IoT ARM cannot

guarantee interoperability between any two concrete architectures, even if they

have been derived from the same requirement set. Nevertheless, it is an important

tool in helping to achieve interoperability between IoT systems. This is facilitated

by the design-choice process itself. During this process, one identifies and tallies the

design choices made. By comparing the design choices made when deriving two

architectures, one can readily identify where in the architecture measures are

necessary to achieve interoperability. Interoperability may be achieved a posteriori

by integrating one IoT system as subsystem in another system, or by building a

bridge through which key functionalities of the respective other IoT system can be

used. Notice though that these workarounds often fall short of achieving full

interoperability. Nevertheless, building bridges between such systems is typically

much more straightforward than completely re-designing either system and usually

fair interoperability can be achieved.
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3.1.6 System Roadmaps and Product Life Cycles

Above we discussed how the design choices made in order to derive a particular

architecture, and also the features selected, are instrumental in describing the

difference between two architectures. As well as identifying the differences

between two “foreign” architectures, this approach can also be used to map the

evolution of architectures. For instance, design choices are tied to qualitative

requirements. Let us assume that during the requirements process (see Chap. 6,

Sect. 6.4), two disjoint “design choice” islands are identified, i.e. groups of design

choices that lead to non-interdependent functionalities, data models, etc. In this

case, it is possible to embody only one “design choice” island in the systems

produced and to embody the full set of design choices in the next product genera-

tion. Thus, the IoT ARM can be used to devise system roadmaps that lead to

minimum changes between two product generations while still guaranteeing a

noticeable enhancement in system capability and features. This approach also

helps the designer to formulate clear and standardised, requirements-based

rationales for the system roadmap chosen and the product life cycles that result

from the system roadmap.

3.1.7 Benchmarking

Another important use of the IoT ARM is benchmarking. For example, NASA used

a reference architecture that described its envisaged exploration vehicle in order to

receive better benchmarking tenders during a public bidding process for the said

exploration vehicle (Tamblyn et al. 2007). While the reference model prescribed

the language to be used in the systems/architectures to be assessed, the reference

architecture stated the minimum (functional) requirements for the systems/

architectures. By standardising the description and also the ordering and delineation

of system components and aspects, this approach also provided the benchmarking

process with a high level of transparency and inherent comparability. Using this

approach, besides just “ticking” off the minimum features each tender has to fulfil,

even more insight can be gained into the proposed system. For instance, the number

and “richness” of functional components belonging to the system and their interac-

tion patterns allow an appreciation of the system complexity both in terms of

composition and structure but also in terms of interaction. This information can

be gleaned from the IoT Functional View (functional decomposition, interactions),

the IoT Information View (data flow, data complexity) and the IoT Deployment

View. It makes judging the overall system complexity easier during the tender

review phase.
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3.2 Architecture Development Process Based on the IoT

ARM

Following the overview of the different cases of usage in which the IoT ARM plays

a beneficial role, we will now focus on how the IoT ARM can be used during the

process of generating concrete IoT architectures suitable for specific applications

and use cases. We will first discuss the idea behind reference models and reference

architectures and the underlying methodology.

The process of developing an architecture is about finding a solution to a

pre-defined goal. In turn, the development and description of architectures is a

modelling exercise. It is important to point out that the modelling itself does not

take place in a vacuum but is based on a thorough understanding of the domain to be

modelled. In other words, any architecture development is contingent on the

understanding of the domain in question. The same is true for a generalisation of

this process, i.e. the derivation of reference architectures. Thus, reference

architectures, such as the one presented in this book, also have to be based on a

detailed understanding of the domain in question. This understanding is commonly

provided in the form of a reference model.

3.2.1 Reference Model and Reference Architecture

Reference models and reference architectures provide a description that is more

abstract than what is inherent to actual systems and applications. They are more

abstract than concrete architectures that have been designed for a particular appli-

cation with particular constraints and choices. From literature, we can extrapolate

the dependencies between a reference architecture, architectures and actual systems

(see Fig. 3.1) (Muller 2008). Architectures do help in designing, engineering,

building and testing actual systems. At the same time, a better understanding of

system constraints can provide input for the architecture design, and this allows

future opportunities to be identified. The structure of the architecture can be made

explicit through an architecture description, or it is implicit through the system

itself. Extracting essential components of existing architectures, such as

mechanisms or the use of standards, allows the definition of a reference

architecture.

Guidelines can be linked to a reference architecture in order to derive concrete

architectures from the reference architecture (Fig. 3.2, left). These general archi-

tecture dependencies apply to the modelling of the IoT domain as well.

The transformation step from an application-independent model to a platform-

independent model is informed by guidelines. The step from platform-independent

model to platform-specific model is discussed later in this chapter.

While the model presented in Fig. 3.1 stops at the reference architecture, the

IoT-A Architectural Reference Model goes one step beyond this and also defines a
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reference model. As already discussed, a reference model provides the ground for a

common understanding of the IoT domain by modelling its concepts and their

relationships. A detailed description of the IoT Reference Model can be found in

Chap. 7.

3.2.2 Generating Architectures

Now that we have a general understanding about reference models, reference

architectures and their relationships, the important question is how to derive the

appropriate concrete architecture from the reference architecture. We dedicate an

entire chapter to this issue, namely the Process Chap. 6, where we describe all

aspects in great detail. However, the reader needs at least some appreciation of the

Fig. 3.1 Relationship between a reference architecture, architectures and actual systems (Adapted

from Muller (2008))

Fig. 3.2 Derivation of implementations (platform-specific models) from an architectural refer-

ence model (application-independent model) via the intermediate step of a concrete architecture

(platform-independent model)
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role of the IoT ARM here in order to take full advantage of the IoT Reference

Model and the IoT Reference Architecture in the chapters in-between.

When applying the IoT ARM in designing systems, it is likely that in each

individual case, different architectures will result. Thus, while Fig. 3.2 gives the

impression that the process of translating the reference architecture into a concrete

architecture is independent of the use case itself, this is, in reality, not so – the

guidelines and the engineering practices chosen rely on a use case description and

the requirements. This fact is reflected in Fig. 3.3. The role of the IoT ARM is to

provide transformation rules for translating the rather abstract models into a

concrete architecture. This step is strongly influenced by the use case and the

related requirements. One entry point for this information is during the process of

design choices, i.e. when the architect favours one avenue for realising the func-

tionality or quality needed over another. The IoT ARM also recommends design

patterns for such choices. The IoT ARM does not operate in a design vacuum but

should be applied together with proven design process practices, which in them-

selves are contingent upon the guidelines provided and upon the use case and the

requirements.

In Chaps. 7 and 8 we describe how both the IoT Reference Model and the IoT

Reference Architecture can be used in this design process. Even though we describe

the design process in a linear fashion, remember that in practice this will not always

be the case. Depending on the engineering strategies used, some of the steps can be

done in parallel or may even have to be reiterated due to additional understanding

gained during the process or due to changes in the requirements.

3.2.3 Choice of Design and Development Methodology

The choice of a design and development methodology can be understood in two

ways: firstly, a methodology for the IoT ARM development and secondly, a

methodology for the generation of specific concrete architectures. We have so far

only provided high-level views of either case. In reality, more guidance is required,

i.e. a recipe for how to derive all aspects of the IoT ARM model as well as how to

derive guidelines for the application of the IoT ARM for the generation of

architectures.

In the case of the IoT ARM there are, to our knowledge, no standardised

approaches for developing such a model. Furthermore, compared to typical reference

architecture domains, the IoT usage domain is extremely wide and varied, and

common denominators are thus rather few and abstract. For examples of reference

architectures and models, the reader is directed to the following literature: (Consulta-

tive Committee 2006; MacKenzie et al. 2006; Muller 2008; Open GeoSpatial Con-

sortium 2002; Shames and Yamada 2004; Tamblyn et al. 2007; Usländer 2007). This

high level of abstraction in terms of the domain to be modelled stands in contrast to

the input needed for established and standardised methodologies such as Aspect-

Oriented Programming (AOP), Model-Driven Engineering (MDE), Pattern-Based
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Design and SysML. All of these methodologies were designed for very concrete use

cases and application scenarios. Unfortunately, this high degree of specificity defines

even their inner workings. In other words, if they are applied to generalised use cases,

the result is not generalised models on the abstract level of an IoT ARM – in fact, the

result is nothing. We illustrate this using the example of MDE.

MDE for the generation of Model-Driven Architectures (MDA) is standardised

by the Object Management Group (OMG) (Miller and Mukerji 2003). The main

application area of this methodology is the development of software systems. MDE

prescribes four steps for a development process:

1. Specify a system independently from the platform;

2. Specify platforms;

3. Choose a particular platform for the system;

4. Transform the system specification into that of the particular platform.

The goals behind this approach are portability, interoperability and reusability

through the architectural separation of concerns (Vicente-Chicote et al. 2007).

Thus, on the face of it, this all sounds very similar to the goals of our IoT ARM

development process.

Figure 3.4 summarises the main idea of MDA. A platform-independent model,

i.e. an architecture, is to be transformed into a platform-specific model, i.e. an

implementation. An example for the former is a GUI user interface described in

System 
design

«resource»
IoT Architectural 
Reference Model

«resource»
Engineering 

strategies

«information»
Use cases & 
requirements

«resource»
Concrete 

architecture

«information»
Transformation 
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«resource»
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methods

«output»

<<informs>>

<<dependency>> «guides»

«input»
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<<constrains>>

<<guides>>

Fig. 3.3 Process for generating concrete architectures
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UML, and the latter is an implementation of this interface in a mobile phone model

featuring a particular operating system.

This sounds very much like the transformation introduced in Fig. 3.3, but it

actually takes place at a lower abstraction level, as becomes apparent from Fig. 3.2.

The IoT ARM and the MDE approach are thus linked to each other through

platform-independent models (architectures). While the general idea of a model

transformation, as promoted by MDE, resonates with our IoT ARM approach, the

methodology developed for deriving transformations between platform-

independent and platform-specific models can, alas, not be transferred and adapted

for deriving best practice transformations.

Table 3.1 summarises how we use ideas borrowed from standardised architec-

ture methodologies for our work on the higher abstract level of our IoT ARM.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Fig. 3.4 Generalised

architecture approach

according to the Model-

Driven Architecture

methodology, otherwise

known as Model-Driven

Engineering (Miller and

Mukerji 2003)

Table 3.1 Use of standardised architecture methodologies for the development of the IoT ARM

Methodology Aspect adopted in our work

Aspect-oriented

programming

Delineation of functionalities by aspects. This is embodied in the concept

of functionality groups (see IoT Functional view in Chap. 8)

Model-driven

engineering

General concept of transformation from a generic to a more specific

model. We use this concept for describing and developing our

guidelines

Views and

perspectives

We adopt the concept of views and perspectives to derive the IoT

Reference Architecture, i.e. we arrange all aspects of our reference

architecture according to views and perspectives (see IoT Reference

architecture in Chap. 8)
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Chapter 4

IoT in Practice: Examples: IoT in Logistics

and Health

Martin Fiedler and Stefan Meissner

The previous chapters gave a first impression of the ARM as common ground for

the Internet of Things. In the following sections we will introduce use cases and

sample scenarios (scenes) that have been used as a practical evaluation of the ARM

in specific applications. Using the ARM in a top-down process, starting from an

application description, most of the scenes introduced were realized as

demonstrators within a specific work-package of IoT-A. The second, bottom-up

approach of reverse mapping an existing application to the ARM is shown with a

scene brought in by the stakeholder group of IoT-A.

The use cases described focus on the domains of retail/logistics and healthcare.

This is due to the importance and relevance of these domains, but as IoT-A aims to

provide an ARM for the Internet of Things, the ARM should also be applicable to

other major domains such as manufacturing or entertainment. The denominator that

the two domains considered have in common is that they affect many people – both

now and in the future. There is a connection between nutrition and health, with

many people opting for healthy food to prevent diseases; others act in accordance

with a health plan prepared by their doctor after a diagnosis. Technology can be

used to support both cases and makes it easier to eat and stay healthy.

The first part of this chapter covers the retail and logistics use case. It focuses

more on enterprise-related processes. Here we also introduce a “red thread” exam-

ple, which is used within the technical part of the book (see Chaps. 5, 6, 7, 8, 9,

and 12). The second part introduces the health use case and an existing application

which will be used to reverse map to the ARM.
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In general, we defined day-in-a-life scenes with specific characters living

through them in the storyline.

4.1 Storyline of the IoT-A Use Case “IoT in Retail and

Logistics”

Nearly every single one of us has to do some shopping and in doing so, we gather

experience with the retail industry; therefore it is part of our daily life. As techno-

logical innovations permeate other parts of our lives, retail is also being increas-

ingly penetrated by different technologies that support and help us in many different

situations: for example, smart mobile phones equipped with shopping applications

that manage our shopping lists or our dietary information. This presents retailers

with the new challenge of integrating their business into the consumer’s world and

vice versa.

On one hand, information which is generated by customers (e.g. product ratings)

might be of high interest to retailers, especially product and category managers. On

the other hand, information which is owned by a retailer is not always just of

interest for retailers themselves: for example, looking at the traceability of individ-

ual goods, real-time queries on a mobile device for the customer or the availability

of products in a certain store.

To realize traceability of individual goods during the whole product life cycle

and to create transparency all along the supply chain, the first step is to serialise

each individual item. This takes place at some point during the manufacturing

process. Adding additional sensors to the items to collect various environmental

information as well as counting the carbon emitted by the products itself helps to

increase transparency (Fig. 4.1).

Privacy concerns that arise from tracking the items of customers outside the

store using tags can be addressed by solutions that help both the supply chain and

the customers.

Other examples of serialized objects include an NFC tag on a laptop to track the

ownership and add built-in accelerometers to it to record physical transport damage.

Many kinds of different data are recorded on the way from the point of origin to the

point of destination and are transmitted during the transport or at handover and

could be made visible by the system at any time.

Using smart mobile phones in combination with RFID- or NFC-tagged products

provides advantages not only for manufacturers, retailers and customers, but also

for delivery and anyone involved in logistical processes for these products.

With this scenario in mind, the future Internet of Things applied to the retail

domain could unfold as follows from a user’s perspective:

Ted, the delivery man for a gardener, uses his IoT phone to manage transport orders, scan

tagged items or load carriers and receive status messages from sensors added to the items he

is currently transporting (in our case, sensitive orchids). This way, he knows the
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circumstances of the products without having to do a visual inspection (i.e. stop his truck,

which would mean a delay).

When he arrives at the local supermarket, Ted lets the load carriers he delivered pass

through an RFID gate which recognizes them automatically. After briefly talking to John,

the store manager, Ted sends the sensor record history saved on his IoT phone to John’s IoT

phone via NFC. The manager can now see that on the way to the store, there was a critical

rise in temperature at one point, which causes him to visually inspect the orchids and decide

whether he still wants to accept the delivery. Since John identifies the orchids as fine, he

sends a message of approval to Ted’s IoT phone.

To look at the customer’s perspective of our scenario, we switch to Salomée, a

young woman representing a customer:

This Saturday, Salomée decides to try out the new supermarket (where John is the store

manager) that opened recently. She is a young lawyer and a single mother. Salomée

recently took up her first position at a big law firm, and therefore has to put in long

hours, leaving her son in day care. Balancing work and family time is difficult. Therefore,

she usually does all of her shopping on Saturday morning, even though she hates the long

queues that usually form then. As a single parent she is very price-conscious, but she still

wants her child to get healthy nutrition and she also cares about the environment, preferring

local products with a small carbon footprint.

As she enters the supermarket, she is positively surprised by its spaciousness and its

calm atmosphere. Salomée has a shopping application installed on her IoT phone – it allows

her to receive information about products when she scans them or when the store’s backend

system recognizes certain behaviour or circumstances. The software also keeps track of

Salomée’s shopping behaviour in order to provide more personalized and thus more

efficient suggestions.

Today, Salomée is looking for cheese, so she enters the refrigerated section. Once she

finds a packet of cheese that catches her interest, she reads its NFC tag to get more

information about it from her virtual Shopping Assistant and to compare it to other kinds

of cheese she has bought before. Thanks to the application, she quickly finds the cheese she

wants to buy.

Now that Salomée has found a cheese she likes, she wants to buy her favourite wine.

The Shopping Assistant on her IoT phone can now tell her about the prices of wines she has

bought before and if one of these wines is out of stock, shows a recommendation for a

similar wine.

Today, Salomée has to acknowledge that there are no affordable wines available that

she likes so she starts to leave. This and the fact that she has got cheese in her shopping cart

Fig. 4.1 The retail and logistics domain
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causes a big TFT display to show an announcement for a 30 % discount on wine for anyone

buying cheese. Salomée is happy to return and buy a bottle of wine she had considered too

expensive earlier.

In parallel, John and his crew have to struggle with the always busy Saturdays. They

have to replenish the empty shelves and need to know what the customers need next.

Cameras on the ceiling and other ways of understanding the customers support them,

helping them to be more efficient and provide the best services to the customers.

Some automatic processes simplify the staff’s tasks. The orchids (delivered by Ted)

have sensors attached to them that monitor environmental features critical to the quality of

the flowers. The sensors send this information to the price tags to enable automatic price

adjustment according to product quality. Since the air conditioning in the store is currently

not set up correctly, the orchids’ price is lowered by 10 % due to a rise in ambient

temperature. Continuing her shopping, Salomée passes the orchids, sees how beautiful

they are, and to her surprise, realises there is a discount on them as displayed on the

electronic shelf labels. She immediately takes one as a present for her neighbour who loves

flowers. As the supermarket is crowded today, she uses her IoT phone to participate in a

virtual queuing system at the checkout, meaning that she can browse the shelves while

already being in the queue for checkout.

After Salomée has finished grocery shopping and is about to return home, she receives a

notification on her IoT phone telling her that Robert, her father, has used his last ampoule of

insulin. The notification recommends that she stops at a pharmacy to buy new medication.

Salomée is glad to see that her IoT phone can show her the location of the closest pharmacy

in the area.

She enters the pharmacy and picks up a package of insulin ampoules. The clerk scans

the medication and is asked by the local pharmacy software to ask for Salomée’s health ID

to verify that she is allowed to buy this kind of drug. Salomée hands over her health ID and

when the clerk scans it, the software confirms that Salomée is permitted to buy the

medication.

In summary, this storyline gives us an impression of how IoT-A components can

help consumers and retailers to handle or manage daily challenges. It shows that

IoT affects the whole supply chain: starting with the production site, through

transport and retail, up to the customer, IoT can facilitate the whole process and

improve the service.

4.2 Introducing the ARM with a Recurring Example

(Logistics)

The ARM itself – and therefore this description as well – has a certain complexity.

In order to ease the process of understanding the overall concepts and the different

components that make up the ARM, we will exemplify concepts of the ARM with a

“recurring use case” scene (also known as a “red thread”) throughout the book. This

allows us to complement the sometimes abstract and top-down discussions of ARM

concepts with a real, tangible use case.

We have selected a modification of the specific IoT-A use case scene of

“Transport monitoring with smart load carriers” that can be found in (Fiedler

et al. 2012), because the issue of transport monitoring in logistics is familiar to
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many readers and offers aspects that are relevant for basically all components in the

ARM, while at the same time not being too complex itself.

The “Transport monitoring with smart load carriers” use case scene shows how

live sensor monitoring of smart load carriers can prevent the goods transported from

being damaged due to environmental influences. The load carrier is equipped with

sensors and can communicate with other devices via wireless radio technology.

With this hardware, every load carrier continuously measures its environmental

parameters and sends all measurements via the embedded event service to the

mobile phone of the truck driver who has subscribed to this service.

The business value of the scene is clear: as around 20 % of perishable goods

never reach the consumer, but are disposed of beforehand, either in the store or in

the supply chain, the utilization of IoT sensors is an interesting concept for

implementing quality control for perishable goods and thus reducing waste and

increasing margin gains at the same time. In transportation, there is a huge potential

for innovative logistics models, such as rescheduling at distribution centres based

on the estimated quality of the goods in order to reduce waste and finally get the

products to the consumers in good shape (see Fig. 4.2).

To make the use case description more concrete and easy to grasp, we present the

use case from a user’s perspective. This description supplements the specific IoT-A

scene with security features:

Ted is a truck driver transporting highly sensitive orchids (can be substituted with any

perishable goods) to a retail store. After loading the orchids on his truck, he attaches an

array of sensors to the load carriers in order to measure the temperature. While he is driving,

Ted gets hungry and decides to stop and have lunch. He parks the truck at a resting spot,

turns off the engine and goes into a nearby restaurant. Unfortunately, Ted forgot that by

turning off the engine, the air conditioning for the transported goods (the highly sensitive

orchids) shuts off too, and since it is a very hot day, the temperature inside the truck starts to

rise. When the temperature reaches a predefined critical level inside one of the load carriers,

one of its sensors notices this and sends an emergency signal to Ted’s IoT phone. Due to its

delicate nature, this signal cannot be received by the phones of other drivers.

On the IoT phone’s display, Ted can now see that the orchids in load carrier number

6 are in danger due to a high temperature. He therefore rushes back to the vehicle and turns

the air conditioning back on. The IoT phone also keeps track of any alert messages it

receives from the load carriers and saves this message history for future inspection in a way

that cannot be altered. When the truck reaches the retail store for delivery, the sensor

history is transferred to the store’s enterprise system and the sensors authenticate them-

selves as not having been tampered with.

4.3 Use of the ARM in the Scene “Sensor-Based Quality

Control” (Retail)

Another short example shows how sensors monitor perishable goods in a store. The

sensor infrastructure measurements are used to estimate the quality of a rare and

expensive form of Chinese orchid. Depending on the luminance, humidity, and

temperature of the environment, the estimated future quality of the orchids is
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determined and prices are reduced, even before a perceivable degradation of quality

occurs. By applying this sensor-based quality control and combining it with

dynamic pricing, the store can ensure that the goods are sold before quality

degradation is likely to occur.

From a user’s perspective this scene is as follows:

This Saturday, Salomée decides to try out the new supermarket that opened recently. As she

enters, she is positively surprised by its spaciousness and its calm atmosphere. Her mobile

shopping application points her to a special offer of non-food items, namely rare and fragile

orchids from China.

She immediately thinks of her neighbour, Heinrich, who loves flowers and would

appreciate them as a gift from her. Just as she approaches the shelf with the orchids, she

sees their price going down by 10%. Happy about the price reduction, she immediately

picks an orchid and continues shopping.

From a business and industry perspective, the scene demonstrates two important

retail-related concepts: dynamic pricing and quality control of perishable goods.

Dynamic pricing as a real-time tool for price optimization strategies has always

been crucial for profit maximization. In contrast to the state of the art, dynamic

pricing in the use case featured is not performed based on static information such as

best before end dates in the transaction data of the backend Enterprise-Resource-

Planning (ERP) system, but is based on real-time IoT data gathered from a sensor

infrastructure.

Fig. 4.2 The recurring example (“red thread”)
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4.4 Storyline of the IoT-A Use Case “IoT in Health and

Home”

Leaving behind the retail and logistics domain, we now introduce the second use

case domain, health and home. This domain focuses more on human-related

processes in the IoT. The patient’s related perspective of the complete day-in-a-

life scenario is as follows:

After having enjoyed a nice dinner with his daughter Salomée the night before, 55 year old

Robert wakes up in the morning. Robert is proud of his daughter, with whom he has good

contact. It’s always nice meeting up with her, as Salomée has a lot to talk about, which

reminds him a little of himself when he was younger and more healthy. Robert suffers from

high blood pressure and has type II diabetes, and since he has already suffered from one

heart attack, he is considered a high-risk patient. He is participating in a program organized

by his health insurance company – the program monitors his health continuously and

remotely. As his wife died a while ago, Salomée is registered at the health insurance

company as a family member who supports Robert with his housekeeping and simple

medical care. This relationship is stored in Robert’s electronic health record (EHR).

This morning, Robert is still thinking about the things Salomée was talking about the

night before, and he leaves his IoT phone behind in his bedroom. The IoT phone is Robert’s

new IoT-capable smart phone which Salomée has told him a lot about. Normally, Robert

carries his IoT phone everywhere he goes. A backend system reminds him to take medical

measurements in a daily routine, usually three times a day. Now, Robert cannot hear the

reminder alarm. Since the alarm is not acknowledged, the system looks for nearby IoT

devices such as lights or buzzers in the vicinity of Robert and uses those devices to attract

his attention. Robert sees the lights flashing in his living room and instantly remembers

what this means, as it has happened before. He goes to his bedroom and picks up the IoT

phone to acknowledge the alarm.

He is guided through the measurements he has to take by the application on his smart

tablet. He has to measure his blood pressure, heart beat, blood glucose level, current weight

and give an indication of the activity he was performing immediately before taking the

measurements. All measurements are stored in the system and are analysed automatically,

with a notification sent to his doctor if any values are outside the normal range. The system

calculates the amount of insulin he must inject. As Robert has to take more insulin than

usual he takes his last NFC-tagged ampoule of insulin out of his medicine cupboard and this

action is recognised immediately. The insulin stock level in Robert’s medicine cupboard is

tracked, and as soon as it reaches a predefined refill level, an alarm is raised. Salomée’s IoT

phone is notified to advise Salomée to buy insulin on behalf of Robert at a nearby pharmacy

as she is registered as a supporting family member. After Robert takes his insulin dose, his

electronic health record is updated accordingly.

Later on, Robert suddenly feels lightheaded and he presses a panic button he is wearing

as part of a bracelet. The system detects that his mother, Jane, who he lives with in the same

flat, is nearby and notifies her of the situation. Jane finds Robert and sees that there is no

need for further action since he has already eaten a candy bar he always carries with him.

In the afternoon, Robert leaves his flat. He is driving to visit his daughter when he is

involved in a car accident. The other driver must have overlooked him in the bad weather

conditions. Luckily, the acceleration sensor of Robert’s IoT phone instantly recognizes that

something dangerous may have happened and queries his condition from his body sensors.

The devices agree that Robert is in danger and, after a short time during which Robert can

confirm he is safe, an emergency message is released, sending the location data of where the

dangerous condition arose as well as his personal ID to the emergency centre. Using

location-based lookup, the nearest emergency centre is alerted and asked to send an
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ambulance to Robert immediately. The ambulance arrives at the car crash within seven

minutes and picks up Robert and the other driver to take them to a hospital.

Arriving at the hospital, the check-in is quick, even though Robert is unconscious.

Fortunately, the check-in procedures can be performed directly through interactions

between Robert’s identity card or health ID card and the hospital admission desk. The

clerk first looks for Robert’s health ID card but cannot find it. He finds only the identity

card, which he can also use to check Robert in. Using an IoT-enabled mouse, Robert can be

identified by the local hospital software via his national identity number. The software can

be used to grant the hospital access to data from the national identity database that is

required for check-in and also allows the receptionist to look up all necessary medical

insurance data as well as his entire medical file – making it easy to prepare all helpful

information for the doctor beforehand with no time-consuming effort. And again, it pays off

to have signed up for the program as Robert gets precedence over a young man who seems

to have broken his arm but still has to spend time filling in all the paperwork. After the

quick check-in, Robert is looked after by the medical personnel who treat his wounds.

The hospital Robert is staying at is equipped with the Hospital Information System

(HIS). This system continuously monitors the environmental conditions (temperature,

humidity) in the rooms and prevents incorrect medicine being administered to the patients.

Robert had to stay at the hospital overnight as the doctors had to monitor his reaction to the

medical treatment. The next day during the morning routine, the temperature readings for

Robert and a fellow patient in the same room are too high, indicating a small fever.

However, an analysis shows that since the patients shall only be exposed to constant

environment conditions the related room temperature in turn was too low due to a failure

of the heating system. A facility manager is automatically called by the HIS to repair the

defect.

For further medical treatment and to monitor his condition, a nurse visits Robert twice a

day. The nurse administers medication to Robert as he needs this for the pain caused by his

wounds. In the evening, the nurse scans Robert’s identification tag followed by the tag for

the box of medicine (ampoules) and suddenly an alarm is triggered. The medicine the nurse

is about to administer is the correct one, but the dose in the ampoule is too high due to an

error in the hospital pharmacy. The problem occurred could be resolved by the nurse

administering the correct dose manually and documenting the mismatch in her tablet PC.

4.5 Use of the ARM in the Scene “Remote Patient

Notification” (Homecare)

In the first scene of the health use case, the Remote Patient Care application notifies

the patient of actions they have to perform. These actions can be related to

administering medicine or to taking measurements at a regular interval.

Patients carry personal devices such as smart phones or tablets which can

become IoT-enabled. Applications running on these devices can hence make use

of all functions of the IoT-A compliant platform.

In this scene, the patient is notified by an alarm ringing on his IoT phone. This

alarm is not acknowledged and therefore the application looks for nearby resources

such as light switches or buzzers in the vicinity of the last known location of the

patient and uses these devices to attract the patient’s attention. The scene ends when

the patient finally acknowledges the alarm.
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4.6 Reverse Mapping of the ARM in the Scene “In-Surgery

Tracking of RFID-Tagged Stomach Towels” (Hospital)

This scenario will be used to reverse map an existing real-world implementation to

the ARM. Further details on reverse mapping of the reverse mapping of the

MUNICH platform can be found in Chap. 12. This scenario was included by Prof.

Christoph Thümmler, who is actively contributing in the e-health area. The specific

application was implemented with help of the MUNICH platform by Celestor,

Napier University Edinburgh, Technical University of Munich and Siemens.

This use case scene is about counting stomach towels used inside the abdomen

during surgery on a patient. After the operation, no towels may be left in the

abdominal cavity (the human body) and assurance is required that this is the case.

Therefore, each towel is fitted with an RFID tag enabling it to be tracked during

surgery. Figure 4.3 shows ongoing surgery with the blue stomach towels.

The RFID-tagged towels can be tracked by three antennas from different

positions in the operating theatre:

• Mayo stand (instrument table): towel is unused.

• Operating table: towel is in use.

• Used towel container: towel is used.

Each towel is used in a specific order. Initially, a batch of “unused” stomach

towels is located on the instrument table. Towels which are put into the patient’s

body are “in use”. Finally, towels which are not needed any more after the surgery

are put into the towel container and are attributed status “used”.

Fig. 4.3 The MUNICH scene of tracking stomach towels during surgery © Technical University

of Munich
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Assurance is required that no towels are left inside the patient’s abdomen when

the operation has finished. In more technical terms, this means that after the

operation has finished, all the towels that were “in use” must be in status “used”,

meaning in the waste bin.

From a business perspective, up to 100 stomach towels can be used within one

single surgical procedure. Towels left in the patient’s abdomen can cause severe

and even fatal infections. As there are no official numbers, e.g. no central databases

on towels left in a patient’s body, the numbers differ: studies indicate 6,000–9,000

incidents per year. A business case evaluation example based on its use case can

also be found in Chap. 12.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Part II

A Guidance to the Architecture
Reference Model (ARM)



Chapter 5

Guidance to the ARM: Overview

Stefan Meissner and Joachim W. Walewski

A major goal of this Guidance Chapter is to provide guidance for system architects.

In other words, we aim at explaining the usage of the IoT ARM. One of the major

focus areas of this guidance is the derivation of domain-specific architectures from

the ARM. For other potential usages of the IoT ARM see Chap. 3. The structure of

the technical part B of this book is depicted in Fig. 5.1.

On about 250 pages, this book provides a technical description of the IoT ARM

together with multifaceted guidance to the user of the IoT ARM. In the various

chapters, we cover various interests of the user, such as generating architectures by

aid of the IoT ARM (Chaps. 6, 11 and 12), and how to use the IoT Reference

Models presented in Chap. 7. We also shed light on how other IoT architectures

relate to the IoT ARM (Chap. 12 sections about reverse mapping ETSI M2M, EPC

Global, Ucode, BUTLER), and we also illustrated, how already existing systems

can be mapped onto the IoT ARM (Chap. 12, Sect. 12.6). Notice that by its very

nature this part of the book is not an insulated part of the IoT ARM, but it provides

many pointers back to the IoT Reference Model (Chap. 7) and the IoT Reference

Architecture (Chap. 8 including Carrez et al. 2013). Also notice that while many of

the Sections of the Chapter are oriented toward the generation of concrete

architectures, they can also be consulted when using the IoT ARM along any of

the other avenues listed in Chap. 3. One example is Chap. 6, Sect. 6.9, which covers

the design-choice process for translating qualitative requirements into view

requirements. This process is not only of importance for the generation of concrete

architectures but comes also to pass when identifying the differences between

architectures (Chap. 3, Sect. 3.5), outlining avenues toward interoperability

(Chap. 3, Sect. 3.6), and generating system roadmaps (Chap. 3, Sect. 3.7).
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5.1 Chapter Structure

As you can see in Fig. 5.1, the technical part of this book consists of seven chapters

in total. The starting point to guide and architect through the development of

concrete architectures based on the ARM is Chap. 6, “Process”. Chapters 7 and

8 describe the ARM specification by their IoT Reference Model and IoT Reference

Architecture. Adjacent to Chap. 7, “IoT Reference Model” you will find the

Chap. 9, “Reference Manual” in which the usage of the respective models is

explained further. For guidance on the IoT Reference Architecture Chap. 9 provides

material about the usage of perspectives. Typical management and service-centric

scenarios are illustrated in Chap. 10, “Interactions”. Chapter 11, “Concrete Archi-

tecture” illustrates the process of creating a domain specific concrete architecture

along the process described in Chap. 6 for an example use case. The technical part

of this book is concluded by Chap. 12, “Testimonials” that contains reverse

mappings to IoT related standards and initiatives as well as an example for a

business case evaluation of an IoT enabled use case.

5.1.1 Chapter 6 “A Process for Generating Concrete
Architectures Process”

Provides the reader with detailed guidance on how to derive concrete architectures

from the IoT ARM as briefly introduced in Chap. 3. It presents the process steps

architects need to follow in order to generate an IoT architecture. That chapter also

contains extensive treatises on how to use the IoT-A unified requirements (UNIs;

see [Appendix, requirements]); on the common contents of an IoT threat analysis;

and, last but not least, on how qualitative requirements are translated into design

choices concerning their impact on designing the functional view, the information

view, and the deployment view (see Chap. 8). Furthermore it is analysed in that

chapter how compatible the presented IoT architecture generation process is with

other well-known architecting methods.

5.1.2 Chapter 7 “IoT Reference Model”

Contains several sub-models the IoT Reference Model is made of, such as the IoT

Domain Model, the IoT Functional Model, the IoT Information Model, the

IoT Communication Model, as well as the IoT Trust, Security, Privacy Model.

The IoT Reference Model provides the concepts and definitions on which the IoT

Reference Architecture (see Chap. 8) can be built.
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5.1.3 Chapter 8 “IoT Reference Architecture”

Provides architectural views and perspectives that are relevant for IoT systems.

After a short introduction about views and perspectives the chapter presents the IoT

Functional View, the IoT Information View and the Deployment & Operation View

of the ARM. As explained in Sect. 8.3 of that chapter, the functional view of a

concrete architecture typically consists of three viewpoints: functional decomposi-

tion (viz. the logical structure), interfaces, and behaviour. In Sect. 8.4.1 of Chap. 8,

we provide an overview of the functional decomposition of an IoT system. More

information on this logical viewpoint is provided in Carrez et al. (2013) of the ARM

[Use cases, sequence charts and interfaces], and the interfaces of the FCs proposed

in the functional decomposition are detailed in the same Appendix. That Appendix

also contains a rudimentary interaction analysis, viz. illustrations of how the FCs

can be interacted with and what the outcome of each interaction is. Chapter 8 also

presents the architectural perspectives of the ARM which address quality aspects of

the system to be designed, e.g. scalability and availability.

5.1.4 Chapter 9 “Reference Manual”

Contains reference manuals on the IoT Domain Model, the IoT Information Model,

the IoT Communication Model, and the usage of Perspectives. While the Process

Chapter outlines, how and when the modules of the IoT ARM (for instance the

information model) can instruct the architecting process, the pertinent Section in

the Reference Model, viz. Section 7.4, might not contain sufficient information on

how to use the models of the IoT ARM. The respective reference manual section

complements the guidance on the use of the model.

5.1.5 Chapter 10 “Concrete Architecture”

In order to further elucidate the guidance provided in the Process chapter, we

discuss for a concrete example (pay-by-license-plate parking) how the IoT ARM

can be utilised for the generation of a domain-specific architecture.

5.1.6 Chapter 11 “Interactions”

As can be appreciated by looking at already existing IoT systems, the operation of

such systems generally involves sequences of FC interactions. Since the IoT ARM

covers a huge range of usage domains and an even larger range of architectures that
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can be derived from it, it is, unfortunately, beyond our capabilities to detail every

possible FC interaction sequence for every possible architecture. However, in order

to provide the reader at least with a general understanding of how such interactions

can look like, we provide analyses for some few usage scenarios. These scenarios

are divided into management-centric and service-centric scenarios.

5.1.7 Chapter 12 “Testimonials”

As discussed in Chap. 3, generating domain-specific architectures is not the only

purpose of an ARM. Another important use is the identification of differences in

architectures (see Chap. 3, Sect. 3.5). In Chap. 12 we provide examples for this

usage. We looked at two IoT-related standards (ETSI M2M, EPC Global, uCode,

and BUTLER), and we also showed how an already existing system, viz. the

MUNICH platform, can be analysed with the concepts provided by the IoT

ARM. The numerous examples provided in Chap. 12 are meant as an inspiration

for how the reader can perform her own reverse mapping of existing architectures

onto the IoT ARM. Furthermore, the high degree to which the mapping of our new

framework onto already existing architectures and systems actually works is an

initial indication for both the comprehensiveness and the utility of the IoT ARM.

Additionally Chap. 12 presents a business evaluation example for an IoT enabled

use case in the healthcare domain.

5.2 ARM History and Evolution

This third and final full version (v3) of the IoT Architectural Reference Model

builds upon the intermediary version (v2) release end October 2012. Following its

dissemination a third feedback process took place and eventually led to this version,

where much technical improvements and new material can also be found. Therefore

this version is not only a great improvement to the former full version 2 but also a

consolidated version that takes into account many received comments (spread

among three distinct feedback processes) from external stakeholders, from external

technical experts, from internal partners involved into the other technical Work

Packages of IoT-A and finally from the projects involved in the IERC AC1 activity

chain on Architecture.1

Compared to IoT ARM v2, the technical improvements touch all aspects of the

Models, Views and Perspectives – respectively found in Chaps. 7 and 8 – already

introduced in former versions of the ARM. But it is also worth mentioning that

Chaps. 6, 9, 10, 11, and 12 on Guidance has been drastically improved; for instance

1 http://www.internet-of-things-research.eu/activity_chains.htm
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it provides now also a very precise and comprehensive description of the whole

process about deriving a concrete architecture out of the ARM (see Chap. 6). This

chapter is a central part of this ARMmaster piece (300+ pages); it is fully dedicated

to making this ARM useful to IoT system developers, by providing best-practice

guidance and a large set of Design Choices that provide the system architects with

concrete option when designing a concrete architecture out of the IoT ARM. This

chapter also provided some elements of validation materialised through a “reverse

mapping” exercise, applied to existing IoT Architectures.

As said above, this book is the final version of the ARM from the IoT-A “era”.

Still the project reckons that the ARM should live longer than just those 3 years

project life-time; ensuring the sustenance of the ARM is therefore a major concern

for IoT-A, and something that we definitely must organise and drive.

The IoT ARM is not a “Style exercise” aiming at staying on the corner of

someone’s desk. In order to fully reach its objective, which is wide-spread adoption

by IoT system architects, the IoT ARM needs to be challenged even more and

eventually improved. Only then it will reach its full maturity. From November 2013

onward, the ARM will be taken care of by the IoT Forum (which was officially

founded in June 2013), within the “Technology” Working Group. Through this

work, we will identify specific ARM “profiles” and make relevant design and

technology choices needed to specify the profiles (e.g. “Semantic Interoperability”

profile with a number of related technologies, functional components and

interfaces, languages, semantic information model, etc.).

It is of the utmost important that industrial actors step into this activity and drive

it, as they are the ones which will put the ARM into practice in the context of their

own businesses. Sustaining the ARM and specifying profiles is a compulsory step

on the path leading to standardisation.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 6

A Process for Generating Concrete

Architectures

Mathieu Boussard, Stefan Meissner, Andreas Nettsträter, Alexis Olivereau,

Alexander Salinas Segura, Matthias Thoma, and Joachim W. Walewski

This chapter addresses the question of how to generate concrete architectures with

the IoT ARM, which is one of the many uses to which an architectural reference

model can be put (see Chaps. 3 and 4). This topic was already touched upon in

Section “Generation of Architectures” in Chap. 3, but it is covered in greater depth

in this section.

Note that we do not prescribe any specific architecting methodology for

generating concrete architectures. Instead, this section outlines how and where
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during the architecting process the IoT ARM can provide help and input for the

architect. We return to this topic of “methodology agnosticism” in Sect. 6.2.

As can be seen in Chap.3 Figure “Process for the generation of concrete

architectures”, the IoT ARM informs the engineering strategies for the design of

a concrete IoT system, and the transformation rules are derived from the entirety of

the IoT ARM. Also, the IoT ARM informs the requirement-generation process. In

this section we are focusing in greater detail on the generation of requirements and

on the transformation of these requirements into a concrete architecture. Notice that

a concrete architecture implies that it meets a selected use case and application

scenario.

6.1 Process Steps to Generate IoT Architectures

What are the main building blocks of a domain-specific architecture that adheres to

the IoT ARM framework? The answer is: architectural views. As discussed at the

beginning of Chap. 7 and Sect. 8.1 “Short Definition of Views and Perspectives” in

Chap. 8, we chose to arrange a system architecture according to views, with the

totality of all views constituting the architecture description. Figure 6.1 outlines

how the views are related to each other and how they contribute to the system

design. All views shaded yellow are covered in detail in the IoT Reference

Architecture (see Chap. 8) or in this Section. These views are:

• Physical Entity view

• Deployment view

• Operational view

• IoT Context view

• IoT Domain Model

• Functional view

• Information view

In this figure:

• In dark red: views that are treated in Chap. 8 and in Carrez et al. (2013) or in this

section;

• In orange: related models (see Chap. 7).

Note that since the IoT Domain Model also encompasses the role of users, it

actually implicitly covers the enterprise view as advocated by RM-ODP (Raymond

1995) (see Chap. 3 for a discussion of the enterprise view and Sect. 7.3 for a

discussion of roles in the IoT Domain Model). Note also that although the other

views shown in Fig. 6.1 (“. . . view”) are not covered in the IoT ARM, this does not

imply that they are not important for generating concrete architectures. This
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becomes clearer when we look at the architecture generation process in more detail.

Figure 6.2 outlines the activities involved in generating an architecture. These are:

• Create Physical Entity view

• Create IoT Context view

• Requirements process

• Derive other views

Fig. 6.1 Relationship of architectural views (based on Fig. 15-1 in Rozanski and Woods 2011)

Create Physical-Entity
View

Create lot
Context View

Derive other viewsBusiness goals

Requirement process

Fig. 6.2 UML activity diagram of the IoT architecture generation process (generation of

requirements and transformation of requirements into a concrete architecture)
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In this figure, dashed arrows represent dependency, while solid arrows represent
control flow (can be understood as either the next step or expressing a logical

contingency of the target on the source).

As you can see, the creation of the Physical Entity View and IoT Context View

(see Fig. 6.1) are explicit activities in the architecting process. All other views are

comprised in the activity “derive other views”. Before we look at each of these

activities in more depth, let us return to the question of architecture methodologies

and how the IoT ARM relates to them.

6.2 Compatibility with Other Architecting Methodologies

Figure 6.2 could give rise to the impression that we prescribe a sequential approach

for generating architectures: (1) Define the scope, i.e. the business goals; (2) Create

the Physical Entity View and the IoT Context View; (3) Define requirements; and

(4) Generate the remaining views. This type of sequential approach to architecting

lies, for instance, at the heart of the waterfall approach (Royce 1970). This inter-

pretation of Fig. 6.2 is indeed true if all arrows in Fig. 6.2 are understood as arrows

in time. However, they can also be understood as logical dependencies. For

instance, in order to conduct the requirements process, we need a set of formulated

business goals, an IoT Context View and a Physical Entity View. If we interpret the

process described in this Section in the latter way, it can be mapped onto a plethora

of popular architecting methodologies, such as Model-Driven Engineering (MDE)

(Miller and Mukerji 2003), Pattern-Based Design (Gamma et al. 1994), and the

Spiral Model (Boehm 1988).

The only limitation we see is in the choice of views. Some architectural

methodologies prescribe different sets of views. Some of them, for instance the 4

+1 approach, lack some of the views we prescribe (mainly the information and

context views) (Kruchten 1995). In this case we could choose to embed the 4+1

framework into the process described in this Section. On the other hand, other

methodologies comprise views that are not part of the IoT ARM set. In this case, the

option is to integrate the IoT ARM views (and the manner in which they are

derived) into this other methodology.

6.3 IoT Architecture Generation and Related Activities

Since neither the IoT Context View nor the Physical Entity View are addressed in

the IoT Reference Architecture (see Chap. 8), and since they are integral parts of the

architecting process (Fig. 6.2), we need to look more closely at both of these views

and understand how they inform the architecting process.
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6.3.1 Physical Entity View

Before we describe the Physical Entity View we need to discuss what it is not:

i.e. the “traditional” physical view in system architecting – a well-established view

in software system architectures (see, for instance, Kruchten 1995). “It is concerned

with the topology of software components on the physical layer, as well as the

physical connections between these components. This view is also known as the

deployment view.” (Wikipedia 2013a; 4+1 view). As Fig. 6.1 implies, we are not

using the term physical view for the deployment view in order to avoid semantic

tension with the Physical Entity View.

The Physical Entity View does of course refer to the Physical Entity in the IoT

Domain Model (see Sects. 7.3.2 and 9.1). The Physical Entity is “any physical

object that is relevant from a user or application perspective” (Appendix). For a

concrete use case and application scenario, this is of course a well-defined set of

physical objects. For instance, in the recurring example (see Sect. 4.2), the Physical

Entities are the orchids that are transported in a truck and these orchids are subject

to environmental monitoring.

It is obvious for many reasons why the architecture of an IoT system also needs

to include a Physical Entity View. Firstly, the dimensions, the distribution and the

properties of the Physical Entities have various implications. Examples of these

implications are:

• Devices: the sensors/actuators needed and where are they situated; their

relationship to the Physical Entity (directly mounted; touching; remote but in

sight . . .), etc. Note that the device choice is influenced by the Physical Entity. In
the recurring example, it is too expensive (in relation to the market price of the

Physical Entity) to measure the temperature of each orchid. Instead, sensors that

measure the air temperature are situated inside the cargo area. It is then assumed

that the air temperature equals that of the orchids. In other words, the Physical

Entity model also needs to include a sensing and/or an actuating model.

• Information view: what physical quantities are monitored by the sensors; how

are the quantities related to each other, etc.? In the recurring example the

quantity that is handled by the system is the air temperature in the cargo area

of the truck.

Secondly, in some use cases, the devices might be incorporated inside the

Physical Entity, which can have a range of implications for the IoT system. For

instance, if sensors are deployed inside a human body and the wireless sensor signal

is to be relayed to an outside reader, we need to understand the in-body propagation

characteristics of this signal. It may be the case that the strong attenuation caused by

the body tissue calls for a scenario in which signal repeaters are deployed. This has

implications for the communication aspect of the architecture (! functional view).

Thirdly, the type of the Physical Entity – in combination with the application

scenario – can have implications for the Trust, Security, and Privacy Perspective

(see Sect. 8.2.3). Let us look again at the recurring example. Since orchids can be
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very expensive, and since this can increase the likelihood of the truck being raided

while, for instance, parked during a coffee break or overnight, it is paramount that

the wireless signal emanated by the orchid monitoring system cannot be identified

as such nor be deciphered. If this were to happen, it could, for instance, inform a

burglar how many orchids are in the shipment.

Although the Physical Entity View is obviously very central to the IoT ARM, it

is not covered in the IoT Reference Architecture. This apparent contradiction is

attributed to the overwhelming range of Physical Entities in the IoT: they can range

from the nano- and micrometre scale to truly macroscopic dimensions (e.g. glacier

monitoring); they can be gaseous or liquid; they can be animate or inanimate or a

mixture of both; they can be stationary or mobile. “Mobile” can include walking,

running, moving on wheels, flying, coasting under water, flying through interplan-

etary space, and so on. Also, there is no ONE physical quantity to be monitored – in

one use case it can be the temperature of orchids, in another the occupancy of a

room (automated light switch), in another case blood sugar levels. This overwhelm-

ing range of Physical Entities provides for the generation of generic yet compre-

hensive viewpoints and thus models for the Physical Entity View. This lack of

“least common denominator” is the reason why it was not possible to devise

Physical Entity models at the reference architecture level and thus integrate them

into the IoT ARM.

The user of the IoT ARM is advised to use his own domain understanding to

devise the Physical Entity view. Where required, pertinent models (for instance,

freshness vs. room temperature model for orchids) either need to be developed by

the architecture team or they can be extracted from outside sources (literature,

standards, etc.).

6.3.2 IoT Context View

As indicated in Fig. 6.1, the IoT Context View consists of two parts: the context

view and the IoT Domain Model. The context view is an architecture view that is

generated at the very beginning of the architecture process. It describes “the

relationships, dependencies, and interactions between the system and its environ-

ment (the people, systems, and external entities with which it interacts)” (Rozanski

andWoods 2011). To be more specific, the context view describes “what the system

does and does not do; where the boundaries are between it and the outside world;

and how the system interacts with other systems, organizations, and people across

these boundaries” (Rozanski 2013). The concerns addressed by the context view are

(Rozanski 2013):

• “System scope and responsibilities

• Identity of external entities and services and data used

• Nature and characteristics of external entities

• Identity and responsibilities of external interfaces
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• Nature and characteristics of external interfaces

• Other external interdependencies

• Impact of the system on its environment

• Overall completeness, consistency and coherence”

Note that at least one of the concerns, i.e. “impact of the system on its environ-

ment” also applies to the Physical Entity, and investigating this concern thus

requires input from the Physical Entity View (see Fig. 6.2).

A detailed example of a context view, including a context diagram and a

description of the system components, can be found in Chap. 11.

Note that the context view focuses mainly on what lies outside the system and

how the system interfaces to the outside world. This is sufficient for “generic”

architecting processes, but for the IoT domain, not only do we know more about the

system to be devised, we should actually also gather more information about the

system at a very early stage in the architecting process. Why? Firstly, since IoT

systems have many aspects in common by virtue of operation in the same domain, a

lot of concepts are recurring concepts. One of the goals of the IoT ARM is to avoid

“reinventing the wheel”, namely to avoid discovering, analysing and naming the

very same aspects every time an architecture is generated. In order to permeate the

entire architecture description with this understanding, we prescribe its use early on

in the architecting process. This has advantages not only for the architecture

generation itself, but also for other usages, such as architecture reuse. If common

concepts, semantics, structures and relationships are fused into the core of an

architecture description, this makes it much easier to reuse aspects of the architec-

ture description or even the entire architecture. This can, for instance, be interesting

for architecture development within a technology roadmap. Also, trust, security,

privacy and safety are contingent upon system borders and thus on the

functionalities and hardware that reside inside and outside the system border. The

IoT Domain Model readily comprises both the “inside” and the “outside” of a

system, and thus provides a deeper insight into relationships between the system

entities and also interactions with the “outside world”. For all of these reasons, it is

beneficial to conduct a domain model analysis before embarking on actions such as

threat analysis and requirements engineering.

So what other reasons are there for expanding the context view “inward”,

namely also covering the system itself? Why not just add a view to the architecting,

namely the IoT Domain View, to the architecture description? The main reason is

that both models are complementary and need to be applied early on in the

architecting process. This is why we chose to pair the two system views. Note

that the context in the IoT Context View has an extended meaning to that in the

“traditional” context view, where it alludes to the context in which the system finds

itself in relation to its surroundings. The IoT Context View expands on this by also

including the entities within the system and by setting each of these entities in

relation – context! – to the other entities.

The IoT Domain Model, on the other hand, provides a semantic and ontological

overlay for the context view in that it provides guidance on which entities make up

an IoT system and how they relate to each other. It also helps to identify system

boundaries, which is one of the main questions to be addressed in the context view.
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For more information on the IoT Domain Model see Sect. 7.3, and for guidance on

how to generate a concrete IoT Domain Model see Sect. 9.1.

Note, that since all are listed and characterised in the IoT Context View, this is

also the natural place for where to address the roles of all entities. These roles can

for instance, be categorised as permissions, prohibitions, and obligations. For more

information on these categories the reader is referred to elsewhere in the literature

(Raymond 1995). For a discussion of how these roles figure into the system

composition see Sect. 7.5.2.1).

An exhaustive discussion of the context view is available in literature (Woods

and Nick 2008), but in order to enable immediate usability of the IoT ARM, we

provide a short summary below.

6.4 Requirements Process and “Other Views”

6.4.1 Requirements Process

So far, we have shed light on two of the views that constitute an IoT architecture:

Physical Entity View and the IoT Context View. Now we will discuss the remaining

mandatory activities for generating an architecture: the requirements process and

the derivation of “other views” (see Fig. 6.2). Figure 6.3 illustrates the architecture

activities in more detail. How exactly the IoT ARM contributes to each of these

actions is covered in the next Section.

As indicated in Fig. 6.1 and discussed in the previous Section, the context view is

expanded by the IoT Domain Model. Therefore, both the generation of the “tradi-

tional” context view (see Sect. 4.1) and the expansion of this view in the IoT

Domain Model are included in the creation of an IoT context view. As also

explained in Sect. 6.4.1, the Physical Entity View provides input for the generation

of the IoT context view.

With the input from the Physical Entity View and the IoT Context View, we can

conduct a threat analysis. This type of analysis identifies potential weaknesses of

the system use case envisaged, and it also identifies design choices and in some

cases even functionalities that mitigate the risks identified. This analysis also

provides guidance for the requirements engineering action (the security risks that

need to be addressed by requirements).

The requirements process consists of many intermediate steps. The requirements

engineering action generates a list of references that belong to one of three types:

view requirements (i.e. requirements that directly inform one of the architectural

views), qualitative requirements and design constraints. Note that we categorise the

Unified Requirements (see online at http://www.iot-a.eu/public/requirements)

along different dimensions (functional requirement, non-functional requirement,

. . .) in order to increase the usability of UNIs for users who are not familiar with the
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IoT ARM taxonomy of requirements. The translation of the UNI requirement types

into IoT ARM process types is described Sect. 6.7.

In the prevailing approaches toward translating qualitative requirements into

view-related requirements, we usually rely on a set of view requirements that is

already available. An example of this type of approach is Quality-Function Deploy-

ment (Erder and Pureur 2003), which, amongst other things, is a central part of the

ISO 9000 standards suite (ISO 2009). The assumption of an existing set of view

requirements is a reasonable one for straight-forward product extensions or the

design of simple systems, but for most IoT systems, this type of approach is not

feasible. In other words, qualitative requirements cannot be translated directly into

view requirements. In typical IoT systems, not only is complexity high, but there is

often a plethora of options for achieving the desired performance of the system to be

built. In other words, there are many sets of view requirements that meet the same

set of qualitative requirements.

In order to overcome this design roadblock, we devised a step-by-step process

through which view requirements can be inferred from qualitative requirements.

The first step is to formulate the rationale of the qualitative requirements as business

principles. For a detailed discussion of business principles, see (Rozanski and

Woods 2011). This step is followed by identification of concerns and related

activities. This action includes identifying each of the qualitative requirements

with one or more architectural perspectives. The next step is to choose design

tactics and then make design choices (covered in more detail in Sect. 6.4.1.8).

If the requirement is a design constraint, then it directly informs the design

choice action.

From the design choices made, it is then possible to formulate implications for

the functional view and other views (see Sect. 6.4.1.8).

Fig. 6.3 IoT architecture generation (expansion of Fig. 6.2)
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If the requirement is of the view type, it can later be mapped directly onto the

architecture description. We have found it very helpful to initially map functional

view requirements onto the functional decomposition (see Sect. 8.1) throughout

the requirements process. This makes it easier to track what parts of the system

architecture are already covered by the requirements and whether more

requirements are needed.

Salient inputs to the requirements process come, of course, from the Physical

Entity View. This view, among others, provides the requirement engineer with

information about special features of the “things” and the device-thing relationship

(see Sect. 6.4). Another important source of information is the IoT Context View.

It not only provides an overview of the system envisaged, but, thanks to the IoT

Domain Model, it also provides the requirement engineer with information about

the entities that are part of the system, what they are called, and how they relate to

and interact with each other.

6.4.2 View Derivation

The remaining views are addressed in the activity “Derive other views”. As shown

in Fig. 6.3, this activity consists at least of the derivation of the functional view, the

information view, the operational view and the deployment view. Where needed,

other views can be addressed. Examples of such views are the concurrency view,

the enterprise view and the engineering view (Wikipedia 2013b; view model). As

indicated in Fig. 6.3, this activity is contingent on the requirements process and it is

also guided by the Physical Entity View and the IoT Context View. For instance,

the IoT Context View might indicate that, due to the different ownership of parts of

the system, a communication firewall is needed (! functional view). In another

example, the Physical Entity View might indicate that, due to the fragility of

the Physical Entity, all devices attached need to be installed all at once

(! deployment view).

In order to accommodate different architecting methodologies, we have detailed

the dependence of each of the actions in Fig. 6.3 on each other in the crib sheet in

Table 6.1. This Table provides an overview of IoT architecting activities and

actions (left columns) and what relevant input one derives from other IoT

architecting activities and actions (horizontal).

Figure 6.3 gives a detailed view of the actions taking place within each activity

(Create context view; Requirement process; Derive other views).

• In Red: actions that are particular to the IoT-A architecting framework and that

directly contribute to the architecture documentation;

• In Orange: actions that are not unique to the IoT-A architecting process, but that

enjoy an emphasis in the IoT-A framework;

• In Green: other activities and documents that directly contribute to the architec-

ture documentation;

• In Blue: actions that are not unique to the IoT-A architecting process, but that

enjoy an emphasis in the IoT-A framework

• <<flow>>: information flow into a document.
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6.5 IoT ARM Contributions to the Generation of

Architectures

After the previous detailed overview of the architecting actions related to the

generation of an IoT architecture, we are now finally ready for a discussion of

how the IoT ARM contributes to the generation of specific architectures. As already

outlined in Sect. 6.2, we do not prescribe a particular methodology for the genera-

tion of the architecture. The choice of a particular methodology is contingent upon

factors such as the organisational structure of the architecting team, its “architecture

history”, international standards or agreements that need to be adhered to, etc.

Rather than prescribing a particular methodology and thus limiting its application

range, the IoT ARM provides support and guidance for almost all of the actions and

activities that are part of any architecting process (Fig. 6.4).

This figure gives a detailed view of the actions taking place within each activity

and what parts of this document contribute to these activities and actions. The

rectangular dark-red boxes represent sections in this document while <<flow>>
represents information flow.

Table 6.2 discusses in more detail what each part of the IoT ARM contributes

exactly to each of these actions and activities. This table also is intended to serve as

a crib sheet for the architecting process.

6.6 Minimum Set of Functionality Groups

One question that we have often received concerns the least common denominator

in terms of Functionality Groups of architectures that are derived from the IoT

ARM. In other words: what Functionality Groups are part of any conceivable IoT

ARM architecture?

The core aspects of IoT are things and communication. The things, i.e. Physical

Entities (see Sect. 7.3) are accessed through devices, and data etc. pertaining to the

Physical Entities is relayed by means of communication. Physical Entities are

represented by Virtual Entities. Usually, the data is accessed via an application.

Since we stipulate a service-oriented architecture framework in which the resources

exposing data etc. about the Virtual Entities (and hence the Physical Entities) are

exposed by IoT services, the minimum set of Functionality Groups is:

• Application Functionality Group

• IoT Service Functionality Group

• Communication Functionality Group

• Device Functionality Group
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Note that this does not imply that other Functionality Groups (for instance, the

Management Functionality Group) are optional. Rather, it means that for certain

requirement sets these Functionality Groups are not needed.

6.7 Usage of Unified Requirements

6.7.1 Introduction

This section proposes guidelines to system architects on how to use the (already

existing) Unified Requirement list (UNIs) during the Requirements process activity

of their IoT architecture-generation process (Fig. 6.2). Such usage is by no means

mandatory, as Requirement Engineering can be performed following the process

described in Sect. 6.4 – however the UNIs list can serve as a helper tool to both the

elicitation of requirements and to the system specification.

It is well known to system designers that requirement engineering is a crucial

activity in system and software engineering. In the abundant documentation on the

topic (e.g. Hull et al. 2011; Pohl 2010), one can distinguish three main steps where

requirements play a role in designing complex systems: requirements elicitation

(generally based on stakeholders input); deriving the system’s specification from

these requirements; and validating the implemented architecture.

As part of the work on the IoT Architectural Reference Model, UNIs were

inferred and then published at http://www.IoT-a.eu/public/requirements. For more

details on how these Unified Requirements were derived can be found elsewhere in

the literature (Magerkurth et al. 2013). As these requirements do not apply to a

concrete system, but rather to a Reference Architecture and a Reference Model

applicable to all potential IoT systems, the reader needs to keep in mind a number of

specifics before considering these Unified Requirements as input for the process of

architecture translation:

• The Unified Requirement list should be seen as a basis and a living document.

Although it tries to cover the whole spectrum of requirements families that

could be applied to the IoT domain, it cannot be considered to be exhaustive,

as, for instance, future regulation and legislation could impose requirements

unforeseen at the time of publication. Additionally, Unified Requirements are

often formulated on a quite high abstraction level (something largely avoided in

concrete system’s requirement engineering), resulting in requirements that are,

for instance, mapped onto one or several views and possibly perspectives (again,

something that concrete system designers tend to avoid);

• Formulation of requirements expressed by external or internal stakeholders

(description field in the used Volere template) may sometimes apply directly

to the IoT ARM (e.g. UNI.094 “The Reference Architecture shall support any

IoT business scenario”), but in most cases they apply to a concrete system that

can be implemented using the IoT ARM. In that latter case, they express

characteristics on the system that the IoT ARM should enable to specify,
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meaning they require to be interpreted by the reader/system designer to see how

they apply to their own case – hence the wording “the system shall . . .” generally
used. Let us take for instance UNI.021 “The user shall be able to control the

radio activity of the system”: depending on the actual usage of radio communi-

cation, on the role of the user and on the importance of controlling the radio

activity of the system in the concrete architecture, this requirement may be

dropped, or specialised. In any case reinterpreting Unified Requirements is

necessary (more on this in the following);

• Mapping to perspectives/views/functional groups and components is done on

a lowest-common-denominator basis – e.g. it indicates which aspects are defi-

nitely impacted by a given Unified Requirement, but the reader should keep in

mind that in certain (concrete system) specific cases, additional components may

need to be considered. For instance, the Device Functionality Group is out of

scope of the IoT ARM (see Figure “Functional-decomposition viewpoint” of the

IoT Reference Architecture in Sect. 8.2.2.) and is therefore not listed in mapping

of functional Unified Requirements, while it clearly needs to be considered when

devising a concrete IoT system. Another instance is the lack of differentiation of

the data plane vs. management plane in the IoT ARM, as this is a clear design

choice (see Sect. 6.9).

• As pointed out in the ARM document, Sect. 6.4 and for the reasons explained

there, the categorisation of the UNIs does not fully match that of the IoT ARM

process and one needs to map the UNI categories onto that of the process in order

to utilise the UNIs for the generation of architectures. Table 6.3 below provides

this mapping information.

In a nutshell, the reader should keep in mind that the IoT ARM in general, and

the Unified Requirement list in particular, should rather be seen as an inspirational

than as a normative document.

6.7.2 Using Unified Requirements

IoT-A Unified Requirements (UNIs) can be used by system designers at two stages

of their work: requirement elicitation and system specification.

Table 6.3 Translation table for UNI requirement types from and to IoT ARM requirement types

UNI requirement type IoT ARM requirement type Indicated by

Design constraint Design constraint –

Functional requirement View requirement –

Non-functional requirement View requirement Mapping of UNI onto a view

Qualitative requirement Mapping of UNI onto one or more

Perspectives
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6.7.2.1 Requirement Elicitation

UNIs can be used in a number of ways by system designers to identify

“requirements topics” for their concrete system.

First, UNIs can be seen as seeds for deriving or instantiating concrete (precise)

requirements from the broader, more abstract wording of Unified Requirements

(Fig. 6.5- 1). For instance, UNI.018 reads “The system shall support data processing

(filtering, aggregation/fusion, etc.) on different IoT-system levels (for instance

device level)” (see Appendix). Based on this broad formulation, the system

designer may derive his own requirements, identifying what kind of processing,

on what kind of data, needs to happen where in his system.

Second, the mapping of the UNIs to Use Cases, facets of the IoT ARM (Models,

Functional Groups, and Functional Components) or more informal categories can

be used to filter and identify which topics and related UNIs should be considered by

the system designer as potential candidates for instantiation on their own system.

For example, using the web-based list, one can perform a global search on the word

‘communication’ (search all columns box), or filter all requirements categorised

with the tag communication (Category column filter), or those which are sorted

under the Communication Functionality Group (Functionality Group column filter)

to see which UNIs in general apply to a given system.

6.7.2.2 System Specification

UNIs, and in particular their mapping to the IoT ARM, can also be useful to system

designers during the specification phase. By identifying a UNI generalizing an

already identified (concrete) system requirements (Fig. 6.5- 2.a), the various

mapping on the IoT ARM enable the system designer to identify which IoT ARM

components or more generally aspects are impacted by this requirement, and from

there which concrete systems components or aspects need to be investigated

(Fig. 6.5- 2.b). Figure 6.6 below presents this process using UML Activity diagram

representation. Note that the “No corresponding UNI” case induces “regular”

requirement engineering (i.e. without IoT ARM support).

For UNIs mapped on the Functional View, this enables the system designer to

identify candidate functions in the concrete architecture that will be impacted by

the overarching concern formulated in the UNI. For instance, UNI.623 reads

“The system shall support location privacy”. This requirement is mapped on the

Security and Privacy Perspective, which means that the system designer should

consider this Perspective when deriving her own system requirements (more on this

below). This UNI is also mapped onto four Functional Components in three

different Functionality Groups of the Reference Architecture (namely IoT Service,

IoT Service Resolution for the IoT Service FG; Authorisation for the Security FG;

and VE Resolution for the Virtual Entity FG). After identifying how these FCs are

instantiated (or not) in a concrete system, the system designer can use such a

mapping to derive where the considered requirement(s) impact the concrete

architecture.

66 M. Boussard et al.



Similarly, for UNIs assigned to quality aspects of the architecture (captured

through ARM Perspectives), the mapping of UNIs onto design choices mapping

(see Sect. 6.9 allows exploring perspectives and associated design choices that are

impacted by a given UNI, and which therefore should be considered by the system

designer. For instance, UNI.058 which reads “The system shall provide high

availability” is mapped onto the Availability and Resilience ARM Perspective,

and can be instantiated using two Design Choices (namely Cluster by location and

Cluster by type of Resources). A corresponding concrete system requirement would

typically provide more details (such as availability rate, etc.). After identifying

which Perspectives apply (and how) to their concrete system, the system designer

can use such a UNI-to-Perspective mapping to derive which quality aspects of the

concrete architecture are impacted by the considered requirement(s).

6.8 Threat Analysis

As part of the setup of an IoT architecture, risk planning and resulting architectural

decisions are of highest importance. The risk analysis carried out in this section

aims therefore at assessing risks pertaining to the IoT, and at classifying them

Identify UNI corresponding
to concrete system requirement

Retrieve View
mapping for UNI.XYZ

Retrieve Perspective
mapping for UNI.XYZ

Retrieve Models mapping
For UNI.XYZ

Assess applicability of View
mapping for concrete architecture

Assess applicability of Models
mapping for concrete architecture

Assess applicability of Perspectives
mapping for concrete architecture

Identify concrete requirement mapping
on concrete architecture

No corresponding UNI

UNI.XYZ
found

Fig. 6.6 How to use UNI to IoT ARM mapping to identify impacts of a given requirement on a

concrete system architecture – activity diagram
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according to the underlying mechanisms they apply to, the elements they affect, and

the overall criticality they present.

Risk analysis traditionally begins with a definition of the elements that have to

be protected. Then, an analysis of possible threats is conducted. How identified

threats may actually affect elements to be protected, leads to the definition of risks.

These risks have to be categorised, taking into account parameters such as critical-

ity or probability of occurrence.

Various risk-analysis methods have been promoted in the literature, such as the

French EBIOS (Ebios 2010) and OCTAVE (OCTAVE). The methodology for risk

analysis that has been chosen in IoT-A, and that is used in this section, is based on

Microsoft STRIDE/DREAD (Microsoft 2003). This choice has two reasons: first,

this methodology is designed for assessing risks in the field of communications and

information systems; second, it is mostly based on the analysis of architecture

models and communications flows (instead of, for example, partly relying on

experts interviews such as in EBIOS), which makes it a good fit for the ARM.

The reasons for this are twofold. First, IoT, by it very name, encompasses informa-

tion systems and communication. Second, no IoT-A-implementations are available

at the time of writing. Therefore, the analysis has to centre on the Reference

Architecture itself.

This section is organised as follows: first, a list of elements to be protected is

provided. Then, the threats that may affect these elements (risk sources) are

reviewed. The review follows the STRIDE classification. More details on STRIDE

are provided below. The identified risks are then summarised and each risk is

assessed in accordance with the DREAD methodology/metric.

This risk analysis is intended to be used as input for the derivation of

architectures from the IoT ARM and for also for guiding the evolution of such

architectures. By so doing one makes them more resilient against the most critical

risks.

6.8.1 Elements to Protect

What elements need to be protected depends on the considered scenario. However,

the IoT ARM was derived from the synthesis of a wide range of use-case areas, and

identifying elements to be protected becomes rapidly very broad and multi-faceted.

Instead, we decided to focus on the least common denominator of all use-case

scenarios on which the IoT ARM is built. In other words, this analysis only looks at

general elements to be protected, and this study is thus a good but non-exhaustive

starting point for the study of a particular scenario to which the IoT ARM is going to

be applied. The scenarios encompassed by the IoT ARM include:

• Transportation and logistics;

• Smart home;

• Smart city;
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• Smart factory;

• Retail;

• eHealth;

• Energy (Smart Grid).

The following elements to be protected were identified:

• Physical person: This represents the human user. Threats affecting the human

user are usually qualified as relating to ‘safety’ instead of ‘security’. Such threats

may arise if a critical service is diverted or made unavailable by an attacker. An

example for this is a malicious service that returns erroneous information, or

even information specifically shaped to create hazardous situations. The eHealth

scenario is the most critical concerning such attacks. Notice that the level of this

criticality of course depends on the degree of automation. It is likely that most

critical decisions will still require the involvement of a human operator;

• Subject’s privacy: This element represents all information elements that a

subject (either a user or a device) does not explicitly agree to make publicly

available, or whose availability shall be restrained to a controlled set of other

subjects;

• Communications channel: The communication channel itself has to be

protected. Common threats are attacks against the integrity of the data that are

exchanged over the channel. Examples for such attacks are tampering and replay

attacks. The communication channel shall also be protected against attacks

aiming at the routing functionality of the underlying network (black hole,

worm hole, depletion, etc.) (Mathur and Subbalakshmi 2007);

• Leaf devices: IoT-A leaf devices represent the wide variety of IoT elements that

are interconnected by the common IoT-A infrastructure. Tags, readers, sensors,

and actuators are examples for leaf devices. Various protection schemes relevant

to their object class capabilities are to be implemented. These schemes need to

ensure the integrity of the software, hardware, and the location of these devices;

• Intermediary devices: Intermediary devices provide services to IoT-A leaf

devices and they also enable communication. A gateway designed to intercon-

nect constrained and unconstrained domains is an example of such an interme-

diary device. Disabling or tampering critical intermediary devices can lead to

denial-of-service attacks against the service infrastructure. Such attacks are

within the scope of our analysis. However, attacks against specific intermediary

devices that offer non-critical facilitating functions are outside the scope of our

analysis and have thus to be considered case by case;

• Backend services: Backend services represent server-side applicative elements

(for instance data-collection server communicating with sensor nodes).

Compromising this software or the devices they are deployed on generally

represents a critical threat against specific application systems and has to be

prevented;

• Infrastructure services: Discovery, lookup and resolution services are very

critical services as they provide worldwide fundamental functionalities to IoT

systems. In the same way, security services (authorization, authentication,
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identity management, key management, and trust and reputation) are essential

for a secure interaction between subjects (as defined above);

• Global systems/facilities: This last category of elements to protect considers

entire services in a global manner. For example, there might be a risk that an

attack against the smart home scenario results in the complete disruption of the

service, e.g. through the disruption of underlying communications between

devices. The consequences of this resulting disruption can therefore be consid-

ered through this category.

6.8.2 Risk Sources

The risk sources are categorised following the STRIDE (Microsoft 2003) classifi-

cation, which is a widely used way of classifying threats that relate to information

systems. STRIDE stands for Spoofing identity, Tampering with data, Repudiation,

Information disclosure, Denial of service, and Elevation of privilege. These

categories are quickly summarised below – note, however, that real-world

occurrences usually consist of a combination of these threats.

• Identity spoofing means that a peer illegitimately uses the identity of another

peer. Spoofing attacks can happen with respect to all kind of identifiers,

irrespective of whether they are used to designate physical persons, devices, or

communication flows;

• Data tampering means that an attacker is able to alter the content of data

exchanged between two or more peers. Data tampering may involve subtle

attack schemes, wherein the attacker is able to trigger specific behaviours of

recipients by finely modifying original data;

• Repudiation relates to attacks in which an attacker performs illegitimate actions

and may afterwards deny having performed them, such that other nodes are

unable to prove that the attacker actually behaved maliciously;

• Information disclosure means that information is disclosed to unauthorised

peers. It is related to the existence of an authorisation model that defines for each

information element a set of peers that are authorised to access it, possibly under

some specific conditions;

• Denial-of-service attacks are carried out for disabling a service offered to

legitimate users (as opposed, for example, to more subtle schemes wherein the

attacked service can be altered, e.g. making a search service return false results,

without the legitimate users being able to notice it);

• Elevation of privilege may occur in systems that feature different classes of

users, each class being mapped to a specific set of rights. Illegitimate elevation

of privilege occurs when an attacker manages to acquire rights that would

normally only be granted to more privileged class(es). In the most critical

case, an attacker may obtain administration rights for the entire system, or part

of it, which means that the attacker may perform arbitrary actions on the

elements the attacker has access to, thereby being able to destroy the system

or entirely change its behaviour.
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The risk sources considered here are restricted according to the following rules:

• Non-human risk sources either global (flood, lightning, fire, electrical, heat) or

local (individual device failure) are not considered. Only human risk sources are.

Note that a human forging a faked device identity in order to impersonate

another device fits within the category of “human risk”;

• Among human risk sources, only theft/loss and hacker-initiated attacks are

considered. Technical staff errors or accidents are not considered. In other

words we are only addressing malicious attacks and not involuntary attacks.

The STRIDE classification is used below in Table 6.4, immediately afterwards,

on STRIDE classification] to identify risks, as intersections between a STRIDE

item (column) and an element to protect (row).

6.8.3 Risk Assessment

Identified risks were assessed using the DREADmethodology based on (simplified)

metrics. DREAD, defines scoring methodology and metrics that help to evaluate the

criticality of an identified threat. DREAD stands for Damage potential, Reproduc-

ibility, Exploitability, Affected users, and Discoverability. It defines the criteria

according to which a threat is evaluated. Each criterion is quantified at levels

between 0 and 10. Eventually, the threat can be globally rated (sum of D, R, E,

A, D ratings), or the threat can be described along with its individual ratings. The

latter approach allows, obviously, for a more precise analysis. A simpler scheme for

DREAD, used in what follows, consists of only three levels, viz. L (low), M

(medium) and H (high) for each DREAD rating.

Note that a ‘High’ rating for Exploitability means that it is easy for an attacker to

carry out an attack leading to the identified threat, whereas a ‘High’ rating in

Discoverability means that it is difficult to discover the threat. This is to ensure a

coherent approach, in which ‘Low’ ratings decrease the overall criticality of a risk,

whereas ‘High’ ratings increase it.

The DREAD methodology and metric is used in Table 6.5, immediately after-

wards, on DREAD assessment] for evaluating the risks identified in Table 6.4, the

previous one, on STRIDE classification]. In addition to the DREAD rating, the

Table 6.5 on DREAD assessment]also provides initial information on specific

threats that may lead to the occurrence of the identified risk. In addition to this

information, initial steps toward threat mitigation are provided. Furthermore, it

links mitigation scenarios to the design choices (noted DC X.n) elaborated on in

Sect. 6.9.

6.8.4 Discussion

Assessing the risks that relate to the Internet of Things and putting them in

perspective with the Design Choices (see Design Choices) leads to interesting
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synthetic conclusions. First, we recognise in the risks and their mitigation

mechanisms the well-known distinction between internal attacks and external

attacks. This distinction implies the existence of a discrimination function that

makes the system able to distinguish among authorised players (hence, able to

launch internal attacks) and unauthorised players (restrained to external attacks).

Second, it is also noticeable that some risks are not mapped to design choices –

rather, they can be mitigated through dedicated context-dependent or local (entity-

scope) security-by-design decisions. These concepts are elaborated on in what

follows.

The distinction between internal and external attackers pertains to their ability to

undergo an authorisation procedure, at the end of which only authorised players

acquire some rights. These rights in turn enable the attackers to launch internal

attacks. Note that this authorisation procedure may be characterised by more than

the rejected/authorized two levels of granularity and define a full set of access

policies. In this case, all but entirely rejected players are in position to launch

internal attacks.

The defence against external attacks is traditionally based on two means:

topological defence systems that almost spatially keep the attackers out of reach

of the protected resources (e.g. firewalls) and cryptographic mechanisms

(e.g. authentication or encryption algorithms) that logically prevent attackers to

tamper with or otherwise access the protected resources.

• In the framework of IoT, special emphasis is put on one-to-one transactions

wherein a service is accessed by a remote player. These transactions require a

secure transaction set up. The service-access control involves in its most

secure embodiments an authentication phase that can be based on various

authenticating credentials. It has to be noted, though, that these authenticating

credentials have to be mapped to an identity in order to fulfil their role. When the

peer identity is not known prior to establishing a transaction, it has to be securely

retrieved (resolved) from the resolution infrastructure. Likewise, the services

themselves may need to be securely orchestrated;

• Upon successful authentication, access control has to be enforced in order to

bind all data units exchanged between two players to their respective

authenticated identities. This takes usually the form of an authentication proce-

dure being implemented as an authenticated key-exchange (AKE) protocol, and
all subsequent messages exchanged between the same two players are then

integrity protected by the AKE-obtained session key. Various protocols exist

for doing so: at the network layer, the Host Identity Protocol Base Exchange
(HIP BEX) and Internet Key Exchange (IKE) are AKE protocols and IPsec is the

corresponding secure data transport protocol. At the transport layer, TLS hand-

shake is an AKE protocol for subsequent (D)TLS exchanges. Various service-

specific protocols can of course also be used. Eventually, all risks mitigated by

integrity protections should rely on specific cryptographically protected access-

control schemes;

• In parallel with secure transaction set up and access-control-based integrity

protection, protection against internal attacks requires a coherent arrangement
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of the associated cryptographic primitives which have to be based on an

assessment of the attacker profile and capabilities. Many design choices

proposes different embodiments that provide different security levels. For

example the perfect forward secrecy property is theoretically a more secure

one. However, this additional security property would prove worthwhile only for

an attacker able to (and interested in) accessing data exchanged in the past

(hence possibly obsolete) but that the attacker would nevertheless have stored

under an encrypted form. Clearly, most of attacker models and data criticality do

not fit within this attack scenario. If one decides to envision it, though, the same

attacker capabilities should be assumed for all other risks.

Protection against internal attacks is illustrated in the Table 6.5 on DREAD

assessment by the reliance on autonomous security design choices (DC A.16,17).

Classically, only behavioural analysis can allow identifying misbehaviours of an

otherwise authorised node. Autonomous security can be instantiated under a wide

variety of forms that pertain to the implemented functions in a given IoT infrastruc-

ture. Whenever behavioural patterns can be defined, deviations from these patterns

can be detected and flagged as suspicious. More generically (and more easily), logs

should be enabled as a rudimentary form of reactive security. Logs can be generated

at various places in the network but will generally be aggregated at server-side,

where they will be collected for further uses such as service management

(e.g. dimensioning), lawful requirements or billing preparation. However, logging

user activity or detecting identifying patterns within it countervents privacy.

Autonomous security and privacy are in general mutually contradictory. Pseudo-

nymity can be seen as an intermediary state, although pseudonyms are only

worthwhile as long as they can be resolved to real identities at some point in the

network. Choosing which scheme to favour is a question of high-level design

choice. Diametrically opposed to privacy, non-repudiation plays a specific role

that has to be reviewed here. In general, this security service, which ensures that an

entity will not be in position of denying having performed a given transaction, is

provided at service layer where both signature-based cryptographic primitives and

transaction concept become relevant. Although the associated risk (repudiation) is

part of the STRIDE classification, service-level non-repudiation was not considered

in the previous section, being judged to be pertaining to policies, themselves

associated to particular applications. In fact, services for which non-repudiation

has to be provided are part of highly specific applications (e.g. inter-bank

communications of aggregated banking transactions, or administration of highly-

critical assets), which does not qualify them as generic mitigation means.

Finally, it is worth explaining why some identified risks are “not specifically

targeted” in IoT-A, with no relevant technology being developed and no design

choice being proposed. These non-targeted risks are of two sorts. Some of them are

dependent on highly contextual physical parameters. They depend on the

particularities of the communication technology that is put in place and, as such,

exhibit highly diverse characteristics in terms of involved stakes. Accordingly, the

existing mitigations can only be implemented at the physical layer with variable
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costs in terms of, for instance, efficiency. The other non-targeted security risks

pertain to in-entity security-by-design policies. For example, the protection of a

given operating system or the choice to encrypt a user database fit into this category.

As such, they cannot be qualified as being typical for the IoT environment.

6.9 Design Choices

6.9.1 Introduction

By following the architectural methodology according to (Rozanski and Woods

2011) it is recommended to apply the architectural perspectives to the views on an

architecture in order to design systems that satisfy qualities like high performance,

high scalability or interoperability. This step in the architectural methodology is

similar to constructing the interrelationships between customer requirements and

technical requirements in the ‘House of Quality’ matrix as applied in the Quality-

Function Deployment (Erder and Pureur 2003) introduced in Sect. 6.4.

This section guides an architect by giving design choices for the architectural

viewpoints defined in the Reference Architecture in Section 8.2 for each perspec-

tive listed in Sect. 8.3. Figure 6.7 illustrates that the perspectives ‘Evolution &

Interoperability’, ‘Performance & Scalability’, ‘Trust, Security & Privacy’, and

‘Availability & Resilience’ are applied to the ‘Functional View‘, the ‘Information

View’ as well as the ‘Deployment & Operation View’ respectively.

While applying perspectives to views not every view is impacted by the

perspectives in the same manner or grade. Rosanski and Woods distinguish

between three grades of applicability (high, medium and low) for each perspective

to each view. Table 6.6 illustrates the perspective to view applicability as presented

in (Rozanski and Woods 2011).

In this section we focus mainly on the perspective and view pairs where the

applicability of the perspective to the view is high. According to the Table 6.6 these

pairs are the following:

None of the perspectives have a high impact when applied to the Operational

View. This is an indicator for not considering the Operational View in the RA

(Sect. 8.2) and therefore in this section respectively. The Concurrency View is not

being considered in the RA Sect. 8.2 either, thus the applicability to this view, even

with a high impact, is not followed up in this section.

Additionally, we do not present design choices for particular platforms

(i.e. recommendations for specific hardware and software) as they would give the

current status of available platforms at the time of editing this document only, but

the recommendations could become obsolete soon after. Software architects are

well advised to look for suitable platform solutions while designing their concrete

architectures. Platforms that were researched during the project (Magerkurth 2011)

are based on the OSGi framework (OSGi 2012). This framework specifies among

others how software can be deployed in form of bundles and how the application

lifecycle can be controlled remotely. The OSGi framework is a recommended
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design choice for the Deployment and Operation View. Based on the experience

obtained in the project we recommend OSGi framework as a design choice for the

Deployment and Operation Views with hardware platforms that provide support for

OSGi. However, OSGi framework is not advisable for very constraint computing

platforms.

According to Rozanski/Wood “a tactic is much more general and less

constraining than a classical design pattern because it does not mandate a particular

software structure but provides general guidance on how to design a particular

Fig. 6.7 Applying perspectives to views (Rozanski 2011; Fig. 6.4–1)

Table 6.6 Typical view and perspective applicability (Rozanski and Woods 2011)

Perspective
Security

Performance
& Scalability

Availability
& Resilience

Evolution

Functional Medium Medium Low High

Information Medium Medium Low High

Deployment High High High Low

Operational Medium Low Medium Low

Concurrency Low High Medium Medium

View

Table 6.7 Focus on high perspective to view ability

Architectural perspective Architectural view

Evolution and interoperability Functional

Information

Availability and resilience Deployment

Performance and scalability Deployment

Trust, security and privacy Deployment
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aspect of your system” (Rozanski and Woods 2011). Following Rozanski and

Wood’s definition this section picks up the tactics addressing the architectural

perspectives listed in Sect. 8.3 and presents technology agnostic design patterns

or other architectural solutions that are suitable to apply the tactics. Architects are

then able to either implement the recommended design choices or to look for

existing solutions that have implemented those choices.

6.9.2 Design Choices Addressing Evolution and
Interoperability

The Evolution perspective addresses the fact that requirements change and software

evolves sometimes rapidly. We identified a second, closely related, perspective

namely Interoperability which plays a crucial role especially in IoT. The vision of

the Internet of Things is still evolving. Many current technologies are not yet

mature enough for operational use and there are many more technologies to come

in the future. The Evolution and Interoperability Perspective is shown in Sect. 8.3.1.

The tactics for evolution and interoperability are the key concepts of the IoT ARM

and will be explained in Table 6.8.

Both, the Reference Model and the Reference Architecture are built to be

extensible and to enable interoperability between Devices and Services. Therefore

the activities listed in Sect. 8.3.1reflect the IoT-A approach in detail:

• Characterize the evolution needs: IoT-A has collected stakeholder and

also internal requirements reflecting the actual and future needs in IoT systems

(see IoT-A 2013);

• Assess the current ease of evolution: Also through the stakeholder workshops

and in addition the use cases from WP7 and the state of the art analysis from

WP1 and all technical work packages, the current status was collected;

• Consider the evolution trade-offs: The evolution trade-offs are heavily

domain- and application-specific and are not part of the IoT-A work. Those

trade-offs must of course be discussed when creating an architecture for a

concrete application;

• Rework the architecture: The main result of IoT-A are the Reference Model

and the Reference Architecture which were designed with interoperability in

focus (see Sect. 7.5 and Chap. 8).

Moreover, Rozanski and Woods (2011) also introduce tactics to deal with

interoperability and evolution. Here also the IoT-A Reference Model and Reference

Architecture adapt the following tactics:

• Create extensible interfaces, Apply design techniques that facilitate change:

IoT-A defines common entities, e.g. the IoT Domain Model, see Sect. 7.3, and

entry points, e.g. the IoT Communication Model, see Sect. 7.6, which can be

used to create IoT-A compliant systems;
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• Apply metamodel-based architectural styles: The IoT-A Reference Model

and Reference Architecture define interoperability on architectural level. Espe-

cially the Domain Model, see Sect. 7.3, and the IoT Information Model, see

Sect. 7.4, as metamodels are open for further extensions;

• Build variation points into the software, Use standard extension points: By

using standardised protocols and gateways, even legacy devices are able to be

linked to IoT-A systems.

Design Choices for Interoperability and Evolution cannot be named on this

(application and domain independent) level. The IoT Reference Model and Refer-

ence Architecture are built with interoperability and evolution as the main drivers.

To allow a system to evolve and to react to new technology and new requirements

the following general remarks should be kept in mind:

• The IoT-A Reference Architecture is built out of modular blocks to allow

changes and additions. When deriving the IoT-A work to a concrete architecture,

this modularity and also the loose coupling between those blocks should be

kept. This concept is also used in the ‘Dispatcher’ component (Hyttinen P ed

et al. 2013) for the standardized processing of incoming requests without

exposing the internal methods and functions;

• Not all of the systems functionality can be defined in advance. Therefore, some

additional spaces and extensions points, e.g. for upcoming functionality, should

be reserved. This can for example be done in interface definitions or data models,

like the reserved bits in the TCP header definition. This allows the designers and

architects to update the system and to adapt it to new requirements.

The tactics not considered as relevant are listed in Table 6.9.

Table 6.8 Tactics addressing evolution and interoperability

Desired

quality

The ability of the system to be flexible in the face of the inevitable change that all

systems experience after deployment, balanced against the costs of providing

such flexibility

Tactics Create extensible interfaces

Apply design techniques that facilitate change

Apply metamodel-based architectural styles

Build variation points into the software

Use standard extension points

Table 6.9 Tactics identified as not relevant for evolution and interoperability in IoT Systems

Tactic Reason

Contain change Not possible for public IoT-systems, new devices will participate in

the systems

Achieve reliable change Same as above

Preserve development

environments

Due to the multiplicity of developers and technology providers, a

common development environment will not exist
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Table 6.10 Tactics addressing performance and scalability

Desired

quality

The ability of the system to predictably execute within its mandated performance

profile and to handle increased processing volumes in the future if required

Tactics Optimize repeated processing

Replication

Prioritize processing

Distribute processing over time

Minimize the use of shared resources

Reuse resources and results

Partition and parallelize

Scale up or scale out

Degrade gracefully

Use asynchronous processing

Reduce complexity

Make design compromises

Table 6.11 Tactics and corresponding design choices for performance and scalability

Tactic

Impact on views

Functional Information Deployment and operation

Replication Replication of functional

components

(DC PS.1)

Replication of gath-

ered Information

(DC PS.2)

Replication of instances of

Functional Components

locally (DC PS.3)

Replication of instances of

functional components in

the cloud (DC PS.4)

Prioritize

Processing

Functional component

offer services for

different priorities

(DC PS.5)

Information holder

for priority

information nec-

essary (DC PS.6)

Provide instances of different

functional components for

different priorities

(DC PS.7)

Priority-aware functional

components with priority

based processing and net-

working (DC PS.8)

Partition and

parallelize

Multi-thread/multipro-

gramming aware

Functional

components

(DC PS.9)

Information flow

needs to be

parallelizable

(DC PS.10)

Location-aware deployment of

functional components

(DC PS.11)

Deployment of functional

components need to be

according to data flow

(DC PS.12)

Reduce

computa-

tional

complexity

No functional component

(DC PS.13)

No Impact Less functional component

deployed (DC PS.15)

Functional component

with reduced

capabilities

(DC PS.14)

Distribute

processing

over time

Design components to

schedule processing

(DC PS.16)

Information holder

for deadline

(DC PS.17)

No impact

(continued)
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6.9.3 Design Choices Addressing Performance and
Scalability

Performance and scalability are closely related. In the Internet of Things, with its

anticipated billion or trillion nodes both performance and scalability will play a

crucial role. In Sect. 8.3.1 the Performance and Scalability Perspective together

with a set of tactics are presented. In the following we applied the tactics from the

Performance and Scalability Perspective to our Design Choices. We furthermore

evaluated their expected impact on the Functional, Information, and Deployment

and Operation Views.

Not all tactics are explained in detail in this section. The tactic “Make Design

compromises”, for example, was omitted, as being too general and as the whole

idea of the design choices it to make compromises. Additionally, as performance is

something that is very dependent on both architecture and implementation it is

Table 6.11 (continued)

Tactic

Impact on views

Functional Information Deployment and operation

Minimize the

use of

shared

resources

Design functional

components to mini-

mize use of shared

resources (DC PS.18)

No impact Minimize communication

distances (DC PS.19)

Deployment to minimize use

of shared resources

(DC PS.20)

Reuse

resources

and results

History aware functional

components

(DC PS.21)

Cache results which

are likely to be

reused

(DC PS.22)

Storage of information locally

(DC PS.23)

Storage of information

remotely (DC PS.24)

Storage of information local

and remotely (DC PS.25)

Scale up or

scale out

Design functional

Components in a

replicable way

(DC PS.26)

No impact Provision of further resources

(DC PS.28)

Use services in the cloud

(DC P.29)

Design function

components so that

they can use cloud

support (DC PS.27)

Degrade

gracefully

Functional Components

need to be able to

restart (DC PS.29)

Support of rollback

points

(DC PS.31)

Replication of components

(DC PS.32)

Redundancy of resources

(DC PS.33)

Functional components

with rollback func-

tionality (DC PS.30)

Use asynchro-

nous

processing

Asynchronous-aware

functional component

(DC PS.35)

No impact No impact
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highly advisable to run through the corresponding activities like creating a perfor-

mance model or conduct practical testing with measurements. The full list of

activities are listed in Sect. 8.3.

6.9.3.1 Replication

The functional components (DC PS.1) and the information (DC PS.2) stored can be

replicated to increase performance and scalability (DC PS.3). Having a single

functional component is often against good scalability. The availability of informa-

tion depends on the availability of the IoT device. Having instances of functional

components and information available remotely (for example, in the cloud) usually

increases both scalability and performance (DC PS.4). Nonetheless, in this case one

needs to be enough connectivity and bandwidth provided.

6.9.3.2 Prioritize Processing

To be able to prioritize processing the functional components needs to be aware that

it might be required to prefer one type of processing over the other. Therefore, the

information model needs to be able to provide information that indicates priorities

of processes, for instance high, normal, or low.. In terms of deployment the

prioritized processing can be done with the help of the network stack (DC PS.7)

or there can be different functional components for the different priorities

(DC PS.8).

6.9.3.3 Partition and Parallelize

Partition and Parallelize aims towards increase both scalability, as well as,

performance by making the functional components aware of multi-threading/

multi-programming (DC PS.9). Furthermore the information needs to be

partitionable (reduce interdependencies between information) (DC PS.10). The

deployment can help a lot in partitioning, as in IoT access to IoT services are

often locally distributed. This can be done either location aware (DC PS.11), or

based on a data-flow model (DC PS.12).

As an example, the Virtual Entity resolution could be location-oriented, where a

resolution server (RS) is responsible for indexing all connected things in a certain

geographical area, called indexing scope. A Catalogue server then creates the

Catalogue Index of every RS’ indexing scope. A resolution request is redirected

towards the RS whose indexing scope intersects the search scope of the request.

Large-scale IoT systems are expected to have multiple administrative domains that

must be handled by a federated resolution infrastructure. Different domains interact

with each other by the means of a central domain directory or domain catalogue.

Another possibility would be a federated infrastructure, in which Virtual Entities

are clustered based on similarity. Dedicated places are in charge of the IoT Services
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they offer and provide their descriptions as part of a distributed resolution frame-

work. The framework is scalable and fault tolerant because of distribution.

6.9.3.4 Reduce Computational Complexity

Whenever possible the system can reduce the computational complexity, thus

leading to a simpler system which needs less time and often energy. As an example,

instead of a complex intrusion detection system, there could either be no intrusion

detection at all (DC PS.13) or a less complex security by design (DC PS.14), e.g. a

protocol stack with built in threshold-based protection against too many session

initiations.

6.9.3.5 Distribute Processing Over Time

To reduce the number of resources needed it is often possible to distribute some

processing tasks over time, when their results are not immediately necessary

(DC PS.16). In case of hard real-time constrains this might not be always possible,

but many system do not need real-time at all, or do only have soft real-time

constraints. Distributing processing over time can help preventing the system

from scaling or reduce the use of remote (over the web) services.

6.9.3.6 Minimize Used of Shared Resources

In many IoT systems the most scare and most expensive resource is bandwidth,

especially in wireless battery powered systems. It is necessary to design the

functional components accordingly and especially plan the deployment to avoid

bottlenecks on the devices/resources.

6.9.3.7 Reuse Resources and Results

To be able to reuse resources and results the functional components need to be

aware of a history for reuse (DC PS.21). The information model needs be aware of

such caching mechanisms (DC PS.22). In terms of deployment the history can

either be stored locally (DC PS.23), remotely (DC PS.24) or a combination of both

(DC PS.25).

If the information history is stored locally (DC PS.23) the information history is

stored on the IoT device that has produced the information over time. History

information needs to be secured in the same way as the present information to avoid

information leaks. If constrained IoT devices are used, then the storage size of

information history as well as the information processing performance is limited:

Having a local storage place for history information on each IoT Device requires

less device performance and less effort to secure the history, but the single
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information host is against good scalability. The availability of information history

depends on the availability of the IoT device hosting the history.

DC PS.24 describes the case, where the information history is not stored on the

IoT Device that has produced the information, but on a different IoT Resource, to

which the information is uploaded to. The additional history resource needs to be

secured too with either the same S&P policies as the original IoT Resource or

different policies. A history resource in the cloud can perform better than IoT

devices; the replication of information allows load balancing between history and

present information which contributes to better scalability. The Information history

still exists when the respective IoT device becomes unavailable.

Furthermore it is possible to combine the two aforementioned approaches

(DC PS.25): The information history is stored on the IoT device that has produced

the information as well as on a different IoT Resource replicating the information.

History information that exceeds the capabilities of the hosting IoT device

capabilities can be offloaded to high performance devices. This design choice

contributes to high scalability as well as higher performance since the remotely

stored history information is a replication of the locally stored information.

Replicating information is cheaper to achieve by the device than retrieving

‘fresh’ information for every replication.

6.9.3.8 Scale Up or Scale Out

Scale up and scale out is one of the traditional ways to ensure scalability. Scale up

(also known as vertical scalability) means providing more resources on a single

system (DC PS.26/DC PS.28), scale out (also known as horizontal scaling) means

providing more computing power by adding resources. In IoT it is usually not that

easy to scale up or to scale out. One obvious possibility is, of course, to use cloud

support (DC PS.27/DC PS.29). Migration in sensor networks is possible to some

extend as well in a heterogeneous network.

6.9.3.9 Degrade Gracefully

Degrade gracefully is a property of a system, which allows it to continue operating

properly even in the event of failure in one ore more components. The functional

components need to be able to restart either completely (reset) or to rollback to a

previous stable state. In case of hardware failures redundancy and replication allow

to continue working even when a device/resource fails.

6.9.3.10 Use Asynchronous Processing

Asynchronous processing is usually intrinsic in IoT systems. All functional

components should be prepared to do asynchronous calculations and synchroniza-

tion needs to be planned accordingly.
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6.9.4 Design Choices Addressing Trust

In Sect. 8.3.3.1 the Trust Perspective together with a set of tactics is presented.

In Table 6.12 all tactics together with their Design Choices are listed. A detailed

description for each tactic follows the table.

Table 6.12 Tactics and corresponding design choices for trust

Tactic

Impact on views

Functional Information

Deployment and

operation

Harden root of

trust

The security policy

defines how the root of

trust may be accessed.

(DC T.1)

No impact Integration of IoT-A

trust and reputation

component (DC T.2)

Secure implementation

for protecting a root-

of-trust based on hard-

ware implementation

(DC T.3)

No impact Integration of a

physically

unclonable function

(PUF) (DC T.4)

Ensure high

quality of

data

Protects data integrity and

freshness by using a

secure network

encryption protocol

Improvement of content

dimension and

intellectual dimension

(DC T.6)

Integration of a secure

network encryption

protocol (DC T.7)

(DC T.5)

Infrastructural

trust and

reputation

agents

Collects user reputation

scores and calculates

service trust levels

(DC T.8)

Service description

should include rele-

vant aspects for what

concerns trust evalua-

tion (DC T.9)

Integration of IoT-A

trust and reputation

(DC T.10)

Web of Trust system to

establish the authen-

ticity of the binding

between a public key

and its owner.

(DC T.11)

No impact Decentralized trust

model (DC T.12)

Provide high

system

integrity

Evaluation of trust based

on reputation

(DC T.13)

No impact Integration of a reputa-

tion framework for

high integrity sensor

networks (RFSN)

(DC T.14)

Avoid leap of

faith

Utilizes one-way hash

chain to provide

effective and efficient

authentication

(DC T.15)

No impact Usage of lightweight

authentication proto-

col (DC T.16)
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6.9.4.1 Harden Root of Trust

The root-of-trust is the core component upon which the trust policy is based. The

notion of a root-of-trust exists at multiple abstraction levels in a system, and can be

software (less secure) as well as hardware (higher security). As an example for

hardware realisation is RFID. The tags can be used to support anti-counterfeiting by

using a security protocol based on public key cryptography. In this case their root-

of-trust is based on a Physically Unclonable Device (PUF) (Verbauwhede and

Schaumont 2007).

6.9.4.2 Ensure High Quality of Data

Information quality is improved in the technical dimension (e.g. timeliness and

sampling). The suite of security protocols (SPINS) guarantees that an attack does

not affect the remainder nodes in the network and thus preserves data integrity and

freshness. In the context of the Information view it can be stated that data

containing information is improved in terms of content dimension (e.g. accuracy

or completeness) and intellectual dimension (e.g. reputation and trust). To reach

this level of security a secure network encryption protocol must be implemented

(Perrig et al. 2002).

6.9.4.3 Infrastructural Trust and Reputation Agents

The tactic “Infrastructural Trust and Reputation Agents for scalability” describes

the presence of a Trust and Reputation component FC (Sect. 7.7.1). This impacts

the information view as a Service Description should include relevant aspects for

what concerns trust evaluation (type of deployment, tamper-proof features of

hosting devices, authentication and authorization algorithms, etc. In case of periph-

eral devices the security of the deployment should be evaluated and asserted in the

subject description. Furthermore the web of trust concept to establish the authen-

ticity of the binding between a public key and its owner can be established. Its

decentralized trust model is an alternative to the centralized trust model of a Public
Key Infrastructure (PKI), which relies exclusively on a certificate authority (or a

hierarchy of such).

6.9.4.4 Provide High System Integrity

To provide high system integrity the integration of Reputation framework for high

integrity sensor networks (RFSN) can be considered (Ganeriwal and Srivastava

2004). It is capable of evaluating trust based on reputation and to act accordingly.

Furthermore second hand information (experiences of other parties, e.g. nodes)

about devices can be considered. It might be augmented by a Trust management

system which calculates Trust values as a function of availability and packet

forwarding.
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6.9.4.5 Avoid Leap of Faith

The avoidance of leap of faith increases the overall security; however, it might limit

the communication between certain parties as strong authentication is not feasible

in each case (e.g. constrained devices). From a functional point of view one option

can be a one-way hash chain to provide effective and efficient authentication. This

feature can be implemented by using a Lightweight Authentication protocol

(Lu and Pooch 2005).

For most of the tactics a design choice proposal is given, however for different

reasons it is not possible to provide appropriate design choices for all tactics. The

tactics not considered are presented in Table 6.13 with reasons for the omission.

6.9.5 Design Choices Addressing Security

In Sect. 8.3.3.2 the Security Perspective together with a set of tactics is presented.

The Design Choices addressing security are presented in Table 6.14 showing the

impact on architectural views by applying tactics relevant for security concerns.

6.9.5.1 Subject Authentication

For subject authentication two options are presented here. The first is the authenti-

cation over an encrypted channel while the other one is a crypto-based authentica-

tion solution over an open channel. The former uses the IoT-A Authentication FC

(Sect. 7.7.2) while for the ladder a peer-to-peer communication is realised over an

insecure channel.

Table 6.13 Omitted tactics for the trust perspective

Tactic Reason

Ensure physical security and

implement tampering detection

Pervasive deployment of IoT devices makes such devices

accessible to malicious users

Consider device security in the global

system design

Devices that are not tamper-proof can be compromised.

Although this aspect is related to the deployment view,

it has impacts on the design of the overall system and

trust evaluation

Consider the impact of security/

performance trade-offs on trust

This must be evaluated for each use case during the design

phase by means of tests such as simulation. For that

reason, no DC can be proposed

Use security imprinting Out of scope for IoT-A since devices are not covered in the

IoT Reference Architecture

Balance privacy vs. non-repudiation

(accountability)

If system requirements include non-repudiation, these will

necessarily impact the privacy feature of the designed

system. Privacy can be granted by using an Identity

Management. This component, run by a third party is

trusted for what concerns both privacy protection and

ability to track back malicious actions
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6.9.5.2 Use Access Policies

The tactic of using access policies is a crucial aspect in IoT. Two main functional

principles can be distinguished. The policy-based service access uses access control

mechanisms to manage to access to information. Therefore the information must be

managed accordingly so that it supports the used mechanism. This option can be

realised by using the IoT-A Authorisation FC component (Sect. 7.7.2). The other

possibility is to grant unrestricted access to services. This should be only done in

those cases in which data security is not relevant.

6.9.5.3 Secure Communication Infrastructure

Securing the communication infrastructure focuses on delivering a secure and

robust environment for the transmission of critical data. This can be obtained by

using end-to-end or hop-to-hop encryption. In both cases the information transmis-

sion channel in which the information flow from a device to an application through

an IoT service happens is completely secured. The end-to-end encryption uses

therefore the IoT-A End to End Communication FC and Key Exchange and

Management FC. Furthermore the Network Communication FC, which takes care

of enabling communication between networks through Locators (addressing) and

ID Resolution, is necessary (Sect. 7.7.2). For the hop-to-hop encryption the only

difference is the usage of the IoT-A hop-to-hop Communication FC. For wireless

communication security the implementation of an end-to-end security protocol

which ensures confidentiality, integrity and authentication of subjects can also be

considered (Perrig et al. 2004).

6.9.5.4 Secure Peripheral Networks (Link Layer Security, Secure

Routing)

To secure peripheral networks a link-layer encryption and authentication combined

with a multipath routing can be considered. This requires the integration of secure

routing protocols in the Network Communication component (Karlof and Wagner

2003).

For most of the tactics a design choice proposal is given, however for different

reasons it is not possible to provide appropriate design choices for all tactics. The

tactics not considered are presented in Table 6.15 with reasons for the omission.

6.9.6 Design Choices Addressing Privacy

In Sect. 8.3.3.3 the Security Perspective together with a set of tactics is presented.

The Design Choices addressing Privacy are presented in Table 6.16 showing the

impact on architectural views by applying tactics relevant for Privacy concerns.
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Table 6.15 Omitted tactics for the Security Perspective

Tactic Reason

Harden infrastructural

functional components

Infrastructural functional components are critical components

that can compromise the whole system if compromised

Avoid wherever possible

wireless communication

Wireless communication generally uses a shared medium for

communication which, in turn, allows easy interception of

link layer communication

Physically protect peripheral

devices

Pervasive deployment of IoT devices makes such devices

accessible to malicious users. While how to protect these

devices is outside the scope of the IoT Reference Archi-

tecture (devices not covered!), this vulnerability must be

taken into account in secure designs

Avoid OTA device management No DC proposal possible as most of the devices connected in

IoT must be managed over the air if at all possible

Table 6.16 Tactics and corresponding design choices for privacy

Tactic

Impact on views

Functional Information

Deployment and

operation

Pseudonymisation Creation of a fictional

identity (root

identity, secondary

identity, pseudonym

or group identity)

(DC P.1)

No impact Integration of IoT-A

identity management

FC (DC P.2)

Avoid transmit-

ting identifiers

in clear

Encryption mechanisms

for wireless

connections

(DC P.3)

No impact Integration of a wireless

security algorithm

(DC P.4)

Minimize unau-

thorized

access to

implicit

information

Access control

management

(DC P.5)

Stored Information must

be managed in a way

to support access

control mechanisms

(DC P.6)

IoT-A authorisation FC

(DC P.7)

Enablement of a scalable

and secure key

distribution between

communicating

subjects (DC P.8)

No impact Encrypt communication

with Resolution

Components and

with Services

(e.g. KEM FC)

(DC P.9)

Enable the user to

control the

privacy

settings

Addresses privacy

questions so that a

user can operate

anonymously

(DC P.10)

No impact IoT-A identity manage-

ment FC (DC P.11)

Privacy-aware

identification

Authentication of the

responding host, the

initiating host can

stay anonymous

(DC P.12)

No impact Requires TLS and DTLS

support (DC P.13)
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6.9.6.1 Pseudonymisation

The tactic “Pseudonymisation” refers to a procedure by which fields that enable

identification of a user within a data record or subject are replaced by one or more

artificial identifiers. The purpose is to render the subject less identifiable and this

way lower IoT user (e.g. customer or patient) objections to its use. This is function-

ally implemented by the creation of a fictional identity (e.g. root identity, secondary

identity, pseudonym, or group identity) and can be realised by integrating the IoT-A

Identity Management FC (Sect. 7.7.3).

6.9.6.2 Avoid Transmitting Identifiers in Clear

The transmission of identifiers in clear should be avoided in general. In a WSN, a

base station is not only in charge of collecting and analysing data, but also used as

the gateway connecting the WSN with outside wireless or wired network. In order

to have a defence against local adversaries, the location information or identifier of

the base station is sent in clear in many protocols. This information must be hidden

from an eavesdropper, which can be done by traditional cryptographic techniques

(encryption). One option for encrypting wireless connections is the integration of a

wireless security algorithm proposed by (Peris-Lopez et al. 2007).

6.9.6.3 Minimize Unauthorized Access to Implicit Information

Unauthorized access to implicit information (e.g. deriving location information

from service access requests) must be restricted at all events. Access control

management as well as the enablement of a scalable and secure key distribution

between communication subjects can be considered to achieve this objective. In the

former case the information stored must be managed in a way so that the access

control mechanism is supported. For deployment of this function the IoT-A

Authorisation FC can be considered. For the secure key distribution the resolution

components should be augmented by a Key Exchange Management component

such as the one from IoT-A.

6.9.6.4 Enable the User to Control the Privacy Settings

Users should be given the opportunity to control their privacy settings. Hence, one

option is the control of acting anonymously. This function can be realised by

integrating the IoT-A Identity Management FC which creates a fictional identity

(root identity, secondary identity, pseudonym, or group identity) alongwith the related

security credentials for users and services to use during the authentication process.
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6.9.6.5 Privacy-Aware Identification

In human-to-thing and thing-to-thing interactions, privacy-aware identifiers might

be used to prevent unauthorized user tracking. Similarly, authentication can be used

to prove membership of a group without revealing unnecessary information about

an individual. Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS) provide the option of only authenticating the responding host.

This way, the initiating host can stay anonymous (Heer et al. 2011).

For most of the tactics a design choice proposal is given, however for different

reasons it is not possible to provide appropriate design choices for all tactics. The

tactics not considered are presented in Table 6.17 with reasons for the omission:

6.9.7 Design Choices Addressing Availability and Resilience

The Chapter in this document concerned with the Availability and Resilience

Perspective (Sect. 8.3.4) lists tactics addressing the desired quality of the system

to be designed as shown in Table 6.18.

In this Section design choices are presented that apply most of the tactics listed

in Table 6.19. The tactics not considered here are given at the end of this

Section with an explanation why they have been omitted. Table 6.19 presents for

each tactic one or more architectural design choices together with their impact on

the architectural views introduced in Chap. 8.

6.9.7.1 Use High Availability Clustering

For design choice ‘VE Resolution location-oriented (DC A.1)’ a resolution server

(RS) is responsible for indexing all connected things in a certain geographical area,

called indexing scope. A Catalogue server then creates the Catalogue Index of

every RS’ indexing scope. A resolution request is redirected towards the RS whose

indexing scope intersects the search scope of the request. Large-scale IoT systems

are expected to have multiple administrative domains that must be handled by a

federated resolution infrastructure. Different domains interact with each other by

the means of a central domain directory or domain catalogue. Communication

between framework domains needs to be secured. The framework performs faster

through a divided search space. Indexing scope can be adjusted according to usage

load. The framework scales by adding more RSs. With this approach it is

Table 6.17 Omitted tactics for the privacy perspective

Tactic Reason

Validate against requirements Too general, no DC proposal possible

Consider the impact of security/per-

formance trade-offs on privacy

This must be evaluated for each use case during the

design phase. For that reason, no DC can be proposed

Balance privacy vs. non-repudiation

(accountability)

This must be evaluated for each use case during the

design phase. For that reason, no DC can be proposed
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impossible to retrieve things based on identifiers. Fault tolerance is achieved

through data distribution and index data replication. The central domain directory

is potential single point of failure. There is no theoretical limit on indexed things,

but indexing scope is bound to geographic location (De 2012).

In design choice ‘VE Resolution domain-oriented (DC A.2)’ a domain-oriented

VE Resolution approach organises the resolution framework in hierarchically

organised domains similar to Domain Name System (DNS). The hierarchy is

built according to the hierarchy of things captured by Virtual Entities from higher

granularity to lower granularity, e.g. country ! city ! district ! building !
room. The resolution framework performs faster than an unclustered resolution

solution through divided search space; its complexity is ofO(log n) in best case, and
O(n) in worst case, where n is the number of VEs hosted by the resolution

framework. Load balancing is supported through replication, and a Resource can

be member of different domains at a time. Fault tolerance is supported through

distribution and redundancy; the framework evolves with the number of things

connected (De 2012).

For design choice ‘VE Resolution Semantic Web-oriented (DC A.3)’ Semantic

Web technologies are used to annotate Virtual Entity descriptions in a way

machines can interpret them. This overcomes the need for exact syntactic match-

making between resolution request and search terms in the resolution infrastructure.

The search space of the resolution infrastructure is indexed by an unsupervised

machine-learning technique and clustered through latent factors derived from the

learning. This design is independent from the deployment of the resolution infra-

structure. Distribution and replication is supported by this approach, but depends on

implementation on how it is done. Semantic interoperability is achieved through

shared ontologies, after extending ontologies the training model needs to be

updated (De 2012).

A peer-to-peer infrastructure will maintain no centralised servers in design

choice ‘VE Resolution Peer-to-Peer-oriented (DC A.4)’, all data is distributed in

the network along with sophisticated retrieval and routing mechanisms. There are

several approaches on how to distribute the data (pure, centralised indexing server,

distributed hash tables). The latter approach is the recommended one for IoT

Table 6.18 Tactics addressing Availability and Resilience

Desired

quality

The ability of the system to be fully or partly operational as and when required and

to effectively handle failures that could affect system availability

Tactics Select fault-tolerant hardware

Use high-availability clustering and load balancing

Log transactions

Apply software availability solutions

Select or create fault-tolerant software

Design for failure

Allow for component replication

Relax transactional consistency

Identify backup and disaster recovery solution
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Resolution infrastructures. Resolution requests result in traffic complexity of O(n)
in worst case and O(log n) in best case, where n is the number of VEs managed by

the resolution framework. The framework is stable and robust through distribution

and redundancy (De 2012).

6.9.7.2 Load Balancing

The ‘Scale out approach (DC A.5)’ monitors the load of FCs during runtime and

triggers offloading tasks to another less busy instance of the respective FC to avoid

the FC being overloaded and therefore becoming a performance bottleneck or even

out of function. The decision at what limit an FC is considered to be critically busy

and to trigger off-loading to another instance is application specific, but the infor-

mation model needs to provide some metric to specify those parameters for FCs.

Logging Transactions

‘Circular Logging (DC A.6)’ is a strategy that leads to overwriting old data when

designated size of log is reached (IBM 2012). This approach does not support

incremental backup strategy. Transactions need to be logged with unique id and

status of their completion, indicating which functions need redoing and which need

undoing. Apply this Design Choice if storage space for logs is restricted. This

strategy provides better performance compared to archive logging.

‘Archive Logging (DC A.7)’ keeps a complete archive of all transactions (IBM

2012). Recent transactions need to be flagged as active, older transactions as

inactive. The archived logs grow over time so that external storage is needed on

constraint devices. This strategy adds functionality for retrieving the external

archive also for rollback and restore.

Design for Failure

The overall tactic can be further divided into more specific tactics that are presented

as design choices here. The first sub-tactic is ‘Acquiring more resources than

needed and replace failed ones (DC A.8)’. By applying this tactic more resources

are allocated for task execution than normally required. Besides allocating the

resources essentially necessary spare resources are reserved that could execute

the same task as the essential ones but are kept on hold. This is a precaution in

case a resource fails during runtime and a spare resource can take over the task of

the one that failed. Resource in this sense includes all computational resources,

network resources and IoT Resources, meaning all FCs in the ARM. A typical FG

that implements resource reservation is Service Organisation that is responsible for

allocating IoT Services to service requests (see Sect. 8.2.2.3). Applying this tactic

requires a higher number of resources essentially required.

Another approach is to aim at having ‘No FC or centralised FCs (DC A.9)’. The

goal is to develop designs that avoid single points of failure, like centralised FCs or
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FCs with just one instance. If a single FC fails no other instance was able to replace

its functionality. By applying this tactic more than one instance of FCs are provided

by the system so that their functionality can still be assured in case one instance

becomes unavailable. For Service Organisation FG the decentralised Service Cho-

reography FC can be preferred over Service Orchestration which requires a central

orchestration engine (see Sect. 8.2.2.3). The decentralised choreography approach

reduces the risk for a single point of failure.

To apply the design choice ‘Treat Long Latency as potential failure (DC A.10)’

the system design provides an FC that treats any long latency as a potential failure.

For instance the round-trip-time for request-response-protocols is measured and a

deadline is set as acceptable. After the deadline has passed the system treats the

behaviour as potential failure and reacts in an appropriate manner, e.g., by querying

another instance of the same FC.

Allowing Component Replication

The design choice ‘State-machine (active) replication (DC A.11)’ allows detection

of faults by replicating service requests and comparing the service results to each

other. If all results are identical no fault is assumed, if they are different it still needs

to be analysed which of the results is faulty and which is correct (Wikipedia 2013d).

To apply this technique some replication functionality needs to be implemented that

multiplies the request to different instances of FCs. To assure fault detection 2F+1

replicas of the tested FC need to be held where F is the number of faults to be

detected. The fault detection algorithm requires the tested FC to be modelled as

state-machine.

‘Transactional replication (DC A.12)’ is used in server-to-server environments

typically, in which incremental information changes need to be propagated to

subscribers in nearly real-time (Microsoft 2013).

The choice ‘Virtual synchrony (DC A.13)’ is especially suitable for systems in

which information evolves extremely rapidly. Applications are executed in process

groups and the processes within the group update each other about execution progress

by sending state updates. Implementing this technique requires functionality to join

process groups, register event handler and send multicasts to group members. Con-

sistency among information replicas can be achieved easily, thus virtual synchrony is

suitable for systems with high evolution of information (Wikipedia 2013e).

Relaxing Transactional Consistency

To follow this tactic the ‘BASE architecture (DC A.14)’ can be applied. The ‘BASE

(Basically Available, Soft-state, Eventually consistent) architecture’ is applicable

in systems supporting distributed transactions with optimistic replication strategy.

In this approach replicas of information are sent through a distributed system via

transactions and ‘eventual consistency’ among the replicas is achieved by either the

update reaches the replica or the replica retires from service (Wikipedia 2013f).

BASE requires some conflict resolution functionality and additional system
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resources in order to find failure in transactions. The approach is applicable for high

performance designs.

Backup and Disaster Recovery Strategy

The following design choices should not be seen as alternative choices to apply one

tactic; the three choices are rather three controls that can help to specify a disaster

recovery plan for the system to be designed (Georgetown 2013). Therefore all three

choices can be applied alongside.

The choice ‘Preventive measures (DC A.15)’ is aimed at preventing disastrous

events, like data-loss, from occurring. To achieve this data is replicated to have

identical copies in reserve in case the original data gets lost. Consistency among the

data replicas needs to be assured by the design. To minimise risks the replicas are

better stored at different locations that the original data, preferably in the cloud.

‘Detective measures (DC A.16)’ aim at detecting or discovering unwanted

events by monitoring indicators for unwanted events, like measured values that

exceed a certain range. This strategy requires an Information Model of those

unwanted events together with their indicators that are used to detect the unwanted

event. The event detection should be operated independent of the subsystem that is

monitored to make sure the unwanted events can be detected.

The design choice ‘Corrective measures (DC A.17)’ is aimed at correcting or

restoring systems after disastrous events have occurred. Assuming the previous two

choices have been implemented, meaning the preventive methods have been

applied and the disastrous event has been detected correctly, the system can be

restored to working order again. Backups of system configurations that have

worked correctly before are restored. A configuration history (Sect. 8.2.2.8)

provides the functionality needed for restoring working configurations. The system

correction process needs to be operated independently of the system to be restored.

Some of the tactics listed in Sect. 8.3 are not considered here because they are

too specific to particular implementations:

• Select fault-tolerant hardware;

• Apply software availability solutions;

• Select or create fault-tolerant software.

6.9.8 Design Choices Conclusion

This section has presented design choices for architects who are driven by

requirements for system quality capabilities like performance and scalability, evo-

lution and interoperability, availability and resilience as well as aspects concerning

trust, security, and privacy. An architect is guided by the presented design choices in

supporting the targeted system quality attributes. In cases where the recommended

design choice is one developed during the IoT-A project a reference is given where

an architect can find more detailed information about the respective design choice.
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The design choices listed in this section are as generic as possible addressing

capabilities that are agnostic of particular functional requirements. The architect is

still left with the choice which system capabilities are the most important ones for

the system to be specified. In general trade-offs need to be made between for

instance security and performance since security always involves more data and

communication overhead that needs to be processed.

The optimal selection of design choices is dependent on the actual use case and

therefore a one-fits-all complete solution cannot be given in this section. It rather

needs to be made by architects according to their functional requirements which are

not known in the context of this document.

What this document can provide instead is an example for a concrete architec-

ture that is designed according to a sample use case. Architects shall find useful

hints for applying the ARM to concrete architectures including a selection of

appropriate design choices presents in this section. The sample concrete architec-

ture is described in Chap. 11.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 7

IoT Reference Model

Martin Bauer, Nicola Bui, Jourik De Loof, Carsten Magerkurth,

Andreas Nettsträter, Julinda Stefa, and Joachim W. Walewski

7.1 Introduction

The first major contribution of the IoT Architectural Reference Model (IoT ARM) is

the IoT Reference Model itself. Besides models, the IoT Reference Model provides

the concepts and definitions on which IoT architectures can be built. This
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Chapter introduces the IoT Reference Model as a precondition for working with the

Reference Architecture that is introduced in Chap. 8.

The Reference Model consists of several sub-models that set the scope for the

IoT design space and that address architectural views and perspectives discussed in

Chap. 8. As already stated above, the primary and thus the key model is the IoT

Domain Model, which describes all the concepts that are relevant in the Internet of

Things. All other models and the IoT Reference Architecture are based on the

concepts introduced in the IoT Domain Model. While certain models, such as the

IoT Communication Model and the IoT Trust, Security, and Privacy Model might

be less critical in certain application scenarios, the IoT Domain Model is mandatory

for all usages of the IoT ARM. Therefore, it is advised to read Sect. 7.1.3 carefully,

and at least to follow the information given in the Sect. 7.1.2 in order to get an

overview of the different sub-models of the IoT Domain Model and how they relate

to each other. Depending on the individual application of the IoT Domain Model,

the Subsequent sections in this chapter provides details about the other models.

Next, we explain, who the sub-models in the IoT Reference Model relate and

link to each other, and how they form an integrated reference model.

7.2 Interaction of All Sub-Models

The IoT Reference Model aims at establishing a common grounding and a common

language for IoT architectures and IoT systems. It consists of the sub-models shown

in Fig. 7.1, which we explain below. The yellow arrows show how concepts and

aspects of one model are used as the basis for another.

The foundation of the IoT Reference Model is the IoT Domain Model, which

introduces the main concepts of the Internet of Things like Devices, IoT Services

and Virtual Entities (VE), and it also introduces relations between these concepts.

The abstraction level of the IoT Domain Model has been chosen in such a way that

its concepts are independent of specific technologies and use-cases. The idea is that

these concepts are not expected to change much over the next decades or longer.

Based on the IoT Domain Model, the IoT Information Model has been devel-

oped. It defines the structure (e.g. relations, attributes) of IoT related information in

an IoT system on a conceptual level without discussing how it would be

represented. The information pertaining to those concepts of the IoT Domain

Model is modelled, which is explicitly gathered, stored and processed in an IoT

system, e.g. information about Devices, IoT Services and Virtual Entities.

The IoT Functional Model identifies groups of functionalities, of which most are

grounded in key concepts of the IoT Domain Model. A number of these Function-
ality Groups (FG) build on each other, following the relations identified in the IoT

Domain Model. The Functionality Groups provide the functionalities for

interacting with the instances of these concepts or managing the information related

to the concepts, e.g. information about Virtual Entities or descriptions of IoT

Services. The functionalities of the FGs that manage information use the IoT

Information Model as the basis for structuring their information.
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A key functionality in any distributed computer system is the communication

between the different components. One of the characteristics of IoT systems is often

the heterogeneity of communication technologies employed, which often is a direct

reflection of the complex needs such systems have to meet. The IoT Communica-

tion Model introduces concepts for handling the complexity of communication in

heterogeneous IoT environments. Communication also constitutes one FG in the

IoT Functional Model.

Finally, Trust, Security and Privacy (TSP) are important in typical IoT use-case

scenarios. Therefore, the relevant functionalities and their interdependencies and

interactions are introduced in the IoT TSP Model. As in the case of communication,

security constitutes one FG in the Functional Model.

7.3 Domain Model

7.3.1 Definition and Purpose

The IoT-A project defines a domain model as a description of concepts belonging to

a particular area of interest. The domain model also defines basic attributes of these

Fig. 7.1 Interaction of all sub-models in the IoT Reference Model. The sub-models are explained

in the text body
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concepts, such as name and identifier. Furthermore, the domain model defines

relationships between concepts, for instance “Services expose Resources”. Domain

models also help to facilitate the exchange of data between domains

(The Consultative Committee 2006). Besides this official definition, and looking

at our interpretation of it, our domain model also provides a common lexicon and

taxonomy of the IoT domain (Muller 2008). The terminology definitions of IoT-A

are provided online (Sect. 6.7).

The main purpose of a domain model is to generate a common understanding of

the target domain in question. Such a common understanding is important, not just

project-internally, but also for the scientific discourse. Only with a common

understanding of the main concepts it becomes possible to argue about architectural

solutions and to evaluate them. As has been pointed out in literature, the IoT

domain suffers already from an inconsistent usage and understanding of the mean-

ing of many central terms (Haller 2010).

The domain model is an important part of any reference model since it includes a

definition of the main abstract concepts (abstractions), their responsibilities, and

their relationships. Regarding the level of detail, the Domain Model should separate

out what does not vary much from what does. For example, in the IoT domain, the

device concept will likely remain relevant in the future, even if the types of devices

used will change over time and/or vary depending on the application context. For

instance, there are many technologies to identify objects: RFID, bar codes, image

recognition etc. But which of these will still be in use 20 years from now? And

which is the best-suited technology for a particular application? Since no one has

the answers to such and related questions, the IoT Domain Model does not include

particular technologies, but rather abstractions thereof.

Before we discuss the main abstractions and relationships of the IoT Domain

Model in detail, let us go back to our recurring example that we introduced in Sect.

4.2 in order to get an understanding of what it means to formulate central concepts

of a use case with the help of the IoT Domain Model.

Figure 7.2 shows an instance diagram of central aspects of the use case scene in

Sect. 4.2. This example was cast in the language of the IoT Domain Model and then

illustrated by use of UML. Information about UML can be found elsewhere in the

literature (Fowler 2003) or by searching for terms such as “UML tutorial” on the web.

As we can see in Fig. 7.2, the important entities that are relevant for our use case

are depicted with blocks of different colours. For instance, there is our truck driver

“Ted” represented by as a yellow box (viz. instance), and the temperature sensor

(that triggers an alarm after Ted had turned off the engine of the truck) is

represented as a blue instance. Already at this stage we can easily deduct that

there is some colour-coding involved that reflects an aspect of the respective entity.

What these colours exactly stand for is discussed in detail in the next Sections.

There is also a categorisation in textual form, as the entity name that we know from

our recurring example is succeeded by an entity category such as Sensor in the case

of the humidity or temperature sensors and Human User in the case of Ted. What

these entity categories mean and how they relate to each other is discussed in detail

in the next sections.

116 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_4
http://dx.doi.org/10.1007/978-3-642-40403-0_4


In addition to the coloured boxes, the diagram also shows arrows with verbs that

connect the boxes. If we look very closely to the arrows, we see that they have

different terminators such as diamond shapes or traditional arrow shapes. These

shapes illustrate different kinds of relationships between the objects that are

connected by them. In a similar way as the category names and the colour coding

of the objects are related to each other, the verbs indicate information about the

relationships shown with the arrows. These are all concepts of the UML notation

that will be discussed in the next section.

Even without understanding all of the concepts in detail, we can already under-

stand that the IoT Domain Model helps us structuring an application scenario. We

can use a concise graphical representation to show that for instance Ted, our truck

driver, is a Human User that uses an Android application in order to subscribe to an

Alarm service. This Android Application is an Active Digital Artefact (ADA). We

do not yet know what this exactly means, but as the reader will progresses through

this document and possibly other documents that make use of the IoT Domain

Model, Active Digital Artefacts will come up again and again. By providing a

standardised vocabulary for naming things that relate to the same abstract concepts,

we facilitate and streamline communication of the IoT ARM users.

While several other parts of the IoT Reference Model, for instance the IoT

Information Model, directly depend on the IoT Domain Model, and also several

Sensor Node : 
Device

lookupAssociations : 
Service

resolveService : 
Service

Measurement 
Service : Service

AndroidApp : 
Active Digital 

Artefact

Temperature 
Sensor : 
Sensor

Humidity Sensor : 
Sensor

Alarm : 
On-Device 
Resource

Load Carrier : 
Physical Entity

is attached to

monitorsmonitors

is attached to

hosts

exposes

subscribes invokes

invokes

Fig. 7.2 Example, instantiated IoT Domain Model for the Red Thread Example (see Sect. 4.2)
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views (as we will see in the next chapter), it should already be noted that the IoT

Domain Model also takes a central role in the process of generating concrete

architectures beyond merely providing a common language. As discussed in

Chap. 6, Sect. 6.3, there is a special view called IoT Context View that is central

in the process of generating concrete architectures. This view is an amalgam of the

IoT Domain Model “traditional” context view. The latter is an architecture view

that is usually generated at the very beginning of the architecture process. It

describes “the relationships, dependencies, and interactions between the system

and its environment (the people, systems, and external entities with which it

interacts)” (Rozanski and Woods 2011).

7.3.2 Main Abstractions and Relationships

7.3.2.1 Interpreting the Model Diagram

This section describes the IoT Domain Model used in the IoT-A project. It was

developed by refining and extending two models found in the literature (Haller

2010; Serbanati et al. 2011). The goal behind the IoT Domain Model is to capture

the main concepts and the relationships that are relevant for IoT stakeholders. After

a short introduction to the pertinent UML language (next Section), we expatiate the

IoT terminology and concepts in Sect. 7.1.3.3. A discussion about guidelines and

best practices on how to use the IoT Domain Model are provided in Chap. 9.

UML is used to graphically illustrate the model (Fowler 2003). Generalisation is

used to depict an is-a relationship and should not be misinterpreted as sub-classing.

Only the most important specialisations are shown, others are possible however.

For example, not every Device can be characterised as a Tag, a Sensor, or an

Actuator. The specialisations are, however, generally disjoint, if not noted

otherwise.

Please note that generalisations/specialisations are modelled using a solid line

with a large hollow triangle.

The notation indicates that class A is the Parent or super-class, while class B and

class C are child or subclasses. Objects represented by class B and class C “inherit”

the attributes of the object represented by class A (their parent), while having

additional unique attributes of their own. This relationship is referred to as the

is-a relationship – an object in class B or class C is-a type of class A (see Fig. 7.3).

This notation is not to be confused with an “aggregation or composition

relationships”. Rather, a terminating “open diamond” indicates an aggregation

relationship, whereas a “filled diamond” indicates a composition relationship.

The notation in Fig. 7.4 states that class A is an aggregation of (or contains) objects

of class B and a composition of objects of class C. In other words, class A has-a

class B and also class C is-part of class A. Aggregation and composition are rather

similar, however the lifetime of objects of class C is determined by class A
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(“A brain is part of a student” -> composition), whereas the lifetime of objects of

class B is independent from class A (“A student has a school”).

Finally, an “open arrow” is used to denote a “one-way” association. The notation

shown in Fig. 7.5 indicates that every object in class A is associated with zero or

more objects in class B, and that every object in class B is associated with exactly

one object in class A. However more importantly, this notation indicates that a class

A object will “know” class B objects with which it is associated, and that a class B

object will “not know” the class A object with which it is associated, ref. Sensor and

Physical Entity in Fig. 7.7.

The cardinalities (“asterisk”, “1”, etc.) are to be read as follows: from the source

read the relation and the cardinality on the target gives the multiplicity with which

the source can be in that relation with the target. For the inverse relation, the

cardinality at the source is relevant. For example (see Fig. 7.7), a Tag identifies

no or one (0..1) Physical Entity – whereas a Physical Entity may be identified by

0 or more Tags. A Virtual Entity may contain 0 or more other Virtual Entities,

whereas a Virtual Entity can optionally be contained in at most one other Virtual

Entity. Concepts depicting hardware are shown in blue, software in green, animate

beings in yellow, and concepts that fit into either multiple or no categories in brown.

7.3.2.2 The Concepts of the IoT Domain Model

The most generic IoT scenario can be identified as that of a generic User needing
to interact with a (possibly remote) Physical Entity (PE) in the physical world

Class A

Class B Class C

Fig. 7.3 UML generalization

Class A

Class B Class C

Fig. 7.4 UML aggregation and composition
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(see Fig. 7.6). In this short description we have already introduced the two key

entities of the IoT. The User is a human person or some kind of a Digital Artefact

(e.g., a Service, an application, or a software agent) that needs to interact with a

Physical Entity.

In the physical environment, interactions can happen directly (e.g., by moving a

pallet from location X to Y manually). In the IoT though, we want to be able to

interact indirectly or mediated, i.e., by calling a Service that will either provide

information about the Physical Entity or act on it. When a Human User is accessing

a service, he does so through a service client, i.e., software with an accessible user

interface. For the sake of clarity, the service client is not shown in Fig. 7.7. For the

scope of the IoT Domain Model, the interaction is usually characterised by a goal

that the User pursues. The Physical Entity is an identifiable part of the physical

environment that is of interest to the User for the completion of her goal. Physical

Entities can be almost any object or environment; from humans or animals to cars;

from store or logistics chain items to computers; from electronic appliances to

jewellery or clothes.

Physical Entities are represented in the digital world by a Virtual Entity. This

term is also referred to as “virtual counterpart” in the literature (Römer et al. 2002),

but using the same root term “entity” in both concepts clearer shows the relation-

ship of these concepts. There are many kinds of digital representations of Physical

Entities: 3D models, avatars, database entries, objects (or instances of a class in an

object-oriented programming language), and even a social-network account could

be viewed as such a representation, because it digitally represents certain aspects of

its human owner, such as a photograph or a list of his hobbies. However, in the IoT

context, Virtual Entities have two fundamental properties:

• They are Digital Artefacts. Virtual Entities are associated to a single Physical

Entity and the Virtual Entity represents this very Physical Entity. While there is

generally only one Physical Entity for each Virtual Entity, it is possible that the

same Physical Entity can be associated to several Virtual Entities, e.g., a

different representation per application domain. Each Virtual Entity must have

one and only one ID that identifies it univocally. Virtual Entities are Digital

Artefacts that can be classified as either active or passive. Active Digital
Artefacts (ADA) are running software applications, agents or Services that

may access other Services or Resources. Passive Digital Artefacts (PDA) are
passive software elements such as database entries that can be digital

Class A Class B
1 *

Fig. 7.5 UML association

Physical EntityUser

0..*

interacts
with 0..*

Fig. 7.6 Basic abstraction

of an IoT interaction
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representations of the Physical Entity. Please note that all Digital Artefacts can

be classified as either Active or Passive Digital Artefacts;

• Ideally, Virtual Entities are synchronised representations of a given set of

aspects (or properties) of the Physical Entity. This means that relevant digital

parameters representing the characteristics of the Physical Entity are updated

upon any change of the former. In the same way, changes that affect the Virtual

Entity could manifest themselves in the Physical Entity. For instance, manually

locking a door might result in changing the state of the door in home automation
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Fig. 7.7 UML representation of the IoT Domain Model
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software, and correspondingly, setting the door to “locked” in the software might

result in triggering an electric lock in the physical world.

At this point it should be noted that while Fig. 7.6, at first sight, seems to suggest

only a Human User interacting with some Physical Entities, it also covers interac-

tion between two machines: in this case, the controlling software of the first

machine is an Active Digital Artefact and thus a User, and the second machine –

or a Device in the terms of the IoT Domain Model – can be modelled as a Physical

Entity. We introduce the concept of an Augmented Entity as the composition of one

Virtual Entity and the Physical Entity it is associated to, in order to highlight the

fact that these two concepts belong together. The Augmented Entity is what

actually enables everyday objects to become part of digital processes, thus, the

Augmented Entity can be regarded as constituting the “thing” in the Internet of

Things.

It should be noted that there might be many types of users, as we have discussed

before. A Human User is a specialisation of the general concept. However, different

kinds of Users, such as maintenance people, owners, or security officers are

plausible as well. It is also worth noting that we have not included different roles

in the IoT Domain Model, for same reason that we have also not introduced

different types of Users. Within the development of concrete architectures, it is

very likely that the Users will take on different roles and these should be modelled

accordingly. As the underlying taxonomies will vary with the use cases addressed,

we do not prescribe a specific taxonomy here. Especially in the enterprise domain,

where security roles are fundamental to practically every single IoT architecture,

one common option for modelling roles can be found in (Raymond 1995). We will

briefly revisit up this taxonomy within the context of the process management

Section (see Sect. 7.1.5.2.1).

The relationship between Augmented, Physical and Virtual Entities is shown in

Fig. 7.7, together with other terms and concepts that are introduced in the remainder

of this section.

The relation between Virtual Entity and Physical Entity is usually achieved by

embedding into, by attaching to, or by simply placing in close vicinity of the

Physical Entity, one or more ICT Devices that provide the technological interface

for interacting with, or gaining information about the Physical Entity. By so doing

the Device actually extends the Physical Entity and allows the latter to be part of the

digital world. This can be achieved by using Devices of the same class, as in the

case of certain similar kinds of body-area network nodes, or by using Devices of

different classes, as in the case of an RFID tag and reader. A Device thus mediates

the interactions between Physical Entities (that have no projections in the digital

world) and Virtual Entities (which have no projections in the physical world),

generating a paired couple that can be seen as an extension of either one, i.e. the

Augmented Entity. Devices are thus technical artefacts for bridging the real world

of Physical Entities with the digital world of the Internet. This is done by providing

monitoring, sensing, actuation, computation, storage and processing capabilities. It

is noteworthy that a Device can also be a Physical Entity, especially in the context
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of certain applications. An example for such an application is Device management,

whose main concern is the Devices themselves and not the entities or environments

that these Devices monitor.

From an IoT point of view, the following three basic types of Devices are of

interest:

• Sensors provide information, knowledge, or data about the Physical Entity they

monitor. In this context, this ranges from the identity of the Physical Entity to

measures of the physical state of the Physical Entity. Like other Devices, they

can be attached or otherwise embedded in the physical structure of the Physical

Entity, or be placed in the environment and indirectly monitor Physical Entities.

An example for the latter is a face-recognition enabled camera. Information from

sensors can be recorded for later retrieval (e.g., in a storage of Resource);

• Tags are used to identify Physical Entities, to which the Tags are usually

physically attached. The identification process is called “reading”, and it is

carried out by specific Sensor Devices, which are usually called readers. The

primary purpose of Tags is to facilitate and increase the accuracy of the

identification process. This process can be optical, as in the case of barcodes

and QR codes, or it can be RF-based, as in the case of microwave car-plate

recognition systems and RFID. The actual physics of the process, as well as the

many types of tags, are however irrelevant for the IoT Domain Model as these

technologies vary and change over time. These are important however when

selecting the right technology for the implementation of a concrete system;

• Actuators can modify the physical state of a Physical Entity, like changing the

state (translate, rotate, stir, inflate, switch on/off,. . .) of simple Physical Entities

or activating/deactivating functionalities of more complex ones.

Notice though that Devices can be aggregations of several Devices of differ-

ent types. For instance, what we call a sensor node often contains both Sensors

(e.g., movement sensing) as well as Actuators (e.g., wheel engines). In some

cases, Virtual Entities that are related to large Physical Entities might need to

rely on several, possibly heterogeneous, Resources and Devices in order to

provide a meaningful representation of the Physical Entity, c.f. in our Red

Thread example, the values of several temperature Sensors are aggregated to

determine the temperature of the truck.

Resources are software components that provide data from or are used in the

actuation on Physical Entities. Resources typically have native interfaces. There is a

distinction between On-Device Resources and Network Resources. As the name

suggests, On-Device Resources are hosted on Devices, viz. software that is

deployed locally on the Device that is associated with the Physical Entity. They

include executable code for accessing, processing, and storing Sensor information,

as well as code for controlling Actuators. On the other hand, Network Resources are

Resources available somewhere in the network, e.g., back-end or cloud-based

databases. A Virtual Entity can also be associated with Resources that enable

interaction with the Physical Entity that the Virtual Entity represents.
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In contrast to heterogeneous Resources – implementations of which can be

highly dependent on the underlying hardware of the Device – , a Service provides

an open and standardised interface, offering all necessary functionalities for

interacting with the Resources / Devices associated with Physical Entities. Interac-
tion with the Service is done via the network. On the lowest level – the one

interfacing with the Resource and closer to the actual Device hardware – , Services

expose the functionality of a Device through its hosted Resources. Other Services

may invoke such low-level Services for providing higher-level functionalities, for

instance executing an activity of a business process. A typical case for this is the

Service alerting “Ted” based on the temperature Service results in the “Red

Thread” example.

Since it is the Service that makes a Resource accessible, the above-mentioned

relations between Resources and Virtual Entities are modelled as associations

between Virtual Entities and Services. For each Virtual Entity there can be

associations with different Services that may provide different functionalities,

like retrieving information or enabling the execution of actuation tasks. Services

can also be redundant, i.e., the same type of Service may be provided by different

instances (e.g. redundant temperature Services provided by different Devices). In

this case, there could be multiple associations of the same kind for the same Virtual

Entity. Associations are important in look-up and discovery processes.

The instance diagrams such as Fig. 7.2 are concrete instantiations of the IoT

Domain Model, i.e. concrete architectures modelled with the concepts of the IoT

Domain Model.

7.3.3 Detailed Explanations and Related Concepts

The IoT Domain Model as explained in the previous section is focusing on the main

concepts at a high level of abstraction, capturing the essence of the IoT Domain.

However, for easier understanding we provide here more detailed explanations.

7.3.3.1 Devices and Device Capabilities

From an IoT Domain-Model point of view, Devices are only technical artefacts

meant to provide an interface between the digital and the physical worlds, i.e. a link

between the Virtual Entities and the Physical Entities. For this reason, Devices must

be able to operate both in the physical and digital world and the IoT Domain Model

only focuses on their capability to provide observation and modification of the

physical environment from the digital environment. If other properties of Devices

were relevant, the Device would be modelled as an entity itself.

The hardware underlying the Devices is very important though and must have at

least some degree of communication, computation and storage capabilities for the

purposes of the IoT. Moreover, power resources are also very important, as they can
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provide operational autonomy to the Devices. Many technologies and products are

available and their capabilities vary noticeably. While these capabilities might not

impact directly the IoT Domain Model, they are very important during the

application-design phase, c.f. the Deployment and Operation view in Sect. 8.2.4

“Deployment & Operation view”.

Communication capabilities depend on the type of data exchanged with the

Device (identifier, identifier + data, sensor data, or commands) and the communi-

cation topology (network, reader-tag, peer-to-peer, etc.). These aspects are very

important in the IoT context and have a large impact on energy consumption, data-

collection frequency, and the amount of data transmitted. Communication

capabilities indirectly impact the location of Resources (on-device or on the

network). Please refer to the IoT Communication Model (Sect. 7.1.6) for a detailed

discussion of this topic. Security features also impact communication capabilities,

since they usually introduce a relevant communication overhead (c.f. Sect. 7.1).

Computation capabilities on the other hand have a huge impact on the chosen

architecture, the implementable security features, and power resources of the

Devices. They are also relevant for what concerns the availability of On-Device

Resources and their complexity, as constrained Devices might not have sufficient

computational resources.

The term storage usually refers to the capability of supporting the firmware/

software running on the Device. This can be accomplished storing data provided by

on-board sensor hardware or data gathered from other Services and needed for

supporting a given Resource. Storage can range from none, as in the case of RFID

technology to kilobytes in the case of typical embedded Devices or even more in

case of unconstrained Devices.

7.3.3.2 Resources

Resources are software components that provide some functionality. When

associated with a Physical Entity, they either provide some information about or

allow changing some aspects in the digital or physical world pertaining to one or

more Physical Entities. The latter functionality is commonly referred to as

actuation. Resources can either run on a Device – hence called On-Device

Resources – or they can run somewhere in the network (Network Resources).

On-Device Resources are typically sensor Resources that provide sensing data or

actuator Resources, e.g. a machine controller that effects some actuation in the

physical world. They thus can be seen as a “bridge” between the digital and

physical world. On-Device Resources may also be storage Resources, e.g., store a

history of sensor measurements, but are limited by the storage capacity of the

Device.

As Network Resources run on a dedicated server in the network or in the

“cloud”, they do not rely on special hardware that allows direct connection to the

physical world. They rather provide enhanced Services that require more system

resources than Devices typical for the IoT can provide. Such Resources can process
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data, for instance they can take sensor information as input and produce aggregated

or more high-level information as output. Also, Network Resources can be storage

Resources, which typically do not suffer from the limitations of their on-device

counterparts. Storage Resources can store information produces by Resources and

they can thus provide information about Physical Entities. This may include

location and state-tracking information (history), static data (like product-type

information), and many other properties. An example of a storage Resource is an

EPCIS repository (Electronic Product Code Information Services (EPC 1.0.13))

that aggregates information about a large number of Physical Entities. Notice that

also Human Users can update the information in a storage Resource, since not all

known information about an entity always is, or even can be, provided by Devices.

7.3.3.3 Services

Services are a widely used concept in today’s IT systems. According to (MacKenzie

et al. 2006), “Services are the mechanism by which needs and capabilities are

brought together”. This definition is very broad, and the Service concept in the IoT

Domain Model is covering this broad definition – but Services are restricted to

technical Services implemented in software (in contrast to general, non-technical

services that e.g. a lawyer or a consultant provides). As such, Services provide the

link between the IoT aspects of a system and other, non-IoT specific parts of an

information system, like e.g. various enterprise systems; IoT-related Services and

non-IoT Services can be orchestrated together in order to form a complete system.

As it has been pointed out in (Martı́n 2012), IoT-related Services need to be

explained in more detail: IoT Services provide well-defined and standardised

interfaces, hiding the complexity of accessing a variety of heterogeneous

Resources. The interaction with a Physical Entity can be accomplished via one or

more Services associated with the corresponding Virtual Entity. This association

becomes important in the process of look-up and discovery. An IoT Service can

thus be defined as a type of Service enabling interactions with the real world.

According to (Martı́n 2012), IoT Services can be classified according by their

level of abstraction:

• Resource-level Services expose the functionality, usually of a Device, by

accessing its hosted Resources. These kinds of Services refer to a single

Resource. In addition to exposing the Resource’s functionality, they deal with

quality aspects, such as dependability, security (e.g., access control), resilience

(e.g., availability) and performance (e.g., scalability, timeliness). Resources can

also be Network Resources, i.e. the Resources do not necessarily reside on a

Device in the sense of the IoT Domain Model (normal computers are not

regarded as IoT Devices by the IoT Domain Model), but can also be hosted

somewhere else. The concrete location of where the Network Resource is

situated is commonly abstracted away by the Service;
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• Virtual Entity-level Services provide access to information at a Virtual Entity-

level. They can be Services associated to a single Virtual Entity that give access

to attributes for reading attribute information or for updating attributes in order

to trigger associations. An alternative is to provide a common Virtual Entity-

level Service with an interface for accessing attributes of different Virtual

Entities, as, for instance, the NGSI Context Interface (NGSI 2010) provides

for getting attribute information of the Virtual Entities;

• Integrated Services are the result of a Service composition of Resource-level or

Virtual Entity-level Services as well as any combinations of both Service

abstractions.

7.3.3.4 Identification of Physical Entities

In order to track and monitor Physical Entities, they have to be identified. There are

basically two ways for how this can be done, as is very well described in (Furness

2009): Using either natural-feature identification (classified as “primary identifica-

tion”) or using some type of Tags or labels (classified as “secondary identification”)

that are attached to the Physical Entity.

Both means of identification are covered in the IoT Domain Model. Tags

are modelled as Devices that explicitly identify a Physical Entity. Natural-feature

identification can be modelled, for example, by using a camera – a kind of Sensor –
that monitors the Physical Entity and an additional Resource that does the natural

feature extraction (i.e. a dedicated software component). The result of the natural-

feature extraction can be used as search term for looking up the corresponding

Virtual Entity.

RFID Tags are a prominent example in IoT. As they come with their own

electronic circuitry it seems quite natural to classify RFID Tags as Devices in

terms of the IoT Domain Model. The case is less clear-cut regarding the classifica-

tion of a barcode label, however. As pointed out elsewhere (Haller 2010),

classifying a barcode label as a Device seems a little far-fetched; regarding it as a

“natural feature” of the Physical Entity it is attached to, seems to be more appropri-

ate. However, as with many modelling questions, this is a matter of taste – the IoT

Domain Model is not prescribing which variant to use.

7.3.3.5 Context and Location

As the IoT pertains to the physical world, the characteristics of the physical world

play an important role. All elements of the physical world are situated within a

certain context, and location is an essential aspect of this context. All concepts in

the IoT Domain Model that refer to elements of the physical world, i.e., Physical

Entities, Devices, and Human Users inherently have a location. This location may

or may not be known within the IoT system.
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The location of a Physical Entity can be modelled as an attribute of a Virtual

Entity. This location can then be provided through Resources. In the case of a

stationary Physical Entity, the Resource providing the location can be an

On-Device (storage) Resource, in the case of a mobile Physical Entity the Resource

could be a positioning system like GPS, or a tracking system like existing indoor

location systems.

7.4 Information Model

The IoT Information Model defines the structure (e.g. relations, attributes, services)

of all the information for Virtual Entities on a conceptual level, see also

Sects. 7.1.3.2.2, 7.1.3.3.1 and 7.1.3.3.3. The term information is used along to the

definitions of the DIKW hierarchy (see Rowley 2007) where data is defined as pure

values without relevant or useable context. Information adds the right context to

data and offers answers to typical questions like who, what, where and when.

The description of the representation of the information (e.g. binary, XML, RDF

etc.) and concrete implementations are not part of the IoT Information Model.

The IoT Information Model details the modelling of a Virtual Entity. The Virtual

Entity (VirtualEntity) has attributes with a name (resp. Attribute and

AttributeName) and a type (AttributeType) and one or more values (Value) to

which meta-information (MetaData) can be associated. Important meta-information

is, e.g., at what time a value was measured (i.e. time stamp), the location where a

measurement took place, or the quality of the measurement. Metadata can itself

contain additional metadata, e.g. the unit in which the metadata is measured. The

association (Association) between a Virtual Entity and a Service is detailed in the

sense that is pertains to a certain Attribute of the Virtual Entity. The serviceType

can be set either to INFORMATION, if the Service provides the attribute value to
be read or to ACTUATION, if the Service allows the Attribute value to be set, as

resulting of a corresponding change in the physical world.

7.4.1 Definition of the IoT Information Model

The diagram in Fig. 7.8 shows the structure of the information that is handled and

processed in an IoT System. The main aspects are represented by the elements

VirtualEntity, ServiceDescription and Association. A Virtual Entity models a

Physical Entity and ServiceDescription describes a Service that serves information

about the Physical Entity itself or the environment. Through an Association, the

connection between an Attribute of a Virtual Entity and the ServiceDescription is

modelled, e.g. the Service acts as a “get” function for an Attribute value.

Every Virtual Entity needs to have a unique identifier (identifier) or entity type

(entityType), defining the type of the Virtual Entity representation, e.g. a human, a
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car or a temperature sensor. Furthermore, a Virtual Entity can have zero to many

different attributes (Attribute class in Fig. 7.8). The entityType of the VirtualEntity

class may refer to concepts in an ontology that defines what attributes a Virtual

Entity of this type has (see, for instance, [Group, W3C OWL]). Each Attribute has a

name (attributeName), a type (attributeType), and one to many values

(ValueContainer). The attributeType specifies the semantic type of an attribute,

for example, that the value represents temperature. It can reference an ontology-

concepts, e.g., qu:temperature taken from “Quantity Kinds and Units”-ontology

(Lefort 2005). This way, one can for instance, model an attribute, e.g. a list of

values, which itself has several values. Each ValueContainer groups one Value and

zero to many metadata information units belonging to the given Value. The

metadata can, for instance, be used to save the timestamp of the Value, or other

quality parameters, such as accuracy or the unit of measurement. The Virtual Entity

(VirtualEntity) is also connected to the ServiceDescription via the

ServiceDescription-VirtualEntity association.

A ServiceDescription describes the relevant aspects of a Service, including its

interface. Additionally, it may contain one (or more) ResourceDescription(s)

describing a Resource whose functionality is exposed by the Service. The
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identifier
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Fig. 7.8 IoT Information Model
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ResourceDescription in turn may contain information about the Device on which

the Resource is hosted.

7.4.2 Modelling of Example Scenario

The IoT Information Model is a meta-model that defines the structure of key aspects

of the information being managed in an IoT system. Therefore, unlike the Domain

Model (see the recurring example in Sect. 7.1.3.1), it would typically not be directly

instantiated (see information view Sect. 8.2.3 and the related Design Choices in

Chap. 6 for this purpose). Nevertheless, for illustration purposes, we sketch here

how the information relevant for our example scenario from Sect. 4.2 could be

modelled (Fig. 7.9).
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Fig. 7.9 Illustrating example for IoT Information Model
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The element of interest for which we can get some information is the Load

Carrier, which is therefore digitally represented by a Virtual Entity. Here, we show

how the temperature aspect of the Physical Entity is modelled by the

hasTemperature attribute of the Virtual Entity. This Figure also features a descrip-

tion of the service that is used to measure this temperature. What is finally needed is

the connection between the hasTemperature attribute and the service that can

provide its value. This is achieved by the Temperature Association.

7.4.3 Relation of Information Model to Domain Model

The IoT Information Model models all the concepts of the Domain Model that are

to be explicitly represented and manipulated in the digital world. Additionally, the

IoT Information Model models relations between these concepts. The IoT Informa-

tion Model is a meta-model that provides a structure for the information being

handled by IoT Systems. This structure provides the basis for all aspects of the

system that deal with the representation, gathering, processing, storage and retrieval

of information and as such is used as a basis for defining the functional interfaces of

the IoT system.

Figure 7.10 shows the relation between the Domain Model concepts and the IoT

Information Model elements. The main Domain Model concepts that are explicitly

represented in an IoT system are the Virtual Entity and the service. The latter also

comprises aspects of the Resource and the Device. As the Virtual Entity is the

representation of the Physical Entity in the digital world, there is no other represen-

tation of the Physical Entity in the IoT Information Model.

7.4.4 Other Information-Related Models in IoT-A

Throughout IoT-A several other information- related models exist. Most of them

are defined in the technical work packages WP2, WP3, WP4 and WP5. More

information can be found in the respective deliverables (see below).

• Entity model: The Entity Model specifies which attributes and features of real

word objects are represented by the virtual counterpart, i.e. the Virtual Entity of

the respective Physical Entity. For every attribute specified in the entity model,

services can be found that are able to either provide information about the

attribute (sensing) or manipulate it, leading to an effect in the real world

(actuating). More information about the entity model can be found in

Sect. 7.1.3.2.2.

• Resource model: The Resource Model contains the information that is essential

to identify Resources by a unique identifier and to classify Resources by their

type, like sensor, actuator, processor or tag. Furthermore the model specifies the
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geographic location of the Resource, the Device the Resource is hosted on (if so)

as well as the IoT Services the Resource is exposed through. More information

can be found in (Martin 2012) Sect. 3.3.

• Service descriptionmodel: Services provide access to Resources and are used to

access information or to control Physical Entities. An IoT Service accesses IoT

Resources in order to provide information about attributes of entities or

manipulates them leading to an effect in the real world. A Service Description

describes a Service, using for instance a service description language such as

USDL.1 For more information see (Martin 2012) Sect. 4.6.3.

• Event Model: Event models are quite essential in today’s IoT architectures,

e.g. in the EPCglobal Information Services. Normally events are used to track

dynamic changes in a (software) system, showing who or what has triggered it

and when, where and why the change occurred. Event representation and

processing is specified in Sect. 4.2 of (Voelksen 2013).

7.5 Functional Model

7.5.1 Functional Decomposition

In the IoT-A project, Functional Decomposition (FD) refers to the process by which
the different Functional Components (FC) that make up the IoT ARM are identified

and related to one another.

Fig. 7.10 Relation between the core concepts of the IoT Domain Model and IoT Information

Model

1 http://www.internet-of-services.com/.
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The main purpose of Functional Decomposition is, on the one hand, to break up

the complexity of a system compliant to the IoT ARM in smaller and more

manageable parts, and to understand and illustrate their relationship on the

other hand.

Additionally, Functional Decomposition produces a superset of functionalities

that can be used to build any IoT system. The output of Functional Decomposition

is described in this document at two levels of abstraction:

• The Functional Model (purpose of this section);

• The Functional View (presented in Sect. 8.2.2).

The definition of the Functional Model is derived by applying the definition of a

Reference Model found in (MacKenzie et al. 2006) to Functional Decomposition:

“The Functional Model is an abstract framework for understanding the main

Functionality Groups (FG) and their interactions. This framework defines the

common semantics of the main functionalities and will be used for the development

of IoT-A compliant Functional Views.”

The definition contains the following concepts that need to be explained in more

detail:

• Abstract: The Functional Model is not directly tied to a certain technology,

application domain, or implementation. It does not explain what the different

Functional Components are that make up a certain Functionality Group;

• Functionality Groups and their interactions: The Functional Model contains

both the Functionality Groups and the interaction between those parts. A list of

the Functionality Groups alone would not be enough to make up the Functional

Model. Both the Functionality Groups and their interaction are mandatory;

• Functional View: The Functional View describes the system’s runtime Func-

tional Components, including the components’ responsibilities, their default

functions, their interfaces, and their primary interactions. The Functional View

is derived from the Functional Model on the one hand and from the Unified

Requirements on the other hand. Note that various Functional Views could be

derived from the Functional Model. See also Sect. 8.2.2 for more detailed

information on the functional view.

7.5.2 Functional Model Diagram

The Functional Model diagram is depicted in Fig. 7.11 and was derived as follows:

• From the main abstractions identified in the Domain Model (Virtual Entities,

Devices, Resources and Users) the “Application”, “Virtual Entity”, “IoT Ser-

vice” and “Device” FGs are derived;

• With regards to the plethora of communication technologies that the IoT ARM

needs to support, the need for a “Communication” FG is identified;
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• Requirements expressed by stakeholders regarding the possibility to build

services and applications on top of the IoT are covered by the “IoT Process

Management” and “Service Organisation” FGs;

• To address consistently the concern expressed about IoT Trust, Security and

Privacy, the need for a “Security” transversal FG is identified;

• Finally, the “Management” transversal FG is required for the management of

and/or interaction between the functionality groups.

The Functional Model contains seven longitudinal Functionality Groups (light

blue) complemented by two transversal Functionality Groups (Management and

Security, dark blue). These transversal groups provide functionalities that are

required by each of the longitudinal groups. The policies governing the transversal

groups will not only be applied to the groups themselves, but do also pertain to the

longitudinal groups.

As an example: for a security policy to be effective, it must ensure that there is

no functionality provided by a component that would circumvent the policy and

provide unauthorised access.

Next, the interactions between the FGs are shown. As can be seen from Fig. 7.11,

the Functional Model is a hierarchical model and the main interactions between the

FG’s are depicted with orange arrows. Since the transversal FGs (Management &

Security) interface with most of the other FGs, their interactions with the other FG’s

are not explicitly depicted.

In the remainder of this section, each of the FGs will be described in more detail

(with exception of the Application and Device FGs, since trying to capture their

properties would be so generic that they do not add any value).
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7.5.2.1 IoT Process Management

The IoT Process Management FG relates to the conceptual integration of (business)

process management systems with the IoT ARM. The overall aim of this FG is to

provide the functional concepts necessary to conceptually integrate the

idiosyncrasies of the IoT world into traditional (business) processes. By so doing,

enterprises can effectively utilise IoT sub-systems adhering to common standards

and best practices, thus avoiding the overhead and costs of isolated and proprietary

“Intranet-of-Things” island solutions.

In the IoT-A project, the IoT Process Management FG is addressed by WP

2. The IoT Process Management FG provides additions and extensions to industry

standards, for instance BPMN 2.0. The additions feature IoT-specific aspects of

(business) processes, such as the reliability or accountability of sensor data

providing information about Virtual Entities or the required processing capabilities

of Devices hosting certain Resources relevant for the real world. Applications that

interact with the IoT Process Management FG via IoT-augmented process models

can effectively be shielded from IoT-specific details of lower layers of the func-

tional model, which greatly reduces integration costs and thus contributes to an

increased adoption of IoT-A based IoT systems (Meyer et al. 2011).

One important aspect of IoT Process Management is its inherent closeness to

enterprise systems. As it was already introduced in the IoT Domain Model

Sect. 7.1.3, the IoT Process Management FG is where the business objects and

processes are combined with the world of IoT, and especially here the modelling of

processes must take into account not only the idiosyncrasies of the IoT domain, but

also the specificities of the underlying business domain. The different roles of the

business objects and users will be defined here. Again, as discussed in the IoT

Domain Model section, we do not prescribe a specific taxonomy here. However, for

pedagogical purposes we illustrate how this taxonomy looks like in the context of

the RM-ODP context Enterprise View (see the discussion about RM-ODP

(Raymond 1995) and roles in IoT Domain Model Sect. 7.1.3.2.2).

• Permission: what can be done? For instance a self-regulating ventilation system

can be started by a central control system;

• Prohibition: what must not be done? For instance the ventilation system may not

be shut down in its entirety if the outside temperature is above a pre-defined

value and if humans are present in the building;

• Obligations: the central control system needs to save recorded environmental

parameters for each room in the entire building (temperature, humidity, ventila-

tion settings). Such records can, for instance, be required by national

occupational-health laws.

When it comes to the practical realisation of the process management, these

different policies will come into play when the respective business processes are

modelled. In Chap. 5 we pick up the notion of enterprise views and illustrate how

they factor into the requirements process.
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The IoT Process Management FG is conceptually closely related to the Service

Organisation FG and acts as a proxy to applications that integrate an IoT-A-compli-

ant IoT system. Naturally, the IoT Process Management FG has a dependency on the

Service Organisation FG, as a central concept in the execution of (business) pro-

cesses is the finding, binding, and invoking of Services that are used for each process

step. The IoT Process Management FG therefore relies on Service Organisation to

map the abstract process definitions to more concrete Service invocations.

Applications can utilise the tools and interfaces defined for the IoT Process

Management FG in order to stay on the (abstract) conceptual level of a (business)

process, while, at the same time, making use of IoT-related functionality without

the necessity of dealing with the complexities of IoT Services. In this respect, the

IoT Process Management FG provides conceptual interfaces to the IoT ARM, that

are alternatives to the more concrete Virtual Entity FG and Service Organisation FG

interfaces.

7.5.2.2 Service Organisation

The Service Organisation FG is a central Functionality Group that acts as a

communication hub between several other Functionality Groups. Since the primary

concept of communication within the IoT ARM is the notion of the Service (see

Domain Model Sect. 7.1.3), the Service Organisation FG is used for composing and

orchestrating Services of different levels of abstraction. Within the IoT Reference

Architecture, it effectively links the Service requests from high level FGs such as

the IoT Process Management FG, or even external applications, to basic services

that expose Resources (see Domain Model Sect. 7.1.3) (such as services hosted on a

WSN gateway), and enables the association of entities with these services by

utilising the Virtual Entity FG, so that a translation of high-level requests dealing

with properties of entities (e.g., “give me please the temperature in the room 123”)

down to the concrete IoT services (e.g., “sensor service XYZ”) can be realised. In

order to allow for querying Virtual Entities or IoT Services that are associated with

these entities, the Service Organisation FG is responsible for resolving and

orchestrating IoT Services and also deal with the composition and choreography

of Services. Service Composition is a central concept within the architecture, since

IoT Services are very frequently capable of rather limited functionality due to the

constraints in computing power and battery life that are typical for WS&ANs or

embedded Devices comprising the IoT. Service Composition then helps combining

multiple of such basic Services in order to answer requests at a higher level of

Service abstraction (e.g. the combination of a humidity sensing Service and a

temperature Service could serve as input for an air-conditioning). Service Chore-

ography is a concept that supports brokerage of Services so that Services can

subscribe to other Services available in the system.

As discussed in the previous section, the Service Organisation FG is closely tied

to the IoT Process Management FG, since the Service Organisation FG enables

(business) processes or external applications to find and bind Services that can be
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used to execute process steps, or to be integrated in other ways with external

applications. The Service Organisation FG acts as an essential enabler for the IoT

Process Management FG. The Virtual Entities specified during the process

modelling phase are resolved and bound to IoT Service FG needed for process

execution.

7.5.2.3 Virtual Entity and IoT Service

The Virtual Entity and IoT Service FGs include functions that relate to interactions

on the Virtual-Entity and IoT-Service abstraction levels, respectively. Figure 7.12

shows the abstraction levels and how they are related. On the left side of Fig. 7.12,

the physical world is depicted. In the physical world, there are a number of Sensors

and Actuators that capture and facilitate the change of certain aspects of the

physical world. The Resources associated to the Sensors and Actuators are exposed

as IoT Services on the IoT Service level. Example interactions between

applications and the IoT system on this abstraction level are “Give me the value

of Sensor 456” or “Set Actuator 867 to On”. Applications can only interact with

these Services in a meaningful way, if they already know the semantics of the

values, e.g. if Sensor 456 returns the value 20, the application has to be programmed

or configured in such a way that it knows that this is the outdoor temperature of the

car of interest, e.g. Car MXD – 123. So, on this level no semantics is encoded in the

information itself, nor does the IoT system have this information, it has to be

a-priori shared between the Sensor and the application.

Whereas interaction on the IoT Service level is useful for a certain set of

applications that are programmed or configured for a specific environment, there

is another set of applications that wants to opportunistically use suitable Services in

a possibly changing environment. For these types of applications, and especially the

Human Users of such applications, the Virtual Entity level models higher-level

aspects of the physical world, and these aspects can be used for discovering

Services. Examples for interactions between applications and the IoT system on

this abstraction level are “Give me the outdoor temperature of Car MXD – 123” or

“Set lock of Car MXD – 123 to locked”. To support the interactions on the Virtual

Entity level, the relation between IoT Services and Virtual Entities needs to be

modelled, which is done in form of associations. For example, the association will

contain the information that the outdoor temperature of Car MXD – 123 is provided

by Sensor 456. Associations between Virtual Entities and IoT Services are

modelled in the Information Model (Sect. 7.1.4).

Virtual Entity

The Virtual Entity FG contains functions for interacting with the IoT System on the

basis of VEs, as well as functionalities for discovering and looking up Services that

can provide information about VEs, or which allow the interaction with VEs.
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Furthermore, it contains all the functionality needed for managing associations, as

well as dynamically finding new associations and monitoring their validity. This

need can be triggered by the mobility of Physical Entities represented by the Virtual

Entities and/or Devices.

IoT Service

The IoT Service Functional Group contains IoT Services as well as functionalities

for discovery, look-up, and name resolution of IoT Services.

7.5.2.4 Communication

The Communication FG abstracts the variety of interaction schemes derived from

the many technologies (Device FG) belonging to IoT systems and provides a

common interface to the IoT Service FG. It provides a simple interface for

instantiating and for managing high-level information flow. In particular, the

following aspects are taken into account: starting from the top layers of the ISO/OSI

model it considers data representation, end to end path information, addressing

issues (i.e. Locator/ID split), network management and device specific features.

The Communication FG can be customised according to the different

requirements defined in the Unified Requirements list and, in particular, those

related to communication specified within WP3. For instance, integrity and security

can be enforced exploiting many different signature and encryption schemes at

various ISO/OSI layers; reliability is achieved either by means of link layer

Fig. 7.12 IoT-Service and Virtual-Entity abstraction levels
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acknowledgements or end to end error correction schemes at the upper layers;

quality of service is realised by providing queue management techniques; finally, in

order to account for communication between different technologies, protocol trans-

lation and context passing functionalities are described.

7.5.2.5 Management

The Management FG combines all functionalities that are needed to govern an IoT

system. The need for management can be traced back to at least four high-level

system goals (Pras 1995):

• Cost reduction;

• Attending unexpected usage issues;

• Fault handling; and

• Flexibility.

Cost reduction: In order to control the cost of a system, it is designed for a

maximum amount of users and/or use cases. “A way for the designer to deal with

the requirements of multiple groups of users is to abstract from the differences in

[the] requirements and [to] parameterise the design” (Pras 1995). Upon

commissioning or start-up of the system, these parameters will be initialised by

the Management FG.

Attending unexpected events: The IoT system is based on an incomplete model

of reality – as literally all systems are. For example, even for the same type of user,

unforeseen activity patterns in the physical world and thus unforeseen usage may

arise may arise. For instance, errors are introduced into the system through explicit,

erroneous management directives (Harrisburg, Chernobyl). Another example is that

Devices can suddenly just die. The latter is most likely to become prevalent in the

IoT, since the cost margins for IoT equipment and thus their reliability can be much

lower than that for traditional telecommunications equipment (back-bone routers,

etc.). The management FG can provide strategies and actions for the mitigation of

impacts from unforeseen situations. Such impacts can be link failure, queue over-

load, etc. In order to better adapt to new situations, it is of course paramount that the

Management FG has a good overview of the system state. To that end the manage-

ment system provides supports collection.

Fault handling: This goal addresses the unpredictability of the future behaviour

of the system itself. This is of special interest in complex IoT systems and also in

IoT systems in which, for instance, the devices in an IoT system do not provide a

model for their behaviour. The measures implied by this goal are:

• Prediction of potential failures;

• Detection of existing failures;

• Reduction of the effects of failures;

• Repair.
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The first three measures can be achieved by comparing the current behaviour of

system components with previous and/or expected behaviour.

Flexibility: The design of a system is based on use-case requirements. However,

these use-case requirements are not static. Instead of designing a new system every

time the requirements change, some flexibility should be built into the system. Due

to this flexibility, the Management FG of the IoT system will be able to react to

changes in the user requirements. This can take place during boot up,

commissioning or also at run time.

All of the above goals rely on shared common functionality and repositories, as,

for instance, a state repository. Other functionalities are:

• Management of the membership and accompanying information of a given

entity to the IoT system. Such entity may be a Functional Component (FC), a

Virtual Entity, an IoT Service, an application, a Device. The information

considered may cover ownership, administrative domain, capabilities, rules,

and rights;

• Retrieval of the list of members pertaining to a given property such as the

ownership/administrative domain;

Finally, some more examples for the above goals are provided:

• Enforcing rules attached to the usage of a certain entity e.g.

• Attending unexpected events: A service needs temperature measurements

every microsecond, but the rule file for the associated device says: maximum

measurement frequency of this device is 100 Hz. The rule file also might say:

no continuous operation of said device for more than 1 h (due to energy

constraints);

• Fault handling: A service wants to run a business process that would con-

sume all IoT services and the VE lookup for more than a day. An example for

this is a query for the geo-location of all temperature Sensors on planet Earth.

The rule file may contain instructions about how many resources can be

consumed by an application;

• Cost reduction: Logging entity usage by a user for further processing

(e.g. billing).

Besides the above, “traditional” goals of management, the Management FG also

needs to address needs that arise when IoT systems can actuate and/or if the they are

embedded in critical infrastructure. Examples for such situations are

• Bringing the entire system to an emergency stop, for instance a train;

• Turning the entire system into a sleep/energy-saving mode in order to relax to

load on a failing Smart Grid.
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7.5.2.6 Security

The Security Functionality Group (Security FG) is responsible for ensuring the

security and privacy of IoT-A-compliant systems. It is in charge of handling the

initial registration of a client to the system in a secure manner. This ensures that

only legitimate clients may access services provided by the IoT infrastructure. The

Security FG is also in charge of protecting private parameters of users. This is

achieved by providing anonymity (ensuring that the user’s identity remains confi-

dential when she/he/it accesses a Resource or a service) and “unlink-ability”

(ensuring that the user may make multiple uses of Resources or services without

an attacker being able to establish links between those uses). This privacy support

relies on fine-tuned identity management, which is able to assign various pseudo-

random identifiers to a single user.

The Security FG also ensures that legitimate interaction occurs between peers

that are statically authorised to interact with each other, or that are trusted by each

other. This is achieved through the use of dedicated authorisation functions or

through the reliance on a trust – and-reputation model, which is able to identify

trustworthy peers in a privacy-capable and highly mutable architecture.

Finally, the Security FG enables secure communications between peers by

managing the establishment of integrity and confidentiality features between two

entities lacking initial knowledge of each other.

7.6 Communication Model

The IoT Communication Model aims at defining the main communication

paradigms for connecting elements, as defined in the IoT Domain Model. We

provide a reference set of communication rules to build interoperable stacks,

together with insights about the main interactions among the elements of the IoT

Domain Model. We propose a Communication Model that leverages on the ISO

OSI 7-layer model for networks and aims at highlighting those peculiar aspects

inherent to the interoperation among different stacks, which we will call in what

follows, interoperability features. Further, the application of communication

schemes, such as application layer gateways, transparent proxy, network

virtualization, etc., to different IoT network types is discussed.

In particular, with reference to our Read Thread example of Sect. 4.2, the IoT

Communication Model can be used to model how the monitoring Sensors of the

truck can seamlessly interact with Ted’s phone and how it can communicate with

the store enterprise system.

The IoT Communication Model has multiple usages. For instance, it can guide

the definition of the Communication Functional Components from which the

Communication Functional Group is composed of. Finally, it can be used to derive

the Communication best practices, as depicted in the following pictures (Fig. 7.13):
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7.6.1 IoT Domain Model Element Communications

For the IoT Communication Model, it is important to identify the communication-

system elements and/or the communicating Users among those defined in the IoT

Domain Model. One, if not the main peculiarity of the IoT is that Users can belong

to many disjoint categories: Human Users, Services or Active Digital Artefacts.

While the same picture is emerging in today’s Internet usage, the percentage of

human-invoked communication will be even lower in the IoT. Moreover, entities

can be physical, digital, or virtual. While a Physical Entity cannot directly take part

in communication, it can exploit Services associated to its virtual counterpart.

The communication between these users needs to support different paradigms:

unicast is the mandatory solution for one-to-one connectivity. However, multicast

and anycast are needed for fulfilling many other IoT-application requirements, such

as data collection and information dissemination, etc.

With reference to our “Red Thread” and the IoT DomainModel section, the main

communicating elements are: the Mote Runner Node (Device), the Alarm Service

(Service), the AndroidApp (Active Digital Artefact) and Ted (Human User).

This section provides insight and guidance on the interactions between elements

of the IoT Domain Model. In particular, per possible communicating entity pair, a

discussion about the relevant layer of the IoT Communication Model will be

provided.

7.6.1.1 User-Service / Service-Service Interactions

As shown in Fig. 7.14, the IoT Domain Model entities involved in this interaction

are mainly two: User and Service (circled in solid red lines). For instance, in our

recurring example this interaction models the truck driver, Ted, who needs to

interact with the AndroidApp in order to receive alarms. However, a Service may

Fig. 7.13 IoT Communication Model usages: (left) using the CM together with the Unified

Requirements to define the Communication FG; (right) deriving Communication Best Practices

thanks to the CM and the Unified Requirements
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also assume the user role when invoking another Service, thus Users can either be

Human User or Active Digital Artefacts.

This interaction is straightforward, as it is identical to typical Internet

interactions between Users and Services. In fact, in most of the application scenario

the User-Service connection can be established using standard Internet protocols.

However, two main exceptions to this general assumption apply when two

Services communicate one to each other and one or both of the communicating

elements belong to a constrained network.

The latter case, which applies when Services are deployed on constrained

Devices such as Sensor nodes and when the User of a given Service is deployed

on a constrained Device, requires for the use of constrained communication

protocols (see Rossi 2012). Finally, when the two elements belong to different

sub-networks, gateway(s) and/or proxy(ies) must be deployed for ensuring success-

ful end-to-end communication. To this extent, as a general rule, if a Service is

constrained, or if it needs to provide access to constrained Users, it must be

accessible with constrained protocols (e.g., 6LoWPAN, UDP, CoAP, etc.).
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Fig. 7.14 DM entities involved in a User-Service / Service-Service interaction (zoom of the

whole IoT Domain Model in Fig. 7.7)
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7.6.1.2 Service / Resource / Device Interactions

Figure 7.15 illustrates the entities of the IoT Domain Model involved in the

interactions among Services, Resources and Devices. These interactions can be

exemplified with the communication among the Alarm Service, the Alarm

Resource and the Mote Runner Node of the recurring example. This Figure also

illustrates the interconnections of these entities.

The complexity of this interaction is due to variety of different properties that a

Device can have; in particular, a Device can be as simple and limited as a Tag and

as complex and powerful as a server (Tag Terminal Type (TT3) and unconstrained

Terminal Type (TT1), respectively, in (Rossi 2012)). In fact, while powerful

Devices can easily support the needed software to host and access Services and to

expose the needed Resources for other Services to interact with, simpler Devices
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may only be able to provide access to their own Resources and the simplest may

even not be powerful enough even to support this. In the latter two cases, Resources

and Services must be provided somewhere else in the network, by some other more

powerful Device(s).

Thus the IoT Communication Model helps to model and to analyse how

constrained Devices can actively participate in an IoT-A compliant communication

and to study possible solutions, such as the usage of application layer gateways, to

integrate legacy technologies.

7.6.2 Communication Interoperability Aspects

The model we are going to propose in this section takes its roots from the ISO/OSI

(ISO 1994) stack, the US Department of Defense 4 layer model (DoD4) (Darpa

1970) and, the Internet stack, but it puts its focus on IoT specific features and issues.

All the previous models have a great value, going beyond any discussion, but

simply they have not been conceived with the IoT issues and features in mind.

In Fig. 7.16 we can see the Internet and the DoD4 stacks. It is evident how they

map onto each other, thus in what follows we will address the 4 layers Internet

model only.

The 4-layer Internet stack abstracts from the underlying Physical Layer; in fact its

lowest layer is represented by the Link Layer. This choice is indeed the right one for

the Internet, as the Link Layer is not visible from the Application Layer, and the same

can be applied to fully homogeneous networks, since applications can be totally

agnostic of the underlined common physical technology. However, the Physical

Layer rises to a great importance when talking about the IoT; in fact the IoT is

characterized by a high heterogeneity of hardware and technologies and the necessity

of making different system interoperable. Moreover, this is a clear statement on the

fact that IP is conceived in order to be implemented on top of any hardware

networking technologies, while in the IoT there exist technologies that do not dispose

of the needed resources to manage a complete IP compliant communication. Thus,

solutions such as 6LoWPAN, are needed to extend IP communication to constrained

networks.

Moreover the main objective of the 4-layer Internet model is to let Internet

applications communicate, having intermediate devices understanding the commu-

nication at IP level, without meddling with upper layers. This model is wonderful in

its simplicity, but this simplicity is one of the reasons why it is unsuitable for the

IoT, since it is not able to address the aforementioned interoperability issues.

Obviously this dates back to the beginning of the Internet, when developing an

Application Protocol for each application was best practice. While in principle that

is a reasonable approach, even in the current Internet we can perceive how it is

misleading. We are not here to discuss pros and cons of developing an Application
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Protocol for each application but we have just to notice this is not a common

practice anymore, with the majority of applications leveraging on HTTP or even on

more specific HTTP constructs like REST protocols. So nowadays it is crucial to

have a distinction between Applications and the Application Protocols.

Another major issue of the 4 layers Internet model arises from the lack of

expression for the so called security layers, the two major examples being SSL

(IETF 2011)/TLS (IETF 2008) and IPsec (IETF 1998).

The main reference point for communication system developers is the ISO/OSI

stack, and, although its validity as an implementation guideline is out of question, it

fails to depict the overall complexity of IoT systems as it is meant to represent

single technology stacks.

After the considerations on the model discussed so far we felt necessary a

different approach for highlighting the peculiar features of IoT communication,

which are not directly evident using the ISO/OSI model alone.

The model, as depicted in Fig. 7.17 on the left-hand side, stresses the relevance

of the wide range of interoperability aspects that characterise IoT systems. In fact,

instead of focusing on a specific realisation of the communication stack, the IoT

Communication Model provides a transversal approach from which one or more

communication stacks can be derived: in fact a single interoperability aspect can be

used to describe the interactions of stacks belonging to different communicating

systems. Once a system is modelled according to the IoT Communication Model it

is easy to derive a set of ISO/OSI interoperable stacks in order to provide the needed

interoperability features.

Below, the different interoperability aspects are described:

• Physical aspect: This interoperability aspect concerns the physical

characteristics of the communication technologies used in the system. It is

similar to the OSI Physical Layer. This is necessary in order to neither exclude

any available technology, and to prevent emerging solutions from being

integrated into the Reference Model. This aspect does not force the adoption

of any specific technology, but it uses the adopted technologies as a base to

model the remaining of the system. In fact, as per the recurring example the

Mote Runner Node can communicate using some low-power radio transceiver

such as ZigBee, while the AndroidApp can be hosted in an IoT-Phone connected

to the Internet either via WiFi or 3G cellular networks;

Fig. 7.16 Four layers

Internet stack (left) and
DoD4 stack (right)
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• Link aspect: In order to address the heterogeneousness of networking

technologies represented in the IoT field, the Link aspect requires special

attention. In fact, most networks implement similar, but customised communi-

cation schemes and security solutions. In order for IoT systems to achieve full

interoperability, as well as the support of heterogeneous technologies and a

comprehensive security framework, this layer must support solution diversity.

At the same time, it needs to provide upper layers with standardised capabilities

and interfaces. Therefore, this layer needs to abstract a large variety of

functionalities, enabling direct communication. IoT systems do not have to

restrict the selection among data link layers, but must enable their coexistence;

• Network and ID aspect: This interoperability aspect combines two communi-

cation aspects: networking, which provides the same functionalities as the

correspondent OSI layer; and identifiers, which are provided using resolution

functionalities between locators and IDs. In order to support global manageabil-

ity, interoperability, and scalability, this aspect needs to provide a common

communication paradigm for every possible networking solution. This is the

narrow waist for the Internet of Things. The difference between identifiers

(unique descriptors of the Digital Artefact; either active or passive), and locators

(descriptors of the position of a given IoT element in the network), is the first

convergence point in the IoT Communication Model. Thus, this interoperability

aspect is in charge of making any two systems addressable from one another

notwithstanding the particular technologies they are adopting. In the case of our

recurring example the AndroidApp must be able to receive alarms generated by

the alarm Service, which in turns, must receive information from the Mote

Runner Device: in order for this to be possible the system must ensure that the

correct identifiers are supported by all the communicating technologies or can be

resolved via appropriate methods;
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• End-to-end aspect: this aspect takes care of reliability, transport issues, transla-

tion functionalities, proxies/gateways support and parameter configuration when

the communication crosses different networking environments. By providing

additional interoperability aspects on top of those of the Network and ID aspect,

this aspect provides the final component for achieving a global M2M communi-

cation model. Connections are also part of the end-to-end scope. Also, Applica-

tion Layer aspects are taken care of here. Moreover Application Protocols in the

IoT tend to embed confirmation messages, and congestion control techniques

require being more complex than what is achievable in the Transport Layer in

the legacy models. With reference to the recurring example, this aspect will take

care of modelling the overall communication between the Alarm Service and the

Mote Runner Node and between the AndroidApp and the Alarm Service;

• Data aspect: the topmost aspect of the IoT Communication Model is related to

data definitions and transfers. While the Information Model provides a high-

level description for data of IoT systems, the purpose of this aspect is to model

data exchange between any two actors in the IoT. As described in the IoT

Information Model (see Sect. 7.4), data exchanged in IoT can adopt many

different representations, ranging from raw data to complex structures where

meta-information is added to provide context specific links. Finally, to make this

possible, the data aspect needs to model the following characteristics (Rossi

2013): (1) capability of providing structured attributes for data description;

(2) capability of being translated (possibly by compression/decompression) the

one to each other, e.g. CoAP is translatable to HTTP by decompression or XML

is translatable to EXI by compression, IPv4 is translatable to IPv6 by mapping;

(3) constrained device support. For instance, in the recurring example, the raw

data produced by the Mote Runner Sensors shall be converted into machine-

readable formats in order for the Alarm Service to be able to interpret and

use them.

7.6.3 Composed Modelling Options

Actual networks may need more than a single communication stack that can be

arranged in several configurations: in particular, here we will analyse how two of

the most popular configurations can be modelled according to the IoT Communi-

cation Model. In the following we will refer to (1) gateway configuration as the

composition of two or more protocol stacks that are placed side by side across

different media, and (2) virtual configuration as the composition of two or more

protocol stacks, one on top of the other.
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7.6.3.1 Gateway Configuration

In this configuration, the IoT Communication Model describes the overall commu-

nication behaviour of the system so that any two communicating element can be

seen seamlessly connected.

Figure 7.18 provides a graphical example of the modelling of three protocol

stacks in gateway configuration. In this example, the two end-point Application

Layers can communicate thanks to the gateways which maps the underline stacks.

In particular, the first gateway (on the left of the figure) bridges the communica-

tion between an Ethernet and a WiFi network, while the second (on the right), in

addition to the bridging functionality between WiFi and ZigBee, adds a translation

functionality for converting IP to 6LoWPAN, TCP to UDP, HTTP to CoAP and

vice versa.

This gateway configuration may be used in the recurring example to let the Mote

Runner Node communicate using ZigBee technology with the Alarm Service

deployed in a server farm thanks to the two gateways.

While the actual configuration of the different protocol stacks is out of the scope

of the model, the overall behaviour of the system can be modelled according to the

five interoperability aspects described above.

7.6.3.2 Virtual Configuration

In this configuration the IoT Communication Model aims at describing the overall

communication behaviour of a system, where the actual communication path is

virtualised by tunnelling the communication using a second protocol stack.

Figure 7.19 exemplifies the modelling of a system behaviour using a virtual

configuration: here, there is an inner communication path composed of an Ethernet

network and a WiFi network using a bridging block and an outer communication

path that is independent of the inner path and allows for the two application layers

to communicate. Such a scheme is usually realised using virtual private network

solutions.

7.6.4 Channel Model for IoT Communication

This model aims at detailing and modelling the content of the channel in the

Shannon-Weaver model in the context of the IoT domain. This model does not

pretend to capture every possible characteristic of IoT technologies, but provides a

common ground to be used to compute overall system performance and for

benchmarking. Further models have to be considered in order to account for more

specific physical aspects.
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Figure 7.20 depicts end-to-end abstraction of a packet delivery between distant

Devices. The information source can be abstracted as a resource in the IoT Domain

Model, and the transmitter as a Device; while the receiver and destination pair can

be mapped as a Device-Service pair.

Following this abstraction, and pushing it forward, we focus on the channel

modelling. In the IoT context, the channel can assume a multiplicity of forms.

Please notice that the following abstraction is useful in order to have an abstract

description but when it comes to apply the Shannon-Hartley theorem it is crucial to

remember this theorem has to be applied independently to each link composing the

path between the sender and the receiver: CI¼BI log(1+SI/NI), where CI is the

channel capacity, BI is the channel bandwidth, SI/NI is the signal-to-noise ratio

(or the carrier-to-noise ratio in case of modulated signals), each of them related to

the I-th link. This channel capacity metric is concave and it can be aggregated

according the following rule: Ci,k¼min(Ci,j,Cj,k), where Ci,k is the aggregated

capacity from i to k, while Ci,j is capacity of the link from i to j and Cj,k is the

capacity of the link between j and k.
Given two adjacent channels, which require to be connected by the means of a

gateway, their aggregated capacity is extremely useful in order to dimension the

gateway itself. Nonetheless, assuming you cannot control the routing on the Inter-

net the scope is limited to the portion of links of which you know the characteristics,

or for a link of which you can suppose to know the lower bound. A valid assumption

Fig. 7.18 Gateway configuration for multiple protocol stacks, aligned according to the IoT aspect

model (see Fig. 7.17)

Fig. 7.19 Virtual configuration for multiple protocol stacks
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will be anyway that the aggregated capacity cannot be bigger than the capacity of

the known links, providing a strong tool to avoid over-dimensioning the gateways.

Indeed, this is extremely useful when designing a constrained network and its

ingress and its egress.

It is important to point out that there is a distinction between the channel model

in the current Internet and that of the IoT. The former is depicted in Fig. 7.21 below,

where the Internet block acts as a black-box summarising every channel transfor-

mation that may happen between the two gateways.

To proceed in modelling the channel in IoT it is important to give a definition of

what we call constrained and unconstrained networks:

• Unconstrained networks are characterised by high-speed communication links

(e.g., offering transfer rates in the Mbit/s range or higher) like, for instance, the

wired Internet of today. Link-level transfer latencies are also small and mainly

impacted by congestion events in the network rather than by the physical

transmission technology;

• Constrained networks are characterised by relatively low transfer rates, typi-

cally smaller than 1 Mbit/s, as offered by, e.g., IEEE 802.15.4. These networks

are also characterised by large latencies. These are due to several factors

including: (1) the involved low-bitrate physical layer technology and (2) the

power-saving policy of the terminals populating these networks, which may

imply the periodic power off of their radios for energy-efficiency reasons.

According to this heterogeneous networks can be seen as the combination of

constrained and unconstrained networks linked together via gateways and/or

proxies.

The picture is much different in the IoT. As can be seen in the scenarios depicted

in (Rossi 2013), in the simplest IoT case the channel consists of a single constrained

network (e.g. a WSAN island), as depicted in Fig. 7.22.

In a slightly more complicated case, the IoT channel can consist of several

constrained networks, which can rely on different network technologies (see

Fig. 7.23).

A different case consists of a channel embodied by a constrained network and an

unconstrained one (see Fig. 7.24).

An additional case consists of a channel formed by two constrained networks

intermediated by an unconstrained network. A common implementation of this case

us the most important in the IoT: the one involving two constrained networks linked

by the Internet (see Fig. 7.25).

Fig. 7.20 Schematic diagram of a general communication system
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What makes IoT very peculiar is the nature of the constrained networks it relies

on. Such networks are formed by constrained Devices and the communication

between the Devices can:

1. Be based on different protocols;

2. Require additional processing in the gateways.

It is important to point out that the characteristics of each network can have a

noticeable impact on the overall end-to-end communication.

In the previous section we tackled the channel capacity using the Shannon-

Hartley theorem and the min operation in order to aggregate multiple hops.

Obviously the channel capacity is not the only important metric when modelling

the IoT communication.

7.7 Trust, Security, Privacy

IoT systems integrate in a seamless way physical objects, data, and computing

devices into a global network of information about ‘smart things’. In this

scenario, services act as bridges through which these ‘smart things’ interact

with each other in an automated way and with as less human intervention as

possible. Towards our aim to provide a Reference Architecture for IoT systems,

it becomes thus mandatory to discuss potential security issues and define a

security model for our architecture. On the way to our goal we proceed as

follows: we identify a few separate classes of security properties that we deem

important for an IoT system and provide, for each class, tools and mechanisms

that serve as solid foundations upon which we can build complex solutions that

guarantee those properties.

Fig. 7.21 Channel model for the current Internet

Fig. 7.22 IoT channel for a single constrained network

Fig. 7.23 IoT channel for communication over two constrained networks
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Considering the multi-faceted entities that a IoT system is made of, we spot the

following necessary properties: Trust, Security, Privacy, and Reliability. In the

remainder of this chapter we discuss these properties separately and delineate, for

each of them, a reference model within the framework of our architecture.

7.7.1 Trust

An important aspect of IoT systems is the fact that they deal with sensitive

information (e.g. patients’ electronic health records). The entities and services

therein recurrently process, store, retrieve, and take decisions upon this type of

data. In this scenario, enforcing trust – compliance to an expected functional

behaviour – on all entities, protocols, and mechanisms an IoT system is made of

becomes a “must”.

Within this project, we focus on Trust at application-level. In particular, we aim

at defining a Trust Model that provides data integrity and confidentiality, and

endpoint authentication and non-repudiation between any two system-entities that

interact with each other.

Trust Model Mandatory Aspects

Describing all possible trust-model archetypes is out of the scope of this document.

Nonetheless, we list hereafter a few and basic aspects that we believe to be

mandatory for defining a Trust Model for IoT systems:

• The Trust-Model domains: In complex systems that include multi-faceted

entities, like, e.g., the IoT, a model that equally shapes the Trust of all

components is difficult, if not impossible, to define. For this reason, various

domains within the system should be determined, with every domain defining a

specific set of subjects to which certain aspects of the trust model apply;

• Trust-evaluation mechanisms: They define a coherent and safe methodology

for computing the trustworthiness degree of a subject within the system. Evalu-

ation mechanisms are based on information previously collected on the given

subject. Depending on the application scenario, this information can be obtained

Fig. 7.24 IoT channel for communication constrained to unconstrained networks

Fig. 7.25 IoT channel for communication over two constrained networks intermediated by the

Internet
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by direct experiences with the subject, witness information on the subject

coming from other members of a community, social-network analysis providing

sociological information on the subject and so on. A trust-evaluation mechanism

must take into account the source of the information on which the trust value is

being computed, i.e. the trustworthiness of the source itself, and carefully weight

its information accordingly in computing the final trust value;

• Behaviour policies: They regulate the ways two subjects within the same Trust

Model domain interact according to their trustworthiness value. They define how

subjects that use the system may interact with other subject. E.g., if a wireless

sensor A is asked to handle a multi-hop message coming from a sensor B with a

very low trust value, Sensor A might decide, according to the behaviour policies

defined by the Trust Model, to not accept the message from Sensor B. Though it

is not recommended, a Trust Model can define specific behaviours for

interacting with subjects whose trust-value cannot be computed within that

model;

• Trust anchor: It is a subject trusted by default (possibly after authentication) by

all subjects using a given Trust Model, and exploited in the evaluation of third

parties’ trustworthiness. In the IoT environment the trust anchor can either be

local to a given subnetwork – running on a node in the same peripheral network,

e.g. a gateway – or a global and centralised device that is deployed on the

Internet;

• Federation of trust: It delineates the rules under which trust relationships

among systems with different Trust Models can be defined. The federation of

trust is essential in order to provide interoperability between subjects that use

different Trust Models. The federation of trust becomes particularly important

within an IoT system deployed on a large scale, where the coexistence of many

different Trust Models it is very likely;

• M2M support: The interaction among autonomous machines is deemed very

common in IoT systems. Prior dynamically identifying and accessing resources

of one-another, these machines should be able to autonomously, according to the

specifics in the Trust Model, evaluate the trustworthiness of each-other.

7.7.2 Security

Now that we have discussed the fundamental aspects that will be included in our

Trust Model, in this section we provide a generic overview of the Security reference

model in our architecture.

Our Security reference model is made of three layers: the Service Security layer,

the Communication Security layer and the Application Security layer. The former,

described in details in (Gruschka and Gessner 2012), includes the following

components: Authorization, Identity Management, Trust and Reputation, Authen-

tication, and key exchange and management. In the remaining of this section we

detail the two last layers.
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7.7.2.1 Communication Security

IoT systems are heterogeneous. Not only because of the variety of the entities

involved (data, machines, sensors, RFID, and so on), but also because they include

Devices with various capabilities in terms of communication and processing.

Therefore, a Communication Security Model must not only consider the heteroge-

neity of the system, but it also should guarantee a balance between security features,

bandwidth, power supply and processing capabilities (Rossi 2012).

Here we work under the assumption that the IoT device space can be divided into

two main categories: constrained networks (NTU) and unconstrained networks

(NTC) (see Networks and communication entities, Chap. 2 in (Rossi 2012)). The

domain of constrained devices contains a great heterogeneity of communication

technologies (and related security solutions) and this poses a great problem in

designing a model encompassing all of them. Examples for such communication

technologies can be found in (Rossi 2012)).

To mitigate the aforementioned heterogeneities we could provide a Communi-

cation Security Model with a high degree of abstraction. However, it would be

useless, as it would lack the specifics needed in the moment of implementing a

specific IoT architecture. As in the Communication Model (see Sect. 7.1.6), we

address the problem by introducing profiles that group heterogeneous Devices into

groups characterised by given specifications.

Figure 7.26 above depicts our approach to lower-layer security in IoT. We

exploit gateways:

On the edge between the domains of unconstrained and constrained devices,

gateways have the role of adapting communication between the two domains.

Gateways are unconstrained devices; therefore, they can be exploited to boost up

the security of constrained devices by running on their behalf energy-hungry and

complex security mechanisms. In addition, gateways can also be used in order

manage security settings in peripheral NTC networks.

We enable these functionalities in the gateways by extending them with the

following features:

• Protocol adaptation between different networks (by definition);

• Tunnelling between themselves and other nodes of the NTU domain. (Optional;

impacts on trust assessment);

• Management of security features belonging to the peripheral network

(Optional);

• Description of security options related to traffic originated from a node attached

to the gateway. (Authentication of source node, cryptographic strength, . . .);
• Filtering of incoming traffic (i.e. traffic sent to one of the nodes attached to the

gateway or vice-versa) according to network policies, user-defined policies, and

destination-node preferences (Optional).
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7.7.2.2 Application Security: System Safety and Reliability

IoT systems include, without any doubt, a wide range of application scenarios: from

home-security to structure monitoring of bridges, buildings, and so on, and from

surveillance systems to health monitoring. Most of these scenarios must be reliable:

a single failure in the system can lead to tragic consequences. This is why, besides

from security and privacy mechanisms that guarantee trustworthiness of the system

as a whole, it becomes important to assure also system safety.

System safety is application specific: for an electricity system safety includes

assuring that no harm is done in case of a short circuit. For an elevator system safety

would include making sure that the elevator does not start moving when the

elevator doors are opened. Nonetheless, there is a common approach to achieve

fail-safe systems made of two phases. The first, called the hazard identification

phase, aims at detecting all possible risks that could possibly lead to severe

accidents. The second phase includes the system design according to the fail-safe

philosophy: systems are designed in a way that the far majority of failures will

simply result in a temporary or total loss of service, so to avoid major damage/

accidents. An example of a safe-fail system is the security belt sensor in smart-cars:

If the driver does not fasten it, the car does not start.

While we believe that the classical fail-safe approach to system design can

assure safety in IoT systems, with respect to hazards inside the system (e.g. the

Fig. 7.26 NTC Constrained Device Network, NTU Unconstrained Device Network, CDSecFeat
Constrained device security feature. The CDSecFeat implementation leverages the extension of

the functionalities of gateway devices
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security belt within the car, the short circuit within the electricity system and so on),

we also believe that often, the safety of the system depends on issues that originate

outside the system. The following scenario gives a representative example of

outside-the-system hazards: A bulldozer aiming at bringing down a tree damages

(by chance) the foundations of a building nearby. Even though the damage is not

visibly spottable right away, at the first slight earthquake it makes the building

crumble down by thus costing human lives.

Clearly, in these cases, threat analysis plays an important role. Despite from

considering only system-insider hazards, the system designer should carefully

examine the ‘outside world’ of the system in order to identify potential outside

hazards. Only after a meticulous analysis of all possible threats (both insiders and

outsiders) proceed with the system design following the fail-safe philosophy.

Lastly, another group of vicious threats imposed to safety, or rather, reliability of

IoT systems are terroristic. These can either aim at bringing down large automatic

systems e.g. a city or country wide electricity system, internet connectivity, border

security monitoring system and so on, or targeting directly the users (e.g. by

wirelessly reprogramming pacemakers of patients2). In the former case, the attack

consequences could be limited by including intrusion/failure detection mechanisms

(e.g. heart-beat protocols) coupled with redundancy that brings the targeted service

up in a short-time period after the attack. In the second case, however, this type of

solution might not work well: If the pacemaker of a patient is stopped, even though

an alarm might be raised in the IoT system, the patient’s life would most probably

end in a short time.

7.7.3 Privacy

Due to the variety of the entities that handle user-generated data in IoT,

guaranteeing data privacy becomes mandatory in these systems. For this reason

we include in our reference model also a Privacy Model, the aim of which is to

describe the mechanisms – e.g. access policies, encryption/decryption algorithms,

security mechanisms based on credentials, and so on – that prevent data of a subject

(either user or entity) to be used improperly.

According to (Weber and Weber 2010), a privacy friendly system should

guarantee the following properties:

• The subject must be able to choose sharing or not sharing information with

someone else;

• The subject must be able to fully control the mechanism used to ensure their

privacy;

2According to a report published at www.secure-medicine.org, peacemakers can be wirelessly

hacked in, and reprogrammed to shut down or to deliver jolts of electricity that would potentially

be fatal to patients.

7 IoT Reference Model 157

http://www.secure-medicine.org/


• The subject shall be able to decide for which purpose the information will be

used;

• The subject shall be informed whenever information is used and by whom;

• During interactions between a subject and an IoT system, only strictly needed

information shall be disclosed about the subject, and pseudonyms, secondary

identity, or assertions (certified properties of the end-user) shall be used when-

ever possible;

• It shall not be possible to infer the subject’s identity by aggregating/reasoning

over information available at various sources;

• Information gained for a specific purpose shall not be used for another purpose.

E.g., the bank issuing a credit card should not use a given client’s purchase

information (logged so to keep track of that client’s account) to send him

advertising on goods similar to his purchases.

To provide the above properties the IoT-A privacy model relies on the following

functional components: Authentication FC, Trust and Reputation FC.

Table 7.1 below briefly summarizes how these components mitigate some of the

privacy threats to privacy, further discussed in the threat analysis performed in

IoT-A (see Appendix).

Central to the Privacy Model is the Identity Management Functional Component.

A description of this FC is provided in deliverable (Gruschka and Gessner 2012).

In our system, any subject (service or user) is univocally mapped to its root

identity. However, a subject might require to be provided with multiple secondary

identities by the Identity Manager. The set of multiple identities associated to a

unique subject is denoted with identity pool (see Fig. 7.27). Secondary identities

can then be used, for privacy or usability purposes, when the subject interacts with

the IoT system. However, the system does log the identities (either secondary/

pseudo or root identities) of the subjects it interacts with so to mitigate possible

Repudiation. The Identity Management FC provides a mapping functionality that

maps (to requesters with the required credentials) root identities to secondary

identities/pseudonyms.

The second corner-stone functionality for ensuring privacy is Authentication
(AuthN component).

Its functionality is to bond a subject to its identity (root identity) or to certify

properties/roles of the subject, or both. If the subject is a user, examples of possible

certified properties can be:

• Has age over 18 years old;

• Has valid driving license;

• Has certification level x.

Similarly, certified roles can be:

• Management;

• Operational;

• Maintenance,. . .
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So, in our system, a given subject can be granted access to an IoT resource

according to the subject’s identification, or according to the subject’s certified

properties/roles. This enables subjects to still get access to the system yet not

revealing their identity.

The AuthN component proposed by IoT-A offers the Authenticate functionality,

the profile of which is:

assertion: Authenticate (UserCredential)

where UserCredential is any kind of information used by the Authenticate func-

tionality to check the identity of the party to be authenticated (e.g. username –

password pair, PIN code, retinal identification and so on).

Table 7.1 Example of privacy threats mitigation within IoT-A

Threat Result Mitigation

Identity spoofing User’s identity is spoofed Robust user authentication procedure preventing

man-in-the-middle attacks, with proper

credentials-management policy provided by

an Authentication FC

User is involved in

transactions with a

malicious peer

Trustworthy discovery / resolution / lookup sys-

tem. Trustworthiness of the entire system is

guaranteed through its security components

(especially Authentication FC and Trust

and Reputation FC) as well as its global

robustness (security by design)

Information

disclosure

Attacker gains knowledge

of user’s private

parameters

The Identity Management FC enforces a robust

pseudonymity scheme that ensures anonym-

ity and unlinkability

Attacker gains knowledge

of user’s location

User’s location can be hidden through reliance

on pseudonyms provided by Identity Man-

agement FC

Fig. 7.27 Example of an identity pool
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assertion (following definition of (Gruschka and Gessner 2012)) is the information

that guaranties the occurrence of an authentication of a user client at a particular

time using a particular method of authentication. The assertion is further used by

the Authorisation (AuthS) component in order to decide upon granting or

denying access to a resource.

Finally, the AuthN component provides also Authorisation (AuthS): It is the

process by which access to information or an IoT Resource is granted to a subject,

according to an access policy and for a specific type of action. In order to guarantee

user-privacy, the end-users should be in control of access policies relating to their

personal data.

The profile of the Authorise function is:

Boolean: Authorise (Assertion, Resource, ActionType),

where Assertion is the result of Authentication, Resource represents the resource to

be accessed, and ActionType represents the action to be performed upon the

resource.

As mentioned earlier, there are various models of authorisation, property-based

access control and assertion-based access control (Gruschka and Gessner 2012).

Both are supported by IoT-A through abstract APIs (Gruschka and Gessner 2012).

Identity Management FC, Authentication FC, and Authorisation FC guarantee

privacy within the IoT system. Nonetheless, if the data within the IoT system’s

database is stored as clear text, nothing prevents hackers from tampering with the

database and accessing the data. To protect the user against these types of attacks,

we believe that the data should be encrypted before storing it in the database.

7.7.4 Contradictory Aspects in IoT-A Security

In distributed systems, including IoT-like ones, one has often to trade-off between

security properties. In particular, trust and privacy, are considered as being two

contradictory properties. From one side, we want to build a system which is

trustworthy. I.e., every entity in that system can prove, according to either trust-

building mechanisms or to certificates distributed by some authority, its own trust

value. From the other side, we want the system to provide, to each entity, the

privacy that it requires, without forcing it to disclosure more personal information

that it wants to. This tension between security and privacy emerges also in our

reference model. Indeed, the trust-evaluation mechanisms for example not couple

well with the many pseudonyms an entity might present to protect its privacy in

various scenarios. Indeed, a given malicious entity can fool the system by

presenting, within a given context, the pseudonym with the highest trust value

built so far. It becomes thus very important to strongly bind, somehow, the trust

value of an entity with its root ID. But, from the other side, this imposes problems to

the privacy of the entities: If the trust-value has to be calculated on the fly, based on
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certificates given to that entity in the many interactions it has had in the past, all

bound to its root ID, the entity can be easily traced inside the IoT, even though it

presents different pseudonyms. A solution to this problem is to make the trust value

be recalculated, each time an interaction occurs, by a unique, trustworthy system

component which is also able to bind various pseudonyms to root IDs. This solution

does guarantee correct trust values for all entities in the system, yet preserving their

privacy. However, it has two major drawbacks: (1) The unique component would

become a huge bottleneck in the system; (2) It would become a single point of

failure: By compromising it (or tampering with it) an attacker would be able to

de-anonymize all entities in the system, or even change trust-values to his liking, by

boosting trust-values of malicious entities, and lowering the trust value of others.

For the above reasons, we believe that within the IoT-A system we should opt for

a mechanism which trades-off trust for privacy: Subjects are allowed just one trust-

value, valid for a certain number of pseudo-identities, and included in a trust-

certificate signed by the AuthN component. The trust value is then updated each

time the subject interacts in the system, by the counter-part of this interaction. The

trust value is to be used for sensitive interactions and/or access to sensitive system

resources, data, and services, within which the subject is thus required to present

one of the pseudonyms bound to the trust-certificate. This way, a subject cannot

fake its unique trust value, which is, from the other side not bound to its

pseudonyms “trust-free“ – the ones through which the subject can access less

system’s resources, data, and services, that do not require proof of trust values.

7.8 Conclusion

In this Section we introduced the foundation of the IoT ARM, the IoT Reference

Model. The IoT Reference Model defines the basic concepts, models, terminology,

and relationships in the IoT ARM. It demonstrates our thinking, rationale and

design space for structuring the domain of the Internet of Things. It also proposes

the Functional Groups that we deem relevant for IoT architectures, as outlined in

the IoT Functional Model (see Sect. 7.1.5).

Within the IoT Reference Model, the IoT Domain Model was discussed in great

detail, as the IoT Domain Model defines the language, the concepts, and the entities

of the IoT world and how they are related to each other. This is confirmed by the

fact, as we learn in Section (sec: Chap. 6 “IoT Context View”), that the IoT Domain

Model plays a prominent role in IoT-A-guided system architecting. As we will see

in Chap. 12 when we perform a reverse mapping analysis with the concepts defined

in other projects and standards related to the Internet of Things, the definition of a

common understanding is crucial for developing interoperable architectures and

systems. This common understanding permeates every aspect of the architecture,

and will be a key aspect for the widespread acceptance of a future IoT systems and

standards. In that respect it is most important to carefully study the concepts of the
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IoT Domain Model, as it is the foundation of the other models presented in this

chapter and of the IoT Reference Architecture that will be discussed in Chap. 8.

While a common language and common terminology is the precondition for all

other models, this chapter also provided the other models crucial for the develop-

ment of IoT architectures, most importantly the IoT Information Model that relates

to important aspects of information in an IoT system and will be detailed in the IoT

Information View in Sect. 8.2.3 that discusses information on a higher level of

detail.

The IoT Functional Model discussed in this chapter defines several Functional

Groups that pick up the IoT concepts and entities introduced in the IoT Domain

Model and it relates them to common functionalities present in an IoT architecture.

Just as for the IoT Information Model and View, the IoT Functional Model will be

further detailed with concrete functional components in Sect. 8.2.2.

Finally, Communication and Security models, as well as techniques of system

safety and reliability where introduced that address these issues in IoT. The security

and the communication model constitute Functionality Groups in the IoT Func-

tional Model, and will be picked up again in the IoT Reference Architecture (see

Sects. 8.2.4 and 8.3.3).

What we have also addressed in this chapter, is the application of the common

IoT use case introduced in Sect. 4.2 to several models in order to facilitate getting

acquainted with the concepts defined in the respective model by tying their under-

standing together with a common, “Red Thread”. We hope that this application of

the use case helps with understanding the different models. We are aware of the

complexity of the IoT Domain Model and the Trust, Security, and Privacy issues,

but this complexity is inherent in the domain of the Internet of things itself. It is

however crucial to really understand the models introduced in this chapter, before

moving on.

The next Chap. 8, the IoT Reference Architecture, builds upon this foundation

and details it even further, so that concrete IoT-compliant architectures can be

derived. The section uses several ways of projecting the IoT Reference Architec-

ture, and it also presents several “Views” that complement the different models

presented in this section. For instance, we propose Functional Components, which

relate to the IoT Functional Model and the IoT Communication Model, in the

Functional View (see Sect. 8.2.2) that we discussed in this chapter. We also provide

an Information View, which tightly relates to the IoT Information Model discussed

in this chapter.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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In this chapter we present our IoT Reference Architecture. This IoT Reference

Architecture is, among others, designed as a reference for the generation of

compliant IoT concrete architectures that are tailored to one’s specific needs. For

other usages of the IoT Architectural Reference Model see Chap. 3.

The IoT Reference Architecture is kept rather abstract in order to enable many,

potentially different, IoT architectures. Guidance on how to use all the parts of the

IoT Reference Architecture can be found in Chaps. 5, 6, 9, 10, and 11.

Both in devising this chapter and in presenting the outcomes of our deliberations,

we are adhering to the framework of architectural views and perspectives, as

described in the software engineering literature and standards (for more details

see (Rozanski and Woods 2011)). The use of well-known concepts makes it easier

for architects from other domains to feel comfortable in the IoT world and this

framework was thus a rather natural choice. To be more precise, we used the

definitions of views from (Woods 2008), as well as their architectural-perspective

catalogue. We adopted both according to IoT-specific needs. One has to be careful

though, about the definition of views and viewpoints as these differ between

authors. Nonetheless, there are no conceptual differences to traditional approaches

and someone with a background in designing any kind of system should not have a

steep learning curve. Notice though that architectural views and perspectives were

originally defined for concrete architectures and not for reference architectures.

Views that are very use-case dependent, for instance the IoT Physical Entity view

and the context view, are therefore not covered here. For a more detailed discussion

of this aspect see Chap. 5. Furthermore, since a reference architecture covers a wide

range of use cases, it is of course void of use-case-specific details (for instance

usage patterns and the related interactions of the system’s functional components),

such aspects are not covered in the IoT Reference Architecture but have to be

attended during, for instance, the architecture-generation process.

The structure of the chapter is as follows: First, we give a short overview on

architectural views and perspectives. We then go on with presenting views that

constitute the IoT Reference Architecture. The functional view and its viewpoints

are described in great detail. At the time of writing there was indeed so much

information at hand that we decided to only present an overview of the functional

view here and to cover, for instance, the detailed definitions of the functional

components of the functional-decomposition viewpoint in Carrez et al.

(2013). Next, the information view is introduced as well as the deployment and

operational view. The remainder of the chapter is then devoted to architectural

perspectives. We describe four architectural perspectives (evolution and interoper-

ability; performance and scalability; trust, security, and privacy; and availability

and resilience). How architectural perspectives influence the architecting process is

not covered here but in Chap. 6.
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8.1 Short Definition of Architectural Views and

Perspectives

A system architecture, and thus by default, a reference architecture, needs to answer

a wide range of questions. Such questions can, for instance, address:

• Functional elements.

• Interactions of said elements.

• Information management.

• Operational features.

• Deployment of the system.

What the user of an architecture expects, is an architectural description, viz. “a

set of artifacts that documents an architecture in a way its stakeholders can

understand and that demonstrates that the architecture has met their concerns”

(Rozanski 2005b). Instead of providing these artifacts in a monolithic description,

one often chooses to delineate them by so-called architectural views. The idea

behind so doing is to focus on system aspects that can be conceptionally isolated.

Architectural views make both the derivation of the architecture and its validation

easier. The above bullet-point list provides examples of such views. A more

detailed discussion of views and how we adapted them to the reference-architecture

realm is provided in the next section.

In the past it has been found that views are unfortunately not enough for

describing system architectures and that many stakeholder aspirations are rather

of a qualitative nature (Rozanski and Woods 2011). Such qualitative aspirations cut

across more than one view. Such aspirations are referred to architectural

perspectives, of which privacy is but one example. A more detailed discussion of

architectural perspectives is provided in Sect. 8.8.

The joint use of architectural views and perspectives in architecture descriptions

is described in more detail in the pertinent literature (Rozanski and Woods 2011).

8.2 Architectural Views

Views are used during the design and implementation phase of a concrete system

architecture. They are defined in the following way:

A view is a representation of one or more structural aspects of an architecture

that illustrates how the architecture addresses one or more concerns held by

one or more of its stakeholders (Rozanski and Woods 2011).
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A view is composed of viewpoints, which aggregate several architectural

concepts in order to make the work with views easier. The IEEE standard 1471

defines viewpoints as follows:

A viewpoint is a collection of patterns, templates, and conventions for

constructing one type of view. It defines the stakeholders whose concerns are

reflected in the viewpoint and the guidelines, principles, and template models

for constructing its views (IEEE Architecture Working Group 2000).

Some typical examples for viewpoints are:

• Functional view: functional-decomposition viewpoint; interaction viewpoint;

interface viewpoint;

• Information view: information-hierarchy viewpoint; semantics viewpoint;

information-processing viewpoint; information-flow viewpoint.

8.2.1 Usage of Views and Perspectives in the IoT Reference
Architecture

As mentioned in the introduction to this chapter, the IoT Reference Architecture is

use-case- and application- independent and is therefore not compatible to the

concept of views and viewpoints one-by-one. But the idea behind the concept is

nevertheless helpful and was thus adopted for the use within the IoT Reference

Architecture. As discussed above the following views were left out from the IoT

Reference Architecture but are discussed in Chap. 5:

• Physical Entity View and

• Context View.

Concerning the Functional View, of the above three viewpoints, interactions are

not covered in the IoT Reference Architecture, since the number of arrangements of

the Functional Components and also their invocation is practically infinite. Instead,

we chose to cover some typical – but yet high-level – interaction patterns (see

Sect. 8.5).

The same is true for the deployment and operational View. However, there are

aspects to both that are practically invariant over the IoT domain and these aspects

are covered in Sect. 8.7. Also, what is an aspect of the deployment view in one

architecture can be an aspect of the operation view in another architecture. Situating

these aspects in either or is contingent on, among others

• Requirements (usability; institutional rules and traditions; . . .) and
• Design choices made (commission on manufacturing floor; shipment and instal-

lation by experts; operation by experts).
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The following sections present the IoT Functional View, IoT Information View,

and the IoT Deployment and Operational view of the IoT Reference Architecture.

8.2.2 Functional View

8.2.2.1 Devising the Functional View

The functional view is defined by applying the methodology defined in Chap. 5 to

functional decomposition as can be seen in Fig. 8.1.

In a first step, the Unified Requirements are mapped to the different Functional-

ity Groups of the IoT Functional Model.

Next, clusters of requirements of similar functionality are formed and a Func-

tional Component for these requirements defined.

Finally, the Functional Components are refined after discussion with the techni-

cal work packages.

The viewpoints used for constructing the IoT Functional View are hence:

1. The Unified Requirements;

2. The IoT Functional Model.

Once all Functional Components are defined, the default function set, system use

cases, sequence charts and interface definitions are made, which all can be found

back in Carrez et al. (2013).

The Functional View diagram is depicted in Fig. 8.2 and shows the nine

functionality groups of the Functional Model. Note that:

• The Application FG and Device FG are out-of-scope of the IoT-A Reference

Architecture and are coloured in yellow;

• Management FG and Security FG are transversal FGs and are coloured

dark blue.

For each of the Functionality Groups, the Functional Components (FC) are

depicted.

Functional
View

Functional
Model

Unified
Requirements

Steer

Guides

Fig. 8.1 Functional view

process
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In the following sub-sections, the FC’s of each FG will be described in more

detail.

The Functional View presented in this chapter will give a description of the

Functional Components, but will not describe the interactions taking place between

the Functional Components.

The reason is that these interactions are typically depending on Design Choices

which are not made at this level of abstraction.

Chapter 10 will go more into detail and depict some typical interaction

scenarios.

In addition to the description in this chapter, more detailed information such as

requirement mapping, system use cases, interaction diagrams and interface

definitions can be found in Carrez et al. (2013).

8.2.2.2 IoT Process Management

The IoT Process Management FG relates to the integration of traditional process

management systems with the IoT ARM. The overall aim of the FG is to provide the

functional concepts and interfaces necessary to augment traditional (business)

processes with the idiosyncrasies of the IoT world.

The IoT Process Management FG consists of two Functional Components (see

Fig. 8.3 below):

• Process Modelling;

• Process Execution.
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VE & IoT
Service Monitoring

VE Resolution

IoT Service
IoT Service
Resolution

Service
Orchestration

Service
Composition

Network
Communication

End To End
Communication

Hop to Hop
Communication

Management Security

Application

Virtual Entity IoT Service

Communication

Configuration

Fault

Authorisation

Key Exchange &
Management

Trust & Reputation

Identity Management

Authentication

Device

Reporting

Member

State

IoT 
Process Management  

Process
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Process
Execution

Service
Choreography

Service
Organisation

Fig. 8.2 Functional-decomposition viewpoint of the IoT Reference Architecture
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The Process Modelling FC provides an environment for the modelling of

IoT-aware business processes that will be serialised and executed in the Process

Execution FC.

The main function of the Process Modelling FC is to provide the tools necessary

for modelling processes using the standardised notation, i.e. using novel modelling

concepts specifically addressing the idiosyncrasies of the IoT ecosystem (Meyer

2012).

The Process Execution FC executes IoT-aware processes that have been

modelled in the Process Modelling FC described above. This execution is achieved

by utilising IoT Services that are orchestrated in the Service Organisation layer.

The Process Execution FC is responsible for deploying process models to the

execution environments: activities of IoT-aware process models are applied to

appropriate execution environments, which perform the actual process execution

by finding and invoking appropriate IoT Services.

The Process Execution FC also aligns application requirements with service

capabilities. For the execution of applications, IoT Service requirements must be

resolved before specific IoT Services can be invoked. For this step, the Process

Execution FC utilises components of the Service Organization FG.

Finally, the Process Execution FC can run applications: after resolving IoT

Services, the respective services are invoked. The invocation of a service leads to

a progressive step forward in the process execution. Thus, the next adequate process

based on the outcome of a service invocation will be executed.

8.2.2.3 Service Organisation

The Service Organisation FG (see Fig. 8.4) is the central Functional Group that acts

as a communication hub between several other Functional Groups. Since the

primary concept of communication within the IoT ARM is the notion of a Service,

the Service Organisation is used for composing and orchestrating Services of

different levels of abstraction.

The Service Organisation FG consists of three Functional Components:

• Service Orchestration;

• Service Composition;

• Service Choreography.

IoT 
Process Management  

Process
Modeling

Process
Execution

Fig. 8.3 IoT process

management
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The Service Orchestration FC resolves the IoT Services that are suitable to

fulfil service requests coming from the Process Execution FC or from Users.

Its only function is to orchestrate IoT Services: resolve the appropriate services

that are capable of handling the IoT User’s request. If needed, temporary resources

will be set up to store intermediate results that feed into Service Composition or

complex event processing.

The Service Composition FC resolves services that are composed of IoT

Services and other services in order to create services with extended functionality.

The Functional Component has two main functions: (1) support flexible service

compositions and (2) increase quality of information.

To support flexible service compositions, the Service Composition FC must

provide dynamic resolution of complex services, composed of other services.

These combinable services are chosen based on their availability and the access

rights of the requesting user.

Quality of information can be increased by combining information from several

sources. For example, an average value – with an intrinsically lower uncertainty –

can be calculated based on the information accessed through several resources.

The Service Choreography FC offers a broker that handles Publish/Subscribe

communication between services. One service can offer its capabilities at the FC

and the broker function makes sure a client interested in the offer will find the

service with the desired capabilities.

Also service consumers can put service requests onto the Choreography FC

while a suitable service is not available at the time when the request was issued. The

service consumer will get notified as soon as a service became available that fulfils

the service request issued before.

Service
Orchestration

Service
Composition

Service
Choreography

Service
Organisation

Fig. 8.4 Service

organisation
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8.2.2.4 Virtual Entity

The Virtual Entity FG (see Fig. 8.5) contains functions for interacting with the IoT

System on the basis of VEs, as well as functionalities for discovering and looking

up services that can provide information about VEs, or which allow the interaction

with VEs. Furthermore, it contains all the functionality needed for managing

associations, as well as dynamically finding new associations and monitoring

their validity.

The Virtual Entity FG consists of three Functional Components:

• VE Resolution;

• VE & IoT Service Monitoring;

• VE Service.

The VE Resolution FC is the Functional Component which provides the

functionalities to the IoT User to retrieve associations between VE’s and IoT

Services.

This includes the discovery of new and mostly dynamic associations between

VE and associated services. For the discovery qualifiers, location, proximity, and

other context information can be considered. If no association exists, the associa-

tion can be created.

The User can also subscribe or unsubscribe to continuous notifications about

association discovery that fit a provided specification of the VE or of the Service. In

case of a notification, a callback function will be called.

Similar, the User can subscribe or unsubscribe to notifications about association

lookup.

The VE Resolution FC also allows to lookup VE-related services, i.e. search for

services exposing resources related to a VE.

Finally, the VE Resolution FC allows managing associations: insert, delete and

update associations between a VE and the IoT Services that are associated to

the VE.

The VE & IoT Service Monitoring FC is responsible for automatically finding

new associations, which are then inserted into the VE Resolution FC. New

VE Service

VE & IoT
Service Monitoring

VE Resolution

IoT 
Process Management

Process
Modeling

Process
Execution

Virtual EntityFig. 8.5 Virtual entity
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associations can be derived based on existing associations, Service Descriptions

and information about VE’s.

The functions of the VE & IoT Service Monitoring FC are to assert static

associations, i.e. create a new static association between VE’s and services

described by the provided association, discover dynamic associations, i.e. create a

new dynamic or monitored association between VE’s and Services, update the

association and delete the association from the VE Resolution framework.

Finally, the VE Service FC handles with entity services. An entity service

represents an overall access point to a particular entity, offering means to learn

and manipulate the status of the entity. Entity services provide access to an entity

via operations that enable reading and/or updating the value(s) of the entities’

attributes. The type of access to a particular attribute depends on the specifics of

that attribute (read only/write only or both).

A specific VE service can provide VE history storage functionality, to publish

integrated context information (VE context information – dynamic and static), VE

state information, VE capabilities.

The two functions currently defined for the VE Service FC are to read and set an

attribute value for the entity.

It is not required to have an explicit register for Virtual Entities, but the VE

Resolution FC could be extended to be used in this way. The important aspect is to

agree on how to assign identifiers to Virtual Entities. For modelling any other aspect

of the Virtual Entity, a Virtual Entity service can be used that gives you access to all

information about a Virtual Entity. This can be current sensor information, as well

as historic information. Historic information would typically be stored in a data-

base, which can be modelled as a Network Resource (see Sect. 7.3.3).

8.2.2.5 IoT Service

The IoT Service FG (see Fig. 8.6) contains IoT services as well as functionalities for

discovery, look-up, and name resolution of IoT Services. It consists of two Func-

tional Components:

• IoT Service;

• IoT Service Resolution.

An IoT Service exposes one Resource to make it accessible to other parts of the

IoT system. Typically, IoT Services can be used to get information provided by a

resource retrieved from a sensor device or from a storage resource connected through

a network. An IoT Service can also be used to deliver information to a resource in

order to control actuator devices or to configure a resource. Resources can be

configurable in non-functional aspects, such as dependability security (e.g. access

control), resilience (e.g. availability) and performance (e.g. scalability, timeliness).
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IoT Services can be invoked either in a synchronous way by responding to

service requests or in an asynchronous way by sending notifications according to

subscriptions previously made through the service.

A particular type of IoT Service can be the Resource history storage that

provides storage capabilities for the measurements generated by resources.

The main functions of the IoT Service FC are to (1) return information provided

by a resource in a synchronous way, (2) accept information sent to a resource in

order to store the information or to configure the resource or to control an actuator

device and (3) subscribe to information, i.e. return information provided by a

resource in an asynchronous way.

The IoT Service Resolution FC provides all the functionalities needed by the

user in order to find and be able to contact IoT Services. The IoT Service Resolution

also gives services the capability to manage their service descriptions (typically

stored in a database as one entry), so they can be looked up and discovered by the

user. The user can be either a Human User or a software component.

Service Descriptions are identified by a service identifier and contain a service

locator that enables accessing the service. Typically they contain further informa-

tion like the service output, the type of service or the geographic area for which the

service is provided. The exact contents, structure and representation depend on

design choices taken, which is left open at the Reference Architecture level.

Examples for service models (structure) and a service description representations

can be found in (Martı́n D2.1 2012).

The functionalities offered by the IoT Service Resolution FC in brief are:

• Discovery functionality finds the IoT Service without any prior knowledge such

as a service identifier. The functionality is used by providing a service specifica-

tion as part of a query. What can be queried based on a service specification

depends on what is included in the service description. As described above, this

may include the service output, the service type and the geographic area for

which the service is provided. The representation of the service specification will

IoT ServiceIoT Service
Resolution

VE Service

VE & IoT
Service Monitoring

VE Resolution

IoT 
Process Management

Process
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Process
Execution

IoT ServiceVirtual EntityFig. 8.6 IoT service
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also be linked to the service description, e.g. if the service description is

represented in RDF, a service specification based on SPARQL would be

appropriate;

• Lookup is a functionality which enables the User to access the service descrip-

tion having prior knowledge regarding the service identifier;

• Resolution function resolves the service identifiers to locators through which the

User can contact the Service. A service locators are typically also included in the

service description, the resolution function can be seen as a convenience func-

tion that reduces the amount of information that has to be communicated,

especially if the service description is large and the contained information is

not needed;

• Other functionalities provided by the IoT Service Resolution FC are the man-

agement of the service descriptions. IoT Services can update, insert or simply

delete the service descriptions from the IoT Service Resolution FC. It is also

possible that these functions are called by the functional components of the

Management FG and not by the IoT Services themselves.

8.2.2.6 Communication

The Communication FG (see Fig. 8.7 below) is an abstraction, modelling the

variety of interaction schemes derived from the many technologies belonging to

IoT systems and providing a common interface to the IoT Service FG.

The Communication FG consists of three functional components:

• Hop To Hop Communication;

• Network Communication;

• End To End Communication.

The Hop To Hop Communication FC provides the first layer of abstraction

from the device’s physical communication technology. The functional component

is an abstraction to enable the usage and the configuration of any different link layer

technology.

Its main functions are to transmit a frame from the Network Communication FC

to the Hop To Hop Communication FC and from a Device to the Hop To Hop

Communication FC. The arguments for the frame transmission can be set; examples

of arguments include: reliability, integrity, encryption and access control.

The Hop To Hop Communication FC is also responsible for routing a frame.

This function allows routing a packet inside a mesh network such as for instance

802.15.4 (mesh-under routing). Note that this function is not mandatory for all

implementations of the Hop To Hop Communication FC. It is required only for

meshed link layer technologies.

Finally, the Hop To Hop Communication FC allows to manage the frame queue

and set the size and priorities of the input and output frame queues. This function

can be leveraged in order to achieve Quality of Service.

174 M. Bauer et al.



The Network Communication FC takes care of enabling communication

between networks through Locators (addressing) and ID Resolution. The FC

includes routing, which enables linking different network address spaces. Moreover

different network technologies can be converged through network protocol

translations.

The functions of the Network Communication FC are to transmit a packet from

the Hop To Hop Communication FC to the Network Communication FC and from

the End To End Communication FC to the Network Communication FC. The

arguments for the packet transmission can be configured and examples of

arguments include: reliability, integrity, encryption, unicast/multicast addressing

and access control.

The Network Communication FC enables as well network protocol translation

where it allows translating between different network protocols. Examples would

be to translate IPv4 to IPv6 and ID to IPv4. Note that this function is necessary to

implement a Gateway.

In case a packet needs to be routed, the Network Communication FC allows

finding the next hop in a network. It also allows dealing with multiple network

interfaces. The function is not mandatory for all implementations of the Network

Communication FC. It is required only on devices with multiple network interfaces.

Another function of the Network Communication FC is to resolve the locator-to-

ID where it allows getting a locator from a given ID. The resolution can be internal

based on a lookup table or external via a resolution framework.

Finally, the Network Communication FC can manage the packet queue and

setup the size and priorities of the input and output packet queues. This function

can be leveraged in order to achieve QoS.

The End To End Communication FC takes care of the whole end-to-end

communication abstraction, meaning that it takes care of reliable transfer, transport

and, translation functionalities, proxies/gateways support and of tuning configura-

tion parameters when the communication crosses different networking

environments.

The End To End Communication FC is responsible to transmit a message from

the Network Communication FC to the End To End Communication FC and from

(IoT) Service to the End To End Communication FC. The arguments for the

message can be configured and examples include: reliability, integrity, encryption,

access control and multiplexing.

A second function of the End To End Communication FC is to cache and proxy.

The Cache and Proxy function allows to buffer messages in the End To End

Communication FC.

Network
Communication

End To End
Communication

Hop to Hop
Communication

Communication

Fig. 8.7 Communication
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Another function of the FC is to translate end-to-end protocol. The Translate End

To End Protocol function allows to translate between different End To End

Protocols. An example would be to translate HTTP/TCP to COAP/UDP. Note

that this function is necessary to implement a Gateway.

A last function of the FC is to pass the context of protocol translation between

gateways. The context could be related to addressing, methods specific for a

RESTful protocol, keying material and security credentials.

8.2.2.7 Security

The Security FG (see Fig. 8.8) is responsible for ensuring the security and privacy

of IoT-A-compliant systems.

It consists of five functional components:

• Authorisation;

• Key Exchange & Management;

• Trust & Reputation;

• Identity Management;

• Authentication.

The Authorization FC is a front end for managing policies and performing

access control decisions based on access control policies. This access control

decision can be called whenever access to a restricted resource is requested. For

example, this function is called inside the IoT Service Resolution FC, to check if a

user is allowed to perform a lookup on the requested resource. This is an important

part of the privacy protection mechanisms.

The two default functionalities offered by the Authorization FC are firstly, to

determine whether an action is authorized or not. The decision is made based on the

Authorisation

Key Exchange &
Management

Trust & Reputation

Identity Management

Authentication

SecurityFig. 8.8 Security
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information provided from the assertion, service description and action type.

Second functionality is to manage policies, such as adding, updating or deleting

an access policy.

The Authentication FC is involved in user and service authentication. It checks

the credentials provided by a user, and, if valid, it returns an assertion as result,

which is required to use the IoT Service Client. Upon checking the correctness of

the credentials supplied by a newly joining node, it establishes secured contexts

between this node and various entities in its local environment.

The two functionalities provided by the Authentication FC are (1) to authenti-

cate a user based on provided credential and (2) to verify whether an assertion

provided by a user is valid or invalid.

The Identity Management FC addresses privacy questions by issuing and

managing pseudonyms and accessory information to trusted subjects so that they

can operate (use or provide services) anonymously.

Only one default function is attributed to this FC: to create a fictional identity

(root identity, secondary identity, pseudonym or group identity) along with the

related security credentials for users and services to use during the authentication

process.

The Key Exchange and Management (KEM) FC is involved to enable secure

communications between two or more IoT-A peers that do not have initial knowl-

edge of each other or whose interoperability is not guaranteed, ensuring integrity

and confidentiality.

Two functions are attributed to this FC:

• Distribute keys in a secure way. Upon request, this function finds out a common

security framework supported by the issuing node and a remote target, creates a

key (or key pair) in this framework and then distributes it (them) securely.

Security parameters, including the type of secure communications enablement,

are provided.

• Register security capabilities. Nodes and gateways that want to benefit from the

mediation of the KEM in the process of establishing secure connections can

make use of the register security capabilities function. In this way the KEM

registers their capabilities and then can provide keys in the right framework.

The Trust and Reputation Architecture FC collects user reputation scores and

calculates service trust levels.

Again, two default functions are attributed to the FC:

• Request reputation information. This function is invocated at a given remote

entity to request reputation information about another entity. As input

parameters, a unique identifier for the remote entity (subject), as well as the

concrete context (what kind of service) is given. As a result a reputation bundle

is provided;

• Provide reputation information. This function is invocated at a given remote

entity to provide reputation information (recommendations or feedback) about

another entity. As input parameters, a unique identifier for the entity to be
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assessed (subject), as well as the concrete context, the given score and a

timestamp are given. As a result, the corresponding reputation is provided.

8.2.2.8 Management

Section 7.5.2.5 provides a high-level discussion for the role and the goals of the

Management FG, but it does not specify how to functionally parse this group. For

guidance on this question we turned to FCAPS, which offers a comprehensive high-

level framework for network management (Flextronics 2005). It was, among others,

incorporated into an ITU-T recommendation (ITU-T 1997) and it has already been

considered for Smart-Grid applications, which are just one example for IoT

(Greenfield 2009). The letters F C A P S stand for the functionalities Fault,

Configuration, Accounting (Administration), Performance, and Security.

Of these functionalities, Fault, Configuration, and Performance cover all the

important goals of the Management FG. In this document we choose to make

Security a separate functionality group in order to emphasise its importance for

IoT. FCAPS was designed with telecommunication applications in mind, while

subscriber-based services will be just one of many business models for the IoT.

Therefore accounting functionalities will be covered by primary services. However,

for administration purposes we introduce the functional components State FC and

Member FC. Performance functionality is related to the monitoring of the state of

the system and to the adaptation of its configuration, and is therefore incarnated into

the Fault, State and Configuration Functional Components. (see Fig. 8.9) illustrates

how the high-level goals motivating the creation of a Management FG (see Sect. 7.

5.2.5) map onto the chosen functional components (Table 8.1).

IoT systems differ from pure networking solutions in that they also offer

low-level services and support for business administration. An IoT system is thus

much more complex than a communication system, and we chose to make the

management of FG-specific FCs part of that very FG, while the Management FG is

responsible for cross-functionality-group task (see Appendix UNI.703). In other

words, it is responsible for the composition and tracking of actions that involve

several of the “core FGs” (i.e. not including Device and Application FG). The

requirement grounding for the Management FG is based on the extrapolation of a

number of communications requirements to system-wide management and

behaviours (these requirements can be found in the description of the individual

functional components). In addition, if the interaction of the Application and/or

Device FG necessitates the composition and tracking of at least two core FGs, such

actions are also candidates for the sphere of responsibility of the Management FG.

By exclusion, the following management activities are thus out of the scope of

the Management FG. First, activities that only pertain to a single functionality

group. An example for this is the management of authorisations in the Security

FG. Second, the management of interactions between functionality groups that do

not require “external” intervention. An example for the latter are requests between

two FGs that can be managed by the requesting FG itself.

178 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7
http://dx.doi.org/10.1007/978-3-642-40403-0_7


The Management FG (see Fig. 8.9) consists of five Functional Components:

• Configuration;

• Fault;

• Reporting;

• Member;

• State.

The Configuration FC is responsible for initialising the system configuration

such as gathering and storing configuration from FC’s and Devices. It is also

responsible for tracking configuration changes and planning for future extension

of the system.

As such, the main functions of the Configuration FC are to retrieve a configura-

tion and to set the configuration:

• The retrieve configuration function allows to retrieve the configuration of a

system, either from history (latest known configuration) or from the system

(current configuration, including retrieval of the configuration of one or a

group of Devices), enabling tracking of configuration changes. The function

Configuration

Fault

Reporting

Member

State

ManagementFig. 8.9 Management

Table 8.1 Mapping of the high-level roles of the Management FG (see Sect. 7.5.2.5) onto

functional components

Management FCs

High-level goals Fault Configuration Reporting Member State

Cost reduction X X X X

Attending unforeseeable usage issues X X X X X

Fault handling X X X X X

Flexibility X X X X
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can also generate a configuration log including descriptions of Devices and FCs.

A filter can be applied to the query;

• The set configuration function is mainly used to initialise or change the system

configuration.

The goal of the Fault FC is to identify, isolate, correct and log faults that occur

in the IoT system. When a fault occurs, the respective functional component notifies

the Fault FC. Such notification triggers, for instance, are the gathering of more data

in order to identify the nature and severity of the problem. Another action can

encompass bringing backup equipment on-line.

Fault logs are one input used for compiling error statistics. Such statistics can be

used for identifying fragile functional components and/or devices. Also, “perfor-

mance thresholds can be set in order to trigger an alarm.” (Wikipedia 2012a).

Performance data is provided by the State FC.

The Fault FC contains functions to handle a fault, to monitor a fault and to

retrieve a fault.

The role of the function that handles a fault is to react to fault detection by

generating alarms, logging faults, or applying corrective behaviours. Generated

alarms can be disseminated to other FCs. This function can also analyse faults and,

if requested, start an action sequence that tackles the fault, possibly interfacing with

the changeState() function of the State FC. This usually includes command

messages sent to other FCs. This function can also set the system back to a previous

state by calling the setConfiguration() function in the Configuration FC. One

of the actions this might entail is setting back the system to a previous configuration.

Faults can also be monitored by the Fault FC. This function is mainly used in

subscription mode where it monitors the errors of the system and notifies

subscribers of matching events.

Finally, the Fault FC provides access to the Fault History. For this access, a filter

function can be applied.

The Member FC is responsible for the management of the membership and

associated information of any relevant entity (FG, FC, VE, IoT Service, Device,

Application, User) to an IoT system.

It is typically articulated around a database storing information about entities

belonging to the system, including their ownership, capabilities, rules, and rights.

This FC works in tight cooperation with FCs of the Security FG, namely the

Authorisation and Identity Management FCs.

The Member FC has three default functions: the continuous monitoring of

members, the retrieve member function which allows retrieving members of the

system complying with a given filter and also allows to subscribe to updates of the

membership table fitting a specified filter (e.g. to be notified of all updates to entities

belonging to a given owner) and finally the update member function which allows

to update member metadata in the membership database and to register or

unregister member metadata in the membership database.

The Reporting FC can be seen as an overlay for the other Management FCs. It

distils information provided by them. One of many conceivable reporting goals is to
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determine the efficiency of the current system. This is important since by

“collecting and analysing performance data, the [system] health can be monitored.”

(Wikipedia 2012a). Establishing trends enables the prediction of future issues. This

FC can also be utilised for billing tasks.

There is only one default function for the FC: retrieve a report. This function

generates reports about the system. Can either return an existing report from the

Report History, or generate a new on through calls on the other Management FCs.

The State FC monitors and predicts state of the IoT system. For a ready

diagnostic of the system, as required by Fault FC, the past, current and predicted

(future) state of the system are provided. This functionality can also support billing.

The rationale is that Functions/Services such as Reporting need to know the current

and future state of the system. For a ready diagnostic of the system one also needs to

know its current performance.

This FC also encompasses a behaviour functionality, which forces the system

into a particular state or series of states. An example for an action for which such

functionality is needed is an emergency override and the related kill of run-time

processes throughout the system. Since such functionality easily can disrupt the

system in an unforeseen manner this FC also offers a consistency checks of the

commands issued by the changeState functionality in the State FC.

The functions of the State FC are to change or enforce a particular state on the

system. This function generates sequence of commands to be sent to other FCs. This

function also offers the opportunity to check the consistency of the commands

provided to this function, as well as to check predictable outcomes (through the

predictState function).

A second function is to monitor the state. This function is mainly used in

subscription mode, where it monitors the state of the system and notifies subscribers

of relevant changes in state.

Other functions of the FC are to predict the state for a given time, to retrieve the

state of the system through access to the state history and to update the state by

changing or creating a state entry.

8.2.2.9 Mapping of Functional View to the Red Thread Example

In this section, the “Red Thread” example will be mapped on the Functional View

and the main Functional Components used for the example are highlighted as can

be seen in Fig. 8.10:

In Fig. 8.10, Functional Components which are used only once, such as during

the instantiation of the process model or configuration of devices are indicated in

light yellow.

Functional Components which are used at runtime of the use case are indicated

in orange.

The example of this section can be described only at a high level, since a

concrete architecture and implementation are needed to go into further detail.

Also the design choices of the concrete architecture need to be considered.
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In this example, the embedded sensors (Temperature Sensor) continuously

measure the environmental conditions within the truck. The measurement data is

available to Ted’s IoT-Phone (On-board Logistics Application) since the

IoT-Phone is subscribed to the service exposing the measurement data
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(IoT Service). In order to subscribe to the data, the association between the service

exposing the data and the Load carrier needs to be resolved (VE Resolution and IoT

Service Resolution). The communication from sensor to IoT-Phone makes use of

the network protocol stack of the IoT Communication Model (End To End Com-

munication, Network Communication, Hop to Hop Communication, Key Exchange

& Management). All transactions take place in a secure way, meaning that no

operations are allowed unless authentication (Authentication) took place and

explicit authorisation is obtained for the particular operation (Authorisation).

It is beyond the scope of this section but an illustration of the adaption of the

ARM to a specific case and implementation can be found in (Meyer et al. 2013).

8.2.3 Information View

One of the main purposes of connected and smart objects in the IoT is the exchange

of information between each other and also with external systems. Therefore the

way how to define, structure, store, process, manage and exchange information is

very important. The information view helps to generate an overview about static

information structure and dynamic information flow.

Based on the IoT Information Model, this view gives more details about how the

relevant information is to be represented in an IoT system. As we describe a

reference architecture as opposed to a specific system architecture, concrete repre-

sentation alternatives are not part of this view.

Going beyond the IoT Information Model, the information view also describes

the components that handle the information, the flow of information through the

system and the life cycle of information in the system.

The current version of the Information View focuses on the description, the

handling and the life cycle of the information and the flow of information through

the system and the components involved. Given the current level of detail, we will

provide a viewpoint only for modelling the type system of Virtual Entities.

8.2.3.1 Information Description

Description of Virtual Entities

The Virtual Entity is the key concept of any IoT system as it models the Physical

Entity or the Thing that is the real element of interest. As specified in the IoT IM,

Virtual Entities have an identifier (ID), an entityType and a number of

attributes that provide information about the entity or can be used for changing

the state of the Virtual Entity, triggering an actuation on the modelled Physical

Entity. The modelling of the entityType is of special importance. The

entityType can be used to determine what attributes a Virtual Entity instance

can have, defining its semantics. The entityType can be modelled based on a
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flat type system or as a type hierarchy, enabling sub-type matching. Figure 8.11

shows a flat entityType model for aspects of the red thread scenario with boxes

and pallets as concrete load carriers. Figure 8.12 shows a hierarchical

entityType model for the same scenario. Here more abstract entityTypes
have been introduced like Human and LoadCarrier. The entityType
Human has an attribute name, which is inherited by all sub-types, i.e. by Driver,
Worker and Manager.

For modelling entityType hierarchies, ontologies or UML class diagrams

can be used. Of course, this choice is related to the design choice on how the overall

Virtual Entity information is represented.

Viewpoint for Modelling entityType Hierarchies

EntityTypes are similar to classes in object-oriented programming, so UML class

diagrams as shown above are suitable for modelling entityTypes. As shown in

Fig. 8.12 the generalization relation can be used for modelling sub-classes of

entityTypes, creating a hierarchy of several entityTypes inheriting attributes from

its super-classes. Alternatively, ontology languages like OWL1 also provide the

means for modelling classes and sub-classes, so they can also be used for modelling

type hierarchies. This is especially useful, if information in the IoT system is to be

modelled using ontologies.

Service Descriptions

Services provide access to functions for retrieving information or executing

actuation tasks on IoT Devices. As a basis for finding and interacting with services,

services need to be appropriately described, which is done in the form of Service

Descriptions. Service Descriptions contain information about the interface of the

service, both on a syntactic as well as a semantic level, e.g. the required inputs, the

provided outputs or the necessary pre-conditions as well as post-conditions. Further-

more, the Service Description may include information regarding the functionality

of the resources, e.g. the type of resource, the processingmethod or algorithm etc., or

information regarding the device on which the resource is running, e.g. it’s hardware

Driver
+ licenseNumber
+ name

Worker
+ name
+ workPlace

Manager
+ groupName
+ name

Box
+ ID
+ stackable

Pallet
+ ID

Fig. 8.11 Example for flat entityType model

1 http://www.w3.org/TR/owl2-overview/
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or its geographical location. Different specification languages for describing

services are available, so again, there are different design choices.

Associations Between Virtual Entities and Services

Services can provide information or enable actuation, but the services themselves

may not be aware of e.g., which Virtual Entities can provide what information or

can enable what kind of actuation. This information is captured by associations that

relate to the Virtual Entity and the Service. The association includes the attribute of

the Virtual Entity for which the Service provides the information or enables the

actuation as a result of a change in its value.

8.2.3.2 Information Handling

Information in the system is handled by IoT Services. IoT Services may provide

access to On-Device Resources, e.g. sensor resources, which make real-time

EntityType

LoadCarrier

+ ID
+ size
+ weight

Human

+ name

Box

+ stackable

Pallet

WoodenPallet PlasticPallet

+ colour

Driver

+ licenseNumber

Worker

+ workPlace

Manager

+ groupName

Fig. 8.12 Example for hierarchical entityType model
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information about the physical world accessible to the system. Other IoT Services

may further process and aggregate the information provided by IoT Services/

Resources, deriving additional higher-level information. Furthermore, information

that has been gathered by the mentioned IoT Services or has been added directly by

a user of the IoT system can be stored by a special class of IoT Service, the history

storage. A history storage may exist on the level of data values directly gathered

from sensor resources as a resource history storage or as a history storage providing

information about a Virtual Entity as a Virtual Entity history storage.

IoT Services are registered to the IoT system using Service Descriptions. Service

Descriptions can be provided by the services themselves, by users or by special

management components that want to make the service visible and discoverable

within the IoT system. The IoT Service Resolution is responsible for managing

Service Descriptions and providing access to Service Descriptions. In detail, the

IoT Service Resolution provides an interface for discovering Service Descriptions

based on service specifications given by the requestor, for looking up a Service

Description based on the identifier of a service and for resolving a service identifier

to a service locator. The latter can also be seen as a convenience function as the

Service Description also contains the currently valid service locator.

Associations can be registered with the VE Resolution by services that know for

what Virtual Entities they can provide information. The registration can be done by

users, by special management components, or by the VE & IoT Service Monitoring

component. The VE & IoT Service Monitoring component automatically derives

the Associations based on information existing in the system, including Service

Descriptions and other associations.

8.2.3.3 Information Handling by Functional Components

The following section describes how information is handled and exposed by the

functional components in an IoT-system and shows the information flows between

the functional components.

Before going into detail Fig. 8.13 shows the information flow through the

Functional Components based on the recurring example from Sect. 4.2. From the

actuator on device level the temperature information is transferred to the IoT

Service and afterwards to the VE Service. The VE Service itself is described in

Sect. 7.4.2. From the VE Service the temperature value is transferred to the

AndoidApp via the Subscribe/Notify-pattern.

General Information Flow Concepts

There are four message exchanges patterns considered for information exchange

between IoT-A functional components. The first message exchange pattern is the

Push-pattern, the second one is the Request/Response-pattern; the third one is the
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Subscribe/Notify-pattern, and the fourth one is the Publish/Subscribe-pattern. All

patterns are explained in the following.

Push

The Push-pattern (see Fig. 8.14) is a one-way communication between two parties

in which a server sends data to a pre-defined client that receives the data. The server

hereby knows the address of the client beforehand and the client is constantly

awaiting messages from the server. The communication channel in this pattern is

pre-defined and meant to be applied in scenarios in which the communication

partners do not changed often. For example the server can be a constrained device

that sends data to a gateway dedicated to this device. The gateway is listening

constantly to the device and is consuming the data received from this device.

The Request/Response-pattern (see Figs. 8.15 and 8.16) is a synchronous way of

communication between two parties. A client sends a request to a server. The server

will receive the request and will send a response back to the client. The client is

waiting for the response until the server has sent it.

The server needs some time to prepare the response for the client. In the

meanwhile another client might send a request. When the server is still busy with

preparing the response for the first client it cannot produce the response for the

second client. The second client will be placed into a queue until the server is ready

to prepare its response. Such scenario might lead to unacceptable response times.

Subscribe/Notify

The Subscribe/Notify-pattern (see Figs. 8.17 and 8.18) allows an asynchronous way

of communication between two parties without the client waiting for the server

response. The client just indicates the interest in a service on the server by sending a

subscribe-call to the server. The server stores the subscription together with the

address of the client wants to get notified on and sends notifications to this address

whenever they are ready to be sent.

One advantage of the Subscribe/Notify-pattern over the Request/Response-

pattern is the non-blocking behaviour of the subscribe method. The clients can

Fig. 8.14 Push-pattern
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continue with other task and need to process the notification only when it arrives.

Another big advantage on the server side is that notifications can be multiplied and

sent off to clients if the clients have subscribed to the same kind of notifications. To

implement the Subscribe/Notify-pattern a server is required that is more powerful

compared to the one required for the Request/Response-pattern. The server has to

keep records about its subscribers and the kind of subscriptions if it allows several

of them.

Fig. 8.15 Request/Response-pattern for one client

Fig. 8.17 Subscribe/Notify-pattern for one client

Fig. 8.16 Request/Response-pattern for clients
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Publish/Subscribe

The Publish/Subscribe-pattern (see Figs. 8.19 and 8.20) allows a loose coupling

between communication partners. There are services offering information and

advertise those offers on a broker component. When clients declare their interest

in certain information on the broker the component will make sure the information

flow between service and client will be established.

Services can publish information to the broker regardless how many clients are

interested in this information; if no client has subscribed to it the broker does not

forward the notification to any client, if more clients have subscribed to the same

information the broker will multiply the information and send out notification to

each subscriber.

Information Flow Through Functional Components

User Requests Information from IoT Service

Figure 8.21 shows the information request from a user to an IoT Service and the

corresponding response.

User Gets Information from Virtual Entity-Level Service

Virtual Entity-level service provides access to Virtual Entity information,

augmenting sensor information with entity information (entityId, entityType or

several attributes), thus changing the abstraction level. Figure 8.22 shows the

Subscribe/Notify-pattern, which can be used to get updates about an Attributes

value.

Fig. 8.18 Subscribe/Notify-pattern for two clients
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Service Gets Sensor Value from Device

The Sensor Device in Fig. 8.23 pushes an updated sensor value using the Functional

Component Flow Control & Reliability to an IoT Service. Besides the Push-pattern

Request/Response and Subscribe/Notify-pattern are possible. Figure 8.24 shows a

similar situation but the information is pushed up to the VE Service.

Sensor Information Storage

Figure 8.25 shows the special case of using an information storage device which

stores additional, e.g. historic, values. The IoT Service DataStorage requests values

and the StorageDevice sends the corresponding response. The storage policy of the

Storage Device is application-specific, e.g. stores values only for certain duration,

stores values with reduced granularity over time or in an averaged or aggregated

form. Such a storage device can also be used from the VE Service level.

Fig. 8.19 Publish/Subscribe-pattern

Fig. 8.20 Publish/Subscribe-pattern two clients
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IoT Service Resolution

The Functional Component IoT Service Resolution hosts the Service Descriptions

that are needed for looking up and discovering IoT Services. Thus the resolution

component offers methods to insert, update, and delete Service Descriptions (see

Fig. 8.26) according to the availability of IoT Services. The methods are meant to

be invoked by the IoT Services itself, e.g. upon their deployment, dynamic change

of location due to mobility or their undeployment from the system. It is also

Fig. 8.21 User requests IoT service

Fig. 8.22 User subscribes for updates of VE-attribute
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possible for the Service Management component to invoke these methods in order

to maintain the system. For deleting a Service Description its Service ID needs to be

given.

Fig. 8.23 Information flow from sensor device to IoT service using the push-pattern

Fig. 8.24 Information flow from sensor device to VE service using the push-pattern
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The IoT Service Resolution component offers three methods to find IoT Services

(see Figs. 8.27 and 8.28):

Fig. 8.25 Usage of sensor information storage device

Fig. 8.26 Insert, update, and delete Service Description
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1. Look-up of Service Description based on service identifier;

2. Discovery of Service Descriptions based on service specification;

3. resolution of service identifier to service locator (contained in Service

Description).

Figure 8.27 shows the different methods in a Request/Response manner, the

component also offers similar functionality realised as Subscribe/Notify-pattern.

The information flow is similar to the one according to Request/Response, but

additionally identifiers for subscriptions and locators for call-back interfaces are

exchanged as shown in Fig. 8.28.

Fig. 8.27 Request lookup, discover, and resolve IoT Services

Fig. 8.28 Subscribe to lookup, discover, and resolve IoT Services
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VE Resolution

Associations between Virtual Entities and IoT Services are inserted into VE

Resolution by IoT Services, the Service Management components or the VE &

IoT Service Monitoring. They can later be updated and eventually deleted, e.g.,

when the IoT Service is undeployed. The message exchange is shown in Fig. 8.29.

The VE Resolution component allows retrieving of associations between Virtual

Entities and IoT Services based on VE identifier and VE service specification

through a lookup request as well as discovery of Associations based on VE

specification and VE service specification as depicted in Fig. 8.30.

The VE Resolution component provides a information flow while applying the

Subscribe/Notify-pattern. With this identifiers for subscriptions and locators for

call-back interfaces are exchanged additionally as shown in Fig. 8.31.

8.2.3.4 Information Life Cycle

Information provided by sensor resources is transient in nature and may not even be

measured or observed without a specific request. Information stored by a storage

resource may be permanently stored there or have an expiry date after which the

information is to be removed. For this purpose a storage resource may have to

implement mechanisms that remove such information on a regular basis. It is also

possible to adapt the granularity of information that is stored over time, i.e., for a

certain time interval all the information is stored, for a further time interval only a

fraction of the information is kept whereas the rest is discarded. Such a scheme may

Fig. 8.29 Insert, update, and delete Association
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allow the definition of multiple such time intervals and also requires specific

underlying mechanisms that can implement the scheme.

To avoid keeping Service Descriptions of services that no longer exist, a time-

out mechanism needs to be implemented by the IoT Service Resolution. After the

time-out has been reached without a renewal of the Service Description, the Service

Description should automatically be removed. This in turn requires that the

components originally providing the Service Description renew the registration of

the Service Description before the time-out is reached. The same applies for

associations stored by the VE Resolution.

Fig. 8.30 Request lookup and discover Associations

Fig. 8.31 Subscribe to lookup and discover Associations
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8.2.4 Deployment and Operation View

Connected and smart objects in the IoT can be realized in many different ways and

can communicate using many different technologies. Moreover, different systems

may need to communicate the one to each other in a compliant way. Hence the

Deployment and Operation view is very important to address how actual system can

be realized by selecting technologies and making them communicate and operate in

a comprehensive way.

The Deployment and Operation view aims at providing users of the IoT Refer-

ence Model with a set of guidelines to drive them through the different design

choices that they have to face while designing the actual implementation of their

services. To this extent this view will discuss how to move from the service

description and the identification of the different functional elements to the selec-

tion among the many available technologies in the IoT to build up the overall

networking behaviour for the deployment.

Since a complete analysis of all the technological possibilities and their combi-

nation falls beyond the scope of this view, this section will identify those categories

that have the strongest impact on IoT systems realization. In particular, starting

from the IoT Domain Model, we found three main element groups (see Fig. 8.32):

Devices, Resources, and Services highlighted in red, blue and yellow, respectively.

Each of them poses a different deployment problem, which, in turn, reflects on the

operational capabilities of the system.

In particular, the viewpoints used in the Deployment and Operation view are the

following:

1. The IoT Domain Model diagram is used as a guideline to describe the specific

application domain; to this extent UML diagrams can be used to further detail

the interaction among the many elements composing the target application;

2. The Functional Model is used as a reference to the system definition; in particu-

lar it defines Functional Groups such as IoT Services and Connectivity groups

which are fundamental for a correct definition of the system;

3. Network connectivity diagrams can be used to plan the connectivity topology to

enable the desired networking capability of the target application; at the deploy-

ment level, the connectivity diagram will be used to define the hierarchies and

the type of the sub-networks composing the complete system network;

4. Device Descriptions (such as datasheets and users manuals) can be used to map

actual hardware on the service and resource requirements of the target system.

First of all, devices in IoT systems include the whole spectrum of technologies

ranging from the simplest of the radiofrequency tags to the most complex servers.

The unifying characteristics are mainly two-fold: on the one hand, every device is

connected with one another forming a part of the IoT; and, on the other hand, every

device is “smart”, even though with different degree of complexity, in that it

provides computational capabilities. These two characteristics are the subject of

the first choices a system designer has to make. Note that, for a given device to be
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fully interoperable in an IoT-A compliant system, it must respect the functionality

definitions of the Functional Model. However, legacy systems that do not fully

support the FM, may implement wrappers and adaptation software to comply to the

model.

Selecting the computational complexity for a given device is somewhat intrinsic

to the target application. However, choosing among the different connectivity types

is not as straightforward as different choices may provide comparable advantages,

but in different areas. For the same reason, it is possible to realize different systems

implementing the same or similar application from the functional view which are

extremely different from the deployment and operation view. In this section, we

will simply detail the main options for device connectivity; further details about

deployment configurations can be found in the Reference Manual (see Chap. 9).

The impact of those configurations onto the architectural perspectives described in

Fig. 8.32 Domain model elements grouped according to their common deployment aspects
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Sect. 8.8 is discussed in Chap. 6. The following list provides a few of the typical

technologies that can be found in IoT systems:

• Sensor & Actuator Networks;

• RFIDs and smart tags;

• WiFi or other unconstrained technologies;

• Cellular networks.

As a consequence of the coexistence of different communication technologies in

the same system, the second choice the system designer must account for is related

to communication protocols. In particular, connectivity functionalities for IoT

system are defined in this document in Communication FG of the FM; in addition,

in order to better understand the application, it is important to describe it within the

Functional View. Although, IoT-A and WP3 in particular suggest a communication

protocol suite aimed at the interoperability among different technologies with IP as

the common denominator, the system designer may be forced to make suboptimal

choices (Rossi 2012, 2013). In particular, we identified the following possibilities:

1. IoT protocol suite: This is the main direction supported by this project and

providing the best solution for interoperability;

2. Ad-hoc proprietary solutions: Whenever the performance requirements of the

target application are more important than the system versatility, ad hoc

solutions may be the only way to go;

3. Other standards: Depending on the target application domain, regulations may

exist forcing the system designer to adopt standards, different from those

suggested by the IoT protocol suite, that solved a given past issue and have

been maintained for continuity.

After having selected the devices and their communication methods, the system

designer has to account for services and resources, as defined in the IoT Service FG

section. These are pieces of software that range from simple binary application and

increasing their complexity up to full blown control software. Both in the case of

resources and for services the key point here is to choose where to deploy the

software related to a given device. The options are as follows:

1. On smart objects: This choice applies to simple resource definitions and

lightweight services, such as web-services that may be realized in few tens or

hundreds of bytes;

2. On gateways: Whenever the target devices are not powerful enough to run the

needed software themselves, gateways or other more capable devices have to be

deployed to assist the less capable ones;

3. In the cloud: Software can be also deployed on web-farms. This solution

improves the availability of the services, but may decrease the performance in

terms of latency and throughput.

Note that this choice has to be made per type of resource and service and

depending on the related device. As an example, a temperature sensor can be

deployed on a wireless constrained device, which is capable of hosting the

200 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_6


temperature resource with a simple service for providing it, but, if a more complex

service (for instance, when the Service Organisation FG is called in) is needed, the

software has to deployed on a more powerful device as per option 2 or 3.

On the same line, it is important to select where to store the information

collected by the system, let their data be gathered by sensor networks or through

additional information provided by users. In such a choice, a designer must take

into consideration the sensitiveness (e.g.: is the device capable of running the

security framework), the needed data availability and the degree of redundancy

needed for data resiliency. The foreseen options are the following:

1. Local only: Data is stored on the device that produced it, only. In such a case, the

locality of data is enforced and the system does not require complex distributed

databases, but, depending on the location of a given request, the response might

take longer time to be delivered and, in the worst case scenario, it may get lost;

2. Web only: No local copy is maintained by devices. As soon as data is sent to the

aggregator, they are dispatched in databases;

3. Local with web cache: A hierarchical structure for storing data is maintained

from devices up to database servers.

Finally, one of the core features of IoT systems is the resolution of services and

entities, which is provided by the Entity and Service Resolution FCs, respectively

and is in charge of semantically retrieving resources and services, discovering new

elements and binding users with data, resources, and services. In particular, this is

performed adopting the definitions of the Virtual Entity FG. This choice, while one

of the most important for the designer, has only two options:

1. Internal deployment: The core engine is installed on servers belonging to the

system and is dedicated to the target application or shared between different

applications of the same provider;

2. External usage: The core engine is provided by a third party and the system

designer has to drive the service development on the third party APIs.

Differently from the other choices, this is driven by the cost associated to the

maintenance of the core engine software. In fact, since it is a critical component of

the system, security, availability and robustness must be enforced. Hence, for small

enterprises the most feasible solution is the external one.

8.2.4.1 Deployment Example

Coming back to our “Red Thread” example, this section analyses the system

deployment for the “Transport monitoring with Smart Load Carriers” scenario.

First of all, we need to define the purpose of the application(s), the functionalities

and their requirements for a correct operating behaviour and the data that needs to

be treated.
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Purpose: the application measures several environmental parameters of the load

carrier such as the light, the temperature and the humidity of the truck and monitors

the status of the several installed devices.

Functionalities:

• Monitoring: the application needs to provide the users with means to access

information gathered by many sensors installed in the truck;

• Controlling: the application needs to provide users with means to modify the

behaviour of the many installed devices;

• Alarm: the application needs to provide users with means to configure alarms to

be triggered when a given condition is verified (e.g.: the temperature rises over a

threshold value).

Requirements:

• Lifetime: all the installed devices must operate unassisted for more than 2 years;

• Robustness: a maximum data loss of 5 % of the information is tolerated and no

command nor alarm loss can be tolerated;

• Responsiveness: a maximum delay of 10 s is tolerated when issuing a command

and for alarm reporting. A maximum delay of 15 min is tolerated for data

reporting in steady state condition.

Data: all the information managed by the system is not sensitive and does not

require for high security.

As a second step, the system integrator must define the Virtual Entities and the

Services to be used in the application. To keep the example simple, we will define a

single Service and a single Virtual Entity only. The service will be in charge of

monitoring the sensing units and to provide users with interface to access the data.

We will call this service “Monitoring service”. For what concerns the Virtual Entity

we choose to represent a room in the house as a Virtual Entity, which is connected

to the room Physical Entity and with the resources provided by the Sensors (Device)

installed in the truck.

Basically, the application can be simply implemented by allowing the Service to

query the Resources of the associated Virtual Entities periodically. However, many

possibilities are left to the integrator for the actual deployment of the application.

Resources: it is clear that Resources must provide a connection between the

sensing Devices and the Service, but the actual software harmonizing the Sensor

behaviour with the service language can be run either on the sensing Device itself,

in a gateway device connecting the house network with the external network, or

directly in the cloud. The most versatile solution is to run the Resource software

directly on the Device in order to enable any other Service to query directly the

Device for the needed information; however, depending on the actual hardware

capabilities, the other two solutions can be considered.

Service: it must be possible to access the monitoring service from anywhere

there is an Internet connection, and, in particular, from within the house. Note that,

users using the service from within the house may be less tolerant to delays. A

typical service deployment in this case is to have two paired services providing the
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same monitoring functionality: one is running in a local server and is able to

directly query the devices in order to fetch up to date information, the second is

running in the cloud and provides accessibility from the Internet. Note that the local

service is also maintaining an information database of the data gathered in the

house; database, which is only accessed by the service in the cloud.

Finally, the system integrator must make decisions about connectivity and data

management: since the time requirements of the application are quite loose, low

power devices can be chosen and low data rate connection can be selected for the

sensing devices.

The first and foremost requirement is the addressability of every Service/

Resource regardless of the Device hosting it. This can be achieved by supporting

IP addressing and its compressed version defined by 6LoWPAN is currently the

most feasible way to implement this in constrained devices. In addition, to make

Resources and Services unambiguously addressable, unique identifier must be

provided. To this extent many solutions have been proposed, but, in order to obtain

the widest interoperability, it is preferable HTTP mappable solutions, such as

CoAP. In such a way it is possible to implement very simple Services on the

most constrained Device by providing web-service like interaction capabilities to

every resource and functionality offered.

However, if the above baseline solution is not realizable, it is important to mimic

its behaviour as close to the source device is located. To this extent Resources,

Services or both can be deployed on other devices such as aggregator servers,

gateways and proxies of the network. In such a way, it is the more powerful Device

providing Resource and Service in the correct format that will interact with

Services and Users on behalf of the final Device; also, this device must ensure

the synchronization between the mimicked functionalities and their actual

counterparts. This workaround allows for the integration of any possible

technologies in the IoT, however it does not grant the full compliance to all the

IoT-A unified requirement list.

However, in order to make the sensing devices interoperable with both, the local

and the cloud services, connectivity gateways or proxies must be considered. A few

possible realizations are the following:

• Cabled sensors with Ethernet/xDSL gateway

– Pros: reliable, possibility to use the same cable for connectivity and power.

– Cons: high installation costs.

• Wireless sensors (802.15.4) with Ethernet/xDSL gateway

– Pros: low cost, easy and cheap installation, moderate robustness, good

lifetime.

– Cons: may suffer from data losses.

• Low power WiFi sensors with WiFi/xDSL gateway

– Pros: moderate costs, easy gateway implementation, easy and cheap installa-

tion, higher data rate is possible.

– Cons: shorter lifetime than 802.15.4.
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The figure (Fig. 8.33) shows the deployment example above, highlighting the

several physical devices involved (dark green), the different network type involved

(solid horizontal lines) and the software installed per device (white/cyan rounded

boxes, cyan is for mandatory parts while cyan is for optional elements).

Although this example is quite simple, it can be used as a building block for

more complex scenarios. In particular it is important here to understand how to

separate the different networks in the system, where to deploy each functionality

and which connectivity type to use per sub-network.

8.3 Perspectives

Architectural decisions often address concerns that are common to more than one

view, or even all of them. These concerns are often related to non-functional or

quality properties. We are following the approach described by Rozanski and

Woods (2011), that suggests special perspectives to address these aspects of a

concrete architecture. They emphasize the importance of stakeholder requirements

just like we do within our project. Therefore we are adopting their definition of

perspective for usage within IoT-A:

Fig. 8.33 Transport monitoring example with possible deployment choices highlighted
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An architectural perspective is a collection of activities, tactics, and

guidelines that are used to ensure that a system exhibits a particular set of

related quality properties that require consideration across a number of the

system’s architectural views (Woods and Rozanski 2005).

where a quality property is defined as:

A quality property is an externally visible, non-functional property of a

system such as performance, security, or scalability (Rozanski and Woods

2011).

The stakeholder requirements clearly show a need of addressing non-functional

requirements. Based on them, we identified the perspectives which are most

important for IoT-systems:

• Evolution and Interoperability;

• Availability and Resilience;

• Trust, Security and Privacy and

• Performance and Scalability.

As these requirements are requiring some kind of quality for a real system, the

perspectives aim more on the concrete system architecture, than at a Reference

Architecture.

We got 18 requirements concerning the Evolution and Interoperability perspec-

tive, 15 concerning Availability and Resilience, more than 20 related to Trust,

Security and Privacy, and 17 more related to Performance and Scalability. As can

be seen from the definition above there is a close relationship between Perspectives,

Views and Guidelines.

We will generally follow the structure as suggested by Rozanski and Woods, to

describe the perspectives, but adjusted according to our needs. Each perspective

contains the following information:

Desired Quality The desired quality that the perspective is addressing

IoT-A

Requirements

The IoT-A requirements presented in Appendix this perspective addresses

Applicability The Applicability of the perspective, e. g. the types of systems to which the

perspective is applicable

Activities A set of possible activities that are suggested to achieve the desired qualities.

We are reusing existing literature, as well as, our own identified best

practices here.

Tactics Here we list Architectural Tactics, which an architect can use when

designing the system.
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An architectural tactic is defined as follows:

An architectural tactic is a design decision for realizing quality goals at the

architectural level.

It can already be seen from the definition of tactic that there is a close relation-

ship to the design decisions as outlined in Chap. 6. We therefore will list high level

design choices as architectural tactics whenever feasible.

We think that taking advantage of perspectives makes a lot of sense for every

software architect, even more in the IoT-domain where a lot of Quality parameters

have to be taken into account. Perspectives provide a framework for reusing

knowledge: It is absolutely necessary to apply a systematic approach to ensure

that a certain system fulfils the required quality properties. The use of Perspectives,

combined with Views and Guidelines is a step towards that. In the Guidelines

chapter in Sect. 9.4 we present a suggested usage of the perspectives in conjunction

with Design Choices.

8.3.1 Evolution and Interoperability

The Evolution and Interoperability perspective addresses the fact that requirements

change and software evolves sometimes rapidly and need to interoperate not only

with today’s technologies, but also needs to be prepared to interoperate with later

technologies. Interoperability therefore plays especially in IoT a crucial role. The

vision of the Internet of Things is still evolving itself. There are, for example, not

yet all used technologies mature enough, and there are for sure many more

technologies to come in the future (Table 8.2).

8.3.2 Performance and Scalability

This perspective addresses two quality properties which are closely related: Perfor-

mance and Scalability. Both are, compared to traditional information systems, even

harder to cope with in a highly distributed scenario as we have it in IoT (Table 8.3).

8.3.3 Trust, Security and Privacy

This chapter addresses fundamental properties of IoT systems for what concerns

their relation to the user. They are inter-related and, often, the evaluation or the

improvement of one of these qualities is necessarily related to the others.
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8.3.3.1 Trust

Trust in the IoT environment is a fundamental yet difficult to obtain quality. As the

security one, this quality is highly dependent on the computation and communica-

tion performance of the system. In the frame of IoT moreover, M2M subjects must

be enabled to evaluate this quality in order to obtain autonomous systems

(Table 8.4).

8.3.3.2 Security

Security is an essential quality of an IoT system and it is tightly related to specific

security features which are often a basic prerequisite for enabling Trust and Privacy

qualities in a system (Table 8.5).

8.3.3.3 Privacy

There are usually different concepts conveyed with the term privacy, some being

more from the technical side and some more from the legal perspective, without

forgetting ethical aspects (Table 8.6).

Table 8.2 Evolution and interoperability (adopted from (Rozanski and Woods 2011)), extended

with IoT specific aspects

Desired Quality The ability of the system to be flexible in the face of the inevitable change

that all systems experience after deployment, balanced against the costs

of providing such flexibility

IoT-A

Requirements

UNI.003, UNI.010, UNI.012, UNI.023, UNI.042, UNI.047, UNI.048,

UNI.071, UNI.093, UNI.094, UNI.096, UNI.417, UNI.422, UNI.432,

UNI.509, UNI.701, UNI.712, UNI.720

Applicability Important for all systems to some extent; more important for longer- lived

and more widely used systems. IoT systems are expected, as an emerging

technology, to be highly affected by evolution and interoperability issues

Activities Characterize the evolution needs

Assess the current ease of evolution

Consider the evolution trade-offs

Rework the architecture

Tactics Contain change

Create extensible interfaces

Apply design techniques that facilitate change

Apply metamodel-based architectural styles

Build variation points into the software

Use standard extension points

Achieve reliable change

Preserve development environments
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8.3.4 Availability and Resilience

As we are dealing with distributed IoT systems, where a lot of things can go wrong,

the ability of the system to stay operational and to effectively handle failures that

could affect a system’s availability is crucial (Table 8.7).

8.4 Conclusion

The chapter has given an overview about the current state of the IoT Reference

Architecture that is proposed to be applied to any IoT-architecture. The IoT

Reference Architecture abstracts from domain specific use cases; it rather focuses

on the domain agnostic aspects that IoT Architectures may have in common. It does

Table 8.3 Performance and scalability (adopted from (Rozanski and Woods 2011)), extended

with IoT specific aspects

Desired Quality The ability of the system to predictably execute within its mandated per-

formance profile and to handle increased processing volumes in the

future if required

IoT-A

Requirements

UNI.008, UNI.026, UNI.027, UNI.028, UNI.066, UNI.089, UNI.101,

UNI.102, UNI.234, UNI.511, UNI.512, UNI.615, UNI.706, UNI.708,

UNI.711, UNI.716, UNI.717

Applicability Any system with complex, unclear, or ambitious performance requirements;

systems whose architecture includes elements whose performance is

unknown; and systems where future expansion is likely to be significant.

IoT systems are very likely to have unclear performance characteristics,

due to their heterogeneity and high connectivity of devices

Activities Capture the performance requirements

Create the performance models

Analyze the performance model

Conduct practical testing

Assess against the requirements

Rework the architecture

Tactics Optimize repeated processing

Reduce contention via replication

Prioritize processing

Consolidate related workload

Distribute processing over time

Minimize the use of shared resources

Reuse resources and results

Partition and parallelize

Scale up or scale out

Degrade gracefully

Use asynchronous processing

Relax transactional consistency

Make design compromises
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not mean that every IoT-architecture has to implement every feature listed here, but

in this report we have covered functional as well as non-functional aspects that are

important to support in today’s IoT-solutions on one hand and that are important to

the stakeholders we have interviewed on the other hand. Following our architectural

methodology we presented several views and perspectives of the IoT Reference

Architecture.

The Functional View describes the functional building blocks of the architecture

and the Deployment and Operation View explains the operational behaviour of the

functional components and the interplay of them.

The Information View shows how the information flow is routed through the

system and what requests are needed to query for or to subscribe to information

offered by certain functional components.

The perspectives listed in this chapter tackle the non-functional requirements

IoT-architectures might have. The perspectives are categorised according to the

non-functional requirements that have been extracted from the unified requirements

(UNIs) presented in Appendix. As a result of the requirement analysis we have

categorised the required system attributes into the four perspectives “Evolution and

Interoperability”, “Performance and Scalability”, “Trust, Security and Privacy”,

and “Availability and Resilience”.

Table 8.4 Trust perspective (extension of concepts originally found in (Rozanski and Woods

2011))

Desired Quality A complex quality related to the extent to which a subject expects (subjec-

tively) an IoT system to be dependable regarding in all the aspects of its

functional behaviour

IoT-A

Requirements

UNI.062, UNI.065, UNI.099, UNI.407, UNI.408, UNI.602, UNI.604,

UNI.605, UNI.620, UNI.622

Applicability Relevant to the systems that share the use of resources with subjects that are

not a priori trusted

Activities Capture trust requirements

Perform risk analysis

Check interoperability requirements and their impact on trust between het-

erogeneous subjects

Define trust model

Consider risks derived from malicious or unintentional misuse of IoT

systemsa

Tactics Harden root of trust

Ensure physical security and implement tampering detection

Ensure and check data freshness

Consider the impact of security/performance trade-offs on trust

Use (trusted) infrastructural Trust and Reputation Agents for scalability

Use security imprinting

Check system integrity often

Balance privacy vs. non-repudiation (accountability)
aFor example, simulating traffic by broadcasting car-to-infrastructure signals or inducing emer-

gency maneuvers in ships or planes by simulating adverse environmental conditions. Generally, it

is possible to make a fictional situation credible if the assumption that Physical and Virtual Entities

are always and securely synchronized is overlooked
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For each of the perspectives we list a number of tactics to achieve the desired

attribute of the system, e.g. anonymous usage. The tactics are state-of-the art

methodologies commonly used in today’s systems architectures.

In Chap. 6 we present examples of Design Choices for the respective tactics

listed in the perspectives section as example solutions for non-functional architec-

tural requirements. The Design Choices will help the architect with selecting

suitable solutions for non-functional architectural problems to focus on the

domain-specific functional aspects.

Table 8.5 Security perspective (adopted from (Rozanski and Woods 2011), extended with IoT

specific aspects)

Desired Quality Ability of the system to enforce the intended confidentiality, integrity and

service access policies and to detect and recover from failure in these

security mechanisms

IoT-A

Requirements

UNI.062, UNI.407, UNI.408, UNI.410, UNI.412, UNI.413, UNI.424,

UNI.502, UNI.507, UNI.604, UNI.609, UNI.611, UNI.612, UNI.617,

UNI.618, UNI.624, UNI.719

Applicability Relevant to all IoT systems

Activities Capture the security requirements

Check interoperability requirements for impacts on security processes

between heterogeneous peers

Conduct risk analysis

Use infrastructural Authentication components that support more Identity

Frameworks for scalability and interoperability

Use infrastructural or federated Key Exchange Management to secure com-

munication initiation and tunnelling between gateways for

interoperability

Use an Authorization component to enable interoperability with other

systems

Define security impact on interaction model

Address all aspects of Service and Communication Security

Integrate the trust model and support privacy features

Identify security hardware requirements

Consider performance/security trade-offs

Validate against requirements

Tactics Use an extended Internet Threat Model for which takes into account specific

IoT communication vulnerabilities

Harden infrastructural functional components

Authenticate subjects

Define and enforce access policies

Secure communication infrastructure (gateways, infrastructure services)

Secure communication between subjects

Secure peripheral networks (data link layer security, network entry, secure

routing, mobility and handover)

Avoid wherever possible wireless communication

Physically protect peripheral devices or consider peripheral devices as

available to malicious users in the attacker model

Avoid Over-The-Air device management; if necessary secure properly
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Table 8.6 Privacy perspective (adopted from (Rozanski and Woods 2011), extended with IoT

specific aspects)

Desired Quality Ability of the system to ensure that the collection of personally identifying

information be minimized and that collected data should be used locally

wherever possible

IoT-A

Requirements

UNI.001, UNI.002, UNI.410, UNI.412, UNI.413, UNI.424, UNI.501,

UNI.606, UNI.611, UNI.623, UNI.624

Applicability Relevant to all IoT systems

Activities Capture the privacy requirements

Conduct risk analysis

Evaluate compliancy with existing privacy frameworks.

Tactics Use an Identity Management component that supports pseudonymization

Avoid transmitting identifiers in clear especially over wireless connections

Minimize unauthorized access to implicit information (e.g. deriving location

information from service access requests)

Validate against requirements

Consider the impact of security/performance trade-offs on privacy

Enable the user to control the privacy (and thus security and trust) settings

Balance privacy vs. non-repudiation (accountability)

Table 8.7 Availability and resilience (adopted from (Rozanski and Woods 2011), extended with

IoT specific aspects)

Desired Quality The ability of the system to be fully or partly operational as and when

required and to effectively handle failures that could affect system

availability

IoT-A

Requirements

Uni.040, UNI.050, UNI.058, UNI.060, UNI.064, UNI.065, UNI.092,

UNI.230, UNI.232, UNI.233, UNI.601, UNI.604, UNI.610, UNI.616,

UNI.718

Applicability Any system that has complex or extended availability requirements, com-

plex recovery processes, or a high profile (e.g., is visible to the public)

Activities Capture the availability requirements

Produce the availability schedule

Estimate platform availability

Estimate functional availability

Assess against the requirements

Rework the architecture

Tactics Select fault-tolerant hardware

Use high-availability clustering and load balancing

Log transactions

Apply software availability solutions

Select or create fault-tolerant software

Design for failure

Allow for component replication

Relax transactional consistency

Identify backup and disaster recovery solution

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 9

The IoT ARM Reference Manual

Martin Bauer, Nicola Bui, Christine Jardak, and Andreas Nettsträter

Whereas we explained the process of creating an IoT architecture with the support

of the IoT ARM in Chap. 6 [Process Chapter] and gave an example how a concrete

architecture can be defined based on different models and views of the IoT ARM in

Chap. 11 [Concrete Architecture Chapter], we now provide reference manuals with

guidelines how to use the IoT Domain Model, the IoT Information Model, the IoT

Communication Model and the Perspectives when creating a concrete architecture.

Starting with the IoT Domain Model.

9.1 Usage of the IoT Domain Model

This section is intended for architects who want to apply the IoT Domain Model on

a specific use case. We discuss typical instantiations of the IoT Domain Model.

These model cases can be used as basic patterns when doing concrete modelling.
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9.1.1 Identification of Main Concept Instances

Similar to the identification of stakeholders and actors in standard software engi-

neering practices, the IoT Domain Model is used in a first step of the architectural

design process in order to:

1. Identify Physical Entities and related Virtual Entities;

2. Identify Resources (at least from a functionality perspective);

3. Identify Devices (or device options);

4. Identify Services;

5. Identify Users.

The identification of Resources and Devices is used together with the IoT

Communication Model to define the communication paradigms and how these

devices and resources interact. This is comparable to interaction models in standard

software engineering practices. The Services to be used and where they should be

deployed are analysed and finally the Users of these services are identified.

9.1.2 Modelling of Non-IoT-Specific Aspects

It is important to understand that the IoT Domain Model is not attempting to be a

domain model for all types of ICT systems. Rather, it focuses on the IoT-specific

parts. When modelling a complete system, many of the aspects to be covered are

not IoT-specific. For these aspects, the IoT Domain Model will provide only

little help.

For example, the Service concept in the Domain Model is primarily focused on

modelling IoT Services that directly or indirectly expose Resources; however, the

Service concept also can be used to provide a link to general services in the ICT

domain.

9.1.3 Identifiers and Addresses

Identifiers and addresses are logically two different concepts, which unfortunately

however are often confused in practice, in particular in the discussions about IoT

(Haller 2010). While in some cases the address might be used in the role of an

identifier, it is important to distinguish between these terms.

Identifiers are used to identify something, for example a Physical Entity. In this

case, the identifier is an attribute of the related Virtual Entity. Examples include URIs

(Uniform Resource Identifiers as used on theWeb, e.g. foo://example.com/building1/

room3), EPCs (Electronic Product Codes, e.g. 01.23G3D00.8886A3.365000A03)
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(EPC Tag Data Standard) and uIDs (uCode Identifiers,1

e.g. 0123456789ABCDEF0123456789ABCDEF).

Addresses, on the other hand, are means for locating, accessing or communica-

tion with something, e.g., a service or a device. Addresses manifest themselves as

attributes of the corresponding concepts, i.e., attributes of a service or a device.

Examples include IPv6 or MAC addresses.

As mentioned above, there are cases in which it can make sense to use addresses

as identifiers, e.g. when the address uniquely identifies the Physical Entity. For

example, a street address is good identifier for a building, but not for a human being.

An e-mail address on the other hand provides a unique way of identifying people.

Modelling 
Option 1

An address can be used as an identifier for a Physical En-
tity (and the corresponding Virtual Entity) if it uniquely 
identifies it.

Overall, identification and addressing are very important aspects of IoT systems.

When designing an IoT system the different options should be evaluated and

decided on early in the process, but as the decision depends on various

requirements, assumptions and even technology choices, we cannot give specific

recommendation on the reference model level.

9.1.4 Granularity of Concepts

In the IoT Domain Model, concepts like Device, Resource, and User have

specialisations. Pertinent examples for Devices are Sensors and Actuators. When

modelling a concrete scenario, one can use either the general concepts or their

specialisations; the IoT Domain Model does not prescribe anything. For example,

instead of using a concrete concept like Sensor it is also possible to use a more

general concept like Device. However, the specialisations are more precise and are

therefore preferable where they apply. In other words, if at the time of modelling it

is not (yet) clear what type of device is used, then just use Device.

Model as precisely as possible based on the domain mod-
el concepts at the time of modelling. Use the more concrete, 
more fine-granular concepts and instances whenever possi-
ble, but only to the granularity that appears reasonable for
the given purpose. 

Modelling 
Rule 1

1 http://www.uidcenter.org/spec#UID-00010.
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9.1.5 Common Patterns

9.1.5.1 Augmented Entities

As described in Sect. 7.3.2.2, Augmented Entities are the composition of a Physical

Entity with its related Virtual Entity. In many cases though, the Augmented Entity

is of little practical relevance and will have no concrete instantiation, as the

example in Fig. 9.1 shows. In this figure, a typical pattern is shown for how Physical

Entities are mapped to data base records: In a data base of assets (a Network

Resource in terms of the IoT Domain Model), a data base record (Virtual Entity,

and also a Passive Digital Artefact) is stored for every building (Physical Entity).

Modelling 
Option 2

The Virtual Entity for a given Physical Entity can be a 
data base record stored in a Network Resource.

A different case is truly smart objects, i.e., intelligent devices that have embed-

ded logic seemingly able to act autonomously. In this case, the Augmented Entity is

the smart object itself, and the associated Virtual Entity is an Active Digital

Artefact, namely, the embedded logic (e.g., the software agent).

Figure 9.2 shows an example of a smart object: an Unmanned Aerial Vehicle
(UAV). The body of the UAV can be considered the Physical Entity, while the

Building 1 :Physical
Entity

Building 1 DB
Record :Virtual

Entity

IoT Domain Model::
Physical Entity

Domain Model::
Virtual Entity

Domain Model::
Network Resource

Asset DB :Network
Resource

IoT Domain Model::
Augmented Entity

«is instance of»

is stored in relates to

«is instance of»

1

1

is associated with

1..*

relates to

1

«is instance of»

Fig. 9.1 Data-base pattern as an example for an augmented entity
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UAV controller is the related Virtual Entity. Together they form the Augmented

Entity, the smart object.

Modelling 
Rule 2

When modelling an autonomous object, an Augmented 
Entity is used, consisting of a device (Physical Entity) and 
its software controller (Virtual Entity).

Finally, the question often arises if something should be modelled as a Physical

Entity or not. While possibly every real-world object could be modelled as a

Physical Entity, this does not make sense. Not every sand corn needs to be

represented in an IoT system. Hence we can deduce:

IoT Domain Model::
Augmented Entity

IoT Domain Model::
Physical Entity

Active Digital Artefact
Digital Artefact

IoT Domain Model::
Virtual Entity

UAV Controller :
Virtual Entity

Unmanned Aerial
Vehicle :Augmented

Entity

UAV Body :Physical
Entity

1

1..*

1

1

1..*

relates to

1

controls

«is instance of»
«is instance of»

«is instance of»

Fig. 9.2 Smart-object pattern. UAV: unmanned aerial vehicle
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Modelling 
Rule 3

Only model something as a Physical Entity if it is rele-
vant in the IoT system so that the representing Virtual Entity
is also modelled.

9.1.5.2 Multiple Virtual Entities

In order to understand the case of multiple Virtual Entities, we take the example of a

customer buying a new car. The customer visits the exhibition of an automobile

manufacturing company and buys a new car. He then registers it under his name at

the department of motor vehicles. In order to protect himself from unexpected

financial expenses resulting from traffic collisions, he decides to buy a car insur-

ance. In this small scenario we notice that the same car, which is the Physical

Entity, is registered at three stakeholders: the manufacturer, the vehicle-registration

department, and the insurance company. As depicted in Fig. 9.3 each of the three

stakeholders maintains a unique entry in its database identifying the car. These

entries are multiple Virtual Entities representing the same car.

In practice, the number of Virtual Entities depends on the systems and domains,

where the Physical Entity is represented and of course also which stakeholders are

involved. We note that the characteristics of the Physical Entity change and,

therefore, many of the Virtual Entities need to be maintained and kept up-to-date.

Notice that the IoT Domain Model does not explicitly spell out any requirements on

the maintenance of single and multiple Virtual Entities.

9.1.5.3 Smart Phones and Other Mobile User Devices

Smart phones are a very common element in many IoT-related scenarios. They are

on the one hand Devices containing a multitude of sensors, but they also host apps

(Active Digital Artefacts), Services, and Resources. Figure 9.4 shows this in

exemplary fashion: John’s smart phone is used as a Device to track the location

of John, its owner. The GPS sensor is embedded in the phone itself. It is thus

embedded sensor hardware. Its data is made accessible through the related

On-Device Resource and the location service that exposes it. An app can be used

to display the location information.

Note that in this example (see Fig. 9.4), both the service as well as the applica-

tion are shown to be hosted on the phone itself. While this depicts a common case,

other instantiations are possible.

Instead of a smart phone other mobile user devices could be used, e.g. tablets or

PDAs. The general modelling would be the same.

218 M. Bauer et al.



9.1.5.4 IoT Interactions

The IoT paradigm enables mediated interactions between Users and the physical

world. This complements the direct interactions in the physical world that are

Automobile manufacturer data base

Vehicle registration station data base

Insurance company data base

Manufacturing plant ...

Plate number Model Owner nameColor ...

Plate number Model Owner name Insurance type ...

Chassis numberVE

VE

VE

Manufacturing date

Fig. 9.3 Multiple virtual entities (data-base entries) for a single physical entity (car)

SmartPhone :Device Location Service :
Service

GPS Sensor :Sensor Location :On-Device 
Resource

Tracking App :Active
Digital Artefact

John :Physical Entity

contains
hosts exposes

hosts

relates to

useshosts

is attached to

has location information about

Fig. 9.4 Exemplary modelling of a smart phone that is used as tracking device
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possible between Human Users and Physical Entities. It also enables the digital

world, i.e. Active Digital Artefacts, to interact with the physical world.

9.1.5.5 Simple Mediated Interactions

A common case is that a User needs to access a Resource exposed through a Service

in order to attain a given goal. Such goals may range from observing a Physical

Entity by using a Sensor, to modifying its state by leveraging an Actuator device.

We differentiate the following cases:

• Retrieving information: In this case a user would invoke a Service for retriev-

ing some information. There are different options for the Service to get this

information, which may be pull or push based. In case the Resource pushes the

information, the Service would cache the information and provide it on request

• Subscribing for information: In the subscription case, the User subscribes to

the Services and asynchronously receives notifications. After subscription, the

Resource (e.g., on a Device) will detect the events of interest according to the

specification provided by the user. The Service providing access to the Resource

will then forward the event to the interested User. In an alternative implementa-

tion, the Service is performing the event detection by processing all the raw data

from the Resource;

• Actuation: In the case, the User wants to control some aspect of the physical

world mediated through the IoT system, it would call an Acutation service. In

this case, the Service would interact with the Resource which would trigger the

Actuator to execute the actuation.

9.1.5.6 M2M Interaction

Machine-to-Machine (M2M) communication is a technological approach for

enabling meaningful information exchange between networked machines that

show a certain degree of smartness. The term machine is generally related to an

autonomous application while the smartness is related to the capability of

controlling its own behaviour and communicating. This reflects the capability of

making decisions on the basis of information retrieved from outside the system and

being able to receive and execute commands. This approach is very relevant to the

IoT and a specific definition of IoTMachine can be provided. In the terms of the IoT

Domain Model, we define an IoT Machine as a composition of:

• An Augmented Entity whose Virtual Entity component is an Active Digital

Artefact. In this way, it can start interactions (being a User, it can invoke

Services) and can control the behaviour of the machine;
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• One or more Resources and the underlying Devices which are used by the

Active Digital Artefact to monitor/control the Physical Entity. Note that,

because Resources are internal functionalities and the Active Digital Artefact

is generally co-located on the same hardware, the interaction can happen even

without the use of Services;

• The Services that are used for exposing Resources.

The example shown in Fig. 9.5 shows how a car interacts with a road barrier in

order to speed up the passage through the barrier, i.e. that the barrier is removed as

early as possible to enable the passage of the car. The incoming car is modelled as

IoT Machine1, the automated barrier operator as IoT Machine2. The

Machine1 Controller, an instantiation of an Active-Digital-Artefact

Virtual-Entity, will access as a User (Active Digital Artefact can be Users) Ser-
vice2 and will require the activation of the barrier. Service2 provides access to

Functionality2 (Resource) related to Machine2 and thus, by accessing

Service2, the car can retrieve the information about the barrier status which is

needed in turn to decide whether it needs to slow down or can pass through without

danger.

As M2M is about the communication-based interaction between machines, it is

important to clarify that IoTMachines can also interact with non-IoTMachines. For

example, an IoT-Machine could need certain information provided by an autono-

mous web application, a non-IoT Machine, in order to make decisions.

However, as the controlling program of Machine1 is a User according to the

IoT Domain Model, it can also communicate with other Machines by calling

appropriate embedded Services on another Machine, as shown in a simplified

way in Fig. 9.6.

Object identification and tracking with RFID. The term “Internet of Things” was

originally coined by the MIT Auto-ID Centre around 1999 (Ashton 2009), the

precursor to what is now known as EPCglobal. EPCglobal is a standardization

organization set up for achieving the worldwide adoption of the Electronic Product
Code (EPC). It is based on RFID technology and the sharing of related information

over the Internet. Due to its importance, it is worthwhile to map one of the most

common scenarios of EPCglobal to the IoT Domain Model: the tracking of goods –

pallets, cases, etc. – throughout the supply chain, from the manufacturer via

distribution centres to the retail stores. A reverse mapping of EPCglobal onto the

ARM can be found in Sect. 12.9.

A first thing to note is that we often have a hierarchy of Physical Entities and the

related Virtual Entities. A large boxed pallet is identified by a shipping company as

PE5 with its corresponding Virtual Entity VE5. As depicted in Fig. 9.7, the large

boxed pallet contains multiple other cases that are identified as (PE1, VE1),
(PE2, VE2), (PE3, VE3), and (PE4, VE4).

We note that the granularity of identifying PEs contained in other PEs is not

defined by the IoT Domain Model, since it intimately depends on the application. In

this example, if the large box contains four boxes of similar goods, e.g., shoes, the

interest of the shipping company usually stops at identifying PE5 and thus tracking
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Machine2Machine1

Augmented Entity
Smart Machine1

Physical Entity
Machine1 Body

Virtual Entity
Machine1 Controller

Device
Device1

Service
Service2 Virtual Entity

Machine2 
Controller

On-Device Resource
Functionality2

Device
Device2

Physical Entity
Machine2 Body

Augmented Entity
Smart Machine2

Digital Artefact
User

IoT Domain Model::
Active Digital Artefact

relates to accesses

is attached
to (monitors
/ acts on)
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is attached
to (monitors
/ acts on)

relates
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Fig. 9.5 IoT domain model instantiation for a M2M communication scenario

Fig. 9.6 M2M communication

Fig. 9.7 Shipping box containing multiple packets. The VE-to-PE mapping is exemplified by

paper tags
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Fig. 9.8 Domain modelling of a typical EPC-based RFID scenario (pallet containing cases)
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it by using VE5. Now if each of the four boxes contains different goods, e.g., shoes,

hats, earrings, and bags, it might be of interest for the shipping company to

additionally identify the four boxes as PE1, PE2, PE3, and PE4. The aim behind

this higher granularity is to facilitate the process of sorting out the goods after

delivery by checking VE1, VE2, VE3, and VE4.
The result of the whole mapping of the RFID logistics scenario, for only the

pallet plus everything it contains, is depicted in Fig. 9.7.

In this example, the Virtual Entities take the form of database records (Fig. 9.8)

stored in a Network Resource, the EPC Database. This database is exposed for

querying and updating through the EPCIS service (EPC Information Service).

The logistics manager, a Human User, can use the SCM application in order to

view the status of the tracked items (pallets and cases). The SCM application is

invoking the EPCIS query interface in order to get the necessary data.

Both pallet and cases have RFID tags attached that identify them. A RFID reader

– a type of sensor – reads the EPCs on the tags and hosts a resource that makes the

RFID inventory data accessible. A special service, the EPC Capturing Service, is

exposing this resource and is updating the EPC Data Base by invoking the EPCIS

capture interface of the EPCIS service. The EPCIS capture interface and the EPCIS

query interface are standardized and defined by EPCglobal (EPC 1.0.13).

In principle other technologies for identification, e.g. visual ones like bar codes

could be used. In this case, there is no hardware Device of type Tag involved and

the Sensor would be a camera or barcode reader. The identifies relation (as in

the IoT Domain Model) would then be directly between the Sensor and the Physical

Entity. The other aspects would be modelled in the same way.

Finally note that also physical interactions with the pallet can take place: a

warehouse worker – a Human User – moves around the pallet.

9.1.6 Examples for IoT Domain Model Concepts

In this section we give examples on different concepts in the IoT Domain Model.

For each concept we discuss a practical example and, where applicable, we

highlight the dependency of the concept on other concepts and also provide some

general information.

9.1.6.1 User

A User interacts with a Physical Entity, physically or mediated through the IoT

system. In the case of a mediated interaction, a User invokes or subscribes to a

Service.
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Application

– Example: AWSN installed in a wine cellar monitors environmental factors such

as temperature, humidity, and light intensity. These factors play an essential role

in defining the quality of the final wine product. Therefore, the winegrower has

an intelligent application running on his smart phone. The application allows

him to periodically visualize the status of the cellar. In this example, the

application is a user and the cellar is a Physical Entity.

– Note: An application is one kind of Active Digital Artefact.

Human User

– Example: The employee in a supermarket loads the fridge with meat instead of

cheese. Therefore, he regulates the temperature of the fridge accordingly. In this

example, the employee is a Human User and the fridge is a Physical Entity.

– Note: The case of multiple Human Users for one Physical Entity is possible as

well. We take the example of the safe in a bank. For security reasons, more than

one high-ranked employee is required to identify themselves simultaneously at

the safe in order to be able to open it. In this example the eligible employees are

Human Users and the safe is the Physical Entity.

9.1.6.2 Physical Entity

A Physical Entity is a discrete, identifiable part of the physical environment which

is of interest to the User for the completion of his goal. In the following different

kinds of Physical Entities are discussed.

Environment

– Example: An optical fog sensor measures the density of water particles in the air

that limit visibility. This sensor is used for traffic-control purposes, where it is

often installed on the side of roads for monitoring visibility impairment through

fog. The information about the fog is sent to a traffic management system where

it is analyzed. In this example the near surrounding above the road is the Physical

Entity.

Living Being

– Example: A WSN for agricultural monitoring. The network targets to report on

the growth of fruits. To this end growth monitors are deployed. They are

equipped with fruit-growth sensors as depicted in Fig. 9.9. In this example, the

fruits are Physical Entities that are living beings.
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Structural Asset

– Example: Equipping bridges with electrochemical fatigue sensors that reveal

flaws in metal (Phares 2007). This works much the same way as an electrocar-

diogram tests the human heart. First, bridge inspectors identify parts of the

bridge that are more susceptible to cracks. Second, they equip these areas with

electrochemical fatigue sensors. Third, they apply a constant electrical current

that runs between the sensors and the bridge. By monitoring the amplitude of the

current passing through the metal, sensors can detect cracks. In this example, a

susceptible area of the bridge is a structural-asset Physical Entity.

9.1.6.3 Resource

Resources are software components that provide information about or enable the

actuation on Physical Entities. We explain two examples for Resources, one

illustrating an On-Device Resource and the other a Network Resource.

On-Device Resource

– Example: TinyOS is an event-based OS for embedded networked sensors (Levis

and Gay 2009). TinyOS provides predefined software components that manage

the access and control of i.e., local LEDs, radio, or sensors. In this example, the

software components are On-Device Resources.

Fig. 9.9 Growth fruit

sensor© 2010 Phyto-Sensor

Group
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Network Resource

– Example: HBase2 is an open-source, distributed, column-oriented database.

HBase offers a set of functionalities that allow the management of distributed

information. In this example the HBase software libraries and components are

-Network Resources.

9.1.6.4 Service

A Service provides a well-defined and standardised interface, offering all necessary

functionalities for interacting with Physical Entities and related processes. Often it

exposes a functionality provided by a Resource to the overall IoT system.

Interacting Services

– Example: A system for home-patient monitoring. The system is composed of a

body sensor network (BSN) attached to the body of the patient. Bioelectric chips

monitor the status of the patient and require no direct involvement from a human

being. As depicted in Fig. 9.10, the intelligence of the system resides not only in

the hardware but also in three main services. First, the BSN monitoring service

that evaluates the readings of the bioelectric chips i.e., a blood pressure. Second,

the automatic service call, which alerts the relatives of the patient whenever his

situation deteriorates. Third, another automatic service call that alerts the ambu-

lance. The diagram in Fig. 9.10 shows the conditions to be fulfilled for one

service to invoke another service.

– Note: A service demanding high processing and storage capabilities can be

divided into multiple subservices running on different machines that invoke

each other. In comparison to the original service, each of these subservices

requires less storage and processing capabilities. Therefore, a trade-off exists

between the number of subservices and the power consumption of the hosting

machines. Distributed subservices induce an inter-communication overhead that

increases the power-consumption of the hosting machines. This trade-off should

be taken into consideration when dealing with low-power communicating

devices (Polastre et al. 2005).

Service Associated with a Virtual Entity

– Example: Services can be associated with Virtual Entities and these associations

are stored and can be discovered in the IoT system. The management of these

associations can be handled in a centralized database or in a highly distributed

fashion as in a peer-to-peer system, depending on the characteristics of the

underlying system.

2 http://hbase.apache.org/
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Service Accessing a Resource

– Example: A service for monitoring air pollution. Sensor nodes are semi-

randomly distributed in a city and measure the percentage of CO in the air. A

remote server runs software that periodically queries the readings from the

sensor nodes, analyses the readings, and monitors the evolution of the air

pollution. In this example, the monitoring software is a service that accesses

multiple resources. The latter are the components and functions running on

sensor nodes, and these components allow operations such as reading from the

sensors.

9.1.6.5 Device

Devices are technical artefacts, i.e. hardware, for bridging the real world of Physical

Entities with the digital world of the Internet. Often a Device hosts Resources,

which represent the software counterpart.

Service: BSN monitoring

Automatic service: call family

No

Yes

Familiy
available?

No

Automatic service: call ambulance

Highblood
pressure?

Yes

Fig. 9.10 Interacting

services for a home-patient

monitoring scenario
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Devices

– Example: Typical devices are sensors, like temperature, noise or light sensors,

but also more complex ones like cameras – or actuators, like switches, door

openers or more complex ones like air conditioning systems.

Hierarchical Devices

– Example: As depicted in Fig. 9.11, a Telos node contains three types of

integrated sensors (photodiode, humidity and temperature), several expansion

pins to mount external sensors, and three integrated LEDs (Polastre 2005). Two

views of the node exist: The node as a whole may be seen as a single device or it

can be seen as a composition of multiple sensors and actuators acting as

individual devices.

– Note: A device can be seen as a single unit as well as a composition of multiple

devices. This granularity of modulating a device is not specified in the IoT

Domain Model due to the fact that it is application dependent.

9.1.6.6 Deployment Configurations

Figure 9.12 shows a range of deployment configurations for resources, services, and

users. In Fig. 9.12 (a) resource, service, and the user (application) are running on the

same device. This is a configuration in which we have a powerful device, and the

interaction with the user is local. In Fig. 9.12 (b) the service of the user is running

somewhere else, e.g., in the cloud, and the interaction is thus not local. The API

used between the service client and the service, however, is the same. In Fig. 9.12

(c) the service is not running on the device, but in the cloud. This is a typical

configuration for a constrained device that may not be able to expose a user

interface across the network. For example, due to energy constraints or other

limiting factors, such a device may sleep most of the time and is therefore not

able to always handle user requests. The interface between the service and the

resource may be very specific and proprietary.

Network-based resources are not shown in Fig. 9.12, as they can be regarded as

being hidden behind cloud-based services.

Of course, in a real IoT system all these different configurations may be realized

at the same time and there could be interactions between users and services from the

different configurations.
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9.1.7 Generating a Specific IoT Domain Model

As discussed in Sect. 6.3, the IoT Domain Model is an integral part of the IoT

architecting process. In the following we provide a six-step process that supports

the generation of use-case specific IoT Domain Models. In the following, we

illustrate the answers with examples from the recurring example that we introduced

in Sect. 4.2.

In order to proceed with the modelling of a system, its usage from the perspec-

tive of each User needs to be analysed. For each of the Users identified, the architect

needs to answer six simple questions, and create suitable instance diagrams from

the Domain Model based on the answers.

Q1: What does a User invoke or subscribe to?

A1: The answer determines the Service(s) that the user invokes or subscribes to –

In the recurring example the user subscribes to the alarm service (using an

Android app).

Q2: Which part of the environment does the User want to interact with?

A2: The answer determines the PE(s) – in the recurring example the user wants

to be kept informed about the status of the load carrier.

Q3: What is used to identify/monitor this PE in the physical world?

A3: The answer determines the Device(s) – in the recurring example, the load

carrier can be identified with an RFID, a humidity sensor and a temperature

sensor can monitor relevant state information.

Q4: What is used to identify the PE in the digital world?

A4: The answer determines the VE(s) – in the digital world the identifier

provided by the RFID can be used for the VE modelling the load carrier.

Fig. 9.11 Telos ultra-low

power wireless module ©
2008 University of

California, Berkeley
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Fig. 9.12 Various

deployment configurations

of devices, resources, and

services
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Q5: What software can provide information or allow changing aspects related to

PE?

A5: The answer determines the Resource(s) – the Alarm Resource can trigger a

notification if the temperature or the humidity are no longer within the

required range.

Q6: What exposes this Resource and/or makes it accessible?

A6: The answer determines Resource-level Service(s) – the Alarm Service

exposes the Alarm Resource.

9.2 Usage of the IoT Information Model

The IoT Information Model cannot be instantiated directly like the IoT Domain

Model. Moreover the IoT Information Model defines an abstract framework or

meta-model that is technology agnostic and restricted to a minimum. The model is

just enough to accommodate the relationships defined in the IoT DomainModel and

to model the key concepts that are used as a basis for defining interfaces of

functional components. Thus only the skeleton of an information model is provided

in the ARM that IoT-A compliant architectures will have in common. A common

model on the other hand can serve as a bridge between more specific -but different

-information models to be used in concrete architectures.

The way to work with the IoT Information Model is split into three steps (see

also Fig. 9.13 below):

1. Use the IoT Information Model, viz. meta-model, as a basis explaining the

common information structure and the core elements defined in the IoT Domain

Model, like Virtual Entities, Attributes and Services;

2. Generate a domain-specific information model out of the meta-model, which

defines a minimal set of attributes and Services for your application domain.

Attributes which every VE needs to have (e.g. EntityId or EntityType as

in Chap. 7 Fig. 9.10 “IoT Information Model”) are defined but not necessarily

described in detail. Additionally the Service Descriptions can already be defined

as interfaces with input and output parameters.

3. Several (different) representations of the domain-specific model can be

generated, implementing the defined Attributes and Services. The use of differ-

ent representations is useful when there are different implementation-specific

requirements, like binary storage of information for constrained sensor nodes

and XML storage for the backend server storage.

The IoT Information View in Sect. 8.2.3, and especially the Sect. 8.2.3.1, give

some examples how the concrete modelling of the domain-specific model can look

like. An additional example for an information model used to model events is

shown in (Voelksen 2013; Sect. 4.2).
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9.3 Usage of the IoT Communication Model

Extending the analysis performed using the other models the IoT Communication

Model is used in the architectural design process to:

1. Identify homogeneous sub-systems and their capabilities and constraints;

2. Identify suitable protocol stacks and network topologies to be merged in a

common system view;

3. Define gateways and other bridging solutions.

9.3.1 Guidelines for Using the IoT Communication Model

Since the IoT Communication Model aims at providing an overall framework for

communication in IoT systems, it requires well-defined domain and information

definitions. This can be achieved following the examples of the previous sections.

Starting from those, it is possible to identify all the sub-systems, the complete

system is composed of, where we define homogeneous sub-system as a set of

system elements sharing the same communication technology and sharing similar

hardware capability.

Once the sub-systems have been defined, it is possible to analyse capabilities and

constraints for each of them. By capabilities and constraints we intend communi-

cation specific parameters such as data rate, delays, medium reliability (channel

errors) and technology specific parameters such as the available memory, compu-

tational power and supported functionalities.

Fig. 9.13 Three steps to use the IoT information model
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Modelling 
Rule 4

Identify homogeneous sub-systems from the complete 
domain model and determine their capabilities and con-
straints.

Subsequently, it is possible to analyse communication requirements deriving

from both services in the domain definition and interaction patterns from the

information model. The main goal of the IoT Communication Model is to identify

a set of interoperable protocol stacks and topologies with the following

characteristics:

1. Each stack must grow from a specific communication technology;

2. Interoperability shall be enforced in the lowest possible layer of stack;

3. The combination of identified stacks and topologies must satisfy all the

requirements.

Modelling 
Rule 5

Use existing standard communication mechanisms and re-
lated protocols whenever possible. If this is not possible then 
each of the sub-system is the starting point for building a 
protocol stack which is both technology specific and interop-
erability prone.

This rule enforces technology optimizations and ensures feasibility in all the

subsystems.

Modelling 
Rule 6

Interoperability shall be enforced in the lowest possible 
layer.

This rule enforces simplicity and interoperability, because it avoids stack dupli-

cation and makes it possible to reuse the same protocols (and their

implementations) horizontally in the system. Usually, the most effective interoper-

ability point is the Network & ID aspect in the IoT Communication Model (or the

Network layer in the ISO/OSI model) as it is the lowest common point in the stack

which is not technology specific and, thus, it can be the same across different

sub-systems.

For such a reason the selection of the protocols governing the Network & ID

aspect is of paramount importance, since they must satisfy the requirements from

services and respect the technology constraints.

The next aspect in the IoT Communication Model is the end-to-end aspect: this

considers every possible interaction path among any couple of sub-systems. Again,

technology dependent constraints and service dependent requirements will push the

system architect in two opposite directions and often there is no single rule for all
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the systems: in fact, even though the Network & ID aspect is capable of making two

sub-systems communicate to one another, it is the end to end aspect which

harmonizes the overall system behaviour. For such a reason, this is the place

where gateways and proxies are mostly needed.

Modelling 
Rule 7

In order to allow seamless interaction between sub-
systems, gateway and proxies shall be designed for the 
whole system.

Finally, the Data interoperability aspect of the IoT Communication Model,

which accounts for the highest layer of the ISO/OSI communication stack,

considers the remaining aspects of data exchange, compression and representation.

Although application layer gateways can always be designed to map two different

data representations, it is not always advisable to do so. Most often adopting a

compressed format which fits constrained network capabilities provides two

advantages, (1) simpler network interactions, and (2) lower traffic.

9.4 Usage of Perspectives

Perspectives are used to help an architect in designing software architectures. Their

purpose is threefold (Rozanski and Woods 2011):

1. Standardised store of knowledge about a given quality property;

2. As a guide for architects not experienced with a given quality property, and

3. As a memory aid for the experienced architecture.

The actual use of perspectives in an architectural design process is shown in

Fig. 9.14. Within the IoT-A project we extended the use of perspectives by adding

another layer: the Design Choices catalogue. Design Choices which are very

concrete usages of the IoT Reference Architecture applied to Functionality Groups

and Functional Components. An architect can consider solutions provided by the

Design Choices when creating the initial candidate architecture and later on when

he is modifying the architecture to resolve the problems with unacceptable quality

properties.

The architect designing should always keep the desired use of the system into

account. For example, the architect designing the system used in the “Red Thread”

example from Sect. 4.2 would go through the scenarios with a specific “hat” for all

perspectives. He would first extract the non-functional requirements (e. g. the

reliability needs of the sensors, security concerns) and then, once he has a candidate

architecture, use the perspectives to ensure that on all the non-functional

requirements have been taken care of. He would, for example, have a specific

look at the safe storage of the sensor history and select a Design Choice which

ensures that it cannot be altered. The perspectives then will help him making sure
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that still all other requirements are fulfilled, and if not, at least can help making the

trade-offs explicit.

Applying a perspective is more than a review process: the outcome of applying a

perspective is cross-view changes to the architecture. As an additional outcome of

the perspectives there might be additional documents like performance analysis

data etc.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

Fig. 9.14 Using perspectives (Adopted from (Rozanski 2011))
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Chapter 10

Interactions

Martin Bauer, Mathieu Boussard, and Stefan Meissner

As discussed in Sect. 8.2.2 and found in the literature, the functional view of a

concrete architecture typically consists of three viewpoints: functional decomposi-

tion (viz. the logical structure), interfaces, and behaviour. Despite its significantly

more abstract nature, we provide an analysis of these viewpoints for the IoT

Reference Architecture in Sect. 8.2.2 and in Carrez et al. 2013: Annex C. However,

only rudimentary interaction analysis is presented in the latter section, focusing

mostly on technical use cases within a single FG.

Nevertheless, as can be appreciated by looking at already existing IoT systems,

the operation of such systems generally involves sequences of FC interactions from

all FGs. To help the reader better understand how common system-wide scenarios

can be realised using the IoT ARM, and further apply this knowledge to their

concrete architecture, this section provides the reader with an analysis of

interactions between FCs across different FGs for some selected scenarios.

As explained earlier, the very nature of the IoT ARM is to cover all usage

domains and architectures that can be derived from it – therefore it is not feasible to

describe every possible FC interaction sequence for every possible scenario and

architecture combination. Furthermore, instantiating a given scenario implies in

most cases taking some clear Design Choices, before one can illustrate them in

terms of FC interactions.
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However, in order to provide the reader at least with a general understanding of

how such interactions can look like, we provide analyses for a few usage scenarios.

The scenarios presented in the following sub-sections address some of the most

representative system-wide general use cases, identifying relevant FCs and propos-

ing an analysis of possible Design Choices when applicable.

The scenarios presented in this section are:

• Management-centred scenarios dealing with modification of the IoT system

through

• Configuration of the system when adding a device

• Changing the device configuration

• Service-centred scenarios

• Discovering relevant services using IoT Service Resolution and VE

Resolution

Interworking of Service Choreography and IoT Services in the context of

Complex Event Processing

10.1 Management-Centric Scenarios

This section presents the analysis of a “management-centric” scenario, namely the

auto-configuration of an IoT system when adding a device or group of devices to the

system. This scenario also encompasses the system-triggered configuration of such

device(s) through the Management FG. Although the Device FG is out of the ARM

(see Sect. 7.5.2 ), system designers have no choice but to consider this FG in the

specification of their concrete systems. In particular, the interactions the FCs of the

Device FG have with the entire system to make devices usable should be defined

(we’ll consider actual devices as distinct FCs here, but a device ensemble could be

modelled likewise by a Device Group FC depending on chosen design choice).

In this section, we describe the interactions taking place across the Device,

Management, Security, Communication, and IoT Service FGs for two

management-centric scenarios, namely (i) what happens when a device is added

to the IoT system and made available to its components, and (ii) what happens when

a device configuration is changed within the system.

10.1.1 Configuration of the System When Adding a Device

From a general point of view, such addition can happen automatically, semi-

automatically or in a manual fashion (which is a clear design choice). Common

examples of these three different design choices are:
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• For automatic joining, typically the handover between cells in a GSM network;

Plug & Play solutions such as those supported by protocols like UPnP or

Bonjour;

• For semi-automatic joining, the connection to a private network with a firewall,

where a network administrator needs to manually grant access through inclusion

of the requester’s MAC address in a white list;

• For manual joining, any system where the complete compulsory information is

manually inserted by an administrator (possibly including physical

intervention).

The automated addition of devices is commonly addressed in concrete IoT

systems through the usage of Plug&Play solutions (or a mix thereof). Extended to

networked systems, Plug & Play conceptually covers addressing and more gener-

ally communication, resource description and discovery, registration and look-up as

well as possibly secure and trusted access (see e.g. (Houyou et al. 2012)). Semi-

automatic would e.g. imply equivalent discovery mechanisms but wait for approval

of a human system manager to actually make the new device available to the rest of

the system. Finally, some systems may not imply any automation at all – human

system engineers perform static provisioning of necessary device information and

trigger the addition of the device to the system when the physical deployment is

performed. Regardless of the selected design choice, a number of actions need to

take place, which are depicted below.

When considering an IoT system, the goal is to go from state A (system in initial

state) to state B (system + new component in a state where this new component is

actually potentially usable by the rest of the system components). In the following,

we describe how the system might make this transition for two of the identified

design choices (automatic or manual), as the semi-automatic case can be inferred as

a mix of these two cases. The transition from state A to state B is caused by two

types of triggers (Ta and Tb below):

• Ta: automatic design choice trigger (dynamic discovery/joining of the new

device); the device is discoverable, e.g. actual (dynamic) appearance of the

device in the range of the system (e.g. turning on the device, mobile device

getting in range of the (e.g. radio) system);

• Tb: manual design choice trigger; the system is told to (statically) add a resource

(or this specific resource); such a request can be issued within the system or by a

human user.

Figure 10.1 below illustrates these two possibilities.

Triggers of type Ta) rely primarily on network-level mechanisms (e.g. joining

network when requested from the incoming resource, or discovery when polled by

the existing system communication gateway) that are specific to the concrete

system implementation choices (e.g. Bluetooth discovery mechanisms), or to

service-level mechanisms over a pre-existing network connectivity (e.g. UPnP

over an IP-based local network), or a mix of both. From a concrete system

perspective these mechanisms have to be supported both by the new resource and

the system. Further aspects are discussed below.
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Triggers of type Tb) are typically issued from a management function either

upon explicit human (system manager) provisioning the configuration data for the

new device (e.g. using a management console), or from another (non-management

related) functionality in the system towards the management function (e.g. the IoT

Service Resolution FC asking Management FG to add a new resource when it can’t

find one already available matching a given request)

From the Reference-Architecture point of view, the steps of the process when

going from state A to state B shall include the following activities (represented in

Fig. 10.2). Note that all the following steps should involve the necessary security

measures for access control, namely authentication, authorization through respec-

tively the Authentication and Authorization FCs of the Security FG:

• Update of Management FG components: in particular the Member FC’s

UpdateMember() interface should be called (see (Carrez et al. 2013); 7.4 Mem-

ber)) – as the corresponding entry does not exist in the Member Database, it

actually makes an “add” rather than an “update”). Other Management FCs can

be impacted as well. The Configuration FC may retrieve and store the configu-

ration of the new components, i.e. the resource and the collateral updates to

existing components in the IoT Reference Architecture. The State FC may

reflect the change of state of the system incurred by the addition/updates of

these components. The Fault FC may have to correct related alarms, for instance

if the former absence of the newly added devices incurred an alarm on the

system. For instance in an IoT system controlling water level in a river with

actuators offline due to maintenance, which raises an alarm in the Fault FC: as

actuators go back online after maintenance, the system detects their

re-appearance; the State FC is updated, and the Fault FC restarts regulation

services as a consequence of the clearing of the alarm;

• As is the normal way to make use of a device through its associated IoT

Resource, which itself is exposed through an IoT Service FC, the IoT Service

FG needs to be updated, by creating a new IoT Service to represent this new IoT

Resource (if necessary), and by updating the IoT Service Resolution FC (through

its insertService() or updateService() interface);

IoT System IoT System
+ new deviceAdding a device

Ta: dynamic discovery/joining of the new device

Tb: static provisioning of the new device

Fig. 10.1 Alternate paths

to designing the addition a

Device to an IoT System
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• If not already available (e.g. the IoT Service is newly created, or was not bound

to the actual resource so far), the communication link between the IoT Service

and the actual resource from the Device FG needs to be established, taking into

account the specificities of the resource (e.g. intermittent availability) and

desired communication patterns (cf Information View Section).

10.1.2 Changing the Device Configuration

In this section, we discuss how a device or a group of devices can be configured

using different FCs of the IoT Reference Architecture. Such process involves the

following steps depicted in Fig. 10.3:

• As a pre-requisite, the communication link from the Device FG to the various

IoT Resources should be established, relying on Communication and Security

functions;

• The request for a configuration change is issued by a human system manager

through a management console, or by a FC. It results in a call to the Manage-

ment:Member FC (step 1) through the retrieveMember() interface

followed by a call to Management:Configuration FC (step 2) through the

setConfiguration() interface. Naturally, such calls are subject to access

control through the Security: Authentication and Security: Authorization FCs –

not represented);

Perform authentication/authorization
of new device

Add new device to Member FC

Management FG

Add IoT Services for
device resources

IoT Service FG

Establish secure communication with device

Add entries to IoT Service Resolution FCUpdate other Management FCs

Fig .10.2 Adding a new device to the system – activity diagram
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• Depending on design choices made (e.g. whether the configuration of the

associated resource is part of the related IoT Service or not), the actual configu-

ration update on the device can be realized by either communicating directly

with the device (e.g. sending a configuration message, steps 30, 40) or through the
IoT Service associated with the resource (steps 3–5).

Please note that prepareConfigurationMsg() and transmit()
methods are related respectively to the preparation of a usable configuration

message to be transmitted by the End-to-End Communication FC, and to the actual

reception of data on the Device itself, which are both out of scope of the IoT

Reference Architecture, and therefore only shown here as an illustration. Underly-

ing interactions with Security FCs and between End To End Communication FC

and other FCs of the Communication FG are not shown (see ((Carrez et al. 2013); 5)

on Communication FG).

10.2 Service-Centred Scenarios

10.2.1 Discovering Relevant Services Using IoT Service
Resolution and VE Resolution

In existing, small-scale IoT scenarios, applications are often hard-coded or

configured with respect to the sensors and actuators they are going to use. If we

think of truly large-scale IoT scenarios, this is not going to be possible.

Fig. 10.3 Device configuration update interactions
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Applications should work in any environment, where the necessary infrastructure is

available. This means that the necessary sensors and actuators first need to be

found. The Functional Components responsible for this are the IoT Service Reso-

lution and the VE Resolution. Due to the heterogeneity of the underlying hardware,

and in order to make the functionality accessible in the whole IoT domain, it is

desirable to provide a higher abstraction level than the hardware-level interface of

the sensor. Therefore, the ARM offers a service abstraction level and a virtual entity

abstraction level for the interaction with the IoT system. The IoT Service Resolu-

tion is the functional component responsible for discovering IoT Services based on

a service description, which would typically include the service area; the VE

Resolution is responsible for discovering the IoT Services associated to VEs,

which can either provide information about the represented PEs or enable actuation

on them.

In the following we look at a traffic scenario, but the interactions shown also

apply to a large number of other scenarios. We have modelled the roads in form of

road segments, where each road segment is a VE, and for each road segment, there

is an associated sensor-based service that provides the road condition, e.g. whether

the road there is dry, wet or icy. Figure 10.4 depicts the scenario.

To get to this scenario, the assumption is that either the IoT Services themselves

or a management component, e.g. the Member FC, have registered each service

together with their service area within the IoT Service Resolution. This is depicted

as “Insert Service Description” steps (1)/ (10) in Fig. 10.5. For the service areas only
a few examples are shown. To simplify the discovery, road segments are modelled

as Virtual Entities and associations between the road segments and the services are

introduced. The respective IoT Services have service areas overlapping with the

area of the road segment. The associations may be explicitly introduced by a service

management component, e.g. the Member FC. (see Fig. 10.5 (2)) or they may be

automatically discovered by the VE & IoT Service Monitoring component (see

Fig. 10.5 (20)), e.g. as the result of applying some rule on existing service

descriptions from IoT Service Resolution and existing associations from Virtual

Entity Resolution. The VE & IoT Service Monitoring component would then insert

the newly created Association into the Virtual Entity Resolution component.

Now that the relevant information is available in the IoT Service Resolution and

Virtual Entity Resolution, a car acting as a User that is driving along the road could

then discover the services that provide information about the road conditions in the

direction in which it is driving. Such a scenario is depicted in Fig. 10.6. The car

would specify the geographic scope based on its current position and the driving

directions, possibly taking map information into account. The scope is then used

discover the associations between the upcoming Road Segments and the sensor

services providing the respective road condition. Based on the service identifier,

which is part of the associations, the service descriptions can be retrieved, so that

the service can be accessed (Fig. 10.7).

The Application first discovers associations from the Virtual Entity Resolution

looking for Virtual Entities of type road segment, with attribute road condition,

within the geographic scope specifying an area that covers the road in the driving
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direction (see Fig. 10.4 (1)). The returned associations contain the identifiers of the

services that can provide the respective information. Based on these service

identifiers, the service descriptions are looked up from the IoT Service Resolution

(see Fig. 10.4 (2)). The returned service descriptions contain the information

needed by the application to contact the respective IoT Services (see Fig. 10.4 (3)).

Fig. 10.4 Road condition scenario

Fig. 10.5 Insertion of service descriptions and associations
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Fig. 10.6 Discovery of services providing information about the road conditions for the road

segment in the direction the car is driving

Fig. 10.7 Discovery and invocation of services providing the road conditions based on a geo-

graphic scope
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Fig. 10.8 Interactions CEP Service C subscribe

Fig. 10.9 Interactions CEP Service C publish
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10.2.2 Managing Service Choreography

The FG Service Organisation contains the FC Service Choreography that supports

Publish/Subscribe-functionality for IoT Services. In contrast to the IoT Service

Resolution FC (Sect. 8.2.2.5) the Service Choreography FC contains a broker that

can find suitable services for service requests given by potential service consumers.

The service requests declaring an interest in certain IoT Service functionality are

stored within the broker even if a suitable service is not available at the time the

service request was given to the FC. As soon as a suitable service becomes available

the broker receives the information the services publishes and forwards the infor-

mation to the service consumer. On the other hand services can advertise their

capabilities at the broker to await usage of potential service users. IoT Services can

also publish information to the broker even if no service consumer is present.

In case multiple service consumers are interested in the information one partic-

ular service provides, the broker distributes the information to all subscribers (Sect.

8.2.3).

This Publish/Subscribe functionality allows using IoT services for CEP. In the

scenario depicted in Fig. 10.8 the Design Choice has been made to provide CEP

functionality as IoT Service, identified as CEP Service C. Such CEP services

compute complex event based on simple events produced by other IoT Services

(IoT Service A and B in Fig. 10.9). For this CEP Services need to subscribe to the

IoT Services publishing the simple events (steps 1 and 2 in the figure below).

When the simple events are published to the Service Choreography FC (steps

4 and 5) the broker forwards the events to the CEP Service C (step 6 and 7). The

CEP Service C is then able to process them to a complex event that is again

published to the Service Choreography FC as illustrated in step 8 in Fig. 10.9

Since the user has subscribed to get notified if and when the complex event

occurs (step 3 in Fig. 10.8) the Service Choreography FC publishes the event

notification to the User as depicted in step 9 in Fig. 10.9.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Non-
commercial License, which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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Chapter 11

Toward a Concrete Architecture

Christine Jardak and Joachim W. Walewski

11.1 Objective and Scope

This Section serves to illustrate how the IoT ARM can be used for the generation of

concrete architectures. This goal is pursued by applying the IoT ARM to a concrete

use case and application scenario. This Section serves thus as a complement to Sect.

6.3. Notice that we are not providing all the details that would usually be part of an

architecture description, rather, the idea is to illustrate aspects of the architecture

actions elaborated on in Sect. 6.3.

Throughout this Section we provide summaries of how the description

provided here illustrates statements made elsewhere in the document, for

instance Sect. 6.3. In such summaries we occasionally also discuss how

complementary actions to those laid out in Sect. 6.3 can enhance the

architecting process. All such meta-commentary is set apart in light-grey

boxes like this one.

The targeted use case of this architecture is a combination of Pay-By-License-
plate (PBL) parking and Recognise-By-License-plate (RBL) parking enforcement.

The core idea of such a system is to use the license plate of a car as a unique

identifier for on-street parking. Upon purchase of a time-parking permit, the

customer provides the license-plate number of her car for identification. This

parking feature shall be available to time parkers and residents. Examples for

time parkers are tourists, and locals from a suburb who visit the city centre for

shopping, restaurant visits, etc. Residents are defined as denizens of a municipality,

C. Jardak (*) • J.W. Walewski

Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany

e-mail: christine.jardak@siemens.com; joachim.walewski@siemens.com

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0_11,
© The Author(s) 2013

249

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
mailto:christine.jardak@siemens.com
mailto:joachim.walewski@siemens.com


and they are purchasing a parking permit for an extended period of time for

on-street parking in the vicinity of their residence. By using the license-plate

number as ID for the parked car, paper copies of the parking permit do not longer

have to be placed on the dash board of the parked cars. In such a system, the license

plate is also used by the parking enforcement for checking the permit of the car

against a data base provided by the parking service itself. More information on PBL

and RBL can be found elsewhere in the literature (Digital Payment Technologies

2013; Genetec 2013). In the remainder of this Section we refer to this envisaged

system as a PBL system.

It should be also noted that the entire system is to be designed in a way that it can

be made part of a version update of an already existing central system that manages

municipal on-street parking lots.

Notice that scopes usually are part of the business goals. Depending on the

complexity of the use case such description can be rather complex and long.

Besides describing the goal of the system, the description also needs to

include a sketch of how one intends to achieve this goal. Without a spelled-

out approach, it is impossible to generate an architecture.

Also notice that due to resource and time constriction we were not able to

dedicate the same level of attention to all the steps in the architecting process

as laid out in Sect. 6.3. In particular, no Functional Decomposition,

Interactions, nor interface definitions are provided. Also, neither the Deploy-

ment nor the Operational Views are touched upon.

11.2 Physical Entity View and IoT Context View

11.2.1 Physical Entity View

This Section relates to Sect. 6.3 and Chap. 6 Figure 3. In the referenced

Section, the content and the importance of the Physical-Entity View are

discussed. Here, we provide a concrete example of the PE View for the

PBL system presented in the previous Section. Notice that this view can be

much more complex for other use cases. For instance, if the state of the

Physical Entity is going to be inferred from a wide range of measured

physical quantities, one not only needs to catalogue these quantities

(viewpoints!), but also their range and how these ranges translate into the

(continued)
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(continued)

qualitative states that are to be inferred from the measured quantities. An

illustrative use case for this is the Red-Thread example (see Sect. 4.2), viz. the

transport of orchids. One needs a rather fine-tuned model of the orchids in

order to infer their current condition from environmental quantities such as

air temperature and humidity and the duration for which the orchids have

been exposed to these conditions.

As briefly described in Sect. 11.1, the thing at the core of the IoT system is the

car. More specifically, the entity of interest is the parked car. Therefore, the

Physical Entity in the IoT Domain Model (see Sect. 7.3) is the parked car. An

example of the Physical Entity is shown in Fig. 11.1.

Notice that the parking lot itself is not the Physical Entity but the car. That

this is the case is not an intrinsic property of the Physical Entity, rather of

what the business goals behind the envisaged architecture are, and how they

will be achieved (the aforementioned approach).

As described in Sect. 11.1, the goal of the envisaged IoT system is to implement

one service for both time and resident parkers, and the car’s license plate was

chosen upfront as the unique identifier for both use cases. The parking lot becomes

an entity of interest when, for instance, the parking enforcement enquires whether a

parked car is authorised to park at that specific location. However, since this is only

one of the envisaged use-case scenarios (see below) where the parking lot could

qualify as the Physical Entity, the parked car and not the parking lot is chosen. This

does not imply that there can only be one Physical Entity per IoT system. Rather,

one Physical Entity type turns out to be sufficient in order to meet the system goal as

described in Sect. 11.1.

Notice that the process provided in Chap. 6 indicates that the Physical View

is contingent on the business goals: once the goals are chosen the Physical

Entity can be identified together with the properties about the Physical

Entities that are of interest for the IoT system. This dependency is illustrated

in the above example.

Notice that since only the license plate is used to identify the parked car, the

envisaged system can readily encompass the parking of motor bicycles and the like.

What is paramount is that it is a vehicle that is identifiable through its license plate.
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As shown in Chap. 6 Figure 3, both the Physical View and the business goals

inform the IoT Context View. In the next section we illustrate this inter-

relatedness for the PBL architecture.

11.2.2 IoT Context View

As already stated in Sect. 11.1, the envisaged system is to be integrated with an

existing system for the control of parking-payment systems, which we refer to as

Control Centre. In other words, the system envisaged is an extended version of the

existing system. Future extensions are very likely.

The context diagram of the PBL system is shown in Fig. 11.2.

As described in Sect. 6.3.2, the context view describes “the relationships,

dependencies, and interactions between the system and its environment”

(Rozanski and Woods 2011). While we describe some inner structure of the

envisaged system, viz. an enhanced version of the Control Centre, this level

of detail is not mandatory. What is mandatory though is to provide an

information about (Rozanski 2013).

• System scope and responsibilities

• Identity of external entities and services and data used

• Nature and characteristics of external entities

• Identity and responsibilities of external interfaces

• [Nature and characteristics of external interfaces]

• Other external interdependencies

(continued)

Fig. 11.1 A car parked in

the Gatwick North Terminal

Flightpath long stay car

park (Whittington 2010)
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(continued)

• [Impact of the system on its environment]

• [Overall completeness, consistency, and coherence]

Note that for the sake of brevity of this section we will ignore the aspects

between brackets.

The nature of external interfaces was not addressed since this information was

not available at the time of writing. Besides the mission statements in

Sect. 11.1 we cannot yet predict how this system impacts its environments.

This question can often only be addressed when the system is implemented

and tested. The overall completeness, consistency, and coherence of the

system was not addressed here, since, due the simplicity of the use case,

and the strong boundaries put onto it by the business model (for instance,

off-street parking is excluded), we felt that this item is fulfilled by default.

Also notice that system scope already was provided in Section 0 In a regular

architecture description, the scope is part of the business goals. There is thus a

natural overlap of context view and business goals. In case the business goal

already contains the full information about system scope and responsibilities,

(continued)

Updates

Updates

Updates

PDM

PDM

PDM

Control Centre
Registry office

Parking-White-List

Resident-parking
registrationPurchase of time-parking

tickets

Parking enforcement

Registered residents

Monitoring Centre

Download

Time
parking

Info.

Fig. 11.2 Context diagram of the PBL IoT system. The dashed box indicates the border of the

Control Centre (© comeo.de)
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(continued)

this information does of course not need to be repeated in the context view,

but can rather be cross-referenced. Notice that the context view can be kept

rather descriptive, but this cannot be done at the expense of completeness.

The Control Centre, which is the focus of the IoT architecture to be devised, is

seen at the centre of Fig. 11.2. Also shown are purchase/transaction operations by

the time parkers and the resident-parkers. The two types of parkers and what

services shall be offered to each of them are summarized in Table 11.1. Figure 11.2

also contains on-street Pay-and-Display Machines (PDMs), parking enforcement,

and the registry office. The latter maintains a database on resident parkers (name,

address, permit purchased, etc.). What is inside and outside the scope of the IoT

architecture to be generated is summarised in Table 11.2.

Notice that Table 11.1 can alternatively be part of the business goals

(description of end customers and the services to be offered to them).

As shown in Chap. 6 Figure 3, the IoT Context View consists of two parts,

the context view and the IoT Domain Model. In many cases it will be easier to

construct the context view first, since (a) one does not yet need to understand

the inner workings of the envisaged IoT system, and (b) the context view

(continued)

Table 11.1 Types of parkers and the services to be offered

Type Description Services to be offered

Resident parker Lives in the vicinity of the

parking lot used. Needs to

park on a frequent but not

necessarily on a daily basis.

Purchases a subscription for

this type of parking

PBL on a subscription basis. Subscription

shall be possible via walk in at the

local Registry Office. Other access

modalities include mail, email, web

services, and calls

Time parker Needs to park for a limited time

interval on a location that is

typically not in the vicinity

of the driver’s residence.

Envisaged usages encom-

pass short-time city parking

(for instance for shopping)

but also extended-stay

parking at, for instance,

airports

PBL on a pay-by-need basis. This type of

permits shall be purchasable at PDMs,

but also through web services (for

instance, a smart-phone application)
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(continued)

focuses on the interfaces and what lies outside of the IoT system. The amount

of detail on “outside interfaces” and the outside itself is usually much less

than that of the IoT system itself.

11.2.2.1 Business Goals Revisited

As already mentioned the envisioned IoT system extends and improves

existing car parking system. In the following we provide more information

about the actors and devices involved, and also how their functionalities and

roles are going to change due to the envisaged system enhancement. Such a

detailed discussion is valuable not only from a mission-statement point of

view, but also from an IoT-Domain-Model point of view, since it provides

valuable additional information about the entities that form the IoT Domain

Model, and how these entities interact.

Notice that contrary to the partition prescribed in Chap. 6 Figure 3, busi-

ness goals and the IoT Context View (and the Physical Entity View) can of

course be provided in one contiguous part of the architecture description.

Such an aggregate presentation can make sense since all three (as in the

example provided here) are characterised by a strong interdependence

(chicken-and-egg problem!)]. If these two/three descriptions are indeed

bunted together this needs of course to be clearly flagged in the table of

content of the architecture description.

In this section, we shed more light on the planned improvement of the parking

system by comparing the current functionalities of the entities in the context

diagram with how they are going to look like after the planned improvement.

Table 11.2 Overview of what components and interfaces in the context diagram (see Fig. 11.2)

are part of the architecture to be devised

Within scope of the system architecture Outside the scope of the system architecture

Control Centre; interfaces to PDMs, parking

enforcement, and Registry Office. Parker;

car

PDMs; web services for interacting with Control

Centre (online time-parking tickets) and with

Registry Office (Resident Parking Registra-

tion); Enforcement system
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Pay-and-Display Machines (PDM)

Today: Parking Ticket Identification

PDMs are mounted on the side of public roads and have a major task of managing

on-street parking places (Wikipedia 2013g). They allow a driver to buy a time-

limited parking permit for a defined geographic region of on-street parking lots.

After paying the parking fee, the PDM prints out the corresponding parking ticket.

The driver is tasked to place the parking ticket visibly on the dashboard of her car.

Enhancement: Pay-by-License Plate

Our target is to simplify on-street parking by allowing the driver to head toward the

nearest PDM, to type in the license plate number of her car, and to pay the parking

fee. In this scenario she does not need to place a printed parking permit on the

dashboard of her car. Instead the information entered (license plate) and the

information about the permit (begin, end, zone) is communicated from the PDM

to the Control Centre (see Fig. 11.2), where it is stored in a Parking-White-List

database. The information stored in the database can be accessed by the parking-

enforcement authority operating in the pertinent precinct of the municipality (see

the below entry on the Registry Office).

Control Center

Today: PDMs Monitoring Centre

The Control Centre is a monitoring centre for multiple PDMs. It supplies PDMs

with new parameter data such as current parking fees. It also monitors the PDM

transaction data, cash-box status, and it provides statistical data (e.g., # of tickets

sold) and status messages about the monitored PDMs to the users of the Control

Centre.

A Control Centre is not always managed by the municipality itself. In many

cases the management of the system is outsourced to a private company, but the

municipality remains the owner of the data.

Notice that ownership of the system parts (Control Centre) and also of the

out-of-system parts (Registry Office, parking enforcement . . .) has direct

implications for the requirements engineering (functional view, information

view, security-risk analysis . . .).
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Enhancement: Connection to Web, and to the Registry Office

Instead of buying a paperless time-parking permit from a PDM, drivers are given

the possibility to execute the purchase online. To do so, a driver logs in to the

corresponding webpage or installs an app on her smart device. The driver provides

her license plate number, the parking zone, the parking time interval, and finalises

her purchase by paying parking fee. The aforementioned information is then stored

in the Parking-White-List database.

Registry Office

Today: Registering Residents and “Sticky” Permits

A registry office maintains a municipal database containing information on the

current residence of persons and their permits. Residents can register for a parking

permit by, for instance, providing pertinent information on the Registry-Office’s

Internet website; by sending the information by mail; or even by visiting the

Registry Office in person. A standardised permit is handed to registered resident

parkers. These permits are usually fixed to the car (glued to the inside of the

windshield, etc.).

Enhancement: The municipality offers “immaterial” permits. Here, the license-

plate number is used for the identification of cars that are allowed to park on a

resident-parking term. Information about these cars, viz. their license-plate num-

bers, the zones where they are allowed to be parked, and when they are allowed to

be parked are provided to the Control Centre, which stores this information in a

Parking-White-List database.

Parking-White-List Database

The purpose of this database is to maintain a parking white list, i.e. a list of cars

-identified by their license-plates that are permitted to park within the region

managed by the Central System. Besides the license-plate number, the white list

also provides the geographical region, where the pertinent cars can be parked, and

also when parking commences and when it ends.

Today: No Parking-White-List Database

While statistics about, for instance, how many permits have been purchased from

the PDMs (see, for instance (Island Group 2012) can be retrieved from the database,

no identification about the parked cars is performed in the current system.
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Enhancement: Parking-White-List in Control Centre

A Parking-White-List for time-parkers and resident-parkers is made part of the

Control Centre. The content of the Parking-White-List is gathered from three

sources: PDMs, web services, and the Registry Office (see Fig. 11.2). The first

two sources provide the Parking-White-List with information updates about time-

parkers that have booked via PDMs or via the Internet. Information about resident

parkers is provided by the Registry Office.

Enforcer/Handheld

Today: Controlling Parking Tickets and Resident Parking Permits

The task of the enforcer is to control whether a car is authorised to be parked in a

specific zone and at a specific time. In the most common scenario, the enforcer is

equipped with a handheld device that is capable of printing a paper ticket to be left

at the vehicle. The handheld ensures that a variety of checks are executed on the

data in order to eliminate invalid entries such as misspelled street names. The

entered data is then transferred from the handheld either overnight or immediately

via, for instance, GPRS to a back-end office, where the information about issued

parking-violation tickets is stored.

Enhancement: Controlling the License Plate Number Only

The task of the enforcer changes in a sense that she does not need to struggle with

badly visible parking tickets and resident parking permits in order to read and enter

the data in the handheld. Instead, she scans the license-plate number of a parked car

with her handheld. In the next step, she uses the handheld for checking the license-

plate number together with the geographical location of the parked car, against the

Parking-White-List. Notice that in this enhanced scenario, neither time-parkers nor

resident-parkers need to place any permit visibly in their car.

11.2.3 IoT Domain Model as an Expansion of the Context
View

As discussed in Sect. 6.3, in the IoT-A architecting process, the IoT Domain

Model is generated in order to enrich the standard context view with

IoT-specific context and with more details about the inner workings of the

system. The latter is important for, among others, the requirements process

(continued)
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(continued)

(see Sect. 6.4). Such a domain model also stipulates entity names and

relationships to be used in the requirement process and for the derivation of

other architectural views (functional view, information view, deployment

view . . .).

The IoT Domain Model for the PBL system is shown in Fig. 11.3.

Notice that major input for Fig. 11.3 was derived from the previous

Section on business goals.

Next we describe the steps we took for deriving the IoT Domain Model depicted

in Fig. 11.3. After that, we discuss the particularities of the entities in the IoT

Domain Model.

The previous figure provides an enriched and IoT-specific viewpoint to the

context. This relates to the context diagram in Fig. 11.2; The legend reads as

follows:

• In Yellow: human users;

• In Green: software;

• In blue: hardware;

• In beige: concept that fits in none of the previous categories.

Car: Physical

Entity

Resource

Software application for mining,

On-Network VE-level IoT Service
updating, etc. the datebase:

Database: Network

Entry in the Parking White List:
Passive Digital Artefact for Virtual

License-plate #:

Sensor: Device

Recognition of

Handheld: Device

license-plate #:

Enforcement

reads

invokes

hosts exposes

uses

invokes

subscribes to

interacts with

interacts with

is attached to

represents

exposes

invokes

exposes

1..×

1

Control Centre

is stored in
invokes exposes

invokes

Digital Artefact

Application

Human User
Resource

Subscription: Network
Resident-Parker

Time-Parker: Service
Pay-by-License

Pay-by-License for
Residents: Service

Registry Office:

Time-Parker:
Human User

Human User
Resident-Parker:

User
Enforcer: Human

software: Active

Resource
On-Device

Device Teg

Entity

Fig. 11.3 IoT Domain Model of the PBL system
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• Classes with thick boundary lines: part of the architecture description. The

architecture also covers all associations originating from or terminating at the

Control Centre.

• Dashed boxes: system borders. Notice that only the Control Centre is within the

system scope of the generated architecture.

11.2.3.1 Modelling Steps

System Users

The human/institutional system users can usually readily be inferred from

the business goals and the context view (see above). In the following text we

summarises the available information about the users so that we next can

apply the IoT-Domain-Model mapping exercise in Sect. 9.1.7 (see Sect. 9.8).

Generally, the users of a system are interested in its functionalities. Our system

has three functional outputs: it introduces a simple parking procedure, which is

PBL; it allows to easily identify illegal parkers by means of RBL; and it increases

parking revenues and public order due to quick spotting and processing of parking

violations.

Who is interested in these functional outputs? By answering this question, we

can determine the different categories of system users. In our use-case, the PBL is

an interesting functionality for parkers, the RPL for enforcers, and the increase of

the parking revenues and public order is obviously of a high interest for the

municipality, e.g. the registry office. In the following, we define the users of each

category.

• Parkers: human users. We distinguish between two types parkers: A resident-

parker and a time-parker (see Table 11.1). The first is a resident that would like

to have an affordable and easy solution to park his car on the street in his

neighbourhood. The second is a driver that needs to park his car on a street for

a limited period of time in order to accomplish a local activity. The time parker

departs after the local activity is completed.

• Enforcer: The enforcer in this case, could be the human that uses the handheld

or, being more granular, it could even be the application software that runs on the

handheld and which is used by the enforcer. The IoT DM is flexible in terms of

the granularity of modelling. We decided to model the enforcer as a user.
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• Registry office: The Registry Office is a municipal office that can be considered

as a system user. For the sake of clarity, we note for the reader that other offices,

such as the public-order office and the police can be also be modelled as system

users. Here, we only model the Registry Office as a user, since the other entities

are not part of the business model. However, in a future extension of the system,

these entities could of course come into the scope of the PBL Service and would

then be added to the IoT Domain Model. This user provides the system with the

newest information of the subscribed cars to the PBL Service.

Notice that the system users can be identified with a similar question as for

the Physical Entity. In the latter case one asks the question what physical

entity the system needs to interact with in order to fulfill its business goal. In

the case of system users one asks who is interested in the output generated

from system. This output encompasses of course also information inferred

from interacting with the Physical Entity.

Procedure Application

In this section we model the different parts of our system (see Fig. 11.3) by

applying the six-step procedure, in Sect. 9.1.7 to each of the four system-

users: resident-parker, time-parker, parking enforcer, and the Registry Office.

This six-step procedure yields six answers (A1 to A6), which are discussed

below.

Resident-Parker

In order for a resident-parker to use the parking PBL facility, he needs to subscribe

to it. Hence, we model this facility as Service (A1). The resident-parker is interested

in parking her car. Therefore, we model the car as the PE (A2). The car is identified

in the physical world by a license plate number. The latter is modelled as a Device

of type Tag (A3). In the digital world, the car of a resident-parker is identified with

an entry in a white list. We model an entry in a white list as a VE of type Passive

Digital Artefact (A4). Entries of a white list are stored in a database that allows

accessing the entries in read and write modus. This database is therefore, modelled

as a Network Resource (A5). A software application is responsible for mining the
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database white list, for instance for verifying whether a specific car is allowed to

park in a given city zone, or if it is in unauthorised. This application software is

modelled as an On-network Resource (A6). After the resident-parker successfully

registers to the Resident PBL Service, her information needs then to be inserted in

the white list database of parkers. This results into one Service invoking the other

one as depicted in Fig. 11.3.

Time-Parker

Having the time-parker as an additional user of the system adds only one new part

to the already described entities in the IoT Domain Model. A time-parker needs to

subscribe to the time-parker PBL system. Here, we also model the functionality

provided by the PBL system as a Service (A1). The remaining answers steps, viz.

A2 to A6, are exactly the same as the ones for the resident-parker.

Enforcer

The enforcer, i.e. the traffic warden, invokes the application on the handheld (A1).

The enforcer is interested in a parked car, which we have already modelled as a PE

(A2). The car is identified by its license plate number, which we have already

modelled as a Device Tag (A3). The handheld has a sensor that reads the license

plate number to identify the car. The type of this sensor depends on the deployment

and can be, for instance, an RFID reader or a camera. In any case, we model the

handheld as a generic device and the sensor as a Sensor Device (A3) that reads the

Device Tag. A car which is allowed to park, is identified in the digital world with an

entry in a white list. We have already modelled this entry as a VE of type Passive

Digital Artefact (A4). The handheld runs software that computes the sensor

readings in order to identify the license plate. For example, in case of a Device

camera, this software processes the images taken for a license plate. We model this

software as an On-device Resource (A5). This Resource is then directly accessible

by the user. Therefore, we do not have a Resource-level Service.

Registry Office

In order to feed the system with the newest information of the registered cars, the

registry office invokes software to maintain/query the database. This is done by
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invoking the same service as resident parkers, but with different user rights (right to

delete entries; right to change payment status, etc. We have already modelled this

software as an On-network Service (A1). Answers (A2) to (A6) are also the same as

for the resident parker.

11.3 Requirement Process and “Other Views”

11.3.1 Requirement Process

As discussed in detail in Sect. 6.4, the requirements process generates view

requirements. Major inputs into this activity are

• Business goals

• Physical Entity View

• IoT Context View

All three of them have already been discussed in greater detail above, and

we are now progressing to the requirements-engineering step.

11.3.2 Requirements

Notice that we do not prescribe any particular requirement-engineering

process for how to generate requirements. Rather, the IoT ARM offers a set

of aids that ease the translation of requirements into architecture features. For

the generation of the requirements a wealth of engineering approaches and

aids is described in the pertinent literature. Just one example are the Volere

requirements templates (Volere 2013).

An abridged list of requirements is provided in Appendix [requirements for

concrete architecture].

Notice that for the sake of brevity, the list in Appendix [:requirements for

concrete architecture] only contains an illustrative list of requirements that

(continued)
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(continued)

shed light on the IoT ARM supported architecting process. In praxis,

unabridged requirement lists can readily contain several hundred

requirements. Most of the view requirements are related to the fact that this

architecture is an upgrade to an existing system (see Sect. 11.1).

In this section we are not simply repeating the requirements in the Appendix,

rather we discuss where and how they enter the architecting process.

As explained in Sect. 6.4, we organise requirements along three disjunct topics:

• View requirements

• Design constraints

• Qualitative requirements

The type of each requirement is listed in the second column to the left in

Appendix [requirements for concrete architecture]. Let us have a look at each of

the requirement types.

Notice that one does not create requirements ex nihilo, rather they are based

on business principles (as indicated in the rationales of the requirements in

Appendix [requirements for concrete architecture]). Also, the IoT-A Unified

Requirements (see Appendix [requirements]) can be consulted for generating

requirements for a concrete architecture (see Sect. 6.7).

11.3.2.1 View Requirements

Examples for view requirements are BPL #5 and #14, viz.
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As already stated above, the IoT ARM does not offer any specific support in

deriving requirements (besides the inspiration provided by the Unified

Requirements; see Sect. 6.7), rather the IoT ARM provides support in

mapping the requirements onto the IoT-ARM concepts. This is exemplified

in Section View requirements by the yellow-coloured columns. These

columns are populated during the initial mapping of the requirements onto

concepts used in the IoT ARM. The core concepts used in the IoT ARM are

views and perspectives, and these are shown to the far left.

What view these requirements map onto is indicated in the fifth column from the

left, viz. the view column. Here we have an example for a functional-view and an

information-view requirement. Both of them can – already at this stage- be mapped

onto the functional decomposition that was introduced in Sect. 8.2.2. PBL #5 can be

mapped onto the End to End Communication FC in the Communication FG, while

PBL #14 can be mapped onto the Virtual Entity FG. Mapping requirements at this

early stage speeds up the population of the various architecture views with concrete

goals.

Notice that PBL #14 is not mapped onto any of the FCs listed in Sect. 8.2.2,

rather onto a new FC, i.e. a Virtual Entity repository. This reflects a design choice

made, viz. to not include the Parking White List in the VE Resolution FC, rather in

its own FC. One of the main reasons behind this design decision is the evolvability

of the system. By keeping the white list apart from the Virtual Entity Resolution FC,

it is easier to extend and change the system during future version iterations. This

mapping is thus actually attributable to several of the qualitative requirements, viz.

PBL #4, #11, #13, who all address the evolvability of the PBL system. See more on

this in the below Section on qualitative requirements.

11.3.2.2 Design Constraints

Design constraints define constraints in the design of an architecture. An example

for this is PBL #3, viz.

As one can see, this requirement is indeed a constraint in that it tells the

architecture not to include payment transactions in the architecture, something

that is tacitly covered in the IoT Context View (see above), but in order to avoid

slips during the architecting process, it is often very helpful not only to state what is

within the system scope but also what is outside of the system scope. An example

for a design constraint at the reference-architecture level is UNI.071, viz. “A system

built using the ARM shall provide standardised and semantic communication

between services”. Here, it is emphasised to standardise interfaces. In other

words, non-standardised interfaces do not lie within the scope of the architecture.
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11.3.2.3 Qualitative Requirements

As discussed above and in Sects. 8.3 and 6.9, qualitative have impacts on more than

one view. What is not mentioned in these Sections though, is that qualitative

requirements can inform the same architectural design decision. In order to eluci-

date this point let us look at the three qualitative requirements that inform the

decision to store the Parking White List in a Virtual Entity Repository instead of

Virtual Entity Resolution FC. These requirements are listed below.

Notice that although all of these requirements are mapped onto the Evolution

and Interoperability Perspective, none of them is openly mapped onto the Virtual

Resolution Functional Component. This is because perspectives by default do not

map on one view nor one FC. So how does one map such qualitative requirements?

As discussed in Sect. 6.5, the IoT ARM follows the framework of Rozanski and

Woods in that it advocates the choice of tactics in order to successfully map

qualitative requirements onto architecture descriptions. Furthermore, as discussed

in Sect. 6.9, the IoT ARM also provides guidance in terms of the desing-choice

process, viz. what design choices are at hand after a certain tactics has been chosen.

One of the design choices spelt out (see Sect. 6.9) is to build the architecture out of

models and to couple the blocks loosely. In the context of the PBL architecture this

design choice was translated into the decision not to store the Parking White List in

the Virtual Entity Resolution FC, but rather to create a new FC, viz. the Virtual

Entity Repository. By so doing one decouples, for instance, the evolution of the

Virtual Entity Resolution FC from the Parking White List during future PBL

version cycles, as long as the interfaces between both are kept up to date. In other

words, instead of creating strong ties between resolution and the white list, the

coupling is rather loose, and the respective FCs can thus evolve independently of

each other.

As discussed above, most of the requirements in Appendix [requirements for

concrete architecture] are qualitative in nature. This is mostly due to the fact

that the business principles from which these requirements stem are

behavioural requirements toward the entirety of the system. An example of

this is requirement PBL #1, which stipulates that the system shall be deploy-

able in many countries. Such a requirement has repercussions for many

views, for instance information view and deployment view, and it is thus of

a qualitative nature.

The Table in Appendix [requirements for concrete architecture] features

requirements that are mapped onto perspectives that are not part of the IoT

Reference Architecture (see Sect. 8.3). Examples for such requirements are

PBL #1 (internationalisation and usability perspective) and PBL #2 (regula-

tion perspective). These requirements are not covered in the IoT Reference

Architecture (and thus in the design-choice process) because they are not

(continued)
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(continued)

important for IoT systems. Rather, we were unable to find IoT-specific

aspects and these and other perspectives. Notice that this does not mean

that one cannot formulate a design-choice process for these perspectives.

Rather, the architect is asked to rely on tactics provided in the literature and to

formulate here own design choices. More insight on these and other

perspectives and thereto related tactics can be found elsewhere in the litera-

ture (Rozanski and Woods 2011).

11.3.2.4 “Other Views”

Information View

The IoT IM details the structure of the information that constitutes a VE and the

Service Description of a Service that acts on the VE (see Sect. 7.4.1). In this section

we will describe the modelling of these two elements for the PBL use case. Notice

that the information view does not cover data formats. These lie within the purview

of the deployment view.

Modelling the VE

Following the IoT Information Model (see Sect. 7.4) a VE can have one or more

attributes, each having an attribute Name and an attribute Type. In the PBL use

case, a VE is an entry in the Parking-White-List database identifying a car that is

allowed to use the PBL parking facility. Since we have considered two types of

parking cars (the car of a resident-parker and the car of a time-parker), the VE for

one car type is slightly different than the other one. The first two attributes (License

plate numbers and Parking zone) depicted in Fig. 11.4 are common attributes for

both types of VEs, while the third attribute (Parker type) is part of the VE resident-

parker. Notice though that we only chose the license plate number as the VE and did

not include in the parking zone. This design decision is based on several previous

decisions. First, one of the main business principles behind the PBL system is its

future extensibility. As discussed in the requirements Section above, there are many

requirements that stipulate the evolvability of the PBL system. This, among others,

boiled down into loose coupling rather independent FCs. One example for the latter

is the choice to introduce a Virtual Entity Repository for the White List in the

system architecture. In the information model we drive this modularisation one step

further in that we chose a single piece of information, the license-plate number, as

the VE. All the other entries in the Parking List are then associated to the VE. By so
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doing one can, for instance, include more attributes in future version of the PBL

system.

In the following we define each of the three attributes and discuss their

decomposition:

• License plate number

• attributeName: License plate number;

• attributeType: Car information;

• Description: It is a common attribute for both VEs. In essence, it is a

numerical and alphabetical registration identifier that officially and uniquely

identifies the car within an issuing region such as the entire country or entire

state;

• Values: A resident-parker or a time-parker may own and may have parked

more than one car on the street. Therefore, it is necessary that this attribute

has one or more Values, each one containing the License plate number of a

registered car. The example in Fig. 11.4 states the registration of two license

plate numbers: “M CJ 1234” and “M JW 5678”.

• Parking zone

• attributeName: Parking zone;

• attributeType: Parking information;

• Description: It is a common attribute for both VEs. This attribute identifies

the parking zone, where this car is allowed to park;

• Value: corresponds to the name or the identifier of a parking zone. The

example in Fig. 11.4 depicts the registration Zone A.

• Parker type

• attributeName: Parker type;

• attributeType: Parking information;

• Description: It is an exclusive attribute in the VE of a resident-parker. This

attribute identifies the time during which, this car is allowed to park. Cur-

rently we differentiate between a full time parker (24/7) and a night parker

(12/7);

• Value: it is either 24/7 or 12/7. The example in Fig. 11.4 shows a registered

night parker.

For the sake of clarity, we note for the reader that other attributes can be added

for each VE as well as other Values and MetaData. These highly depend on the

deployment of the PBL facility, which definitely changes e.g., from one city to

another.
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11.3.2.5 Functional View

Technical Scenarios

Besides the rather static descriptions provided by the Physical Entity View,

the IoT Context View, and the business goals (see previous Sections), we

have found that the semi-dynamic view of UML use-case diagrams is very

helpful in the identifying salient FCs in the functional decomposition and also

the interactions and interfaces of said FCs. Below we provide use-case

diagrams for all major technical use-case scenarios of the PBL system.

Notice that the system-boundary boxes in the use-case diagrams are not

synonymous to the boundary of the PBL system. Rather, they allude to

entities in the context view (see Fig. 11.2). All thick-lined boundary boxes

are part of the PBL system (see Fig. 11.3).

Purchase (and Change) of Parking Permit

See Fig. 11.5

This diagram summarises how the time-parker interacts with the Control

Centre. It has implications for manipulations and thus the interface of the

Virtual Entity Repository, but also for the VE Resolution, because in order to

extend a permit it first has to be located in the system (Fig. 11.6).

(continued)

#  M CJ 1234

#  M JW 5678

#  Zone A

#  Night-parker 12/7

Value 1

Value 1

Value 1

Value n

associated to

is stored in

exposes

associated to

VEs for the cars of a parkers

License plate numbers

Parking zone

Value Container:
Parker type

Value Container:
Parking zone

Value Container:
License Plate n

Value Container:
License Plate 1

Parker type

On-network VE-level IoT
Service: software

application for mining
and updating the

database

Network Resource:
Database

Passive Digital Artefact
(Virtual Entity): entry in the

Parking White List

Control Centre

Fig. 11.4 IM of the VE for resident-parker and time-parkers (Orange edge: unique to resident-

parking)
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Control Centre

remove from
Parking White List

purchase
per mit

PDM / webservice

Access
predicated on
authentication

<<include>><<include>><<include>>

Time-parker

cancel
purchase

extend per mit

change
Parking-White 

-List entry

add to Parking
White List

Fig. 11.5 Technical use case – purchase of parking permit by time-parker

Control Centre

remove from
Parking White List

unsubscribe
change

subscriptionsubscribe
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Registry Office

Access
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Offered access
methods: email,
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in, web.
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<<include>>

<<include>>

change
Parking-White 

-List entry

add to Parking
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Fig. 11.6 Technical scenario – subscribe/unsubscribe/change by resident-parker
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(continued)

This technical use case summarises how the resident parker interacts with

the Control Centre. Notice that the actions on the primary-service level are

not part of the PBL system. It has implications for manipulations and thus the

interface of the Virtual Entity Repository, but also for the VE Resolution,

because in order to extend a permit it first has to be located in the system.

On-Street Parking

This technical use case summarises the actions triggered when time-parkers

and resident parkers actually park their car. Since the time-parking scenario is

of an ad-hoc nature (all pertinent actions conducted shortly prior to or during

parking), while the resident-parking scenario is of a recurring nature (pay-

ment of fees, etc. well in advance to individual parking events), the former

incorporates many more use cases then the latter. This technical use case has

implications for the interface of the VE FC and the Security FC and the

interface the PBL exposes toward the PDM/webserver (Figs. 11.7 and 11.8).

This use case has no implications for the architecture.

Parking Enforcement

See (Fig. 11.9)

This use-case diagram summarises the parking-enforcement scenario.

Notice that the “get licence plate” use case includes the parked car as an

empty system. This technical use case has implications for the interface of the

VE FC and the Security FC and the interface the PBL exposes toward the

PDM/webserver.

11 Toward a Concrete Architecture 275



Modelling the Service Description

Following the mapping of the IoT DM to Service Description explained in (Martı́n

2012; Sect. 4.6.3), we model the VE-level IoT software application for mining the

Parking-White-List database. Notice that multiple other software applications may

act on attributes of VEs and can be modelled as well. Examples of these software

applications are updates of attributes; running statistical inference on VEs; applying

mathematical operations on VEs; and representing attribute values on graphs and

charts. Here we focus on the modelling of the mining software.

park on street

end on-street
parking

Car

register with
parking id &

psswd

PDM/Webserver

Add to Parking
White List

authentication of
parking ID &

password

Control Centre

<<include>>

<<include>>

<<include>>

Time-parker

Fig. 11.7 Technical scenario – on-street parking by time-parker

Resident-parker

Car

end on-street
parking

park on street

Fig. 11.8 Technical scenario – on-street parking by resident-parker

Traffic Warden

Parking-enforcement handheld

Parking-enforcement server

Parked Car

Control Centre

get license plate

enquire parking per mit

enquire parking per mit

<<include>>
<<include>>

parking-enforcement.

server authentication
license plate &

subscription lookup <<include>>

<<include>>

Fig. 11.9 Technical scenario – parking enforcement
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Figure 11.10 depicts the Service Description of the mining software. In the

following, we will highlight the service specifications:

• hasServiceArea: This service runs in the Control Centre that is generally respon-

sible of managing PDMs in a single city. Consequently, all parking zones in a

city are affected by this service;

• hasInput: In order for the mining service to verify if a car is allowed to park, the

enforcer needs to provide the service with three input data: The current time, the

geographical location or the zone of a parked car, and the license plate number of

the parked car;

• hasOutput: Having the three aforementioned input data of the parked car, the

mining service verifies all the VEs in the Parking-White-List database. After the

verification, two results are possible:

• The given license plate number is matched in one of the VEs: In this case, the

service compares the given geographical parking place and parking time with

the corresponding attributes of this VE. If the car is not allowed to park at this

place and/or at this time, the service decides that it is a violator. Otherwise

this car is allowed to park;

• The given license plate number is not found in the database: In this case, the

service decides that the parked car is a violator.

Service Model: Software application for mining Database

hasInput

License-plate number and
parking zone of a car

Car is (not) in the
white list

Entry in the Parking White
List: Passive Digital Artefact

Database: Network
Resource

All parking zones
in a city

Service

hasServiceArea

in stored in

are part of

exposes

hasOutput

Fig. 11.10 Service description for the PBL system
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Exposes: As previously explained in the domain modelling of the PBL (see

ARM document Sect. 11.2.3), this service exposes the Parking-White-List database

as Network Resource.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Non-commercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 12

ARM Testimonials

Edward Ho, Tobias Jacobs, Stefan Meissner, Sonja Meyer,

Miguel-Angel Monjas, and Alexander Salinas Segura

This chapter shows how the IoT ARM is perceived by the IoT community and how

the ARM can be placed in relation to existing IoT related standards and research

projects. The first sections of this chapter present reverse mappings of existing

standards and platforms to the IoT ARM and the last section of this chapter shows a

business case evaluation for an example use case in the healthcare domain.
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12.1 Introduction to Reverse Mapping

In the course of its own project roadmap, our sister project – the Internet of Things
Initiative (IoT-i) – has targeted three different (but connected) activities directly

relating to the IoT-A architecture work as shown below:

1. To review and categorise existing reference models having a connection to the

IoT field (or underlying disciplines, as IoT as such is more a technology

umbrella). Example of the reference models reviewed by IoT-i are ETSI

M2M, IETF Core, EPCglobal, Ucode and NFC to name just a few (IoT-A D1.2);

2. To put online a survey, the goal of which was to capture, people understanding

and expectation, as far as reference models are concerned. This exercise was

very important because people have generally different understanding about

what are reference models, architectures and what they should consist of;

3. Finally, to come back on reference models introduced and summarised in

previous versions of this deliverable and to do a reverse mapping exercise

towards the IoT Reference Model. The goal of this exercise was to show that

the reference model as defined by IoT-A is expressive enough in order to allow a

modelling of those (pre- IoT-A) existing IoT reference models using the IoT-A

one. In other words, if we would consider that IoT-A does not attempt to define

what is an IoT system using sentences and words, but defining models where any

IoT system (from the IoT understanding) shall fit, then all those existing

reference models would be IoT systems reference models.

In this Section we aim at giving some details about this reverse mapping exercise

applied to ETSI M2M, EPCglobal and uID. Some of the material in this

Section comes directly from the IoT-A D1.5 deliverable (Carrez et al. 2013)

(especially the UML figures and concept tables). In order to improve readability,

we do not use direct citations, although the work presented in the following

Section was performed by the IoT-A project and reported in their deliverable D1.5.

In addition to the standards that we have mentioned above, we also apply the IoT

Architectural Reference Model to a concrete architecture, namely the architecture

of the MUNICH (MUNICH 2010) project in order to validate the IoT ARM against

a real system in contrast to an abstract standard. Furthermore we show a reverse

mapping to the information model of the IoT-related research project BUTLER1.

12.2 Reverse Mapping ETSI M2M

Within the IoT-A D1.5 deliverable, Sect. 3.1.1 discusses the ETSI M2M standard

(ETSI TS 102 690). In this section we analyse the ETSI M2M standard. The

acronym ETSI stands for European Telecommunications Standards Institute

1 http://www.iot-butler.eu/
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(ETSI), viz. the standardisation body responsible for this standard. The acronym

M2M stands for Machine-to-Machine, which is a pointer to the application field this

standard addresses, viz. machine-to-machine communications. Release 1 of this

standard was published in October 2011 (ETSI TS 102 690), this discussion within

IoT-A also takes the later update (ETSI TS 103 092) into account that was released

in May 2012.

The purpose of the ETSI M2M functional architecture is to define a service-

capability layer which serves as middleware between applications in the Internet

and Devices or gateways residing in local-area networks. The current release is

mainly concerned with secure and reliable data transport.

In what follows, we give a more detailed description of a possible reverse

mapping of ETSI M2M to the IoT Domain Model and IoT Communication

Model as well as their management information model and how it maps to our

management model. We also have a brief look at the ETSI M2M security model and

how it compares to our threat analysis.

12.2.1 Mapping to the IoT Domain Model

As everything above the ETSI M2M Service Capability Layer is considered an

application, there is no explicit concept of a User in ETSI M2M. In particular,

Human Users are out of scope, as the standard focuses on machine-to-machine

communication. The role of an IoT-A User would typically be taken by ETSI

network applications, in some cases also by ETSI gateway applications, because

these applications use the information provided by sensing M2M Devices and

control the actuation capabilities of Devices.

ETSI M2M defines Sensors and Actuators in a similar way as the IoT Domain

Model. However, there is a subtle difference regarding the concept of a Device.

While in IoT-A there is a “is-a” relationship between Sensor/Actuator and Device,

ETSI M2M defines a Device to be a unit comprising Sensors and Actuators, as well

as embedded processing and communication capabilities – so here Sensors and

Actuators are part of Devices.

The ETSI M2M defines a Service Capability Layer with standardised interfaces.

Since this layer includes similar functionalities to the IoT-A Service level

(e.g. registration), it is reasonable to map these functionalities to IoT Services.

There are also some differences between ETSI and IoT-A terminology. For exam-

ple, the ETSI Services are not only exposed towards actors which IoT-A would

consider as Users, but also towards (ETSI) applications residing on Devices.

Additionally, the concept of IoT Resource (IoT-A) as a native software interface

of Devices does not explicitly exist in ETSI M2M – although software components

on legacy Devices could be considered as IoT Resources. Instead the term of

Resources in ETSI is exclusively used to describe the RESTful interface exposed

by the Service Capability Layer.
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The mapping of ETSI M2M concepts to the IoT Domain Model is shown in

Table 12.1.

As the current ETSI M2M release is rather concerned with data transport than

with real-world modelling, the (physical, virtual, augmented) entity concept is not

defined in (ETSI TS 103 092).

12.2.2 Mapping to the Management FG

Management functionalities are an inherent part of both of IoT-A and ETSI M2M.

Both architectures distribute and cluster the management functions into different

packages or functional components.

In (ETSI TS 102 690), the following packages are defined for management:

• General Management (GEN): Allows retrieving general information of the

M2M Device or gateway, and provides generic mechanism applicable to differ-

ent specific management functions;

• Configuration Management (CFG): Allows configuration of the device

capabilities and features for supporting M2M Services and applications, includ-

ing activating/deactivating device hardware components or I/Os in the M2M

Device or gateway;

• Diagnostic & Monitoring Management (D&M): Allows running specific diag-

nostic tests on a device and collecting the results or alerts from the M2M Device

or gateway. This package is also called Fault and Performance Management;

Table 12.1 Mapping ETSI M2M concepts to the IoT-A Domain Model

ETSI M2M

IoT Domain

Model Comments

Device Device Sensors and Actuators are hosted on Devices, they are not

special cases of Devices

Sensor Sensor The Sensor in ETSI M2M is not a Device

Actuator Actuator The Actuator in ETSI M2M is not a Device

Network

application

User In ETSI M2M, there are no Human Users, but only applications

that process the data coming from the “Device and Gateway

Domain”. This concept of an application as a User is

reflected in IoT-A

Gateway

application

User In ETSI M2M, there are no Human Users, but only applications

that process the data coming from the “Device and Gateway

Domain”. This concept of an application as a User is

reflected in IoT-A

Service Service In ETSI M2M, Services are not defined as exposing Resources

on Devices, but can interact with the Devices. A Resource

concept as in IoT-A does not exist

Resource Service Resources in ETSI M2M are defined in analogy to RESTful

Service Interfaces
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• Software/Firmware Management (SFW): Allows installation/update/removal of

application specific or SCL related software/firmware in M2M Device or

gateway;

• Area Network Management (ANW): Allows M2M Gateway-specific configura-

tion and M2M Area Network and Device management through a M2M gateway;

• SCL Management (SCL): Allows remote configuration and retrieval of M2M

Device or gateway service capability layer parameters.

In a similar fashion, Sect. 8.2.2 of this document identifies different Functional

Components used for management functionalities. These include:

• Configuration: Initialising the system configuration. Gathering and storing

configurations from FCs and Devices, tracking configuration changes;

• Fault: The goal of the Fault FC is to identify, isolate, correct and log faults that

occur in the IoT system;

• Member: This FC is responsible for the management of the membership and

associated information of any relevant entity (FG, FC, VE, IoT Service, Device,

Application, and User) to an IoT system;

• Reporting: The Reporting FC can be seen as an overlay for the other Manage-

ment FCs. It distils information provided by them. One of many conceivable

reporting goals is to determine the efficiency of the current system;

• State: The State FC monitors and predicts state of the IoT system. For a ready

diagnostic of the system, as required by Fault FC, the past, current and predicted

(future) state of the system are provided.

When mapping these different management components, it becomes obvious

once again that the focus of ETSI M2M is narrower in terms of its scope and

therefore it is more detailed in the definition of its management capabilities and

does not include all of the functionality defined by IoT-A. For instance, there is no

equivalent to State FC in terms of its temporal distribution and the related billing

capabilities. This aspect is not really central, as it is not contradictory and could be

built upon the D&M package. In general however there is a strong overlap, as D&M

roughly relates to the Reporting FC, CFG closely resembles Configuration, and

both D&M and Fault deal with monitoring functionalities. Error and fault handling

as such is handled specifically in the Fault FC, whereas D&M also handles

performance management. On the other hand, and in line with the general focus

of ETSI-M2M, the different aspects of the Configuration FC are handled in more

specific packages in ETSI M2M, such as SCL, ANW, and SFW which each deal

with specific functionalities that are subsumed under Configuration in IoT-A. As

the different architectures naturally have different levels of abstraction, it is not

surprising to not have a 1:1 relationship between the two architectures, but a

mapping can be performed easily in both directions.
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12.2.3 Mapping to the IoT Communication Model

The ETSI M2M standard defines a Service Capability Layer in order to enable

seamless, secure, and reliable end-to-end communication in M2M networks. The

ETSI Service Capability Layer can therefore be mapped to the end-to-end layer of

the IoT Communication Model (see Sect. 7.6). (ETSI) applications, communicating

via the Service Capability Layer, would accordingly be associated to the IoT-A

Data Layer (see Sect. 7.6.2), although they do not only exchange data, but also

control and management information.

A Network and ID group (see Sect. 7.6.2) is not in the focus of ETSI M2M, and

the current bindings to HTTP and CoAP do not assume such a layer. However, in

cases where the Service Capability Layer enables a direct connection of mobile

Device applications to network applications, an ID layer that describes the Device

independently from its network location could assist the Service Capability which

provides seamless connectivity. The three communication layers at the bottom of

Fig. 7.17 can be considered as identical in ETSI M2M and IoT-A.

From the point of view of ETSI M2M, all actors making use of the Service

Capability Layer are applications. The model distinguishes between device

applications, gateway applications, and network applications. ETSI M2M also

considers so-called legacy Devices; these are Devices that have no own Service

Capability Layer and therefore need to be integrated via a gateway application into

the M2M system (M2M system is a term implicitly used in ETSI M2M to refer to

the overall architecture).

The IoT-A term IoT Device is used more or less in the same way in ETSI M2M,

but the concept of an IoT Application does not directly exist in ETSI M2M – mainly

because the concept of an application is more broadly defined in ETSI M2M.

12.2.4 Mapping to the Security Model

One of the purposes of the ETSI M2M Service Capability Layer is to address all

security requirements of M2M communication. The standard defines a key hierar-

chy of three levels. The ETSI M2M Root Key is used for mutual authentication

between device or gateway nodes and the M2M Service Provider. It is also used for

deriving and agreeing on the key of the next layer of the hierarchy – the ETSI M2M

Connection Key which is used for every service connection procedure. Finally, the

ETSI M2M Application Key is used for securing sessions between specific

applications. This largely maps to the IoT-A Key exchange and management

functionality in IoT-A with respect to key management is not yet explicitly defined

in this document.
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Most of the communication security and Service security aspects of the IoT-A

security model are implicitly addressed in ETSI M2M – although the terminology

of IoT-A is not explicitly used. The ETSI M2M standard describes a range of

variants that depend on the security characteristics of the underlying network layers

and on the relationships between the M2M service provider and the network

operator. For example, if these stakeholders are identical, key provisioning can be

significantly simplified. One issue clearly not addressed in ETSI M2M are trust

models.

12.2.5 Threat Analysis Mapping

(ETSI TR 103 167) deals with a threat analysis related to the ETSI M2M standard.

In a similar way as the risk analysis provided in this document in Section.

[Chapter 6 Sect. 6.8] ETSI M2M defines those threats that are most relevant for

the standard, and discusses respective countermeasures. Here, the different focus of

ETSI M2M in terms of network security becomes obvious again, because most of

the threats identified by ETSI M2M deal with keys or message exchange. That

means that the scope of IoT-A is broader, as it also includes, for instance, Human

Users that do not behave correctly. Consequently, IoT-A refers to a general risk

analysis that includes by definition non-malicious behaviour that still imposes a risk

on the system. As the scope of IoT-A is broader, not all the risks identified within

IoT-A are applicable to ETSI M2M, but the threats of ETSI M2M map well to the

risks identified within Sect. 6.8. This is shown in Table 12.2 below.

As we can see in Table 12.2, there is a slight difference between both models

regarding the consequence or the cause of a risk, as ETSI M2M has a stronger focus

on what actions are actually applied in order to impose a risk on the system, whereas

IoT-A focuses more on the consequences of these actions. Nevertheless, there is a

good mapping between the two models. The granularity of ETSI M2M is naturally

higher, as it focuses on a more narrow class of threats.

12.2.6 Conclusion

If we consider that the aim of the ETSI M2M standard is to provide an M2M

architecture with a generic set of capabilities for M2M Services and to provide a

framework for developing Services independently of the underlying network, it

becomes clear that the scope of IoT-A is much broader, taking the entire Internet of

Things domain into account, esp. by explicitly modelling entities and also

providing a much more fine-grained set of relationships between the different
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Table 12.2 Mapping ETSI M2M threat analysis to the IoT-A risk analysis

ETSI M2M IoT-A

Threat 1: Discovery of long-term service-layer

keys stored in M2M devices or M2M

gateways

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 2: Deletion of long-term service-layer

keys stored in M2M devices or M2M

gateways

Disruption of a global Service

Threat 3: Replacement of long-term service-

layer keys stored in M2M devices or M2M

gateways

Disruption of a global Service

Threat 4: Discovery of long-term service-layer

keys stored in the SCs of the M2M core

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 5: Deletion of long-term service-layer

keys stored in the SCs of an M2M core

Disruption of a global Service

Threat 6: Discovery of long-term service-layer

keys stored in MSBF or MAS

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 7: Deletion of long-term service-layer

keys stored in the MSBF/MAS

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 8: Discover keys by eavesdropping on

communications between entities

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 9: Modification of data stored in the M2M

service capabilities

Alteration of the return value upon service

invocation

Attacker alters leaf-device content so that a

user will eventually be redirected to a

malicious content

Attacker alter sensor device so that monitoring

of a Physical Entity fails

Threat 10: Provisioning of non-legitimate keys Disruption of a global Service

Threat 11: Unauthorised or corrupted application

and service-layer software in M2M

Attacker impersonates infrastructure Services,

compromising IoT functionalities and/or

other dependent infrastructure services

Threat 12: Subverting the M2M device/gateway

integrity-checking procedures

Alteration of the invocation of a Service

Threat 13: Unauthorised or corrupted software in

M2M core

Attacker impersonates infrastructure Services,

compromising IoT functionalities and/or

other dependent infrastructure services

Threat 14: Subverting the integrity-checking

procedures in the M2M core

Alteration of the invocation of a Service

Threat 15: General eavesdropping on M2M

service-layer messaging between entities

Attacker gains knowledge of sensitive

exchanged data

(continued)
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kinds of devices, resources and services. While ETSI M2M makes different

assumptions, especially in terms of security and communication, the basic concepts

are somewhat compatible, at least on an abstract level of discussion. The major

difference is that IoT-A is based on the assumption that the IoT Device space can be

divided into the two main categories of constrained networks (NTU) and uncon-

strained networks (NTC), and the security measurements mainly need to address

the boundaries between them, whereas ETSI focusses so far on the M2M Service

Layer and its interfaces (ETSI TR 103 167) and not on the M2M Area Network

Layer, so that IoT-A has a more network centred view of security than ETSI M2M.

That being said, the functionalities discussed in Sect. 6.8 largely represent in (ETSI

TR 103 167; Sect. 10.2), so that a mapping is feasible on the same abstraction level

as the IoT Domain Model can be mapped to the ETSI M2M Service Capability

Layer.

12.3 Reverse Mapping EPCglobal

The EPCglobal high-level architecture was introduced briefly in D1.5 deliverable

of the IoT-i project (Haller 2012) Figure 12.1 gives a simplified view of the

EPCglobal system architecture, taken from [EPCglobal]. It is worth noting that

the tag itself is not represented as this figure ends up (at the bottom) with the air

interface.

Table 12.2 (continued)

ETSI M2M IoT-A

Threat 16: Alteration of M2M service-layer

messaging between entities

Alteration of the invocation of a Service

Threat 17: Replay of M2M service-layer mes-

saging between entities

Compromised intermediary devices alter tra-

versing data

Alteration of the invocation of a Service

Threat 18: Breach of privacy due to inter-

application communications

User is involved in transactions with a mali-

cious peer

Attacker gains knowledge of user private

parameters

Threat 19: Breach of privacy due to attacks on

M2M device/gateway service capabilities

User is involved in transactions with a mali-

cious peer

Attacker gains knowledge of user private

parameters

Threat 20: Discovery of M2M long-term service-

layer keys from knowledge of access-

network keys

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material

Threat 21: Transfer of module containing access-

network keys and/or M2M long-term keys to

a different terminal/device/gateway

Attacker gains knowledge of sensitive

exchanged data

Disclosure of identities and cryptographic

material
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12.3.1 Mapping to the Domain Model

In the EPCglobal architecture, the unique identifier associated with a physical

object is the Electronic Product Code (EPC). It is defined by the EPCglobal Tag

Data Standard, which defines its structure and encoding rules. Uniqueness of

encoding structure (in order to avoid name collisions) is ensured by the use of a

central Registration Authority.

The EPC Network Services in Fig. 12.1 are under the responsibility of the

EPCglobal central authority and they are responsible for respectively providing

discovery service to EPCglobal parties (end-users). The Object Naming Service
(ONS) root management is also under the responsibility if the central authority

Data Capture
Device

(i.e. RF Reader)

Data Capture
Device Management
(i.e. RF Reader Mngt)

Filtering & 
Collections

EPCIS
Capturing Application

EPCIS Repository

EPCIS Accessing 
Application Local ONSONS i/f

Reader Mngt i/f

Air protocol

Reader i/f

Application Level Event i/f

EPCIS Capturing i/f

EPCIS Query i/f

End User A

Discovery Services ONS Root
EPC Network Services

EPCIS Accessing 
Application

End User B

EPCIS Query i/f

Discovery i/f Discovery i/f

RFID Tag

Fig. 12.1 EPCglobal system architecture (simplified)

288 E. Ho et al.



since it is the one allocating the EPC blocks. Local ONS are under the responsibility

of the EPC manager (one per registered end-user).

After getting the address of an Electronic Product Code Information Service
(EPCIS) responsible for the EPC of interest, an EPCIS Accessing Application will

use the EPCIS query interface (i/f) to query additional information about an EPC

(like class level/instance level or transactional data about a particular EPC). EPCIS

query interface uses both push and pull mode, which means that it can be also used

to receive notifications of observations concerning a particular EPC.

EPCIS Repository is the functional block, located at the “end-user A” side, deals

with storage of information (of any nature) it wants to share with other parties

(e.g. end-user B) of the EPC Global network. Of course all interfaces have to be

implemented following the EPCglobal standards, however a certain level of free-

dom is left to “end-users” as for how those block shall be implemented.

The ONS block is a simple look-up Service that will map an EPC to the address

of a designated EPCIS Service by which information about the EPC can be found.

The Filtering & Collection functional block is responsible for collecting raw tag

data following policies defined by the EPCIS Capturing Application box. Example

of such policy is: gathering all EPC of a certain class that have been read on a

certain date, location and time interval.

The EPCIS Capturing Application supervises the operation at the lower level of

the model and provides business context by coordinating with other components

involved in a given business process. Again, a lot of freedom is left to the end-user

for implementing this box, as far as the Application Level Event (ALE i/f) and

capturing i/f are implemented according to the EPCglobal standards.

To finish up with the lower level, the Data Capture Device box (Tag Reader) is

the one observing events relating to RFID Tags. The corresponding Reader i/f

provides those events to the Filtering & Collection box.

The purpose of the reverse mapping is to check if the EPCglobal architecture is

compatible with the IoT Reference Model.

The EPCglobal architecture illustrated in Fig. 12.1 is not exactly an EPCglobal

domain model (as we understand IoT Domain Model in IoT-A), but rather a high-

level diagram of a concrete architecture. Because the two models are not exactly

similar in nature (i.e. IoT Domain Model is clearly at the “concept” level while the

EPCglobal is a high level system architecture description) the reverse mapping of

the EPCglobal architecture towards the IoT Domain Model is not a straightforward

or simple process.

So in the following we use the EPCglobal system architecture in order to extract

the EPCglobal concepts and then build an EPCglobal domain model taking a basis

the generic IoT DM (meaning we try linking the EPCglobal concepts using the IoT
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DM relationships, and try mapping the EPCglobal concepts to the IoT-A concepts)

Nevertheless, we still executed to reverse mapping by building an EPCglobal

domain model taking a basis the generic IoT DM (meaning we linked the

Table 12.3 Mapping EPCglobal concepts to the IoT Domain Model

EPCglobal

concept

IoT ref. model

concept Comments

Entity Physical entity Is the Physical object been tracked by the EPCglobal

system

End-user User The user managing and using the EPCIS, and reading the

EPC

Partner user User The user willing to access EPC information for their own

business

Physical entity Physical entity

(special case

of)

Corresponds to physical objects like parcels, objects

etc.. . .

Location Physical entity

(special case

of)

Places, room, lift,. . .

RFID tag Tag The physical tag embedding the EPC

Tag reader Device/Sensor

Reader interface Service

EPC manager Service Is granted a portion of the naming space and assigns EPC

to products

EPCIS accessing

application

User Located at end-user side that is willing to access EPC

related information

EPCIS service Service Service that encompasses interfaces for data exchange

(through the EPCIS Query Interface e.g.) and specifi-

cation of Data (EPCIS data standard)

EPCIS query

interface

Service Interface exposed by the EPCIS and accessed by the

EPCIS Accessing Application

EPCIS capture

interface

Service

EPCIS

repository

Service/Resource Exposes the EPCIS Query Interface. Stores info about

EPCs events. . .The actual functionality of storing

(e.g. in a data base) could/should be modelled as a

Resource whereas the component that exposes the

interface would be a Service. Of course that could be

implemented tightly coupled as one software

component

EPC record Virtual entity Consists of all info related to EPC (stored in EPC Data

Base)

EPC data base Network resource

EPCIS capturing

application

Service Exposes the EPCIS capture interface

Filtering &

collection

Service/Resource Exposes the filtering and collection interface. Collects tag

reads over time intervals constrained by events defi-

nition by the EPCIS Capturing Application. Filtering

functionality may be modelled as a Resource, whereas

exposing the interface as a Service
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EPCglobal concepts using the IoT DM relationships, and mapped the EPCglobal

concepts to the IoT-A concepts).

First we identified a list of concepts that can be extracted from the EPCglobal

system architecture and mapped them to the corresponding IoT DM concepts. This

mapping is illustrated in Table 12.3.

Then according to the IoT Domain Model, the kind of concepts it handles and

how those concepts are connected through relationships, the following (see

Fig. 12.2) and consistent UML EPCglobal domain model could be extracted. As

it fits the IoT Domain Model framework it can be argued that EPCglobal fits the IoT

Fig. 12.2 EPCglobal domain model fit into the IoT Domain Model
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Domain Model and that EPCglobal is truly an IoT system from the IoT-A definition

point of view.

However, during this reverse mapping exercise IoT-A raised few comments:

1. Difficulties to model interfaces in general, as interfaces are not part of the IoT

Domain Model in IoT-A. But it can also be argued that “interface” is purely a

software concept which makes great sense in an architecture but making no sense

at the concept level (i.e. in a domain model). Again this can be due to the fact that

they (IoT-A) tried to fit somehow a system architecture into a domain model;

2. EPCglobal does not emphasise the need for Augmented Entities. They are

therefore not part of the model;

3. Difficulties to model that a User can be responsible for managing a Tag (there-

fore End-user has not been included in the model);

4. There is a need for introducing end-users formally in the model with roles. It

must be possible to express the fact that end-users with management role can

associate information to a tag for instance.

5. It should be possible to express the fact that User can discover Services, that

Services can discover Resources, that Resources can discover Resources (to be

discussed which combinations make most sense);

6. Some links between IoT Domain Model and IoT Information Model should be

explicitly described within the IoT Domain Model, like “*-description

publishing”

7. Discovery and publishing are important concepts in IoT they should be very

visible in the IoT Domain model as said in 7/ and 8/

8. We don’t show here the reverse mapping to the IoT Information model, but it

was pretty clear that the IoT Information Model is a meta-model that cannot

really be used to model the class structure of the EPCglobal data handled at the

different levels in the architecture (e.g. at Tag level, reader level, Filtering &

Collection etc.. . .), in particular the IoT Information Model does not consider

events (and EPCglobal is intensively using the notion of event). We reckon that

most likely this is not the role of the IoT Information Model to model in a fine-

grained way the class structure of a software system, especially when the class

structure is clearly not IoT-specific.

12.3.2 Mapping to Information Model

As far as information is concerned, the main input in the EPCglobal reference

architecture is the description of the EPC Information Service and the description of

data the end user can share through the EPCIS interface.

EPCIS data within a so-called EPCIS record can be divided in several categories

as follows2 (see also Table 12.4):

2 Excerpt from the EPCglobal Architecture document.
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• Static Data: class level and instance level data, which do not change over time

during the physical object life span

– Class Level Data: there remain identical to any object which is an instance of

that class

– Instance-Level Data: the data may vary within objects instance of a class.

Typical examples are lot number, expiry date, number within a lot, S/N

etc.. . .

• Transactional Data: which changes and grows over the physical object life

span, possibly created by more than one actor along a supply chain for instance:

– Instance observation: it records events concerning the Physical Objects and

often relates to dimensions like time, location, other EPC, and business

process steps

– Quantity observation: records events concerned with measuring the quan-

tity of objects within a particular class. Five dimensions: time, location,

object class, quantity, business step.

– Business Transaction Observation: records association between one or

more EPC and a business transaction. Four dimensions time, one or more

EPCs, business process step, business transaction id.

12.3.3 Security Model

As explained in the EPCglobal Architecture Framework document [EPCglobal],

the EPCglobal Architecture Framework allows for many different authentication

technologies across the different interfaces. It is however recommended in the

EPCglobal architecture document, that the X.509 certificate-based method should

Table 12.4 Mapping of the EPCglobal information model to the IoT Information Model

EPCglobal

concept

IoT ref. model

concept Comments

RFID tag Device/Tag Virtual entity representing RFID tag associated with the Phys-

ical Entity

EPC Virtual entity Electronic product code. It is encoded on the RFID tag

EPCIS event Value Might be just a wrapping of IPCIS data in the form of an

event. . .

EPCIS data Value Is the data associated with the Physical Object and therefore

contained in the EPCIS Virtual Entity

EPC record Virtual entity Consists of all info related to Physical Object identified by EPC

(stored in EPCIS Data Base), i.e. IPCIS Data

EPCIS static

data

Value Contains class level Data and Instance level Data

EPCIS transac-

tional data

Value Relates to observations (instances, quantity within a class)
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be used by end-users when accessing the EPCIS interface for example. Typical case

occurs when the EPCIS Accessing Application of an accessing end-user (referred as

Partner user in the architecture framework) is willing to access the EPCIS service of

the primary end-user (the one owning the EPCIS data for instance). If used the

X.509 certificates are expected to comply with the X.509 Certificate Profile

[Cert1.0] which provide minimum level of security.

At the network level some network standards within EPCglobal rely on Trans-
port Layer Security (TSL), some others EPCglobal standards rely on HTTPS

(HTTP over TLS) for the purpose of Data protection.

At higher level both EPCIS Capturing I/f and EPCIS Query i/f standards are

allowing authentication of client’s identity so that companies (owners of the data)

can decide very precisely whether access to that data can be granted or denied. For

the query interface, Applicability Statement 2 (AS2) is used for communication

with external partners. This RFC (4130) specifies how to securely transport data

over Internet and allows in particular for mutual authentication, data confidentiality

and integrity and non-repudiation. Those security qualities are required in the

ARM. AS2 uses x.509 certificate as defined above.

The high level interface (AuthX) used for Authentication in the ARM Security

Model does authorise for the use of X.509 certificates.

12.4 Reverse Mapping Ucode

The Ubiquitous ID (uID) architecture is an architecture proposed by Prof.

Sakamura (from the University of Tokyo) (Koshizuka, Sakamura 2010) to imple-

ment the concept of Ubiquitous Computing (ubicomp). Ubiquitous computing is a

paradigm coined initially by Mark Weiser in the late 80s (see Weiser 1991). It

touches many aspects of computing, like OS’s, displays, intelligent user interfaces,

wireless communication and networking. In the vision of ubicomp, the computer as

we use to know it today, has mostly (if not totally) disappeared. It has become

invisible and ambient. While IoT as such is not ubicomp (for instance intelligent

user interfaces are not clearly part of IoT field) it can be argued that IoT offers

means for implementing partly the ubicomp concept, spreading intelligence among

objects of extremely different natures, enabling for cooperation between objects

and humans and creating awareness about the surrounding (Context awareness) in a

fully connected environment.

The intelligent features or Services implemented through this paradigm can be

enabled only if information about the objects, places, Devices, etc. is available to

those Services. We therefore talk about “intelligent” “smart” or more specifically

“context-aware” Services. This only works if those objects, places, Devices of

interest can be uniquely identified at any point in time. The uID architecture relies

on an identification technique called ucode (ubiquitous code) which can be consid-

ered as the cornerstone of the uID architecture. The ucode model is a descriptive

technique that establishes relationships between Physical and Virtual Entities

through relationships between ucodes.
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The basic principles of the uID architecture consist of uniquely identifying

entities of interest with ucodes, maintaining databases that contain information

about the entities, ensuring data and privacy protection and opening this platform

through open APIs.

In order to enable those principles fundamental technologies and mechanisms

such as ucode structure, ucode tag, ucode readers and terminals, ucode relational

databases managing the entities information and ucode information servers are used.

These different components are detailed in the following subsections. The simplified

architecture shown in Fig. 12.3 is taken from (Koshizuka, Sakamura 2010).

12.4.1 uCode Model

In the ucode model [UID Architecture], unique identifiers are assigned to:

• Objects: tangible objects of the real world (industrial product, piece of art,

everyday objects,..) as well as intangible ones like pieces of digital media or

source code;

• Spaces: monuments, streets, etc.

• Concepts: relationships between objects and spaces of the real world, which are

also named “entities”. Those relationships are used to define complex context

information, and are defined using a description framework called ucode Rela-

tion (ucR) model. Simple context information relates to objects and places

directly.

It is worth noting that the uniquely assigned code does not contain any informa-

tion about the entity. Relevant information about the tagged entity is stored in an

application Information Service which can be located by resolving the ucode. A

distinction is made between physical ucode which are by definition stored in a Tag

attached to the entity, and logical ucode which are not stored in any Tag and are

mainly used for identifying intangible objects as described above (including

relationships between ucodes).

The main idea behind allocating ucode to relationships between entities comes

from the Resource Description Format used to model knowledge. RDF knowledge

Objects

Places

Ucode

Ucode

User Terminal

Ucode
Resolution

Server  

Application
Information

Servcie  

Fig. 12.3 Ubiquitous ID

architecture
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is made of triple<subject, relation, object> where each constituent of the triple is

made of a URI. In the case of ucode relationship each ucR unit is a triple of ucodes.

Information associated with the two entities and the relation can therefore be found

querying the ucode resolution server.

In addition resulting from this establishment of relations between entities, are

graphs (ucR graph) where single “subject” ucode gets linked to many “object”

ucode via various “relations”. Objects which are not ucodes are called “atoms”. A

subject ucode pointing via a relation towards a URL is a typical example of such

rules involving atoms.

12.4.2 ucode Resolution Server

The resolution of ucode is achieved in the ucode Resolution Server The simplified

resolution consists of taking the ucode read by the reader, searching for ucR units

that correspond to that ucode and returning to the mobile terminal the addresses of

content associated with the ucode via the relational database introduced earlier

(similar to a triple store).

The Ubiquitous ID architecture can be simply described as follows (Fig. 12.3):

From the descriptions of the various entities of the architecture (see Fig. 12.3)

above, the following table of concepts could be derived (Table 12.5):

In turn, the reverse mapping produced the following UML (see Fig. 12.4) below:

The uID architecture uses the uCR to describe complex context information via

relationships between real-world entities (Koshizuka, Sakamura 2010). So-called

uCR units consist of a triple of ucodes: subject ucode, relation ucode, and object

ucode. The object ucode can be replaced by simple literals, hence it becomes

possible to express attributes of a real-world entity as a uCR unit, e.g., <ucode X,

“hasBrandName”, “GoldenTea”>.

It is not feasible to try to map the uCR model directly to IoT Information Model.

The IoT Information Model provides a vocabulary for describing IoT systems and it

does not, explicitly prescribe how information should be represented. The uCR, on

the other hand, can be used to represent relations between any kinds of objects

identified with ucodes much in the same way as RDF is used to represent resources

identified with URIs. Therefore, the relation between IoT-A information model and

the uCR model is actually complementary by nature and the uCR should be seen as

a an alternative way (for XML, RDF, binary etc.) to represent IoT Information

Model concepts.

12.4.3 Conclusion

To conclude, when mapped to the generic IoT-A the uID provides implementations

for only a small subset of the functionalities defined in IoT ARM. First, the ucode

provides a globally unique way identify physical (and virtual) objects. These
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ucodes can be used as identifiers for any instance of the IoT ARM concept. Second,

the uID provides a way to resolve the address of the information service hosting

data about the object identified with a ucode. This functionality is basically a subset

of the functionality defined for the IoT-A resolution infrastructure. Third, the uID

provides methods (i.e. the ucode Relational Model) for representing relations

Table 12.5 Mapping of uID concepts to the IoT reference model

uID concept

IoT reference

model concept Comments

Tangible object Physical entity

Intangible object Digital artefact If the intangible object is a representation of a tangible

object, then it is also a Virtual Entity

Location Physical entity Location is not modelled explicitly in the IoT Domain

Model. However, a specific (possibly tagged) place

can be regarded as a Physical Entity

uCR model Relates to informa-

tion model

uCR can be used for representing IoT-A Information

Model instances

ucode No direct relation The ucode can be used as an globally unique identifier

for any instance of the IoT-A RM concept

ucode resolution

gateway

Network-based

resource

Provides a ucode resolution over HTTP

ucode signature

server

Network-based

resource

Prevents ucode counterfeiting by verifying and

generating signatures

ucode manage-

ment server

Network-based

resource

Manages the allocated ucode space

ucode issue

gateway

Network-based

resource

Provides a HTTP interface for obtaining ucode issued by

ucode management server

ucode entry

update

gateway

Network-based

resource

Provides a HTTP interface for updating ucode resolution

entry

Top level domain

server

Network-based

resource

Hierarchical component of the ucode resolution server

Second level

domain server

Network-based

resource

Hierarchical component of the ucode resolution server

ucode resolution

server

Network-based

resource /

Service

The resource would be exposed through a resolution

service

Application infor-

mation service

Service Provides infrastructure and application services

ucode tag Tag

User terminal (Device) Is a device that reads ucodes and provides services based

on the ucode to a user. A user terminal that is just

used to run an application or display some informa-

tion is not in the scope of the IoT Domain Model.

However, a user terminal containing a reader is in the

terms of the IoT Domain Model a Device with an

embedded Sensor Device

Reader Device/Sensor
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between ucodes. This functionality can be used for representing IoT Information

Model concepts.

12.5 Reverse Mapping BUTLER Information Model

12.5.1 Introduction

BUTLER’s mission is to provide context-aware services within an IoT environ-

ment3. What is really striking about that is that there does not seem to be an explicit

and widely accepted definition of what context-awareness really means. Although

an intuitive definition of what context means can be found easily (“the conditions

and circumstances that are relevant to an event, fact, etc.”) (Dey 2001), a more

formal definition is needed. If we look at other projects within the FP7 umbrella, we

can see what FI-WARE4 provides – a data/context management section. Although

not straightforward, it states that “Context [..] is represented through context

elements” and that these elements “are typically created containing the value of

attributes characterising a given entity at a given moment”. Therefore, we can state

that the context “characterises a given entity at a given moment”. That definition

gives rise to a discussion of what an entity is and the extent to which

characterisation must take place.
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Object :Physical 
Entity

Location :Physical 
Entity

LocationTag :Tag

TagReader :Sensor

User Terminal :
Dev ice

ReaderDriv er :
On-Dev ice Resource

Reader API :Serv ice
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Serv ice :Serv ice
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LocationRecord :
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is attached to

identifies is attached to
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is asociated with / is stored in

hosts

relates to

relates to

Fig. 12.4 uID architecture fit into the IoT Domain Model

3 http://www.iot-butler.eu/
4 FI-WARE (http://www.fi-ware.eu/) is a European FP7 Research Project aiming to foster the

emerging Future Internet by creating an open architecture and a reference implementation of a

novel service infrastructure, building upon generic and reusable building blocks developed in

earlier research projects.
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12.5.2 Reverse Mapping of IoT Domain Model

With regard to the first issue, the IoT-A Domain Model (IoT-A DM) fits perfectly

within such a definition, as it introduces the concept of Virtual Entity. These Virtual

Entities are the main concept handled by the IoT-A model since they represent the

entities in the real world that designers of IoT applications consider relevant. The

remaining main concepts introduced by the IoT-A DM (Resources and Services)

are naturally associated to the Virtual Entities. A straightforward conclusion is that

context should also be “associated” to Virtual Entities. However, the IoT-A DM

does not explicitly consider the context. This is irrelevant; we will return to this

issue later.

The second issue (what the context means for a given entity) is actually related to

the deployment and implementation of a given IoT scenario and not to the definition

of the model. However, it is worth mentioning that the components of the context

(the “context elements” mentioned by FI-WARE) are totally dependent on the

needs and requirements of the consumers of the functionality exposed by entities

(again, in a specific scenario). In BUTLER, we introduce a model in which, given a

Virtual Entity, it is possible for the consumer of the functionality (usually an

application developer) to define at any time the relevant context for this entity.

This type of context declaration operation defines the context elements and the data

sources these context elements will depend on. It is also important to acknowledge

that a given entity context relies not only on the information that devices can gather

about it but also (and sometimes mainly) on dynamic data sources that are not

actually “device-originated”.

BUTLER has taken the IoT-A DM as its main inspiration. However, it has been

simplified somewhat to increase the readability and clarity of the model. For

instance, the Augmented Entity is not considered; Digital Artefacts – and therefore

a non-Human User – have been removed as well; Network Resources have been

also dismissed and therefore, the BUTLER model contemplates only On-Device

Resources. UML has been used to illustrate the model graphically similarly to the

way the IoT-A DM does. We will highlight the main differences and additions we

have considered.

The relationship between Users, Physical and Virtual Entities is almost identical

to the ones suggested by the IoT-A DM. Besides the simplification already men-

tioned, it is worth noting that the BUTLER Domain Model introduces additional

relationships that are not expressed by the IoT-A DM. For instance, there can be

additional relationships between Users and Physical Entities. The most obvious is

the “ownership” (or at least entitlement to the management of the Physical Entity).

The relevance of this relationship relies on the access permissions it derives (that is,

the owner of a house will have the “right” to get information about his home and to

adjust the desired temperature, while a stranger will not, at least not until the owner

gives him the right to). On the other hand, the BUTLER Domain Model introduces

the BUTLER terminology and therefore, instead of talking about Devices, we
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introduce the Smart Object concept, which is equivalent to the Device concept

within the IoT-A DM (Fig. 12.5).

As with the IoT-A DM, Resources are introduced to bridge the gap between the

Virtual Entities and the Smart Objects, enabling the monitoring and manipulation of

Physical Entities from the digital world. Resources are the software components

that actually provide information about, or enable the actuation on Physical
Entities. BUTLER simplifies the management of Resources, focusing on On-
Device Resources (those deployed locally on the Smart Object attached to the

Physical Entity; these types of Resources are typically sensor Resources that
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Fig. 12.5 Relationships between users, physical and virtual entities
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provide sensing data, or actuator Resources). It is possible to model other Resources

deployed externally to Smart Objects that run somewhere in the network as generic

Network Resources. These Resources can process data, for example, taking sensor

information as input and generating aggregated or higher-level information as

output (for instance, a dynamic data source providing dynamic weather forecasts

or energy consumption estimates). Also, Network Resources can be storage

Resources storing information coming from On-Device Resources and thus provide
information about Physical Entities (i.e. location and state-tracking information

(history), static data, such as product type information, and many other properties).

Other external data sources, even Human Users, can also update the information in

a storage Resource (Fig. 12.6).
The primary relationship between Physical Entities and their digital

counterparts, the Virtual Entities on one hand, and the Smart Objects and the
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Fig. 12.6 Introduction of the resource concept and its relationship to devices and physical entities
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Resources they host on the other, is achieved by means of associations. Therefore,

Users are enabled to act on or to know about Physical Entities by means of the

associations between Virtual Entities and Resources. For each Virtual Entity there
can be associations with different Resources that may provide different

functionalities, such as retrieving information or enabling the execution of

actuation tasks on the Virtual Entities. When a User wishes to acquire information

about or to actuate on a given Physical Entity, she would perform a discovery

process determining which Resources associated to the Virtual Entities representing
the Physical Entities enable actuation or data access. Next, the User would pick up

the Resources that match her requirements and invoke them. However, it is unlikely

that the User would directly invoke Resources. She would do it instead through a

Service or application that accesses Resources to perform its business logic.

Finally, it is necessary to acknowledge that both Smart Objects and Users can be
modelled as a Physical Entity. The same may happen with Smart Mobiles (the client
device used by users in the BUTLER terminology) (Fig. 12.7).

Here we can see a main divergence from the IoT-A DM, since that model

introduces an explicit relationship between Services and Virtual Entities. Although

the nature of the relationship is not explicit in the model, the IoT-A Information

Model offers additional information about what such a relationship looks like: the

Virtual Entity attributes are used to associate Services to Virtual Entities. We prefer

a model in which the context is made explicit in the BUTLER Domain Model (and

not disguised as the Virtual Entity attributes).

As described in the initial section of this chapter when describing the FI-WARE

data/context, the context elements are associated to the entities the system handles.

BUTLER proposes to associate Contexts to Virtual Entities. Therefore, it will be
possible to handle the context of the Physical Entities represented by the Virtual
Entities the Context is associated to. On the other hand, several Contexts can be

associated to a given Virtual Entity just to reflect the fact that different “consumers”

will have a different need or view of the context associated to a given entity

(Fig. 12.8).

On the other hand, the attributes of Contexts in BUTLER will be mostly created

from data obtained from Resources. Each attribute will be the result of an operation
executed over data elements from one or several Resources. Such Resources may or

may not be associated to the Virtual Entity the Context is associated to (Fig. 12.9).5

Finally, Services will be entitled to use not only low-level Resources when they

need to know about the status of Physical Entities, but also richer Contexts
(Fig. 12.10).

5 For instance, the context associated to a house can include the outdoor temperature. This

temperature value can be exposed through a Resource associated to the Weather Service, which

in turn has also been modeled as a Virtual Entity. Although the Resource exposing the temperature

is not associated to the Virtual Entity representing the given house, an element of its context relies

on this “external” Resource.
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12.6 Reverse Mapping MUNICH Platform

The goal of reverse mapping an existing system towards the IoT Reference Model

is to show that an existing system that has been designed without applying the IoT

ARM can be redesigned according to the IoT ARM. By doing so the IoT ARM

shows its potential for being a reference model for any kind of IoT systems.

12.6.1 Use Case Description

The use case is about counting “stomach towels” which are used inside the

abdomen during surgery of a human. After the operation it needs to be assured

that no towels are retained in the abdominal cavity of the patient’s body. Therefore,

each towel is fitted with a 13.56 MHz RFID tag which enables tracing the towels
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before, during, and after the surgery. The RFID-tagged towels may be tracked by

three antennas from different positions in the operating theatre:

• Mayo stand (instrument table): towel is unused;

• Operation table: towel is in use;

• Used towel container: towel is used

Each towel will be used in a specific order: First a batch of “unused” stomach

towels resides on the instrument table. Towels that are put into the abdominal cavity

are declared as “in use”. Finally, towels that are not needed anymore after the

surgery are put into the towel container where their status is set to “used”.

Every time an RFID reader recognises a tagged towel appearing or disappearing

in its range an event is generated and stored in an event-log database hosted in the

cloud.
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12.6.2 Use Case Objective

It must be assured that no towels are left inside the patient’s abdomen when

the operation has finished. In more technical terms it means that after finishing

the operation all the towels that were “in use” must be in state “used” meaning

in the used towel container.

12.6.3 Current System Architecture

So far the use case has been designed to run with a certain type of RFID-readers

only that are connected via USB-cable to a laptop computer that is hosting the

application. The MUNICH-platform (MUNICH 2010) depicted in Fig. 12.11

provides a cloud storage system indicated as ‘Open Nebula Core’ that stores the

events captured every time the ‘Object Inventory Service’ notice a change in the
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number of towels in their respective range by invoking the ‘Event Service’. The

application that monitors the status of the towels during the operation invokes

methods provided by the ‘Operation Theatre Service’. The API to store and retrieve

information from and to the cloud storage system is technology-specific. If an

architect decides at a later point in time to change from Open Nebula to another

technology the system needs to be adapted to the changes in the API.

12.6.4 Enhancement by Using IoT Reference Architectural
Model

Making the use case demonstrator IoT-A conform means making the system more

evolvable and future-proof. By using RFID reader services a technology agnostic

layer is introduced that is not so much dependent on today’s lifecycle of

technologies. With the current solution the software needs to be updated when a
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new type of RFID reader needs to replace a current one. Also extending the use case

with another RFID reader or another type of sensor will be much easier once IoT-A

is applied. Thus the IoT ARM contributes towards scalability in this use case too.

The restriction in evolvability applies to the cloud storage component too since the

current system is designed to be used with certain cloud storage software. It is not

Fig. 12.11 Current architecture of MUNICH platform (MUNICH 2010)
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easy to substitute the component in case the software is discontinued or no longer

appropriate. In case the services are modelled according to technology agnostic

IoT-A specifications the system will be more future proof. In order to make the use

case IoT-A-compliant, the following architectural process will be undertaken.

1. Specification of Business Process Model;

2. Specification of Domain Model;

3. Specification of Information Model;

4. Specification of Functional View;

5. Specification of Services and Interactions between components.

12.6.5 Specification of IoT Business Process Model

The use case has been formalised as IoT Business Process Model by a domain

expert in Fig. 12.12. The modelling notation used is described in (Meyer

et al. 2011). The operation scenario is a sub-process of the overall Emergency

operation process that may include the arrival of the patient via ambulance and the

availability of data record for the patient in the hospital’s data base. The towels

being used during the surgery are associated to the patient identified in the database

record. This way it is possible to verify which towels have been used for which

patient. The towels are the entities of interest (depicted by the box with the cow

icon) in this scenario. The RFID reading processes are running in parallel on all

three positions in the operating theatre that are equipped with the RFID readers. The

used towel container is denoted as waste bin in Fig. 12.12. Each RFID reader

sub-process sends events to the Event History database upon detection of tagged

towels. The ‘Monitor towel process’ analyses the events that have arrived in the

database, determines the current state for each towel, and calculates the number of

towels that are currently inside the body of the patient.

12.6.6 Specification of IoT Domain Model

Based on the Business Process Model presented before, a domain model can be

derived that identifies the Physical and Virtual Entities, the IoT Services, the

Devices, Resources, and the users that are involved in the use case. The Human

User is the doctor or other medical staff who is responsible to monitor the towels in

the operation theatre. The actual monitoring of the towels by comparing the used

towels with the ones currently in use is done by software implementing the

‘Monitor towel process’ as depicted in Fig. 12.12. The User checks only that no

towels are still in use when the operation is about to end. The software ‘Operation

Theatre Application’ is modelled as Active Digital Artefact. Each towel is a

Physical Entity that has one RFID tag attached so that the number of towels

corresponds to the number of tags. Each physical towel has a digital counterpart
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Fig. 12.12 IoT business process model of MUNICH use case
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modelled as Virtual Entity. There are three RFID readers deployed in the scenario

at different significant locations of the operation theatre (Instrument Table, Opera-

tion Table, and Waste Bin) that are modelled as Sensor Devices. Each of the

Sensors hosts an OnDevice Resource that is exposed by an ‘Object Inventory

Service’ as depicted in Fig. 12.11. These services store events by invoking the

‘Event Storage Service’ that exposes the Network Resource ‘Event History’. This

Resource is also exposed to the ‘Operation Theatre Application’ by the Event

History (Fig. 12.13).

12.6.7 Specification of Functional View

The realisation of the use case according to the IoT ARM a Functional View is

tailored to the use case needs to be specified. The Functional View for the MUNICH

platform is depicted in Fig. 12.14. No IoT Service Resolution is required, because

all needed services are already known to the system at design time. A VE Resolu-

tion FC is included in the FV. This FC is able to resolve particular towels to the IoT

Fig. 12.13 Domain model of MUNICH platform
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Service they are currently associated with. The ‘VE & IoT Service Monitoring’ FC

is used to update the current state of towels whenever these VEs change their

position in the operating theatre. Whenever VEs change their positions their

associations between the VEs and the IoT Services reading the RFID tags change

too. No Service Organisation functions are required in this use case since the

binding of services is static and can therefore be hardwired. To accommodate IoT

Business Process Management functionality that is required in the MUNICH

platform the respective FG is included in the FV. The process model diagram

depicted in Fig. 12.12 was created by the ‘Process Modelling’ FC and this model

is executed by the ‘Process Execution’ FC. The Functional View of the MUNICH

platform includes IoT Services for the RFID readers and for Event Storage

Resources. The Application in the FV is the use case as described the beginning

of this Section. The Devices are the RFID readers and Tags used in the operational

theatre which communicate to the IoT Services by ‘End To End Communication’

and ‘Network Communication’ FCs. The entire FV is depicted in Fig. 12.14.

12.6.8 Specification of IoT Information Model

The IoT Information Model specified for this use case also addresses relationships

between entities that are not depicted in the IoT Domain Model before. Some more

entities appear in the IoT Business Process Model shown before in Fig. 12.12. For

instance it is depicted that an ‘Operation’ is held for a ‘Patient’ and thus the

‘PatientIdentifier’ (valid in the clinic) is assigned to an ‘Operation’. Operations

are processes with a defined status at any point in time: ‘before’, ‘in’, and ‘after

Operation’. There is also an unknown status in case the status cannot be obtained.

The towels are represented as VEs with domain attributes that are essential for the

use case. The towel’s identifier stored into a RFID tag is one of the attributes as well

as the current state of a towel that can be one of ‘unused’, ‘in use’, and ‘used’. Again

there is an ‘unknown’ state specified in case the state cannot be obtained by the

system. The aforementioned designated locations of the operating theatre are

reflected in the Information Model as attributes of the VE ‘Towel’. For simplifica-

tion the allowed values for this attribute {InstrumentTable; OperationTable;

WasteBin; unknown} are not visualised as ValueContainer. With the aforemen-

tioned attribute values the OperationTheatreApplication is able to relate the current

location of the towels (retrieved through the RFID readers) to the respective state of

the towel: {instrument table ¼ ‘unused’; operation table ¼ ‘in use’; waste bin ¼
‘used’} (Fig. 12.15).
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12.6.9 Specification of IoT Services and Interactions

In the following an example description is given for one of the three ‘Object

Inventory Services’ specified in the IoT Domain Model before (Fig. 12.16).

The sensing service ‘ObjectInventoryServiceOPtable’ exposes the Resource

RFIDInventoryOperationTable hosted on the Sensor that observes the area

OperationTable during the operation. The duration is determined by the

Op123Schedule. The output of the service is described in a domain specific

operation-ontology by the class ListOfRFID that defines a list of identifiers the

RFID reader has detected. The service can be invoked by accessing the service

endpoint objInventoryOPtableRestSE that provides a RESTful web service on the

endpoint host optablehost. An HTTP GET method call on port 4355 on the root path

‘/’ of this host will return the list of identifiers the RFID sensor has read.

Fig. 12.14 Functional view of the MUNICH platform
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Fig. 12.15 Information model of MUNICH platform

Fig. 12.16 Service description MUNICH platform
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The use case is driven by events using asynchronous communication. Events are

sent to the Event History network resource every time an RFID reader recognises a

change in the number of RFID-tags in its observation area by using IoT Service

storeEvent(event). The Event History resource provides another IoT Service that

allows the subscription to notifications about the change in the status of towels,

e.g. from unused to in use.

The structure of an Event data type is given as follows:

• Origin: {RFID reader instrument table; RFID reader operation table; RFID

reader waste bin}

• Type: {RFID tag gone; RFID tag added; unrecognised tag}

• Time stamp

The sequence diagram below illustrates the interactions between Physical

Entities and Functional Components of the architecture. The doctor takes a new

towel out of the box on the instrument table and uses it in the patient’s abdomen

located on the operation table. The system detects the move of the towel from the

instrument to the operation table by the disappearance of the respective RFID tag

that is attached to the towel together with the appearance of the same RFID tag on

the operation table. The Event Storage Service evaluates these single events towel

disappeared on instrument table and towel appeared on operation table to a complex

event towel in use (Fig. 12.17).

12.6.10 MUNICH Platform Conclusion

The previous Sections have shown that an existing system can be reverse

engineered by applying the IoT ARM. Beginning from an existing system the

modelling of the IoT Domain Model and Information Model has been

demonstrated. With the help of these models the respective IoT Service

Descriptions have been derived and the interactions between the Resources have

been specified. The exercise did not include all the steps of the process to derive a

concrete architecture based on the IoT ARM. There was neither a requirements

analysis nor a security risk analysis undertaken. The purpose of this exercise is to

demonstrate the usage of the models in first place. Since the functionality of the

system has not changed a comprehensive requirements analysis has been skipped.

Also the security risks are seen as manageable since the operating theatre is a well-

secured and closed environment anyways. Only the event related service makes

connections to external environments, but that was the case for the original system

already and therefore no changes in security risks are expected. Particular platforms

and solutions to implement the use case are not recommended here; technologies

that would be suggested in this document might be outdated by the time of reading

this document and therefore obsolete.
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12.7 Conclusions About Reverse Mapping

In this Section we have provided a reverse mapping of the IoT Architectural

Reference Model with several standards from the field of IoT as well as a concrete

architecture in order to provide an architectural validation, namely whether it is

possible to map existing standards to the IoT ARM. If this was not possible, then the

validity of the ARM itself would be questionable.

As we have seen in the detailed discussion of the different standards, whether a

mapping is possible or not largely depends on the level of detail that we apply to the

mapping. Especially for the Domain Model this becomes clear when we pick up the

concept of a “Service”: All the standards we looked at provide services in one way

or the other, so that at a superficial glance a mapping is trivial. However, when we

take the exact definition of that term in the different standards, we realize that there

is not always a 1:1 correspondence between the standards. For instance, in ETSI

M2M a service is not defined as “exposing resources on devices, but can interact

with the devices.” A resource concept as in IoT-A does not exist, so that compared

to the definition of services and resources in the ARM, the distinction between a

resource and the service as it is made in IoT-A does not exist in ETSI M2M. From a

high-level perspective, though, the Domain Model usually maps rather well to the

different standards. Also, the Communication Model and security aspects are rather

compatible between the standards and the ARM. The latter is not surprising, as

security aspects in the world of IoT are commonly derived from a well-established

body of security research with fixed and clear terminology, quite unlike the Internet

of Things domain. Also, it must be noted that the scope of IoT-A is broader than the

scope of any of the individual standards. This is not surprising, as IoT-A aims to

provide a Reference Architecture for all different kinds of specific architectures and

use cases, and therefore must be broader by definition. Different parts of the IoT

ARM are therefore only partially or not covered at all by different standards. For

Fig. 12.17 Interactions MUNICH platform
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instance, EPCglobal is highly RFID centric and therefore neglects certain aspects

such as the IoT Communication Model, however the mapping to the IoT Domain

Model and also to the Security and Information Model works reasonably well at the

appropriate level of abstraction.

While the mapping of the different standards can be regarded as successful,

when being performed at the appropriate level of detail, the real litmus test is the

mapping of a concrete architecture to the IoT ARM. We have provided such a

mapping for the MUNICH platform and have provided detailed information about

the Domain Model, the Information Model, a process modelling based on the

BPMN extensions developed in IoT-A (Meyer et al. 2013) and have discussed the

service modelling in detail. Of course, we cannot generalize this successful exercise

to any existing concrete architecture, but it still demonstrates nicely, how the IoT

ARM can be applied to a concrete architecture. We are confident that other

architectures from the domain of IoT map equally well to the IoT ARM.

12.8 Business Case Evaluation Example

12.8.1 Introduction

In the healthcare use case, to show the real-world value of the ARM, we focus on an

IoT system that has already been implemented. In combination with the reverse

mapping (see Sect. 12.6), we show that not only can the IoT ARM describe existing

IoT systems (and by extension, help realise such systems), but that these systems

also bring value. We evaluated the operating efficiency and profitability of such an

IoT system.

This use case was implemented and carried out by several companies and

universities in the framework for the Initiative for Cloud Computing in Health

Care (henceforth referred to as the “MUNICH platform”). The MUNICH platform

addresses two main problems: debris left in the human body after surgery and time-

consuming process steps with no added value (“non-productive time”). A third

auxiliary problem is the on-going integration of software and solutions from third

party providers, which the IoT-A ARM would address.

Regarding the debris problem, in spite of safety checks already implemented,

debris (tools, towels, consumables) is still left in the body during surgical

procedures in 1:10,000 cases (Kranzfelder et al. 2012). In these cases, 70 % of

the debris comes from surgical towels and 30 % from other surgical equipment

(Kranzfelder et al. 2012). The consequences for the patient are a 40 % morbidity

rate with a 5 % mortality rate (Kranzfelder et al. 2012). Regarding non-productive

time, this refers to steps such as documenting and registering towels before the

operation, subsequent counting of towels during the operation, and searching for

towels when something is amiss; none of these steps add value, but instead address

a problem created by the process itself.
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Accordingly, a solution that addresses the tracking of surgical towels would

mitigate these problems significantly. We can therefore map the MUNICH

platform’s objectives and solutions as shown in Fig. 12.18.

Real-time monitoring and location of all towels reduces the risk of debris in the

human body because manual error-prone counting and searching is avoided

(MUWS 2013). Therefore, the automation reduces manual errors. The process

improvement increases the transparency of the process and reduces the risk of

documentation errors that can also lead to debris in the human body. Experts

estimate that a 100 % failure protection is possible with this solution (Kranzfelder

et al. 2012). Addressing the debris problem meets short-term objectives of automa-

tion and improved process effectiveness, and in the mid-term, increases patient

safety.

For the non-productive time problem, automation and the resultant process

improvement remove the error-prone steps of documenting and registering towels

before the operation, subsequent counting of towels during the operation, and

searching for towels when something is amiss.

For the long-term problem of integrating new software developments from the

hospital and their third party solution providers, the IoT-A ARM provides a

standardised reference architecture. This would simplify the complexity of the

architecture and make integration of new components into the system easier.

12.8.2 Cost and Benefit Models

The inputs for our analysis consisted of a cost model and a benefit model. The cost

model factored in non-recurring costs (NRC) such as the RFID antenna and readers.

The main cost driver is the hardware investment for the RFID antennas, which

amounts to €49,500 – 58 % of the total non-recurring cost (€85,600). Beyond this

initial investment, the cost model also factored in recurring costs (RC), such as the

RFID-tagged towels, the software and system licensing fee, staff training, and the

maintenance costs. The main cost driver of the recurring cost group is the operating

fees of the system provider. This cost element has the most significant impact on the

Fig. 12.18 Objectives of the healthcare use case and the problems addressed

12 ARM Testimonials 317



cost model and accounts for 98 % of the yearly RC of €1,034,000. A price change in

the service fee has a dramatic impact on the total cost structure over time. There-

fore, this price change will be part of a specific sensitivity analysis.

The total cost (NRC+RC) development over a 6 year period was subsequently

computed and input into a combined cost-benefit model (see 0 Cost-benefit

analysis).

The benefit model is composed of three benefits; the calculated yearly benefits

are in brackets: RFID-supported surgery (€815,000), cost savings from prevention

of surgical errors (€370,000), and RFID-supported surgery preparation (€104,000).
The “RFID-supported surgery” model provided the highest benefit, accounting for

63 % of total benefits. Non-tangible benefits not directly linked to a monetary

outcome include an increase in surgical scheduling each year due to reduced

preparation time, and hospital reputation improvements due to improved safety.

The total benefit over a 6 year period was subsequently computed and input into

a combined cost-benefit model (see 0 Cost-benefit analysis).

12.8.3 Cost-Benefit Analysis

Figure 12.19 presents the yearly and cumulative cash flows. The cost-benefit

analysis demonstrates a positive investment result. The discount factor is assumed

at 8 % and the net present value is €805,000. The payback period is less than 1 year.
Within Germany, according to healthcare experts, this would meet the requirement

of a 1 year payback period for new investments in a German hospital.

12.8.4 Sensitivity Analysis

With the sensitivity analysis, we can investigate the impact of changing the major

calculation variables. The following impacts shown in Table 12.6 will be discussed:

The results of the sensitivities are always evaluated with respect to the final

effect on the discounted cumulative cash flow. The sensitivity analysis will be

summarized with a best/worst case scenario.

12.8.4.1 Sensitivity Analysis for the Cost Model

The cost model sensitivity analysis investigates the impacts on the cost model if a

parameter is changed. Reducing the critical risk factors (CRF) by 10 % leads to an

increase in the total cash flow from €805,000 to €1,187,000, which is an increase in
the net present value of 47 %. On the other hand, increasing the CRF by +10 % or

+20 % due to higher NRC and RC lowers the net present value to €423,000 or

€41,000 respectively.

318 E. Ho et al.



The main cost driver for recurring costs (RC) is the system service fee. An

increase of 10 % in the service fee per surgery from €20 to €22 reduces the net

present value by two thirds to €270,000. The profitability limit is reached by

increasing the fee to €23/surgery. The cost model sensitivity analysis is depicted

in Fig. 12.20.

Fig. 12.19 Cost-benefit analysis over the business case timeframe (healthcare case)

Table 12.6 Models and parameters varied in the sensitivity analysis for the healthcare case

Model element changed

Cost model Benefit model (c) General calculation

assumptions

Change in

variables

Critical risk factors: Benefit variation factor

(BSF)

Discount Rate (DF)

Software risk ¼ SR Frequency of surgeries

(TAoS)Hardware

risk ¼ HR

Personnel

risk ¼ PR

Maintenance

risk ¼ MR

System service fee

(SFS)
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12.8.4.2 Sensitivity Analysis Regarding Benefit Model Robustness

This analysis aims to investigate the robustness of the benefit model and the impact

on the cost-benefit results. To demonstrate the development of the model, three

different scenarios are simulated: (1) Benefits increase by 10 % (2) Benefits

decrease by 10 % and (3) Benefits decrease by 15 %. The results of these

simulations are summarized in Fig. 12.21. The net present value is exactly

0 when the benefits are reduced by 12.4 %.

Notably, the net present value is very sensitive to changes in the benefit model;

there are large benefit differences between (1) and (2).

12.8.4.3 Sensitivity Analysis for the Assumptions in the General

Calculation

After the sensitivity analysis of costs and benefits variations, the analysis is

extended to variations of the general calculation assumptions that affect both

models. Two parameters are used to simulate the results. The first is the change

in the discount rate (DF) to reflect different risk perceptions and interest rate

influences. The second parameter concerns the frequency of the surgeries per

year (TAoS), which is a basic quantity variable (see Fig. 12.22).

A variation in the discount rate of �2 % leads to an increase/decrease in the net

present value of�4 %. If a 12 % discount rate is assumed, the net present value falls

to €741,000 (�8 %).

If the hospital performs 25 % fewer surgeries per year, the net present value

decreases to €524,000 (�35 %). In contrast, if the number of surgeries per year

increases by 25 %, the net present value rises by 35 % (€1,087,000). The net present
value is zero if the hospital performs 71.5 % fewer surgeries per year.

Fig. 12.20 Cost model sensitivity analysis (healthcare case)
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12.8.4.4 Best/Worst Case Scenario

By combining cost and benefit variation in the sensitivity analysis, best and worst

case scenarios can be elaborated. For example, if the system service cost is reduced

by €1/surgery (¼ �5 %) and the hospital performs 25 % more surgeries annually,

then the net present value rises significantly to €1,421,000 (+77 %). The best case

scenario is based on the assumption that the service provider can lower the cost of

the service fee due to cheaper maintenance costs, additional development support

Fig. 12.21 Benefit model sensitivity analysis (healthcare case)

Fig. 12.22 Cost-benefit sensitivity analysis (healthcare case)
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from using the IoT ARM, and from economies of scale effects. As a result of using

the system and thereby reducing the errors, it is assumed that the hospital gains a

better reputation and is more efficient, and accordingly, the number of surgeries per

year rises.

In a worst case scenario it is assumed that the benefits are lowered by 5 %, the

system service fee is €2/surgery more expensive (+10 %), and the number of the

surgeries is reduced by 25 %. In this worst case scenario, the net present value is

completely destroyed and always negative (see Fig. 12.23).

We observe that the economic feasibility of the case depends to a high degree on

the system service fee of the service provider. The feasibility is also sensitive to

fluctuations in the benefits. Further investigation about the reliability of the cost

estimates is necessary. This information can be gained from the pilot deployments

of the system with RFID-equipped towels. A test case is currently running in

Munich at the university hospital “Rechts der Isar”. When the pilot case is finished,

a more reliable assessment of cost and benefits will be possible. The service

provider would then also have better information for the calculation of the cost of

the service fee.

Fig. 12.23 Best and worst case scenario (healthcare case)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Chapter 13

Summary and Outlook

Alessandro Bassi

Five years ago, when we organised the very successful meeting “Beyond RFID: the

Internet of Things”,1 we were pioneering a new space. At that time, a global

network of interconnected objects was just a very fancy and rather fuzzy concept.

Today, this topic is clearly mainstream.

Cisco2 and Ericsson3 have published white papers clearly showing the relevance

and the importance of IoT-related technologies for their strategic offering; to

mention just a few numbers, for whatever they are worth, apart from the famous

forecast of 50 billion interconnected devices by 2020,4 Cisco foresees a related

market value of $14.4 trillion.5 These companies are just the tip of the iceberg:

McKinsey, for instance, recently published a report6 estimating the IoT impact on

the global GDP as between $2.7 and $6.2 trillion annually by 2025, an impact

which is beyond that of big data. In 2012, Gartner Research identified the IoT as one

of the top ten technology trends for the years to come.7

As members of the IoT-A consortium, we are rather proud to be at the forefront

of this wave. Back in 2009, we clearly identified the main technological

showstoppers for the development of a global IoT vision. The problems we faced

back then were threefold.

As early developments were clearly not coherent, and showed little if any

possibility of integration in bigger systems, scalability capabilities or an ability to

A. Bassi (*)

Alessandro Bassi Consulting, 3, Avenue de Cannes, 09160 Juan Les Pins, France

e-mail: alessandro@bassiconsulting.eu

1 http://www.smart-systems-integration.org/public/internet-of-things
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7 http://www.gartner.com/newsroom/id/2209615
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adopt strong security policies, the need was very evident: to define a common IoT

ground where services, applications and products could have solid roots. This

common ground is established by making different technologies talk to each

other, allowing existing and new IoT-related developments to belong to the same

space.

Furthermore, it is important to define a way of moving from ground-breaking

ideas to real products and services.

Finally, we needed to show not only the research community but the whole

community of innovators that IoT technologies can actually be used to implement

their projects, providing innovation managers and architects with the necessary

tools to do so.

The IoT-A project tackled the first point by upgrading existing technological

developments. Communication protocols related to constrained devices were stud-

ied and extensions were proposed, tested and promoted in the appropriate

standardisation fora.

As far as defining ways of moving from ground-breaking ideas to real products

and services is concerned, in many formal and informal meetings we see reactions

such as “what the heck?” when we explain what IoT can do for a business domain.

There is a clear need for education and information that is missing at the moment.

Innovation directors may have a very clear vision of what they want to achieve, but

there is no way for them to understand the complexity of their challenges, to select

the best architectural design patterns that can solve their issues, and to decide which

technologies to use to implement a solution in practice. We see this as a vertical

challenge: from a vision to a product, designing the right set of models,

architectures and tools. This point was addressed by the development of the

Architectural Reference Model (ARM), which includes all necessary models and

design patterns for developing a real product.

Finally, after tackling both of these dimensions, as already stated, we needed to

show not only the research community but the whole community of innovators that

IoT technologies can actually be used to implement their projects, giving

innovation managers and architects the necessary tools to do so. A silver bullet in

a drawer does not solve any issues; we needed to “go out” and reach the widest

possible range of most diversified audiences in order to make our work worthwhile.

This book clearly addresses this third aspect of communication.

We are also aware, however, that all dimensions need further work. From the

very beginning, we intended the ARM to be an iterative effort. The set of models

and architectural choices will evolve, and the project partners are seeking suitable

ways of making the concepts long-lasting, well beyond the project’s lifetime. What

is important is that the ARM and all related developments cannot be “locked” in the

sole ownership of one single organisation or group – every instrument that can

promote and develop the architectural development of the IoT further must be able

to use the ARM work done in IoT-A as a base.

The horizontal integration between different technologies will also require

updates. As different IoT-related technologies evolve, there will be a need to

develop different interfaces at any level, from device level to services. Further

324 A. Bassi



investigation and efforts will be required: in particular, considering possibly revo-

lutionary developments such as quantum technologies. Within IoT-A, we tried to

provide guidelines for developments in some areas, such as protocols; however, as

long-term forecasts are very often off-target, only time will tell exactly which areas

will need closer attention.

Last, but certainly not least, a considerable amount of work must be done to

develop sustainable security and privacy policies. Even before the IoT, RFID

technologies were subject to a very negative “big brother” image. These

considerations are very topical today, with the disclosure of the US government’s

PRISM program, and any technology for interconnected objects may be rejected on

the basis that it violates basic privacy principles. Therefore, governance schemes

that on one hand are privacy-friendly, and on the other hand secure, must be agreed

upon and implemented, along with widespread education on the societal benefits

of IoT.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Non-commercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

13 Summary and Outlook 325



Appendix A

Terminology

This appendix aims at defining the terminology introduced in this book. Please,

always refer to the online version of the IoT-A terminology webpage at http://www.

iot-a.eu/public/terminology. Note also, words written in italic in the Definition

column own an entry in the table providing their specific definition in IoT context.

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0,
© The Author(s) 2013
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Nettsträter A, Olivereau A, Serbanati A, Stefa J, Thoma M, Walewski JW (2013) Final

architectural reference model for the IoT v3.0. Internet of things – Architecture – Project

Deliverable D1.5

Computer Dictionary Definition, online at: http://www.yourdictionary.com/computer/m2-m

A. Bassi et al. (eds.), Enabling Things to Talk, DOI 10.1007/978-3-642-40403-0,
© The Author(s) 2013

343

http://dx.doi.org/http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-a.eu/public/public-document/WhitePaperWP4/view
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0


PISA Consortium (2003) Handbook of privacy and privacy-enhancing technologies: the case of

intelligent software agents. http://www.cbpweb.nl/downloads_technologies/pisa_handboek.pdf

Consorzio FR (2011) Internet of things architecture – Project Deliverable D1.1

Consultative Committee (2006) The consultative committee for space data systems. Information

Architecture reference model. CCSDS_312.0-G-0. http://cwe.ccsds.org/sea/docs/SEA-IA/Draft

%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf. Accessed 30 Apr 2013

NGSI Context Management Specification (2010) Open mobile alliance. http://www.

openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-

NGSI_Context_Management-V1_0-20100803-C.pdf. Accessed 11 June 2012

DARPA (1970) DoD networking model. http://www.freesoft.org/CIE/Course/Section1/5.htm

De S (2012) Concepts and solutions for entity-based discovery of IoT resources and managing

their dynamic associations. EC FP7 IoT-A Deliverable 4.3

de las Heras R (ed) (2011) Project deliverable D4.1 – Concepts and solutions for identification and

lookup of IoT resources, December 2011. Available at: http://www.iot-a.eu/public/public-

documents/documents-1/

De S, Barnaghi P, Bauer M, Meissner S (2011) Service modelling for the Internet of Things.

Computer Science and Information Systems (FedCSIS), Federated Conference on IEEE

De S, Elsaleh T, Barnaghi P, Meissner S (2012) An internet of things platform for real-world and

digital objects. Scalable Comput: Pract Ex 13(1):45–57, West University of Timisoara

Dey AK (2001) Understanding and using context. Pers Ubiquit Comput 5(1):4–7

Digital Payment Techno (2013) Digital payment pechnologies, “Pay-by-Licence Plate”. http://www.

digitalpaytech.com/products/operational-modes/pay-by-plate.aspx. Accessed 12 Apr 2013

Ebios (2010) Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI). Ebios 2010 –

expression of needs and identification of security objectives. Technical report. 2010

EC FP7 IoT-A Project Deliverable D1.5. Available online at: http://www.iot-a.eu/public/public-

documents/d1.5/view

EC FP7 IoT-A project deliverable D2.6 – events representation and processing, http://www.iot-a.

eu/public/public-documents/documents-1

E-FRAME project, available online at: http://www.frame-online.net/top-menu/the-architecture-2/

faqs/stakeholder-aspiration.html

EPC Information Services (EPCIS) Version 1.0.13 Specification

EPC Tag Data Standard (TDS), current version v.16 (2011 September 9), online at : http://www.

gs1.org/gsmp/kc/epcglobal/tds

Erder M, Pureur P (2003) QFD in the architecture process. IT Professional 5(6):44–52

Eschenauer L, Gligor VD (2002) A key-management scheme for distributed sensor networks.

Proceedings of the 9th ACM conference on Computer and communications security.

Washington, DC, pp 41–47

ETSI Corporate telecommunication Networks (CN); Mobility for enterprise communication,

online at: http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_

102477v010101p.pdf

ETSI Technical report ETR 173, Terminal Equipment (TE); Functional model for multimedia

applications. Available online: http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_

173e01p.pdf

Fiedler M (ed), Bui N, De Loof J, Haller S, Hinkelmann M, Ho E, Magerkurth C, Mättig B, Martin

Romero G, Savry O, Serbanati A, Zeybek E (2012) Internet of things – architecture – project

deliverable D7.2 – exact definition use case 1 and use case 2

Flextronics (2005) Software systems FCAPS White Paper http://marco.uminho.pt/~dias/

MIECOM/GR/Projs/P2/fcaps-wp.pdf

Fowler M (2003) UML distilled: a brief guide to the standard object modeling language, 3rd edn.

Addison-Wesley Professional, Boston

Furness A (2009) Ontology for identification. CASAGRAS Final Report, Annex C. http://www.

grifs-project.eu/data/File/Casagras_Final%20Report.pdf. Accessed 18 Apr 2012

344 References

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/http://www.iot-a.eu/public/public-documents/documents-1/
http://dx.doi.org/http://www.iot-a.eu/public/public-documents/documents-1/
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/d1.5/view
http://www.iot-a.eu/public/public-documents/documents-1
http://www.iot-a.eu/public/public-documents/documents-1
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0


Gambetta D (2000) Can we trust trust? Trust: making and breaking cooperative relations,

electronic edition. Department of Sociology, University of Oxford, pp 213–237

Gamma E et al (1994) Design patterns: elements of reusable object-oriented software. 1. s.l. :

Addison-Wesley Professional

Ganeriwal S, Srivastava MB (2004) Reputation-based framework for high integrity sensor

networks. 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, Washington,

DC, pp 66–77

Genetec (2013) Parking enforcement and management.http://www.genetec.com/Solutions/Pages/

parking-enforcement-and-inventory.aspx. Accessed 12 Apr 2013

Georgetown University (2013) Disaster recovery http://continuity.georgetown.edu/dr/. Accessed

12 Apr 2013

Greenfield N (2009) FCAPS management for smart grid – high-level summary. AEP IT Security

Engineering. http://osgug.ucaiug.org/UtiliComm/Shared%20Documents/AMI-NET/FCAPS%

20Management%20for%20the%20Smart%20Grid.pdf

Gruschka N, Gessner D (2012) EC FP7 IoT-A Project Deliverable D4.2. Available online at:

http://www.iot-a.eu/public/public-documents/d4.2/view

Haller S (2010) The things in the internet of things. Tokyo: s.n

Heer T, Garcia-Morchon O, Hummen R, Keoh SL, Kumar SS, Wehrle K (2011) Security

challenges in the IP-based internet of things. Wireless Pers Commun 61(3):527–542. ISSN

0929–6212 (doi: 10.1007/s11277-011-0385-5)

Houyou AM et al (2012) D2.3 – Plug & work support mechanisms. IoT@Work

Hull E, Jackson K, Dick J (2011) Requirements engineering, 3rd edn. Springer Publishing

Company, New York

Hyttinen P (ed), Azzabi R, Bauer M, Christophe B, Saied YB, Boudguiga A, De S, Gessner D,

Hyttinen P, Kiljander J, Longo S, Olivereau A, Serbanati A, Stefa J (2013) Internet of things –

Architecture – Project deliverable D4.4 – Final Design and Implementation Report

IBM (2012) Circular versus Archive transactional logging. http://www-01.ibm.com/support/

docview.wss?uid¼swg21087828. Accessed 12 Apr 2013

IEEE (1471–2000) IEEE recommended practice for architectural description of software-intensive

systems

IETF (1998) IETF RFC 2401 security architecture for the internet protocol. http://www.ietf.org/

rfc/rfc2401.txt 1998

IETF (2008) IETF RFC 5246 The Transport Layer Security (TLS) protocol http://tools.ietf.org/

html/rfc5246

IETF (2011) IETF RFC 6101 The Secure Sockets Layer (SSL) protocol version 3.0. http://tools.

ietf.org/html/rfc6101

Information architecture reference model. Online at: http://cwe.ccsds.org/sea/docs/SEA-IA/Draft

%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf

Information Model, Deliverable D3.1, Autonomic Internet (AutoI) Project. Online at: http://ist-

autoi.eu/autoi/d/AutoI_Deliverable_D3.1_-_Information_Model.pdf

Information technology – vocabulary – part 1: fundamental terms. Online at: http://www.iso.org/

iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber¼7229

International Organization for Standardization (2009) Selection and use of the ISO 9000 family of

standards http://www.iso.org/iso/home/store/publications_and_e-products/publication_item.

htm?pid¼PUB100208. Accessed 23 May 2013

IoT-I Deliverable D1.5 Final white paper defining a reference model for IoT, Stephan Haller (ed).

http://www.iot-i.eu/public/public-deliverables/

IoT-A FP7 Project (2012) Terminology – IOT-A: internet of things architecture. http://www.iot-a.

eu/public/terminology. Accessed 12 Apr 2013

IoT-A FP7 Project (2013) Requirements – IoT-A: internet of things architecture. http://www.iot-a.

eu/public/requirements. Accessed 21 June 2013

Island Group (2012) PRESTO 1000 pay & display monitoring software http://www.islandgroup.

co.uk/ParkingSolutionsPaD.aspx. Accessed 12 Apr 2013

References 345

http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-a.eu/public/public-documents/d4.2/view
http://dx.doi.org/10.1007/s11277-011-0385-5
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://www.iot-i.eu/public/public-deliverables/
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0


ISO (1994) Information technology – open system interconnection – basic reference model: the

basic model. http://www.ecma-international.org/activities/Communications/TG11/s020269e.

pdf. Accessed 21 June 2013

ITU-T (1997) M.3400 TMN management functions

Karlof C, Wagner D (2003) Secure routing in wireless sensor networks: attacks and

countermeasures. Ad Hoc Netw 1(2–3):293–315

Koshizuka N, Sakamura K (2010) Ubiquitous ID: standards for ubiquitous computing and the

internet of things. IEEE Pervasive Comput 9(4):98–101

Kozel T (2010) BPMN mobilisation. Proceedings of the European conference of systems: World

Scientific and Engineering Academy and Society (WSEAS), Puerto De La Cruz, Tenerife

Kranzfelder M, Zywitza D, Jell T, Schneider A, Gillen S, Friess H, Feussner H (2012) Real-time

monitoring for detection of retained surgical sponges and team motion in the surgical operation

room using RFID technology: a preclincial evaluation. J Surg Res 175(5):191–198

Kruchten PB (1995) The 4+1 view model of architecture. IEEE Software 12(6):42–50

Lefort L (2005) Ontology for quantity kinds and units: units and quantities definitions. W3

Semantic Sensor Network Incubator Activity

Levis P, Gay D (2009) Tiny OS programming. 1. s.l. Cambridge University Press, Cambridge, UK

Lu B, Pooch UW (2005) A lightweight authentication protocol for mobile Ad Hoc Networks. Int J

Inf Technol 11(2):119–135

MacKenzie CM, Laskey K, McCabe F, Brown P, Metz R (2006) Reference model for service

oriented architecture 1.0. Available online at: https://www.oasis-open.org/committees/down

load.php/19679/

Machine-to-Machine Communications (M2M) Threat analysis and counter-measures to M2M

service layer. Available at http://www.etsi.org

Magerkurth C (ed), Bauer M, Boussard M, Bui N, Carrez F, Giacomin P, Ho E, Jardak C, De

Loof J, Magerkurth C, Meissner S, Nettsträter A, Olivereau A, Serbanati A, Thoma M,
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