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Preface

A wavelet is an important mathematical tool that appears in many fields of science
and technology. It refers to analyzing data with special features and different scales
depending on the application requirements.

The name “wavelet” first appeared in the early 1980s. It comes from the French
word “ondelette,” meaning “small wave.” The original idea is rooted in many
separate thoughts including Jean-Baptiste Joseph Fourier and his theory of approx-
imation in which a complex function can be approximated as a weighted sum of
simpler functions, Alfréd Haar and his theory of a sequence of rescaled “square-
shaped” functions, and Dennis Gabor and his function for minimizing the deviation
in the time and frequency domains.

The application of wavelet theory is rapidly growing in diverse fields and disci-
plines. As such, this book examines some of the most creative and popular applica-
tions including biomedical signal processing, image processing, communication
signal processing, Internet of Things (I0T), acoustical signal processing, financial
market data analysis, energy and power management, and COVID-19 pandemic
measurements and calculations.

My personal interest in wavelet theory lies in its features, which are in contrast to
Fourier transform, and its application in converting time domain signals to fre-
quency domain signals and vice versa. The wavelet transform (WT) identifies what
frequencies are present in a signal as well as when the signal experiences changes in
the time domain, and thus the wavelet has information about where, what scale,
and when the change occurred. This makes it very interesting for the study of high
peaks in the time domain, which causes distortions in the frequency domain.

The mentioned research topics are also known as peak to average power ratio
(PAPR) reduction or crest factor reduction (CRF) techniques. Any improvement of
time domain peaks is directly related to the power efficiency of the amplification
stage of telecommunication systems. Therefore, the study of the nonlinear behavior
and distortion in high power amplifiers (HPA) is relative to the use of wavelets in
this field. These topics are relevant to existing and future wireless telecommunica-
tion systems such as 5G and beyond.

I would like to thank all my family and friends for their encouragement and support. I
also acknowledge that this publication is associated with CONNECT - the Science
Foundation Ireland Research Centre for Future Networks and Communications.

Somayeh, Mohammady

School of Electrical and Electronic Engineering,
Technological University Dublin (TU Dublin),
Dublin, Republic of Ireland
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Chapter 1

Time Frequency Analysis of
Wavelet and Fourier Transform

Karlton Wirsing

Abstract

Signal processing has long been dominated by the Fourier transform. However,
there is an alternate transform that has gained popularity recently and that is the
wavelet transform. The wavelet transform has a long history starting in 1910 when
Alfred Haar created it as an alternative to the Fourier transform. In 1940 Norman
Ricker created the first continuous wavelet and proposed the term wavelet. Work in
the field has proceeded in fits and starts across many different disciplines, until the
1990’s when the discrete wavelet transform was developed by Ingrid Daubechies.
While the Fourier transform creates a representation of the signal in the frequency
domain, the wavelet transform creates a representation of the signal in both the
time and frequency domain, thereby allowing efficient access of localized informa-
tion about the signal.

Keywords: time-frequency analysis, Fourier transform, wavelet transform, signal
processing, vanishing moment

1. Introduction

The Fourier transform has been the basis of digital signal processing since the
development of the fast Fourier transform in 1965 by Cooley and Tukey in [1]. Its
use for analysis goes back much farther with the development of the Fourier trans-
form by Jean Baptiste Joseph Fourier in 1807 as a solution to thermodynamic
equations. By using the Fourier transform, we can take any signal and obtain the
amplitude of the sinusoids needed to recreate it. Then we can use this information
to obtain the power spectrum of the signal, or we modify the amplitudes and take
the inverse Fourier transform of the signal, which then filters the signal.

A fundamental limitation of the Fourier transform is that the all properties of a
signal are global in scope. Information about local features of the signal, such as
changes in frequency, becomes a global property of the signal in the frequency
domain. There have been various methods proposed to address this limitation; the
main two are the windowed Fourier transform and wavelets.

Gabor [2] created the windowed Fourier transform in 1946. It applies a window
function of a short duration to the signal and the Fourier transform is applied to the
resulting data. This method is frequently used; however, there are two limitations
with this method. The first is that, since the filtering window is constant, it creates
problems if the feature is larger or shorter than the window. The second is that the
time resolution is the same for high frequencies as it is for low frequencies. Since as
frequency increases, so does the rate of change of the signal, higher frequency
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Wavelet Theory

signals can have more information in the same period of time as lower frequency
signals, and so require a higher time resolution.

Wavelets overcome both these limitations in that the window is scaled in both
time and frequency. The term wavelet was introduced by Ricker [3] in 1940 to
describe the limited duration functions that he created to model seismic phenom-
ena. The first wavelet was created earlier, in 1910, by Haar [4] as an alternative to
the Fourier transform developed in 1807 by Fourier [5]. Work on the wavelet
transform preceded slowly through the twentieth century until the 1980’s when
work on them increased dramatically with the development of the continuous
wavelet transform. In the 1990, the discrete wavelet transform and its inverse
were developed, allowing filtering and compression of signals.

The wavelet transform has many more modes of operation and other options
than the Fourier transform. This is one of the key problems with the use of wave-
lets; we can feel overwhelmed by all the options we have available with them. This
chapter will go through some of these options and demonstrate their use.

2. Fourier transform

The Fourier Transform was first published in 1822 by Joseph Fourier [6].
It converts a mathematical function from the time domain to the frequency domain.
This enables us to find new properties of the function that would otherwise be
hidden. There are several different variations of the Fourier transform equation.
In this chapter, we are using the traditional electrical engineering equation

flo)= | foear &

to convert f(t) to the frequency domain.

The Fourier transform itself is for continuous functions. The Discrete Fourier
transform was developed for astronomical observations. The goal was to calculate a
trigonometric equation for the orbit of an object in the sky based on observations of its
ascensions and declinations at various points in time. Most datasets consist of discrete
points sampled in time. These can be converted to the frequency domain as well with
the discrete Fourier transform. The computational complexity of this is O(n?).

An interesting note about the Fast Fourier Transform is that it actually predates
the Fourier Transform. While the Fast Fourier Transform that we now use was
published in a paper by Cooley and Tukey [1] in 1967, a functionally equivalent
algorithm was found in an unpublished work by Carl Friedrich Gauss [7] that is
presumed to date to 1805. A fascinating history of the Fast Fourier Transform is in
[8]. Gauss was computing the discrete Fourier transform of 12 points and noted that
the problem could be broken down into subproblems that could simplify the num-
ber of steps used [5].

The Fast Fourier Transform reduces the computational complexity of the Dis-
crete Fourier Transform from O(n?) to O(n log, n). This enables efficient compu-
tation of time series. Table 1 shows how the computational complexity increases for
an O(n?) process versus an O(n log, n) process. The difference grows between the
two processes until at 1 million data points, the discrete Fourier transform would
require over 50,000 times the amount of time that the Fast Fourier transform
would require.

The drawback with the Fourier transform is that all signal information is across
the entire range of the transform. As stated in [9], “A local characteristic of the
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n 0(n?) O(n log, n) Ratio
10 100 34 2.94
100 10,000 665 15.04
1000 1,000,000 9966 100.34
10,000 100,000,000 132,878 752.57
100,000 10,000,000,000 1,660,965 6020.60
1,000,000 1E+12 1,9931,569 50171.66
Table 1.

Computational complexity of O(n*) versus O(n log, n).
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Figure 1.

Opening of Beethoven’s 5th Symphony [11].

signal becomes a global characteristic of the transform”. As illustrated by other
authors [10], the best way that this can be explained is by a score of music as shown
in Figure 1.

The score consists of many different notes, each with a finite duration, each
happening at a precise time. A Fourier transform of this signal gives you the average
amplitude of the individual frequencies over the entire piece, but obscures the
duration and location of the notes. The Fourier power spectrum of music often
approximates that of pink (1/f) noise [12]. That information is not lost, since the
Fourier transform is reversible, but is encoded in the phase of the Fourier
transform.

3. Windowed Fourier transform

In 1946, Gabor [2] proposed the windowed Fourier transform as a way to deal
with this problem. In it, a window function of a short duration is applied to the
signal and the Fourier transform is taken. This is repeated at different locations
in the signal. An example of the use of Hamming window function is shown
in Figure 2.

One limitation of the windowed Fourier transform is that the window length is
constant. When a signal feature is much shorter than the window, information
about it can be difficult to extract, since the any local property within the time span
of the window becomes a global property of the Fourier transform of the window,
as noted previously. Conversely, when a signal feature is larger than the windowing
function, information about it spans multiple windows, and can also be difficult to
extract.

Another limitation is that the time resolution for the windowed Fourier trans-
form is the same for high frequency signals as it is for low frequency signals. The
Heisenberg uncertainty principle states that the time resolution of the window is
inversely proportional to the frequency resolution. Since a high frequency signal
changes much faster than a low frequency signal, it would be ideal to have a
transform with better time resolution for high frequency portions of the signal, and
better frequency resolution for lower frequency portions of the signal.
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Figure 2.
Multiple Hamming window functions at successive locations in time.
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Figure 3.
Musical notation for middle C and Cg.

Going back to the music score, we can see this by looking at two different notes,
Middle C, and one that is two octaves higher, called C¢, as shown in Figure 3.

The frequency for middle C is 261.63 Hertz, and the frequency for C¢ is 1046.50
[13]. The frequency for C¢ is quadruple the one for Middle C, which means that for
every complete cycle of the middle C note, four complete cycles of Cg have
occurred, as shown in Figure 4. The windowed Fourier transform would have the
limitation that both notes would be treated equally, when the time resolution for Ce
needs to be 4 times that of middle C for analysis purposes.

Amplitude
1

Time (s)

0.p01 2 .003

-1

— MiddleC — G5

Figure 4.
Amplitude graph for Middle C and Cs.
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4, Wavelet transform

The wavelet transform overcomes the limitation of the windowed Fourier
transform by scaling the bandwidth of the filter inversely to the frequency.
According to [14], while each box of the windowed Fourier transform has the same
bandwidth, each level of the wavelet transform has the same Q as defined as

=_—. )

This gives the transform the desired time resolution for the higher frequency
portions of the signal and the desired frequency resolution for lower frequency
portions.

5. Continuous wavelet

The continuous wavelet has a long history spanning from the 1940’s to present.
In 1940, Norman Ricker first proposed the term wavelet and various mathematical
functions to model seismic waves as they traveled through the Earth’s crust in [3].
He further refined this in a series of papers [15-17]. This was the first continuous
wavelet. The functions in the time domain are given by

Ve, (1) = (1= 27 £, )e ™ I, 3)
called the three-loop equation, and
v, (t) = e I )

called the two-loop equation [18]. Graphs for both of these are in Figure 5.

The next development for continuous wavelets was in the 1980’s by Grossman
and Morlet, and expanded on by Stephen Mallat and others [19]. The term
continuous wavelet refers to the fact that it can be scaled to any time scale.
Discrete wavelets can only use specific time scales, usually a power of 2.

Wavelet analysis centers around the use of a wavelet function, also called the
mother function in literature, traditionally represented by the Greek letter upsilon
(y). A key requirement is that it has finite energy, i.e.

J ly(t) Pdt < oo. 5)
W, () W (1)
1.0 0.10
0 0.05
t
¢ 05 1.0
-1.0 205 [ 0.5 1.0
(2) (b

Figure 5.
Three loop (a) and two loop (b) Ricker wavelet equation with f,, = 1.
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The energy of the wavelet function is usually one. Functions such as sine and
cosine cannot be used as analyzing functions, because they violate this condition by
having infinite energy. There is an implicit requirement that, while it has finite
energy, it must have some energy, so the integration of the function must be greater
than zero.

The second requirement is known as the admissibility condition, which states
that the Fourier transform of the wavelet function cannot have a zero-frequency
component, i.e.

~ 2
Cg = J""'(fﬂﬂ df < oo (6)

This can only be satisfied if y(f) = 0, however this requirement is not absolute.
The Gabor wavelet is a complex wavelet that violates the admissibility condition.
The Morlet wavelet is a real valued wavelet that has a small but greater than zero
value for the zero-frequency value for its Fourier transform.

A third condition is usually that the wavelet function must have zero mean,
which means that it must oscillate, hence be a wavelet. Mathematically this is [20]

J\y(t) dt=0. (7)

Another condition is that the wavelet function has effective support. While the
wavelet functions for the continuous wavelets are usually mathematical functions
that extend to infinity, effective support means that the wavelet functions are
effectively zero outside of a certain range. Since the continuous wavelet functions
asymptotically approach 0 as x goes to either oo or -o0, the choice of the boundary of
this range is a bit arbitrary and can vary from paper to paper.

6. Continuous wavelet transform

Morlet and Grossman formalized the continuous wavelet transform in 1984 in
[21]. For the continuous wavelet transform, the wavelet function itself is shifted in
time and is scaled to do the wavelet transforms [22] as the following equation
illustrates:

Wa,b(t) z\/%\p<¥>,a,bER,a7é0. (8)

The continuous wavelet transform is defined as the integration of the function to
be analyzed with the complex conjugate of the wavelet function:

CWT{£(t), a,b} — J F(tpyy ()t 9)

In some papers such as [22], you will see the definition of the continuous
wavelet transform without the complex conjugate definition. Since most wavelet
functions are real valued and not complex, both definitions are equivalent, since the
complex conjugate of a real number is equal to that number. The difference only
comes up when the wavelet function is complex, such as the Gabor wavelet.
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An alternate formula for the continuous wavelet transform is

anfllf [ n — n)St}, (10)

where W, (s) is the transformed sequence, x,y is the original sequence, and qj* is
the complex conjugate of the analyzing wavelet function, n represents the time shift
or dilation, and s represents the scale. Usually the time shift is calculated over the
total number of data points of the function, and s goes over the scales that are being
analyzed to give a two-dimensional picture of the data [23].

7. Discrete wavelets

The first discrete wavelet was created in 1910 by Alfred Haar as an alternative to
the Fourier transform. This consists of two functions as shown in Figure 6, one a
scaling function and a wavelet function. The scaling function is the unit step func-
tion and the wavelet function consists of offsets from that.

One of the drawbacks of the continuous wavelet transform is that it creates a lot
of redundant data, since the coefficients between the scales are highly correlated.
Ingrid Daubechies developed the theory of discrete wavelets in 1988, which gener-
ates compact data by eliminating the redundancy. Daubechies created an entire
family of wavelet functions with the Haar wavelet forming the first level of the
Daubechies wavelet.

The wavelet function for discrete wavelets is modified to

_ j
Yik(t) = 1_ w(t k‘TOSO>,j,kEZ, so>1, (11)

j sy

where sy is the scale of the wavelet, usually 2 [20]. This condition as well as the
condition that j and k are integers restricts the wavelet to only certain scales. The
wavelet function has the properties of finite energy, oscillation, and the admissibil-
ity condition of the continuous wavelets, as well as the properties of compact
support, vanishing moments, and orthogonality.

Compact support means that the wavelet function is defined by a series of
coefficients over a finite region, and is zero at all other places. This contrasts with
the continuous wavelets, which, as mentioned, are mathematical functions and
have effective support in which the function continues to infinity, but is effectively
zero outside of a finite range.

t
1op oty
08 1.0 ’—I
06 05
04 . i
02 t ~10-05, OE'O 1520
-10-05 0510 1520 -1.0
ta) (b}

Figure 6.
Scaling (a) and wavelet (b) functions for Haar wavelet.
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Vanishing moments are obtained when the following condition defined
mathematically as

Jka(x)dx =0 (12)

holds true for all integers 0 < k < N, where N is the number of vanishing
moments of the function [24]. This property is useful for analyzing functions that
have an additive polynomial trend function given by

f(x) = g(x) + N(x). (13)

Here, g(x) is the function to be analyzed and N(x) is the polynomial trend
function (also termed a nuisance function in Economics).

The orthogonality condition removes the redundancy of the continuous wavelet
transform. As stated earlier, the discrete wavelet transform can only be used at
certain scales, most often a power of 2. Mathematically it is stated as

1 ifj=mandk=n

[ wisterwsae = { (14)

0 otherwise

An orthogonal basis ensures that the signal is represented in the most compact
way possible. However, by removing all the redundant information, this also
removes information to handle shift variance. The exact same function sampled at
two different places can yield very different results. In order to deal with this, some
discrete wavelet transforms retain some of this redundant information.

Each wavelet of the discrete wavelet family consists of two functions, a wavelet
function (), as in the continuous wavelet families, and also a new function called a
scaling function (¢). In literature, these are termed the mother and father functions
respectively. The scaling function has its own admissibility condition, which ensures
that it has the zero-frequency component that the wavelet function does not:

Jd)(x)dx =1 (15)

This is necessary so that a discrete wavelet transform terminates in a finite
number of steps and can completely regenerate the information in the signal [20].
Otherwise, the zero-frequency component could never be captured, since no
amount of scaling value can cause the wavelet filter to have a zero-frequency
component.

In addition, as specified in [25] the scaling equation is defined in terms of a finite
set of coefficients py that are defined by the following equation

b(x) = Pd(2x—k), (16)
that adheres to the following conditions as specified in [25] as well:
P(z) = (1/2)3, pek, (17)
P(1) = 1 (Averaging Property), (18)
|P(z)|> = |[P(~2)|* = 1 for |z| = 1,and (19)
|P(e")| >0 for |t| <m/2 (20)

10
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The wavelet function is defined by

w(x) = (1) Prdx — k), (1)

keZ

where | is the length of the set of coefficients, so that the wavelet coefficients are
basically the scaling coefficients in reverse order with alternating signs. These
coefficients are used to implement the discrete wavelet transform as a filter bank of
Finite Impulse Response (FIR) filters. Graph of the scaling and wavelet functions
for Daubechies level 2 wavelet are shown in Figure 7 and the frequency response is
shown in Figure 8. As with the Haar wavelet, the wavelet function is a high pass
filter and the scaling function is a low pass filter. Both are symmetric around =/2.

Different papers and software implementations have different coefficients for
the Haar and Daubechies wavelet, depending on how they are normalized and
whether the scale parameter from Eq. (8) is included is included in the filter. The
coefficients for the Haar and the Daubechies level 2 wavelet are in Tables 2 and 3
with b defined by the implementation. Mathematica uses 2 for b, which would
normalize the sum of the coefficients to 1. PyWavelets uses v/2 for b. In any
implementation, the filter coefficients for the wavelet filter are the coefficients for
the scaling filter in reverse order with every other coefficient multiplied by —1.

60 v

15
10 10
05y |
0.5 {
~2 = V 2 3 4
- t ~1.0
-1 1 N 3 4 15

(a) (b)

Figure 7.
Scaling (a) and Wavelet (b) functions for Daubechies level 2 wavelet.
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Figure 8.
Frequency response of scaling function (ved) and wavelet function (blue) for Daubechies level 2 wavelet.
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Scaling coefficients Wavelet coefficients

co 1/b do 1/b

c 1/b d; —1/b

Table 2.
Coefficients for Haar scaling and wavelet functions.

Scaling coefficients Wavelet coefficients

Co 14+v3 do 1-V3
4 4b

[ 343 d; —3+V3
4b 4b

[ 3-V3 d, 3+V3
ab 4b

C3 1-V3 ds -1-V3
b 7

Table 3.
Coefficients for Daubechies level 2 scaling and wavelet functions.

8. Discrete wavelet transform

The class of discrete wavelet functions has many transforms available with the
discrete wavelet transform in Figure 9 the most common. Since this was the trans-
form introduced with the Haar wavelet, it is sometimes referred to as the Haar
transform [26] as well as the decimated wavelet transform [10]. Essentially, it
works as a pyramid algorithm, where the number of coefficients of each lower level
is roughly twice that of the preceding level, but each coefficient is influenced by
half as much of the data set as the preceding level. Each level has two sets of
coefficients, one is called coarse and the other is called details.

In Figure 9, g is the scaling filter defined by the set of scaling filter coefficients
and h is the wavelet filter defined by the set of wavelet filter coefficients. At each
level, the detail coefficients (W) are outputs, except for the final level, where the
coarse coefficients (V) are given as outputs as well. Collectively, this set of coeffi-
cients contains enough information to reconstruct the signal perfectly.

One key part of the discrete wavelet transform is the down sampling operator,
which is a function that removes every other position from a sequence. An example

would be the sequence {a, b, ¢, d, e, f, g, h} would be {a, ¢, e, g} or {b, d, f, h}, after

Output
h —@ W,
2 h Wi
@

)
@

JROIN
@

Figure 9.
Diagram of a three-level discrete wavelet transform.
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the down sampling operator is applied, depending on whether the even or the odd
positions are eliminated. Both are valid, however, by convention with the discrete
wavelet transform, the even positions are eliminated, leaving only the odd posi-
tions. The down sampling operator is what makes the discrete wavelet transform a
pyramid function and also reduces the set of coefficients to the minimum amount
necessary to reconstruct the signal.

A problem with the decimation operator is aliasing. This is when different
sequences map to the same sequence after the application of the operator. An
example would be that the sequences {a, b, ¢, d, e, f, g} and {a, h, ¢, i, e, j, g} would
both map to the sequence {a, c, d, g}. Therefore, just given the sequence {a, ¢, d, g},
it would be impossible to reconstruct the original. The filters of the discrete wave-
lets are designed to compensate for this, ensuring that the original sequence can be
recovered. The combination of these filters with the down sampling operator is
referred to as decimation.

The discrete wavelet transform also has an inverse transform. This process
combines as described in Figure 10 to form a perfect reconstruction of the signal,

where § is the inverse scaling filter coefficients and % is the inverse wavelet filter
coefficients. Just as the discrete wavelet transform had the decimation operator, the
inverse transform has the upsampling operator. This takes a sequence and inserts 0
at every other position. For example, the sequence {a, ¢, d, g} would be {a, 0, ¢, 0, d,
0, g, 0} after the operator is applied.

Implementing the discrete wavelet transform as a finite impulse response filter
and using decimation gives it a computational complexity of O(n). As Table 4
shows, an O(n) process can be much faster than an O(n log, n) process such as the
fast Fourier Transform. At 1 million samples, an O(n) process requires almost 20
times less operations than an O(n log, n) process (Table 4).

Input

Wi

Wo —

Vo —

Figure 10.
Diagram of a three-level inverse discrete wavelet transform.

n O(n log, n) O(n) Ratio
10 34 10 3.40
100 665 100 6.65
1000 9966 1000 9.97
10,000 132,878 10,000 13.29
100,000 1,660,965 100,000 16.61
1,000,000 19,931,569 1,000,000 19.93
Table 4.

Computational complexity of O(n log, n) versus O(n).
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9. Stationary wavelet transform

Another wavelet transform for discrete wavelet functions is the stationary
wavelet transform, also known as the undecimated discrete wavelet transform.
Essentially the stationary wavelet transform is the discrete wavelet transform with-
out the decimation operation for the data. Whereas the number of coefficients for
each level is half that of the preceding level in the discrete wavelet transform, the
number of coefficients is the same for each level in the stationary wavelet
transform.

The procedure is diagrammed in Figure 11, where g, is the set of the scaling
filter coefficients and h,, is the set of the wavelet filter coefficients. The reason that
the scaling filter and wavelet filter coefficients are different for each level is that
instead of the decimation operator being applied to the wavelet data coefficients
after each level, the upsampling operator is applied to the wavelet and scaling filter
coefficients. The wavelet and scaling coefficients for each level are upsampled from
the previous level, as shown in Figure 12.

Like the discrete wavelet transform, the stationary wavelet transform has an
inverse transform, as shown in Figure 13. The difference between this and the
inverse discrete wavelet transform is the absence of the upsampling operator.

As with the stationary wavelet transform, the filter coefficients for the inverse
stationary wavelet transform are changed instead of the data. In this case, the filters
are down sampled. The retention of redundant data in the stationary wavelet

_ Qutput
ho » W,
v, hy » W,
gV, h, » Wy
g [ Vv,
2 * Vo

Figure 11.
Diagram of a three-level stationary wavelet transform.

8n 8n+1

hn hn+ 1

Figure 12.
Diagram of a filter upsampling for the stationary wavelet transform.
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Input

W,

Wi

Wo

Vo

Figure 13.
Diagram of a three-level inverse stationary wavelet transform.

transform helps to make it translation invariant, which is useful for filtering appli-
cations (Figure 13).

Since the decimation step is not used, the stationary wavelet transform has a
computational complexity of O(n log, n), the same as the Fast Fourier Transform.
However, there is also memory complexity to consider. While the Fast Fourier
Transform and the Discrete Wavelet Transform has an O(n) memory complexity,
the stationary wavelet transform has an O(n log, n) memory complexity. Therefore,
the output will always be larger than the input.

10. Discrete wavelet packet transform

The two previous transforms applied the detail and the coarse filters to the data
at each level. The output of the coarse filter is given as the input to the next level
and the output of the detail filter at that level is included in the set of the outputs of
the transform. In the final level, the output of both the detail and the coarse filters
were included in the set of outputs of the transform; however, that is not the only
possibility. The packet transform creates a binary tree where the detail and coarse
filters are applied to each node, diagrammed in Figure 14. The output of the detail

Output

-+ Coarse, Coarse, Coarse
— Coarse, Coarse, Detail
5 Coarse, Detail, Coarse

= Coarse, Detail, Detail

Input

= Detail, Coarse, Coarse

> Detail, Coarse, Detail

= Detail, Detail, Coarse

-+ Detail, Detail, Detail

Figure 14.
Diagram of a three-level discrete wavelet packet transform.
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filter becomes one child and the output of the coarse filter becomes the other. This
process is repeated until the final level is reached, creating a set of output coeffi-
cients where each set is identified by the sequence of filters applied to it.

11. Stationary wavelet packet transform

The stationary wavelet packet transform is yet another transform for discrete
wavelet functions. Basically, it combines the stationary wavelet transform with the
wavelet packet transform, as diagrammed in Figure 15. Instead of the decimation
operator, the filters themselves are upsampled for each level. The transform creates
a binary tree, as with the discrete wavelet packet transform, where both filters for
each level are applied at each node. As with the wavelet packet transform, the
output from the detail filter becomes one child and the output from the scaling filter
becomes the other, and the process is repeated until the final level is reached. Each
set of output coefficients are also identified by the sequence of filters applied to it,
with the difference that since there is no decimation applied between levels, the
number of each set of output coefficients is the same as the input data. This leads to
the total number of output coefficients to be 2 times the number of levels multiplied
by the length of the input data. Both the discrete wavelet packet transform and the
stationary wavelet packet transform have inverse transforms.

The wavelet packet transform introduces many more possibilities for use, some
of which are discussed here. Depending on the application, you can do different
combinations of the scaling and wavelet filters. Computational complexity depends
on the filter combinations selected. If it is taken to the maximum level with the
maximum filter combinations, then the discrete wavelet packet transform has a
complexity of O(n log, n) and the stationary wavelet packet transform has a
complexity of O(n?).

o Output
253 » Coarse, Coarse, Coarse
21
h, » Coarse, Coarse, Detail
2o
22 » Coarse, Detail, Coarse
hy
h, » Coarse, Detail, Detail
Input —
233 » Detail, Coarse, Coarse
g1
h, » Detail, Coarse, Detail
ho
22 » Detail, Detail, Coarse
hy
h, » Detail, Detail, Detail
Figure 15.

Diagram of a three-level stationary wavelet packet transform.
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12. Conclusions

The Fast Fourier Transform has been listed as one of the top algorithms of the
20th century [27]. Its development has been instrumental to digital signal processing.
However, recently a new algorithm, the wavelet transform, has started to have a
significant impact on digital signal processing. The wavelet transform improves
on the Fourier Transform in that it can analyze a signal by time and frequency
simultaneously, thereby easily recovering localized signal information. This is key
to many applications, including fractal and multifractal analysis, compression, and
filtering.

The wavelet transform introduces many possibilities for use and this chapter has
only touched the surface of it. Different wavelets can be used and the transform
itself can be customized to fit the application as shown with the wavelet packet
transform. Future research will be to determine the proper combination of features
for various applications. In addition, there are other possibilities, such as the lifting
wavelet transform, which wasn’t covered in this chapter. Only orthogonal wavelets
that use the same set of wavelets for the forward and inverse transform were
covered in this chapter. Biorthogonal wavelets that use different wavelets for the
forward and inverse transforms are also available.

The key to wavelet compression and filtering is the sparse signal representation
generated by the wavelet transform. The wavelet transform can reduce a signal to
minimal set of coefficients. Coefficients that are near zero can be rounded to zero,
reducing the size of the signal. In addition, fractional parts of the coefficients can be
rounded, also reducing signal size. One of the first uses of this was to compress
fingerprints for the FBI [28]. As stated in [29], in the 1990’s the FBI had 25 million
cards, each containing 10 fingerprints. Digitized, each card contained 10 megabytes
of information, for a total of 250 terabytes. Using the two-dimensional discrete
wavelet packet transform gives a compression ratio of 20 to 1, enabling the archive
to be stored on approximately 12.5 terabytes, while still being able to search and
match unknown fingerprints against the ones in the archive. The recently devel-
oped JPEG format at the time was based on using the discrete cosine transform on
blocks of the image, which left unacceptable artifacts in the image.

JPEG 2000 was developed using the two-dimensional wavelet transform to be
the successor to JPEG, although it hasn’t caught on. JPEG 2000 allows both lossy
and lossless compression. It also doesn’t have the lossy artifact generation that the
JPEG format has as mentioned previously. Both lossy and lossless compression use
the discrete wavelet transform, the difference is that the lossless one uses a wavelet
transform that is reversible, while the lossy one uses a wavelet transform that
introduces quantization noise that making it irreversible.

Compressed sensing deals with the fact that we that we can obtain a vast amount
of information and a lot of it can be discarded and still retain what is relevant. As
stated in [24], “singularities and irregular structures often carry the most important
information in signals.” This is due to the fact that they represent changes to one or
more of the properties of the signal. An example of this would be the edges in an
image. Compressed sensing removes the redundant, unnecessary information from
a signal and analyzes the remaining part of the signal. This is an ideal application for
the wavelet transform.

The discrete wavelet transform has been used for Iris recognition for biometric
identification in patent US 20020150281A1 [30]. After taking a picture of the eye,
the iris is extracted from the image and then converted to polar coordinates. Using
the discrete wavelet transform, the high frequency components are extracted,
which are the detail coefficients as referenced in this paper. These form the charac-
teristic vector that is used to identify an iris from the previously recorded data.
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The wavelet transform can provide an efficient way to filter white noise from a
signal. The procedure consists of applying one of the discrete wavelet transforms to
the data and then executing a threshold algorithm that modifies the detail coeffi-
cients. After the coefficients are modified, then the inverse transform is applied; the
resulting output is a representation of the signal with the noise component signifi-
cantly reduced.

There are numerous packages available for experimenting with the wavelet
transform. The discrete and stationary wavelet transforms are available in
Mathematica, Maple, Matlab, R, and PyWavelets to name a few, with the wavelet
packet transform available in Mathematica, Matlab, and PyWavelets.

The wavelet transform provides many possibilities for signal analysis depending
on the application. A few potential applications were touched on here. The reader is
encouraged to develop their own uses and applications for the wavelet transform.

Notes

A lot of this has been previously published under my Master’s thesis [31].
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Chapter 2

Wavelet Theory: Applications of
the Wavelet

Mohammed S. Mechee, Zahir M. Hussain
and Zahvah Ismael Salman

Abstract

In this Chapter, continuous Haar wavelet functions base and spline base have
been discussed. Haar wavelet approximations are used for solving of differential
equations (DEs). The numerical solutions of ordinary differential equations (ODEs)
and fractional differential equations (FrDEs) using Haar wavelet base and spline
base have been discussed. Also, Haar wavelet base and collocation techniques are
used to approximate the solution of Lane-Emden equation of fractional-order
showing that the applicability and efficacy of Haar wavelet method. The numerical
results have clearly shown the advantage and the efficiency of the techniques in
terms of accuracy and computational time. Wavelet transform studied as a mathe-
matical approach and the applications of wavelet transform in signal processing
field have been discussed. The frequency content extracted by wavelet transform
(WT) has been effectively used in revealing important features of 1D and 2D
signals. This property proved very useful in speech and image recognition. Wavelet
transform has been used for signal and image compression.

Keywords: Haar wavelet, continuous wavelet function, wavelet transform, B-cubic
spline base

1. Introduction

Wavelets are special mathematical functions which have advantages over tradi-
tional Fourier methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. The fields of applied mathematics such as quantum
physics, seismic geology and electrical engineering have used and developed inde-
pendently wavelets during last twenty years ago which leads to new wavelet applica-
tions such as image compression, radar, and earthquake prediction. Haar wavelet was
initiated and independently developed by some authors. Wavelets can be summa-
rized as a family of functions constructed from transformation and dilation of a single
function called mother wavelet. From various types of continuous and discrete
wavelets, Haar wavelet is the discrete type of wavelet which was first proposed and
the first orthonormal wavelet basis is the Haar basis. Differential equations (DEs) are
most important tools in mathematical models for physical phenomena. Many basis
used to approximate the solutions of DEs. Haar wavelet is simple basis used to
approximate the solution of DEs. [1] established a simple numerical method based on
Haar wavelet operational matrix of integration for solving two dimensional elliptic
partial differential equations (PDEs) of the form V2u(x,y) + ku(x,y) = f(x,y), [2]
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used Haar wavelet operational matrix for the numerical solutions of FrDEs, [3] used
Haar wavelet-quasi linearization technique for FrDEs, [4] used Haar wavelet method
for solving FrPDEs numerically, [5] applied Haar wavelet transform to solve integral
equations (IEs) and DEs, [6] solved 2D and 3D Poisson equations and biharmonic
equations by the Haar wavelet method while [7] presented a numerical method for
inversion of Laplace transform using the method of Haar wavelet operational matrix.
The implementations of FrDEs which are used as mathematical models in many
physically significant fields and applied science. Recently, the approximated solutions
of the FrDEs have been studied using Haar wavelet method which shows to be more
suitable to approximate the solutions of them. Nowadays, Haar wavelets are most
widely and simplest due to their simplicity, the Haar wavelets are effective tools for
approximating solutions of DEs. When this type of problem arises, mainly approxi-
mated solutions come to be available. From the many approximated methods, Haar
wavelet approach is one to find the solutions of DEs. If the approximated solution
gives less error than other methods, then, the method be an efficient method. How-
ever, one of interesting applications of wavelets bases is the approximation of DEs.
Also, Haar wavelet technique is used to approximate the solutions of DEs of
fractional-order. Wavelet transform is a mathematical approach widely used for
signal processing applications. It can decompose special patterns hidden in mass of
data. Wavelet transform has the advantage to simultaneously display functions and
manifest their local characteristics in time-frequency domain. Wavelet transforms
have had tremendous impact on the fields of signal processing, signal coding, esti-
mation, pattern recognition, applied sciences, process systems engineering, econo-
metrics, and medicine. Wavelet transforms are mainly divided into two groups;
continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The
discretization of a voice transform generated by a representation of the Blaschke
group on the Hardy space of the unit disk leads to the construction of analytic rational
orthogonal wavelets. In this chapter, we introduce the concept of continuous wavelet
functions together to the approximations solutions of DEs with ordinary- or
fractional-order using Haar wavelet functions. Also, a comparison between Haar
wavelet base with cubic spline base has been introduced. Wavelet transform as a
mathematical approach has been discussed together to the applications of wavelet
transform in signal.

1.1 Objectives of chapter
This chapter aims at achieving the following objectives:
1.To introduce continuous wavelet functions.

2.To use Haar wavelet approximations in solving of differential equations (DEs).

3.To imply Haar wavelet functions to approximate the solutions of DEs of
fractional-order.

4.To compare Haar wavelet base with cubic spline base.
5.To study wavelet transform as a mathematical approach.
6.To discuss the discrete wavelet transform (DWT).

7.To study the applications of wavelet transform in signal processing field.
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1.2 Scope of study

This chapter entailed the studying of continuous wavelet functions and Haar
wavelet approximations. Wavelet transform introduced as a mathematical
approach with some of applications of wavelet transform which is widely used in
signal processing field. The approximation of DEs using Haar wavelet base was
implemented with comparing to B-cubic spline base.

2. Preliminary

In this section, we introduce the definitions of two types of continues Haar
wavelet functions and linear, quadratic and cubic spline functions base.

2.1 Continues Haar wavelet functions

Haar functions have been introduced by Hungarian mathematician. The orthog-
onal set of Haar functions is defined as a square waves with magnitude of +1 in
some interval and zero elsewhere. The first curve is that 4o (x) = 1 during the whole
interval 0 <x <1. The second curve &;(x) is the fundamental square wave, or
mother wavelet which also spans the whole interval [0, 1]. All the other subsequent
curve are generated from %, (x) with two operation translation and dilation. Haar
wavelet functions defined as follows on (0, X] [8].

ho(x) = \/iz\_/[ 0<x<X, 1)
X
1
h1(x):\/—1\—/1 1 %{Sx<X (2)
0 ow.
1
- k—>
\/2_], —X_x< TZX
1
hi(x) = /i p_ 1 L (3)
—V, 2x<x<—X
2 2
0, 0.Ww.

fori=1,2,3,..,m—1, M=2andi =2/ +k — 1. We say that %, (x) is mother
function and ; (x) = 27h; (2/x — k) fori = 2,3, ...,m — 1. In general, we have the

following: Ao (x) = Iy <2ka — 2’%) , wheren =2/ + k,j>0,0<k< 2J. Note that:
X
(hp (%), hy (x)) = Johp (x)hg(x)dx = " Spg-

To approximate f(x) using Haar functions consider f(x) = Z:”:Blaihi(x)..
Then,

 Johitohj(x)dx m (¥ Vhodr
=" [ (x)dx _XJ Jlhsd
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for
j=0,1,2,..m—1
All Haar wavelets are orthogonal to each other:

27, i=j=2/%

1
hi(x)hd :27].5,“:
Jo (e)hjx g {o, i#j

2.2 Spline functions

The spline is used to refer to a wide class of smooth functions that are used in
applications requiring data interpolation [9, 10]. The data may be either one-
dimensional or multi-dimensional. Spline functions for interpolation are normally
determined as the minimizers of suitable measures of roughness (for example
integral squared curvature) subject to the interpolation constraints. Smoothing
splines may be viewed as generalizations of interpolation splines where the func-
tions are determined to minimize a weighted combination of the average squared
approximation error over observed data and the roughness measure. For a number
of meaningful definitions of the roughness measure, the spline functions are found
to be finite dimensional in nature, which is the primary reason for their utility in
computations and representation. For the rest of this section, the focus is entirely on
one-dimensional, polynomial splines and the use of the term spline in this restricted
sense. The base @ (x) = {®1(x), P2(x), ..., P,(x)} is called spline base of order » if
the basis functions satisfy ®;(x) € C”’l(—oo, oo) fori = 1,2, ...,n. First of all, we
partition [0, 1] by choosing a positive integer # and defining 2 = 1. This produces

the equally-spaced nodes x; = ik, for eachi = 0,1, ...,n + 1. We then define the

basis functions {¢(x)}/; on the interval [0, 1].

2.2.1 Linear spline

The simplest spline is a piecewise polynomial function, with each polynomial
having a single variable. The spline S takes values from an interval [, b] and maps
them to R where S : [4,b] — R Since S is piecewise defined, choose k subintervals
to partition [a, b]. The simplest choice of spline functions basis involves piecewise-
linear polynomials. The first step is to form a partition of [0, 1] by choosing points
X05X15 - >Xpt1. Letting h; = x4 — x;, for eachi = 0,1, ...,n. We have defined the
basis functions @4 (x), ®;(x), ..., @, (x). Linear spline is linear polynomial S(x)
which satisfies S(x) € C(—o0, o0). To construct linear spline base in which it can
satisfy the boundary conditions ¢;(0) = ¢;(1) fori = 1,2, ..., n. we have constructed
the following component linear spline functions:

0, 0<x<x1,

1

(x —xi1), xi-1<xZx,
)
®D;(x) = (4)

1
. (Xi41 — %), Xi <X <Xii1,

1
o, X1 <x <1
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Figure 1.
(a) Linear spline and (b) quadratic spline (c) cubic spline function and (d) compound cubic spline function.

for eachi =1,2, ...,n. (See Figure 1(a), Table 1(a)). We can prove that the
functions are orthogonal because ®;(x) and ®@;(x) are nonzero only on (x;_1,x;11)
such that @;(x)®;(x) = 0 and ®}(x)®’(x) = 0ifi #,j — 1,j + 1, consequently,
®;(x) € C(—o0,00) fori=1,2,3,..n.

x; D;(x:) D (x:) D (x:)
Xi 1 0
Xi 1
Xit1 0
(@)
Xi1 % 2
X; 1 0
Xit1 i -2
(b)
Xi2 0 0 0
: : 3
Xi 1 0 _%
Xit1 1 3 3
Xis2 0 0 0
(©)

Table 1.

Values at node points (a) linear spline, (b) quadratic B-spline, and (c) cubic B-spline.
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Exact and Numerical Soiutions

Exact and Numerical Soiutions

Exact and Numerical Solutions

Figure 2.
Comparison of Haar wavelet and Spline Base with exact solutions for examples (a) 3.5 (b) 3.6 (c) 3.7.

2.2.2 Quadratic B-spline

Quadratic B-spline is quadratic B-Spline polynomial S(x) which satisfy
S(x) € C*(—o0, o). To construct quadratic spline base in which satisfy the boundary
conditions ¢;(0) = ¢,;(1) fori = 1,2, ...,n we have constructed the following com-
ponent quadratic spline functions (Figure 2):

(42 — %)% = 3(xita —x)° + 30 — %)% il
1 (x,-+2 - x)2 - 3(3Ci+1 - x)z; [xi;xi+l]§
$i(x) = 2 , ©)
(xi42 — %) [Xit13Xiga)s
0; o.w.

See Figure 1(b) and Table 1(b).

2.2.3 Cubic B-spline

Many researchers used B-cubic spline base which defined as follows:

(R x< —2

2 +x)?, —2<x< —1
1 2+x)°—4(1+x)% —1<x<0

2-x)°-41-x)? o0<x<1

2-x)3, 1<x<2

0,x>2.

Consequently, S(x) € C3(—oc0, o).

To construct cubic spline base in which satisfy the boundary conditions ¢,(0) =
¢;(1) fori = 1,2, ...,n we have constructed the following component cubic spline
functions:
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x x+h .
s(ﬁ)—4s< . ) i=0
x—h x+h .
S(h >‘S<h ) =1

hi(x) = S(’C_ih), 2<i<n @)

h

S(x—hnh>s(x(n2-2)h>’ o

s(xi_ ("h+ 1)h> - 4S(x4_ (7;+ z)h), i=n+1

See Figure 1(c), (d) and Table 1(c).

3. Approximation of differential equations (DEs)

Mathematics has several tools to describe the problems in real life, engineering
and science. ODEs and PDE:s are significant tools in applied mathematics. They
played significant rule in describing the mathematical models in applications of
engineering, science and economics. High-order DE arises in some fields of engi-
neering and science such as nonlinear optics and quantum mechanics. The approx-
imated solutions of DEs should be studied when the ODEs and PDEs have no
analytical solutions or it is very difficult to find the analytical solutions. The
numerical or approximated solutions of DEs are very important in scientific com-
putation, as they are widely used to model real life problems. In this section, we
have studied the approximation solutions of DEs using spline and Haar wavelet
bases (Table 2).

3.1 Approximation of ordinary differential equations (ODEs)

In this section, we have studied approximation solutions of ODEs using spline
and Haar wavelet bases.

n\t 0 0.25 0.5 0.75 1

5 0 1.3345e-3 0.0015 5.0673e-3 3.6339e-3
0 1.311e-3 0.0005 5.0683e-3 3.6229e-3

10 0 1.3232e-5 2.6342e-5 1.5634e-6 4.1443e-5
0 1.3211e-5 2.1212e-5 1.2341e-6 4.0101e-5

50 0 2.3416e-7 1.6611e-7 5.1126e-7 2.1233e-7
0 2.1414e-7 1.2211e-7 5.2233e-7 2.1266e-7

100 0 4.9383e-8 3.4453e-8 5.0347e-8 6.4332e-7
0 4.9121e-8 3.4564e-8 5.0111e-8 6.4222e-7

Table 2.

Absolute ervors of example 3.1 using numerical collection method with (a) polynomial basis (b) Haar wavelet
basis.
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3.1.1 Approximation of DEs using spline functions

In this section, we have introduced the linear, quadratic and cubic B-spline base
and their applications in solving ODEs. The operational matrices of the fractional-
order integration of the B-spline base has been studied.

3.1.2 Rayleigh-Ritz Metod

Rayleigh-Ritz metod is variational technique for solving boundary value
problems (BVPs) which is the first reformulated as a problem of choosing,
from set of all sufficiently differentiable functions satisfying the boundary
conditions, the function to minimize a certain integral. To describe the
Rayleigh-Ritz method, we consider the approximation of the solution to a linear
of two-boundary value problem from beam-stress analysis. This BVP is described
by the following DE:

70% (P(x)z) +q(x)y(x) =f(x), 0<x<1. 8)

with boundary conditions

The DE describes the deflection y(x) of a beam of length 1 with variable cross
section represented by ¢(x). The deflection is due to the added stresses p(x) and
f(x). We have the following functional that is equivalent to Eq. (8).

1) = |

Jo

(PG @ () + 9(e0) () = 2f (x)u(x) ). ©)

An approximation
u(x) =y ®(x). (10)

to the solution y(x) of Eq. (9) can be obtained by finding the constants
€1,€2,C3, ...C, to minimize the integral Eq. (9): When considering I(c1,¢2,¢3, ...c,) as
a function of ¢1, ¢, ¢3, ...c, to have

oa_,
ac]-
fori=1,2,3,...,n.
Lastly, we have obtained the linear system of equations Ac = b, where,
1
a5 = | (12100 x) + ()01 (x) ) )o

and
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fori,j = 1,2, ...n [10]. To impalement the Ritz method we consider the
following problems.

Example 3.1 [8]

Consider

Y'(t) +y(t) =12 —t+2, 0<t<1, (11)

subject to the initial condition is

with the exact solution y(¢) = 1> — ¢
Let n = 5, then,

1
! / m
a5 = L( ) + i)y ) ) = 3
and
1
b — J (2 — x + 2)hs (x)d,
0
fori,j =1,2, ...n. However,
[ 1 0 1 1 .0234375
c=|—5Y, s T >
37 4/27 42 2
Example 3.2 [8].
Consider
y"(t) + 2*y(t) = 0, 0<t<1, (12)

subject to the initial condition is

with the exact solution y(¢) = sinzt
Let n = 10, then,

m

x %9

a; = E (—hj ()l (x) + ()l j(x))dx = 7

and

fori,j =1,2, ...n. However, c = [1,1,2,3,1,1,1,1,1,1].

3.1.3 Analysis of collection method

Let the differential operator L defined on the interval I = [a, b]. Define the
collocation points x; = a +ih fori = 0,1, ...,n; where h = b=2 3nd n is the number

n
of partitions on I. Discretize the functions
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D(x) = {D1(x), Py(x), D3(x), ..., Py(x)}.

Suppose

y(x) = i0i¢i(x)~

i=1

Put the approximation of y(x) at the point x; in the DE, we get the function
coefficient matrix ®;; = ®;(x;) and ®;; = @} (x;). The matrix of coefficients has the
dimension 7 x n. Any function y(x) which is square integrable in the interval (0, 1)
can be expressed as an infinite sum of Haar wavelet. The above series terminates at
finite terms if y(x) is piecewise constant or can be approximated as piecewise
constant during each subinterval.

3.2 The quadratic B-Spline Base
Consider the quadratic B-spline Base

S(x) = {S1(x), S2(x), S3(%), ..., Su(x)}

Suppose y(x) = > " ;¢:Si(x). The general ODE of first-order has the following
form

a0t/ (1) + ar(ey(e) =f(1),  0<t<1, (13)

subject to the initial condition is y(0) = a..
Example 3.3 [8].

y'(t) +y(¢) = sin(¢) + cos (¢), 0<t<1, (14)

subject to the initial condition is

The coefficients are ag(t) = a1(t) = 1and f(¢) = sin (¢) + cos (¢)..
Consider the quadratic B-spline base, then, the matrix of coefficients has the
following formula:

Ay = Si(t;) +Si(t5),
and
b; = sin (t;) + cos (t;)

fori,j =1,2, ...,n. By solving the system of coefficients Ac = b we will obtain
the coefficients of approximation.

3.3 Approximation of DEs using Haar wavelet Functions Base

We introduce the Haar wavelet technique for solving general linear first-order
ODEs [11].
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3.3.1 First-order linear ODEs

Consider the following general linear first-order ODE:

¥(6) +FEW(e) = g(6); 0 <t <asf (¢) £ 0, (15)
¥(0) = 4. (16)
Substituting ¢ = ax in Eq. (15) which reduces to
y'(%) + af (x)y(x) = ag(x); 0 <t < Lf (¢) # O, 17)
y(0) = 4. (18)

We assume that

Y (x) = Zcihi(x)’ (19)

where ¢js for i = 1,2, ... )k are Haar coefficients to be determined. Integrating
Eq. (19) with respect to x, we get the following

k
y(x) =+ ciPri(x). (20)
i=1
Substituting Egs. (19) and (20) in Eq. (17), we get the following system of
equation:
k k
Z cihi(x) + af (x) Z cihi(x) = ag(x). (21)

i=1 i=1

Putx =¢; forj =1,2, ...,n.in Eq. (21), we get linear system in which the matrix
of coefficients has the following formula:

A,’j = (1 + ﬂlf(t,'))h,' (tj)
and
bi = ag(t;),

fori,j =1,2, ..., n. By solving the linear system of coefficients Ac = b, we
obtain the coefficients of approximated solution.

3.4 Approximation of fractional differential equations (FrDEs)

In this section, we have studied approximation of DEs using spline and Haar
wavelet bases.

3.4.1 Operational matrix of the fractional ovder integration of the B-Spline Base

In this section, we have evaluated the operational matrices of the fractional-
order integration of the linear, quadratic and cubic B-spline Base.
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3.4.2 Linear spline

This subsection examines the cubic linear spline operational matrix FSa of
integration of the fractional order as follows:

0, 0 <x Sxi—l)
1
. - x;-’fll, Xi_1<x Z<Xj,
g = L)k (22)
1 1
D) Loty L ahat ™), i< S,
i—1 4
0, xi1<x <1

where x; 1 =x —x;_1,%;, = X — x;.

3.4.3 Quadpratic B-spline

This subsection introduced the quadratic B-spline operational matrix FSa of
integration of the fractional order as follows:

a _ 1
S =T s
where

J= (23)
2x — 1) —6(x —2)" +6(x—3)""%  xe[3,4);

3.4.4 Cubic B-spline

This subsection introduced the cubic B-spline operational matrix FSa of inte-
gration of the fractional order as follows:

» B 1
]x(x) =] * m,

where
0, x< —2
33, —2<x< -1
§96”+3 — 6x913, -1<x<0
J= 3 24)
~x e 4 9xg 0<x<1
3
“x3 —6x T 4 9T — 6§ 1<x<2
0, x>2,

where x; = x—i;1 = 1,2,3.
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3.5 Numerical Solutions of fractional differential equations
3.5.1 Numerical solutions of fractional differential equations using Haar base

We will introduce the Haar wavelet technique for solving FrDEs.
Example 3.4 [8].
Consider the general fractional-order linear DE

Y (t) =A)+B(t)y) =C(t);0<t<a;n —1<a<mn, (25)
subject to initial conditionsyj(O) =ajforj=0,1, ..,n — 1. where A(t), B(t) and
C(z) are given functions, are arbitrary constants and « is a parameter describing the
order of the fractional derivative. The general response expression contains a
parameter describing the order of the fractional derivative that can be varied to

obtain various responses.
Substituting ¢ = ax in Eq. (25) which reduces to

y%(x) =aA(x) +aB(x)y(x) =C(); 0<x<1; n—1<a<n, (26)
yj(O):aj;gzo,l, vy — 1. (27)

We assume that
y(x) = ciilx). (28)
If « =1, integrating Eq. (28) once, we get
k
y(x)=ao+ ZciFH%),-(x). (29)

i=1

Substituting Eqs. (28) and (29) in Eq. (26), we get

k
Zcihi(x) —aA(x) —aB(x <a0 + ZC1FH1 ) = C(x), (30)
i—1
If @ = 3, integrating Eq. (26) twice, we get
) k
yi(x) = a1+ Y cFHy;(x), (31)
i=1
and
y(x) =ao +a1x+chFH% x). (32)

Substituting Eqs. (28) and (37) in Eq. (26), we get
k k
> ehi(x) — aA(x) — aB(x) (M + Zc,-FH;,(x)) = C(x). (33)
i=1 i=1

Putx =t;forj = 1,2, ...,n.in Eq. (30) in case a = %, orin Eq. (33) in case a = %,
we get the linear system in which the matrix of coefficients has the following formula:
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Aij = h,(x) (t]) + ﬂB(tj)FHa,i (tj)
and
b; = C(tj) + aA (tj) — a(/loB(tj),

fori,j = 1,2, ...,n. By solving the linear system of coefficients Ac = b we obtain
the coefficients of approximated solution y(t) of Eq. (26).

3.5.2 Numerical solutions of fractional diffevential equations using B-spline base

We will introduce the B-spline technique for solving FrDE (26).
Consider the quadratic B-spline base

S(x) = {S1(x), S2(x), S3(x), o s Su(2)},
Suppose

y(x) = Z?:lc"si (%).

We assume that

N

yix) =) eSi(x). (34)

i=1

If @ = 1, integrating Eq. (34) once, we get

k
y(x)=ao+ ZciFS%)i(x). (35)
=1

Substituting Eqs. (34) and (35) in Eq. (26), we get
k
D eiSix) — aA(x) — aB(x (ao +ZC,FS1 ) = C(x). (36)
i—1
If a = 5, integrating Eq. (34) once, we get

ylx )—ao+alx+2c,FH3 x). (37)

i=1

Substituting Egs. (28) and (29) in Eq. (26), we get

k
yi(x) = a1+ Y eiFHy,(x), (38)

i=1

and

k
y(x) = ag +arx + ZciFH%,,-(x), (39)

i=1
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k
i=

iciS,-(x) —aA(x) — aB(x) (ao +

c,FS;,-(x)) = C(x). (40)
i-1

1
Putx =t; forj =1,2, ..,n.in Eq. (36) in case a = %, or Eq. (40) in case a = %, s

we get the linear system in which the matrix of coefficients has the following
formula:

Ay = (hi(x)(¢})) +aB(t;) FHo, i(t5))
and
b; = C(t]‘) +aA (t]‘) — ﬂﬂoB(t]‘),

fori,j = 1,2, ...,n. By solving the linear system of coefficients, we obtain the
coefficients of approximated solution y(t) of Eq. (26).

3.5.3 Numerical solution of fractional Lane diffevential equation

We generalize the definition of Lane-Emden equations up to fractional order as
following:

k
taf/;DﬂJ’(t) +f(t,y) =g(t);0<t<1,k>0, (41)

D% () +

with the initial condition y(0) = A;)'(0) = Bwhere 1<a<2,0<f<land A,B
are constants and f (¢, y) is a continuous real-valued function and g(¢,y) €[0, 1]. The
theory of singular boundary value problems has become an important area of
investigation in the past three decades. One of the equations describing this type is
the Lane-Emden equation. Lane-Emden type equations, first published by [12], and
further explored in detail by [13], represents such phenomena and having signifi-
cant applications, is a second-order ODE with an arbitrary index, known as the
polytropic index, involved in one of its terms. The Lane-Emden equation describes
a variety of phenomena in physics and astrophysics. [14] imposed the Lane-Emden
DE of fractional order and the approximate solution is obtained by employing the
method of power series and a numerical solution is established by the least
squares method for these Egs. [14] approximate the solution of DE by employing
the method of power series and the numerical solution is established by collection
method.

3.5.3.1 Analysis of numerical method of fractional Lane differential equation

[15] studied the solution of DEs based on Haar operational matrix, [16] studied
the solution of DEs using Haar wavelet collocation method, [17] studied the
numerical solution of DEs by using Haar wavelets, [18] used Haar wavelet approach
to ODEs, [19] solved the fractional Riccati DEs using Haar wavelet while [14]
studied the fractional DEs of Lane-Emden type numerically by method of colloca-
tion. [20] introduced an operational Haar wavelet method for solving fractional
Volterra integral equations, [21] solved fractional integral equations by the Haar
wavelet method, [22] used Haar wavelet-quasi linearization technique for fractional
nonlinear DEs, [21] solved the fractional integral equations by the Haar wavelet
method, [4] used Haar wavelet method for solving fractional PDEs numerically.

In Eq. (41), consider a> §,f(t,y) = 7~y(t) and g(¢) = 0,.
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However, D*W(t) = ah(t) = Y1 cihi(t) and
D'W(t) = (I’ D*)W(t) + W#(0)
= ap®Ph(t) + WP(0)
W(t) = (I"D*)W(t) + W(0)
=ap®h(t) + A.

Hence,

k ap®Ph(t) + WP(0) + ap®h(t) + A = Ch(t).

ah(t) + premy

If we consider a = 3 and § = ] we solve the system of equations to obtain the

coefficients (cg, c1,€25 «e sCm)-

3.6 Comparison study using numerical collection method

Collocation method for solving DEs is one of the most powerful approximated
methods. This method has its basis upon approximate the solution of FrDEs by a
series of complete sequence of functions, a sequence of linearly independent func-
tions which has no non-zero function perpendicular to this sequence of functions.
In general, y(t) is approximated by [14].

y(£) = ai®;(), (42)
i1

where a; fori = 1,2, ..., are an arbitrary constants to be evaluated and ©; for
i=1,2, ...,n are given set of functions. Therefore, the problem in Eq. (41) of
evaluating y(t) is approximated by (42) then, is reduced to the problem of evaluat-
ing the coefficients fori = 0,1,2, ..., n.

Let {t1,%2, ...,t,} is a partition to interval [0,1] and t; =jh and h = % andj =
0,1,2, ..., n. See the comparison of absolute errors of the problem using numerical
collection method with polynomial basis and Haar wavelet basis.

Example 3.5 [8]

Consider

w’(t) + r*w(t) = 0, (43)
with the boundary conditions
w(0) =w(1) =0.

The exact solution is w(t) = sinxt.
Example 3.6 [8]
Consider

tw’ (t) — 6w(t) = 4¢2, (44)
with the boundary conditions

w(0) =w(1) = 0.
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The exact solution is w(t) = £2(t — 1)..
Example 3.7 8]
Consider

w"(t) = w(t) + 4, (45)

with the boundary conditions

w(0) =w(1) =0.

The exact solution is w(t) = t(z — 1)¢'.

4. Wavelet transform (WT)

Fourier transform (FT) of a time signal x(¢) reveals the frequency content of the
signal by decomposing the signal using complex sinusoids as follows:

0o

X(f) = Fix(t)} = J x(t)e s,

—oo

However, FT cannot reveal the time information associated with a specific fre-
quency. This drawback enhanced research in the time-frequency domain [23]. One of
the most important time-frequency distributions (TFD’) is the wavelet transform
(WT), which is a time-frequency representation of signals. While not all TFD’s are
invertible, a big advantage of WT over many other TFD’s is invertibility. WT proved
to be successful in revealing spectral features of signals. Instead of sustainable waves
like sinusoidal waves as in the case of Fourier transform, WT is based on
decomposing signals using decaying waves (small waves, or wavelets), all are shifted
and dilated versions of a specific wavelet called mother wavelet. The continuous
wavelet transform (CWT) of a signal x(¢) using a mother wavelet y(t) is given by:

% Jiox(/l).y/* (ﬂs_t) i,

where 1 is a representation of time inside the convolution integral, y* is the
complex conjugate of the wavelet y, and s € R* = R — {0} is called the “scale”,
which we expect to be inversely related to the radian frequency w = 2zf for the
above structure to be comparable to the structure of the sinusoidal waves sin w(z)
used in the Fourier transform; the actual scale-frequency relationship is given by:

W (5,5) =

SR —

f

where K = f, .f 5 f,, = arg(max {y(f)}); w(f) = F{y(t)}; f, is the sampling
frequency used to discretize y(t) while computing y( ) via DFT. It is apparent that,
for a fixed scale s, the wavelet transform WY (t,s) is given by the convolution
between the signal and the time-reversed wavelet as follows:

WY (t,s) = x(t) Oh(t)

where
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and © refers to the 1D convolution process:

0o

x(t) O h(t) = J () () ( — A)dA

—o0

This fact gives another equivalent expression for WY (z,s) using Fourier trans-
forms of the signal and the wavelet as follows:

00

WY (t,5) = FHX(f) H(f)} = j X(f)H(f)e P af

—o0

where H( ) = F{h(t)}. Hence, W¥(t,s) can be implemented via filtering the
signal x(¢) by a filter whose impulse response is /(t). This will be the basis for
implementing the discrete 1D and 2D wavelet transforms as explained below.

Generally speaking, Fourier transform X( f) = F{x(t)} decomposes the signal
x(t) using the same sinusoidal wave ¢ 727 at different values of frequency f, while
the wavelet transform WY (¢,s) decomposes the signal x(t) using the same mother
wavelet y(t) at different values of scale s (hence, frequency, f) and time t; where
both time and frequency information are revealed.

The WT is invertible, giving it a great advantage in applications:

1(* 1 (t—-1
x(t) = a .[7m.[7wwz (/1, S) . 5—2 "4 <T) d/lds
where ¢, = [ %{)Idf , which implies that y(0) = 0 — [~ w(¢)dt = 0, hence,
w(¢) must be oscillating. Also, to satisfy Parseval’s Theorem we should have
|Z _w(t)dt = 1. The above continuous wavelet transform can be discretized to give the
discrete wavelet transform (DWT), which can be implemented (as 1D DWT) by
passing the signal x(t) through a low-pass filter followed by down-sampling with a
factor of 2 (giving approximation coefficients), and a high-pass filter then down-
sampling by a factor of 2 (giving detail coefficients). These filters differ according to
the analyzing wavelet [24]. The 2D DWT (for images) can be designed based on 1D
DWT via tensor products, and it results into a decomposition of approximation
coefficients at level k into four components: low-pass component that contains the
approximation coefficients at level k + 1, and three high-pass components that con-
tain the detail coefficients in three directions (horizontal, vertical, and diagonal).
Note that approximation at level k = 0 is equivalent to the original 2D signal [24].

4.1 Some applications of the wavelet transform

The frequency content extracted by wavelet transform (WT) has been effec-
tively used in revealing important features of 1D and 2D signals. This property
proved very useful in speech and image recognition [25]. Also, the orthogonality of
WT paved the way for using WT in orthogonal frequency division multiplexing
(OFDM)), a pivotal technique for 4th and 5th generations of digital communication
[26]. In addition to that, WT proved to put high focus on the low-frequency part of
the signal, in which most of the information resides, hence, WT has been used for
signal and image compression [27]. The compression process can be performed
using hard-thresholding of the WT as follows:

_[x |x|=T
t(x)_{o | <T (46)
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where t(x) is the new WT coefficient value to replace the original coefficient x,
and T is the threshold. Better compression results (in terms of signal size) can be
obtained by increasing the threshold, however, larger deviation from the original
signal (i.e., larger error) is obtained. Hence, choice of the threshold involves a trade-
off between size and error. Original signal can be obtained from the compressed one
via inverting the thresholded WT.

4.2 Noise removal using WT

An important application of the Wavelet Transform is noise removal from
signals and images. As most of the information content of real-life signals is in the
low-frequency regions, removal of high frequency regions in the WT of signals can
help in removing the majority of noise. This can be done via thresholding WT
coefficients or by removing the details coefficients of WT and considering only the
approximation coefficients of WT. This property of separating low-frequency con-
tent from high-frequency content in the WT is mainly due to the filtering involved
in the structure of WT as explained above. Noise removal using WT is more
efficient for 1D signals corrupted by 1D noise process, where the 2D structure of
WT in joint time-frequency domain can spread the 1D noise effect into a 2D plane,
hence the noise power is greatly reduced. For noise removal, a soft-threshold can be
used to cut out high-frequency coefficients as follows:

{sz;gn<x><|x|—T> x> T

47
0 x| <T (47)

t(x) =

where ¢(x) is the new WT coefficient value to replace the original coefficient x, T'
is the threshold, and sign(x) is the signum function defined as follows:
+1 x>0
sign(x) =< 0 x=0 (48)
-1 x<0
Figure 3 shows the use of WT to denoise an image, while Figure 4 shows the

denoising of 1D signal using WT, where WT is performed on MATLAB via the
wavelet Daubechies 3,

Original Noisy Image Dencised, T = 40 ; wv = db3

Figure 3.
Image denoising using WT with soft threshold.
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Original Signal
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Figure 4.
1D signal denoising using WT with a hard threshold.

5. Discussion and conclusion

The numerical solutions of differential equations using Haar wavelet technique
have been studied. Haar wavelet technique is used to approximate the solutions of
DEs. The results which obtained form numerical solutions of ordinary differential
equations as well as fractional differential equations by Haar collection method are
compared with spline base. The numerical results have clearly shown the advantage
and the efficiency of the techniques in terms of accuracy and computational time.
Special initial value problem of Lane-Emden equation has been solved to show the
applicability and efficacy of the Haar wavelet method. Wavelet transform as a
mathematical approach has been studied and the applications of wavelet transform
in signal processing field have been introduced. The wavelet transform has been
effectively used to reveal on the features signals and the compression of signal and
image.
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Chapter 3

Wavelet Theory and Application
in Communication and Signal
Processing
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Abstract

Wavelet analysis is the recent development in applied mathematics. For several
applications, Fourier analysis fails to provide tangible results due to non-stationary
behavior of signals. In such situation, wavelet transforms can be used as a potential
alternative. The book chapter starts with the description about importance of fre-
quency domain representation with the concept of Fourier series and Fourier trans-
form for periodic, aperiodic signals in continuous and discrete domain followed by
shortcoming of Fourier transform. Further, Short Time Fourier Transform (STFT)
will be discussed to induce the concept of time frequency analysis. Explanation of
Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT)
will be provided with the help of theoretical approach involving mathematical
equations. Decomposition of 1D and 2D signals will be discussed suitable examples,
leading to application concept. Wavelet based communication systems are becom-
ing popular due to growing multimedia applications. Wavelet based Orthogonal
Frequency Division Multiplexing (OFDM) technique and its merit also presented.
Biomedical signal processing is an emerging field where wavelet provides consider-
able improvement in performance ranging from extraction of abnormal areas and
improved feature extraction scheme for further processing. Advancement in multi-
media systems together with the developments in wireless technologies demands
effective data compression schemes. Wavelet transform along with EZW, SPIHT
algorithms are discussed. The chapter will be a useful guide to undergraduate and
post graduate who would like to conduct a research study that include wavelet
transform and its usage.

Keywords: 1-D and 2-D signals, continuous wavelet transform (CWT), discrete
wavelet transform (DWT), orthogonal frequency division multiplexing (OFDM),
image compression, cough detection

1. Introduction

We are familiar with real world signals such as speech signal, temperature of a
patient in every hour etc. Generally, signals are visualized as a time domain graph.
In literature, it is possible to express same information in many different languages;
in a similar fashion signals can be represented in frequency domain to convey the
message [1]. These signals can be processed to achieve desired outputs or to carry
out certain actions according to the application.
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2. Concept of frequency and time domain analysis

2.1 Frequency domain

Figure 1 represents a sinusoidal signal expressed in time and frequency domain.
The representation in frequency domain shows there is only one frequency compo-
nent in the waveform. This representation is simple to extract behavior of signal
compared to that in time domain in majority of real-world applications.

In real world, not the signals are processed in frequency domain to arrive at
desired output, since they simplify the analysis mathematically [2]. In applications
like control engineering, differential equations are used to represent systems.
Frequency domain analysis converts the differential equations to algebraic
equations which are relatively easy to solve. Applications related to speech, image
and video also gets simplified with the use of frequency domain approach since the
sensory organs interprets the signal in frequency domain.

2.2 Fourier analysis - the tool used to convert to frequency domain

Any signal which satisfy Dirichlet conditions (signals with finite number of
discontinuity, finite maximum or minimum magnitude) can be converted to
frequency domain by Fourier analysis. For analog signals Fourier series or Fourier
transform if signal is periodic or aperiodic, respectively. The corresponding
counterparts for discrete signals are Discrete Fourier series and Discrete Fourier
transform [1]. Fourier analysis can be visualized as inner product of a kernel
function with the signal. For example, to find the coefficient corresponding to

100 Hz, find the inner product of signal with a kernel which is a unit sine wave
of 100 Hz.
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Figure 1.
Representation of a 100 Hz sinusoidal signal in time and frequency domain.
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2.2.1 Time frequency analysis - short time Fourier transform

Fourier transforms (FT) assumes periodicity if waveform is known for a finite
duration of time and it works only for stationary signals. For non-stationary signals
it fails to provide complete behavior of signal. As an example, consider the wave-
form given in Figure 2. The signal has constantly changing frequency. But Fourier
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Figure 2.
Non-stationary sinusoidal signal of varying frequency in time and frequency domain.
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Figure 3.
STFT of chirp signal.
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analysis represents it as a combination of 1 Hz and 2 Hz present all the time. If the
application demands to initiate some operations when the frequency starts to
change, Fourier analysis cannot be used for the application. In order to tackle these
difficulties Short Time Fourier Transform (STFT) is used.

In STFT signal is divided into small sub intervals or windows and FT is calcu-
lated for each sub interval separately. The problem of STFT is the choice of time
windows; low frequencies require large time windows and high frequencies need a
short time windows to provide required resolution in time and frequency. This
resolution issue is similar to the Heisenberg uncertainty principle relating position
and speed which are analogous to time and frequency respectively [3]. Figure 3
shows STFT of the chirp signal given in Figure 2. It is evident that the time
localization of frequency is not clearly defined in STFT output. Frequency
values corresponding to the 200 Hz and 300 Hz are present across the time
interval 49.5 to 50 ms. But Figure 2 indicated only 300 Hz was present between
time 49.5 to 50 ms.

3. Wavelets

As discussed in Section 1.2 the kernel of FT is not time limited (exists for all time
values) and this is the bottleneck for analyzing a non-stationary signal. Wavelets are
waveforms which are time limited or exists only for a given time period only.
Wavelets are useful for examining aperiodic, noisy signal in both time and fre-
quency domain simultaneously. The word “wavelet” means a “small wave”. There
are variety of wavelets available which are selected according to the application.
The short duration wavelet is superimposed to the signal under consideration for a
short duration of time and decompose them to useful form. This process is called
wavelet transform. The method of transforming the decomposed signal to original
wave is called inverse wavelet transform.

There are the two ways the wavelets are manipulated. The transform of the
entire signal is done by translating the wavelet to the next instance of time called as
translation. If the signal is of different frequency the mother wavelet is expanded or
contracted. This method is called as dilation.

3.1 Continuous wavelet transform (CWT)

Mathematical expression for wavelet function is

Way(t) = \/—1V7|W <¥) (1)

where a represents the scaling parameter for dilation and ‘b’ represents the
moving parameter for translation for the entire signal location [4].
Continuous wavelet transform follows two properties.

J w(t)dt =0 (2)
| wer o 3)
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For the CWT the mathematical expression C(a, b) obtained by integrating the
input function with the wavelet is

Clab) = [0 ﬁ"’(%)dt (4)

Figures 4 and 5 represent the translation and dilation of wavelets respectively.

3.2 Discrete Wavelet Transform (DWT)

Eq. 1 represents the CWT, on substituting a = 27 and b = k27 the equation will
become as D(a,b) = [, f(t)27y (2t — k)dt, where j refer to the scale.
Haar scaling and wavelet functions are given as

1, 0<t<1
) = { 0 otherwise )
(1, 0<t<1/2
wit) = {—1 1/2<t<1 ©

The scaling coefficients are [h(0), h(1)]= [1, 1] and wavelet coefficients are [g(0),
g(1)] = [1, —1]. The scaling and the wavelet functions shown in Figure 6 are orthogonal
with each other. The decomposition of coefficients done by scaling function is done by
the low pass filter and wavelet function is by the high pass filter [5].

For eg. Let us consider a signal having function f(t) as

2, 0<t<1
f) =144, 2<t<3 (7)
3, 4<t<5

If the signal is decomposed by Haar scaling, the function will be

f@)=2¢@) +4pt — 1)+ 40t —2) + 3¢t — 3) + 3¢t — 4) (8)

— Signal

i AT
X

Figure 4.
Signal with the translated Morlet wavelet [5].
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3.3 Properties of the scaling and wavelet functions

1.The scaling and wavelet functions are orthogonal to each other

2.The scaling function and translates are orthogonal to each other.

3.The area of the scaling function is equal to one.

4.The scaling function and translates of wavelet function are orthonormal to

each other.

All the above conditions are satisfied by all the scaling and wavelet coefficients.
Nonlinear equations are derived using the numerical values of the coefficients [5].
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4. Analysis and synthesis of signals

As discussed in Section 2, h(n) and g(n) are the dilation coefficients.
The refinement relation can be written as

=z

1

pt) = h(n)V2¢p(2 —n) 9)

3
Il
=}

w(t) =) gn)vV2p(2t —n) (10)

n

=

Il
o

where h(n) and g(n) are the scaling and wavelet coefficients, N is the support of
wavelet [4].

4.1 Decomposition of signal

The analysis of the signal or the decomposition of the signal can be represented

in a block diagram as decomposing input into low frequency and high frequency
samples.

Let us consider a signal having function f(t) as

2, 0<t<1
ft)y=1<4, 2<t<3 (11)
3, 4<t<5

If the signal is decomposed by Haar scaling, the function will be

ft) =2¢(t)+4p(t — 1)+ 4p(t —2) + 3p(t — 3) + 3p(t — 4) (12)

The decomposed output of the low pass filter shown in Figure 7 can be
visualized as the average of the immediate signals.

Figure 7 represents the decomposition and reconstruction of one level of the
signal. Let us consider the vector space of the input function f(t) is V. After
decomposition the samples are decomposed as f1(t) of low frequency samples
spanning the vector space of V; and high frequency samples g1(t) of high frequency
spanning the vector space of W;.

o Y
f(t)

g(n) \ }

Figure 7.
Block diagram of one level of decomposition of signal.
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If the signal f1(t) is again decomposed (second level of decomposition), then
they are still split up as low frequency samples say f2(t) spanning the vector space
Vo and the high frequency samples say g2(t) spanning the vector space Wy. Like
this, the signal can be decomposed for any level there by splitting the signal with the
cut off frequency as per the coefficients of the filter h(n) and g(n).

For V, space the vector space can be written as

Vo=View,
Vo=Vo@®Woa W, (13)

Frequency band split and the vector space is shown in the Figure 8.
Thus, decomposition is the process in which the signal of high resolution is
converted to signal of two orthogonal signal of low resolution [5].

4.2 Reconstruction of signal

The synthesis or the reconstruction of the signal can be represented in a block
diagram (Figure 9) combining input low frequency and high frequency samples.

For a perfectly matched filter the signal f(t) given as input in the analysis filter
and the output of the reconstruction filter r(t) will be equal.

Any signal resolution in the present level and previous level are orthogonal.
This property was useful for the wavelets to be used for Multiresolution
Analysis (MRA) [4].

|H (@)

Ve Wo Wi

A
I
@
Figure 8.
Frequency split for a two-level decomposition.
f1(t)
h(n)
r(t)

gl(t) @
—.— g(n)
Figure 9.

Block diagram of one level of veconstruction of signal.
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4.3 Decomposition of 2-D signal

Two-dimensional signal is an image that has row and column pixel or samples.
Wavelet decomposition of the image can be done by scanning the pixel values in a
regular fashion and given as input to the decomposition block as explained in
Section 3.1. Two types of scanning methods are used for reading the row-column
pixel values thereby converting the 2-D signal to 1-D. They are raster scanning and
Morton scanning.

Figure 10 shows the scanning of pixel values in the horizontal direction. Once
the samples are decomposed by sending it to the block in Figure 7, then the pixels
are then scanned vertically and again decomposed. This completes one level of
decomposition of 2-D signal. After horizontal decompose, the image will be sepa-
rated as Low pass and high pass pixels in horizontal fashion. Once the vertical
decompose is done followed by horizontal the image is divided into two rows and
two columns named as LL, LH, HL, HH as shown in Figure 11.

For a second level of decomposition the scanning process is done to the LL band
of the first level and LL band is again decomposed as LL1, LH1, HL1, HH1. Thus, the
high-resolution signal is transformed to Low frequency and high frequency bands.
For higher levels, the process is repeated for the LL bands leading to the coarser
resolutions [5].

4.4 Reconstruction of 2-D signal

The decomposed signal after processing can be reconstructed by up sample the
data by two and then convoluted with the filter of low and high frequency coeffi-
cients. This need to be done for all the sub bands and the values are summed up to
move from the coarser scale to high resolution scale. This process is repeated to
reach the final image is reached [5].

=
____
._-_
— —
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Figure 10.
Scanning of pixels.
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LL LH

HL HH

Figure 11.
Bands of 2-D after one level of decomposition.

5. Applications
5.1 Wavelets in communication system

Wavelets are suited for communication systems due to its potential to handle
non stationary behavior and to segregate information into uncorrelated segments.
This section provides a brief about various methodologies to extract benefits of
wavelets into communication systems.

5.1.1 OFDM systems using wavelets

Orthogonal Frequency Division Multiplexing (OFDM) uses multicarrier tech-
nique by dividing the spectrum into many subcarriers and each subcarrier gets
modulated by low data rate. If M symbols are required to be transmitted, M
orthogonal subcarriers are used to modulate each symbols.

Wavelet packet transforms can be effectively used in OFDM systems Figure 4.1
shows a wavelet packet based system.

In Figure 12, M band IDWT is used to split the signal to smaller sub bands while
the M band DWT is used to combine the sub bands. The wavelet packet transform
structure is given in Figure 13. Here sub band division is done in both approxima-
tion and detail coefficients compared with a discrete wavelet transform.

Wavelet based OFDM systems provides improved Bit Error Rate (BER) and
peak-to-average-power ratio (PAPR) performance compared to conventional
OFDM system using FFT. Due to large number of sub band carriers, OFDM has
high PAPR and makes it sensitive to nonlinear effects. Wavelet based system con-
trols the PAPR ratio and results in improved performance compared to FFT based

M M .
’ " Serial Band Band =% Parallel [ De
! Mappin | | o oOWT pwr [ o sl
| 3 - — i mappin
Innut! F'J; , | parallel Chs | e | serial 2/ De Sptout
Modula ooy | nnel | |e | conver
e C - Modula

Figure 12.
Wavelet based OFDM system [6].
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Figure 13.
Wavelet packet based combining or splitting into sub bands in OFDM system.

systems. Applications of Wavelets in 4G, 5G and beyond was reported in literature
[6-8]. Selection of wavelet and level plays an important role and is promising field
for future research.

5.2 Wavelets in biomedical applications

Bio medical signal processing is a promising field for future research. Wavelet
transform can be used effectively in combination with artificial intelligence to
provide solution to many problems. Bio medical signals are generally one dimen-
sional time series data (Electro Cardiogram- ECG, electroencephalogram -EEG) or
an image (X ray, ultrasound scan, MRI). Accordingly a 1D or 2D wavelet transform
can be used to process the signal. Wavelet transform helps to divide the signal to
uncorrelated sub bands due to orthogonality property. The transform coefficients or
a part of it (say certain level coefficients) are used as feature for classifying the
signal is a common methodology that can be adopted for a variety of applications.
Recent advancement in neural networks like CNN with wavelet coefficients as
input features opens up stage for a wide variety of research solutions. Another
promising category of application is in signal preprocessing to remove unwanted
information in biomedical signals [9] with thresholding techniques. A complete list
of applications is beyond the scope of this book chapter, a few applications of
wavelets are described briefly in coming sections.
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5.2.1 Wavelets in EEG signal processing

Wavelet transform with suitable mother wavelet and appropriate level of trans-
form has to be selected to extract maximum performance for a given application.
Figure 14 gives a general block level representation for an EEG signal classification
system to detect abnormality type.

EEG signal after required preprocessing steps to remove noise is passed through
a DWT step to divide it to different sub bands. The required sub bands are further
passed through a thresholding step (optional) to remove certain features that do not
contribute to abnormalities. The DWT coefficients are fed as input to a neural
network classifier to classify the signal to different categories based on the abnor-
mality. The challenges in these signal processing is selection of wavelets, level of
transform, threshold calculations, selection of neural network of appropriate level
and availability of data to train the network to achieve a desired accuracy [10]. In
[11] EEG classification system 5 level decomposition with Db4 wavelet is used to
extract features for a neural network classifier is described to arrive at success rate
of 94% to identify healthy, epilepsy syndrome and seizure cases with 250 and 50
training and testing samples of EEG respectively. Similar kind of systems can be
used to classify ECG signals as well. In [12] Haar wavelet transform was used to
identify characteristics of ECG wave. QRS complex detection sensitivity above 99%
was reported. Here wavelet packet transform for 20 levels are done and D20 coef-
ficient was used to detect R wave of ECG signal.

5.2.2 Wawelets in cancer detection

Wavelets can be effectively used for abnormality detection in biomedical
images. In [13] wavelet decomposition coefficients are used to extract features by
calculating 2 level Haar wavelet transform and extract mean, standard deviation
and energy of the transform coefficients as features for extraction of abnormal areas
in image.

Figure 15 shows the block schematics of the system described in [13].

5.2.3 Research scope for wavelets in COVID 19

Cough detection is one of the important application in monitoring of public
places and to monitor people in isolation or quarantine. Ability of wavelet to model
nonstationary signal is a potential strength here since cough signals (audio) are non
stationary time series signal. Currently Arduino based cough detection systems are
being developed as low cost cough detection system. In these system Mel Frequency
Cepstral Coefficient (MFCC) are used to extract feature from cough signals to train
neural network model like Convolutional Neural Networks (CNN) [14]. Wavelets
can be used instead of MFCC for feature extraction to improve system accuracy.
This require further research to arrive at optimized set of wavelets and appropriate
level of transform.

» p| Classilie b I
LG MRA bascd Threshalding r (Nevral g Abnarmality
signal ™ on DWT - " network) Lvpe

Figure 14.
Wavelet based EEG signal classification system.
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Figure 15.
Block diagram of breast cancer diagnosis system [13].

5.3 Image compression

In today’s world handling of huge amount of data is complex. Conversion of
large data files into smaller one is important for storing and transmission. This
conversion process is called as data compression. This is important in this digital
era. The reverse process is called as decompression. Several algorithms are proposed
for efficient conversion process. Lossy and Lossless compression techniques are
used in different applications. JPEG image compression technique is the standard
technique used. It uses Discrete Cosine Transform (DCT) for the frequency domain
conversion followed by Huffman coding [5].

5.3.1 EZW (embedded zero tree) coder

EZW algorithm was proposed by Shapiro. After applying Wavelet transform on
an image the pixels will be converted to four bands of pixels as explained in Section
3.3. then the wavelet coefficients are passed to the EZW encoder. It is a progressive
encoding which is embedded encoding with high accuracy. EZW is a lossless com-
pressor which can be applied for any level of decomposition [15].

EZW takes care of coding both time and space. After decomposition, the pixels
are represented as trees. One coefficient in the lower sub band will have four
children. Each of the children will have four more grandchildren in the next higher
sub band. Figure 16 represents the relationship between the coefficients of lower
sub bands with the higher sub bands.

Each tree is coded with a symbol as P, N, T, Z. For every decomposition levels,
the pixels are categorized to two passes as Dominant pass and Subordinate pass.
Dominant pass will find the pixel values which are above the threshold value and
subordinate pass quantize all the pixel values in the present pass and the previous
dominant pass. The threshold value is calculated using the equation

T = 2Llega(Max(|Clx)])] (14)

where (x, y) are the coordinates of the image and C (x, y) represent the pixel
coefficient. The main advantage of the EZW coder is that the output can be coded
for the desired size. The eliminated pixels are least significant bits and the low
frequency pixel are not eliminated entirely.

57



Wavelet Theory

Figure 16.
Wavelet coefficients and their relationships with sub bands.

5.3.2 SPIHT Coder:

SPIHT algorithm was designed by Said and Pearlman. This algorithm has a
spatial relationship with the children and grandchildren of the pixels. As in EZW
algorithm SPHIT algorithm has two passes, sorting and refinement pass. In the
sorting pass, the List of Insignificant Pixel (LIP) is updated comparing with the
threshold value. Then the List of Insignificant Set (LIS) is updated. The sorting of
LIS is to have a single zero for the set of coefficients and zero trees. In the refine-
ment pass, the List of significant Pixel (LSP) is used to refine the coefficients with
the current threshold. For the next level the threshold will be halved [16].

5.3.3 Performance analysis.

The performance of the compressor algorithms is evaluated by PSNR (Peak
Signal to Noise Ratio) and MSE (Mean Square Error)

2557
PSNR(db) = 10log ,, VSE (15)
1 m—1n—1 )
MSE = — (I(5,j) — K(i,§))
mn P j—O[ }

where m and n are the number of rows and columns.

where I(i,§) is the coefficients of the original image and K (7, ) is the coefficients of
the decompressed image. When the original image and the decompressed image are
same, they subtracts each other and the value of MSE is equal to zero. So lesser the
value of MSE the better the compression by the coder. The performance of SPHIT
algorithm and EZW algorithm outperforms the JPEG standard compression algorithm.
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6. Conclusion

Frequency domain approach is a powerful tool in signal processing since many
of the natural system like human auditory system works based on frequency con-
tent of audio signals. Fourier transform is a conventional tool to convert the signal
from time to frequency domain. However, FT fails for non-stationary signals. In
such a situation wavelet transforms are primarily useful for processing non station-
ary signals. Applications demanding time and frequency information simulta-
neously wavelets are considered as a potential tool to provide tangible results.
Ability of wavelet transform to split signals into orthogonal bands makes them
suitable in communication systems. Improved BER and PAPR performance is high-
light of wavelet based system. Biomedical signals like speech, scan images etc. can
be processed effectively with wavelet transform in conjunction with techniques like
neural network classifier can be thought as an efficient method to solve a multitude
of problems. Compression and preprocessing of signal are other categories of
wavelet applications. Artificial Intelligence techniques are considered as a hot
research topic in recent technology. A combination of wavelet based feature
extraction and Al techniques can be applied to problems demanding processing of
big data.
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Chapter 4

Wavelet Based Multicarrier
Modulation (MCM) Systems:
PAPR Analysis

Jamaluddin Zakaria and Mohd Fadzli Mohd Salleh

Abstract

Orthogonal frequency division multiplexing (OFDM) is a prominent system in
transmitting multicarrier modulation (MCM) signals over selective fading channel.
The system offers to attain a higher degree of bandwidth efficiency, higher data
transmission, and robust to narrowband frequency interference. However, it incurs
a high peak-to-average power ratio (PAPR) where the signals work in the nonlinear
region of the high-power amplifier (HPA) results in poor performance. Besides, an
attractive dynamic wavelet analysis and its derivatives such as wavelet packet
transform (WPT) demonstrates almost the same criteria as the OFDM in MCM
system. Wavelet surpasses Fourier based analysis by inherent flexibility in terms of
windows function for non-stationary signal. In wavelet-based MCM systems
(wavelet OFDM (WOFDM) and Wavelet packet OFDM (WP-OFDM)), the
constructed orthogonal modulation signals behaves similar to the fast Fourier
transform (FFT) does in the conventional OFDM (C-OFDM) system. With no
cyclic prefix (CP) need to be applied, these orthogonal signals hold higher band-
width efficiency. Hence, this chapter presents a comprehensive study on the
manipulation of specified parameters using WP-OFDM, WOFDM and C-OFDM
signals together with various wavelets under the additive white Gaussian noise
(AWGN) channel.

Keywords: multicarrier modulation (MCM), orthogonal frequency division
multiplexing (OFDM), peak-to-average power ratio (PAPR), wavelet transform,
wavelet packet transform (WPT)

1. Introduction

Orthogonal Frequency Division Multiplexing (OFDM) technique provides a
number of advantages: In OFDM since the subcarriers are overlapped, accomplishes
a higher degree of spectral efficiency that results in higher transmission data rates.
Considering the use of the efficient FFT technique, the process is considered com-
putationally lower. Besides, in the Single-Carrier Modulation (SCM) the ISI prob-
lem which commonly occurs the use of the cyclic prefix (CP) greatly eliminates the
problem [1]. The division of a channel into several narrowband flat fading
(subchannels) results in the subchannels being more resilient towards frequency
selective fading. The loss of any subcarrier(s) due to channel frequency selectivity,
proper channel coding schemes can recover the lost data [1]. Thus, this technique

63 IntechOpen



Wavelet Theory

offers robust protection against channel impairments without the need to imple-
ment an equalizer as in the SCM, and this greatly reduces the overall system
complexity. However, the high Peak-to-Average Power Ratio (PAPR) has been the
major drawback in the OFDM system. This situation happens when the peak OFDM
signals surpass the specified threshold and as a result the high-power amplifier
(HPA) operates in a nonlinear region. This produces spectral regrowth of the
OFDM signals and broken the orthogonality among the subcarriers. Thus, the effect
on bit error rate (BER) performance at the receiver is poor.

To deliver massive high-speed data over a wireless channel, Multi-carrier-mod-
ulation (MCM) scheme has been widely used transmission technique. Despite its
advantages, the MCM scheme is prone to high PAPR signal transmission, which has
been single out as the main difficulty. In the MCM scheme, the conventional way to
obtain orthogonal subcarrier signals is by using a Fourier transform. The emergence
of wavelet transforms has paved the way for new promising techniques to obtain
orthogonal subcarrier signals in future MCM systems. Wavelet transforms have
been testified practical for the MCM system due to the orthogonal overlapping
symbols property that they possess in time and frequency domains, respectively.

In order to mitigate PAPR, there have been many techniques proposed in litera-
ture either to reduce the peak power with fixed average power or alter the distri-
bution so that the average power produced has smaller peak power [2-6]. Due to
this, there are two categories of PAPR reduction techniques which are called as
signal distortion technique and signal scrambling technique. A prominent technique
known as Partial Transmit Sequence (PTS) has been first introduced in [7]. This
technique categorized as signal scrambling offers big potential for further explora-
tion as explored in the works [8-11].

This chapter presents the analysis of various wavelet families in their applicabil-
ity towards MCM systems and their PAPR profiles. Details analysis is presented for
obtaining the BER results for various Wavelets.

2. Background
2.1 Wavelet transform

In this section the basic concept of wavelet and wavelet packet transform
(WPT) are presented. The WPT is constructed based on the continuous wavelet
transform (CWT) and wavelet transform (WT) theory. For ease of reading, all the
following equations in these subsections are mostly taken from [12-15].

2.1.1 Discrete wavelet transform (DWT)

The computation cost for wavelet coefficients in the CWT is high since they are
highly redundant data, which is not desirable for real application. Therefore, dis-
crete wavelets offer as the alternative for practical applications. In discrete wave-
lets, the scalable and translatable wavelets are discrete. The process of discrete
scaling and translation of the mother wavelet can be expressed as

Wap = Vagw(agt — fy,) 1
where a, represents the fixed step of dilation and b, indicates the translation

factor. The integer a and g signify the indices scale and translation, respectively.
The scaling in time domain correlates with an inverse scaling in frequency domain,
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therefore the product of (At, ;) (A fa’b) is independent of the dilation parameter a.

If any time resolution gain is obtained, this inversely effect the cost of frequency
resolution and vice versa. Therefore, this detains the Heisenberg uncertainty prin-
ciple for the dilated and translated wavelet y ¢y 7, , (£) and the mother wavelet
wewr(t). The most natural choice for dilation step is 2 that results in octave bands or
dyadic scales. The wavelet is compressed in frequency domain by a factor of 2 for
each successive value of scale index. This produces the stretched in time domain by
the same factor. The translation factor is set to the value of “1” to get the dyadic
sampling fashion. The time-shift and scaling function are set as [16];

§0/j = ¢(t_ﬂ)’ﬁ€Z>§0€L2 (2)

where Z is the set of all integer numbers, and L?(R) is the vector space of square
integrated function. The parameter v, is a space spanned by scaling function, which
is defined as

_ Span{ﬁgoﬂ(t)} ez 3)

Vo

In this subspace, if x(t) €vy, it can be expressed as
+o00
x(t) = Y appyt) (4)
f=—o0
One can increase the size of the subspace by changing the time scale of the

scaling functions. The two-dimensional parameterization (time and scale) of scaling
function ¢(z) from v, to v, can be expressed as

Pup =272 (2°t — p) (5)

Then, the new function for the expanded subspace v, is given as

by — span{(zﬂ(zat)} _ span {;a,/}(t)} )

In the extended subspace, whenever x(t) €v,, then it can be expressed as
“+o0
x(t) = ) app(2t+p) )
f=—oc

From (Eq. (7)), the span v, is larger than vy, for @ >0 and ¢, 4(t) able to
represent the finer detail (due to its finer scale). For a < 0 this condition is true that
represents for the coarse scale. Wavelet obeys to multi-resolution concept’s
requirement, where every signal is decomposed into finer detail gradually as
expressed as [17, 18].

CU,Z Cl),l Cl}o C1)1 C1)2 C.... (8)

where the terms v, = L?, and v_,, = {0} indicate that within the same vector
space of L?, there exist both high resolution and low-resolution coefficients.
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Consequently, if x(¢) €v,, then x(2t) €v,41. Additionally, the ¢(¢) term is expressed
as the weighted sum of the time-shifted scaling function

Zh W22t —n),neZ 9)

n=—oco

where the term 4 (n) represents the scaling function coefficients (sequence of
real or imaginary numbers). The v, is the expanded space of v, and w, represents
the corresponding orthogonal complement. Therefore, a new set of spaces is
produced. Suppose that wg1 be the subspace spanned by the wavelet, the
enlargement of v; and v, space are written as (Eq. (10)) below and as illustrated as
in Figure 1 [19].

V1 =17g EBwo
vy =v1P w1 = (Vo Pwo) Pws
(10)
Var1 = Ve Pwy =vo Pw;,VaeZ
=0

The definition of the wavelet function y(z) is the same as the scaling space vy.
Let the space spanned by the wavelet function y4(¢) be wo, and the expanded
space spanned by v, 4(¢) be w, that is obtained after using (Eq. (3)) to (Eq. (6)).
The w,, term is orthogonal to v, and thus the orthogonality between ¢(¢) and ()
is given as [19];

(Pap(t)wap(®)) = jqoa,ﬁ(t)wa,ﬁ(t)dt ~ 0 (11)

Due to these wavelets are in space spanned by the next finer scaling function,
the wavelet function y(¢) can be expressed by the sum of the weighted time-shifted
wavelet function given as

w(t)= > gn)V2p2—n),nez (12)

n=—o0

UO'LWO'J'Wl'LWZ

Figure 1.

Wavelet vector spaces and scaling function.
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where g(n) is called the wavelet function coefficient. The relationship between
wavelet filter g(n) and scaling filter 4 (n) can be expressed as [19];

gn) = (=1)"h(1 —n) (13)

Both coefficients are restricted by the orthogonality condition. If #(n) has a
finite even length N, then the (Eq. (13)) can be rewritten as

gn) = (=1)"h(N —1—n) (14)

The wavelet function coefficients g(n) is normally required by the orthonormal
perfect reconstruction (PR) process. In the communication system point of view,
this PR process offers advantage to the receiver whereby the received signals can be
reconstructed perfectly. For example, Haar wavelet below is analyzed with the
wavelet function () can be expressed as

1 0<Lt<05
pit)=< -1 05<r<1 (15)
0  otherwise

and its scaling function is

(t)—{l 0<tL1 (16)
= 0 otherwise

Furthermore, the basic version of Haar wavelet for wavelet and scaling function

is shown in Figure 2.
The Haar filter coefficients are obtained by applying (Eq. (9)) and (Eq. (12)).

g(n) = (\/% \_/—;) (17)

Furthermore, the signal x(¢) € L?(R) has its discrete wavelet expansion
given as [14].

v
A\

(a) (b)

Figure 2.
Haar Wavelet transform (a) mother wavelet function, (b) scaling function.
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+oo 400 +oo
X(t) = Z C(lo (pag[J‘ Z Z da Wa/i (19)

f=—o0 p=—o00 a=agp

where a, f, €Z which Z is real integer. The aq is an arbitrary integer, and LZ(R)
is the vector space of the square integrated function. The frequency (or scale) and
time localizations are provided by the parameters a and f respectively. The approx-
imation coefficient and the detail coefficient have been deduced as ¢, () and d, ()
respectively.

In the wavelet expansion, by manipulating (Eq. (9)) and (Eq. (19)), the higher
scale (i.e. @ 4+ 1) can also be obtained that results the approximation coefficient as

= (x(t), puy(t)) = J (£)2%p(2°t — p)dt = th 2B)cara(m)  (20)
while the detail coefficient is expressed as

= (x(), Wap(t)) = Jx(t)Z“/zy/(Z’t— B)dt = g(m — 2B)caa(m)  (21)

m

Both the terms of ¢,(f) and d,(f) in (Eq. (20) and (21)) are computed by taking
the weighted sum of DWT coefficients of higher scale (@ + 1) . In order to obtain
the scaling of the DWT coefficients (c,(f)) at scale a, the scaling function coeffi-
cient k() is convolved with the scaling DWT coefficients (cq+1(f)) at scale a + 1,
followed by subsampling with a factor of 2. Similarly, to obtain the wavelet DWT
coefficients (d,(f)) at scale @, the wavelet function coefficient g(n) is convolved
with the scaling DWT coefficients (c,+1(f)) at scale a + 1, followed by subsampling
with a factor of 2. Hence, as shown in Figure 3, that both of these expressions can
be illustrated as 2-channel filter banks analysis [20].

The input signal to the 2-channel filter bank is split into two parts. The first
portion of the signal goes to filter H and second goes to filter G. Subsequently, both
the filtered signals are subsampled by 2. Each filtered signal contains half of the
number of original samples and spans half of the frequency band. However, the
number of samples at the output of the filter bank is the same as the original signal
since there are two filters used. The decomposition process starts at the largest scale
of ¢(p). If there are three level of decompositions involved, this implies the term
¢3(p) exist and produces the terms co(f), do(B), d1(f) and d»(p) at the decomposition
branches, as illustrated in Figure 4.

On the other hand, the reconstruction of the DWT coefficients process is
expressed by (Eq. (19)). If (Eq. (9)) (for scaling refinement) and (Eq. (12))

Y
aQ

d,(p)

—(2)-
(12w ®)

C.n(B)—

m

Figure 3.
DWT decomposition (single level).
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G —’(: > d,(B)
(8) G —-@—»ag(m

¢, (B)

r'iﬁ(ﬁ.)

H

H

i
¢ (B) _@

¢ (B)

Figure 4.
DWT decomposition (three level).

(wavelet function) are substituted into (Eq. (19)) (reconstruction function), thus
produces

x(t) = Zoo C(lo(ﬂ)qoao Zoo de
ﬁ_im f=—00 a=ag
- S S () -9
. i i L0 i o) (\/i>a+1¢(2a+1 —28— n) (22)
p=—o0a==c0 n=Tee

By multiplying both sides of (Eq. (22)) with ¢(2*! — §) and taking the integral
produces the lower scale of DWT coefficients [18], the scaling DWT coefficients of
higher scale is given as

ara(f) =D ealm)h(p —2m) + 3 _do(mg(p — 2m) (23)

This implies that the scaling DWT coefficients at a certain value (a + 1) can be
computed by taking the weighted sum of wavelet DWT coefficients that are multi-
plied with the scaling DWT coefficients at scale a. Figure 5 illustrates this process
which is known as a 2-channel synthesis filter bank. The scaling DWT coefficients
(ca(f)) and wavelet DWT coefficients (d,(f)) at scale « are first up-sampled by
factor 2. Then, the scaling DWT coefficients (c,(f)) are filtered with a LPF H, and
the wavelet DWT coefficients (d,(f3)) are filtered with a HPF G respectively.
Finally, the two filtered signals are added together to form the scaling DWT
coefficients at scale @ + 11i.e. (co+1(f)).

—caﬂ(ﬁ)

¢, ()

a@(ﬁ)a@—» G
—(t2)~

Figure 5.
DWT reconstruction (single level).
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In short, the DWT decomposes signals into coefficients. The IDWT reconstructs
the original signals from coefficients which can be implemented efficiently by
iterating the 2-channel synthesis filter bank.

2.1.2 Wavelet packet transform (WPT)

In DWT decomposition, the direction of decomposition is heading towards the
low pass branches, i.e. the sequence of iteration for the 2-channel filter bank is
always taking the low pass filters. At the end of decomposition, the low frequencies
portion contains fewer numbers of coefficients, hence occupying a narrow band-
width. The high frequencies portion contains larger number of coefficients, hence
occupying a wide bandwidth.

On the other hand, wavelet packet transform (WPT) executes the iteration of 2-
channel filter bank on both sides, i.e. on the low pass and high pass filter branches
for decomposition. Therefore, the WPT has evenly space frequency resolution and
similar bandwidth size since both the high frequency and low frequencies compo-
nents are decomposed. In WPT, the filter bank structure is expanded into a full
binary tree. A set of WPT coefficients is labeled by { and the level that corresponds
to the depth a node in the tree structure is indicated by / and parameter p indicates
the position at current node. Every parent node is split by the WPT in two orthog-
onal subspaces W7} which is located at the next recursive level, and is given as [19];

2 p+1 ] ]
Wi = Wi @ Wiy, Wi = Span{22] (2t - p) } (24)
In WPT, the scaling WPT coefficients are denoted as Z_,’lzﬁl and wavelet WPT

coefficients are labeled as (¥, given as in the following expressions, and are
depicted as in Figure 6.

&8 = h(m —2p)& (m) (25)

& (B)

$hi(BY ST (B)

Figure 6.
WPT decomposition at single level.
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) = em —28)& (m) (26)

m

In WPT, the number of iterations by the 2-channel filter bank increases expo-
nentially as the number of levels increased. Therefore, WPT has higher computa-
tional complexity than the regular DWT. The WPT requires O (Nlog(NN)) operation
(by using fast filter bank algorithm), while Fast Fourier Transform (FFT) requires
only O(N) operations to complete DWT [16]. The reconstruction (inverse WPT) is
executed by taking the reverse direction of the tree in Figure 6. The wavelet packet
coefficients ¢¥ () at any level [ can be expressed as

=" mh(p—2m) + & m)g(B — 2m) 27)
2.2 Multicarrier modulation (MCM) system

Multicarrier modulation (MCM) scheme is a technique that transforms the high-
speed serial signals into multiple low-speed parallel signals with N overlapping
subcarriers. This special multicarrier modulation scheme was introduced by Chang
[21], and is known as the orthogonal frequency division multiplexing (OFDM). The
technique is widely used in various applications such as in European Digital Audio
Broadcasting (DAB), IEEE 802.11 (WiFi) and IEEE 802.16 (WiMAX). OFDM has
high spectral efficiency and consecutive subcarriers experience no crosstalk if the
orthogonality is preserved.

In this study two wavelet-based MCM systems are used i.e. the wavelet-based
OFDM (WOFDM) and wavelet packet-based OFDM (WP-OFDM) systems. As
seen above. The primary difference between these two MCM systems is the way the
wavelet tree being expanded. Therefore, in wavelet-based OFDM (WOFDM), the
decomposition process expands the branches in dyadic way. In wavelet packet-
based OFDM (WP-OFDM), the decomposition process expands the nodes as a full
binary tree. Hence, wavelet packet process possesses richer signal analysis than
wavelets process and for the detail analysis, wavelet packet process is capable to
focus on any of the tree nodes. This main difference of the two MCM systems is
illustrated in Figure 7. Notice that the wavelet decomposition produces different
range of bandwidth divisions. The wavelet bandwidth is in form of dyadic division,
while wavelet packet bandwidth is uniform. Therefore, the use of wavelet packet

(0,0) (0,0)

(1,0) (1,1)

(2,0),

(3,0) (3,1) (3.0) (3,1) (3,2) (3,3)(3,0)(3,1) (3,2)(3.3)
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&) 4]
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Figure 7.

Decomposition and bandwidth division for (a) DWT and (b) WPT.
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transform in MCM system is preferable since its major characteristic resembles the
conventional OFDM [22].

In wavelet packet-based OFDM (WP-OFDM) scheme that wavelet packet
transform is utilized to change a series of parallel signals into a single composite
signal. Both OFDM and WP-OFDM possess high spectral efficiency since their
subcarriers are orthogonal that overlap between each other. The only difference
between the two schemes is in term of the shape of the subcarriers produced. In
ordinary OFDM the Fourier bases are used i.e. the sine or cosine terms. However, in
WP-OFDM scheme the wavelet packet provides flexibility for modification of the
filter banks property to suit the characteristic of system transmission [14]. The
general multicarrier modulation system is shown in Figure 8.

WP-OFDM is implemented by the using the inverse orthogonal transform at the
transmitter which is known as the inverse discrete wavelet packet transform (ID-
WPT) as illustrated in Figure 9 (left-hand side). The forward orthogonal transform
is implemented at the receiver called as discrete wavelet packet transform (DWPT)
as depicted in Figure 9 (right-hand side). The implementation of WP-OFDM that
utilizes the wavelet packet transform has been derived from MRA concept [23]. It is
commenced by introducing a pair of filters called as quadrature mirror filters

Inverse
Input data —»{ Encoder MQaAhﬁ] —orthogonal
PPIng transform
H A 4
e TRANSMLLEE st e
s REOEIVEE oo Model
Retrieved QAM De-| | Forward
«— Decoder [« . «— orthogonal |«
data mapping
transform

Figure 8.
General schemes for multicarrier modulation.

]

Figure 9.
IDWPT and DWPT in MCM scheme.
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(QMF) that contain half-band of the low and high-pass filters, i.e. z[n] and g[#]
respectively of length L. The relationship of the filters is described as the following;

glL—1—n] = (~1)"h[n] (28)
The complex conjugate time reversed variant is given by [24];
Wn)=h*[-n]and g'[n) = g* [-n] (29)

The pair of 4'[n] and ¢'[n] is the synthesis filter-pair which is used to produce
wavelet packet carriers for modulation at the end of the transmitter, while pair of
h[n] and g[n] is the analysis filter-pair for demodulation at the end of the receiver.
The wavelet packet coefficients Y} are obtained from QMF filters which are derived
via MRA as [24];

Y2, (6) = V2 hln] Y} (2t —n) (30)

Y2 (0) = V2 gl Y! (2t — n) (31)

where p is subcarrier index at any tree depth /.

3. PAPR profile of wavelet-based multicarrier modulation signals

This section presents a comprehensive study on the PAPR profile of multicarrier
modulation (MCM) signals. The performance of the transmitted signal is measured
by the ratio of peak power signal to its corresponding average power signal within
similar MCM frame, known as the peak-to-average power ratio (PAPR). It is
desired to have a minimum PAPR as possible in order to reduce the complexity of
high power amplifier (HPA) and at the same time, the average transmitting power
can be boosted up efficiently as maximum as possible in a linear region of a HPA.
Besides, it is disadvantageous of having high PAPR as the signals may be distorted in
the nonlinear region of the HPA and results in poor reception and bit error rate
(BER) performance. In order to cope with high PAPR, this chapter provides a study
that investigates the wavelet-based OFDM (WOFDM), wavelet packet-based
OFDM (WP-OFDM) and conventional OFDM systems performances. This investi-
gation is carried out by replacing different orthogonal base modulations, which is
normally used in Fourier based MCM (as the conventional OFDM system).

3.1 Multicarrier modulation system models

This section presents the general multicarrier modulation system model struc-
tures for implementation. The condition for determining the initial data value and
maximum potential number of symbols to be carried by system subcarriers are also
discussed.

3.1.1 System models descriptions
The three evaluated multicarrier modulation (MCM) system models are

represented by a single general MCM model as illustrated in Figure 10. The infor-
mation bits are generated based on the uniform random distribution binary
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Figure 10.
Model for general MCM scheme with data sequence details.

number. The data are arranged (in every frame) in a horizontal matrix 1 X 7, and
are converted into base16 number format. Subsequently they are encoded by Reed-
Solomon (RS) codes, and converted into baseM number format, where M corre-
sponds to the total mapping points in a particular QAM constellation. In this work,
the Reed-Solomon of RS(n, k) is used, where # is the encoded data, and k is original
data. In particular, the RS(15,11) is used throughout the work for protecting the
original data. This channel coding scheme is compatible with hexadecimal number
for encoding and decoding processes. In addition, RS encoded symbols are
converted to the baseM symbols to achieve the same configuration that adapts with
modulation constellation mapping.

Table 1 shows four possible of baseM number format types associated with the
number of bits per symbol, Ny, as well as the corresponding constellation mapping
modulation types. Then, the data frames are transformed into time-domain MCM
signals by using a particular inverse transform prior transmission and they are
retrieved back by the corresponding forward transform at the receiver. The partic-
ular inverse and forward transforms applied are labeled in block diagrams as shown
in Figures 11 and 12.

In Figure 11, there are two types of wavelet-based MCM models to be consid-
ered i.e. the wavelet-based OFDM (WOFDM) and wavelet packet-based OFDM
(WP-OFDM) systems. At the transmitter, either the inverse discrete wavelet trans-
form (IDWT) or inverse discrete wavelet packet transform (IDWPT) is used. At the
receiver, either the discrete wavelet transform (DWT) or discrete wavelet packet
transform (DWPT) is used. These modulation techniques offer higher spectral
efficiency since there is no for the system to use the cyclic pre-fix (CP) codes as in
the conventional OFDM.

Figure 12 shows the conventional OFDM (C-OFDM) which is included for
comparison system model. This model utilizes the inverse fast Fourier transform
(IFFT) and fast Fourier transform (FFT). Additional blocks are required for
appending and re-moving the CP codes where 25 percent of the OFDM frames tail
are copied and appended to OFDM frames head [25, 26].

BaseM No. of bits per symbol, N, Suitable mapping type
Base2 1 BPSK
Base4 2 QAM
Basel6 4 16QAM
Base64 6 64QAM
Table 1.

BaseM and its appropriate constellation mapping.
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Model for conventional OFDM scheme.

Each frame must contain P symbols and is always less than or equal to the total
number of subcarriers N, i.e. P<N. The specified number of base for every modu-
lation type is fixed as in Table 1. The number of initial binary information #;,;
increases as the number of bits per symbol N, increased with constant value of N.
In this work, the RS(15, 11) is used, and the encoded data (n = 15), and the original
data (k = 11) respectively. This implies that each time a sequence of symbols to be
encoded, the number of original symbols taken is eleven and this produces total
fifteen encoded symbols afterwards. Therefore, during the encoding process, the
raw binary data (base2) need to be converted to base16 symbols to suites the
requirement of RS(15, 11) coding scheme where each encoded symbol should have a
value between 0 to 15.

3.1.2 Determination transmission parameter

This section describes how the transmission parameters values of P is obtained
by manipulating the base number of the symbols. Figure 10 above shows the block
diagram of the of S/S encodes where raw input data bits are converted into baseM
symbols. Figure 13 shows further details of this process.

Figure 13 denotes three conversion processes for the initial input bit 7y
which are indicated as the , § and y processes. The a process converts every
four bits (v = 4) of binary source data to a base16 symbol. For example, if
Hinitase2 = {1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,1,0,0, 1}
then, the output from process a is n, = {9,3,3,2,8,0,7,1,7,2,9}. This means the
number of overall symbols is reduced to one-fourth.

Next, ff process converts every eleven base16 symbols (k = 11) into fifteen base16
encoded symbols (z = 15). For instance, when n, = {9, 3,3,2,8,0,7,1,7,2,9} then,
the output of g processisnz = {9,3,3,2,8,0,7,1,7,2,9,15,2,7,11} which increases
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S/S encoding into baseM symbols block diagram.

Mapping  Base Output of y process Number of symbols (P) at
type number output y process
BPSK Base2  n, 44 = {1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,0,0, 60

0,0,0,0,0,1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,
1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,1,1}

QAM Base4 Ny pases = 12,1,0,3,0,3,0,2,2,0,0,0,1,3, 30
0,1,1,3,0,2,1,3,3,0,2,1,3,2,3}
16QAM Basel6 1,416 =19, 3,3, 2,8,0,7,1,7,2,9,15,2, 7,11} 15
64QAM Base64 Ny, base64 = {36, 51, 10, 0, 28, 23, 10, 31, 9, 59} 10
Table 2.

Output of y process based on mapping type selection.

the number of symbols along the encoding processes with the additional redun-
dancy required for channel error protection. This implies the number of overall
symbols now has been increased by 15/11. After that, y process converts every single
base16 symbol into four base2 symbols (w = 4). Then this follows by converting
every (Np, = log,M) number of base2 symbols back to a single baseM

symbol. Suppose that M = 16, continuing the above example, when ny =
{9,3,3,2,8,0,7,1,7,2,9,15,2,7,11} then, the output of y process is 7, js516 =
{9,3,3,2,8,0,7,1,7,2,9,15,2,7,11}. The rest of other mappings are as listed in
Table 2. The number of transmission symbols P, thus can be expressed as

1 n 1
P= Ninit X <;> X (E) Xw X (@) (32)
where P<N.

Using (Eq. (32)), the number of transmission symbols P and initial input bit #;,;
can be obtained after defining number of subcarriers (N). Thus, number of bits per
symbol, Ny, can be obtained and the quantitative relationships between these
parameters are shown in Table 3.

Figure 14 shows the partitions between the occupied slot positions of the
encoded data (P) and the remaining slot positions (R) for three different values of

Parameters Value
No. of subcarrier, N 64 128 256
No. of bits per symbol Ny, 1 2 4 6 1 2 4 6 1 2 4 6

No. of initial binary information, n;,; 44 88 176 264 88 176 352 528 176 352 748 1100

No of symbols per frame P 60 60 60 60 120 120 120 120 250 250 250 250

Table 3.
The relationship between Ninie, P, N and Nyps.
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Figure 14.
MCM partition with respect to N. Partition of the occupied slot: the encoded data (P) and the remaining slot
positions (R) for total subcarriers {N = 64; 128; 256}.

total subcarriers {NN = 64;128;256}. It can be observed that the subcarriers are not
fully occupied for the whole slot positions with frames, hence the remaining posi-
tions, R is filled up with zeros. There are four zero frames (N = 64), eight zero
frames (N = 128) and six zero frames (N = 256) respectively.

4. PAPR profile: results and analysis

This section presents the results and discussions on the PAPR profile perfor-
mances based on several important parameters i.e. modulation types, number of
subcarriers, the orthogonal bases (Fourier/Wavelets) and filter length. The BER
performance is also included to investigate the efficiency of the system models. The
common parameters used in the experiments are as list in Table 4 below.

The effect of modulation constellation mapping on PAPR is analyzed in the
following paragraphs. The list of parameters involved are shown as in Table 5.
Figure 15 shows that both the conventional C-OFDM and WP-OFDM systems are
having almost the same PAPR profiles, regardless of the modulation mapping types
used. The reason for the PAPR profiles of the wavelet based OFDM (WOFDM)
outperform the PAPR profiles of the WP-OFDM, is that the WOFDM system
contains a smaller number of signal analysis than the WP-OFDM system. The PAPR
profile for WOFDM system is superior since the decomposition and reconstruction
signals are only involved the low pass branches. Thus, there is lower probability for
the peak to be above the average signals leading to slightly superior PAPR profile.

Parameter Descriptions

System Model WOFDM, WP-OFDM, C-OFDM

Encoder type RS(15,11)

Channel model AWGN

CP for conventional MCM 25% of total subcarriers
Table 4.

Common parameters for experiments.
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Parameter Descriptions

Mapping type QAM, 16QAM, 64QAM

Number of subcarriers 128

Orthogonal bases Fourier, wavelet (Haar)
Table 5.

Parameters used for studying the effect of different type of mapping modulation.
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Figure 15.
CCDF of the PAPR with variation of mapping type.

However, it can clearly be seen in Figure 16, the BER performances are indeed
worse for all three MCM systems as the type of mapping changes from QAM
towards 16QAM and 64QAM. The BER performance is highly related with the type
of the signal mapping used. Theoretically, the error probability at the receiver
increases as the number of constellation points increased. In order to reduce the
error probability, in general higher E,/Nj is required. Table 6 shows for probability
of bit error at 10~° the corresponding of E;,/N, (dB) values for all modulation
mapping types. The channel impairment used for evaluating the performance is
using the AWGN channel. From Figure 16, the 64QAM modulation mapping type
that can hold higher bit information, where each symbol represents 6 bits, even
though it requires much higher transmitting power.

The following paragraphs analyze the effect on varying the number of
subcarriers on the PAPR profiles. Table 7 lists all parameters required for this
experiment. It is found that, when the number of subcarriers N decreases i.e. from
N =256 until N = 64, the PAPR profile (CCDF) of any modulation scheme is
gradually improves as shown in Figure 17. Explicitly, the PAPR profile of WOFDM
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Figure 16.
Corresponding BER performances due to vaviation of mapping type.

Mapping type E,/N, (dB) at BER level of 10~
QAM 9.0
16QAM 15.5
64QAM 21.5
Table 6.

Common value of Ep/N, for the corresponding mapping type.

Parameter Descriptions

Mapping type 64QAM

Number of subcarriers 64, 128, 256

Orthogonal bases Fourier, wavelet (Haar)
Table 7.

Parameters used for studying the effect of different No. of subcarriers.

model outperforms the PAPR profile of C-OFDM and WP-OFDM models by 1.5 dB
at the CCDF level of 10 for fixed N = 64. The PAPR profiles for C-OFDM and
WP-OFDM systems are similar. The PAPR profile for WOFDM system is superior
since the decomposition and reconstruction signals are only involved the low pass
branches. Thus, there is lower probability for the peak to be above the average
signals leading to slightly superior PAPR profile.

Figure 18 shows that there is no significant different in term of BER perfor-
mances, although different numbers of subcarriers are used for modulation. At BER
of 107%, it is found that the difference between the lowest and highest value of
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Figure 17.
CCDF of the PAPR with variation of number of subcarriers.

E,/N, is less than 1 dB. Thus, it can be deduced that, the number of subcarriers
gives less impact to the BER performance. The E,/Nj is quite high (i.e. nearly 22 dB
for all profiles). The increase in the number of subcarriers worsen the PAPR profile.
Therefore, for practical application, the number of subcarriers N = 128 is selected
since it is a moderate choice as compare to the other number of subcarriers.

The following paragraphs analyze the influence of different orthogonal bases,
wavelet types and their filter lengths on the PAPR profile. Several wavelet families
applied includes the Daubechies, Symlet, Coiflet and Meyer wavelets with various
lengths of coefficients. The parameters are briefly listed as in Table 8. This analysis
is mainly focuses on the wavelet OFDM and wavelet packet-based OFDM systems.
However, the C-OFDM scheme is also included as a performance reference. Addi-
tional information regarding the characteristic of the wavelet families are included
in Table 9.

Figure 19 shows the PAPR profiles for the three OFDM systems, where
Daubechies wavelet with different filter lengths are used (Fourier based OFDM
profile is just for reference only). In analyzing the effect of wavelet filter length,
various filter lengths are used in the experiment. From Figure 19, looking at the
WOFDM profiles (red color), as the filter length increases, the PAPR profiles
become worse. In other words, the Daubechies wavelet (in WOFDM) with higher
filter length produces inferior PAPR profiles. This is due to the fact that with higher
filter length, the wavelet has richer signal analysis. Thus, there is higher probability
for the peak to be above the average signals leading to slightly inferior PAPR profile.

However, for WP-OFDM profiles (blue color), there is no significant difference
in the PAPR performance. Since the signal analysis in WP-OFDM is in full binary
tree analysis rather than dyadic (lower-half band) analysis in WOFDM system.
There is already high amount of data involved in decomposition and reconstruction
which makes the effect of wavelet filter length insignificant.
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Figure 18.
Corresponding BER performance due to variation of number of subcarriers.

Parameter Descriptions
Mapping type 64QAM
Number of 128
subcarriers

Orthogonal bases Fourier, wavelet (db1, db2, db3, db5, db10, db20, sym2, sym3, sym5, sym10, coifl,
coif3, coif5, dmey)

Table 8.
Parameters used for studying the effect of diffevent bases and filter length.

Full name Abbreviated name Vanishing order Length, L

Haar Haar 1 2

Daubechies dbN N 2N

Symlets symN N 2N

Coiflet coif N N 6N

Discrete Meyer dmey — 62
Table 9.

Wavelet family characteristic [23].

In Figures 20 and 21, different wavelet types (Daubechies, Symlet, Coiflet and
Discrete Meyer wavelets) are used but the filter length is fixed L = 6 (short
category). For long category the filter lengths are mixed, i.e. L = {18(coif 3),20
(db10,sym10), 62(dmey)} respectively. From these figures, there can be observed
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CCDF of the PAPR with Daubechies wavelet with different filter lengths.
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that no explicit difference found from PAPR profiles of WP-OFDM signals either by
changing the wavelet’s type or length.

The BER performances are shown in Figure 22, where the experiment is carried
out on the Daubechies wavelet with different filter lengths. It can be observed that
no significant difference between BER performances. For example, at BER 10 ° all
profiles having the same value of E;,/Ny.

5. Conclusion

The phenomenon of high PAPR in MCM system cannot be avoided since the
signals consist of multiple low-rate parallel signals, which can be seen as the com-
posite subcarriers in time domain representation. It is expected by using different
orthogonal base for modulation, the PAPR profile can be reduced. Hence, discrete
wavelet transform (DWT) and discrete wavelet packet transform (DWPT) are used
for this purpose instead of fast Fourier transform (FFT). In comparison to the
C-OFDM system, WOFDM and WP-OFDM systems do not need any cyclic prefix
(CP) codes for their MCM frame in order to avoid intercarrier interference (ICI)
and inter symbol interference (ISI).

Although, WOFDM system provides superior PAPR performance than other
systems, data are lost at higher frequencies branches since signals decomposition
are in dyadic (lower half-band) fashion. On the other hand, WP-OFDM system
decomposes the signals in both lower and upper-band frequencies, that enrich
signals analysis. The results obtained in Section 4 proves the characteristics. In
addition, applying various wavelet bases do not offer much improvement in PAPR
profile.
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Chapter 5

Wavelets for EEG Analysis

Nikesh Bajaj

Abstract

This chapter introduces the applications of wavelet for Electroencephalogram
(EEG) signal analysis. First, the overview of EEG signal is discussed to the recording
of raw EEG and widely used frequency bands in EEG studies. The chapter then
progresses to discuss the common artefacts that contaminate EEG signal while
recording. With a short overview of wavelet analysis techniques, namely; Continues
Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet
Packet Decomposition (WPD), the chapter demonstrates the richness of CWT
over conventional time-frequency analysis technique e.g. Short-Time Fourier
Transform. Lastly, artefact removal algorithms based on Independent Component
Analysis (ICA) and wavelet are discussed and a comparative analysis is demon-
strated. The techniques covered in this chapter show that wavelet analysis is well-
suited for EEG signals for describing time-localised event. Due to similar nature,
wavelet analysis is also suitable for other biomedical signals such as Electrocardio-
gram and Electromyogram.

Keywords: EEG, artefacts, wavelet analysis, CWT, DWT, WPD, artefact removal
algorithms, time-frequency analysis

1. Introduction

Biomedical signals are electrical activities recorded by sensors from a part of the
body, such as the brain, heart, muscles, etc. They can be recorded as images e.g.
functional Magnetic resonance Image (fMRI) from brain or a temporal signal e.g.
Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG),
Galvanic Skin Response (GSR), etc. These signals contain useful information to
analyse and understand the underlying physiological response of the body, thus
they are also referred to as physiological signals. Biomedical signals are extensively
used in healthcare to diagnose deceases and monitor health. With recent advance-
ments and ease of using the devices to record the biomedical signals have open a
window to use it to analyse and understand the day-to-day activities, emotions,
and, experiences [1-3]. While recording the physiological activities through sen-
sors, the signals are usually contaminated by noise and various artefacts [4].
Corrupted signals mislead the analysis and understanding of the underlying physi-
ology [5]. The characteristics of wavelet to identify the time-localised events makes
it suitable for the biomedical signals to clean, process, feature extraction, and
analyse for various applications. Recent studies have shown the promising results of
using wavelet in biomedical signals [6].

In this chapter, first, we introduce one kind of biomedical signal - EEG. We will
explain the conventional features used in EEG studies. We will introduce the arte-
facts that commonly contaminate EEG signals, which makes it harder to use. The
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chapter then will move towards a short description of Wavelet analysis techniques,
namely Continues Wavelet Transform (CWT), Discrete Wavelet Transform
(DWT), and Wavelet Packet Decomposition (WPD). We would, then, compare
CWT and STFT for EEG signal. Then, we will discuss artefact removal algorithms,
with more details on Wavelet-based algorithms. The chapter will show the com-
parative analysis of artefact removal algorithm. The approach and analysis shown in
this chapter for EEG signals can easily be applied to other biological signals.

2. Electroencephogram - EEG

The brain processes any information by means of neurons that use electrical and
chemical signals to communicate by releasing and receiving neurotransmitters. The
neural activity in the human brain is an electrical change. The brain generates
electrical signals throughout the day for various activities. Studying these electrical
signals is vital to understanding the neurophysiological behaviour of the brain [4].
A number of techniques are used to study brain activities. Functional magnetic
resonance imaging (fMRI), Functional Near-Infrared Spectroscopy (firs), and
Electroencephalography (EEG) recordings widely used techniques. The fMRI mea-
sures brain activity by scanning the blood flow. The fNIRS measures brain activity
by measuring hemodynamic response in the brain through detecting the temporal
changes in infrared light source. The EEG measures the electrical activity of the
brain by electrodes placed on the scalp. Comparing to the other two, EEG measures
brain activity directly, with high temporal resolution and most accessible and por-
table for the research. The fMRI has a high spatial resolution but very expensive,
therefore it is mostly limited to medical diagnosis and treatments.

2.1 The EEG measure

The EEG signal is measured by placing multiple electrodes on the scalp that
measure the current flow from neurons. A setup for EEG recording is shown in
Figure 1. Each neuron (brain cell), when activated, it produced an electrical and
magnetic field around the scalp. Since there are 100 billion neurons in the brain,
when an electrode is placed on the scalp, it measures the accumulative activity of
many neurons together. The complex structure of the brain attenuates the electrical
signals, therefore an electrode can record the brain activity, only when a large
number of neurons generate enough potential. The EEG devices amplify the
recorded signal to store and process it [4].

Subsjeer

(a) EEG recording (b) 10-20 System

Figure 1.
EEG recording setup: (a) a wireless device Emotiv Epoch mounted on a subject, transmitting EEG signal to a
computer. (b) Electrode positions as 10—20 system, source: https://www.emotiv.com/.

90



Wavelets for EEG Analysis
DOI: http://dx.doi.org/10.5772 /intechopen.94398

The placement of electrodes has been standardised with the specific anatomical
landmarks with a distance between electrodes as 10% or 20% of total length. This
placement is called the 10-20 system, as shown in Figure 1b. The number of
electrodes used for EEG recording varies, depending on the device. One of the low
spatial resolutions can be of a 14-channel EEG device and high spatial resolution
with 128 or 256 channels. The name of the electrode position is labelled as character
followed by a number to identify the part of the brain. The characters are Fop for
pre-frontal, F for frontal, P for parietal, T for temporal, O for occipital, and C for
central lobe of the brain. A few in between two landmarks are named with two
characters, such as AF, between Fp and F and FC, between F and C [4]. An example
of 14-channel is shown in Figure 1b.

The raw recording of EEG signal in the time-domain is complex to interpret.
Similar to many other signals, frequency domain analysis has been widely used. The
decades of work on EEG studies have identified five major frequency bands for EEG
signals and established the correlation between behaviour and neural activity of a
certain part of the brain. The frequency bands widely used are; Delta (0.1 — 4 Hz or
0.5 — 4 Hz), Theta (4 — 8 Hz), Alpha (8 — 14 Hz), Beta (14 — 30 Hz), Gamma
(30 — 63 Hz). A raw EEG signal from a channel and corresponding signal in differ-
ent bands are shown in Figure 2. It can be observed that low frequency, Delta
activity, is the dominating wave in raw EEG and high-frequency Gamma is almost
noise like with a little amplitude [4].

Due to multichannel signals, it is usually viewed as topographical brain activity
(heatmap over an image of head) under different frequency bands. An example of
5 seconds EEG recording with a 14-channel device is shown in Figure 3. The first
second of all the channels are used to compute the energy distribution over brain
regions. In Figure 3, the top left shows the raw EEG signal and corresponding brain
activity, which shows a high activity in the frontal lobe of the brain. However,
under different frequency bands, the different part of the brain shows higher
activity.

The frequency bands; Delta, Theta, Alpha, Beta, and Gamma, are also called
brain rhythms. Brain rhythms have been investigated over decades and a few
characteristic behaviour of these brain rhythms have been established [4].

Theta
& o
S o o

Alpha
P
© o ©

Beta
|
5 o B

Gamma
s
© o b5

time (sec)
Figure 2.

The signal channel raw EEG signal and corresponding frequency bands: Delta (0.1 — 4 Hz), theta (4 — 8 Hz),
alpha (8 — 14 Hz), Beta (14 — 30 Hz), gamma (30 — 63 Hz).
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Raw EEG (~05t02)

w 163
— umelsec)

Figure 3.
Topographical view of brain activity: Energy distribution of EEG recording over different brain regions under
five frequency bands and raw signal.

* Delta: Delta waves were first introduced by Walter in 1936, it ranges from 0.1
(or 0.5) to 4 Hz in frequency. Delta waves are usually observed in deep sleep.
Since delta wave is the low-frequency wave, it is easily confused by the
movement artefact, due to similar nature. Delta waves have also been linked to
continuous attention tasks.

* Theta: Theta waves were introduced by Dovey and Wolter, ranges from 4 to
8 Hz in frequency. Theta waves are linked to drowsiness and deep meditation
state.

* Alpha: Alpha waves, perhaps are the most widely investigated waves in EEG
studies. Alpha waves were introduced by Berger in 1929. They lie in a range
from 8 to 14 Hz. Alpha waves usually appear on the occipital lobe of the brain.
Alpha waves are the most common indication of a relaxing state of mind and
are also linked to closing eyes. Any sign of anxiety or attention reduces the
alpha waves.

* Beta: Beta waves lie in the range of 14-30 Hz of frequency. Beta waves have
been associated with active thinking, anxious, high alert, and focus of the
brain.

* Gamma: Gamma waves are the higher frequency waves, ranges from 30 to
onwards. Gamma wave is considered to play a complex role in brain
functionality, such as combining information from two different sensory
inputs. It is also used to confirm certain brain diseases.

2.2 Artefacts in EEG
While recording, EEG signals are frequently contaminated with various arte-

facts. The most common types of artefacts are motion, muscular, ocular, and car-
diac artefacts [4], which are shown in Figure 4. The motion artefacts are caused by
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Figure 4.

Common type of artefacts in EEG. Corresponding artefacts ave circled in the figure.

the physical movement of the person’s body. As shown in Figure 4a, motion
artefacts produce a sudden high valued spike in all the channels of EEG recording.
The muscular artefacts, shown in Figure 4b are caused by any muscular contraction
such as grinding the teeth. It produces high-frequency bursts in EEG recording as
circled in the Figure 4b. The cardiac artefacts, shown in Figure 4c, are caused by
the electrical activities of the heart. They appear as a weak form of QRS wave of
heart and most likely to be appeared in the channels near to ears (temporal lobe),
though it can be sometimes present in channels from the frontal lobe [7]. The ocular
artefacts are slow oscillating waves appear on the frontal lobe, caused by the eye
movements or closed eyes, as circled in the Figure 4d. The higher magnitude of the
artefacts corrupts the EEG recording and leads to misinterpretations of the results
and analysis [5]. Even though there are many algorithms to remove the artefacts,
but there is always a possibility of losing the cerebral information while removing
the artefacts.

3. Wavelet analysis

Most of the real-life signals are non-stationary in behaviour, which means their
properties change over time. To localise the events of interest, time-frequency
analysis is widely used. The conventional way of time-frequency analysis is the
Short-Time Fourier Transform (STFT), where Fourier transform of the signal is
taken over short-windows, resulting spectrogram plot. STFT has limitations on
resolutions, due to Heisenberg’s uncertainty principle, e.g. improvement in time
resolution results in poorer frequency resolution and vice-versa. The alternative to
STFT is wavelet transform, which exploits the property of low-frequency signals
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Figure 5.
4-level decomposition tree for (a) discrete wavelet transform (DWT), (b) wavelet packet decomposition
(WPD).

being widespread over time and high-frequency bursts occurring on short intervals.
Wavelet transform uses the variable size of windows with a wavelet function.

Wavelet analysis is usually applied in two ways, Continuous Wavelet Transform
(CWT) and Discrete Wavelet Transform (DWT). CWT uses a wavelet function
w(¢) and produces a scalogram, similar to a spectrogram for time-frequency analy-
sis. However, DWT decomposes a signal into two (1) average or lowpass signal,
using scaling function and (2) difference or highpass signal using wavelet function.
The conventional DWT recursively decomposes lowpass signal with the same scal-
ing and wavelet functions to the desired level of decomposition. A decomposition
tree for DWT is shown in Figure 5a. For some applications, it is useful to decom-
pose highpass signal at each level too, this is called Wavelet Packet Decomposition
(WPD). A tree for WPD is shown in Figure 5b.

As shown in Figure 5, block LP is a lowpass filter /2 (#) and block HP is a highpass
filter g(n), both followed by downsampler (| 2). The coefficients of lowpass filter
are corresponds to scalling function ¢(n) and coefficients of highpass filter are
corresponds to wavelet funciton y(z). A N-level DWT decomposes a signal x ()

into set of signals: [X’LV ,XZ,X%*, ,X}I], each with different dimensions. How-

ever, a N-level WPD decomposes a signal x(#) into set of packets: [X}V,XIZ\,, ,Xlz\l,v] R
each with same dimensions.

4. Time-frequency analysis of EEG using CWT

As discussed, a conventional way to time-frequency analysis is STFT, however,
using CWT with different wavelet functions can enrich the analysis with more
details. In this section, we will show, how a continuous wavelet function (y(t)), can
be applied to a discrete EEG signal x(#), and compare the spectrogram with scalo-
gram of different wavelet functions.

A spectrogram is obtained using STFT, which is Fourier Transform computed
for a short windows. STFT X (7, @) of signal x(t) as given as Eq. (1), where w(z) is a
window function. On the other hand, CWT X,,(a, b) of a signal x(¢) is given by
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Eq. (2), where y, () is a complex conjugate of scaled and shifted version of mother
wavelet y(t), a is scaling parameter and b is shifting parameter.

Xo(t0) = [, *(Ow(e — eIt (1)

00

Xown(a,b) = J x(t)y2 (e, @)

—o0

CWT operation from Eq. (2) can be seen as convolution of input signal x(t) with
scaled version of wavelet function y (z).

Xewr(@) = x()@y, (£) ®3)
Xewr(f) = X(fHwax(f) 4)

where X( f) is Fourier transform of x(t), and the same for others. For computa-
tions with discrete signal x(#), both equations; 3 and 4 can be used with discrete
operations, e.g. convolution and multiplication and discrete wavelet function y (),
while for Fourier Transform, Fast Fourier Transform (FFT) is used. For computa-
tional efficiency, however, Eq. (4) is widely used, by multiplying FFT of x () and
FFT of scaled and discrete version y(n). Even though, for discrete signal x(n),
discrete wavelet function y(n) is used, however, the conventional definitions of
wavelet functions for CWT are defined in continues time-domain. A set time-
domain and frequency-domain equations for six complex wavelet functions are
defined below. Figure 6 shows all the six wavelet functions, with their real and
imaginary part. All six functions are similar, in terms of smoothness and being
derived from exponential and sinusoidal functions, however, they have different
parameters to control the oscillation and frequency band to be captured.

Gaussian Wavelet: A time-domain wavelet it derived from a Gaussian function
centered at ¢, and modulated by a complex exponential function with frequency f, [8].

w(t) = et . g=2nifo(t—t0) (5)

w(f) = \/%(e—zﬂ‘ﬁo e (( ffo)z)/ﬂ> ©)

where a = (%)2

Gaussian Morlate Gabor
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Figure 6.

Continues wavelet functions.
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Gabor Wavelet: Gabor wavelet is perhaps the most widely used function for
various applications. It is essentially the same as Gaussian wavelet function, with
simplified equations, as follow [8, 9];

l//(t) _ e—(t—toy/aze,jfo(t—to) (7)
w(f) = e ((S=F0)a)" gt £=10) 8)

where a is oscillation rate and f; is center frequency, t, is centred time.

Morlet Wavelet: Morlet is considered very similar to Gabor wavelet and Gabor
filters. The oscillation of Morlet wavelet is controlled by o. A higher value of ¢
results in higher oscillation [10].

l[/(t) — Co_ﬂ—04258—045t2 (dﬂ _ I(g) (9)

I/I(LU) = C6ﬂ70'25 (570‘5("*“))2 _ I<(;€70‘5w2) (10)

3.2

~05
where C, = (1 4 e ) LK, =e %5 andw = 2zf .

Poisson Wavelet: Poisson wavelet is defined by positive integers (n), unlike
other, and associated with Poisson probability distribution [11, 12].

1
2
1

ww) = Tn T 1w”e’“’u(w) (12)

p(t) =5 (1—je) " (1)

where w = 2zf and #(w) is a unit step function, e.g. u(w) = 1ifw> = 0, 0 else.

Complex Mexican hat wavelet: Complex Mexican hat wavelet is derived from
the conventional Mexican hat wavelet. It is a low-oscillation wavelet which is
modulated by a complex exponential function with frequency £, [13].

wle) = e (ﬁu —R)e ¥ - (ﬁjt T erf [ét} (1- ﬂ)e%ﬂ) )«zf
(13)
w(w) = 2\/%7[1/4(10 - 1,1)0)26’%(“”“’0)2 ifw>0, Oelse (14)

where w = 2zf and wo = 2zf .

Complex Shannon wavelet: Complex Shannon wavelet is the most simplified
wavelet function, exploiting Sinc function by modulating with sinusoidal, which
results in an ideal bandpass filter. Real Shannon wavelet is modulated by only a cos
function [14].

w(t) = Sinc(t)2) - e ¥7fot (15)
wiw) = [T(*==°) (16)

T

where [[(x) =1ifx<0.5, 0 else and w = 2af and wo = 2xf,.

An example of using the above six wavelet functions for a small single-channel
EEG segment is shown in Figure 7, along with spectrogram. It can be observed,
spectrogram highlights a few events in signal (sharp peaks and lowpass wave),
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Figure 7.
Scalogram and spectrogram of a segment of signal channel EEG signal with six wavelet functions and STFT.
Figure obtained using spkit python library - https://spkit.github.iohttps://spkit.github.io

however, using CWT with different Wavelet functions, much richer information
can be observed. Since, we observed that in the formulation of wavelet functions
that they are similar to the underlying principle, we could also observe the similar-
ities across different scalograms. Specifically, spectrogram using Complex Shannon
and Complex Mexican hat wavelet are much similar. Interestingly, Morlate and
Poisson wavelet functions are able to produce a better resolution towards lower
frequencies.

5. Artefact removal algorithms using DWT and WPD

Artefacts in EEG recording is a primary obstacle that all researchers have to deal
with. There are decades of research work in literature to remove these artefacts
[15, 16]. A range of methods have been proposed to remove the artefacts, starts with
a statistical with interpolation method [17] and regression method [18]. The most
commonly used approaches are based on Blind Source Separation (BSS) using
Independent Component Analysis (ICA) [19, 20]. ICA based approach have been
widely explored with statistical measures [21-24], and variant of ICA as FastICA,
InfoMax, and Extended InfoMax [25-27]. Wavelet-based approaches are well suited
for time-localised short events, as opposed to ICA. This property has been exploited
to remove artefacts from single-channel EEG. In contrast to a single channel,
wavelet has also been used for multi-channel EEG [28] and in combination with
ICA [29-34], in which identified artifactual component is cleaned with wavelet
rather than removed. The ICA-based approaches can only be applied to multi-
channel EEG and need an expert to select artifactual component, which has been
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automated with heuristics [21, 35, 36]. In contrast, most wavelet-based algorithms
remove artefacts from each channel individually.

The key idea of wavelet-based artefact removal algorithms is to apply DWT on
single-channel EEG signal x(z) and remove (set to zero) wavelet coefficients that
fall above some statistical threshold and reconstruct signal back using inverse-DWT
(IDWT) %(n) [37-39]. With linear property of electrical activities, recorded EEG
signal is considered as x(n) = s(n) 4+ v(n), where s(n) is source signal of brain
activity and v(n) is artifactual components. The two most widely used threshold
formulations are used with wavelet.

Global Threshold: Also known as the optimal threshold for removing white-
gaussian noise from any signal [40] using DWT. Global Threshold (T) is defined as;

. . median(|w|)
TG = 6+/2logN  foré = Y7 (17)

where N is the length of signal and for wavelet coefficients w, ¢ is the estimate of
noise variance. To denoise a signal, wavelet coefficients with magnitude below the
threshold T are set to zero and reconstruct the signal back. However, for recorded
EEG signal x(n), source signal s(#) is considered to be zero mean and normally
distributed, i.g. s(n) ~ N(0, 6) [4]. For which any wavelet coefficients with a
magnitude above the threshold T is considered to be artifactual and removed
(set to zero).

Standard Deviation (STD) Threshold: As name suggests, STD threshold is
based on Standard Deviation (STD) of wavelet coefficients [39].

TSTD =15x STD(LU) (18)

ATAR algorithm: A recent study has shown that approaches based on above
thresholds are very aggressive, since, statistically, a few wavelet coefficients of any
signal will always fall above these thresholds [14]. In contrast, an Automatic and
Tunable Artefact Removal (ATAR) Algorithm based on WPD was proposed [41],
which provides three different wavelet filtering modes and a tunable parameter. As
shown a block diagram of ATAR algorithm in Figure 8, a single channel EEG signal
x(n) is first split into smaller windows x,, (%), apply L-level WPD to get wavelet
coefficients w = X (k) = WPD(x,,(n)), then wavelet coefficients are filtered using
wavelet filtering i = A(w) to reconstruct signal %(n) from corrected windows %,,(n).

EEG signal N
X(fs ____, Highpass filter 1X,, (1) E:;f;::i?it? |
(>1Hz) \ WPD (L-level)
\ XL (k)
I
I
I
I
| Wavelet filtering
— A
} 4] A.)
I
|
I -
_ N X0
Corrected Signal | Xy (n)
- Reconstruction of | WPD
X (n) signal nverse

Figure 8.
A block diagram of ATAR algorithm [41].
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The three filtering modes in ATAR algorithm are namely; Elimination A,(-), Linear
attenuation 4,(-), and soft thresholding 4(-), which are defined below;

w iflw| <0,
ew) = { (19)
0 else
w lf |w| S ea
lw] — 0.\ .
da(w) = < sgn (w)0,(1— if 0, <|w| <0 (20)
Op — 0,
0 else
As(w) = ;U —aw <o wherea = 1 lo Ou — 6, (21)
: B —¢ 0, otherwise B 0, & Oy + 0,

1+ew

where w is a wavelet coefficient, sgn (-) is the signum function, and 6, > 6,. A
default setting for 0, and 6, is; 6, = 0.86, and 63 = 20,. The characteristics of wavelet
filtering mode are shown in Figure 9. From Figure 9, it can be seen that Elimination
mode of filtering is the same as conventional filtering, however, Linear attenuation
and soft-thresholding modes do not remove the wavelet coefficient, rather suppress
them softly. Another distinction ATAR algorithm has over others is the threshold
selection. The threshold 6, is computed from Interquartile Range (IQR) of wavelet
coefficients using Eq. (22), which is robust against outliers, as oppose to STD.

o= { S0 K502 b

k1 else

wherefﬁ(r) =k, exp (— %g) (22)
where 7 is Interquartile Range (IQR) of coefficients i.e. » = IQR(w) and k1 and &,
are lower and upper bounds on filtering.

Figure 10 shows a visual comparative analysis of wavelet-based approaches (i.e.
Global threshold, STD threshold, and ATAR algorithm) and ICA based approaches
(FastICA, InfoMax, and Extended-InfoMax) to remove the artefacts. It is visually
apparent that wavelet-based approaches are better than ICA-based approaches.

200 1 —— Elimination +0,
—— Linear attenuation
150 1 — Soft-thresholding

0.

100 4

50

AMw)

—50 1
—100 A

-150 - — i _a.

—200 —6;

-400 =200 0 200 400
w

Figure 9.
Wavelet filtering modes for ATAR algorithm. For 0, = 200, 0, = 0.80, = 160,03 = 20, = 400 [41].
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Figure 10.
Comparison of artefact removal approaches from [41].

Among wavelet-based approaches, using ATAR gives much control over Global and
STD based threshold selection. Other quantitative analyses of the above-mentioned
approaches are discussed in the article [41], which also demonstrate the effect of
tuning parameter and filtering modes on different predictive tasks of EEG signal.
The formulation of relationship, algorithmic implementation details, and compara-
tive results are given in article [41].

6. Conclusions

This chapter presents the overview of Wavelet for EEG analysis. The first chap-
ter introduces EEG signal, commonly used features for predictive analysis, and
artefacts that often contaminate EEG signal. Then chapter discusses the Wavelet
analysis approaches, namely CWT, DWT, and WPD. The richness of CWT over
STFT for time-frequency analysis using various wavelet functions is demonstrated.
Finally, the artefact removal algorithms based on wavelet and ICA are discussed.
The comparative analysis present in the chapter shows that the wavelet-based
approach outperforms ICA based approach. Specifically, a recent algorithm
(ATAR) allows controlling the removal or suppression of assumed artifactual com-
ponents in the signal, which can be tuned to improve the performance of any
predictive tasks. The techniques presented in this chapter show how wavelet can be
used for EEG studies to extract rich information and removing the artefacts. The
comparative analysis shows wavelet based approaches are well suited for EEG signal
processing. Further, similar approaches can be used with other biomedical signals
such as electrocardiogram (ECG or EKG), Electromyography (EMG) etc.
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Chapter 6

Ultra-High Performance and
Low-Cost Architecture of Discrete
Wavelet Transforms

Mouhamad Chehaitly, Mohamed Tabaa, Fabrice Monteiro,
Safa Saadaoui and Abbas Dandache

Abstract

This work targets the challenging issue to produce high throughput and low-cost
configurable architecture of Discrete wavelet transforms (DWT). More specifically,
it proposes a new hardware architecture of the first and second generation of DWT
using a modified multi-resolution tree. This approach is based on serializations and
interleaving of data between different stages. The designed architecture is mas-
sively parallelized and sharing hardware between low-pass and high-pass filters in
the wavelet transformation algorithm. Consequently, to process data in high speed
and decrease hardware usage. The different steps of the post/pre-synthesis
configurable algorithm are detailed in this paper. A modulization in VHDL at RTL
level and implementation of the designed architecture on FPGA technology in a
NexysVideo board (Artix 7 FPGA) are done in this work, where the performance,
the configurability and the generic of our architecture are highly enhanced. The
implementation results indicate that our proposed architectures provide a very
high-speed data processing with low needed resources. As an example, with the
parameters depth order equal 2, filter order equal 2, order quantization equal 5 and
a parallel degree P = 16, we reach a bit rate around 3160 Mega samples per second
with low used of logic elements (~400) and logic registers (~700).

Keywords: Mallat binary tree algorithm, DWPT, IDWPT, lifting scheme wavelet,
FIR filter, parallel-pipeline architecture, VHDL-RTL modeling, FPGA

1. Introduction

We notice in the last year a wide usage of wavelet transform theory in different
domain like telecommunications, image and video processing, data compression,
optical fiber, encryption and others. But these domains are evolved extremely which
require a new wavelet transform architecture with low cost target technology that can
provide a high-speed data processing and low power consummation. In parallel FPGA
technology is massively blossomed to come very popular and to be a target technology
of many applications, in particular of Discrete Wavelet Packet Transform (DWPT).

Although there are tons of research elsewhere, the talking of efficient hardware
implementation of wavelet transform is still a complex mission and depend directly on
the target application. Where in each application, there is a compromise between the
different constraints: processing speed, implementation cost, and power consumption.
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1.1 Related works

Since 1980, the crucial date of the born of “Wavelet Transform (WT)” with its
founder J. Morlet, we found many works describe the hardware implementations of
wavelet transforms. We note that the first work was done by Vishwanath Denk and
Parhi [1], the authors propose an orthonormal DWT architecture combine a digit-
serial processing technique with a lattice structure of quadratic mirror filter (QMF).
After that, Vishwanath [2] and Motra [3], describe an efficient hardware imple-
mentation for DWT and Inverse DWT (IDWT). In 2001, Hatem et al. [4] worked in
the reducing of the number of multipliers in the filters structure in a mixed parallel/
sequential DWT architecture.

Wu and Hu [5] describe an implementation of DWPT/IDWPT in a strategy
to minimize the number of multipliers and adders in symmetric filters using
Embedded Instruction Codes (EIC). In other way to improve the data processing of
DWT, Jing and Bin [6] implement the architecture on FPGA based on advanced
distributed arithmetic (IDA), while Wu and Wang [7] used a multi-stage pipeline
structure, although Palero et al. [8] work on the implementation of two-
dimensional DWT architecture. Also, Hu and Jong [9] present two-dimensional
DWT based on lifting scheme architecture that ensure a high throughput data
processing.

Based on lifting scheme architecture, Fatemi and Bolouki [10] describe a pipe-
line and programmable DWPT architecture. Other important work, to optimize the
hardware complexity of DWT based on coextensive distributive computation
developed by Sowmya and Mathew [11]. Paya et al. [12] used a classical recursive
pyramid algorithm (RPA) and polyphase decomposition to develop a new architec-
ture for IDWPT based on the lifting scheme. Acharya [13] developed a systolic
architecture for both DWPT/IDWPT with a fixed number of requirement pages.
Farahani and Eshghi [14] described a new DWPT implementation based on a word-
serial pipeline architecture and on parallel FIR filters banks. Sarah et al. [15]
presented a convolution block suitable for DWT decomposition. Radhakrishnana
and Themozhib [16] developed a new DWT architecture by using XOR-MUX
adders and Truncations multipliers instead of the conventional adders and multi-
pliers. Taha et al. [17] developed a parallel execution to perform Lifting Wavelet
transform implementation with real time, while Shaaban Ibraheem et al. [18]
presented a high throughput parallel DWT hardware architecture based on
pipelined parallel processing of direct memory access (DMA).

Also, we have to notice that we found recently some orientation to software
approach to compute DWPT/IDWPT on parallel processes to increase the data
processing speed with optimization of the distributed computation. But the prob-
lem is still the required computing resources (concurrent network processors or
processor cores) while the energy consumption is one of the critical criteria in most
application domains, for that we do not include it in our bibliography.

1.2 Wavelet theory

In the previous work, we present a detailed review of the wavelet theory. Where
we focus here on:

* the discrete wavelet packed transform which know as first generation of
Discrete Wavelet Transform based on Mallat algorithm [19]

e the lifting scheme approach which know as first generation of Discrete
Wavelet Transform based on
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1.2.1 Review of DWPT and IDWPT

From the definition of wavelet theory, the DWPT and IDWPT of a signal x[n] is
set of approximation coefficients and detailed coefficients based on Mallat algo-
rithm (or Mallat tree) and using FIR bank filter and inversely.

Based on Mallat the DWPT transform can be presented like decomposition, as
shown in Figure 1.

Where the input signal is presented by the coefficients DJ[k] in level zero with
data sampling D;,. This amount of data (input signal) will be decomposed into two
part:

i. High frequency signal presented by approximation coefficient Dj[k] with
half data sampling of original signal (D;,/2) by using low-pass filter k(n)
and down sampling by a factor of two.

ii. Low frequency signal presented by detailed coefficient DY [k] with half data
sampling of original signal (D, /2) by using high-pass filter g(nz) and down
sampling by a factor of two.

Then the data path will be following the same processing in the next level with

the same filters’ characteristics. The depth in Mallat tree algorithm is equal to the
number level and describe the needed filters equal to 2%°? in each level. In general,
the corresponding approximation and detailed coefficients in different levels in

Figure 1 are calculated as follows:

Dj(k) =) h(n)Dj_4(2k —n) ¢))

D} (k) = g(n)Dj_4(2k —n) @)

n

Where I presents the level and i = 0,1, ..., (2(171) —-1).
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As proposed Mallat in [19], the corresponding transfer functions of k(%) and
g(n) are derived in the following equations:

H(Z) = HO +H1271 +H2272 + . +HL_1Z7(L71) (3)
G(Z) = GO + Glz_1 + Gzz_z + ... + GLflz_(L_l) (4)

where 2! indicates the delay for one samplingperiod and L is the order of filters
depends on the used mother wavelet.

In inverse way, the reconstruction of signal or IDWPT without loss of informa-
tion is possible based on two important properties of wavelets: admissibility and
regularity. Similar to decomposition way, the reconstruction operation is following
an iterative method and the corresponding coefficients in different levels are calcu-
lated as follows:

Dj(k) = > h(n)D}i,(2k —n) + Y g(n)D}i,(2k —n) (5)

For example, the reconstruction of signal in three level based always on Mallat
algorithm is presented in Figure 2.

Where k(n) and g(n) are the conjugated low-pass and high-pass of k(n) and g().
Mallat used the quadratic mirror filter (QMF) of corresponding transfer functions
H,G,H and G to ensure the perfect reconstruction of the original signal.

1.2.2 Review of lifting scheme discrete wavelet transform

Based on the wavelet theory, we can consider that the lifting wavelet theory is
the second generation of DWPT. The strategy in this generation is to reduce the
impact of the high pass and the low pass filters by replacing it into a sequence of
smaller filters: update filters and predict filters. Therefore, the convolution

Dour DOTJ.!‘.‘ Dout DO‘U.C

Figure 2.
IDWPT three level transform based on Mallat algovithm.
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Kernel of the lifting wavelet transform.

computations are reduced by comparison to the first generation which naturally
reduce the design complexity by maintaining the same quality and speed.

By definition, the lifting wavelet transform is dividing to three steps: Split,
Lifting, and Scaling, as shown in Figure 3.

In the split steps, the input signal X(») will be divided into two sub sequences
odd and even. The obtained sub-signal will be modified in lifting steps, by using
alternating prediction and updating filters. And finally, a scaling operation is used
to obtain an approximated and detailed signal.

1.3 Contributions and work organization

In this work, our goal is to develop a high performance, low cost implementation
and configurable new hardware architecture of discrete wavelet transform based on
Mallat algorithm [19]: first generation (based on Discrete Packet Wavelet Trans-
form - DWPT) and second generation (lifting scheme Discrete Wavelet Transform)
by exploitation of this suitable FPGAs environment. In order to provide the low
hardware cost and the high processing speed by design, we develop a new generic
parallel-pipeline architecture avoiding the complexity of the traditional architec-
tures with the massif need for hardware resource by: i) intelligent sharing of hard-
ware computing resources (multipliers and adders) among the different filters and
stages, ii) design a linear architecture to limited impact of filter and wavelet order.
To improve the high performance (data processing speed and hardware cost) of our
proposal, we will perform different simulation function of selected wavelet family,
transformation depth, filtering order and coefficient quantization. In VHDL at the
RTL level, we modeled our architectures and we synthesized it using Altera Quartus
Prime Lite, targeting an Intel/Altera Cyclone-V FPGA.

This work is organized as follows: in Section 2, we introduce our linear non-parallel
and P-parallel architecture of first generation for both the DWPT and IDWPT along
with simulation results. In Section 3, our linear non-parallel architecture for second
generation based on lifting scheme is described. Finally, conclusion is given in Section 4.

2. Hardware implementation of first generation
2.1 DWPT

As shown in Figure 1, we notice that in a given stage k, each filter proceeds the
same amount of data and half data rate by comparison of filter in the adjacent level
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k — 1. The number of needed filters (low-pass and high-pass filters) in a given level
k is 2%, Furthermore, the amount of procced data in each level is the same.

So, the tree architecture of Mallat have a big regularity of the behavior of filters
in different levels. Which leads us to develop an ultra high speed data processing
with low hardware consumption (this constraint is critical in modern application
that need high throughput with low power consumption). To achieve that we think
to develop an evolving architecture by retransform the exponential tree to linear
one, as shown in Figure 4.

A high throughput rate with lower hardware resources are provided in this
architecture by linearization of classic Mallat tree and parallelization the used
transposed FIR filter. To achieve our goal by minimizing the hardware consump-
tion, we proposed a shared computational resource (multipliers and adders)
between the low-pass and high pass filters as shown in Figure 5.

In this structure, we propose a modified transposed FIR filter corresponding to
H/G blocks in Figure 4, this model is look like the serial FIR filter in the theory of
FEC coding. The H/G blocks can process in parallel P inputs sampling (signals) and
consequently P outputs sampling (signals) in each clock cycle and consequently the
P-parallel DWPT (Figure 4) are able to transform P sampling in each clock cycle.

Furthermore, this architecture is suitable for all wavelet family where we need
just to change the coefficients of high-pass and low-pass for each family. Where the
data handling (filter coefficients or signal sampling) of the low-pass and high-pass
filter between different stages is dedicated to specific block in our architecture; we
called it “buffers block”. The main role of “buffers block” is to interleaving data
from stage to the next stage and to manage data between low-pass and high-pass
filter in the same stage. Their structure is detailed in Figure 6.

To procced the same amount of data in the original Mallat binary tree b (of
course multiplied by the degree of parallelize P), the buffer blocks should be
working with this mechanism:

a. The parameter k describe the stage, change from 1 to max depth of wavelet
transform. The parameter P present the degree of parallelism and must

respect the dyadic rule, P = 2%, x A/*.

b. The structure of buffer block is based on the concept of manipulation of data
speed transfer in register level, where we built up inside P sub-blocks, each
block has two registers/buffers level speed: “Fast Buffer” and “Slow Buffer”.
On each clock cycle, the Fast Buffer take data from the output of previous
stage and achieve P-shift. While, Slow Buffer sub-blocks are powered to take
data from the Fast Buffer registers of the same stage and then achieve P-shift
on two-clock cycles.

Level 1 Level 2 Level K Level Depth-1
(last level)

Figure 4.
Datapath diagram of linear and P-parallel proposed DWPT architecture.
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Figure 6.
General view of buffer block structuve (in stage k) of parallel DWPT architecture.

c. The size Buffer blocks (number of fast registers and slow registers) depends
on two parameters: the stage presented by k and the parallel degree presented
by P.

d. To manage the data path between “Slow Buffer” and “Fast Buffer”, we
specified two control signal: “enable;,” and “transfer,”, where the enabley,
signal (in green) is dedicated to control the shift rate between the different
registers in Slow Buffers sub-blocks and “transfer;,” signal (in red) is to

111



Wavelet Theory

manage the data transfer from the fast buffer sub-block to the slow buffer
sub-block. Technically these two control signals give the permission to
transfer all data from the registers of the Fast Buffer to the Slow Buffer

registers simultaneously in each 2* clock cycle (in a given stage k).

The operation in the “d” stage combine the synchronization of data from stage k
to stage k — 1 and down sampling by factor 2 without using an extra memories or
DSP block. Where the playing in the time between buffers, give us the possibility to
procced only half data from the Fast Buffer to the Slow Buffer on every 2¥ cycle.
Furthermore, the slow speed of the Slow Buffer ensures the twice (to respect the
concept proposed by Mallat algorithm) presented of leaving Slow Buffer data to the
next stage.

To centralize the architecture, we developed a control block or control unit to
manage all control signals in different stage, as shown in Figure 7.

2.2 IDWPT

As a reverse way of P-parallel DWPT transform, this section is dedicated to
present our proposed model of P-paralle] IDWPT.

As we mention in the section of P-parallel DWPT transform, the reconstruction
process has also a big regularity, where in Figure 2, we notice that each filter
proceeds the same amount of data and half data rate by comparison to filter in the
adjacent level. The number of needed filters (low-pass and high-pass filters) in a
given level K is 2%, Furthermore, the amount of proceed data in each level is the
same. This leads us to develop an ultra high speed data processing with low cost
resources consummation.

We introduce the concept of linearize and serialize in our pipeline and P-parallel
architecture to eliminate the impact of exponential evolution of the number of used
filters. So, as shown in Figure 8, we develop a novel architecture.

In this architecture, in each stage we implement only one modified filter instead
of using P # 2¥ /2 low pass filters and P * 2¥ /2 high pass filters. It is important to
mention that the number modified transposed FIR filter bank increased linearly as a
function of depth order which it was exponential in the classic architecture.

To achieve our goal by minimizing the hardware consumption, we develop a
Blocks Filter H / G which is a modified reconstruction P-parallel FIR filters by
shared computational resource (multipliers and adders) between the low-pass and
high pass filters and with a similar structure of that present in Figure 4. The only

| i
| Transfer_1 +—— A —Enable 1
| Transfer 2 +—— g ——Fnable 2 |
i . . :1_'_ H . |
; ol |
3 H H U - H |
| Transfer N-le—— § |——Enable_N-1|
I Transfer N+—— 2 | — »Fnable N |
! |

Figure 7.
Control block.
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Level Depth-1 Level Depth-2 Level K Level 1
(last level)

Figure 8.
Data path diagram of linear and P-parallel proposed IDWPT architecture.

difference is the coefficients filters values. Consequently, the P-parallel FIR filter is
able to filter P sampling in each clock cycle.

The data manage and interleaving between filters from the first to the end stages
is dedicated to the buffer block. Their structure is detailed in Figure 9.

To ensure the data management between reconstruction high-pass and low-pass
filter, we play on the timing of buffer register: slow buffer and fast buffer. To
procced the same amount of data in the original Mallat binary tree b (of course
multiplied by the degree of parallelize P), the buffer blocks should be working with
this same mechanism as that used in the previous section.

The “fast buffer” achieve P-shift on each clock cycle while the “slow buffer”
achieve P-shift on two-clock cycles. To manage the data follow path between “Slow
Buffer” and “Fast Buffer”, we specified two control signals: “enable;,” and
“transfer,”. The "enable;,"signal (in green) is dedicated to control the shift rate
between the different registers in Slow Buffers sub-blocks and the “transfer,”
signal (in red) is to manage the data transfer from the fast buffer sub-block to the

1
|
|
|
|
|
|
|
|
|
|
|

Slow buffer |

f@

st

sregeie ¢ Farst bufTer
i

----- =l
----- = SE

Figure 9.
General view of buffer block structure (in stage k and degree of parallelization P = 4) of parallel IDWPT
architecture.
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slow buffer sub-block. Also, we used a control block unit to manage the control
signals. The structure of control block is similar to that present in Figure 7.

2.3 Implementation results

Following our strategy, we develop a new pipeline and P-parallel architectures
for DWPT and IDWPT. These architectures are full reconfigurable at synthesis. The
reconfigurable parameters are the wavelet scale or the depth of DWPT and IDWPT,
the filter coefficient and data quantization, the order of modified H/G and H/G
filters, and the degree of parallelism.

Also, these architectures are partially reconfigurable after synthesis function the
value of filters coefficients (that mean implicitly the order of filters). This feature,
we give the possibility to work with different wavelet family without re-synthesis
the FPGA carte where we load dynamically after synthesis the filter coefficients of
the corresponding wavelet.

Our aim in this part is to study the performance of these architecture to record
the impact of different parameters on:

* The speed of data process that mean the clock frequency (given in MHz) of
implemented architecture. Where from the degree of parallelism and clock
frequency, we can obtain the data sampling rate of our DWPT and IDWPT
architectures.

* The hardware consumption, which represented the logic registers [, and the
logic elements /.

In the following procedure of the implementation of our new architectures of
DWPT and IDWPT transforms on the same FPGA split, we respect these constraints:

* These architectures (pipeline and P-parallel DWPT and IDWPT) are designed
and modeled in VHDL at the RTL level.

* Theoretically, we do not have a limitation of parallelism degree but we should
take into consideration the exist technology (hardware side) and the value
must respect the dyadic rule, i. e. P = 2%, x N7,

* We used Altera Quartus software premium lite edition to synthesis our
architectures and Intel/Altera Cyclone-V FPGA as a target technology with a
speed grade of —7. For the real implementation, we used an FPGA board from
Xilinx product called NexysVideo development board based on Artix-7 FPGA
as a target technology.

2.3.1 Real implementation setup

To evaluate the proposed solution, a real implementation setup is depicted in
Figure 10, where we used the UART connector to send and receive data from PC to
NexysVideo board and inversely. Initial verification has been realized by sending
the coefficients of Low-pass and High-pass filter after synthesis. Additional
verification has been realized when received the reconstructed data.

The different simulations results are shown in Tables 1-3.

Based on the results in Tables 1-3, we observed that when we increase the
quantization order from 5 to 16 this increases linearly the logic and element registers
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(- Port Usart

Figure 10.
Lab implementation setup.

Design parameters (Depth, Filter Clock frequency Resources usage (L.l,)
order, and Quantification) (MHz)
(2,2,5) 203.8 205 (471,296) (109, 186)
(3,2,5) 200.21 201.82 (756,510) (166,312)
(4,2,5) 197.37 196.16  (1204,899) (244,505)
(2,4,5) 200.87 152.88 (879,456) (265,286)
(3,4,5) 185.05 152.58  (1299,719) (379,442)
(4, 4,5) 193.71 153.37  (1941,1171) (483,665)
(2,16,5) 189.2 144.03  (3299,1416) (1447,886)
(3,16, 5) 192.3 137.44  (4794,1924)  (1983,1222)
(4,16, 5) 185.08 136.24  (6397,2614)  (2457,1625)
(2,2,16) 122.62 132.36  (2571,905) (578,582)
(3,2,16) 119.79 135.34  (4216,1599) (833,972)
(4,2,16) 123.14 133.69  (5850,2853) (1102,1572)
(2, 4,16) 120.56 104.57  (5038,1324) (1594,902)
(3, 4,16) 118.57 102.77  (7521,2260) (2174,1388)
(4, 4,16) 115.33 100.61 (10,374,3636) (2772,2084)
(2, 16, 16) 114.16 94.14  (4902,4402)  (7719,2822)
(3,16, 16) 126.16 92.08  (6805,5729) (10,557,3884)
(4, 16, 16) 124.23 90.49  (9107,7752)  (13,469,5156)
Table 1.

Implementation results of pipeline and P = 4 pavallel DWPT (italic) and IDWPT (bold) architectures.
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Design parameters (Depth, Filter Clock frequency (MHz) Resources usage (L.1,)
order, and Quantification)
2,2,5) 217.31 207.04 (1109,504) (109, 186)
(3,2,5) 212.45 195.77 (1699,935) (166,312)
(4,2,5) 213.4 198.73 (2754,1531) (244,505)
(2,4,5) 217.9 147.15 (2120,897) (265,286)
(3,4,5) 202.6 148.39 (3050,1197) (379,442)
(4,4,5) 206.59 147.65 (4603,2023) (483,665)
(2,16, 5) 201.14 136.44 (7689,2447)  (1447,886)
(3,16, 5) 202.16 133.05 (12,176,3166) ~ (1983,1222)
(4,16,5) 196.82 131.56 (14,956,4571)  (2457,1625)
(2,2,16) 95.77 128.75 (6079,1696) (578,582)
(3,2,16) 97.8 123.08 (9279,2735) (833,972)
(4,2,16) 98.82 128.04 (13,489,5011)  (1102,1572)
(2, 4,16) 97.04 99.98 (12,032,2582) (1594,902)
(3, 4,16) 94.2 98.87 (17,549,3965)  (2174,1388)
(4, 4, 16) 88.01 98.95 (24,311,6363)  (2772,2084)
(2,16, 16) 99.15 90.16 (11,263,7856)  (7719,2822)
(3, 16, 16) 102.89 86.02 (14,750,11,451) (10,557,3884)
(4, 16, 16) 100.24 86.1 (21,314,13,091) (13,469,5156)
Table 2.

Implementation vesults of pipeline and P = 8 parallel DWPT (italic) and IDWPT (bold) architectures.

and decreases logarithmically the clock frequency from around 200 MHz to around
100 MHz. As expected, the impact of depth and order of filters is too weak on the
clock frequency and increases linearly the logic and element registers while it was
exponential with Mallat binary tree. It is important to notice that the small latency
in our architectures give us the possibility to process data in ultra high speed (in the
gate of Giga-samples/clock cycle) without requiring any extra memory or DSP
blocks.

It is important to notice that the incrementation of the functional frequency is
directly proportional to the parallel degree. When we exceed the order of parallel-
ism to 32, the needed resources overcome the capacity of NexysVideo board. To
vanquish this problem, we suggest two possible solutions:

i. Under the strategy of minimizing the used hardware of Discrete Wavelet
Transform, we look forward to the lifting scheme wavelet transform as a
second DWPT transform generation. Section 3 is dictated to describe in
details this suggested proposal.

ii. Another possible solution is to upgrade this work with a new FPGA family
like Ultra scale. This new FPGA architecture present a high-performance
environment which deliver the optimal balance between the required
system performance (with 783 k to 5541 k Logic cells) and the smallest
power envelope. But it remains a very expensive solution.
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Design parameters Clock frequency (MHz) Resources usage (L.,)
(Depth, Filter order,
and Quantification)

(2,2,5) 210.36 197.47 (3668, 652) (389,668)
(3,2,5) 209.23 195.35 (6019, 960) (573,1096)
(4,2,5) 209.02 194.97 (8655, 1243) (742,1576)
(2,4,5) 181.83 147.54 (5991, 1689) (1091,1008)
(3, 4,5) 178.58 142.31 (8380, 2363) (1410,1526)
(4, 4,5) 178.37 141.98 (11,181, 2601) (1552,2036)
(2,16,5) 169.1 127.6 (30,012, 4881) (5894,3048)
(3,16, 5) 167.28 124.88 (37,172, 6575) (7300,4106)
(4,16,5) 167.43 125.09 (38,374, 7680) (7536,4796)
(2,2,16) 106.07 125.25 (11,116, 3395) (2183,2120)
(3,2, 16) 105.11 123.02 (17,679, 4330) (2704,3472)
(4,2,16) 104.98 122.71 (25,389, 4830) (3016,4986)
(2, 4,16) 91.2 92.6 (31,336, 5137) (6154,3208)
(3, 4,16) 90.55 91.29 (39,361, 7764) (7730,4848)
(4, 4,16) 91.85 93.93 (42,687, 10,342) (8383,6458)
(2, 16, 16) 86.43 83.177 (26,408, 15,572)  (30,619,9736)
(3, 16, 16) 86.57 83.44 (33,859,20,959) (39,257,13,104)
(4, 16,16) 85.9 82.16 (36,348, 24,456)  (42,143,15,290)
Table 3.

Implementation vesults of pipeline and P = 16 parallel DWPT (italic) and IDWPT (bold) architectures.

3. Hardware implementation of second generation

Actually, we find that some new applications especially in modern wireless
communication require high throughput but at the same time a low energy con-
sumption. For this reason, we look for the second discrete wavelet generation or
lifting scheme wavelet transform. Because the lifting wavelet theory is by nature
require less multiplier/adder blocks and consequently low energy.

So, our aim in this section is to conserve the ultra high speed data process and
also reduce the hardware conception by introducing the linearization concept in the
classic lifting scheme DWPT and IDWPT tree as shown in Figures 11 and 12.

A new pipeline and linear lifting scheme DWPT and IDWPT architectures are
presented in Figures 11 and 12. These new architectures ensure the data speed
proceed like the classic lifting scheme transform but with less hardware not affected
by the wavelet depth.

The P/U Filter Blocks and P/U Filter Blocks in linear lifting scheme of DWPT
and IDWPT architectures, receptively, are the modified predicted and updated
filter. In Figure 13, we present the structure of the modified P/U Filter Blocks (the
same for P/U Filter Blocks, we just change the coefficients values) which can
process the same amount of data (same functionality) on given stage in the classic
lighting scheme tree. This Filter Blocks can process two samplings in one clock
cycle.
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Filter Buffer Filter Buffer Filter Buffer Filter Buffer
P/U 20 P/U 7 P/U 2R P/U 2Depth-1

Level 1 Level 2 Level K Level Depth — 1
(last level)

Figure 11.
Data path diagram of linear proposed lifting scheme DWPT architecture.

Filter Buffer Filter Buffer Filter Buffer Filter Buffer
P/U PG P/U FRT= P/U 25 P/U 2

Level Depth — 1 Level Depth —2 Level K Level 1
(last level)

Figure 12.
Data path diagram of linear proposed lifting scheme IDWPT architecture.

Figure 13.
Structure of the modified predict/update filters and their conjugate in stage k.

4. Comparison

To evaluate the performance of our architecture, a comparison section is impor-
tant to prove the potential of our work and to lead us to a new innovated architecture.

In Table 4, we present a comparison between our proposed architectures and
other achieved architectures of Discrete Wavelet Transform in literature. Without
doubt, this table presents the potential of our linear pipeline and parallel architec-
ture where on one hand it ensures a high frequency data processing and on the other
hand a full reconfigurable structure using less hardware. Additionally, without
missing an important feature, we implemented our architecture without using a
memory or DSP blocks which gives us a privilege to more optimization of the used
hardware in the next FPGA generation.

5. Conclusion

In this work, we propose ultra-high throughput with low hardware consumption
of first generation and second generation of discrete wavelet packet transform.
Where title of example, from Table 3, with a quantization order = 5, depth
order = 2, filter order = 2 and degree of parallelism P = 16, we obtain a clock
frequency = 210.36 MHz, theoretically can proceed 3365.52 Mega samplings in one
clock cycle with low hardware used I, = 3668 and 1, = 652.
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Based on the results in Tables 1-3, these architectures ensure high operating
frequency which is low affected of wavelet depth and filters order because in our
structures we maintained a short critical path of effective data path. Furthermore,
these architectures are pipelined and P-parallel, modeled in VHDL at the RTL level,
generic and fully reconfigurable in pre-synthesis function of the quantization of the
filter coefficients and data sampling, the depth of wavelet transform, the order of
the filters, and the degree of parallelism.

Last, but not least, our developed architectures are reconfigurable post-
synthesis, which is not the case for most of the previous work as shown in the
comparison in Table 4. Where the values of filters coefficients can be load at run-
time which provides a great flexibility in experimental usage in contrary to all
previous works.

This work is still in progress where we are making many simulations/verifica-
tions in different contexts to verify if the simulation results will agree or not with
the implementation results. As perspectives, we work on new version of FIR filter
and in parallel another work to create an IP core (Intellectual Property core) FIR to
be used with different FPGA boards and in different applications. A natural way of
this work is to develop a different parallel version of hardware implementation in
FPGA of lifting scheme wavelet transform.
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Chapter 7

Fault Detection, Diagnosis, and
Isolation Strategy in Li-Ion Battery
Management Systems of HEVs
Using 1-D Wavelet Signal Analysis

Nicolae Tudoroiu, Mohammed Zaheeruddin,
Roxana-Elena Tudovoiu and Sovin Mihai Radu

Abstract

Nowadays, the wavelet transformation and the 1-D wavelet technique provide
valuable tools for signal processing, design, and analysis, in a wide range of control
systems industrial applications, audio image and video compression, signal
denoising, interpolation, image zooming, texture analysis, time-scale features
extraction, multimedia, electrocardiogram signals analysis, and financial prediction.
Based on this awareness of the vast applicability of 1-D wavelet in signal processing
applications as a feature extraction tool, this paper aims to take advantage of its
ability to extract different patterns from signal data sets collected from healthy and
faulty input-output signals. It is beneficial for developing various techniques, such
as coding, signal processing (denoising, filtering, reconstruction), prediction, diag-
nosis, detection and isolation of defects. The proposed case study intends to extend
the applicability of these techniques to detect the failures that occur in the battery
management control system, such as sensor failures to measure the current, voltage
and temperature inside an HEV rechargeable battery, as an alternative to Kalman
filtering estimation techniques. The MATLAB simulation results conducted on a
MATLAB R2020a software platform demonstrate the effectiveness of the proposed
scheme in terms of detection accuracy, computation time, and robustness against
measurement uncertainty.

Keywords: battery management system, extended Kalman filter, fault detection
and isolation, 1-D wavelet and transform, signals processing analysis,
wavelet filters bank

1. Introduction

The most viable way to achieve clean and efficient transport is to boost the
automotive industry to be concerned with developing advanced battery technolo-
gies, especially lithium-ion (Li-ion), to increase the number of electric and hybrid
electric vehicles (EVs/HEVs) to dominate the vehicle market. An essential internal
parameter of the Li-ion battery is the state of charge (SOC), defined as the available
capacity of the cell that changes according to the current profile of the driving cycle.
Due to its crucial role in keeping the battery safe for various operating conditions
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and significantly extending battery life, SOC is a topic of great interest, as evidenced
by an impressive number of research papers published in the literature. In the
absence of a measurement sensor, the SOC must be estimated since its calculated
value is not accurate enough. The most used model-based Kalman filters can esti-
mate the battery SOC with a high grade of accuracy [1-4]. The Li-ion battery is an
important component integrated into battery management system (BMS) that per-
forms tasks regarding the safe operation and reliability of the battery, protecting
battery cells and battery systems against damage, as well as battery efficiency and
service life [2-4]. The BMS “plays a significant role in fault diagnosis because it
houses all diagnostic subsystems and algorithms” [2, 3]; thus it monitors the battery
system through sensors and state estimation, such that to detect any abnormalities
during the battery system operation” [2, 5]. A signal processing-based method using
wavelet transforms proved to be a viable alternative to conventional Kalman filter
state estimators, for designing and implementation of real-time FDI strategies. The
new FDI approach avoids battery modeling difficulties and is more straightforward
with better dynamic performance [7]. The drawback of this method is the difficulty
experienced in dealing with the early faults and fault isolation. Its application also
requires a large amount of calculations compared to the model-based methods. An
intelligent fault detection scheme for microgrid based on wavelet transform and
deep neural networks is used in [6] to “provide fast fault type, phase, and location
information for microgrid protection and service recovery” [6]. Similar, a wavelet-
based transient fault detection and analysis is used successfully in [7] for a microgrid
connected power. In this research, our motivation of using 1-D wavelet analysis
comes from the preliminary results obtained for similar investigations on the impact
of nonlinearities and uncertainties of actuators (electro-pneumatic valves), such as
hysteresis, dead zone, dead band, on a healthy pH neutralization plant [8]. An
example of multisignal 1-D wavelet analysis is found in [9], and a useful tutorial of
using wavelet transforms presented in [10]. In [11] is shown a generic Simscape
model of Li-ion Cobalt battery model used to build a SOC AEKF estimator robust to
three different driving cycles profile tests, such as UDDS, EPA-UDDS and FTP-75,
the last one also used in the case study of this research. For FDI techniques based on
1-D wavelet analysis are used specific MATLAB commands provided by MATLAB
Wavelet Toolbox [12]. A strong theoretical background on wavelet transform and
their applications is provided by the fundamental work [13]. In [14] is presented an
interesting fault isolation technique based on wavelet transform, and a detailed
data-based FDI techniques for a nonlinear ship propulsion system are developed in
[15]. Several multimedia applications of wavelet transform can be found in [16], and
a better understanding of wavelet transform analysis, design and implementation of
features extraction methods, for filtering, denoising, decomposition and
reconstructing signals is given in [17-23]. From our most recent preliminary results
in Li-ion battery field, modeling and SOC estimators disseminated in [11, 24, 25], an
interesting state-of-art analysis of similar SOC AEKF estimators performance
reported in the literature is done in terms of statistical performance criteria values,
such as root mean square error (RMSE), mean square error (MSE), mean absolute
error (MAE), standard deviation (std), mean absolute percentage error (MAPE)
and R2 (R-squared). Among three SOC Li-ion battery estimators AEKF, adaptive
unscented Kalman filter (AUKF) and particle filter SOC estimators the AEKF
proved that is the most suitable for HEVs applications.

Let why is used the AEKF SOC estimator of Li-ion battery in the first part of our
research for FDI control strategies, excelling by its simplicity, SOC accuracy, real-
time implementation capability and robustness. The robustness is tested for four
different scenarios, such as to changes in SOC initial values (guess values), from
70-40%, 20%, 90% and 100%, to FTP-75 driving cycle profile test, changes in
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measurement level noise (from 0.001 to 0.01), to changes in the battery capacity
value from 6 Ah to 4.8 Ah due to aging effects, and changes in internal resistance due
to temperature effects, and also for simultaneous changes [11, 23]. Based on a rigorous
performance analysis of SOC residuals error compared to the similar results reported
in the literature with a typically 2% error, in some situations the AEKF estimator SOC
residual error reached values smaller than 1%, such as shown in [25]. Since of the lack
of data in the literature field for similar situations developed in our research for Li-ion
battery, it is not easy to make a state-of-art analysis of the results reported in the
literature related to the FDI techniques design and implementation based on 1-D
wavelet analysis. The efficiency of 1-D analysis is proved in this paper based on
extensive MATLAB simulations to extract the features of input-output signals such as
the energy, skewness, kurtosis, and to compute the MSE statistical criteria perfor-
mance. Finally, the MATLAB simulation results can provide useful information on
detection accuracy, cornputation time, and robustness against measurement uncer-
tainty, thus showing simply the effectiveness of the FDI proposed scheme. The
temperature fault is detected without doubt inside the Li-ion battery based on the
significant values reached by the details (D1, D2, and D3) and analysis coefficient
(A3) of the output terminal battery voltage residual level three decomposition,
represented by the following sets of values (4.46, 2.7, 5.349, 87.5) for energy feature,
(0.063, —3.92, 13, —1.33) for skewness signal feature, respectively (5.8, 71.4, 389.13,
56) for kurtosis signal feature. Also, the statistic RMSE performance criterion indi-
cates significant values for D1 coefficient in the presence of the of temperature fault
for energy feature (4.4654) and skewness and kurtosis features are the same as for
current fault. To detect both faults, a multiresolution analysis (MRA) is performed,
capable of extracting a smooth trend term, which provides a valuable information to
localize transient changes in the fault injection window [500, 1500] seconds [23].

Thus, the presence of the bias current fault and bias temperature fault is
detected and localized as a transient significant change in the nonstationary Li-ion
output voltage residual signal. For an appropriate choice of the thresholds’ values,
both faults can be detected with a high accuracy detection times directly from S8
graph; thus, the presence of the false alarms is completely removed compared to
Kalman filter FDI estimation techniques. The fault signature and considering the
variation trend in SOC residual and internal resistance of the battery also provides a
piece of useful information for fault isolation.

2. Li-ion battery model, SOC estimation and fault injection mechanism

This section briefly presents the Rint equivalent circuit model (Rint ECM) as a
case study to investigate the effectiveness of the proposed fault detection and
isolation (FDI) strategy, using a conventional EKF SOC estimator, as a support for
performance analysis comparison, in the first part [1-4], and a 1-D wavelet trans-
formation in the second part [8, 9]. For comparison purpose, an improved adaptive
extended conventional Kalman (AEKF) filter algorithm [3, 4, 11] is also briefly
presented for estimating the state of charge (SOC) of the adopted Li-ion battery, as
well as the faults in Appendix A. Residual methodology is useful to detect and
isolate faults. Only three failures of the current, voltage and temperature sensors of
the HEV battery management system (BMS) used for the case study are analyzed.

2.1 Li-ion battery model selection

The Rint ECM Li-ion battery model is one of the most common models to describe
battery dynamics in many real-time implemented HEV applications with an
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acceptable range of performance. The reason for using these models is their simplic-
ity, low number of parameters to adjust and easy implementation in a friendly
MATLAB simulation environment. Therefore, a compromise we need to make
between the accuracy of the battery SOC and the complexity of the model related to
the choice of Li-ion battery, so that, for simulation purpose and “proof concept”, we
adopt a simple Rint ECM Li-ion battery model, as a reasonably simplified version of
RC ECM developed in [1], and in [11] for a Li-ion Cobalt battery, as is shown in
Figure 1.

The Rint ECM Li-ion battery model is an equivalent Thevenin electrical circuit
consisting of an open circuit-controlled voltage (OCV) source and an internal
resistance designated by Rin. The OCV source strongly depends on the state of
charge (SOC), i.e. a dependency described by an extremely nonlinear function
OCV = f (SOC), represented by different combinations of models reported in the
literature such as Shepherd, Nernst and Unnewehr universal model [1, 3, 4]. The
dynamics complexity and the accuracy of ECM increase by adding an RC polariza-
tion cell (first-order RC model), two RC cells (second-order ECM) respectively
three RC cells (third ECM order model), as those developed in [1-3, 11]. The main
input-output and intermediate signals in Figure 1 are I, is the input battery
instantaneous value of the direct current (DC) flowing through the open circuit
controlled-voltage source, and V. denotes the measured output terminal battery
instantaneous value DC voltage that are nonlinear dependent of OCV, as interme-
diate signal. The internal resistance of the battery is affected by several factors. Still,
a significant impact has conductor resistance, electrolyte resistance, ion mobility,
separator efficiency, reactive electrode rates, polarization, temperature, and aging
effects, and SOC changes, as is mentioned in [11]. Since the SOC of the battery is
defined as [1-4, 11]:

Q — [idt

SOC =
Q

31 = Ipan 1)

with Q denoting the rating battery capacity, in the schematic shown in Figure 1,
the controlled voltage source E (open circuit voltage (OCV)) can be modeled by:

Q—J"z‘dt’t

E=0CV(t) = f(EO,K, 5

) = f(Eo,K,SOC,t) = Eq — Kh(SOC) (2)

The battery terminal voltage Vbatt is related to OCV according to following
nonlinear equation:

Rint lbatt o,

0.013359 =
E=QOCV A\ Vbatt
Controlled voltage source . Yv=r1e3
102
E=f(E0,K,Q,t) g0y e

Figure 1.
ECM Rint Li-ion battery model (see [11]).
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Viar = OCV(t) — Rinlpu (t) = Eo — Kh(SOC) (3)

where K = [K; K; K3 K4] isal x 4 dimensional vector, whose components

have the given values suggested in [1], and #(SOC) = [~ &= — SOC In (SOC)

In (1 —80C)|" is a 4 x 1 dimensional vector nonlinear function.

However, for the implementation of the proposed FDI techniques, a high-
precision model is not required, because the extraction of ECM parameters is
beneficial to monitor the battery SOC, rather than to model the battery
performance.

2.1.1 Rint ECM Li-ion battery model dynamics represented in continuous and discrete
time state space representation

For a discharging current cycle, when u(t) = i(t) > 0, and for a charging current
cycle #(t) < 0 the dynamics in continuous time t of an ECM Rint Li-ion battery
model is described by the following three Equations [1-4, 11]:

der __m) L S0C,xy(0) = SOC_ini, u(t)20 (4)
dt Cnom
K;
OCV(Z’) = EO —I<2x1 —x—+1<3 In (xl) +I<41I1 (1 —xl) (5)
1
y(t) = OCV(t) — Rinu(t) (6)

where 7 is the coulombic efficiency that has different values for charging and
discharging cycles, Eq, K;, K3, K3, and K, are the OCV battery characteristic curve
coefficients, whose values are given in [1], “chosen to fit accurately the Li-ion
battery model to manufacture’s data by using a least squares curve fitting estimation
method” [1-3]. Similar, the equivalent battery model in discrete time can be written
in the following form:

nTu(k)
Cnom

x1(k +1) = %1 (k) + ,x1(k) = SOC(k) = SOC(kT) @)

OCV (k) = Eo — Kox1(k) — 9% +Ksln (x1(k)) + K4 In (1 — x1(k)) (8)

y(k) = OCV (k) — Riyu(k) 9

where Ts = 1(second) — is sampling time, k € Z used to denote the discrete
time instant t, = kTs.

Because the internal resistance Rin is an essential parameter of the battery that is
affected much more by the temperature than other parameters of the cell, it is
necessary to attach to the Li-ion battery model a thermal model, described in
continuous time by a first order differential equation:

dT,
d;ell = _Tcell + Rthploss + Tamh (10)

T,

where: Pposs = Rappu(t)?, and u(t) = i(t).
In discrete time the Eq. (7) becomes:

127



Wavelet Theory

Rth TXPloss (k) + Tamb
T, T,

Tcell (k + 1) = (1 - 2) Tcell(k) + (11)

T,

and T, = 2000 [s] is the thermal resistance, T, = 293.15 [K] signifies the ambi-
ent temperature in degree Kelvin (T is the most used to denote the absolute temper-
ature in degree Kelvin), and Py, denotes the power losses dissipated on the internal
resistance Rin, and T, is the temperature of the battery cell in degree Kelvin.

2.1.2 The Rint ECM Li-ion battery healthy model: Residual generation and MATLAB
simulations

The healthy ECM battery model (free faults model) MATLAB simulations to
an input driving cycle Federal Test Procedure (FTP-75) for a city, are shown in Figure 2.
In Figure 2(a) is shown the FTP-75 driving cycle test profile, Figure 2(b)
depictures the battery terminal voltage, Figure 2(c) reveals the battery SOC,
Figure 2(d) discloses the temperature profile of the thermal model initiated by an
ambient temperature of 20°C, and Figure 2(e) exposes the effect of the battery
temperature on internal resistance Rin.

2.2 The adaptive extended Kalman filter Li-ion battery SOC estimator for fault
detection and isolation

For Li-ion batteries, the aspects such as accuracy performance of the SOC esti-
mation and the prediction of the terminal voltage are essential to be analyzed, thus
ensuring the safe operation of the cell, and thus maintaining a long life. Therefore, a
brief presentation of an appropriate estimation technique is of real use. Moreover,
for any battery, whether it is a Li-ion battery, SOC cannot be measured accurately,
so it is necessary to estimate it. The most popular estimation algorithm reported in
the literature is the Kalman filter (KF) with its improved version for models with
extremely nonlinear dynamics, such as an extended Kalman filter (EKF) /adaptive
extended Kalman filter (AEKF) [1-4, 11].

2.2.1 The adaptive extended Kalman filter Li-ion battery SOC estimator- brief
presentation

Since the preliminary results obtained in [11] convinced us about the efficiency
of applying the AEKF SOC estimator for a Simscape model of Li-ion battery, quite
well documented in [4], then the same estimator is used in this paper. For the
adopted battery model, the SOC estimator adaptation consists in changing the
dimensionality of the state space and the values of the adjustment parameters. For
good documentation, the reader can see, in Appendix A, a brief presentation of the
steps of AEKF estimation algorithm. Furthermore, the choice of using the AEKF for
condition monitoring purposes is explained in this subsection. As is mentioned in
the first section, the BMS, through its hardware and software components, plays a
vital role in an HEV integrated structure for supervision, control and monitoring all
the internal battery parameters. In a BMS, time-based monitoring and FDI tech-
niques based on Kalman filter state and parameters estimators are implementing,
and the faults in a system are detected only when measured values exceeded their
normal limits [5, 26]. Furthermore, since the Li-ion battery SOC is non-measurable
and a critical internal parameter of the battery, the use of AEKF SOC estimator for
its estimation is wholly justified.
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The ECM Li-ion battery healthy model: (a) FTP-75 driving cycle current profile; (b) output terminal voltage;
ECM battery model SOC; (d) temperature profile for changes in ambient temperature; (e) the effect of
temperature profile on battery internal vesistance.

2.2.2 AEKF SOC estimator of Rint ECM Li-ion battery healthy model: Residue
generation and evaluation

For a healthy Li-ion battery (free faults), the MATLAB simulations result of
applying AEKF SOC estimator, whose steps are briefly presenting in Appendix A, is
shown in Figure 3. In Figure 3(a) is shown the battery terminal voltage AEKF
estimate values versus the Rint ECM Li-ion battery model terminal voltage true
values. The MATLAB simulations result reveals an AEKF SOC estimator with an
excellent prediction ability for battery terminal voltage. Figure 3(b) depictures the
residual battery terminal voltage calculated as a difference between the battery
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AEKEF estimator and Li-ion ECM battery model — Healthy system: (a) AEKF output terminal voltage estimate
versus ECM terminal voltage true value; output terminal voltage vesidual; (b) terminal voltage residual (c)
AEKF SOC estimate versus ECM SOC true value; (d) SOC residual.

terminal voltage true values and the corresponding estimate values of battery
terminal voltage, as in Eq. (12).

The residues of battery SOC and for internal resistance are calculated by using
the Egs. (13) and (14):

Ry(k) =y(k) =y (k) (12)
Rsoc(k) = SOC(k) — SOC (k) (13)
RRcell (k) = Rcell (k) - Rcellffault (k) (14)

For a healthy battery model, the residual is inside the minimum and maximum
values of two thresholds, calculated as [5]:

Thtymin = my — 36y, Thtypae = my, + 30, (15)
Thrsocmin = msoc — 36socs Thtymax = msoc + 36soc (16)
Thchell,min = MReell — 30Rcell> Thchell,max = Mpeell + 30Rcell (17)

where Thr,,,;, and Thr,,,,, denote the minimum value and respectively maxi-
mum value of the threshold, 7, is the mean of the clean battery terminal voltage
residual values, and 6, means the standard deviation of the clean battery terminal
voltage residual values.
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In Figure 3(c) is depicted the battery AEKF SOC estimate values versus the
battery model SOC true values, and in Figure 3(d) is showing the battery SOC
residual calculated in the same manner as the battery terminal voltage. The MATLAB
simulations result reveals an excellent SOC accuracy, and for a clean battery model
the SOC residual is inside the band delimited by the minimum respectively maximum
values of the SOC threshold calculated by using a similar formula as in Eq. (9). In
Figure 4(a) is shown the robustness of AEKF SOC estimator to a change in the initial
value of SOC from default value 70% to a SOCini = 40%. A level of the noise in
measurements is more realistic in HEV's applications since the initial value of SOC
must be guessed, and due to contamination of the measurements with noise. The SOC
residual that is showing in Figure 4(b) remains inside the band delimited by the
same minimum and maximum values of SOC threshold, and in Figure 4(c) the
battery terminal voltage residual also remains inside the band.

2.2.3 Fault injection mechanism and fault detection based on AEKF SOC
estimator - scenarios and vesidual generation and evaluation

The fault injection mechanism based on AEKF fault estimation and residual
generation consists of injecting additive bias sensors faults in the input-output
Li-ion battery Rint ECM model, as following:

y(k) = OCV(k) — Rin (u(k) + f,,) + £, (18)
Ts Rth T:Ploss (k) Tamh (k)
Tear(k +1) = (1= — | Teen(k) + + +fr (19)
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Figure 4.

Robustness of AEKF SOC to changes in SOC initial value, SOCini =70%: (a) robustness to a decrease of 30%
from default value SOCini =70% to a SOCini =40%; (b) SOC residual; (c) battery terminal voltage vesidual.
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1 1
Rin,cell (k) = Ramb exp <0( (Tcell (k) a Tomb (k)> 20

where f, denotes the current sensor fault, f is the terminal voltage sensor fault,
and f', signifies the temperature fault. The Eq. (12) is useful to measure the impact
of f, on the internal resistance, where « = % denotes Arrhenius rate constant, E is
the activation energy, E = 20 [k] /mol], R signifies the Boltzmann constant, R =
8.314 [J /molK], as is shown in [26]. As it can be seen in Egs. (10)-(12) in this
research paper are presented only three scenarios for fault injection.

* First scenario - bias sensor fault injection inside the window (500, 1000) seconds.

At the instance 500 seconds is injected a fault in the Voltage measurement sensor
of magnitude 1V, and after 500 seconds the fault is removed, as shown in Figure 5(a).

In Figure 5(b) is shown the impact of the injected fault on battery terminal
voltage, real and estimated values. The MATLAB simulation result reveals an
abnormal behavior of terminal voltage estimate inside the same window of fault
injection. The detection of the event is faster at the beginning of the window,
persisting only 500 seconds, until the fault is removing. The residual battery termi-
nal voltage is showing in Figure 5(c). It exceeds the band of the clean terminal
voltage signal inside the fault window; thus, the same fault is detecting. An abnor-
mal behavior of battery SOC is revealed in Figure 5(d) inside the fault window and
persists inside the window until the fault is removed at instance 1000. The SOC
residual generated by injecting the bias voltage in the Li-ion cell sensor terminal
voltage is shown in Figure 5(e) that also detects the occurrence of the fault inside
the same window. After the fault is removed the SOC residual enters inside of the
band and indicates a normal SOC behavior. In Figure 5(e) the MATLAB simula-
tions result reveals the fact that the injected fault has not a significant impact on the
internal resistance Rin.

* Second scenario: bias current sensor fault injection

Between samples 500 and 1000 is injected a fault in the current measurement sensor
of magnitude 2A, such is showing in the Figure B1(a) from Annex B. Similar as for the
first scenario the battery voltage reacts to the fault injection as is shown in Figure B1(b),
and its residual depictured in Figure B1(c) detects the presence of the fault at the
beginning of the window injection. In this scenario, compared to the first scenario, the
fault persists until the end of the driving cycle; so its evolution after removing the fault is
misclassified and can be considered as a false alarm, that is useful for constructing the
FDI logic of fault localization (isolation). A similar situation appears for battery SOC
shown in Figure B1(d) and for its residual in Figure B1(e). In Figure B1(f) the internal
resistance Rin has the same evolution as in the first scenario. These last aspects are
beneficial also for creating the FDI logic for isolation.

* Third scenario: injection of bias temperature sensor fault

In the temperature sensor, a fault of magnitude 10°C is injected in the same
window, similar for first and second scenario, as is shown in Figure B2(a) from
Annex B. The MATLAB simulations result from the impact on the temperature
profile of the fault injected is showing in a Figure B2(b). Also, the internal battery
resistance is showing in the Figure B2(c), and the battery SOC is disclosed in
Figure B2(d) together to its residual in Figure B2(e). The battery terminal voltage
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First scenario of fault injection: (a) bias fault injection of magnitude 1 V in battery cell terminal voltage
measurement sensor; (b) AEKF terminal voltage estimate versus EMC battery model terminal voltage true
value; (c) battery terminal voltage residual; (d) AEKF SOC estimate versus EMC battery model SOC true
value; (e) SOC residual; (f) the battery internal resistance.

is showing in Figure B2(f) together to its residual depicted in Figure B2(g). This
scenario of point view of fault detection is the same as the first scenario with the
fault persistent only inside the window and removed at the end of the same win-
dow. Only the internal resistance of the battery withstands a significant impact
inside the window, a valuable indication for fault localization.

2.2.4 The residual evaluation and FDI logic isolation
Residual evaluation supposes to define “proper functions for the generated

residue evaluation so that fault occurring in the system can be detected correctly”,
as is stated in [5]. Roughly, in the ideal case, “if no fault occurs, the residue will be

133



Wavelet Theory

Res_y Res_SOC Res_Rcell Fault signature

1 1(>0) 0 Voltage sensor fault

1 1(<0) 0 Current sensor fault, False alarm

1 1 1 Temperature fault sensor
Table 1.

Fault signature for AEKF SOC estimator based diagnostic scheme.

zero and otherwise, it will be non-zero” [5]. More precisely, in a general formula-
tion, the residue evaluation can be defined as:

if R, = 0, the battery is fault free, otherwise the battery is faulty (21)

where R;, might be R, (k), Rsoc (k) and Rp..(k), as defined in Egs. (9)-(11).

It is possible that in many cases, “the residue might be non-zero even though no
fault has occurred; therefore, the evaluation function of Eq. (18) will not be proper.
For this purpose, a statistical evaluation function can be defined as [5]:

Ifm, — po, <R, <m, + uo,the Li-ion battery is fault free (22)
otherwise:
Ry, <my — uo, and/or R, >m, + uc,, the Li-ion battery is faulty (23)

for which the values of the parameter y, i.e. 4 = 1,2 and 3, regarding the
evaluation function is a trade-off between maximizing the probability of fault
detection and minimizing the probability of wrong fault alarm. If 4 = 3 then the
probability:

p{m, — 36, <R, <m, + 306,} = 98.5% is maximum possible.

The fault signature for AEKF SOC estimator based diagnostic scheme is shown
in Table 1.

For the second scenario the isolation of the fault can be done based on the
tendency of SOC, i.e. for first scenario the SOC increases (Res_SOC >0) after the
fault injection, while for second scenario it decreases (Res_SOC < 0) and persists
until the end of driving cycle, generating a false alarm.

3. 1-D wavelet transform signal analysis used to extract the faults
features in Li-ion batteries

This section investigates the use, in a new approach, of 1-D wave signal analysis,
a valuable tool for determining the essential characteristics of faults that occur in a
Li-ion battery, a useful basic principle for developing a simple detection of their
defects. These techniques are based on detecting changes that occur abruptly in the
variation of the residual signal due to a faulty current sensor or a defective temper-
ature measurement sensor, such as those developed in the previous section. There-
fore, a similar method of residual generation and evaluation is useful to provide a
valuable information to use the wavelet transformation ability to extract the essen-
tial features (patterns) of the faults from the output voltage residual of the battery.
These faults visibly affect the performance of the Li-ion battery, such as the output
voltage and SOC. The dynamics of the battery model under investigation is shown
in Section 2. Note that SOC plays a critical role in locating faults (isolation).
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3.1 Wavelet transform: Brief presentation and description

Over time, Fourier transform (FT) has proven to be a useful tool for analyzing
signal frequency components in a wide variety of applications. However, it has a
significant disadvantage, because when it covers the entire time axis, it is impossible
to see when a frequency increase. Instead, the short-term Fourier transform (STFT)
uses a sliding window to find the spectrogram, which provides complete information
on both time and frequency. A small impediment when using STFT in applications is
due to the length of the window that limits the frequency resolution [10]. In these
situations, the wavelet transforms (WT) seems to be a feasible solution, since it can
be applied on a small wavelet of limited duration. Specifically, the wavelet provides
local frequency information compared to FT, which captures the global features such
as the harmonic components of the entire signal. Besides, the scaled wavelets allow to
analyze the signal on different scales. The essential functions designate the “wave-
lets,” which are nothing else than scaled and shifted copies of the same “mother
wavelet.” With a proper choice of the mother wavelet, the basis wavelets can be
orthonormal, or at least linearly independent. Thus, the wavelets form a complete
basis, and the wavelet transforms are designed to be reversible.

3.1.1 Continuous and discrete wavelet transforms

A wavelet is a waveform of effectively limited duration that has an average value
of zero and nonzero norm, as is stated in [12]. The wavelets compared to sine
waves, as the basis of Fourier analysis, “tend to be irregular and asymmetric, while
sinusoids are smooth, predictable, and their duration is not limited” [12]. Thus, a
wavelet is a wave-like oscillation with an amplitude that starts at zero, increases,
and then decreases back to zero. Furthermore, the majority of signals and images of
interest “exhibit piecewise smooth behavior punctuated by transients”, and the
“signals with sharp changes might analyze with an irregular wavelet than with a
smooth sinusoid”, thus an excellent idea for applying it to develop the detection
techniques of the faults [12]. A fundamental work recommended to readers to
obtain an excellent theoretical background on the wavelets is the reference [13]. Let
us consider the wavelet analyzing function, also called “mother wavelet,” and a
continuous wavelet transform (CWT). The CWT compares the signal under inves-
tigation, denoted by y(t), to shifted and scaling (compressed or stretched) versions
of the wavelet function [12]. Since the physical signal y(t), which can be the output
of the plant or a residual error, is real-valued, then also the CWT is a real-valued as a
function of scale and position. For a scale parameter, a > 0, and location, b, a
possible representation of a 1-D CWT can be the same as in [12, 13]:

CWT(a,biy(0w(e) =z [ o (7 )as (24)

—oo

where y(#)" is the conjugate function of y (), and CWT(a, b; y(¢), w(¢)) denotes
the coefficients of the wavelet transform CWT. They are affected by the values of
scaled and shifting position parameters a, respectively b, as well as by the choice of
wavelet function y(¢). A “mother wavelet” is a waveform for which the most energy
is restricted to a finite duration [8]. It is defined as,

V() ) = %‘V(t v b) (25)
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where 1/a denotes the frequency and 1/+/a is a normalizing constant of each
scale parameter. Anyway, there are an infinite number of the functions that can be
considered as a “mother wavelet”. In Egs. (24) and (25) the variable a is called also
“scale” or “dilation” variable since performs a stretching or compressing action on
the “mother wavelet”, while the variable b is referred as “time shifting” or “trans-
lation” that delays or accelerates the signal start [5]. The CWT(a, b;y(t), y(t), as
result of wavelet transform on signal y(t) is the wavelet coefficients vector of length
L (number of samples) and components (A;, D;,i = 1, N where N = length(y), as
function of scale a, and translation b, i.e., a function:

[A D] = CWT(a, b;y(t), w(t)) = cwt(a, b) (26)

Each coefficient of the vector c¢(a,b) (A;, D;,i = 1,N) “represents how closely
correlated a scaled wavelet is with the portion of the signal y(t) which is determined
by translation” [12]. In fact, the c(a, b) coefficients are the time-scale view of the
signal y(t), and so the CWT is an important analysis tool capable to “offers insight
into both time and frequency domain signal properties” [12]. The results of this
interpretation lead to the following useful observations that will be considered for
developing the proposed wavelet signals processing and analysis strategy [16]:

* The higher scales correspond to the “most” stretched wavelets, furthermore
“the more stretched the wavelet, the longer the portion of the signal with
which is compared, and thus the coarser the signal patterns features measured
by the wavelet coefficients.”

e The coarser features capture the low frequency components (4;,i = 1, N)
called “approximations” that provide basic shapes and properties of the
original signal y(t)

* The low scale components (D;,i = 1,N) are called “details” and capture the
high frequency information.

e The CWT is computationally inefficient, since it requires to calculate the
c(a, b) coefficients at every single scale, so computationally expensive.

An alternative to the CWT is the discrete wavelet transform DWT, much

more efficient and of high accuracy, defined in a similar way that CWT in
Eq. (24) [14]:

+o0 +o0
DWT jala,biy @) w(e) = | yiew(ay's = kbo)de = | yow juiorde @)

/]
ay e Zoo

For a parameter (ag, bg) setting to the values: ag = 2, bg = 1 is obtained a
particular dyadic sampling of the time-frequency plane (a set of coefficients per
octave), as is mentioned in [14]. Thus, for this particular sampling, it is possible to
obtain for the set y ;, an orthonormal basis with a “mother wavelet” y(z), well
localized both in time and frequency, such as the wavelets Morlet, Haar and
Daubechies have shown in Figure 6 [14]. The DWT is based on the wavelet analysis
at scales and translations that are power of two, such as 2, 4, 6, 16, and so on
[12-14], and wavelet approximations A, ( j,, ) and detailed D,,( j, k) coefficients at
stage k, are defined as in [10],
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Ay(jork) = \/LNZy(n)y/ jode )5 Jos ks neN, natural numbers (28)
Dy (j,k) = %Zy(n)y/j’k [n],7 > josj> ks neN, natural numbers (29)

Finally, according to Eqs. (28) and (29) the original signal can be approximated as,

y) = Ay (josk) + 3 _Dy(j:k) (30)
k k
or simpler,
N
y=An+» D; (31)

i1
starting from last stage N toward the first stage in decomposition, and
recursively, at stage level k, it can be writing:

A =Dpy1 +Api,k=1,N (32)

In [16] is mentioned the “approximations” of the signals under investigation “pro-
vide basic trends and characteristics of the original signals, whereas the details provide
the flavor signal”. The result of the applying DWT on the original signal y is the so-
called wavelet decomposition around both key coefficient vectors, [A] (“approxima-
tion” coefficient vector), and [D] (“detail” coefficient vector). The decomposition is
repeating on the approximations in each stage. The multiple stage DWT will break
down the original signal into many successively lower resolution components, as is
described in [15]. According to [15] “at each stage, the approximation coefficients
vector [A] represents the basic trends of the original signal characteristics, while the
details coefficients vector [D] provides the flavor of the signal”. The inverse process
opposite to decomposition is the signal reconstruction by using an inverse discrete
wavelet transform (IDWT). More details about sample wavelet definitions known as
Haar, Morlet and Daubechies wavelets, the reader can find in [8, 13, 17]. As is shown in
Figure 6, in control systems applications is preferred the Morlet wavelet function for
continuous analysis using CWT [13, 14], compared to Haar and the Daubechies wave-
let family functions that are very useful for DWT [8-10]. Using the MATLAB/
SIMULINK Wavelet and Processing Toolboxes in real-time, the proposed 1-D wavelet
analysis strategy is implementing by following the guidelines from [8, 10-12].

3.1.2 Wawvelet transform analysis of the faults features extraction in a rechargeable
Li-ion battery - setups

Signal processing is a well-known tool to deal with fault diagnosis. It is useful to
analyze directly the signals measured online, avoiding system modeling compared to
Kalman filter techniques that are model-based. A wave transformation offers a new
approach to the analysis of transient regimes that vary over time. It has a specific
ability to analyze signals simultaneously in both time and frequency domains.
Besides, it can automatically adjust the analysis windows according to frequency,
namely, shorter windows for higher frequencies and vice versa. Therefore, the wave-
let transform is very suitable for identifying the characteristics of the faults that occur
in the Li-ion battery under investigation. However, the identification of such
wavelet-based features in HEV Li-ion BMS applications is a novelty. Signal features,
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Figure 6.
Wavelet function samples: (a) Morlet wavelet function with 10 vanishes moments; (b) Haar wavelet function;
(¢c) Daubechies wavelet function with 4 vanishes moments and its corresponding scaled function.

such as discontinuity or singularity, are easily detectable through a 1-D wavelet
transform. Sudden signal transitions lead to wave coefficients with high absolute
values. The changes in the evolution of the signal provide valuable information when
something fundamental has occurred in the evolution of the signal. These features
suggest an excellent idea in our case study on how to detect measurement sensor
errors that often occur in a Li-ion battery used in HEV applications.

Step 1. Simulink model diagram of Li-ion battery and fault injection mechanism
setup.

At this stage is investigated the capability of using 1-D wavelet analysis to detect
some anomalies in a BMS of the Li-ion battery caused by two faults injected in a
current, respectively temperature sensor. Figure 7 shows the Simulink diagram of a
general model of the Li-ion battery, including the thermal model and fault injection
mechanism in both healthy and thermal blocks.

Step 2. Healthy and faulty models of Li-ion battery setup.

The Simulink diagrams of healthy and defective battery cell models are
depictured in Figures 8 and 9. In these figures are visible also the fault injection
blocks inside the battery (Figure 8) and thermal (Figure 9) models.

3.1.3 Wavelet transform analysis: MATLAB implementation and simulations
Step 1. Wavelet filter bank decomposition — Biorthogonal wavelet description.

Based on a 1-D DWT signal decomposition, the analysis (decomposition) and
synthesis (reconstruction) filters are of more interest than the associated scaling
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Figure 7.
Simulink diagram of Li-ion battery including the thermal model and fault injection mechanism setup.
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Figure 8.
Simulink diagram of thermal model and fault injection mechanism setup.

function and wavelet for a 1-D CWT. For example, in Figure 10 are implemented in
MATLAB two analysis filters and other two synthesis filters for a B spline
biorthogonal wavelet that can reproduce polynomials (vanishing moment property)
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Simulink diagram of Li-ion battery faulty model setup.
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Figure 10.
Analysis and synthesis low pass and high pass decomposition filters, vespectively low pass, and high pass
reconstruction filters.

with three vanishing moments in the reconstruction filter and five vanishing
moments in the decomposition filter, very useful to be used in fault detection. More
precisely, both phases analysis and synthesis require two low pass filters (LPF) to
filtrate low frequencies signals, respectively two high pass filters (HPF), to filtrate
the high frequencies signals [8, 12, 18-21].

Furthermore, the orthogonal and biorthogonal filters banks are an arrangement
of low pass, high pass, and bandpass filters that divide the signals data sets into sub-
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bands [12, 17-21]. If the sub-bands are not modified, these filters enable perfect
reconstruction of the original data. In most of applications, the data are processed
differently in the different sub-bands and then reconstruct a modified version of
the original data. Orthogonal filter banks do not have linear phase, compared to
biorthogonal filter banks that have linear phase [12, 18-20]. The wavelet and scaling
filters are specifying by the number of the vanishing moments, which allows
removing or retaining polynomial behavior in the signals data sets.

In addition, lifting allows designing perfect reconstruction filter banks with
specific properties. To obtain and use the most common orthogonal and
biorthogonal wavelet filters can be used Wavelet Toolbox™ functions [20]. The
design of custom perfect reconstruction filter bank is performing through elemen-
tary lifting steps. Besides, can also be added own custom wavelet filters. By using
the wavelet filter bank architecture depicted in Figure 11, it is possible to obtain
residues that change noticeably in order to offer precious information about the
timely detection of the faults and its severity [20, 21]. A sub-band model is
suggesting in [18, 19] of the form:

M(z) = (1-z1) " (a+bz ! (33)

where s is an integer number, and a, b are real numbers. In [18] is used the ‘db8’
wavelet for wavelet filter bank design of level 3 decomposition for a Single-Input
Single-Output (SISO) plant extended in [19] for a multiple inputs and multiple
outputs (MIMO) plant. Besides, in same reference is developed a wavelet based-
frequency sub-band analytical redundancy scheme to calculate the residuals for
different faults that uses for wavelet filter bank synthesis and analysis a level three
decomposition, as is shown in Figure 11. The same wavelet filter bank is adopted in
our case study, even if the decomposition resolution can increase by increasing the
number of levels. Nevertheless, in our case study, the focus is only on the “concept
of proof” and to demonstrate the effectiveness of the proposed error detection
technique, based on the use of the multi 1-D signal waveform analysis tool. In
Figure 11, G(z) and H(z) represent the z-transforms of the low pass filter (LPF)
and high pass filter (HPF) respectively. A two-channel critically sampled filters
bank play an important role to filtrate the input signal, i.e. the output battery
voltage residual, by using a pair of low pass filter (LPF) and high pass filter (HPF)
[18, 19, 21]. The subband outputs of the filters are downsampling by two to pre-
serve the overall number of samples. To reconstruct the input, upsampling by two
and then interpolate the results using the low pass and high pass synthesis filters. If
the filters satisfy specific properties, a perfect reconstruction of the input is
achieved [18-21].

LEVEL 3 LOW PASS AND HIGH PASS
e NAVELETS FILTERS BANK e

| s@ 2]
—— — @ [
— e m_ G(2) —

| H@

H(z) _

Figure 11.
Wavelet filter bank. Three level decomposition using low and high pass filters for down sampling by two.
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Figure 12.
DWT coefficients interpretation (snapshot from [14]): (a) wavelet filter bank, the approximations (aj,,a},)
and details (dy,,d,) DWT coefficients corvesponding to a decomposition level 2; (b) frequency domain.

In Figure 12 (a) and (b) are presented the schematic of a Wavelet Filter Bank
decomposition on two levels (a), respectively a simple interpretation of the DWT
coefficients in frequency domain [14].

The schematic from Figure 12(a) give us the idea of a recursive numerical
algorithm for the DWT coefficients computation based on digital filters at all levels
j = 1:N, which take advantage of using a digital signal processor (DSP):

al = y(k);al = Zitzkfzﬂ/fl;d;i = Zng—l“ljil (34)
1 1

Step 2. Fault injection scenarios presentation:

For simulation and “proof-concept” purpose, only two scenarios for error injec-
tion are developed in this section, namely a 2A bias fault injected into the current
sensor, and a 10°C bias temperature fault injected into the thermal model of Li-ion
BMS. The faults are injected separately, in the same window [500,1500] seconds,
and their impact on the battery output voltage is analyzed by using the same Li-ion
battery residual generation and evaluation method, like in the previous section.

Step 2.1 Scenario 1: Bias current fault MATLAB implementation.

As first scenario is considered a 2A bias fault injected in the current sensor inside
the window (500,1500) seconds.

Step 2.1.1 Li-ion output voltage and MATLAB SOC residual generation-original
and reconstructed signals.

Li-ion battery SOC

0.8 T
SOC healthy model

0.7 SOC faulty model

: SOC residual
0.6 \‘—v—r\u\:
0.5 3
0.4 Bl
0.3 | 7
0.2 7
0.1 m

0 A

0 500 1000 1500 2000 2500
Figure 13.

The impact of the injected bias current fault on the Li-ion battery SOC.

142



Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems...
DOI: http://dx.doi.org/10.5772/intechopen.94554

The MATLAB simulations results are shown in the Figures 13 and 14 for battery
SOC (healthy, faulty and residual), respectively for battery voltage residuals,
(healthy and faulty) original and reconstructed, using the analysis (approximation)
and details wavelets filters (in reconstruction).

Step 2.1.2. Denoising residual signals methods - MATLAB implementation.

In Figure 15 is used the denoising capability of 1-D wavelet synthesis filters
‘sym4’ to reduce as much as possible the noise level in the healthy and faulty signals.
In [22, 23] is showing how to use wavelets to denoise signals and images. Because
wavelets localize features in measurement dataset to different scales, an important
signal or image features can be preserved while removing noise [22]. The “basic idea
behind wavelet denoising, or wavelet thresholding, is that the wavelet transform
leads to a sparse representation for many real-world signals and images” [22]. Thus,
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Figure 14.

Li-ion battery terminal output voltage: (a) healthy signal; (b) faulty signal.
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Li-ion battery output voltage residual — Noisy and denoised signals.
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the wavelet transform concentrates the signal and image features in a few large-
magnitude wavelet coefficients [22]. Wavelet coefficients which are small in value
are typically noise and can be “diminished” those coefficients or much better can be
removed without affecting the signal or image quality. Thresholding operation of
the coefficients is followed by the reconstruction of the data using the inverse
wavelet transform. The denoising operation of the input-output signals can be
performed by using an average moving method [23], or decimated (“wdenoise”
MATLAB command) and undecimated (“wden” MATLAB command) wavelet
transforms [22]. In Figure 15 is shown the residual between the noisy and denoise
signals, where wavelet denoising has removed a considerable amount of the noise
while preserving the sharp features in the signal, which is also a challenge for
Fourier-based denoising or filtering. The Fourier-based denoising, or filtering, is
using a low pass filter (LPF) to remove the noise. However, “when the data has
high-frequency features such as spikes in a signal or edges in an image, the low pass
filter smooths these out”, as is stated in [22]. Moreover, the wavelets can be used to
denoise signals in which the noise is nonuniform [22].

Step 2.1.3. Fault detection features:

In Figure 13, it easy to see the impact of the injected fault in the windows
(500,1500) seconds, where the SOC change by maximum 10%. The information
extracted from SOC residual in Figure 13 and output voltage residual in Figure 15,
is valuable to detect the incipient moment of the fault, its duration and severity if a
threshold value is chosen. The presence of the fault inside the window [500,1500] is
visible since sudden changes in the SOC and output voltage of residual levels is easy
to visualize. The fault removal at the end of the injected window is noticeable due to
a sudden change of the signals’ levels in the opposite direction at the initiating time
instant of the fault injection. In Figure 16(a) and (b) is depicted the output voltage
residuals noisy and denoised originals and their perfect reconstruction. An impres-
sive result is showing in Figure 17, where the presence of the fault inside the
injected window is without doubt detecting by analyzing the wavelet variance in
signal by scale before injected fault, inside the window and after removing the fault,
in bar representation. For the proposed fault detection strategy design, a discrete
wave transformation is useful to apply on the output voltage signal of the Li-ion
battery. It is equivalent to the analysis branch (with downsampling) of the
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Figure 16.
The Li-ion battery terminal output voltage residual - original and reconstructed waveforms using analysis
wavelets filters (veconstruction): (a) contaminated with noise; (b) denoised signals.
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Li-ion terminal output voltage residual — Wavelet variance in signal by scale befove injected fault, inside the
window and after removing the fault - bar representation.

two-channel filter bank (decomposition) using LPFs, and HPFs suggested in
[17, 18]. They are used for downsampling the input signal up to level 3, as shown in
Figure 18 for all three levels the details of the wave coefficient D1, D2 and D3 and
the analysis coefficient A3.

Step 2.1.4. 1-D wavelet transform analysis used for battery voltage residual three
levels decomposition — Approximation coefficient A4, and Details coefficients D1,
D2 and D3:
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Figure 18.

Li-ion battery output voltage residual decomposition on three levels.
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Details coefficients Analysis coefficients
Extracted features Faults D1 D2 D3 A3
Energy Current fault 17821 0.8357 0.3631 97
Temperature fault ~ 4.46 2.7 5.349 87.5
Skewness Current fault 0.063 -0.17 0.15 —4.9
Temperature Fault 0.063 -3.92 13 -133
Kurtosis Current fault 5.8 111 2311 27.38
Temperature fault 5.8 71.4 389.13 56
RMSE statistic criterion-performance D1 coefficient
Energy Current fault 17821 Remark:

Temperature fault features shows significant values.
Temperature fault 4.4654 P B

Skewness Current fault 0.063

Temperature fault  0.063

Kurtosis Current fault 5.7581

Temperature fault  5.7581

Table 2.
The main features extracted for faults detection.

In Figure 18 is presented the MATLAB simulation result of the battery voltage
residual decomposition on three level based on the wavelet filter banks shown in
Figures 11 and 12.

For decomposition is used a Symlet wavelet transform ‘sym4’ with four
vanishing moments. The feature extracted from the wavelet coefficients are sum-
marized in Table 2 and interpreted at the end of this section, in comparison with
the second fault.

Step 2.2. Scenario 2 MATLAB implementation:

As a second fault is investigated a 10°C bias fault injected in the temperature
sensor inside the window (500,1500) seconds.

Step 2.2.1 Li-ion output voltage and MATLAB SOC residual generation-original
and reconstructed denoised signals:

Like for the first scenario, the same information is extracted from the Figures 19
and 20. In Figure 19(a) is shown the battery SOC with almost a zero impact of the
injected temperature fault since we assumed in this research that SOC does not
change significantly if the temperature inside the battery changes. This assumption
is not realistic, since in “real life” the SOC and internal resistance of Li-ion battery
are dependent on temperature. This assumption was adopted to simplify the Li-ion
battery model substantially, since a battery model of high complexity is beyond the
topic developed in this research work. Moreover, the assumption is also justified by
the fact that the fault detection analysis by using a 1-D wavelet analysis tool is
performing online. A model is not required, that is a significant advantage of the
new approach compared with the model based Kalman filter technique approach
developed in the previous section, for which the SOC accuracy of the battery model
is critical. Besides, the main objective of this paper is to provide a “proof concept”
and to demonstrate the effectiveness of the use of 1-D wavelet analysis of finding
the essential features in the output voltage residual variance for MATLAB design
and implementation of the investigated fault detection technique. In Figure 19 (b),
(c) and (d) are visualized the healthy, faulty and the battery temperature residual
(b), the healthy, In faulty and the output voltage residual (c), respectively the use
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Figure 19.

Li-ion battery temperature fault injected: (a) SOC and its vesidual; (b) healthy, faulty, and residual
temperatures; (c) healthy, faulty, and residual battery internal resistance; (d) original (noisy), denoised and
residual output voltage signals.

of 1-D wavelet ‘Sym4’ for denoising output voltage residual (d). The residual of
denoised battery output voltage and its corresponding constructed wave are
presenting in Figure 20(a).

Step 2.2.2. Fault detection features.

The MATLAB simulation result shown in Figure 19 (b), (c) and (d) reveal that
the presence of the temperature fault is noticeable by its effect on the output
voltage residual at the beginning, inside and at the end of the injected window. and
the coefficients D1, D2, D3 and A3 of the ‘Sym4’ wavelet are shown in Figure 20
(b). The features extracted from Figure 20(b) are summarized in Table 2 and
analyzed at the end of this section.

3.1.4 Wavelet transform analysis of fault detection technique. Performance comparison
A rigorous performance analysis of using 1-D wavelet transform tool for fault

detection strategy is accomplished based on the information extracted from the
details’ coefficients of output voltage residual decomposition for both scenarios.
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Figure 20.

Li-ion battery output voltage residual second scenario: (a) original denoised output voltage vesidual; (b) the
details (D1, D2, D3) and approximation (A3) Symletq (four vanishing moments) wavelets coefficients
decomposition at level 3.

From the details coefficients values D1, D2, and D3 can be extracted the wavelet
energy, skewness, and kurtosis features. These statistics can identify the types of
faults based on their distinct value, as are defined in [14], MATLAB Wavelet
Toolbox (for wavelet energy), respectively MATLAB Statistics and Machines
Learning Toolbox for skewness and kurtosis).

* The wavelet energy is an important indicator that gives a valuable information

about the presence of the fault inside a window that has a concentrated large
value of the wavelet energy, defined as,
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3
Ewpr = Y _D; (35)

* The skewness is a measure of the asymmetry of the data around the sample
mean. If skewness is negative, the data spreads out more to the left of the mean
than to the right. If skewness is positive, the data spreads out more to the right.
It is defined as,

E{{DZJ ) }

O'i

SKwrp, = (36)

* The kurtosis is a measure of whether the distribution is too peaked, i.e. a very
narrow distribution with most of the responses in the center, and is defined as,

E{{Dlj Hi) }

Gi

KTwrp, = (37)

where y; is the mean of Dy, o; is the standard deviation of D;;, and E(.)
represents the expected value. The values of the three indicators defined in
Egs. (31)-(33) are entered in Table 2 for both error scenarios.

The excess kurtosis and skewness of every coefficient A3, D1, D2 and D3 in the
dataset, can be interpreted as follows:

a. For skewness, if the distribution of responses for a variable stretches toward
the right or left tail of the distribution, then the distribution is referred to as
skewed. A general guideline for skewness is that if the number is greater than
+1 or lower than —1, this is an indication of a substantially skewed
distribution.

b. For kurtosis, if the number is greater than +1, the distribution is too peaked.
Otherwise, a kurtosis of less than —1 indicates a distribution is too flat.

c. When both skewness and kurtosis are zero, the pattern of responses is
considered a normal distribution.

Besides, an assessment statistic criterion root mean square error (RMSE) is
introduced in Table 2 for a particular analysis of the high frequency detail compo-
nent D1 dataset.

The MATLAB simulation results analyzed from the perspective of the fault fea-
tures extracted from Table 2 reveal the fact that the temperature fault shows signif-
icant values compared to a possible occurrence of current fault in Li-ion battery.

Figures 21 and 22 show how multiresolution decomposition technique, such as
1-D wavelet analysis, allow us to study signal components in relative isolation on the
same time scale as the original data [22]. Multiresolution analysis (MRA) refers to
“breaking up a signal into components, which produce the original signal exactly
when added back together” [22]. The components ideally decompose the variability
of the data into physically meaningful and interpretable parts, as is stated also in [22].

The term MRA is often associated with wavelets, and in the “real life” the signals
consist of a mixture of different components. Often the interest is focused only in a
subset of these components. That is why the MRA allows us to restrict the analysis
of the original signal, by separating it into components at different resolutions.
Extracting signal components at different resolutions means a decomposition of
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variations in the data on different time scales, or equivalently in different frequency
bands [22]. Consequently, the signal variability at different scales or frequency
bands can be seen simultaneously.

In the Figures 21 and 22, using a wavelet MRA, the Li-ion battery output voltage
residual signal is analyzed in MATLAB at eight resolutions or levels, following the
procedure shown in [22] for both faults isolation.

Both graphs from Figures 21 and 22 starts from the uppermost plot and proceed
down until is reached the plot of the original data and is worth noting that the
components have become progressively smoother. D2 graph isolates the time-
localized high-frequency component, which can be seen and investigated as an
essential signal feature practically in isolation. The next two graphs contain the
lower frequency oscillation. It is worth to mention that “an important aspect of
multiresolution analysis, namely important signal components may not end up
isolated in one MRA component, but they are rarely located in more than two” [22].
Finally, from the S8 graph can be extracted a smooth trend term, which provides us
a valuable information to localize transient changes, as it can see in the fault
injection window [500, 1500] seconds. Thus, the presence of the bias current fault
and bias temperature fault is detected and localized as a significant transient change
in the nonstationary Li-ion output voltage residual signal. For an appropriate choice
of the thresholds’ values, both faults can be detected directly from the S8 graph,
removing the presence of the false alarms completely.

Besides, the value of the RMSE statistical criterion of the energy feature
extracted from the detail coefficient D1, for both faults, shown in Figures 18 and 20
(b), undoubtedly confirms the validation of the results obtained in Table 3, ade-
quate to differentiate between the two faults. However, in Table 3 is shown the
Fault signature of 1-D wavelet analysis transform, useful for fault isolation. To
distinguish between both faults injected in Li-ion battery, i.e. current sensor bias
fault, respectively, temperature bias fault a valuable information is provided by
battery SOC and battery internal resistance residuals. It is showing in Table 3, like
for based model AEKF FDI strategy developed in Section 2. An exciting piece of
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Figure 21.
Li-ion output voltage residual signal using a wavelet MRA for scenario 1 of bias current fault on 8 resolutions
(levels) decomposition—extracted smooth trend (S8) and localige transient changes.
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Synthetic signal using a wavelet MRA on 8 vesolutions (levels) decomposition for scenario 2 of bias temperature
fault — Extracted smooth trend (S8) and localize transient changes.

Res_y Res_SOC Res_Rcell Fault signature

1 1(<0) 0 Current fault, no false alarm

1 0 1 Temperature fault, no false alarm
Table 3.

Li-ion battery - fault signature 1-D wavelet analysis transform.

information is related to the “border effects of error injection”, clearly visible when
the temperature fault is removing, because the healthy signal emerges from the
defective one in the window, before the corresponding time tf = 1500 seconds.
These “frontier effects” require further investigation in future work.

4, Conclusions

In this research paper is opened a new research direction in HEV BMS applica-
tions field by performing many investigations on the use of multisignal 1-D wavelet
analysis to improve the accuracy, robustness, the design and the implementation in
real-time of Fault detection techniques. Among the most relevant contributions of
the authors can be highlighted the following:

* The selection of a suitable and straightforward Li-ion battery model, accurate
enough for data generation, and to design and implement a robust adaptive
extended Kalman filter SOC estimator to changes in SOC initial values, in the
level of measurement noise that contaminate the input-output dataset, to
changes in the battery capacity value due to aging effects, and changes in the
internal resistance of the battery due to temperature effects

* Representation of the battery model in continuous and discrete time
state-space

151



Wavelet Theory

* Develop the most appropriate thermal model of the battery for data generation
and to setup the temperature mechanism fault injection

* Adaptive Extended Kalman Filter SOC estimator with fading feature and
covariance matrices of noises correction—brief presentation and MATLAB
design and implementation.

* The battery SOC and output voltage residual generation and bias current fault
injection mechanism

* The fault detection and isolation estimation technique based on AEKF SOC
estimator

* Wavelets transform analysis of the faults features extraction in a rechargeable
Li-ion battery

* SOC and output voltage residual generation-original and reconstructed signals

* 1-D wavelet transform analysis used for battery voltage residual three levels
decomposition — Approximation coefficient A4, and Details coefficients D1, D2
and D3

* Denoising residual signals methods analysis - MATLAB implementation

* Wavelets transform analysis to extract the fault features for their detection.
Performance analysis

* Extracting signal components at different resolutions by using a
multiresolution analysis (MRA) method for fault detection

* The use of the fault signature for fault localization (isolation)

These investigations are performed for the case study, principally chosen to eval-
uate the impact of two bias faults injected in a current and temperature sensor on the
output voltage of a BMS Li-ion rechargeable battery used in HEVs applications.

The effectiveness of fault detection strategy is demonstrated through an exten-
sive number of simulations in a MATLAB R2020a software environment. The
preliminary simulation results are encouraging, and extensive investigations will be
done in future work to extend the applications area. The performance analysis from
the last section reveals that 1-D wavelet analysis is a useful tool for signals
processing, design and implementation based on wavelet transforms found in a
wide range of control systems industrial applications. Compared to AEKF estima-
tion technique described in Section 2, the 1-D wavelet analysis tool has a significant
advantage to perform online. Also, it does not require the model of the battery,
since it uses directly the input-output signals generated by the battery model. More
precisely, it is based only on the measurement input-output dataset collected by a
data acquisition (DAQ) system incorporated in BMS of HEVSs. Besides, the battery
SOC and output voltage signals’ accuracy is not affected by noise as long as is using
the signals denoising techniques, such in the case of AEKF fault detection and
isolation technique during the noise correction step of the algorithm.
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Abbreviations

EV electric vehicle

HEV hybrid electric vehicle

BMS battery management system
FTP-75 Federal test procedure at 75 F
OoCVv open-circuit voltage

SoC state of charge

KF Kalman filter

EKF extended Kalman filter

AEKF adaptive Kalman filter

WCT wavelet continuous transform
WDT wavelet discrete transform
LPF low pass filter

HPF high pass filter

Sim4 Simlet wavelet with 4 vanishing moments
RMSE root mean square error

MSE mean square error

MAE mean absolute error

MAPE mean absolute percentage error
std standard deviation

R? R-squared

Appendix A - AEKF SOC estimator steps of Li-ion battery combined
model

Step 1. Rint ECM battery nonlinear model represented in discrete time [3, 4, 11]:

x1(k +1) =x1(k) + 11’1"6714(16) +w(k) =f(x1(k),u(k)) + w(k),x1(k) = SOC(k) (38)
OCV(k) = I{Q — szl(k) — 9% + I(3 In (Xl(k)) + I<4 In (1 — xl(k)) (39)
y(k) = OCV (k) — Rinu(k) +v(k) = g(x1(k), u(k)) (40)

where the process noise w(k) and measurement output noise (k) are white
uncorrelated noises of zero mean and covariance matrices Q (k) and R(k)
respectively, i.e.

w(k) ~ (0,Q(k)), v(k) ~ (0, R(k))
E(w(kw(j)") = Q). E(v(k)o()") = Rk,

(41)
0, k#j
O = .
1, k=j
Step 2. Initialization:
X0 = Elxo| — the initial mean value
(42)

f’xo =F {(xo —X0)(x0 — &O)T] — the initial state covariance matrix

Step 3. Model linearization - The Jacobian matrices of the model linearization are
given by:
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o (k,x(k), u(k))
1) = Fkox(k),ulk))
A(k) ox(k) e (43)
k) = B0 ulk)
ox (k) % (klk—1)

For k €[1,400) do.
Step 4. Prediction phase (forecast or time update from (k|k) to (k + 1)|k):
Step 4.1 Predict the state ahead:

x(k+1|k) = A(k)x(k|k) + B(k)u(k) (44)
Step 4.2. Predict the covariance error ahead:
Pk + 1|k) = A(R)P(k|k)A(R)" +a 2Q(k) (45)

Remark. In this phase, the predicted value of the state vector x(k + 1|k) is
calculated based on the previous state estimate X (k|k) and the state covariance

positive definite matrices P(k|k) and P(k + 1]k) (unidimensional in the case study)
are affected by a fading memory coefficient a.
Step 4.3 Compute the updated value of Kalman filter gain:

K(k) = a®*P(k + 1/k)H (k)" (H(k)a%i?(k +1k)H(k)" + R(k)) ! (46)

Step 5. Correction phase (analysis or measurement update):
In this phase the Li-ion battery SOC estimated state is updated when an output
measurement is available in two steps:
Step 5.1 Update the SOC estimated state covariance matrix with a
measurement:

Pk + 1k +1) = (I — K(k)H(k))P(k + 1]k) (I — K(k)H(k))" + a *K (k)R(k)K (k)"
(47)
Step 5.2 Update the SOC estimated state variable with the measurement:
X(k+ 1k +1) =x(k +1lk) + K(k)(y(k) —g(x(k + 1|k),u(k), k) (48)
Step 5.3 Update the estimated output (battery terminal voltage):

Y (klle) = g (% (klk), u(k), k) (49)

Step 6. Adaptive noise covariance matrices correction:
For k > = L, the length of the window’s samples, compute:
Step 6.1. Output variable error and the correction factor:

Eyr(k) = 3, (k) — g (x(klk), )

St raBEn(R)EN (k) (50)
L

c(k)
Step 6.2. Measurement noise correction:

R(k) = c(k) + H(k)P(k|k)H (k)" (51)
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Step 6.3. Process noise correction:

Q(k) = K(k)c(k)K (k)" (52)

Annex B - Figures

AEKF battery terminal voltage versus battery model voltage

OBias current injection in Li-ion baltory input current gengor 415
m— Battery model terminal votage
= AEKF voltage
0.5 8|
| 1 =
‘S £
T
Inj b2
8 1.5 ”
ot
] 4
a5 . . L . 385 . . . .
[ 500 1000 1500 2000 500 1000 1500 2000
Time{seconds} Time(seconds)
a b)
502 Li-lon hattery terminal voltage residual 110 NEKF SOC estimate versus LHon battery model true value
— Battary modael S0C rus valus
ano e AEKF g51imatsd value T
oa | ]
Bol 4
70
_ 2 1
z £ w
£ oos 19
> 3 so0
004 1
40 ]
0o 1 ol ]
0.08 1 sl ]
—ottaga rasidual
-0.07 == = = Threghold minimum valus 10 1
= Thres o d rreimum value
0,08 2}
500 1000 1500 2000 500 1000 1500 2000
Time{seconds) Time (seconds}
(c) (d)
3 |
S0C residual 5 x10 ‘ The batbary Internal L ‘
0.3 T T T T
Soc rasidual
Q.25 ====== Thrashckl minimum value | 1898 ]
===== Threshokl maximum valug
0z | 1888 1
g
F 015 1£ 1984 - i
g E’ 1.892 - 1
5o 18
8 o
18 18ear- 1
Q.06
@ %
0 T 1.888 - 1
0.06 - \.l 1 1eesf |
0.1 . : . ! 1884 . . . |
0 800 1000 1500 2000 0 500 1000 1500 2000
Time(seconds) Time{seconds}
(e) ()
Figure B1.

Second scenario of fault injection: (a) bias fault injection of magnitude 2A in a curvent measurement sensor;
(b) battery terminal voltage residual; (c) AEKF SOC estimate versus EMC battery model SOC true value;
(d) SOC residual.
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Third scenario of fault injection: (a) bias fault injection; (b) temperature profile; (c) temperature effect on

battery internal

resistance Rin; (d) AEKF SOC estimate versus ECM battery model SOC true value; (e) SOC

residual; (f) AEKF terminal voltage estimate versus ECM battery model terminal voltage true value; (g)
battery terminal output voltage vesidual.
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Transform

Mohamed Tabaa, Safa Saadaoui, Mouhamad Chehaitly,
Aamre Khalil, Fabrice Monteiro and Abbas Dandache

Abstract

For many years now, communication in the industrial sector has been charac-
terized by a new trend of integrating the wireless concept through cyber-physical
systems (CPS). This emergence, known as the Smart Factory, is based on the
convergence of industrial trades and digital applications to create an intelligent
manufacturing system. This will ensure high adaptability of production and more
efficient resource input. It should be noted that data is the key element in the
development of the Internet of Things ecosystem. Thanks to the IoT, the user can
act in real time and in a digital way on his industrial environment, to optimize
several processes such as production improvement, machine control, or optimiza-
tion of supply chains in real time. The choice of the connectivity strategy is made
according to several criteria and is based on the choice of the sensor. This mainly
depends on location (indoor, outdoor, ...), mobility, energy consumption, remote
control, amount of data, sending frequency and security. In this chapter, we present
an Industrial IoT architecture with two operating modes: MtO (Many-to-One) and
OtM (One-to-Many). An optimal choice of the wavelet in terms of bit error rate is
made to perform simulations in an industrial channel. A model of this channel is
developed in order to simulate the performance of the communication architecture
in an environment very close to industry. The optimization of the communication
systems is ensured by error correcting codes.

Keywords: industrial IoT, wireless communication, DWPT, IDWPT, many-to-one,
one-to-many, industrial channel, ECC

1. Introduction

In recent years, technological developments in wireless communication systems
have improved user needs in terms of accessibility, data quantity, intelligent deci-
sion making and energy consumption. These technologies are still evolving, thanks
to the integration of new techniques to improve the connectivity of billions of
objects. These connected objects, whether sensors or actuators, are by nature
autonomous physical devices with a limited energy source [1, 2]. They are able to
communicate with each other, creating a technological revolution. This revolution
is bringing more ambitious innovations in a variety of application areas: medicine,
industry, energy, security and others.

For industrial applications, research is focused on creating connected, robotic
and intelligent factories to improve current production systems. This interconnec-
tion of factories is achieved through the connected systems, in which employees,
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machines and products collaborate with each other to form the new revolution. At
the heart of this revolution, the Industrial Internet of Things (IIoT) plays a key role
in the development of connectivity for this revolution (Figure 1) [3, 4]. In such an
industrial environment, propagation differs from other conventional indoor means
of communication through its large dimensions and the nature of the objects and
obstacles inside. Thus, the industrial environment can be modeled as a fading
channel affected by impulsive and Gaussian noise [5, 6].

Given the major advantage of connectivity in the industrial environment, it is
necessary to propose wireless, robust and efficient communication architectures
inside the factory. The design of these systems differs for each application, taking
into account the constraints of the propagation environment. Unlike other tradi-
tional indoor environments such as residential buildings or offices, this environ-
ment is characterized by its large dimensions and also by the nature of its elements
and obstacles. The complexity of the industrial context as well as the noise present
in the propagation environment make it necessary to offer a robust wireless com-
munication system to cope with the various disturbances during transmission [5, 7].

In this chapter we focus on applications of industrial communication in a high
noise industrial environment. In this work, a multi-user wireless communication
system is proposed, characterized by two distinct modes of operation. The first
mode provides “Many-To-One” (MtO) communication between several transmit-
ters and a single receiver. The second mode allows one transmitter sensor to send to
several receivers in One-To-Many (OtM) mode. These modes of communication
illustrate the links between the first three levels of the CIM (Computer-Integrated
Manufacturing) pyramid, of which this pyramid illustrates the industrial model on
5 levels. The proposed communication architecture is based on the transformation
of wavelet packets The use of the wavelet transform in this context consists, on the
one hand, in generating several forms of impulses via their synthesis and being able
to simply assign them to each user, and, on the other hand, in the reconstitution of
these impulses by the receiver, thus providing an analysis method that is simple to
implement and effective. These techniques of analysis and synthesis constitute the
major advantage of the wavelet transform for pulse modulations.

An optimal choice of the wavelet in terms of binary error rate is made to
perform simulations in an industrial channel. A model of this channel is developed
in order to simulate the performance of the communication architecture in an

Figure 1.
IIoT communication in the context of smart factory.
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environment very close to industry. Naturally, the optimization of the communica-
tion systems is ensured by error correcting codes, this is how we proceeded. We
have optimized the performance of our system architecture through conventional
channel coding.

This chapter will be presented as follows: in the second part, the state of the art
concerning Industry 4.0 and IIoT is developed. The study concerning the discrete
wavelet packet transform is discussed in the third part. The part describes the
functioning of the proposed architecture in two modes MtO and OtM. the industrial
channel model is discussed in the fifth part. The sixth part presents the simulation
results and towards the end a conclusion.

2. State of art
2.1 Industry 4.0

Industry 4.0 is characterized by a new way of organizing plants to put an end to
complex hierarchical structures. Therefore, ICT techniques must be merged with
industrial technologies. In Industry 4.0, embedded systems, IoT and CPS technolo-
gies link virtual space to the physical world to give birth to a new connected
generation of so-called “intelligent” factories. These factories are capable of more
efficient allocation of production resources, with the main objectives of customizing
products, minimizing time to market and improving business performance. This
opens the way to a new mode of industrial transformation. The concept of Industry
4.0 was first introduced at the Hanover Industrial Technology Fair in 2011, the
world’s largest technology and industrial trade fair. In 2013, Germany officially
adopts the implementation of the concept by the German government’s identifica-
tion of Industry 4.0 in its future projects within its action plan “High-Tech Strategy
2020” (Figure 2).

It has rapidly evolved as a German national strategy based on 4 aspects: Building
the CPS network, addressing two main themes based on the plant and intelligent
production, thus achieving 3 types of integration: Horizontal, vertical and point-to-
point. The result is that German industry has welcomed the initiative with open
arms. Small, medium and large companies from all sectors participated in the
creation of this new era. However, the boost from the government has helped to
internationalize the concept of Industry 4.0. In 2014, the State Council of China
unveiled its national plan, Made-in-China 2025, inspired by Industry 4.0 and
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Figure 2.
Evolution of the industry.
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designed to improve China’s industry globally, integrating digital and industrial
technologies. At the same time, several countries have adopted this concept, we cite
as an example “the new industrial France” by France, “Industrial internet and
advanced manufacturing partnership in USA” by the United States [8, 9].

2.2 IIoT vs. IoT

In the last few decades, technological developments in wireless communication
systems have improved user needs in terms of accessibility, data quantity, intelli-
gent decision making and energy consumption. These technologies are still evolv-
ing, thanks to the integration of new techniques to improve the connectivity of
billions of objects. These connected objects, whether sensors or actuators, are by
nature autonomous physical devices with a limited energy source. They are able to
communicate with each other, creating a technological revolution. This revolution
is bringing more ambitious innovations in a diverse range of applications: medicine,
industry, energy, security and others [10, 11].

For industrial applications, research is focused on creating connected, robotic
and smart factories to improve current production systems. This interconnection of
factories is achieved through the connected systems, in which employees, machines
and products collaborate with each other to form the new revolution. At the heart of
this revolution, the IIoT plays a key role in the development of connectivity for this
revolution. Based on the same concept of IoT, IIoT is based on the use of connected
sensors or actuators to improve industrial processes and manufacturing. It inte-
grates intelligence in data processing and analysis to ensure better M2M (Machine-
to-Machine) communication. This has been in existence since the integration of
electronics in the industrial sector during the third “industry 3.0” revolution. It is
now necessary to work on robust communication architectures allowing objects and
the technological choice of communication technologies and protocols, in a highly
noisy industrial environment, to communicate easily in order to build reliable
information for better decision making [12, 13].

General Electric presents the Industrial Internet as a term meaning the integra-
tion of complex physical machines with networked sensors and software. The
Industrial Internet brings together areas such as IoT, Big Data, machine learning
and M2M (Machine to Machine) communication to collect and analyze machine
data and use it to adjust operations.

According to the Industrial Internet Consortium IIC, the Industrial Internet
connects intelligent devices and machines with people at work, enabling better
decisions through advanced analysis that leads to transformational business out-
comes. The Industrial Internet covers the non-consumer side of the IoT and applies
“internet thinking” to industrial environments.

The Industrial Internet consists of three key elements that together represent the
essence of the idea:

* Smart machines: this means connecting machines, fleets, facilities and
networks around the world with advanced controls, sensors and software
applications.

* Advanced analysis: means combining the power of physics-based analysis,
domain expertise, automation and predictive algorithms to understand how
machines and systems work.

* People at work: essentially means connecting people at all times to support
smarter operations, design and maintenance, as well as high quality of service
and safety.
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The connection and combination of these three key elements allows companies
and economies to benefit from many new opportunities and efficiency gains in
several areas. The industrial internet will accelerate productivity growth in the same
way that the industrial revolution and the internet revolution have done in the past.

3. Wavelet packet discrete transform

As a matter of principle, the multiresolution analysis in L*(R) space of the
continuous functions of a real variable and an integrable square can be extended to
subspaces of it. That is, the same scheme can be applied to the W ; subspaces
generated by the previous analysis. Figure shows the hierarchy of the wavelet
packet decomposition: it illustrates the principle of wavelet packet decomposition
through the analysis of all subspaces [14]. Figures 3 and 4 illustrate the principle of
this decomposition by the discrete wavelet transform.

The analysis used in the wavelet packet transform leads to a decomposition into
frequency sub-bands of the input signal. This analysis can be carried out either by
the same scale and wavelet functions, which is usually the case, or by different
functions. This makes it possible to change the basic functions at each scale. It can
be said that perfect reconstruction is ensured by reusing during synthesis, and for
a precise resolution of the base functions combined with those used during the
analysis at this same resolution. The procedure of analyzing subspaces of signal
detail in addition to the approximation subspaces is generally referred to as
“wavelet packet analysis.”

Because this transform presents a good symmetry of structure which results in
identical sampling frequencies on all the inputs of the synthesis filter bank, and on
all the outputs of the analysis filter bank, our choice was directed towards an
implementation of the discrete wavelet packet transform. This approach will facil-
itate the generation of the pulses and be able to identify their content (nature of the
transmitter, or value of the transported data) [15].

3.1 Packet wavelet transform

The main objective of the wavelet packet decomposition is to extend the con-
struction of a new base from all generated subspaces. By definition, the
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Figure 3.
Discrete wavelet transform decomposition principle.
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Scale 4 decomposition procedure by discrete wavelet packet transform. H represents the low-pass filter and G the
high-pass filter.

multiresolution analysis of an approximation space V; is decomposed into two
lower resolution spaces V ;1 and W ;1 [16]. Therefore, this division is obtained by

transforming the base {qﬁ (27 —k) }k , de V;j in two orthogonal bases:
S

{4) (277 — k) }kez de Vet {y/jﬂ (27 — k) }kez for W, 1.
Note P this tree in which each node corresponds to a subspace P; which admits

an orthogonal base {P;‘ (t—k) }k = At a resolution level j we will have:
€

Pn P2n "y ®P2]n++11 (1)

The functions obtained are wavelet packets that are recursively determined by:

P7L(t) = V2 Zh P71 (2 — k) )
PR = V2) e ®pa(r =k @)

It should be noted that:

p§ represents the scaling function and pj, the associated wavelet via multi-
resolution analysis and noted respectively ¢ and .

The filters &, and g, are respectively the low-pass and high-pass filters
represented by quadrature mirror filters, and linked by the following equation:

G(n) = (=1)"h(1-n) 4)
The impulse response of the filters satisfies the following conditions:

> h(n —2%k)h(n —2) =6y &Y h(n) =2 (5)

n

Zg(n —2k)g(n —21) = ou &Zg(n) =0 (6)

n
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Figure 5.

IDWPT-based transmitter and DWPT-based receiver.
3.2 Decomposition and reconstruction

Recall that each function f(t) in the L*(R) space can be decomposed on the basis
of functions {p’;,k (t), where (j,k)eZ*Z} as follows:

F(t) = 3 a0" () @)
n,k

with j the depth of decomposition, k the time index, and # the frequency index
equivalent to the wavelet number.
The coefficients a”; , at a given scale j are expressed as a scalar product of the

signal to be analyzed and the analyzing function:

+ex

= (F0) = | fow 0 (®)

—X

The wavelet packet decomposition is shown in Figure 5. In this example, the
wavelet packet analysis of the function f is performed with a depth of 4.
The set of coefficients 4", constitutes the discrete wavelet packet transform

(DWPT) of {(t) and its inverse transform (IDWPT) is given by:
a’ip = th*Ziazﬁk + E ;gkfzﬂzﬁzj ' )

ieZ ieZ

The wavelet packet transform simply consists of filtering the signal using a low-
pass filter 4, and a high-pass filter g, . As for synthesis, it is a regrouping of the
signals into a single signal that represents the signal already analyzed. These two
approaches give rise to filter banks that check the following conditions:

hy=h_,etg, =g , (10)

4. Proposed communication architecture

In this chapter, two multi-user operating modes have been studied and tested:
the “Many-to-One” mode (MtO) and the “One-to-Many” mode (OtM). The choice
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of these modes depends essentially on the existence in the current communication
architectures (master-slave, bidirectional), in order to facilitate adaptation for a
better integration [17-19].

4.1 Many-to-One mode

The MtO mode corresponds to multi-sensor communication from several sen-
sors to a single receiver (Figure 6). Each transmitting sensor is in the form of an
IDWPT block ensuring the activation of a single input for this transmitter, which
allows the transmitting sensor to be identified already. Therefore, each input of the
IDWPT block on transmission corresponds to a single output of the DWPT block on
reception.

Based on the CIM pyramid (Figure 7), this mode of communication corresponds
to a communication from level 0 and 1 to level 2. In this mode, data from one or
more low flow sensors are transmitted at the same time to the same receiver, and
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Figure 6.
Many-to-One mode.

Figure 7.
Operation of MTO and MtO modes in the CIM pyramid.
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the activation of one of the inputs generates the activation of a user. Figure 8
illustrates an 8-input architecture corresponding to 8 potential sensors (scale 3).
Therefore, each transmitter uses a single input that is different from the other
inputs. The pulse shape of each activated input is different from the waveforms of
the other inputs, the other non-activated inputs will be set to zero.

The DWPT-based receiver receives the data stream from all transmitters at the
same time. However, each sensor is identified by a unique filter output at the
receiver that represents the same input at the receiver. This mode has a higher
bandwidth occupancy than single user mode because each user (input enabled) will
occupy a separate sub-band. This will result in frequency selectivity of the channel
due to interference between users, for which it will be necessary to protect the
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Figure 8.
Transmitter operation in MtO mode.
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One-to-Many mode.
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Receiver in one-to-many mode.

transmitted data as much as possible. Nevertheless, this will allow synchronous
communication of several sensors to the same receiver.

4.2 One-to-Many mode

For the OtM mode, an IDWPT transmitter is characterized by n inputs, capable
of sending information to m DWPT receivers with n outputs each.

Note that the information sent via input (i) is retrieved at output (i). This is the
inverse mode of the MtO mode where the equipment’s of levels 1 and 2 of the CIM
pyramid send the same information to the level sensors. This mode is equivalent to
the master-slave architecture in a conventional industrial communication system.
Although the data rate of the transmitted data is generally low, the reception of
information from several sensors creates spatial diversity that allows the data to be
retrieved by at least one receiver. Figure 9 illustrates the transmission of data from
a single sensor to 4 receivers. The data sent will be detected in the 5th output of the
4 receivers, as shown in Figure 10.

5. Industrial channel

Signals in an industrial environment are subject to several disturbances due to
propagation phenomena. These disturbances significantly degrade system perfor-
mance. This environment is affected by very complex noise and interference caused
by machine temperatures, vibrations, metal structures and heavy machinery
[SHAO09]. In addition, the signal is subject to attenuation and shadowing effects
caused by abstractions in the propagation channel. The mobility of equipment and
people in the wireless medium can also cause time-varying effects. These effects can
significantly destroy the information exchanged and thus degrade any communica-
tion system performance in the industry [CHE16]. Therefore, it is necessary to
estimate the propagation channel in order to design and evaluate the entire wireless
transmission system for industrial applications.

5.1 Fading

For wireless propagation in an industrial context, the received information is
subject to attenuation and fading effects, of which the expression of the received
signal is:

172



Industrial IoT Using Wavelet Transform
DOI: http://dx.doi.org/10.5772 /intechopen.93879

y(t) = h(t) xs(t) +n(t) (11)

Where, h(t) is the channel impulse response, s(t) is the transmitted signal and
n(t) is the additive noise.

In a factory, sensors/actuators are usually arranged according to the production
system configuration. Measurements of narrowband and broadband indoor chan-
nels have been performed through research in several industrial environments [20],
and have shown that the time impulse response h(t) at a fixed location in an
industrial context follows a reduced exponential distribution [21, 22]. This distri-
bution depends mainly on the delay and power of each channel, which is shown in
Saleh Valenzuela’s model [23]. The delay spread of the channels can be determined
from the impulse response as a function of the transmission frequency and the LOS
(Line-Of-Sight) or NLOS (Non-Line-Of- Sight) configurations. Thus, the objective
of the research work is to validate the IDWPT/DWPT-based architecture under a
simulated industrial channel, and we then generated a channel impulse response
based on the measurements from the work [24, 25] for both LOS and NLOS
configurations at 2.4 GHz. The simulated channel impulse response includes 10
significant paths (Figure 11).

In order to represent a channel fading phenomenon, all paths follow the same
statistical distribution [26]. The time envelope of the received signal follows the
Rician statistical distribution in the LOS scenario and the Rayleigh distribution in

the NLOS case.
x x? + K? Kx

With I (x) is the Bessel function changed to zero order. K is the shape parameter
called Rician factor. For K = 0, P(x) converges to the Rayleigh distribution.

5.2 Noise

In the case of wireless communication systems, the noise added to the received
signal is White Gaussian Noise (WGN additive). In an industrial environment, the
signals will be affected by noise, which is represented as impulsive noise from
motors, regulators, electrical equipment and others. However, the industrial noise
n(t) in equation will be modeled as a superposition of AWGN w(t) and impulsive
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Figure 11.

Simulated channel impulse response.
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Figure 12.
Industrial noise with a scale factor R = 50.

noise i(t) having a very high variance. Then, i(z) is modeled as a two-state first-
order Markov process thus describing the typical impulsive noise [27] (Figure 12).

n(t) =w(t) +i(t) (13)

where w(?) and i(?) are zero-mean Gaussian processes whose probability density
functions are respectively:

2

Plw(t)] = \/%u_; exp l— wz((g ] (14)
Ry

Pli()] = \/ziﬁf exp —;g’z] (15)

With R > 1 is a scale constant of the amplitude of the impulse noise. The higher
the amplitude, the greater the noise. For our simulations, we use R = 50 which
corresponds to significant impulse noise.

6. Simulations, results and performances
In this section, we will present the simulation results of the IDWPT/DWPT

architecture under a noisy industrial channel. All the simulations presented in this
chapter are performed under MATLAB.

6.1 Simulations and results
The proposed system is based on a multi-user IDWPT/DWPT architecture for 2"

sensors/actuators in an industrial environment. The transmitters are based on the
IDWPT implementation in the form of synthesis filter banks, and the receivers are
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based on DWPTs implemented as analysis filter banks. The industrial channel is
described as a Rician fading channel for the LOS configuration and a Rayleigh
fading channel for the NLOS configuration at the 2.4GHz frequency affected by
impulsive noise. In our simulations, we choose the “Symlet” wavelet that has dem-
onstrated the lowest bit error rate for the IDWPT/DWPT architecture under an
AWGN channel (Figure 13).

In the case of the MTO mode in multi-sensor configuration, the frames for each
user are 16 bits long and randomly generated. This data configuration is due to the
fact that sensors in industrial environments transmit short data packets. These data
frames are pulse modulated and each transmitter is identified by a unique signal.
Figure 14 shows the signals from 4 different sensors (1, 5, 12 and 16) in an archi-
tecture with 16 transmitter sensors. The 16 generated signals are all different from
each other because the binary data at the input of each filter are different.

Based on the effect of channel fading due to delay propagation in addition to
AWGN noise for the LOS and NLOS configurations, it is clear that the multipath
effect disturbs the signals of the different users and thus causes interference
between them. The proposed architecture allows signal detection at reception for all
users as shown in Figure 15 for a SNR (Signal to Noise Ratio) greater than 20 dB
[27-33].

With fading effects, and the addition of industrial noise composed of Gaussian
noise and impulse noise, the bit error rate is shown in Figure 15. The communica-
tion architecture converges more slowly and performance decreases, but it allows
the full information of an SNR up to 35 dB. In the case of industrial noise, the data
may be completely lost if the effects of the channel are not properly taken into
account.

In the case of the OtM mode, a single transmitter based on DWPT with n inputs
sends data to m receivers based on DWPT with n outputs each. The principle of this
mode is to activate only one input (i) of the transmitter and force the others to zero.
When receiving, the data will be detected at output (i) of each receiver. The data
are modulated through pulse modulation using a “Symlet” pulse. Figure 16 shows
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Figure 13.
Performance of four wavelets.
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Figure 14.

LOS Channel at 2.4GHz
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LOS Channel at 2.4GHz with industrial noise
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BER/SNR on a fading channel with industrial noise for MTO mode.

the signals received at the 4 receivers. The data is recovered at the 7th output

corresponding to the activated input.

Based on the fading channel and AWGN noise for LOS and NLOS configura-
tions, the architecture detects the signal on reception. According to the simulation
results shown in Figure 16 the transmitted signal is detected at the receiving sensor
array for the LOS and NLOS channels at 2.4 GHz. Detection is virtually error-free
above 20 dB. Some differences between the LOS and NLOS configurations are
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Figure 16.
BER/SNR on a 2.4 GHz fading channel with AWGN noise for OTM mode.

detected from an SNR of 14 dB. This is mainly due to the effects of channel fading
and channel dispersion which must be corrected using channel coding during
transmission. Taking into account the effect of industrial noise, the communication
architecture allows the full detection of 30 dB SNR information as shown in

Figure 17. The difference in error rate is very large and depends on the
propagation channel.
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Figure 17.
BER/SNR on a fading channel with industrial noise for OTM mode.
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6.2 Performances: ECC

To improve the reliability of the architecture compared to the industrial fading
channel, we propose to add an error-correcting channel code on the transmitter side
(Figure 18). We use two coding techniques: a convolutional code and RS (Reed
Solomon) codes. For the convolutional code, we choose an encoder using a trellis
diagram with a generating polynomial matrix of having a constraint length of 7 and
a code rate = 1/2. On the receiver side, we use a Viterbi decoder [28-30].

As for the Reed Solomon encoder, we use an RS(31,17) with 31 code word
symbols and 17 message symbols based on the length of the transmitted data.

As shown in Figure 19 for an architecture with 8, 16 and 32 users on an indus-
trial channel with AWG noise fading, the error correction code improves the
robustness of the architecture against channel fading as a function of the number of
sensors used. For a better graphical representation, we have shown the results for
only 4 users in each case; for 8 users (user 1, 3, 5 and 7), for 16 users (user 1, 6, 12,
16) and for 32 users (user 1, 12, 22 and 30).

For a fading channel with AWG noise, the SNR is reduced by 2 dB using both
convolutional and RS code for an 8-user (or sensor) architecture, and by 4 dB for RS

Figure 18.
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Figure 19.
BER/SNR on a fading channel with AWGN noise for MTO mode.
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code in the case of a 32-user use. For a fading channel with industrial noise, the
signal-to-noise ratio is reduced by 8 dB for an architecture with 16 users using a
convolutional code and by 5 dB for 32 users using an RS code, as shown in
Figure 20. For a better illustration, Table 1 shows the different SNR values for a
fixed linear bit error rate of 0.1 with or without error-correcting coding [31, 32].

We conclude that for communication over an industrial fading channel, RS
coding is optimal for a 32-user architecture. However, convolutional coding is
optimal for a 16-user architecture. In the case of an 8-user architecture, the
convolutional and RS codes are equal.
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BER/SNR on a fading channel with industrial noise for MTO mode.

Number of No Convolutional code RS

sensors code 1/2 (31,17)

Fading channel with AWGN noise 8 14 dB 12dB 12dB
16 12dB 14 dB 14 dB

32 14 dB 12dB 10 dB

Fading channel with industrial 8 20 dB 18 dB 18 dB
noise 16 28 dB 20 dB 26 dB
32 30dB 28 dB 25dB

Table 1.
System parameters with coding.
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7. Conclusion

A robust IIoT multi-user architecture based on IDWPT in transmitter and
DWPT in receiver under an industrial channel has been presented in this chapter.
The industrial channel was modeled as a fading channel affected by impulse noise
combined with AWGN. The wireless sensor network architecture presented, with
its two communication modes MtO and OtM, provides better data reception results
for a noisy industrial environment. The robustness of the architecture can be
improved by using channel coding or industrial noise thresholding at reception. By
using a conventional error correction code with a rate of 1/4, the robustness of the
MtO mode has been greatly improved and all signals are fully decoded from an 8 dB
SNR on a fading channel. In MtO mode, signals are decoded from 6 dB on the same
channel. Using an optimal threshold receiver, errors are eliminated by about 25 dB
for MtO and OtM modes on a noisy industrial channel. As a perspective, we wish to
compare the performance of the proposed architecture with the conventional
OFDM communication system.
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Chapter 9

Wavelet Transform for Signal

Processing in Internet-of-Things
(IoT)

Indrakshi Dey and Shama Siddiqui

Abstract

The primary contribution of this chapter is to provide an overview of different
denoising methods used for signal processing in IoT networks from the perspectives
of physical layer in the network. The chapter starts with the introduction to differ-
ent kinds of noise that can be encountered in any kind of wireless communication
networks, different kinds of wavelet transform and wavelet packet transform
methods that can be used for denoising sensor signals in IoT networks and the
different processing steps that are needed to be followed to accomplish wavelet
packet transform for the sensor signals. Finally, a universal framework based on
energy correlation analysis has been presented for denoising sensor signals in IoT
networks, and such a framework can achieve considerable improvement in
denoising performance reducing the effective noise correlation coefficient to
0.00001 or lower. Moreover, this method is found to be equally effective for
Gaussian or impact noise or both.

Keywords: denoising, sensor signals, Internet-of-Things (I0T), wavelet transform,
wavelet packet transform, energy correlation analysis

1. Introduction

Internet of Things (IoT) refers to a network of diverse range of smart devices
used in the domains of healthcare, industry, vehicles, homes, agriculture, retail,
poultry and farming, and many more. Typical equipment supporting the IoT func-
tionality include lightning, thermostats, TVs, sensors, mobile phones, speakers,
voice assistants, cameras, video cameras, etc. These devices are basically deployed
to facilitate the processes of monitoring and automation by transmitting and
receiving information via internet. Undoubtedly, IoT has emerged as a rapidly
growing ecosystem that promises to deliver unmatched global coverage, quality-of-
service (QoS), scalability, security and flexibility to handle different requirements
for a comprehensive list of use-cases. This has resulted in increasing number of IoT
devices (relays, sensors, transceiver, actuators etc.) being deployed in in all types of
urban, suburban and rural environments to cater to the innovative and emerging
applications.

Since more devices and appliances have been transforming into their smarter
version, we now have the applications such as smart cars with features of smart
dashboards, GPS, smart doors and auto-route designed to reduce the accidents.
Such applications clearly require high number of connected devices; in fact, it has
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been forecasted by International Energy Agency that the estimated number of
connected devices which was 15 billion in 2018 shall reach 46 billion in 2030 [1]. In
addition to the IoT devices, the evolution of IoT networking technologies has also
been remarkable over the past decade, where more and more IoT devices have been
shifting from using Long Term Evolution (LTE) to Narrowband-IoT (NB-IoT)
which offers a cost-effective and energy efficient solution for continued operation
of these systems. Naturally, the connected devices are expected to transmit large
volumes of heterogeneous data at high data rates, and we will be required to deal
with ever-increasing radio frequency noise.

The signals carrying IoT data are highly likely to face numerous obstacles and
can be corrupted by significant amount of noise present in the environment. White
Gaussian model has been commonly been used to quantify the noise faced by [1].
The types of noise which have been found to degrading the quality of IoT signals
vary from the impact noise resulting from high frequency interference and instan-
taneous disturbance on the initialization of large equipment to changing connec-
tions around the participating IoT devices [2]. All these kinds of noise negatively
influence the multi-device information fusion system [3]. Such noises should be
filtered out and the transmitted signal should be reconstructed back to its actual
form to ensure the accuracy and reliability of the transmitted information. Here,
accuracy of IoT solutions is measured in terms of the number of packets reporting
correct information, deviation between the reported and actual results and the
delivery to correct destination timely. Similarly, the reliability of IoT is measured
using information such as failure rate of the IoT devices, average time between two
consecutive failures, average repair time and probability for needing to change a
component within a certain time-frame.

Although this chapter mainly deals with algorithms for signal denoising, they
can be also be applied for image denoising, as images can be represented as
two-dimensional signals. Consequently, signal processing techniques applicable to
signals can be modified for images.

2. Noise consideration

The process of removing the noise while retaining and not distorting the quality
of the received signal or image is referred to as denoising. The traditional way of
denoising is to use a low or band-pass filter with cut-off frequencies. However, the
traditional filtering techniques are able to remove out-of-band noise. Therefore
many denoising techniques are proposed to overcome this problem.

Denoising is also an indispensable link in speech signal processing owing to the
varying origins and non-stationarity, and difficulty in modeling the noise affecting
the signal. Assuming that the received signal is affected by white additive Gaussian
noise (AWGN) which is also stationary in nature, the received signal y(i) can be
represented as,

y(i) = x(i) + oe(@), i=0,1,..,n—1 1

where x(i) is the noise-free transmitted signal, £(7) representing independent
normally distributed random variable and o representing the intensity of the noise
affecting y(i). Reconstruction of the original signal x (i) from the instantaneous set
of y(i) values without actual assuming a specific model for x(i) or y(¢) is the primary
aim of the process of ‘Denoising’. The most common approach is to recognize noise
components as the high frequency components present in the corrupted received
signal, apply Fourier transform and then filter out the high frequency components.
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Therefore, the most traditional way of denoising signals is based on Fourier analysis
and Fourier transform.

Another common denoising method is the modulus maxima method [4]. It is
based on the concept that signal and noise exhibit different characteristics when
projected to their maxima in space divided in multiple scales. Magnitude scales
increasing with decreasing extreme value points are filtered out to remove noise
and the extreme value points themselves are reconstructed back [5]. The modulus
maxima method in addition to the noise effect is better than any other method
when mixed with white noise and singular information is significant, but the com-
putational complexity is quite high. However, Fourier transform based denoising is
restricted due to its weakness in obtaining partial characteristic of the transmit
signals and possible Gibbs phenomenon [6]. If the signal has the same frequency as
the noise, filtering out those frequency components will cause noticeable loss of
information of the desired signal when considering the frequency representation of
the signal.

3. Wavelet transform

Wavelet Transform (WT) has emerged as a powerful tool for signal and image
denoising and processing, that have been successfully used in many scientific fields
such as signal processing, image compression, computer graphics and pattern rec-
ognition [7, 8]. On contrary to the traditional Fourier transform, WT is particularly
suitable for application of non-stationary signals which may instantaneously vary in
time. Primarily, the received signal is divided into different frequency components
using wavelets. The basis function of WT is scaled based on frequency and a subset
of small waves (known as mother wavelet) is used for implementing WT [9]. The
mother wavelet is a time-varying window function used for decomposition of x (%)
into weighted sets of scaled versions of y(i). Consequently, using wavelet transform
in signal processing is the process of the partial transformation of the spatial domain
and the frequency domain, in order to get useful information accurately from it
though corrupted with noise.

Since different frequency levels are used for WT, it is quite convenient for
analyzing the signal characteristics at different frequencies and detecting removing
corrupting noise. Broadly, there are two types of WT, Continuous WT (CWT) and
Discrete WT (DWT).

3.1 Continuous wavelet transform (CWT)

CWT measures the congruence between an analyzing function and actual signal
by calculating the inner product and then integrating the product. The mother
wavelet window function can be shifted and moved over the time-axis by changing
scale and position parameters, thereby including different frequency components at
the different locations. Mathematically CWT can be represented as,

a a

CWT(a,bix(@) () = | x(0)5v° ("“’)dz’ @)

—o0

where x(7) is the transmit signal, y(7) is the analyzing function (wavelet), a is the
scale parameter, b is a position in time and * represents complex conjugate.
Considering y (i) as the band-pass impulse response, scaling the wavelet varies the
bandwidth of the band-pass filter. CWT allows changing the support of the wavelet
to get better resolution in frequency domain. CWT can be realized on computer and

185



Wavelet Theory

the computation time can be significantly reduced if the redundant samples are
removed after using the sampling theorem.

3.2 Discrete wavelet transform (DWT)

If suitable transformation is applied to a group of selected wavelet, a collection of
orthogonal real-valued wavelets will be generated, a representation of the received
signal referred to as wavelet expansion. In this case, the properties of the generated
wavelets depend on the features of the mother wavelet. Since the newly generated
wavelets are a group of orthogonal wavelets, they provide a time-frequency localiza-
tion of the actual input signal, thereby concentrating the signal energy over a few
frequency coefficients. Scaling and translation of the mother wavelet generated. If the
scaling factor is a power of two, the wavelet transform technique is referred to as the
dyadic-orthonormal wavelet transform [10]. If the chosen mother wavelet has ortho-
normal properties, there is no redundancy in the discrete wavelet transforms. In
addition, this provides the multiresolution algorithm decomposing a signal into scales
with different time and frequency resolution [9].

DWT is an implementation of WT using mutually orthogonal set of wavelets
defined by carefully chosen scaling and translation parameters (2 and b), such that
the normalized area between the analyzing functions is unity, leading to a very
simple and efficient iterative scheme for doing the transformation [11]. The trans-
lation equation can be expressed as,

L= N 1 n
DWT[n,4/] = ;Ox[m}wj m—nls ;] = \ﬁw(;) 3)

where 7 is the time delay introduced, N is the signal length and y is the discrete
mother wavelet windowing function. DWT operates on discrete wavelet sets
thereby yielding signal compression and reducing the computational complexity
considerably. Moreover, DWT provides better spatial and frequency localization, as
compared to other multi-scale signal maxima representation, thereby eliminating
redundancy. In DWT, signal is decomposed into ‘approximation’ and ‘detail’ coef-
ficients at each level [12].

The process is repeated at multiple levels, a technique equivalent to consecutive
iterations of low pass and high pass filtering. As a result, the low frequency and high
frequency components of x(¢) yield the approximation and detailed coefficients
respectively, which can be mathematically expressed as,

oo

L oo
x(6) =Y | Y DuRwour @) + Y Ai(k)y(t) (4)

m=1 | k=—o0 k=—o0

Where D,, (k) is the detailed coefficient, A;(k) is the approximation coefficient,
W, (t) is 2" -scale discrete analyzing function, and ¢, (¢) is the 2'-scale scaling
function. After scaling and wavelet filtering, we get [13].

h(n) =272 <p@t), p(2t —n)>

s)
g(n) =272 <y (), g2 —n)> = (~1)"h(1 —n)

The approximation and the detailed coefficients are compared by applying FIR
filter bank. The filter bank uses a low-pass filtering / for generating the approxi-
mation coefficients and high-pass filtering g for generating the detailed coefficients,
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The DWT decomposition and reconstruction steps of a 1D signal for level of 2; (a) decomposition,
(b) reconstruction.
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Figure 2.
The wavelet packet decomposition and reconstruction steps of a 1D signal for level of 2; (a) decomposition,
(b) reconstruction.

followed by down-sampling by a factor of 2 at each scale level. The entire process is
referred to as sub-band coding. The resultant tree structure is presented in Figure 1,
where, |2 and 12 represents the processes of down-sampling and up-sampling
respectively. The DWT decomposition process can be applied on both sub part of
the signal, approximation coefficients and detail coefficients. This kind of decom-
position is referred to as wavelet packet transform or wavelet packet tree decom-
position. Figure 2 represents the wavelet packet decomposition and reconstruction
process.

3.3 Wavelet packet transform

Wavelet Packet Transform (WPT) is another powerful denoising tool. WPT is a
generalized form of DWT, in which both smooth and details parts are subject to
further transforms. A full transformed matrix contains j(= log,N) transform levels
for searching for the best basis. The best basis can be chosen using different criteria.
Shannon entropy is a very common one, which is defined as,
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S = 721”]' log (p].) (6)
j

for whichpj = |x]|2/||x||2 and plogp = 0 for p = 0. The optimized basis func-
tion will be a combination of both approximated and detailed coefficients and
minimum entropy which can be obtained by comparing all the possible combina-
tions of wavelet coefficients at different levels, minimizing ) _ log |x;|, numbers
larger than ¢ and Stein’s unbiased estimate of risk (SURE) [14].

Wavelet packet transform (WPT) has several advantages over WT (continuous
and discrete) as it sets no requirements of mother wavelet windowing function [15],
wavelet packet basis function [16], and selection of the number of decomposition
levels [17] and threshold [18]. WPT is introduced in [19] for denoising and har-
monic detection by computing the difference between the noise and the desired
signal. The effectiveness is also experimentally verified in [20] and tested against
dynamics of Electro-encephalogram (EEG) and Electro-cardiogram (ECG) mea-
surements in [21]. Image denoising is implemented by using an adaptive anisotropic
dual-tree complex WPT on a bivariate stochastic signal model in [21].

DWT has become a powerful tool for denoising experimental data over the past
few years. Original data is decomposed into a series of wavelets at different scales
and intensities. Using WT, where the signal is multiplied by a transformation
matrix; the detailed and the smooth parts are separated and the process is repeated
over log,N iterations. Depending on the length of the filtering steps, we can have
different types of wavelets. If the number of steps vary from 4 to 20, the wavelets
are referred to as Daublets. The Haar transform is a special case of Daublet 2. There
can also be multiple filters, each with different filter lengths. If there are 5 filters,
the wavelets are known as Coiflets, where each filter length is a multiple of 6. If
there are 7 filters, the wavelets are known as Symmlets, where each filter length is a
multiple of 2.

4. DWT for denoising data

The DWT denoising procedure consists of three steps. In the first step, if the
length of the data stream is of length of the order of power of two, it is transformed
to the wavelet domain. In the second step, coefficients with either zero magnitude
or criterion-based minimized values are selected. In the third or final step, the
minimized coefficients are reverted back to the original domain from the wavelet
domain to extract the denoised data. DWT-based denoising techniques can be
broadly classified into two categories - linear and non-linear. In linear DWT, signal
and noise are assumed to be belonging to the smooth and the detailed part of the
wavelet domain, where high frequency components are attenuated. While in non-
linear DWT, the filter removes the coefficients selected in the second stage with
amplitudes less than the threshold. In practicality, non-linear DWT is always pre-
ferred over linear DWT, as linear DWT introduces error due to the retention of
noise components and loss of signal components owing to wavelet filtering.

Whether linear or non-linear DWT denoising technique is used, performance
depends on the choice of the wavelet family and the length of the filter. The
traditional way for making this choice is based on visual inspection of the data, for
example, daublets are implemented when the data appears smooth in the wavelet
domain, while Haar or other wavelets are used when the data appears bursty and
discontinuous in the wavelet domain. In order to overcome the problems with DWT
denoising, correlation denoising method was introduced in [11]. Correlation
denoising method implements wavelet transformation and filtering in a way such
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that the correlation between wavelet coefficients of the signal part and the noise
part is different at each level. However, correlation denoising in its original form is
computationally complex. In order to reduce computational complexity, wavelet
threshold denoising method was proposed by [12]. The method is simple to calcu-
late and the noise can be suppressed to a large extent. At the same time, singular
information of the original signal can be preferred well, so it is a simple and
effective method. A brief overview of what happens when DWT is applied for
denoising is demonstrated in Figure 3.

The four major components of the DWT denoising technique are: wavelet-type
selection, threshold selection, threshold function selection and threshold applica-
tion to the wavelet coefficients.

1.Wavelet Selection - There is a wide variety of wavelets that can be used for
denoising. Selecting the optimum one depends on the selection of the
matching wavelet filter. Out of different wavelet transform based denoising
methods, only minimum description length (MDL) method has the flexibility
of choosing the filter type.

2. Threshold Selection - There are four basic types of threshold selection, mini-
max, Stein’s unbiased estimate of risk (SURE), and minimum description
length (MDL). The Universal threshold is computed using,

f=0x%+/2x In(N) (7)

for which N is the length of the signal data array, and o is the standard
deviation of noise. In practicality, in most cases, ¢ is unknown, but can be
estimated using the first detailed part of the wavelet coefficient x; through the
expression,

median(|x;|)

Oestimate ~ 0.6745 (8)

In the case of Minimax criterion using the estimates of the minimax risk
bounds for the transformed wavelets, a table is generated for threshold values
corresponding to each set of given data lengths. These threshold values are
always smaller than the universal threshold. The noise level estimates are
calculated using (8) and signal components are retained along with a few
number of noise components.
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Figure 3.
Denoising with DWT.
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Stein’s unbiased estimate of visk (SURE) is used to obtain an unbiased

estimate of the variance between the filtered and unfiltered data. SURE is
defined as

N
SURE(t,x) = N — 2 x My < + 3 (1xif")’ ©)

i=1

for which ¢, x;, N and M refer to the candidate threshold, wavelet coefficient,
data length and number of data points less than ¢. The value of ¢ that mini-
mizes the SURE value is selected as the threshold value while the final term of
the SURE function represents the residual energy left after thresholding. The
SURE threshold can be modified to yield global thresholds rather than local
ones by combining SURE method with cycle-spinning technique; a method
referred to as SPINSURE.

The Minimum description length (MDL) method for threshold computation
can be expressed as,

MDL(k *,m * ) = min (%klog (N) +%V log (Z(xfﬂ —xfnk))> (10)

for which k, m, x,,, and x,,, represent the number of largest coefficients
retained after filtering, the filter type, the wavelet coefficients from m-type
wavelet transform, and the k largest coefficients in amplitude respectively.
Here k™ and m* are the optimized values for the MDL criterion for threshold
selection, where k* is selected as the threshold for the corresponding wavelet
coefficient. The 3/2k log (N) term represents the penalty function with value
proportional to the number of retained wavelet coefficients. The

(3 (x2 —x2,)) characterizes the error between the reconstructed and the
original signal components.

3.Selecting threshold function - whether wavelet threshold denoising method
is good or bad depends on two decisive factors; one is the threshold 4 and the
other important factor is the selection of the threshold function. The most
basic threshold functions are the hard and soft threshold functions, compara-
tive performance of which is presented in Figure 4.
The Hard Threshold Function (HTF) nullifies the decomposition coefficients
to zero if they are less than the threshold and retains the coefficients if they are
more than the threshold [22]. The HTF preserves the local properties of a
signal with a few discontinuities introduced by the variations in the
reconstructed signals. HTF can be expressed as,

- @ gy |wjel24

W)= { 0, 0 41 <4 (11)

The Soft Threshold Function (STF) [23] selects the threshold value such that
all decomposition coefficients are nullified to zero. A major drawback with
this technique is that a part of the high frequency components is lost owing to
their location above threshold. STF can be mathematically expressed as,

o { son () osul=2) o> )

0, |(1)j,k|</1
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Comparative hard and soft thresholding when implemented for DWT.
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where @, @ j, 4, and sgn() denotes the estimated wavelet coefficients, post-
decomposition wavelet coefficients, threshold and symbolic piece-wise func-
tion respectively [24].
Garrote Threshold Function is proposed in [25] to improve the drawbacks of
HTF and STF, whose denoising effect is better than the above two methods
with respect to continuity of expressions,

12
a)j,k _ a)],k a)j,k 5 |w ],kl Zl (13)

0, |w j,kl <A

The continuity in the soft threshold function is much better, but it has a
constant deviation. So, in order to overcome its shortcomings, the soft and
hard threshold algorithms are compromised process by the literature; the
semisoft threshold function [26].

_ ) sen (@) (@ jk|=T2), @ jul 22 (14)
0, | 5] <2

It is worth-mentioning here, that the values of the threshold T is fixed with
values between 0 and 1 in the case of HTF, STF, Garrote Threshold Function
and semi-threshold function.

Another variation is the Improved Threshold Function which can be given by,

sgn () | |o A o ip| >4
g ik jik exp 3 [a(|wj,k|—/1)//1] > jkl = (15)
0, |a)j,k| <a

a)j,k =

The adjustment factor of the new function is different from the semisoft
threshold function. It consists of a complex exponential function

exp ~*[a(|w jx|—4)/A] which has more adaptability; a is the normal number
which can be adjusted freely and the values of a are different with the different
signal. When |@ x| = 4, @ j; — 4, @) — 0.Therefore, continuously in place of
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A, the improved threshold function has the characteristics of soft threshold
function; when @ ) — 0, ™, — w j; improved threshold function based on
@ ) = ® j as the asymptotic line; it can be seen that, with the increase of w s
 j will gradually be close to @ j; when @ j; becomes infinite, ® ;,~® jx. The
choice of « is crucial for the success of the technique and the variation in a
affects the denoising effect. When a = 0, improved threshold function reduces
to STF and when a = oo, improved threshold function reduces to HTF.

4.Thresholding or threshold application - thresholding is defined as the ways in

which threshold is applied for modifying wavelet coefficients. DWT is a multi-
level wavelet transform technique with different thresholds being applied at
different level of coefficients

Global Thresholding - This technique assumes the corrupting noise as Gauss-
ian distributed with amplitude and frequency distributions same for all
orthogonal bases for the entire data space. Global thresholding can be
implemented using either hard, soft, Garrote or firm-threshold functions,
expressed as,

e Hard:
0, if |xi| <t
Xi* = ( f| | (16)
Xis %f |xi| >t
* Soft:
0, if |xi| <t
. :{ : fl il 17)
sign (oc;) (|x:] —2), if |xi| >t
* Garrote:
0, if x| <t
X :{ A (18)
X; —t /.X‘,', zflx,-|>t
¢ Firm:
0, if il <tg
x; = ¢ sign(x;)ta(|xi|—t1)/(t2 —t1), if 1 <|xi| <t2 (19)
Xi Z,f |xl| >1

for which x; and x;* represents the wavelet coefficients pre- and post-
thresholding respectively. HTF partitions the wavelet coefficients into two
parts by the selected threshold eliminating coefficients with low magnitude.
STF reduces all coefficients by a factor equal to the threshold eliminating
smaller coefficients. Similarly, Garrote thresholding reduces all large coeffi-
cients by a factor of a non-linear continuous function. Firm thresholding
reduces only the middle coefficients while eliminating small and retaining
large coefficients.

Level-Dependent Thresholding - This technique uses different thresholds at
each level of wavelet transformations. It uses a combination of SURE and
global thresholding techniques to initiate a hybrid method. In this case, if the
sample variance at each level is sparse, global thresholding is applied, while
SURE thresholding is applied otherwise.
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Data-Dependent Thresholding - A Data-dependent threshold (DDT) tech-
nique selects a threshold such that empirical wavelet coefficients are shrunk.
The thresholding is achieved through statistical tests of hypotheses like linear
regression. The level of this statistical test is adjusted to control the smooth-
ness of the resulting estimator such that a good mean-squared error (MSE)
performance is achieved for different data analysis settings with smoothness
in estimator response. The main aim of this technique is to eliminate a group
of wavelet coefficients that exhibit characteristics of pure noise.

Cycle-Spin Thresholding - It combines the process of subspace identification,
projecting denoising and averaging of the projections. The subspace men-
tioned here refers to the region where most of the energy of the signal is
concentrated and signal corrupted with noise is projected on to this subspace.

5. Signal denoising for IoT networks

The huge amount of sensor data generated in an IoT network are used to take
decisions on a certain observation/ phenomenon based on real-time processing. The
decision-making procedure often involves detecting the signal energy level trans-
mitted from the sensors. If the received energy level is higher than a predefined
threshold, the target is detected to be present phenomenon and vice-versa. How-
ever, the sensor data gets crippled with noise contributed by the wireless environ-
ment and the internal electronics of the sensors, on its way to the data center for
processing. The WPT method will be the best option in this case for denoising the
sensor data, where the original signal coefficients are preserved while removing the
noise within the signal. The WPT method can decompose a signal in both scale and
wavelet space thereby revealing more details about both the sensor signals and the
crippling noise. If energy correlation analysis is used in conjunction with WPT,
signal energy from the sensor data can be analyzed and noise can be eliminated by
zooming into the signal characteristics at different time scales. Advantages of WPT
over WT is evident in Figure 5. Hence, in this section, a universal framework is
presented for denoising sensor signals in IoT networks. The framework is based on
energy correlation analysis and combines the processes of WP decomposition,
coefficient modification and WP reconstruction. The functional block diagram for
this framework is presented in Figure 6.

Heavy Sine Difference Between Wavelet Dencised and Original
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Figure 5.
Comparative performance of WPT and WT.
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Architecture of the universal framework.

5.1 Wavelet packet transfer for IoT

In WPT for IoT networks, for a given for a given orthonormal scaling function
¢(t) and wavelet function y(¢) the double scale Eq. [14] can be described as follows:

B(t) = V2Y horp(2t — k), (t) = V2) hup(2t — k) (20)
k k

where &g and &y, are a pair of conjugate orthogonal filter coefficients. WP
functions for n = 0,1, ... can be defined as follows,

wan(t) = V2D hoxwn (2t — k), wani1(t) = V2 _hyton (2 — k) (21)

keZ keZ

Whenn = 0,wo(t) = ¢(t), w1(t) = w(t). {w,(t)}, c, represents the wavelet
packet assuming standard orthogonal wavelet basis can be constructed from the
scaling function. Scaling and wavelet functions generated as a result of this process
satisfy the properties of orthogonality over both scale and translation,

(Wt — k) -walt —1)) =6 kyl€Z
<W2n(t — k) 'W2n+1(t —l)> =0 n=12,..

(22)

In the process of WP decomposition, scale space {V;} ez composed of scaling

functions and wavelet space { W} composed of wavelet functions can be

jeZ
expressed in a unified way as follow:

US=V,U;j=W; jez (23)
FromV; =V ;1 ®W ji4, then
Uy =U%,0U,,,Ul=U",0U%] jezZnez* (24)

where, U’} denotes the closed subspace of square and integrable space L*(R)

generated by the linear combination of wavelet packet w, after translation and
scaling operation.
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During the procedure of multi-resolution analysis, objective function is
decomposed into the subspace {V} jez’ {w;} jezin L*(R) carried out further

decomposition according to binary mode as follows:

2 3 2 5 3 6
W= U} =UnoU;, U, = U‘;+2®Uj+2’Uj+1 = Uj+2®U7j+2

(25)
W;= Ut#z ® U5j+2 @ U6j+2 @ U7j+2
Consequently,
W= eU e .. o UL, (26)
inally, the wavelet packet coefficients can be compute as follows:
Finally, th let pacl ffici b puted [27] as foll
dijrl,Zn _ Zho(zlfk)dlj’n,d;gﬂ’znﬂ _ Zhl(zlfk)dlj’n (27)
1 1
where
d]g+1,n _ Z |:h0(217k)dkj’2n + h1(2lfk)dkj’2n+l} (28)

k

Following this technique of WPT, the efficiency of the denoising process
improves quite a bit over the case where just WT is used for denoising the signals, as
is evident in Figure 5.

5.2 Energy correlation analysis

Digital signal energy computation is achieved by extracting and squaring
signal amplitude at different locations in the time domain and then adding
them together [28]. The influence of relative large energy is eliminated using
normalization technique [29]. This normalization can be avoided by selecting
the sum of absolute values of amplitudes at each sampling points as
approximations for evaluating energy; the mathematical formulation for which
can be represented as:

N
e=> If(m)], n=12, ..,N. (29)
n=1
Any kind of non-deterministic relationship existing between two or more vari-
ables can be exploited and formalized using correlation analysis. Thus, different
kinds of signals can be differentiated by exploring the internal relation with corre-

lation analysis. x; and y; denote two random variables, respectively; the calculation
formula of correlation coefficient can be given as follows:

r= Sxy/\/ SxxSxy; —1<r<1, (30)
where Sy, = Zﬁ\il(xi *J_C)z’ Sy = 2511(3’1‘ *37)2 and S, = Zﬁﬁxi —X) (}’i *J_’)'
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The correlation coefficient 7 is referred to as “Pearson product-moment correla-

tion coefficient,” or Pearson’s  and is used to estimate the relative relationship
between variables using the following principles.

1.The closer the absolute value of Pearson’s r to 1, more is the correlation
and closer is the Pearson’s  to 0, less is the correlation between the variables.

2.The polarity of the coefficient determines the direction of correlation, with
plus-sign representing positive and minus-sign representing negative
correlation.

Original Signal

| Parameter Initialization |

Y
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decomposition layer N

v
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| Modify coeficients | | Reconstruct node signals |
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The result
matches filterning
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Figure 7.
Flowchart of wavelet packet coefficients based on energy-correlation analysis.
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5.3 Processing method for WP coefficients based on energy-correlation
analysis

An online filtering process capable of denoising both Gaussian and impact noise
is presented below based on the energy correlation between signal components
reconstructed from WP coefficients.

Step 1 - Obtain WP decomposition coefficients through the application of
appropriate decomposition level and mother wavelet.

Step 2 - Compare WP coefficients in each subspace to eliminate singular data
based on a pre-selected threshold through the application of multi-resolution analysis.

Step 3 - After reconstructing WP node signals from real coefficients, compute
the ratios of the energy of the reconstructed signal components to the actual signal
components to obtain the correlation between them. Subspace unsatisfied coeffi-
cients are processed through the use of a different threshold resulting in a series of
new coefficients.

Step 4 - Using the new set of modified coefficients on each node, signal compo-
nents are reconstructed and noise is eliminated. If the filtering requirements are not
satisfied, repeat steps to step 4 after increasing the decomposition level. A flow-
diagram for energy correlation analysis based WP coefficient processing is depicted
in Figure 7.

6. Performance analysis of denoising techniques

The best way to denoise a signal is to assume that the noise signal is Gaussian
distributed with values that are independent and identical real values. The perfor-
mance of the denoising process can be evaluated by comparing the quality of the
denoised signal with that of the original transmit signal. A variety of methods have
been proposed over years to measure the performance of denoising; the most
common of which are the metrics of SNR and the peak SNR (PSNR), generally
accepted to measure the quality of signal and images respectively. For 1-D signal,
measuring the performance of the denoising method by calculating the residual

SNR is given by, SNR = 10log ,, (ZLV;leZ (n)/ZnN;Ol (%(n) — x’(n))2> where x(n)
is the original signal, x"(n) is the denoised signal and X (%) refers to the mean

value of x(n).
In order to measure the quality of image, PSNR is generally used, which is given

by PSNR = 10log ,, (L/Z;V;Ol M1 (& (n,m) —x“(n,m))z), where L, x(n), X(n,m)

m=0
and x"(n,m) refer to the quantized gray level of images, original image, mean value
of x(n) and the reconstructed image respectively. However, the choice of the noise
power is absolutely crucial for visible performance difference. SNR is more impor-
tant as compared to noise power when evaluating performance and with SNR above
3 dB, it is quite easy to isolate visible corruption.

7. Conclusions

Decomposition in time and frequency domain for Fourier Transform is replaced
by decomposition in space domain for WT thereby removing any ambiguity related
to time and frequency and offering high flexibility and quality to the overall
denoising process. Different threshold estimation methods, wavelet types, thresh-
old types and thresholding functions can be used for implementing WT depending
on the application scenario, network architecture, the kind of signal transmitted
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and the kind of noise commonly observed in the considered application scenario.
However, comparing performances of different thresholding methods, wavelet
types or threshold types when applied for the WT reveal that the number of
decomposition levels are more crucial to the denoising performance than the types
of wavelets or thresholds.

If the application scenario is considered to be an industrial IoT network, WPT
method is preferred over simple WT for denoising sensor signals. This is because in
WPT, signal is decomposed into an approximation and a detail component at each
layer of each decomposition level, therefore resulting in 2" number of components
at n decomposition levels in contrast to just 2 components at each of the #» decom-
position levels of WT. Moreover, WT decomposes only the low frequency compo-
nents in contrast to WPT which considers both low and high frequency components
at each level. If WPT is combined with energy correlation analysis, effectiveness of
the denoising process increases manifold owing to its immunity to diversity of
signals in an IoT network. Integration of energy and correlation can be used to
modify wavelet packet coefficients for eliminating Gaussian and impact noise
efficiently.

A. Appendix A

Signal Generation

N = 2048*2;

name = ’piece-regular’;

f0 = loadsgnal (name, N);

0 = rescale(f0,.05,.95);

sigma = 0.05;

f = fO + randn(size(f0))*sigma;
figure(1)

subplot(2,1,1); plot(f0); axis([1 N 0 1]);
title("Clean signal’);
subplot(2,1,2);

plot(f); axis([1 N 0 1]);
title("Noisy signal’);

Thresholding

Theta0 = @(x,T)x.* (abs(x)sT);

Thetal = @(x,T)max(0, 1-T./max(abs(x),1e-9)).* x;
t = linspace(-3,3,1024)’; T = 1;

figure(2)

plot( t, [ThetaO(t,T), Thetal(t,T)], 'LineWidth’, 2 );
axis(’equal’); axis(’tight’);

legend(’®0’, OY);

Wavelet-Threholding

options.ti = 0; Jmin = 4;
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W = @(f) perform,aveletransf(f Jmin,+1,0ptions);
Wi = @(fw)performyaveletyansf(fw Jmin,-1,0ptions);
x = W(f);

x1 = ThetaO(x, 3*sigma);

figure(3)

subplot(2,1,1);

plot,avelet (x,Jmin); axis([1N -11]);

titleCW(£)’);

subplot(2,1,2);

plot,avelet (ThetaO(W(f),I'),Jmin); axis([1N -11]);
title CO°(W(H))’);

f1 = Wi(x1);

figure(4)

subplot(2,1,1);

plot(f); axis([1 N 0 1]);

title(Cf);

subplot(2,1,2);

plot(f1); axis([1 N 0 1]);

title(Cf});

x = W(f);

reinject = @ (x1)assign(x1, 1:2min, x(1:2min));
ThetaOW = @(f,T)Wi(ThetaO(W(f),T));
ThetalW = @(f,T)Wi(reinject(Thetal(W(£),T)));

TIWT

options.ti = 1;

W = @(f) perform,avelet ransf(f,Jmin,+1,0ptions);
Wi = @(fw)perform,avelet ransf (fw,Jmin,-1,0ptions);
fw = W(f);

nJ = size(fw,3)-4;

figure(5)

subplot(5,1, 1);

plot(f0); axis(’tight’);

title(’Signal’);

i=0;

for j=1:3

i= i+1;

subplot(5,1,i+1);

plot(fw(:,1,nJ-i+1)); axis(tight’);
title(strcat([’Scale=" num2str(j)]));

end

subplot(5,1, 5);

plot(fw(:,1,1)); axis(’tight’);

title(CLow scale’);
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Chapter 10

The Discrete Quincunx Wavelet
Packet Transform

Abdesselam Bassou

Abstract

This chapter aims to present an efficient compression algorithm based on quin-
cunx wavelet packet transform that can be applied on any image of size 128 x 128 or
bigger. Therefore, a division process into sub-images of size 128 x 128 was applied
on three gray-scale image databases, then pass each sub-image through the wavelet
transform and a bit-level encoder, to finally compress the sub-image with respect to
a fixed bit rate. The quality of the reconstructed image is evaluated using several
parameters at a given bit rate. In order to improve the quality in sense of the
evaluation quality, an exhaustive search has led to the best packet decomposition
base. Two versions of the proposed compression scheme were performed; the
optimal version is able to decrease the effect of block boundary artifacts (caused by
the image division process) by 27.70% considering a natural image. This optimal
version of the compression scheme was compared with JPEG standard using the
quality evaluation parameters and visual observation. As a result, the proposed
compression scheme presents a competitive performance to JPEG standard; where
the proposed scheme performs a peak signal to noise ratio of 0.88 dB over JPEG
standard at a bit rate of 0.50 bpp for a satellite image.

Keywords: quincunx wavelet transform, wavelet packet, quality evaluation
parameters, reduction factor, JPEG standard

1. Introduction

Wavelet is defined as a small wave that can be the base of all physical phenom-
ena; which means that a time and/or space variation of a phenomenon is a sum of
multiple wavelets. As examples, the wavelet transform was applied on an electro-
cardiogram (ECG) signal in order to extract the QRS complex [1] (time variation),
on a video sequence in order to implement a hidden watermark [2] (time and space
variation) and on a 2D image in order to reduce its size (compression) [3, 4] (space
variation). In this chapter, one considers the application of the wavelet on 2D image
compression.

An image is one of the most important sources of information; it provides a
visual comprehension of a phenomenon. The image can take several natures as
medical, natural, textural or satellite image, each nature is characterized by a proper
amount of details. For a digital image, the size in bytes is as bigger as the amount of
details; this applies the use of image compression process.

In other words, if one considers a gray-scale image of size 512 x 512, that means
a bit rate of 8 bits per pixel (R, = 8 bpp) and a file size of 512 x 512 x 8 bits (256
Kbytes). Compressing this image leads to reduce its file size (without changing the
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image size); for example, to reduce the file size by a factor of 10 (25.6 Kbytes), one
__ 25.6x1024x8 __

have to consider a bit rate of R, = 2255725 = 0.8 bpp.

Because of the conservation of all details in the image after decompression, the
lossless compression algorithms, as Run Length Coding (RLE), Lempel-Ziv-Welch
(LZW) and Huffman [5, 6], are by far the ideal methods. However, such a com-
pression algorithms does not provide a significant reduction of image’s file size, and
therefore the lossy” compression algorithms may be more appropriate.

The most known lossy compression algorithm is the standard JPEG (Joint Pho-
tographic Experts Group) [7]; it is based, as lossy algorithm, on a discrete transform
(Cosine Discrete Transform, DCT in this case). The Discrete Wavelet Transform
(DWT) and Quincunx Wavelet transform (QWT) are two other discrete trans-
forms that can be found in the literature [8, 9]; they apply a progressive transfor-
mation on the image followed by an encoding process (like Embedded Zerotree
Wavelet, EZW or Set Partitioning In Hierarchical Trees, SPIHT [10]) to give the
image a bit-level representation.

This chapter aims to propose a QWT-based compression algorithm that can be
applied on any image of size 128 x 128 or bigger. Therefore, the following structure
is adopted: In Section 2, the discrete wavelet transform is introduced and the
progressive presentation of an image is exposed. Section 3 is dedicated to the
quincunx wavelet transform, the QWT extension to wavelet packet (PQWT) and
the encoding process employing SPIHT algorithm. The PQWT-based compression
algorithm is presented in Section 4, and the results and discussions in Section 5.

2. Discrete wavelet transform
2.1 Definition

As discrete sine and cosine, the DWT is used to represent a digital signal (as an
image) with sum of projections over orthogonal functions; these functions are
called “wavelet”. Several wavelets are described in the literature; among them, one
can find dyadic Daubechies family (represented with scaling and wavelet functions
in Figure 1 for four examples [8]).

In order to improve JPEG compression performances (in sense of evaluation
parameters presented in Section 4), the researchers have proposed the JPEG 2000
compression algorithm based on a wavelet called CDF 9/7 (Cohen-Daubechies-
Feauveau 9-tap/7-tap) [11, 12]. The scaling and wavelet functions, and decomposi-
tion and reconstruction low and high filters are shown in Figure 2.

2.2 Wavelet decomposition

As it is mentioned above, a wavelet applies a progressive transformation on the
image. This process (called filter bank analysis) is realized by passing an image with
coefficients ag[k], at time k, through a decomposition low filter ho, a decomposition
high filter /; and a decimation function (1 2). As a result of level 1 decomposition,
one obtain an approximation image of coefficients a; k] and a detail image of
coefficients d;[k]. The same process is applied, at level j, on the approximation

1 The term “lossless” refers to the conservation of all details in the image after reconstruction, which
means that the original and reconstructed images are identical.
% The term “lossy” refers to the loss of details in the image after reconstruction by quantification or

truncation, which means that the original image differs from the reconstructed one.
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Four examples of dyadic daubechies wavelets. Scaling function, Wavelet function.
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Figure 2.
Wavelet of Cohen-Daubechies-Feauveau 9-tap/7-tap. (a) Scaling and wavelet functions, (b) decomposition
and reconstruction filters.

a j_1[k] to get an approximation a[k] and a detail d;[k]. Figure 3 shows a wavelet
3-level decomposition.

2.3 Wavelet reconstruction

The reconstruction process (called filter bank synthesis) follows the inverse
order of decomposition process, which means that, at level j and time k, an
approximation a[k] and a detail d;[k] are oversampled (12) and passed, respec-
tively, through reconstruction low filter /¢ and reconstruction high filter 4, to
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Wavelet 3-level decomposition.
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Figure 4.
Wavelet 3-level reconstruction.

generate an approximation image of coefficients a ; 1[k]. Figure 4 shows a wavelet
3-level reconstruction.
A perfect reconstruction satisfies the following criteria:

Ho(f)*Ho(f) +Hi(f)+Ha(f) =2 (1)
Ho( f+1/2)¢Ho( f+1/2) +Hy( f+1/2)«H:(f) =0 Q)

where, f is a normolised frequency, H;( f) and H;( f) (i = 0, 1) are, respectively,
the Fourier transform of impulse responses /;(k) and £; (k).

Figure 5.
3-level decomposition employing CDF 9/7. (a) Original ‘Lena’ image, (b) decomposed ‘Lena’ image.
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Figure 5 illustrates the result of applying CDF 9/7 3-level decomposition over
gray-scale image ‘Lena’.

3. Quincunx wavelet transform
3.1 Definition

The decomposition and reconstruction processes using QWT remain the same as
DWT; however, there are some differences:

* The diamond McClellan transform [13] is applied to map a 1-D design onto the
quincunx structure.

* The decimation factor is v/2 for each direction.

The 2D quincunx refinement and wavelet filters are given respectively by:

—

H, (e i V2(2+ cosa + cosm,)?

= (3
) \/(2 + cosan + cosa)’ + (2 — coswy + cosmn)”

— —-1
Gk(z) :lex<—z ) 4)
where, ® = (@1, ) is 2D pulse, z = ¢/ is the discrete Fourier transform parameter

and A is filter order. All simulations in this chapter were performed considering A = 5.
The QWT 6-level decomposition of image ‘Lena’ is given in Figure 6.

Figure 6.
6-level decomposition of image ‘Lena’ employing QWT.
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Figure 7.
6-level decomposition of image ‘Lena’ employing PQWT.

3.2 Quincunx wavelet packet transform

The Wavelet Packet Transform (WP) [14] consists on generalizing the decom-
position over all parts of the decomposed images (approximations and details)
considering the following condition: a detail image is decomposed if its entropy
decreases after decomposition. The literature has shown that this technique is more

efficient on textural images.

HL2

HL1

LHzZ HH 2

LH1 \ HH 1

Figure 8.
SPIHT algorithm (L denotes low filtering and H denotes high filtering).
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Employing the packet transform on QWT (PQWT) implies that only dyadic
parts of QWT decomposition are concerned, which means that the analysis time
decreases.

Figure 7 shows the entropy-based PQWT 6-level decomposition of image ‘Lena’.

3.3 Set partitioning in hierarchical trees encoder

In order to compress an image employing wavelet-based transform, an encoding
step is used to give a bit-level representation to the image. This chapter employs the
SPIHT encoder as bit-level representation encoder. Figure 8 summarizes the rela-
tionship between decomposition levels. The authors of [15] had proposed a modi-
fied version of SPIHT for the wavelet packet transform; this version is adopted for
the PQW transform.

4. Proposed QWT/PQWT-based compression algorithm
4.1 Compression scheme

The JPEG standard is based on dividing an image into sub-images of size 8 x 8,
then applying the DC transform on each image. In the proposed approach, one
adopts 8-level PQWT as transform algorithm and a size of m* = 128 x 128 for the
dividing process. An example of dividing process is given in Figure 9.

The proposed compression scheme is summarized in Figure 10. It consists on
applying, on each image (I},1 = 1,2, ...) constituting the original image, the QW or

m

Figure 9.
Example of dividing image ‘Lena’ into four images of size m>.
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The proposed compression scheme

PQW transform then the SPIHT algorithm with respect of a compression bit rate.
The resulting bit streams are gathered to construct the compressed image.

In order to test the proposed compression algorithm, three gray-scale image
databases were employed. The first database consists of 60 images (20 satellite
images, 20 natural images and 20 medical images) of size 512 x 512 [16], the second
database consists of 114 textural images of size 512 x 512 [17] and the third database
consists of Shivang Patel 168 fingerprint images of size 256 x 256. Each image from
databases is divided into sub-images of size 128 x 128 (16 sub-images in case of
512 x 512 image and 4 sub-images in case of 256 x 256 image).

Considering packet quincunx wavelet transform, one has tested the 260 possible
8-level decompositions (called decomposition bases) on the sub-images, in order to
select the optimal packet decomposition base (in sense of evaluation parameters).
The performance of PQWT is compared with QWT and entropy-based PQWT
decomposition base (called proper base).

4.2 Reconstruction scheme

The proposed reconstruction scheme is shown in Figure 11. The compressed
image is divided into bit streams according to the number of sub-images. Each bit

S P | H T REC-OI'ISII‘UCted
G°T"p;essed | decoder IQWT —|_) e
image
|1
] f L,
N SPIHT Qwt L e
decoder

Figure 11.
The proposed veconstruction scheme
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stream is decoded and transformed using Inverse QW or Inverse PQW transform,
to finally obtain the reconstructed sub-image I;, (! = 1,2, ...). All sub-images are
then gathered to construct the reconstructed image.

4.3 Evaluation parameters of compressed image quality

Choosing a compression bit rate R, < 8 bpp for gray-level image, leads to a
degradation on the original image. This degradation can be measured using the
evaluation parameters of compressed image quality. In this chapter, three
evaluation parameters are adopted [10]:

* Peak Signal to Noise Ratio: the PSNR parameter is given by

2
R_1

PSNR = 10 x log, <%) , where, MSE = 1y YN S (1(6,7) — 1(G,7))” is

the Mean Square Error, I is the original image, I is the reconstructed image and
R designates the resolution of a gray-scale image.

* Mean Structural SIMilarity index: the MSSIM index is the average over all
local windows of the product of three functions as follow
MSSIM(I, 1) = A%Z?ill(li,f,-) -c(I,-,L) -s(Il-,L), where, [, ¢ and s are the
luminance, contrast and structure comparison functions.

* Visual Information Fidelity: the VIF parameter is a ratio of conditional mutual
information measured over all decomposition parts of the image.

5. Results and discussion

The main purpose of this study is to establish a compression strategy using
packet quincunx wavelet transform, whatever the type or the size of an image.
Therefore, one has begun with applying on the 20 satellite images an exhaustive
search among the 260 PQWT decomposition bases. To evaluate the compression
quality employing PQWT (for a given bit rate), the relative errors (epsnr, evir and
emssiv) are used to distinguish between the different performance curves. These
parameters are expressed as follow:

ex = —=2X——X %100 [%)] (5)

where, X designates an evaluation parameter (PSNR, VIF or MSSIM) and mx is
the average of X over all database images. For a negative value of ¢x, the PQWT
outperforms the QWT.

Figure 12 illustrates the best 17 decomposition bases that achieve minimum
values of ex. Base 0 refers to QWT decomposition.

The second step consists on applying these 17 decomposition bases on the
other databases, and then evaluates the compressed images quality using the
relative errors given in Eq. (5). Table 1 shows for each database, the top 10
decomposition bases; and in green the five common decomposition bases between
all databases.

The evaluation curves in sense of relative error are shown in Figure 13.

Each Figure compares the evaluation curves of the top 10 decomposition
bases, in addition of the PQWT proper decomposition. It can be observed
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Table 1.
Top 10 decomposition bases of each database

that the proper decomposition achieves fewer performances in case of satellite,
textural and fingerprint images, where a visibility (VIF) average degradation of
8% is measured for fingerprint images. On the other hand, the proper
decomposition curves are competitive in comparison with the other
decomposition curves in case of natural and medical images, especially for epsyr
at low bit rate values.
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Considering the performance curves of fingerprint images (Figure 13.e), nega-
tive values of relative errors are observed at low bit rate region; which means that
the chosen decomposition bases achieve better performance than base 0 (QWT).

Regarding the five common decomposition bases (marked in green in Table 1), the
curves of Figure 13 show that the decomposition base 3 achieves slightly better
performance; therefore, in the rest of the chapter, one adopts this decomposition base.

In order to illustrate the compression effect on the database images, one has
chosen from each database the image that satisfies the minimum epgyg. The chosen

images are given in Figure 14.
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(d) (e)

Figure 14.
Original images from databases satisfying the minimum epsnr. (a) satellite image, (b) natural image,
(c) medical image, (d) textural image, (e) fingerprint image.

In Table 2, it is given the performance in sense of peak SNR of the five adopted
images, for two values of bit rate (0.25 and 2.00 bpp). These results show a tiny
superiority of decomposition base 3 in comparison with base 0 and the proper
decomposition; except for the medical image, where a difference of 9.35 dB is
observed between base 3 and base 0 at a bit rate of 2.00 bpp.

As observed in JPEG compression scheme, the image division into sub-images causes
block boundary artifacts; these artifacts are visible at low bit rates values. This phenom-
enon is clearer for natural, medical and fingerprint image at a bit rate of 0.25 bpp.

To remedy to the problem of block boundary artifacts, one propose to add two
processes to the compression scheme (as shown in Figure 15):

¢ The two sub-images I; and I, overlap and have 4 common pixels (an example
of image division with overlapping is given in Figure 16),

* Each sub-image is weighted by a 2D Gaussian window defined by the sub-
image size m and the minimum amplitude a (as shown in Figure 17).

To avoid the pixel redundancy causes by the overlapping, the pixel may have %2
value in case of two overlapped sub-image, and % value in case of four overlapped
sub-images. Therefore, as summarized in Figure 18, the total size M of a sub-image
may be expressed as follow:

* In case of two overlaps, the size of the sub-image equals M = (m — d)*+1+
2xde(m—d)eYot+deth= (m—9)7,

* In case of three overlaps, the size of the sub-image equals M = (m — 2¢d)
(m—d)s1+2xde(m—d)eYa+de(m—2ed)s%o+2 x d*sVa = (m —d) s (m —4),
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PSNR = 46.98 dB
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Base Base 0 Base 3 Proper decomposition
Bit rate

0.25 bpp

2.00 bpp

0.25 bpp

2.00 bpp

PSNR = 30.46 dB PSNR = 31.98 dB PSNR = 30.06 dB

Table 2.
Performance in sense of peak SNR of the five adopted images.

* In case of four overlaps, the size of the sub-image equals M = (m — 2+d)*+1 +
4xde(m—2ed)eVo+4xd>eVa=(m—d).

These new sub-image sizes permit to define a bit rate for each sub-image
according to the number of overlaps. In other words, the bit rate of an overlapped
sub-image equals:

M
Réch'ﬁSRc (6)

where, R, denotes the bit rate without overlapping and F, = 2% is called the
reduction factor of bit rate. The bit rate of the overall image is the average over
sub-images bit rates.

In order to demonstrate the effect of the overlapping pixels (4) on bit rates, one
has plotted in Figure 19 the reduction factor curves for m = 128. It is clear from
these curves that a higher order of reduction factor leads to lower compression
performance; therefore, a reduction factor threshold of 0.9 has to be respected.
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Figure 15.
Proposed compression scheme employing overlapped sub-images.

Figure 16.
Example of dividing image ‘Lena’ with overlapping.

The proposed reconstruction scheme, given in Figure 20, divides the output of
the inverse QWT or the inverse PQWT by the same 2D Gaussian windows define in
the compression process. The reconstructed sub-images are overlapped with the
same manner as the compression process, to construct the reconstructed image.

The evaluation curves in sense of PSNR and VIF parameters are shown in
Figure 21. Each Figure compares the evaluation curves of the PQWT with decom-
position base 3 and proper decomposition, in addition of the JPEG compression
standard. It can be observed that:
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Figure 17.
2D Gaussian window. (a) Gaussian window with parameters m and a.(b) 2D Gaussian window with
m = 128 and a = 0.834.

(m-d).(m-d).1 pix

Figure 18.
Computation of pixel sizes for all possible overlapping cases.

* in case of satellite and fingerprint images (Figure 21.a and Figure 21.e), the
proposed PQWT compression scheme presents better performance than JPEG,

* in case of natural and textural images (Figure 21.b and Figure 21.d), JPEG
standard outperforms the proposed compression scheme,

* in case of medical image (Figure 21.c), both schemes present slightly the same
performance.

In Table 3, it is given the performance in sense of PSNR and VIF parameters of
the five adopted images, at a bit rate of 0.54 bpp for textural image and 0.50 bpp for
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Proposed reconstructed scheme.

the others. To compare the performance of the proposed scheme (PQWT with a
and d parameters), two other schemes are involved: the PQWT witha =1and d =
0 (referring to the first proposed scheme) and JPEG standard.

To fix a2 and d parameters of PQWT - base 3 and PQWT - proper decomposi-
tion, an exhaustive search (with respect of the reduction factor threshold) has been
performed to get the maximal value of PSNR parameter. It can be observed in
Table 3 that the a and d parameters differ from an image to another; therefore,
these parameters have to be included in the compressed file, as well as the size of
the overall image.

The obtained results show a tiny superiority of PQWT - base 3 in comparison
with JPEG and PQWT - proper decomposition; except for natural and medical
images, where the JPEG standard is slightly better.

Figure 22 compares the visual side of the five adopted compressed images,
where details of size 128 x 128 from original, PQWT - base 3 and JPEG images are
magnified. From these figures, it can be observed that PQWT compressed images
present lower block boundary artifacts effect in comparison with JPEG images
(especially for satellite and textural images), and preserve the continuity of their
detail shapes.
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Figure 21.
The evaluation curves vs. bit rate in sense of PSNR and VIF. (a) Satellite image, (b) natural image,
(c) medical image, (d) textural image, (e) fingerprint image.

For a deep study of the block boundary artifacts effect between both proposed
compression schemes employing PQWT - base 3, one have focused only on the
overlapping regions in the five adopted images, where bands of 8 pixels per line and

222



The Discrete Quincunx Wavelet Packet Transform
DOI: http://dx.doi.org/10.5772 /intechopen.94970

GL6'0="dT=P‘GC60="
89'0 = JIA ‘AP 9L'¥¥ = INSd

SL6'0="dT=P 860 ="V
0£'0 = JIA ‘dP 60°Sy = NS

¥£0 = AIA ‘4P 00°9% = INSd

690 = JIA ‘4P ¥9'¥¥ = INSd

ddq 050
0S60="AY=pT="0 960 ="dC=pPVE80="
16°0 = AIA ‘AP T8'C€ = YNSd ¥¥°0 = AIA ‘AP 00°0€ = INSd ¥5°0 = dIA ‘AP €+°0€ = INSd ¥¥°0 = dIA ‘AP ¥T'0€ = INSd
: il f
=l Il |
ddq 050
0S60="dv=PT960=" 0S6'0="d v =P ‘6960 ="
9€°0 = JIA ‘AP €8'67 = INSd 8€°0 = AIA ‘AP +5°0€ = INSd 6€°0 = JIA “dP TL'0€ = YNSJ
.qm;_.m/ ;- : ; .. 4 .
u\uﬂ.&/? u.mkﬁr_ ddq 050
0=p1T="0
oddl uonmisodwodap 1adoad - LMOd € aseqg - LMOd € aseqg - LMOd srerng

223



Wavelet Theory

sadvusy pazdopw aarf ayy Jo sazgouwand JIA puv YNSJ Jo asuas ur 2oupuLiofiag

€ 91qe],

6C°0 = JIA ‘P 8¥'0C = INSd

660 ="dT=P%E80="
6C°0 = AIA ‘AP 8%'0C = NS

Ww660="T=pPT="V

1€°0 = AIA ‘AP TU'TT = YNSd 1€°0 = JIA ‘dP T0'TC = YNSd

oddl

ddq 050
SL60="AT=pT=" 0S60="d%=pT="
120 = JIA ‘dP €8'L1 = INSd 70 = JIA ‘9P ¥1'ST = ¥NSd TT0 = dIA ‘AP 90°8T = INSd
ddq +50
0=p1I="7
€ aseg - LMOd sjer g

uonsodurodap sadoid - L MO

¢ aseq — LMOd

224



The Discrete Quincunx Wavelet Packet Transform
DOI: http://dx.doi.org/10.5772 /intechopen.94970

\\ \\ S ‘ \\ : .‘-. p. \‘ "u p
G N -~ e a2
-~ ? ~ i ‘. -\ ﬁ
% \ y \ : Ly ! \ - -

| \ | \» /\v“ - N ’

- ] -~ - )
v ‘\ LI v .‘. | o N N
| N N . N

Original PQWT - hase 3 JPEG

Figure 22.
Magnified detail from the five adopted images. (a) Satellite image — 0.50 bpp, (b) natural image — 0.50 bpp,
(c) medical image — 0.50 bpp, (d) textural image — 0.54 bpp, (e) fingerprint image — 0.50 bpp.

column around these regions are extracted in order to measure the effect of block
boundary artifacts in sense of PSNR. By denoting PSNR; and PSNR, the measured
PSNRs of the extracted regions employing, respectively, the first and second pro-

posed schemes, the average block boundary artifacts effect is measured by
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Image Satellite image Natural image Medical Image Textural Image Fingerprintimage

Eppa [%] 219 27.70 22.87 9.41 0.63

Table 4.
Average block boundary artifacts effect in sense of PSNR for the five adopted images

R _PSNR,(j) — PSNR;( j
By =Y 2(J) 1(J)

PN x 100 [9%] @)

j=1

where, R values of the bit rate (R,) from 0.1 bpp up to 8.1 bpp are employed to
evaluate the PSNRs.

In Table 4, the values of Ej, are given for the five adopted images. From these
results, it can be concluded that, in comparison with the first compression scheme,
the second proposed compression scheme presents a significant reduction of 27.70%
and 22.87% of the effect of block boundary artifacts for, respectively, natural and
medical images. However, a tiny reduction of Ej, for fingerprint image is
observed, which means that further processing on sub-images boundaries is neces-
sary for such an image using local 2D filters [18].

6. Conclusion

This chapter introduces an image compression scheme that employs quincunx
wavelet decomposition improved by wavelet packet. This process permits to focus
on both approximation and detail parts of the image decomposition.

Using the concept of image division into sub-images (employed in JPEG stan-
dard compression algorithm), the effect of block boundary artifacts has occurred
especially at low range of compression bit rates. To overcome this problem, the sub-
images are weighted by a 2D Gaussian window and overlapped with respect to the
reduction factor of compression bit rate. This means that, in addition of the overall
image size, two parameters have to be included in the compressed file: the mini-
mum amplitude of 2D window and the number of overlapped pixels.

To present the proposed compression algorithm as a standard, its performances
were compared, in sense of evaluation parameters, to those of JPEG standard. The
main improvement was seen in the capacity of the proposed scheme to provide
better image visual quality (detail shapes continuity). This means that, in the first
hand, it can be possible to reduce the image file sizes without reducing the image
visual quality, and increase the storage capacity in photographic devices in the other
hand.

As a result, this compression technique permits to create benchmarks and data-
bases with low capacity whatever its nature (satellite, medical, natural or textural
image).

In this work, one have focused on gray-scale images in order to present the
proposed compression scheme. It is necessary, in future works, to investigate its
efficiency on video and color images compression.
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Nomenclature

ECG Electro-CardioGram

RLE Run Length Coding

LZW Lempel-Ziv-Welch

JPEG Joint Photographic Experts Group

DCT Cosine Discrete Transform

DWT Discrete Wavelet Transform

QWT Quincunx Wavelet transform

EZW Embedded Zerotree Wavelet

SPIHT Set Partitioning In Hierarchical Trees

CDF Cohen-Daubechies-Feauveau

WP Packet Wavelet

PQWT Packet-based Quincunx Wavelet transform
IQWT Inverse Quincunx Wavelet Transform
IPQWT Inverse Packet-based Quincunx Wavelet Transform
PSNR Peak Signal to Noise Ratio

MSSIM Mean Structural SIMilarity index

VIF Visual Information Fidelity
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Chapter 11

Uncertainty and the Oracle of
Market Returns: Evidence from
Wavelet Coherence Analysis

Joan Nix and Bruce D. McNevin

Abstract

Wavelet methodology is employed to investigate the statistical relationship
between three well-accepted measures of uncertainty and both market and sector
returns. Our primary goal is to determine whether uncertainty is sector specific.
Although there are periods when the market works effectively as an oracle captur-
ing uncertainty, we also find sector specific uncertainty. The wavelet equivalent of
correlation, coherence, is used to determine the presence of sector specific uncer-
tainty. We find that allowing localized information in the time frequency domain is
critical for separating out sector specific uncertainty from market uncertainty.

Keywords: finance, sectors, wavelets, uncertainty, coherence

1. Introduction

Uncertainty shocks call the the market’s knowledge-gathering role into question.
The equity market as an oracle works well when it provides rapid price discovery
that reflects the underlying fundamentals of an economy. But when facing uncer-
tainty shocks the equity market’s function as a consensus mechanism that reveals
economic reality appears at first glance, poorly suited for the environment it faces.
An oracle needs a reliable channel for obtaining information. In the face of uncer-
tainty, the equity market turns into a network of pipes where funds flows in ways
that leave many skilled observers of market moves caught off guard. The shock
filters through to the inter-temporal trade-offs of investors and makes forecasting
more of a bet on imagined scenarios than the result of astute modeling that is
carefully tested with historic data.

The relevance of wavelet methodology for examining whether the uncertainty
measures are correlated at different scales and frequencies with market and sector
returns may be more easily imagined with a metaphor.! The uncertainty shock
operates as a push from behind that a person strolling down the street experiences.
The push may be hard and throw the person completely off his path. He may end up
face down and in a panic imagining the worse outcome. The push may also be soft
from which the person experiences a quick feeling of panic but quickly recovers and

! The use of imagery as a guide to economic understanding has a rich history. See for example, the use of
a bicycle imagery by Samuelson to explain how a real economic system is capable of resolving

indeterminacy even when the path between present and future is far from smooth [1].
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continues his walk. It is not that the person is caught completely off guard. The push
comes after a signal such as the sound of feet running from behind or the quiet
sound of someone walking at a slightly faster rate to catch-up. The relationship
between the signal and push is based on short-lived features of the environment.
However, very different outcomes are possible. Wavelet methodology is particu-
larly well-suited for capturing these different outcomes because it is designed to
capture short-lived features of the environment. Wavelet methodology provides a
snapshot of the outcomes in the form of market and sector returns that result from
various shocks.

A defining feature of wavelet methodology that makes it particularly well-suited
for capturing the economic effects of uncertainty shocks is that at a given point in
time the same signal can be analyzed by different wavelets. Most importantly, it is
capable of capturing an uncertainty signal that only lasts for a finite period of time.
It can also handle non-stationarity which often characterizes uncertainty shocks.
Wavelet coherence plots help us discover whether the measures of the shock
provide new information that is not reflected in market and sector returns at
various scales.

In this chapter, we investigate the statistical relationship between three well-
accepted measures of uncertainty and both market and sector returns. The three
measures are Macroeconomic and Financial Uncertainty of Jurado, Ludvigson, Ng
(JLN) [2] and Economic Policy Uncertainty by Baker, Bloom and Davis (BBD) [3].
We explore the extent to which the impact of uncertainty is sector specific.
Employing the wavelet equivalent of correlation, we observe that in the presence of
significant coherence, market returns are anti-phase with all three measures of
uncertainty. Between market volatility and financial uncertainty, we also observe
very high in-phase coherence at low frequencies for prolonged periods of time.
However, this is not the case when considering the volatilty of Economic Policy
Uncertainty or Macro Uncertainty. For those measures, while there are periods of
high coherence, these periods are not as extensive as found with financial uncer-
tainty. One conclusion is that the prolongness of the coherence differs depending on
the measure of uncertainty.

Looking at the coherence plots with sector returns and the three measures of
uncertainty, we find prolonged high coherence at low frequencies and intermittent
coherence at high frequencies. For each coherence plot, we also consider the condi-
tional coherence, after partialing out the effects of the market. By and large, most of
the coherence disappears pointing to the question of whether there is any sector-
specific uncertainty. Our focus is on six sectors, Telecom, Bus. Equip, Shops.
Manufacturing, Energy and Money where each had at least one period of high
conditional coherence. For each sector, based on our observation of the conditional
coherence plot, we sampled the scales using a Discrete Wavelet Transform (DWT).
A DWT is used to run a regression of sector returns against both an uncertainty
measure and market returns. A rolling regression is used from which we find the
time-pattern of the uncertainty coefficients. It was often the case that the uncer-
tainty had a significant negative impact on sector returns. These snapshots that the
wavelet coefficients provide point to the general result that there are significant
differences in how uncertainty filters through the sectors that are different from
what the market reaction alone tells us.

The remainder of our chapter proceeds as follows: Section 2 highlights research
based on wavelet analysis in applied financial economics of particular relevance for
our analysis. The important concepts used in wavelet analysis that are applied in our
analysis are introduced in Section 3. The data and uncertainty measures are
discussed in Section 4. The analysis and results are presented in Section 5. The
conclusions follow in Section 6.
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2. Literature review

The modern strain of literature relating to uncertainty, and its effects on the
economy, grew out concerns in the post credit crisis era that firms were holding off
on investments due to uncertainty about the future. Bloom [4] shows that a number
of cross-sectional measures of uncertainty are correlated with time series measures
of volatility. The cross-sectional measures of uncertainty he considers are the stan-
dard deviation of pre-tax profit growth, a stock return measure and the standard
deviation of total factor productivity. His time series measure of volatility is stock
market volatility. In addition, he evaluates the impact of uncertainty on the real
economy using a VAR. He finds that a shock to stock market volatility causes a 1
percent drop in industrial production over a 4 month period. He also reports a
similar effect on employment. Bloom identifies 17 major instances of uncertainty
based on the stock market volatility measure. Baker, Bloom and Davis (2013)
develop a measure of policy uncertainty based on newspaper coverage frequency.
They find that their index proxies for movements in policy-related economic
uncertainty. Specifically, tight presidential elections, Gulf Wars I and II, the 9/11
attacks, the failure of Lehman Brothers, and the 2011 debt-ceiling dispute are
associated with spikes in the index.

Jurado, Ludvigson and Ng [2] develop a measure of uncertainty based on the h-
period ahead forecasting error, where h = 1, 3, and 12 months. Using a comprehen-
sive data set of 132 macroeconomic series they aggregate the forecast errors for each
series to create a macroeconomic uncertainty index. In contrast to Bloom [4], their
analysis finds that there are three major episodes of uncertainty in the 1960-2016
period: 1973-1974, and 1981-1982 recessions, and the Great recession of 2007-2009.
Bali, Brown and Tang [5] create an index of macroeconomic uncertainty based on
ex-ante measures of cross-sectional dispersion in economic forecasts by the Survey
of Professional Forecasters. After controlling for a number of factors, they find a
statistically significant negative relationship between their measure of uncertainty
and future stock returns. Ludvigson, Ma and Ng [6] examine the question of
whether uncertainty is a source of business cycle fluctuations, or an endogenous
response. Their analysis distinguishes macroeconomic uncertainty and uncertainty
about real economic activity from financial uncertainty. They find that financial
uncertainty is primarily an exogenous shock. In addition they find that higher
uncertainty about real economic activity is likely to be endogenous, in response to
business cycle fluctuations.

3. Wavelet analysis

Prior to the work of Ramseyz, the use of wavelets in economic and financial
analysis was largely non-existent. Today, however, wavelet analysis is a well
known, and widely applied tool for any economist who studies time series data.?
The reason for the rapid increase in wavelet based applications is that the wavelet
transform yields a localized decomposition in both time and frequency domain.
This stands in sharp contrast to the traditional Fourier transform often used by
economists that is global in the sense that there is no time component after the

2 See for instance, [7].

3 See [8, 9] for an introduction to wavelet methods in economics and finance.
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Fourier transform is applied.* Since the wavelet transform yields a decomposition
that is in localized frequency and time, it has proven to be particularly useful. A
clear application where wavelet methodology benefits the analysis is when applied
to investment decisions over different time horizons.

The wavelet transform consists of a father wavelet and a set of mother wavelets.
Given a function ®, the father wavelet for the discrete transform is defined as:

t—2xk
vnb],kz*%cbT 1)
J@@ﬂ:l (2)

The mother wavelets, also in discrete form, are defined as:

t—2 sk |
Tj,kz—%\PT,le, s] (3)
Jw@m:o (4)

Where ] is the number of scales or levels, 2/ is a scale factor, and k is the time
domain index. Note that the father and mother wavelets are each indexed by scale
and time. The scale parameter is inversely proportional to frequency.® The father
wavelet can also be represented as a low pass filter, and the mother wavelets as high
pass filters.”

Wavelet functions transform a time series, f(t), into a series of wavelet
coefficients,

Spke = Jf(t)q%k (5)

and,
dip= Jf(t)‘l’j,k i=1, ) ©6)

Where Sj,, are the coefficients for the father wavelet at the maximal scale, 2,
These coefficients are often referred to as the smooth coefficients. The d, , or
detailed coefficients, are the coefficients of the mother wavelets at the scales from 1
to 2.

Applying the transforms results in a time series of length k of smooth coeffi-
cients at the maximal scale J, and J time series of detailed coefficients each of length
k. If there are 6 scales, the frequency of the first scale is associated with the interval
[1/4, 1/2], and the frequency of scale 6 is associated with the interval [1/128, 1/64].

The number of coefficients differs by scale. If the length of the data series is n,
and divisible by 2, there aren/2/ d j» & coefficients at scale j = 1, ..., J-1. At the

* Note that while wavelet transforms are often compared to the Fourier transform are they two differ in
a number of fundamental ways. See [10] for a comparison of wavelet versus Fourier transforms.

5 For the relevance of horizon effects see, for example, [11].

6 See [7] 99-103 for a complete discussion.

7 See Ramsey [12].
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coarsest scale there are n/ vl dj, 1, and s, coefficients. The wavelet variance at each
scale is captured as the wavelet power of each scale.®

A time series f(t) can be represented in decomposed form, known as the
multi-resolution analysis of f(t), as follows:

ft) = ZSy, 1P, 1 (t) + ey, K7, 1 (8) 4+ oo 4 2 j5 kW5 1 (£) + oo + Zpd1, P15 (2)
(7)

Using a more convenient summary notation,
f(t) =S +Dy+Dj_1+ ... + D1 (8)

The discrete wavelet transform decomposes a time series into orthogonal signal
components at different scales. S; is a smooth signal, and each D is a signal of
higher detail.

In the case of monthly data, as we use in our analysis, decomposing the series
into six scales (D1-D6) corresponds to 2-4, 4-8, 8-16, 16-32, 32-64, and 64—

128 months. D1 is the shortest scale (highest frequency) component and D6 is the
longest scale (lowest frequency) component. The smooth component (S6) captures
the trend of the original series.

The continuous wavelet transform (CWT) is also a useful approach for gaining
insight into the localized time-scale decomposition of a time series. One advantage
that the CWT has over the DWT is that it produces a powerful visual for detecting
time-scale patterns. The CWT, which is based on continuous variations in the scale
(4) and time components (¢) is defined as,

+o0
W(,t) = J W, (u)x(u)du 9
where,
¥, (u) = %‘P (=) (10)

The DWT can be viewed as a critical sampling of the CWT with 1 = 27 and
t=4k27°

The wavelet power spectrum, or squared amplitude, measures the local variance
of a time series at different scales. It is defined as |[W (4, t)zl, and aids our analysis in
terms of understanding how periodic components evolve over time.

In addition to the wavelet power spectrum, we also employ wavelet coherence to
measure the co-movement of two time series across time and scale. To define

coherence we need to define of two other measures, the cross wavelet transform
(XWT), and the cross wavelet power (XWP). The XWT is defined as

Wy = W)W, (4,2) (11)

The XWP is the absolute value of the XWT, |W,,(4,)|. It measures the local
covariance of 2 series at different time scales. The XWP identifies areas in
time-scale space where the two series have high common power.

8 The wavelet power is the amplitude squared.
° The DWT can also be derived independently, see [12].
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The wavelet coherence, is defined as:

|S(S Wiy (A,1)) |
S<8’1|Wx(/1, t)|2> *S(S’1|ny(1, t)|2)

R (1) = (12)

Where S is a smoothing operator in time and scale, and 0 < R*(A,t) > 1. The
wavelet coherence is similar to the correlation coefficient, and is typically
interpreted as a localized correlation in time-scale space. Note that the coherence
between two series may be high even if the XWP is low.

The applicability of wavelet methodology to investigate uncertainty shocks is
rooted in the fact that market returns reflect an aggregation of investors’ decisions.
Investors do not all share the same time horizon. Wavelet methodology is used so
that localized information that affects returns is not lost.

4. Data
4.1 Sector returns

The equity return data used for our analysis is from the Kenneth French Data
Library (Table 1) [13]. The market portfolio (MKT) is a composite portfolio of all
stocks traded on the NYSE, AMEX, and NASDAQ. The market is divided into 12
industry groups or sectors defined below.

1 NoDur Consumer NonDurables — Food, Tobacco, Textiles, Apparel, Leather, Toys

2 Durbl Consumer Durables — Cars, TV’s, Furniture, Household Appliances

3 Manuf Manufacturing — Machinery, Trucks, Planes, Off Furn, Paper, Com Printing

4 Enrgy Oil, Gas, and Coal Extraction and Products

5 Chems Chemicals and Allied Products

6 BusEq Business Equipment — Computers, Software, and Electronic Equipment

7 Telem Telephone and Television Transmission

8 Utils Utilities

9 Shops Wholesale, Retail, and Some Services (Laundries, Repair Shops)

10 Hlth Healthcare, Medical Equipment, and Drugs

11 Money Finance

12 Other Other — Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment

Table 1.
Kenneth French 12 Industry Data Set.

All returns are reported in excess of the risk free rate. The risk-free rate is
measured by the yield on the 1-month T-bill.'® The sample frequency is monthly,
and the sample period is July 1960 to Dec. 2019." The sample period includes eight
recessions. These are illustrated in Figure 1. All but three were less than a year in
duration. The 1974-1975 recession was 16 months, this was the time of the first

9 The 1 month T-bill rate used as a risk free rate is calculated by Ibbotson and Associates, and provided
by Kenneth French in his Data Library.

™ The starting period of the sample is determined by the starting period of the uncertainty indexes.
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OPEC price shock, when oil prices quadrupled. The recession starting in July 1981
lasted 16 months. This coincided with Fed interest rate tightening which was
implemented to reduce inflation. Finally the Great Recession of 2008-2009 had a
duration of 18 months. An examination of the cumulative returns of each sector
indicates a high degree of variability across sectors and over time for a given sector.
Figure 2 shows the sectors with cumulative growth that exceeds the market for the
sample period. Figure 3 shows sectors with cumulative growth near or below
cumulative market growth. The sector with the highest cumulative growth over the
sample period is Consumer Non-durables (NoDur) with growth of almost 6400%,
compared with the market as a whole which increased 2378%.The sector with the
lowest cumulative returns is Durable Goods (900%). The effect of the technology
bubble burst (2000-2001), on Telecom, and BusEq returns is salient. The drop is so
precipitous that by the onset of the Great Recession (Dec. 2007), cumulative
returns for these sectors was still below peak (March 2000). They did not reach the
March 2000 peak until 2016. As a whole, Figures 2 and 3 indicate a change occur-
ring with the 2001 recession in that when it comes to cumulative returns, sector
returns appear to part ways. One result is that some sectors recovered quickly from
the 2001 and 2007 recessions and some recovered very slowly.

Figure 4 contains the wavelet power spectrum for market returns. Wavelet
power is a measure of variance local to time and scale. The most striking feature of

11
10 - I M
()
0.8
07
0.5
as
a4
03
02
a.1

oo

0.1

1965 1970 1975 1980 1985 15590 1995 2000 2005 2010 2015 2020

Figure 1.
US Economic Recessions, 1960—2020 - NBER Dating.
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Figure 2.
Cumulative Returns - High Growth Sectors.
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Figure 3.
Cumulative Returns - Low Growth Sectors.
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Wavelet Power Spectrum - U.S. Equity Market.
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Figure 5.
Wavelet Power Spectrum -Durable Goods.

this chart is that most of the power occurs intermittently at high frequencies. The
wavelet power spectrum for the Durables sector (the lowest growth sector) is
shown in Figure 5, and the power spectrum for the Consumer Non-durables sector
(the highest growth sector) is shown in Figure 6. Both sectors look similar to the
market at high frequencies. At intermediate frequencies (16-32 months) the Dura-
ble goods sector shows high power during the Great Recession, but the the Non-
durables goods sector does not. This is outlined in white for expository purposes.
Consumer non-durables have relatively high power at the 32-64 month frequency
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Figure 6.

Wavelet Power Spectrum - Consumer Non-durables.

during the 1970s, while the Durable Goods sector has less variability associated with
this frequency band."

A set of descriptive statistics for the monthly excess returns (%) is reported in
Table 2. Monthly returns range from a high of 42.6% for Durable goods (Apr.
2009) to a low of minus 32.7% also for Durable goods (Oct. 2008). Skewness is
negative for most sectors, the exceptions being except Durable goods (0.13%);
Excess kurtosis is positive (leptokurtic) for all of the sectors, suggesting that the
distribution of returns has fatter tails than a Normal distribution. It ranges from 1.0
for Utilities to 4.8 for Durables.

4.2 Uncertainty measures

We use three measures of uncertainty in our analysis, macroeconomic and
financial uncertainty from Jurado, Ludvigson, and Ng [2], and economic policy

Sector Mean StdDev Median Minimum Maximum  Skewness Kurtosis
NoDur 0.68 4.24 0.76 —21.63 18.3 —-0.33 2.03
Durbl 0.51 6.15 0.46 -32.71 42.62 0.13 4.77
Manuf 0.59 522 0.98 —29.18 21.07 —0.49 2.52
Enrgy 0.63 5.4 0.66 —19.01 23.6 —0.03 123
Chems 0.53 4.55 0.74 —25.19 19.71 —0.26 211
BusEq 0.63 6.36 0.66 —26.41 20.32 —0.24 13
Telem 0.51 4.59 0.62 —16.43 21.22 —0.18 114
Utils 0.49 3.95 0.64 —12.94 18.26 —0.15 1.01
Shops 0.67 5.08 0.75 —28.83 25.28 —0.31 2.4
Hlth 0.67 4.87 0.77 —21.06 29.01 —0.03 2.29
Money 0.64 5.38 0.91 —22.53 20.59 —0.38 1.59
Other 0.49 5.34 0.82 —29.81 18.85 -0.5 2.16
Note: n = 714
Table 2.

Summary Statistics - Sector Returns.

2 The highest power level is shown in red, and the lowest is blue. For the U.S. equity market the highest
power level is 4. For the Durable goods sector the highest power level is 6.8, and for the non-durable

goods sector it is 5.0.
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uncertainty from and Baker, Bloom and Davis [3]. These are arguably the most
common measures of uncertainty, and they are both updated on a regular basis and
available online.” JLN and BBD are different measures of uncertainty constructed
using very different methodologies. We summarize both approaches in this section.
JLN define uncertainty for variable y; as the volatility of the unforecastable part

of the future value of y,,.

Uy (h) = \/E|:(yjt+h - E[}’jwhltDZU} (13)

where, E(.|I;) is the expectation conditional on information at time t, and h is the
number of time periods for the projection. An increase in the squared forecasting
error of y; indicates an increase in uncertainty at time of y ; at t. The JLN method-

ology computes financial and macroeconomic indexes by aggregating uncertainty
measures of the individual economic series.

N}V
U(h) = w,U(h) (14)
j=1

where w; are the aggregation weights.

JLN used a total of 132 economic series to estimate macroeconomic uncertainty.
The series span the following categories: real output and income, employment and
hours, real retail, manufacturing and trade sales, consumer spending, housing
starts, inventories and inventory sales ratios, orders and unfilled orders, compensa-
tion and labor costs, capacity utilization measures, price indexes, bond and stock
market indexes, and foreign exchange measures.

The financial uncertainty series is comprised of uncertainty measures for 147
financial series. These series include valuation ratios such as the dividend-price ratio
and earnings-price ratio, growth rates of aggregate dividends and prices, default
and term spreads, yields on corporate bonds of different ratings grades, yields on
Treasuries and yield spreads, and a broad cross-section of industry equity returns.
In addition, returns on 100 portfolios of equities sorted into 10 size and 10 book-
market categories are included. The data set also includes excess return on the
market, small-minus-big and high-minus-low portfolio returns, a momentum fac-
tor, a measure of the bond risk premium, and also a small stock value spread.

JLN provide measures of financial and macroeconomic uncertainty based on 1,
3, and 12 month forecast horizons. Our analysis focuses on the one month horizon
series, denoted as h = 1. Their macroeconomic uncertainty series is shown in
Figure 7. In general the peaks of the series align with the NBER recession dates
(shaded areas). The three highest peaks are in the mid-1970’s during the first OPEC
oil shock, the early 1980’s when there were back to back recessions, and the reces-
sion of 2008-2009. Figure 8 shows the wavelet power spectrum for this series. The
power is highest for periods of 32 to 128 months. Unlike the time plot of uncertainty
which peaks at each recession the power spectrum has two basic clusters of uncer-
tainty. It does not distinguish among the first four recessionary periods, and instead
shows one extended period of uncertainty from the early 1970’s to the late 1980’s.
The second period of uncertainty is the Great Recession which is notable for the

'3 [2] is available at https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes, and

[3] is available at https://www.policyuncertainty.com/index.html.
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Figure 7.
Macroeconomic Uncertainty, Jurado, Ludvigson and Ng, (Ph1), horizon = 1 month.

range of scale which is from 8 to 256 months. The Great Moderation in the 1990’
(outlined in white) is also apparent as a break in the low frequency power. In
contrast power spectrum for the market returns 4 macroeconomic uncertainty
tends to have low power at high frequencies.

Figure 9 displays the financial uncertainty series for h = 1. The peaks of this
series do not align as closely with recessions as does the macroeconomic uncer-
tainty. For instance there is a noteworthy spike in Oct. 1987 (outlined in red) when
the equity market dropped, and there was no recession. Events such as the 1997
Asian financial crisis, the 1998 Russian financial crisis and the 2000 Tech. bubble
bust are all apparent prior to the 2001 recession. Also, the magnitude of the peaks in
the financial uncertainty index are greater than those of the macroeconomic uncer-
tainty index. Alignment of the peaks of the macroeconomic index with recessions,
and to a lesser extent the financial uncertainty index, is intuitive as forecasting a
turning point is difficult if not impossible. One way useful to think about this is with
regard to asset returns which can be written as,

¥y = sign s |ry| (15)

It is generally possible to forecast the absolute value of returns but not returns
themselves. The reason is that one cannot forecast the sign.

The wavelet power spectrum or variance (Figure 10) for financial uncertainty is
generally highest at low frequencies. The 1987 stock market crash (outlined in

Macroeconomic Uncertainty
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Figure 8.
Wavelet Power Spectrum - Macroeconomic Uncertainty (EP1).
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Figure 9.
Financial Uncertainty, Jurado, Ludvigson and Ng, (Fh1), (bottom), horizon = 1 month.

Financial Uncertainty

periods (months)

1970 1980 1990 2000 2010
Figure 10.
Wavelet Power Spectrum - Financial Uncertainty (Fh1).

white) is one of several instances where high variance can be also be observed at
medium (8 to 32 month) frequencies.* The scale of uncertainty is lower from 1960
to 1990 (32-64 months) than it is from 1990 to 2020 (up to 128 months). In effect
low frequency financial uncertainty exists through the sample period.

Baker, Bloom and Davis (BBD) construct a measure of economic policy uncer-
tainty using three major components. For the first component, they search ten
major newspapers and create an index based on the volume of news relating to
economic policy uncertainty. The second component, which is designed to capture
uncertainty in the federal tax code, is derived from Congressional Budget Office
reports on temporary tax code due to expire over the next ten years. The third
component uses the dispersion of opinions among professional forecasters regard-
ing the future of the Consumer Price Index, Federal expenditures and, State and
Local Government Expenditures. The forecasts are from the Philadelphia Federal
Reserves Survey of Professional Forecasters." These three components are com-
bined to create the Index of Economic Policy Uncertainty. The index is shown in
Figure 11. Unfortunately the series starts in 1985, so we are unable to study this
series over the same sample period as the JLN uncertainty indices. The BBD index
shown in Figure 11, appears to have a local maxima during each of the 3 recessions,

™ The Wavelet power and coherence analysis was done using MatLab 2020B.
> https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-foreca

sters/historical-data/individual-forecasts.
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Figure 11.
Economic Policy Uncertainty Index - Baker, Bloom and Davis (EC1).
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Figure 12.
Wavelet Power Spectrum - Economic Policy Uncertainty.

but it tends to be volatile with peaks at other important dates such as the two Gulf
wars (1991, and 2003), the debt ceiling debates (2011-2012), the fiscal cliff (2013),
the government shutdowns (1995,2013,2018), and the election of Trump (2016).%°
The wavelet power spectrum for the BBD series is shown in Figure 12. High power
is found at the 128 month scale from the mid-1990’s to the present (outlined in
white). There are also a series of high frequency (2-16 months) spikes in the
wavelet power which are not present in the other two uncertainty indices.

5. Uncertainty & the market portfolio

We begin our analysis by examining the relationship between the three measures
of uncertainty, and the market portfolio. Figure 13 shows the coherence between
macroeconomic uncertainty and excess market returns. Red indicates high coherence
and blue indicate no coherence. Coherence is a measure of co-movement between the
two series, similar to a correlation. Note that high coherence does imply high power.
The heavy black lines around the outside of the red areas indicates statistical signifi-
cance at the 95% level of confidence. The frequency is inverted in the coherence

6 [3] provide an annotated version of the index at https://www.policyuncertainty.com/media/US_
Annotated_Series.pdf
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charts compared with the power spectrum charts. The coherency charts also contain
phase arrows which are explained in Table 3. There are two basic categories of
coherence in Figure 13. Sporadic high coherence at the 8 to 64 month scale, and
prolonged coherence at the 64-128 month scale. The high coherence at the 64—

128 month scales lasts from 1960 until the mid-1980s, breaks for about 15 years
(outlined in white), and reoccurs from 2000 to 2019. The period of the break in
coherence is shorter than the typical time frame known as the Great Moderation
(mid-1980’ to 2007). The phase arrows are pointing left indicating that the two series
are out of phase. The sporadic high coherence at the 16 to 32 month scales occurs in
the middle 1970s, and to a much greater extent during the Great Recession. The phase
arrows indicate that the two series are in anti-phase.

In addition to the monthly returns, we also examine coherence of uncertainty with
the absolute value of market returns that we use as a measure of market volatility.
Figure 14 shows the coherence plot for the absolute value of market returns with
macroeconomic uncertainty. As was the case in Figure 13 there as two periods of high
coherence at a low frequency, but in this instance the scale is lower (32-64 month),
the break (outlined in white) begins in the early 1990s and lasts for about 5 years.
During the Great Recession, uncertainty and market volatility are in phase."”

Figure 15 shows the coherence of the market returns with the financial uncer-
tainty. Coherence occurs at lower scales than the coherence of the market with the

Macro Uncertainty & Market Returns

Period

e
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Figure 13.
Wavelet Coherence - Macroeconomic Uncertainty and U.S. Equity Market Returns.

Left arrow: anti-phase

Right arrow: in-phase

Down arrow: X leading Y by 90deg

Up arrow: Y leading X by 90deg

Table 3.
Phase arrow definitions.

7 Note: interpreting the phase as a lead(/lag) should always be done with care. A lead of 90 degrees can
also be interpreted as a lag of 270 degrees or a lag of 90 degrees relative to the anti-phase (opposite sign).
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Figure 14.
Wavelet Coherence - Macroeconomic Uncertainty and Absolute Value of U.S. Equity Market Returns.

macroeconomic uncertainty. There is a high degree of coherence in the 1960s and
1970s at the 16-32 month scale, then there is a break (outlined in white) of 20 years
when coherence at these scales is non-existent. Beginning in 2000, coherence is
high once again at the 16-32 month scales. The two series are out of phase during
these periods of high coherence.

The coherence of financial uncertainty and market volatility is shown in
Figure 16. The coherence is high and in-phase throughout the entire sample period
for scales above 32 months. There also are numerous low scale periods when the two
series are in phase and have high coherence.

As shown in Figure 17 the coherence of economic policy uncertainty and market
returns generally occurs at a lower scale then coherence of the two BLN indices.
Statistically signficiant coherence never exceeds the 64 month scale, but it is high
and nearly continuous at the 8 to 16 month scale from 1993 to 2003 (outlined in
white). These periods of high coherence at lower scales appear to coincide with
financial crises. During the Great Recession there is a very clear distinction in
coherence between the 8-16 month scales (2008-2012), and the coherence at the

Period
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Figure 15.
Wavelet Coherence - Financial Uncertainty and U.S. Equity Market Returns.

245



Wavelet Theory

0¢
0.8

o7

Period

1860 1970 1880 1890 2000 2010

Figure 16.
Wavelet Coherence - Financial Uncertainty and Absolute Value of U.S. Equity Market Returns).
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Figure 17.
Wavelet Coherence -Economic Policy Uncertainty and U.S. Equity Market Returns.

32 months scale from 2003 to 2018. The phase arrows generally point upwards
indicating a lead-lag relationship.

Figure 18 shows the coherence between economic policy uncertainty and the
absolute value of market returns. Coherence is generally quite low, except for the
128 month scale beginning in the mid -1990s and going to 2019.

5.1 Uncertainty and sector returns

In the previous section, we showed that regardless of the uncertainty measure
employed, there is evidence of high coherence between market returns and uncer-
tainty, and also market volatility and uncertainty. In this section, we examine the
coherence between sector returns and the three measures of uncertainty. Our goal is
to characterize the extent to which uncertainty has impacted individual sectors. To
do this we examine the coherence of each measure of uncertainty with sector
returns. However, uncertainty affects the market and we want to find the
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Wavelet Coherence -Economic Policy Uncertainty and absolute Value of U.S. Equity Market Returns).

relationship between uncertainty and sector returns after removing the relationship
of uncertainty with the market. In order to accomplish this, there is a “before and
after.” We refer to the “after” as the conditional coherence. Conditional coherence
is the coherence of sector returns with uncertainty conditional on the market
returns.'® In addition, to further illustrate the extent to which uncertainty impacts a
sector independently of the impact it has vis-a-vis the market portfolio, we estimate
a rolling regression. The rolling regression is of sector returns against the market
return and the uncertainty index for one or more scales using the discrete wavelet
transform.' Selection of the scales was based on high conditional coherence of
sector returns and uncertainty measures. The functional form of the regression is,

xectort ﬁi)t"'ﬂslt krt"’ﬁSZt*U;,t (16)

where U, fori = 1,2,0r 3 is a of the measure of uncertainty, ands = 1, .., 6 is the
scale. The estimation window is 60 months.

As there are three measures of uncertainty and 12 sectors, it would be cumber-
some to show all of the coherence plots for the 12 sectors. Instead, we have chosen to
discuss a subset consisting of six sectors where each sector has at least one period of
high coherence with one measure of uncertainty. While the other sectors may also
have periods of high coherence, including them would add little to our analysis.*’

5.1.1 Financial sector veturns and uncertainty

The first sector examined is the financial sector. Figures 19-21 show the coher-
ence of the financial sector with all three types of uncertainty both before and after
the market has been partialed out. Most of the coherence with all three types of
uncertainty is subsumed by the market. However, financial uncertainty is one
measure of uncertainty that does matter. As shown, in Figure 20 the right hand side
chart shows several areas of significant conditional coherence. Conditional

'8 The partial CWT was estimated using code from [14] updated to run on MatLab 2020B.
1 The rolling regressions were estimated using R. DWT was estimated using the Waveslim package [15]
in R.

%0 The other sectors are available from the authors upon request.
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Wavelet Coherence -Economic Policy Uncertainty and the Money Sector.
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coherence exists for the 32 month scale in the 1970s (circled in white). There is also
a small area of conditional coherence around 1990 at the 16 month scale and it is
also present at the 64-128 month scale beginning around in the mid 1990s. It is
interesting to note that there is no apparent conditional coherence with Economic
Policy Uncertainty in 2010 when Dodd-Frank was passed.

Figure 22 shows the financial uncertainty coefficient estimates (top) and
corresponding t-statistics (bottom) for scales 4 and 5 using the rolling window
regression given in Eq. (16). The scales were chosen based on the conditional
coherence charts. Scales 4 and 5 for financial uncertainty suggest by the presence of
red hot spots that there would be significance for the uncertainty measure. The
dashed lines in the t-stat chart indicate +/— 2. Although both scales are presented,
scale 5 stands out. Scale 5 (32 months) is negative and statistically significant for
three segments of time beginning in the late 1970s. The longest of these three
periods begins in the late 1990s and ends in 2010. Given the large number of shocks
all of which effected equity values, it is interesting to find that the financial uncer-
tainty index had significance in a rolling window regression that includes both the
market and the uncertainty index. Some of the important financial events include
the Asian financial crisis (1997), the Russian financial crisis (1998), the collapse of
Long Term Capital Management (1998), the repeal of the Glass-Steagall Act (1999),
the 2001 recession, and the 2008 recession. The significant negative coefficients for
this time period are an indication that there was sector specific uncertainty over and
above that which impacted the market as a whole.

5.1.2 Energy sector returns and uncertainty

Figures 23-25 contain the coherence of the Energy sector returns with all three
type of uncertainty before (left) and after (right) the market returns are partialed
out. Each of the three right hand side charts display several short periods of high
conditional coherence indicating uncertainty specific to the energy sector. The
longest period of conditional coherence is at scale 6 (64 months) for the Macroeco-
nomic Uncertainty Index (circled in white). There are two small period of high

Money Sector: Rolling Regression
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Rolling Regression Coefficients -Financial Uncertainty and the Money Sector.
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Wavelet Coherence - Macroeconomic Uncertainty and the Energy Sector.
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Wavelet Coherence - Financial Uncertainty and the Energy Sector.
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Wavelet Coherence -Economic Policy Uncertainty and the Energy Sector.
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conditional coherence at the 16 month scale with financial uncertainty. There is
moderate conditional coherence with policy uncertainty from the mid-1980s until
the mid-1990s, but the scale (128 months) is almost completely outside the cone of
influence (COI) and is not statistically significant. The 2014 oil glut that led to a
steep decline in oil prices has a very small area of significance in the conditional
coherence charts. Note also that there is little or no sign of the boom in hydraulic
fracking which began in the mid 1990s, nor the environmental backlash that began
in 2013-2014 in the conditional coherence charts.

Figure 26 shows rolling window regression coefficients at scales 5 (32 months)
and 6 (64 months) for macroeconomic uncertainty. Again, the scales were chosen
based on observations from the conditional coherence charts. Scale 6 is negative and
statistically significant from the mid-1960s until the mid-1970s and clearly shows
the impact of the 1973 OPEC embargo. The uncertainty coefficients for scale 6 are
also negative and statistically significant from 2010 to 2015 and may reflect the
environmental backlash to fracking.

In summary, although the conditional coherence charts show surprisingly little
sector specific uncertainty relating to the OPEC II (1979) oil shocks or the 2014 oil
glut, the DWT regression shows a strong negative sector specific impact.

5.1.3 Telecommunications sector veturns and uncertainty

Over the course of the sample period, the Telecommunications Industry evolved
from a heavily regulated monopoly to a more competitive industry with at least six
large firms. In addition, technological changes in communications broadened the
scope of services offered by the industry. This resulted in redefining communica-
tions providers as content providers and making cell phone usage an imperative for
the vast majority of adults. An examination of the coherence charts (Figures 27-29)
does show some periods of sector specific uncertainty. The conditional coherence
chart for financial uncertainty shows high coherence at the 32 months scale
throughout the 1980s (highlighted with white) which is coincident with the
restructuring of AT&T. The conditional economic policy chart shows four high

Energy Sector: Rolling Regression
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Figure 26.
Rolling Regression Coefficients -Macroeconomic Uncertainty and the Energy Sector.
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Figure 27.
Wavelet Coherence -Macroeconomic Uncertainty and the Telecom. Sector.
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Wavelet Coherence - Financial Uncertainty and the Telecom. Sector.
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Wavelet Coherence -Economic Policy Uncertainty and the Telecom. Sector.
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periods of coherence. Two are at the 32 month scale, one in the early 1990s and the
second starting in 2010. There is also high coherence during the Great Recession at
the 8 to 16 month scale. The fourth period of high coherence is at the 64 to

128 month scale beginning in 2005 and ending in 2010.

Based on the conditional coherence charts, rolling regressions were run for both
Economic Policy Uncertainty and Financial Uncertainty indices. Significant coeffi-
cients were found for both indices. Figure 30 shows the uncertainty coefficient
estimates and t-statistics for the regression of sector returns against market returns
and Economic Policy Uncertainty for scales 16 and 32 months. Policy Uncertainty at
scale 32 is negative and statistically significant from 1995 to 2000, and from from
2007 to 2015. The Telecommunications Act of 1996 may be partially responsible for
the large drop in the 32 month coefficient in 1996-1997.

Coefficient estimates for Financial Uncertainty at 16 and 32 month scales are
shown in Figure 31. This is a longer time series than the policy uncertainty index
and it shows a modest negative impact in the 1980s at the 32 month scale. There is a
much larger negative impact at the 32 month scale starting in the late 1990s and
extending until 2018. The significance coefficients are consistent with the explana-
tion that the Telecommunications Sector exhibits sector specific uncertainty.

5.1.4 Business equipment sector returns and uncertainty

Coherence plots for the business equipment sector, which is comprised of com-
puter, electronic and software firms are shown in Figures 32-34. There appears to
be very little conditional coherence for Macroeconomic Uncertainty. The 32 month
scale for Financial Uncertainty shows some coherence in the early 1990’ and from
2000 to 2010. Conditional coherence with Economic Policy Uncertainty is low
except in the 2018-2919 period at the 8 month scale (highlighted in white). This
may be the result of the policy change in favor of repealing net neutrality on the
part of the Trump Administration.

Figure 35 shows the coefficient estimates for Economic Policy Uncertainty at the
8 and 16 month scales. The coefficients for the 16 month scale are negative and

Telecom Sector: Rolling Regression
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Rolling Regression Coefficients-Economic Policy Uncertainty and the Telecom. Sector.
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Telecom Sector: Rolling Regression
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Rolling Regression Coefficients-Financial Uncertainty and the Telecom. Sector.
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Wavelet Coherence -Macroeconomic Uncertainty and the Business Equipment Sector.

significant from the late 1990s until 2008. This is a time of rapid growth for the
internet. The tech bubble burst after partialing out the market effect clearly has a
stand alone component. The significant coefficients are consistent with difficulties
encountered when introducing a new technology.

5.1.5 Shops sector returns and uncertainty

There are several instances of significant conditional coherence for the shops
sector (Figures 36-38). Notable is the coherence with Macroeconomic Uncertainty,
and to a lesser extent Financial Uncertainty, at the 64 month scale from the mid
1970s to the late 1980s. The Shops sector, which consists of Wholesale, Retail, and
Some Services, shows very little conditional coherence with the JLN indices after
the late 1980s. This is consistent with the rise and expansion of big box retailers
such as Walmart and Target and the demise of small Mom & Pop stores. Big Guns
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Wavelet Coherence -Economic Policy Uncertainty and the Business Equipment Sector.

are better able to weather uncertainty storms. The rise of internet retail captured by
Amazon’s IPO in 1997 does show up in the conditional coherence for Economic
Policy (highlighted in white). This is suggestive that policy treatment regarding
internet retail mattered, especially considering taxes.

The rolling regression coefficients for the shops sector with economic policy
uncertainty are shown in Figure 39 for 8 and 16 month scales. The uncertainty
coefficients for the 16 month scale are negative starting in 1996 and remain negative
until 2015. This seems consistent with the war between internet shopping and brick
and mortar retail businesses.

5.1.6 Manufacturing sector veturns and uncertainty

Coherence plots for the manufacturing sector are shown in Figures 40-42.
There is high conditional coherence with Macroeconomic Uncertainty from 1990 to
2019 at the 128 month scale (highlighted in white). However, at least half of this
coherence is outside the cone of influence (COI). The onset of this uncertainty
coincides with the signing of NAFTA in 1994. There appears to be less conditional
coherence with Financial Uncertainty, although there is a significant patch at the
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Business Equip. Sector: Rolling Regression
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Wavelet Coherence -Macroeconomic Uncertainty and the Shops Sector.

64 month scale during the Great Recession. Conditional coherence with Economic
Policy Uncertainty occurs in the mid to late 1990s at the 8 to 16 month scale
(highlighted in white). These findings suggest that the market bears the risk to
manufacturing captured by the indices of Macroeconomic and Financial Uncer-
tainty. However, since Economic Policy Uncertainty is showing some hot spots of
conditional coherence this suggests that the market responded to news and infor-
mation regarding this sector, especially the effects of trade on manufacturing. The
stand alone uncertainty that is captured may be associated with policy uncertainty
regarding trade.

Figure 43 shows the rolling regression coefficients for Macroeconomic Uncer-
tainty at the 64 and 128 month scale. The 128 month scale coefficients are negative
and significant throughout the 1970s and 1980s, and from 2000 to 2010. Figure 44
shows the coefficients for Economic Policy Uncertainty at the 8 and 16 month
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Wavelet Coherence -Economic Policy Uncertainty and the Shops Sector.
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scales. The impact of concerns about NAFTA is apparent at the 16 month scale with
negative coefficients in 1996 and ending in 1998.

6. Conclusions

Wavelet methodology, by allowing local features of the environment to be
captured took the lead in our exploration of uncertainty shocks. We examine
changes in coherence between each uncertainty measure and the returns of each
sector both before and after partialing out the coherence of uncertainty with the
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market portfolio. Rolling regressions were used to identify sector-specific uncer-
tainty that is not captured by the overall market. Such uncertainty was found for the
Money Sector, Energy sector, Telecommunications sector, and Manufacturing sec-
tor. These findings suggest that there are periods when the market reaction to
shocks is not reflecting all the information captured by the uncertainty indices. One
interpretation of our results is that an industry like Telecommunications, Money,
Energy, and Manufacturing undergoing significant technological or regulatory
changes will have a great reaction to shocks than the overall market response
captures. These sectors have a greater sensitivity to uncertainty shocks when the
design of the uncertainty metric is largely macro in orientation.

Our finding that there are episodes of uncertainty when there is increased
comovements across frequency and over time for specific sectors helps paint a more
complete picture of how uncertainty affects the economy through its transmission
across sectors. When local features of the return environment are considered, we
conclude that in the face of uncertainty shocks the market’s knowledge-gathering
role could be improved by introducing uncertainty measures that in terms of
information-gathering are less global and more local. Localized or micro measures
of uncertainty shocks should be of direct relevance to traders and portfolio man-
agers who must respond to such shocks in a ways that are wealth-preserving for
their clients.
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Chapter 12

Case Study: Coefficient Training in
Paley-Wiener Space, FFT, and
Wavelet Theory

Kayupe Kikodio Patrick

Abstract

Bessel functions form an important class of special functions and are applied
almost everywhere in mathematical physics. They are also called cylindrical func-
tions, or cylindrical harmonics. This chapter is devoted to the construction of the
generalized coherent state (GCS) and the theory of Bessel wavelets. The GCS is
built by replacing the coefficient 2" /n!, z € C of the canonical CS by the cylindrical
Bessel functions. Then, the Paley-Wiener space PW} is discussed in the framework
of a set of GCS related to the cylindrical Bessel functions and to the Legendre
oscillator. We prove that the kernel of the finite Fourier transform (FFT) of L*-
functions supported on [—1, 1] form a set of GCS. Otherwise, the wavelet transform
is the special case of CS associated respectively with the Weyl-Heisenberg group
(which gives the canonical CS) and with the affine group on the line. We recall the
wavelet theory on R. As an application, we discuss the continuous Bessel wavelet.
Thus, coherent state transformation (CST) and continuous Bessel wavelet transfor-
mation (CBWT) are defined. This chapter is mainly devoted to the application of
the Bessel function.

Keywords: coherent state, Hankel transformation, Bessel wavelet transformation

1. Introduction

Coherent state (CS) was originally introduced by Schrédinger in 1926 as a
Gaussian wavepacket to describe the evolution of a harmonic oscillator [1].

The notion of coherence associated with these states of physics was first noticed
by Glauber [2, 3] and then introduced by Klauder [4, 5]. Because of their important
properties these states were then generalized to other systems either from a physical
or mathematical point of view. As the electromagnetic field in free space can be
regarded as a superposition of many classical modes, each one governed by the
equation of simple harmonic oscillator, the CS became significant as the tool for
connecting quantum and classical optics. For a review of all of these generalizations
see [6-9].

Four main methods are well used in the literature to build CS, the so-called
Schrédinger, Klauder-Perelomov, Barut-Girardello and Gazeau-Klauder
approaches. The second and third approaches are based directly on the Lie algebra
symmetries with their corresponding generators, the first is only established by
means of an appropriate infinite superposition of wave functions associated with
the harmonic oscillator whatever the Lie algebra symmetries. In [10-12] the authors

263 IntechOpen



Wavelet Theory

introduced a new family of CS as a suitable superposition of the associated Bessel
functions and in [13-15] the authors also use the generating function approach to
construct a new type CS associated with Hermite polynomials and the associated
Legendre functions, respectively. The important fact is that we do not use algebraic
and group approaches (Barut-Girardello and Klauder-Perelomov) to construct gen-
eralized coherent states (GCS).

We first discuss GCS associated with a one-dimensional Schrédinger operator
[16, 17] by following the work in [18, 19]. We build a family of GCS through
superpositions of the corresponding eigenstates, say y,,,# €N, which are expressed
in terms of the Legendre polynomial P, (x) [16]. The role of coefficients 2" /v/n! of
the canonical CS is played by

L (m2n 1))
0,(8) =1" (%) Jusa(€), n=0,1,2, .., 1
5 2
where £€R and J,,,1(.) denotes the cylindrical Bessel function [20]. When# = 0,
Eq. (1) becomes
sin (¢)

Do = F,&) = : 2

where _#(.) denotes the spherical Bessel function of order 0. The choosen
coefficients (1) and eigenfunctions (27) (see below) have been used in ([21],
p. 1625). We proceed by determining the wavefunctions of these GCS in a closed
form. The latter gives the kernel of the associated CS transform which makes
correspondence between the quantum states Hilbert space L?([—1,1],2 'dx) of the
Legendre oscillator and a subspace of a Hilbert space of square integrable functions
with respect to a suitable measure on the real line. We show that the kernel
¢, £€ R, of the L2-functions that are supported in [—1, 1] form a set of GCS.
There are in literature several approach to introducce Bessel Wavelets. We
refer for instence to [22, 23]. Note that, for [-1,1]3x — cos (y/n), n €N, the
Legendre polynomial P, (x) and the Bessel function of order O are related by the
Hansen’s limit

I e

and the integral

| 7oty =3. )
0

Note that in [22, 23] the authors have introduced the Bessel wavelet based on the
Hankel transform. The notion of wavelets was first introduced by J. Morlet a
French petroleum engineer at ELF-Aquitaine, in connection with his study of
seismic traces. The mathematical foundations were given by A. Grossmann and
J. Morlet [24]. Harmonic analyst Y. Meyer and other mathematicians
understood the importance of this theory and they recognized many classical results
within (see [25-27]). Classical wavelets have several applications ranging from
geophysical and acoustic signal analysis to quantum theory and pure mathematics.
A wavelet base is a family of functions obtained from a function known as mother
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wavelet, by translation and dilation. This tool permits the representation of L*-
functions in a basis well localized in time and in freqency. Wavelets are special
functions with special properties which may not be satisfied by other functions. In
the current context, our objective is to make a link between the construction of
GCS and the theory of wavelets. Therefore, we will talk about coherent state
transformation (CST) and the continuous Bessel wavelet transformation (CBWT).
The rest of this chapter is organized as follows: Section 2 is devoted to the
generalized CS formalism that we are going to use. In Section 3, we briefly intro-
duce the Paley-Wiener space PWg and some notions on Legendre’s Hamiltonian.
We give in Section 4 a summary concept on the continuous wavelet transform on R.
In Section 5, we have constructed a class of GCS related to the Bessel cylindrical
function for the legendre Hamiltonian. In Section 6, we discuss the theory of CBWT

where we show as an example that the function f € L2(R )
f(t)::—_r,/za w0>01 (4)

such that fR t)do(t) = 0 is the mother wavelet where do(t) is an appropriate

Legesgue’s measure on R. Finally in Section 7. we gives some concluding remarks on
the chapter.

2. Generalized coherent states formalism

We follow the generalization of canonical coherent states (CCS) introduced in
[18, 19]. The definition of CS as a set of vectors associated with a reproducing kernel
is general, it encompasses all the situations encountered in the physical literature.
For applications we will work with normalized vectors. Let (£, u) be a measure
space and let > C L*(Z", ) be a sub-closed space of infinite dimension. Let
{%n}, be a satisfactory orthogonal basis of 91, for arbitrary x € &

Zpﬁ‘f )< +oo ©)
where p, := || €, 2 Deflne the kernel
Kx,p)=Y_ p, ' €n(x)€n(y), x,9€Z. (6)
n=0

Then, the expression K(x, y) is a reproducing kernel, 0t is the corresponding
kernel Hilbert space and A/ (x) :=K(x,x), x € Z. Define

9, = 1/2 prlﬂcg

Therefore,
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and
W H— N with Wo=N"(9, )

is an isometry. For ¢, y € 5, whe have

W) = F 00 = | FHHy(5)du(x) %
= [ 0.0 0001 51, (®)

and
[, 1823 0l ) = Lo, ©)

where #(x) is a positive weight function.

Definition 1. Let % be a Hilbert space with dim 5€ = oo and {¢,},._, be an
orthonormal basis of F.The generalized cohevent state (GCS) labeled by point x € &
are defined as the ket-vector 8y € F€, such that

9y -1/2 Z 0, V%€, (x) (10)

By definition, it is straightforward to show that (8x, ) ; = 1.
Definition 2. For each function f € €, the coherent state transform (CST) associ-
ated to the set (8x), c 4 is the isometric map

W [f1(x) = (N () (F19:) p- (11)

Thereby, we have a resolution of the identity of & which can be expressed in Dirac’s
bra-ket notation as

1p— J o (x)dpu(x) (12)
x
where the rank one operator Ty :=|9:) (9| : € — H is define by

[ Txlf] = (9:f) 0%

N (x) appears as a weight function.
Next, the reproducing kernel has the additional property of being square
integrable, i.e.,

J K(x,2)K(z,y) A (2)dpu(z) = K(x,). (13)
z

Note that the formula (10) can be considered as generalization of the series
expansion of the CCS [28].

(14)

SR
k=0
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with {¢, }._, being an orthonormal basis of eigenstates of the quantum har-
monic oscillator. Then, the space M is the Fock space Z(C) and A/ (z) =
7 1%, zeC.

3. The Paley-wiener space PW and the Legendre Hamiltonian: a brief
overview

3.1 The Paley-wiener space PWgq

The Paley-Wiener space is made up of all integer functions of exponential type
whose restrictions on the real line is square integrable. We give in this Section a
general overview on this notion ([29], pp. 45-47).

Definition 3. Consider F as an entire function. Then, F is an entire function of
exponential type if there exists constants A, B> 0 such that, for all z € C

|F(2)] < AeP#. (15)
Note that, if F satisfy Definition 3, we call Q the type of F where

logM(r)

Q= lim sup (16)

r——4o0

and where M(r) = sup,_,|F(z)|. The following conditions on an entire function
F are verified:

1.For all £ > 0 there exists C, such that
|F(z)| < Cee! ¥
2. There exists C > 0 such that
IF(z)| < Ce¥;
3.as |z]| — +o0
IF(z)| = o(e?).

Then cleary, (3) = (2) = (1) = F is of exponential type at most Q.
Definition 4. Let Q> 0 and 1 <p < co. The Paley-Wiener space PW?, is defined as

Pij2 = { feLZ(R) fx) = JQ g(y)e’ix}’dy, where geI7(—Q,Q)} (17)
o)
and we set
I llpwe = 27llgllLe- (18)

The Paley-Wiener PW?, is the image via the Fourier transform of the L?-function
that are supported in [—€, Q]. We will be interested in the case p = 2, in which PW
to denote the Paley-Wiener space PW?. From the Plancherel formula we have
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Fllpwe, = 81w = 2allglle = If 2 = I, (19)
Hence, by polarization, for f, 9 € PWy,

> 9)pwy = (> @)12- (20)

Theorem 1.1 Let F be an entire function and Q> 0. Then the following are
equivalent

e Fr€L?*(R) and
|F(z)| = o(e™) as |z] — +oo, (21)

* there exists f € L*(R) with suppf C[—Q, Q] such that

F(z) = zij fle)e=de. (22)

T )R

The function f € PWy, if and only if f ELZ(R) andf = Fir (that is, f is the
restriction to the real line of a function F), where F is an entire function of
exponential type such that |F(z)| = o(emz') for |z| — +oo.

Theorem 1.2 The Paley-Wiener space PWy, is a Hilbert space with reproducing
kernel w.r.t the inner product (20). Its reproducing kernel is the function

K(x,y) = %sinc(ﬂ(x -9)), (23)

where sinct = sint /t. Hence, for every f e PWg

1) =2 | fopine(at —y)dy 1)
where x €R.

3.2 The Legendre Hamiltonian

The Legendre polynomials P, (x) and the Legendre function vy, (x) are similar
to the Hermite polynomials and the Hermite function in standard quantum
mechanics. Based on the work of Borzov and Demaskinsky [16, 17] the Legendre
Hamiltonian has the form

H=X*+P=a‘a +aa", (25)

where X and P denotes respectively the position and momentum operators, a*
and a~ are the creation and annihilation operators. The eigenvalues of operators H
are equal to

1) -1
/1022, ln:w’nzl,z,& e (26)

3 1
(n+3)m—3)
and the corresponding eigenfunctions reads

v,(x) =v2n+1P,(x), n=0,1,2,3,.., (27)
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in terms of the Legendre polynomial P,(.), which form an orthonormal basis
{w, = [n)};"_, in the Hilbert space /¢ :=L?([—1,1],2 'dx). These functions satisfy
the recurrence relations

Xy, (%) = by 1y, 4 () + bayy1(x)s w_1(x) =0, yolx) =1, (28)

with coefficients

B (n+1)*
b, = m, n>0. (29)

The generalized position operator on the Hilbert space # connected with the
Legendre polynomials P, (x) is an operator of multiplication by argument Xy, =
xy,,. Taking into account of the relation (28), then

Xl//n(x) = ann+l(x) + bnfll//n—l(x)’ (30)

whee b, are coefficients defined by Eq. (29). Because ) " ,1/b, = +o0, X is a
self-adjoint operator on the Hilbert space ## (see [30-32]). The momentum opera-
tor P by the way described in ([17], p. 126) acts on the basis elements in ¢, by the
formula Py,, = i(buy, 1 — bu_1y,_1). The usual commutator of operator X and P on
the basis elements reads as

2i

a2 32 _
[X,Ply, = 2i (bn bn—l)‘/’n (2n —1)(2n +1)(2n + 3

Wy (31)
)
The creation and annihilation operators (25) are define by relations

at = \%(X —iP); a = \%(X—HP), (32)

these operators act as a™y,, = V2b,y,. .1 and a~y, = V2b,_1y,_;. They satisfy
[a~,a"] = —i[X, P], the commutation relations.

4. Wavelet theory on R and the reproduction of kernels

We briefly describe below some basis definitions and properties of the
one-dimensional wavelet transform on R, we refer to [22, 23, 33]. In the Hilbert
space Mt = L*(R, dx), the function y satisfying the so-called admissibility condition

oo

~ 2
&, J_W’(? d < oo, (33)

where i being the Hankel transform of y. Not every vector in 1 satisfies the

above condition. A vector y satisfying (33) is called a mother wavelet. Combining
dilatation and translation, one gets affine transformation

y=(b,a)x=ax+b, a>0, beR, xeR,. (34)
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Thus {(b,a) }=:G,y = R x (0, o), the affine group of the line. Specifically, for
each pair (a,b) of the real numbers, with a > 0, from translations and dilatations of
the function y, we obtain a family of wavelets {y,, } €9 as

1 —b
Wap () =%w(x p ) W10 =Y. (35)

Here a is the parameter of dilation (or scale) and b is the parameter of transla-
tion (or position). It is then easily cheked that

s )3 = W) |3 for all a>0 and beR. (36)

Moreover, in terms of the Dirac’s bracket notation it is an easy to show that the
resolution of the identity

1 dbda
e a a =1 37
o)), e sl S = @)

holds for these vectors (in the weak sense). Here I is the identity operator on 91.
The continuous wavelet transform of an arbitrary vector (signal) f € 91 at the scale a
and the position b is given by

00

rab) = | FOwas(o (38)
The wavelet transform #(a, b) has several properties [34]:
e Itislinear in the sense that:
Fafipf,@b) = a r (a,b) + B ¢ (a,b), Va,BER and f,,f,€L*(R,).
* It is translation invariant:

S fab) =F¢(a,b—b')
where 7, refers to the translation of the function f by b’ given

(zf ) (%) =f (x = b').

e Itis dilatation-invariant, in the sense that, if f satisfies the invariance dilatation
property f(x) = Af (rx) for some 4,7> 0 fixed then

Fr(a,b) = 1S ¢(ra,rb). (39)

As in Fourier or Hilbert analysis, wavelet analysis provides a Plancherel type
relation which permits itself the reconstruction of the analyzed function from its
wavelet transform. More precisely we have

(f,g>:%J J Yf(a,b)yg(a,b)M, Vf,geLZ(R) (40)
v Ja>0JbeR

a2

which in turns to reconstruct the analyzed function f in the L2- sense from its
wavelet transform as
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1 dadb
flx) = ?J J yf(ﬂt,b)l//a,baiz, where  F¢(a,b) = (w,lf).  (41)
v Ja>0JbeR a

The function #; is the continuous wavelet transform of the signal f. The
parameter 1/a represents the signal frequency of f and b its time. The conservation
of the energy of the signal is due to the resolution of the identity (37), so

dbd
T | )

Then, the transform % is a fonction in the Hilbert space L? (R xR}, d%“). The
reproducing kernel associated to the signal is

1
I<l// (b,ﬂ,h/,ﬂl) = ?<Wﬂ,h‘l//u’,b’>' (43)

74

which satisfies the square integrability condition (13) with respect to the mea-
sure dbda /a*. The corresponding reproducing kernel Hilbert space N, one see that
this is the space of all signal transforms, corresponding to the mother wavelet . If y
and y’ are two mother wavelets such that (y/|y) # O, then

1 . dbda
07 ) Ly s 0] 7 = 4

The formula (41) generalizes to

1 dbda
= S (b,a ah——> Wh S (a,b) = ; . (45)
! W'ly) JJRxR; f( Wap a? ere f( ) <V’ ,bDC>

The vector v’ is called the analyzing wavelet and y the reconstructing wavelet.
The repoducing kernel Hilbert space % c L*(R x R, consisting of all signal trans-
forms with respect to the mother wavelet y’. Then, we have

1
Ky (byash',d) = ——— <wa,b |l,/;,,b,> (46)
[%w W’}z

is the integral kernel of a unitary map between M, and 91,,. The properties of the
wavelet transform can be understood in terms of the unitary irreductible represen-
tation of the one-dilensional affine group.It is important to note that the Wavelets
built on the basis of the group representation theory have all the properties of CS.
There is a wole body of work devoted to the study of CS arising from group
representation theory [7, 33, 35].

5. Application 1: GCS for the Legendre Hamiltonian and CS transform

5.1 GCS for the Legendre Hamiltonian

By replacing the coefficients 2" //n! of the canonical CS by the function O, (£) in
(1) as mentioned in the introduction. We construct in this section a class of GCS
indexed by point £ €R.

271



Wavelet Theory

Definition 5. The GCS labeled by points £ € Ris defined by the following superposition
9= NN 0., E€R (47)
n=0

here N (&) is a normalization factor, the function O, (&) = ®,(E)pn V2 with

where ], 1),(.) is the cylindrical Bessel function ([20], p. 626):

_ i (-1)* 2\ 25+n+3
Tt ®) =2+ 172) G =ec “49)
and p,, are positive numbers given by
1
P =1 n=0,1,2, .., (50)

and {y,} is an orthonormal basis of the Hilbert space 7 = L*([—1,1],2 'dx)
defined in (27).
Proposition 1. The normalization factor defined by the GCS (47) reads as

‘/V(f) =1, (51)

for every £€R.
Proof. From (47) and by using the orthonormality relation of basis elements

{w, Z:O in (27), then
(96l82) = m(eA (€)Y (n + ;)JH%(&)JH%(&). (52)
n=0

In order to identify the above series, we make appeal to the formula ([36],
p- 591):

= 1
Z(n +§)fn+%(5)]n+%(§) =€, (53)
n=0
we then obtain the result (51) by using the GCS condition (9¢|9;) = 1. O

Proposition 2. The GCS defined in (47) satisfy the following resolution of the identity
J Tedu(€) = Lo, (54)
R
(in the weak sense) in terms of an acceptable measure
1

where d¢ the Lebesgue’s measure on R. The rank one operator T = ’8§><85‘ e —
J€ is define as
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¢+ Telg] = (9lw)9:. (56)
Proof. We need to determine the function o(¢). Let
(&) = o(£)de, (57)

where ¢(§) is an auxiliary function. Let us writte T, , :=|y,,) (¥, |, defined as in
(56). According to (56) and by writing

|| Teute
R
=7 ; © Jons1(En11(8) daé
— - _1 n_ n+m 2 2 =5 Tmn 8
2,2 (Jw oo f) ’ 8
7 non+m * dé
= > S @m0+ (| Jna@ha@a@F ) Tane (59
n,m=0 -
Hence, we need ¢(¢) such that
% de 2
| 1@ F = s ne (60)
We make appeal to the integral ([36], p. 211):
o1 dy = 2 b (61)
Jw;]me%(Cy)]nwL%(cy) }’ - 27’1——|-1 m,ns
with condition ¢ > 0. Then, for parameters ¢ = 1, we have
R dé = 2 1) (62)
Jiw E]m+%(‘f)]n+%(‘f) &= 21’L—+1 mn -

By comparing (62) with (66) we obtain finally the desired weight function
o(£) = 1/x. Therefore, the measure (57) has the form (55) [37]. Indeed (59) reduces
furtherto ;> (T, = 1, in other words

JRTW(&) ~ 1. (63)

According to this construction, the state 9 form an overcomplete basis in the
Hilbert space ¢ (Figure 1). O

Figure 1.
Plots of the probability distribution P(n, &) versus & for varvious values of n.
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When the GCS (47) describes a quantum system, the probability of finding the
state y,, in some normalized state 9; of the state Hilbert space J¢ is given by

P(n, &) =|(w,|9) |2. For the GCS (47) the probability distribution function is given by

2

z(2n + 1) , teR’. (64)

=T %%(f)

5.2 Coherent state transform

P(n,¢)

To discuss coherent state transforms (CST), we will start by establishing the
kernel of this transformation by giving the closed form of the GCS (47).
Proposition 3. For all x € [—1, 1], the wave functions of GCS in (47) can be written as

Be(x) = e, (65)
forall £eR.
Proof. We start by the following expression
8:(x) = A ()8 (x, &), (66)
where the series
S(x,8) =Y 0,(&)w,(x), (67)
n=0

with the function 9,,(§) = ©,(&)pn Y 2, mentioned in Definition 5. To do this,
we start by replacing the function ®,(¢) and the positive sequences p, by their
expressions in (48) and (50) thus Eq. (67) reads

G(x, &) = [ N2 Ay (W (%) (68)

Making use the explicit expression (27) of the eigenstates vy, (x), then the sum
(68) becomes

2;2”: (—1)"" <n + ;)]nJr%(f)Pn (x). (69)
n=0

We now appeal to the Gegenbauer’s expansion of the plane wave in Gegenbauer
polynomials and Bessel functions ([38], p. 116):

ei rzln n+}’]n+y ) 7(X)
n=0
Then, for y = 1/2, y = x and by using the identity I'(1/2) = /7, we arrive at
(65). O
Corollary 1. When the variable £ <1, the GCS in (47) becomes

V2r(—ig)"
2 (2n + 1) (n +3)

9:m N (&) 2

Wy (70)
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Proof. The result follows immediately by using the formula ([20], p. 647):

PG 7(27:11)!!’ Ex1 (71)

where

FAGE \/2?6]’”%(5)’ n=0,1,2 .. , 72)

is the spherical Bessel function [20]. This ends the proof. O

The careful reader has certainly recognized in (70) the expression of nonlinear
coherent states [38].

Let us note that, in view of the formula ([36], p. 667):

oo

i CVE
;(n+§>]n+§(ﬂ)]n+%(§)—ﬂ(n5) sin (7 — &), 73)

the reproducing kernel arising from GCS (47) can be written as

”,,0<”+2> i VE ~ n—f (75)

denotes the Dyson’s sine kernel, which is the reproducing kernel of the Paley-
Wiener Hilbert space PW;. Then, the family {[ﬂ(n + 1/2)/5]1/2],,+%(§) }; n € Ny,

forms an orthonormal basis of PW; [39].

Once we have a closed form of GCS, we can look for the associated CST, this
transform should map the space J# = L?([—1,1],2 'dx) spanned by eigenstates
{w,} in (27) onto PW; C L*(R,dy) as.

Proposition 4. For 9 € L*([-1,1],2 dx), the CST is the unitary map

# (L*([-1,1],2 'dx) = PWy, (76)

defined by means of (65) as

1/2 ! iy A%
Hl©) = (HO) 0l = | 05 7
forall £eR.
Corollary 2. The following integral
(=) 17 i
Ths® = o= | Pafwle i, ceR. 79)

holds.
Proof. From (75), the image of the basis vector {y, } under the transform #

should exactly be
Pinle) = iy TE D o, 79)
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Now, by writing (75) as

1 X
Pnle) = | e,

and replacing y,, by their values given in (27), we obtain

() = [ e,

the integral (78) can be evaluated by the help of the formula ([40], p. 456):

1
J P, (x)e*dx = i" \/%]H%(f), (80)
-1

this ends the proof. O

Note that, in view of ([28], p. 29), by considering %, (&) := p, Y 2% and GCS
H(£,x) = (x|9), the basis element y,, € L*([—1,1],2 'dx) has the integral
representation

oo

V() =J I (&) A& )l (2) (81)

—o0

where the function ®,(£) and the positive sequences p,, are given in (48) and
(50) respectively, the measure du(¢) is given in (55), then the Legendre polynomial
has the following integral representation

P, (x) —ﬂr L, ) de, (82)

T

where the function ¢ (.) is given in (72), which is recognized as the Fourier
transform of the spherical Bessel function (72) (see [40], p. 267):

mi"Py(x), —l<x<1
” X1 1
J e g (t)dt = zzt(j:i)”, x = +1, (83)
0, +x>1

where P,(.) the Legendre’s polynomial [40].
Remark 1. Also note that:

o The usefulness expansion of GCS was made very clear in a paper authored by Ismail and
Zhang, where it was used to solve the eigenvalue problem for the left inverse of the
differential operator, on L*-spaces with ultraspherical weights [41, 42].

* For x,&€R, the function ?; (x) = €%, is known as the Gabor’s coherent states
introduced in signal theory wheve the property v, = T(&)y, with y € L*(R), and
T(&) the unitary transformation, is obtained by using the standard representation
of the Heisenberg group in three dimensions, in L*(R), for more information

(see [43]).

276



Case Study: Coefficient Training in Paley-Wiener Space, FFT, and Wavelet Theory
DOI: http://dx.doi.org/10.5772/intechopen.94865

Exercise 1. Show that the vectors

1 V27r(—ig)"
9e =N W
: n=01/22"(2n + )T (n +3)

forms a set of GCS and gives the associated GCS transform.

(84)

6. Application 2: continuous Bessel wavelet transform

The continuous wavelet transform (CWT) is used to decompose a signal into
wavelets. In mathematics, the CWT is a formal tool that provides an overcomplete
representation of a signal by letting the translation and scale parameter of the
wavelets vary continuously. There are several ways to introduce the Bessel wavelet
[22, 23]. For 1<p <o and y > 0, denote

(R, = {w such a5 i, = | wio)date) <o

and ||yl = €50<x<e SUPly(x)| < oo and do(x) is the measure defined as

2u

do(x) = —————dx. (85)
( ) 2ﬂ+§r‘(ﬂ + %)
Now, let us consider the function
. 1 1\ 1
) =2 2F(/4 ¥ E)xz 4, (36)

where ], _1(x) is the Bessel function of order [:=y — 1/2 given by

o0 4k
0= ) Soart 5 <s7>

For u = 1, the function j(x) = O¢(x) coincides with equation (2) discussed in the
introduction. For each function ¢ € L1 ,(0, o), the Hankel transform of order u is
defined by

P(x) = J j(xt)p(t)do(t), 0<x<oo. (88)
0
We know that from ([44], p. 316) that ¢(x) is bounded and continuous on [0, o)
and ||l < I@lly- If ¢, p €L1,(0, 00), then by inversion, we have

00

#) = | nperdot) (89)
0

From ([45], p. 127) if ¢(x) and ®(x) are in L, ,(0, o), then the following
Parseval formula also holds

r&»mé(t)do(r) - qua(x)@(x)da(x). (90)

0 0

277



Wavelet Theory

Denoting therefore by

00

D(x,7,2) = Joﬂxt)j(yt)j(zt)do(t). (91)

For a 1-variable function y € L2(R, ), we define the Hankel translation operator
Ly (x) =w(x,y) = J D(x,9,2)y(2)do(z), Vx>0, y<oo. (92)
0

Trime’che ([46], p. 177) has shown that the integral is convergent for almost all y
and for each fixed x, and

llw (%, )ll,e < llwll,- (93)

The map y = 7,y is continuous from [0, o) into (0, co). For a 2-variables the
function y, we define a dilatation operator

_ e (X
Dy (x,y) = a l//(a , a)' (94)

From the inversion formula in (89), we have

00

J i(3)D(x,y,2)do(z) = j(xt)j(yt), VO<x,y<oo, 0<t<oo,

0

fort = 0and 4 — 1/2 = 0, we arrive at

J D (x,y,2)do(z) = 1. (95)
0

The Bessel Wavelet copy y,, , are defined from the Bessel wavelet mother
weL2(R.) by

Wa,b(x) = DaTbW(x) = Dal//(b’x) (96)

0

the integral being convergent by virtue of (92). As in the classical wavelet theory
on R, let us define the continuous Bessel Wavelet transform (CBWT) of a function

f €LZ(R,), at the scale a and the position b by

Bb,a) = (Bof ) (bra) = {F(1),ypa(®)) (98)
- J:fmwa,h @)dot) (99)
_ a’zﬂ’lj(:oJ:f(t)W@ (2 ;z> do(z)do(t). (100)

The continuity of the Bessel wavelet follows from the boundedness property of
the Hankel translation ([46], (104), p. 177). The following result is due to [22]:
Theorem 1.3 Let yw € L>(R, ) and f,g € LA(R,). Then
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[T @ 0.0 @) ariotariots) = %, )

whenever

%= | TP N0 o) <on
0

For all x> 0.

(101)

(102)

Proof. For the function f € L2(R, ), let us write the Bessel wavelet by using

Eq. (38) as

00

(Bf) (b,a) = j0f<t>wa,b (t)do(t)

_ ,,,T1+1 J:J:f(t)w(z)g (i_’ 22:) do(z)do(t).

Now observe that

Hence whe have that

() b0) = s [ F w3 (2 )i (% )iton)dotudoteraaty

a
- ot (7)o

- jR Fo)irav)jbo)do(v)

+

— vt | (e (2 )jtendotuydote)

= (feyiran) | ®).

In terms of the Parseval formula (90), we obtain

) (B,

JR (%.f) (b, )(b,a)do(b)

a)(%
= |, Gwnitan) ®)(¢0)ita) ¢)dotw)

— | Pz tadat)
Now multiplying by a %~'dcs(a) and integrating, we get

JR JR (B,f) (b, a) (B,f) (b,a)a > do(a)do(b)
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- | | Fwitazntan g5 dotw (114

= Jf(@m(JRﬁ!(au)zf;(fl))da(u) = CV,J f(u)A(u)do(u) (115)
=€, (f>2) (116)

The admissible condition (102) requires that y(0) = 0. If i is continuous then
from (88) it follows that

|, wwdat) =o. a17)
0
6.1 Example
Let us consider the function
2 2 42
f(t):(lfoij)s/z, wo>0, tER,. (118)
2wy +t

In the case y = 1/2, the measure (85) takes the form
t
do(t) = Edt (119)

and the function (86) reduces to
j(&) =Jo(), (120)

where J(x) the Bessel’s function of the first kind. Also note that

o 2
J 2620 t) <oo. (121)
0 2(w} +12)

The Bessel wavelet transform of f(¢) is given by

2wy — 12 o wh - b t
i R e
Y b * 2wl —¢? b t
= a JO l//(Z) (JO W9<E, ;,Z)dﬂ(t))dG(Z) (123)
Using the representation
b * (b
2(2.2.2) = | o (2 o (o oteurdetu (124

then (122) becomes
o[ "wte) ([ o2 o190 o)) et
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Where the integral

“© 2wh —1? t
D) = | 20 (L)) (125)
0 2(w3 —|—t2)5/2 0(“ )
In terms of the Legendre polynomial P,(z), the function
2'[/0(2) — t2 2 2 —3/2 2 2 —1/2
— = (wy +t Py \wo (wy +t . (126)
g e~ () Pl 7))
Then (125) reads
O, () = J (w3 +2) 7P, [wo (w2 +2)7 2] To (2 u)ala(t). (127)
0

The above equation can be evaluated by means of the formula ([47], p. 13):

1 o [To1202, 2yt 2, 2\-12 1/2

e = x (P> +x%) 7 P, |p(p° +x7) (xy) " Jo(xy)dx.  (128)
: 0

For parameters # = 2 and p = wy, we find that

1
Oaw, () = 74P (—wo g) (129)

In terms of the above result, the CBWT read as

Wi — 12 ST
{% <W> }(b:a) =a JO W (2) My, (2)do(2) (130)
where
* -1,,2,—20 b
My, (2) = L 8 ue =", <Eu>]0(zu)du. (131)

To evaluated (131) we make appeal to the Lipschitz-Hankel integrals ([48], p. 389):

j e, (qt)], (re)¢*dt (132)
0

_ (g F(u+2v)J” P+ op+w+1 P\ Ly,

- ﬂ;pﬂ"‘zv 21/ + 1 ) 2 b 2 sV + 1) pz sin ¢d¢

with conditions R (p +iq £ ir) > 0 and R(x + 2v) > 0, while { is written in place

of (¢* +r* — 2gr cos gb)l/ ?, where ,F; denotes the hypergeometric function. For
parameters p = wo/a,q =b/a,r =2,y = 3 and n = 0, we arrive at

m (z)“—3r 3 2%~ (awy'0) ) do (133)
a,wo 471'1/{)3 . 5245 0

5 12
where ¢ = [(u’lb) + 2% — 2a bz cos (/)}
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Next, by using the representation of the hypergeometric ,F;-sum ([49], p. 404,
Eq. 209) (Figure 2):

JFy G,z; 1;z> _ %(2 +2)(1—2)2, (134)

Then (131) takes the form

Moy (2) @ r (2 _ (walaé)z) (1 n (w51a5)2> e (135)

N Sﬂw% 0

This leads to the following CBWT

wf — 2 a [ ™ 2wl — (al)’
By| 55| ((bsa) = 0 dgdo(z). (136
{ <Z(w% + t2)5/2> }( a) arn JO ll/(z)JO z(w% . (a§)2)5/2 Ppdo(z).  (136)

We have given an example of a signal f (t) € L?(0, o0) such that the CBWT is
written as

(B,(f©)}(b,a) =ij”j:w<z>f<a¢>da<z>d¢. (137)

477.'0

According to Theorem 1.3, let yw € L2(R,, ) and f,g € L2(R ., ), then

00 00 1
7] ) .00 B .ot 6) = 550 (138)
0Jo 128wy;
Note that, for all wg > 0, the given function
2 2 t2
f) =—"0—"—, ter, (139)
2(w} + 1)
ol
6
— Wp=0.5
L=y 4 — Wp=0.55
— Wy=0.6
2
e Wp=0.65
0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 2.
Plots of the mother wavelet f () defined in (6.34) versus t, for various values of the parameters wo.
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is the mother wavelet. The Hankel transform of f(¢) is given by

fo) =

o0 2 2
B T epdolt) = ~ye Y, ¥ 0<y<oo. (140)
0 20w} +12)°? 4

and satisfy the admissible condition

L2
&= r V(g). dé (141)
I72), e
N _ 142
83> 070 (142
The Hankel transformation f(0) = 0, so by the help of (140) we obtain
o +(2, 2 tZ
J (wois)zdt — 0. (143)
o wp + )7
Exercise 2
For which numbers n € N, the following function
£2l0) = (%) 7P, w0 (1 +.27) 7] (144)

Is the mother wavelet where P, (.) the Legendre’s polynomial.

7. Conclusions

In this chapter we are interested in the construction of the generalized coherent
state (GCS) and the theory of wavelets. As it is well know wavelets constructed on
the basis of group representation theory have the same properties as coherent states.
In other words, the wavelets can actually be thought of as the coherent state
associated with these groups. Coherent state is very important because of three
properties they have: coherence, overcompleteness, intrinsic geometrization. We
have seen that it is possible to construct coherent states without taking into account
the theory of group representation. Throughout this chapter we have used the
Bessel function to construct the coherent state transform and Bessel continuous
wavelets transform. We have prove that the kernel of the finite Fourier transform
(FFT) of L>-functions supported on [—1,1] form a set of GCS. We therefore
discussed another way of building a set of coherent states based on Wavelet’s theory
makes it easier.

Building coherent states in this chapter is always not easy because it is necessary
to find coefficients which will make it possible to find vectors which will certainly
satisfy certain conditions but the procedure based on Wavelet’s theory makes it
easier.

It should be noted that the theory of classical wavelets finds several applications
ranging from the analysis of geophysical and acoustic signals to quantum theory.
This theory solves difficult problems in mathematics, physics and engineering, with
several modern applications such as data compression, wave propagation, signal
processing, computer graphics, pattern recognition, pattern processing. Wavelet
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analysis is a robust technique used for investigative methods in quantifying the
timing of measurements in Hamiltonian systems.
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Chapter 13

Wavelet Filter Banks Using
Allpass Filters

Xi Zhang

Abstract

Allpass filter is a computationally efficient versatile signal processing building
block. The interconnection of allpass filters has found numerous applications in
digital filtering and wavelets. In this chapter, we discuss several classes of wavelet
filter banks by using allpass filters. Firstly, we describe two classes of orthogonal
wavelet filter banks composed of two real allpass filters or a complex allpass filter,
and then consider design of orthogonal filter banks without or with symmetry,
respectively. Next, we present two classes of filter banks by using allpass filters in
lifting scheme. One class is causal stable biorthogonal wavelet filter bank and
another class is orthogonal wavelet filter bank, all with approximately linear phase
response. We also give several design examples to demonstrate the effectiveness of
the proposed method.

Keywords: wavelet, filter bank, allpass filter, perfect reconstruction, symmetry,
orthogonality

1. Introduction

The discrete wavelet transform (DWT), which is implemented by a two band
perfect reconstruction (PR) filter bank, has been applied extensively to digital
signal processing, image processing, medical and health care, economy and so on
[1-4]. In many applications such as image processing, wavelets are required to be
real since the signal is real-valued in general. We restrict ourselves to real-valued
wavelet filter banks in this chapter.

In addition to orthogonality, one desirable property for wavelets is symmetry,
which requires all filters in the filter bank to possess exactly linear phase, because
the symmetric extension method is generally used to treat the boundaries of images
[5, 6]. It is known in [1-4] that finite impulse response (FIR) filters (corresponding
to the compactly supported wavelets) can easily realize exactly linear phase. How-
ever, it is widely appreciated that the only FIR solution that produces a real orthog-
onal symmetric wavelet basis is the Haar wavelet, which is not continuous and the
corresponding filter is of order 1 only that is not enough for many practical appli-
cations. To obtain wavelet filter banks with higher degrees of freedom, infinite
impulse response (IIR) filters have been used to construct wavelet filter banks with
some of the desired properties [7-12]. Among the existing IIR wavelet filter banks,
wavelet filter banks composed of allpass filters are attractive [7, 9, 10, 12], which
can realize both of orthogonality and symmetry.

Allpass filter is a computationally efficient versatile signal processing building
block and quite useful in many applications [13]. Allpass filter possesses unit
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magnitude at all frequencies (see Appendix) and is a basic scalar lossless building
block. The interconnection of allpass filters has found numerous applications in
practical filtering problems, such as low sensitivity filter structures, multirate fil-
tering, filter banks and so on [7, 10, 12, 13]. The phase approximation of allpass
filters has been also discussed in [13-15].

The lifting scheme proposed by W. Sweldens in [16, 17] is an efficient tool for
constructing second generation wavelets, and has advantages such as faster imple-
mentation, fully in-place calculation, reversible integer-to-integer transforms, and so
on. It has been proved in [18, 19] that every FIR wavelet filter bank can be
decomposed into a finite number of lifting steps, thus this allows the construction of an
integer version of the wavelet transform. Such integer wavelet transforms are invert-
ible, and then are attractive in lossless coding applications. Due to these properties, the
lifting implemantation has been adopted in the international standard JPEG2000 [5].
Conventionally, the lifting scheme is often used to construct a class of biorthogonal
wavelet filter banks. It has been shown in [18] that orthogonal wavelet filter banks can
also be realized by the lifting scheme. However, it is not always possible for IIR wavelet
filter banks to be decomposed into a finite number of lifting steps.

In this chapter, we discuss several classes of wavelet filter banks by using allpass
filters. Firstly, we describe two classes of orthogonal wavelet filter banks composed of
two real allpass filters or a single complex allpass filter. We consider design of the
proposed orthogonal wavelet filter banks without or with symmetry, respectively, and
give the maximally flat solutions, where the orthogonal symmetric wavelet filter banks
using real or complex allpass filter are corresponding to half sample symmetric (HSS)
and whole sample symmetric (WSS) wavelets, respectively. Next, we present two
classes of wavelet filter banks based on the lifting scheme with two lifting steps only.
By using real allpass filters in the lifting steps, we can obtain one class of causal stable
biorthogonal wavelet filter bank and another class of orthogonal wavelet filter bank, all
with approximately linear phase response. In addition, we show some design examples
to demonstrate the effectiveness of the proposed method.

2. Two band wavelet filter bank

It is well-known [1-4] that wavelet basis can be generated by two band filter
bank shown in Figure 1. In Figure 1, Ho(z) and H;(z) are analysis filters, and Go(2)
and Gi(g) are synthesis filters. The relationship of input X(z) and output Y(z) of the
filter bank is given by

Y(z) = %{Ho (2)Go(z) + Hi(2)G1(2) }X(2)
@
+ % {Ho(—2)Go(z) + H1(—2)G1(2) } X (—=).

Hy(2) Go(z)

X(2) Y(z)

H(z) G1(2)

Two band wavelet filter bank. X (z) is input and Y (2) is output. Hy(z), H, (2) ave analysis filters and
Go(2), G4 () are synthesis filters.
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Therefore the PR condition is
{ Ho(2)Go(z) + H1(2)G1(z) = cz! @)
Ho(—2)Go(z) + Hi(—2)G1(z) = 0’

where ¢ is constant and I is integer.

One desirable property for wavelets is orthogonality, which requires the filter
bank is orthogonal, i.e., [Ho (¢)| = |Go (¢)| = |H1(e/"=*))| = |Gy (e /).
Another desirable property is symmetry, i.e., the wavelet basis is symmetric or
antisymmetric. It requires all filters in the filter bank to possess exactly linear phase,
whose impulse responses are symmetric or antisymmetric.

3. The proposed orthogonal wavelet filter banks using allpass filters

In this section, we describe several classes of orthogonal wavelet filter banks
without or with symmetry. The proposed classes of orthogonal wavelet filter banks
are composed of two real allpass filters or a complex allpass filter.

3.1 Orthogonal wavelet filter banks without symmetry

In some applications of signal processing, for example, speech and acoustic
signal processing, wavelet filters are required to have minimal phase response
rather than exactly linear phase. Therefore, wavelet basis is not necessarily sym-
metric or antisymmetric. In the following, we discuss two classes of orthogonal
wavelet filter banks without symmetry [20].

3.1.1 Filter bank using veal allpass filters

We firstly consider a pair of IIR filters Hy(z) and H;(z) that are based on a
parallel connection of two real allpass filters as shown in Figure 2, i.e.,

Ho(®) = 5 {Aw, () -+, ()}
, 3)
He) =5 {4 ) =4, )

where K is integer, Ay, (2) and A, (z) are real allpass filters of order N; and N,
respectively. Let the synthesis filters Go(z) = Ho(z 1) and G1(z) = H1(z 1), then the
PR condition in Eq.(2) is satisfied.

¥

Any (2%)

A A

Any(22) o2k

Figure 2.
Filter bank using real allpass filters. An, (2), An, (2) are real allpass filters of order N, and N,. Hy(z), H,(2)
are lowpass and highpass filters.
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From Eq.(3), we have

Ho(s) = 3 An, () {An () +2 %1}, ()

where Ay (2) is a real allpass filter of order N = N; + N>, and defined as

N
a,z"
A —
Anle) = ) v ah )
ANZ (Z) %
a,z—"
n=0

where a,, is real coefficient, and a¢ = 1.
Let 8(w) be the phase response of Ay(z), the magnitude responses of Ho(z) and

H;(2) are given by
|Ho (¢)| = | cos (@—i— <I<+%>w>|

|Hy (¢°)] = | sin <@+ (I(Jr%)w)I |

It is clear that the magnitude responses satisfy |Ho (¢”)| = |H1(e/*~))| and the
following power-complementary relation;

(6)

|Ho(¢) | + [Hi(é”)]" =1, @)

which means that the filter bank is orthogonal.
For Hy(z) and H1(2) to be a pair of lowpass and highpass filters, the desired
phase response of Ay(z) is given by

04(w) = — <K+;>a) = —10, (8)

where 7 = K + 3. From the regularity of wavelets, it is known that an additional
flatness condition is required to impose on Hy(z), i.e.,

o*|Ho (¢?)]

o =0 (k=0,1,--,L—1), )

w=rn

where L is integer. Hence, the resulting wavelet function will have L consecutive
vanishing moments. This flatness condition can be obtained if Ho(z) contains L
zeros located atz = —1.

For the maximally flat filters, the closed-form formula is given by

N\ N-7—i+1
a, = —_— 10
(n)H T+1 (10)

Once a set of filter coefficients a,, are obtained, we compute poles of Ay (z) and then
assign the poles inside the unit circle to Ay, () as its poles and the poles outside the unit
circle to A, (z) as its zeros. Therefore, we can obtain causal stable analysis filters Ho(2)
and H;(z), then the synthesis filters Go(z) and G1(z) are anti-causal stable.
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In many applications of signal processing, frequency selectivity is also thought of
as a useful property from the viewpoint of signal band-splitting. However, regular-
ity and frequency selectivity somewhat contradict each other. For this reason,
design of Hy(z) that has the best possible frequency selectivity for the given flatness
condition has been also discussed in [20].

Example 1: We consider design of filter banks using two real allpass filters with
N; =N; =2and K = 0. By setting L = 9, 5,1, we have designed Hy(z) by using the
design method proposed in [20]. The magnitude responses are shown in Figure 3,
and the scaling and wavelet functions are shown in Figure 4, respectively. When
L =9, it is seen that Hy(z) is the maximally flat filter, and it is the elliptic filter if
L =1. Itis clear in Figure 3 that the magnitude error increases with an increasing L,
and in Figure 4 that the scaling and wavelet functions decline more rapidly.

3.1.2 Filter bank using complex allpass filter

We consider a pair of Hy(z) and H1(g) using a single complex allpass filter as
shown in Figure 5, i.e.,

HO(Z) = %{AN(Z) +AN(Z)}
,1 L (11)
Hi(e) =5 {An(e) — Ante)

where Ay(z) and Ay (z) are complex allpass filters of order N, and their coeffi-
cients are mutually complex conjugate. Let Go(z) = Ho(z ) and G1(z) = Hi(z})
similarly. From the orthogonality, Ay (z) and Ay(z) must satisfy [7]

An(z) = HANn(—2), (12)

which means that if a is a pole of Ax(z), then —a* is a pole of An(z) also.
Consequently, Ay (z) has a pair of poles (a, —a*) or a single pole jf, where f is real,
a is complex and a* denotes the complex conjugate of a.

CIT\
o
I

0

2

E -

L

220 ---- =9

o

a1 L

4 — =5
_40_

) —— L=

=

=

=

V)

<

=

<:lb
(=
I

0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

Figure 3.
Magnitude responses of H,(2) in example 1.
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Scaling and wavelet functions in example 1.
> An(z) Ho(z)
172
—
172
" An(z) 2 D Hi(z)

Figure 5.
Filter bank using complex allpass filter. Ay (z), Ay () are complex allpass filters of order N. Ho(z), H, (z) are
lowpass and highpass filters.

From Eq.(11),
Ho(z) = %AN(Z){AZN(Z) +1, (13)

where A,y (z) is a complex allpass filter of order 2NN, and defined by

CAn(®) @ o ean{E 5 i (B Y

T2 e NN 2 2 N2 2n+1 21’(14)
An@) T N g (5 2} — 5 e + 20

AZN (Z)

where n = £7/4 or 37 /4, a, isreal and ag = 1/2, Ny =N/2and N, =N/2 -1
if N is even, and Ny = N; = (N —1)/2if N is odd.
Therefore, the phase response 8(w) of A,y (z) is given by

N
2 " 2
0(w) = 2n + 2tan -1 Lnzo2n11 €08 (2 + 1)o) R (15)

SN g, cos (2nw)

and the magnitude responses of Hy(z) and Hi(g) are

|[Ho ()| = | cos @I
o(w) (16)
|Hy(¢)| = | sin > |

which satisfies the power-complementary relation in Eq.(7).
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The closed-form formula of the maximally flat filters can be given by

ni—-N-1
an=Cp | | ———> (17)
g i+ N

where Cy, = 1 and Cy,41 = tany. Therefore, we compute poles of A,y () and
assign the poles inside the unit circle to An(2) as its poles to obtain causal stable
analysis filters Ho(z) and H;(z). Thus, the synthesis filters Go(z) and G1(z) are anti-
causal stable. Design of H(z) having the best possible frequency selectivity for the
given degrees of flatness has been also discussed in [20].

Example 2: We consider design of filter banks using a complex allpass filter with
N =4and L = 8,4,0. We have designed Hy(z) by using the design method
proposed in [20]. The magnitude responses are shown in Figure 6, and the scaling
and wavelet functions are shown in Figure 7, respectively. It is seen in Figure 6 that
Hy(z) is the maximally flat filter if L = 8, and the elliptic filter if L = 0 that does not
have any zero located at z = —1 and is different from that in Example 1.

3.2 Orthogonal symmetric wavelet filter banks

In many applications of image processing, digital filters are required to have
exactly linear phase. Therefore, the impulse responses of wavelet filters need to be
symmetric or antisymmetric, and the generated wavelet bases are symmetric or
antisymmetric also. In the following, we discuss two classes of orthogonal symmet-
ric wavelet filter banks composed of allpass filters: HSS [21] and WSS [22] wavelet
filter banks.

3.2.1 Filter bank using veal allpass filters

To obtain exactly linear phase, we constitute a pair of Hy(z) and H1(z) in
Figure 2 by using an allpass filter Ay(z) as

0

=

E L

73

2 20F ---- =8

o

(a8 N

% —— =4
_40_

a —— L=0

=

E

=

W]

=

=

0 0.1 0.2 03 04 0.5
NORMALIZED FREQUENCY

Figure 6.
Magnitude responses of H,(2) in example 2.
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Scaling and wavelet functions in example 2.

)= ()55 )
(18)

)

Let O(w) be the phase response of Ay(z), then the frequency responses of Hy(z)
and H;(z) are given by

Ho(¢%) = e 7(KH)7 cos {Q(Zw) + (K + %) w}

Hy(¢) :je_j(lﬂ%)”’ sin {9(2(0) + (K + %) a)}

It is clear in Eq.(19) that Hy(z) and H;(z) have exact linear phase response and
satisfy the power-complementary relation in Eq.(7). The filter has a group delay of
K + 3, and its impulse response is HSS. Therefore, the design problem of the
wavelet filter banks becomes the phase approximation of allpass filter Ay(z). For
Hy(z) and H1(z) to be a pair of lowpass and highpass filters, the desired phase
response of Ay(2) is

04(w) = — (I; + %)w = —tw, (20)

where 7 = § + 1. The filter coefficients a,, of the maximally flat filters can be
computed by Eq.(10). Design of wavelet filters having the best possible frequency
selectivity for the given degrees of flatness has been also discussed in [21]. It has
been pointed out in [21] that we must choose K = -+, —7, — 6, —3, —2,1,2,5,6, -
if NisoddandK = ---, — 5, — 4, —1,0,3,4,7, --- if N is even, in order to obtain
a pair of reasonable lowpass and highpass filters to avoid the undesired zero and
bump.

Example 3: We consider design of the maximally flat wavelet filter banks with
N =4and L = 9. We have designed Ay(z) with K = 0 and K = 1. The magnitude
responses of Ho(z) are shown in Figure 8. It is seen in Figure 8 that Hy(z) with
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Figure 8.
Magnitude responses of Ho(2) in example 3. Ho () has an undesired zero and bump when K = 1.

K =1 has the undesired zero and bump nearby @ = z/2. The generated scaling and
wavelet functions are shown in Figure 9 respectively. It is seen in Figure 9 that the
scaling functions are symmetric, while the wavelet functions are antisymmetric.
Although Hy(z) with K = 0 and K = 1 have the same degrees of flatness, it is seen
that the scaling and wavelet functions of K = 1 decline more slowly than that of

K = 0, because of the undesired zero and bump. Therefore, we should not choose
K = 1in this case.

3.2.2 Filter bank using complex allpass filter

We consider again Ho(z) and H;(z) using a complex allpass filter in Figure 5,

12 B — 1.2 _* :
| o osf .
5 g 17 82 C | ]
Bl ] O L . ]
s i L 04r '. i
= 1 2 r | 1
2 04 1 5 0 |
r , d
2 1 ' f (A ]
= I | ®"-04F o .
Lg 07 A g C I :‘I b
i vV 1 0.8 F L .
04 | 7 I ]
T [ ] 2 | [ B
-10 -5 0 5 10 -10 -5 0 5 10
t t
Figure 9.

Scaling and wavelet functions in example 3. The symmetric point is dependent on the group delay of K + %,
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1

- Hor )
2
o1 - (21)

Hi(e) = 5 {An(e) — Anto) }
To obtain exactly linear phase, Ay(z) and Ay(z) must satisfy
- 1
Ay(z) = — . y7)

which means that if a is a pole of Ay (z), then 1/a is a pole of Ay(2) too. In
addition to orthogonality, Ay (2) has a quadruplet of poles (a, —a*,1/a, —1/a*) or a
pair of poles (j3,1/jf). Therefore, we have

a9 +jag + axg® + - + a™ * +jagN 7 + aeg

. . b
ag —ja,zt+ag2 + - +ax N2 —ja g N+ 4 gz N

An(z) =z (23)

where N is even, a,, is real and 49 = 1. The phase response 8(w) of Ay (2) is given by

O(w) =n+2¢(w), (24)

where if M = N /2 is even,

-1 Zy:/gil“znﬂ cos(M —2n — 1w

¢(w) = tan M/2—1 > (25)
uTM + Z Ay COS (M - 271)(0
n=0
and if M = N/2 is odd,
am (M-3)/2 M- —1
o) = tan L g o cos B2 Do (26)
Ym0 @ cos(M—2n)w
Thus, we have
Hy(¢”) = cosO(w
o(¢”) cosf(w) o
Hy(¢”) = ¢7” sinO(w)

It is clear that Ho(z) and H1(g) have exactly linear phase responses and satisfy
the power-complementary relation in Eq.(7). Its impulse response is WSS. There-
fore, the design problem of wavelet filter banks becomes the phase approximation
of An(z) in Eq.(23).

For the maximally flat filters, the closed-form formula is given in [22] by

N
Ay = Cn ( >, (28)
n
where Cy, = 1and Cj,,1 = — tan 4. Design of wavelet filters having the best

possible frequency selectivity for the given degrees of flatness has been also
discussed in [22]. It has been pointed out in [22] that we must choose # = +x/4 if M
is even and y = +3x/4 if M is odd.

Example 4: We consider design of the filter banks with N = 6 and n = —37/4.
We have designed Ay (z) with L = 0, 2, 4, 6 by using the design method proposed in
[22]. The magnitude responses of Hy(z) are shown in Figure 10, and the scaling and
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Figure 10.
Magnitude responses of Ho(2) in example 4.
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Scaling and wavelet functions in example 4.
wavelet functions are shown in Figure 11, respectively. It is seen in Figure 10 that

Hy(z) with L = 6 corresponds to the maximally flat filter, and Ho(z) with L = 0 is
the minimax filter that has no zero located at z = —1. In Figure 11, the scaling and
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wavelet functions are not continuous because the regularity condition is not satis-
fied when L = 0, and become more smooth with an increasing L. Both the scaling
and wavelet functions are symmetric.

4. Lifting-based wavelet filter banks using allpass filters

The lifting scheme proposed in [16] and [17] is an efficient tool for constructing
second generation wavelets, and has advantages such as faster implementation,
fully in-place calculation, reversible integer-to-integer transforms, and so on. It has
been proved in [18] and [19] that every FIR wavelet filter bank can be decomposed
into a finite number of lifting steps, thus this allows the construction of an integer
version of the wavelet transform. Such integer wavelet transforms are invertible,
and then are attractive in lossless coding applications. Conventionally, the lifting
scheme is often used to construct a class of biorthogonal wavelet filter banks. It has
been shown in [18] that the orthogonal wavelet filter banks can also be realized by
the lifting scheme. However, it is not always possible for IIR wavelet filter banks to
be decomposed into a finite number of lifting steps. For example, it is difficult to
realize the IIR orthogonal wavelet filter banks discussed in Section 3 by using a
finite number of lifting steps.

Now, we restrict ourselves to the lifting scheme with two lifting steps [10] as
shown in Figure 12. Let Hy(z) and H1(z) be a pair of lowpass and highpass filters,

1
froe -3t o), -
Hi(z) =2~ % — Q(2%)Ho(2)

then Go(z) = H1(—=2) and G1(z) = —Ho(—=%). It is clear in Figure 12 that the PR
condition is structurally satisfied. Therefore, the design of Hy(z) and H;(z) becomes
how to determine P(z) and Q(2). In the following, we describe two classes of near
symmetric wavelet filter banks by using real allpass filters in the lifting scheme:

causal stable biorthogonal wavelet filter bank [23] and orthogonal wavelet filter
bank [24].

4.1 Causal stable wavelet filter banks

We use two real allpass filters in lifting steps, i.e., P(z) = Ay, (2) and Q(z) =
An, (%), and thus,

{ Ho(z) = % {71+ Ay, (27) } . (30)
Hi(z) =2 % — An,(z*)Ho ()

| 2" t I 1 Iy

P(z) Q2(=) Q=) P(z)
| 12t e
L~

Figure 12.
Lifting scheme with two lifting steps [10]. X (2) is input and Y (z) is output. P(z), Q(z) ave filters.
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Let 01(w) be the phase response of Ay, (z), the frequency response of Hy(z) is
given by

H, (gf"’) = gf(wf(lwr%)w) cos <@ + <K1 + %) a)). (31)
For Hy(z) to be lowpass filter, the desired phase response of Ay, () is
1
Ora(w) = — <I<1 + 5)“’ - (32)

where 71 = K7 + 3. According to Appendix, the order of Ay, (z) is required to be
N1 = K; or N7 = K; + 1 to obtain causal stable allpass filter.

Ideally, Hy (ej‘”) = 0 in the stopband of Hy(z), then H; (ej‘”) = ¢ 7% having
linear phase response from Eq.(30). In the passband of Hy(z), Ho (¢%) = ¢7a+1
ideally, thus,

H, (e]a}) _ eijsz _ ejHZ(Z(u)efj(ZKﬁrl)w

(00 , (33)

where 6;(w) is the phase response of A, (z). Therefore, in the stopband of Hy(z),
the desired phase response of Ay, (z) is

1
O (w) = <K1 — K, + 2>a) = —nw, (34)

where 1, = K, — K1 — % Similarly, the order of Ay, (2) is required to be N, =
K; — K; or N; = K; — Ky — 1 to obtain causal stable allpass filter. Therefore, once
Nj and N, are given, we can obtain causal stable wavelet filter banks by appropri-
ately choosing K; and K,. The maximally flat filters can be designed by using
Eq.(10). Hy(2) and H;(z) have approximately linear phase response.

Example 5: We consider design of the maximally flat wavelet filter banks with
N; = N, = 6. We have designed Ay, (z) with K; = 5, and the magnitude response of
Hy(z) is shown in Figure 13. We then designed Ay, (z) with K, = 11 and K; = 12,
and the magnitude responses of H;(z) are shown also in Figure 13. It is seen
in Figure 13 that H;(g) with K, = 11 has a large overshoot nearby w = /2.

To avoid this overshoot, we should choose K, = N, + K; +1if Ky =N; —1
and K, = N, + K; if K; = N;. The scaling and wavelet functions generated by
analysis and synthesis filters with K; = 5 and K, = 12 are shown in Figure 14
respectively.

4.2 Orthogonal wavelet filter banks
The above-mentioned causal stable wavelet filter banks are biorthogonal (not

orthogonal). Here we discuss a class of orthogonal wavelet filter banks using the
lefting scheme. We use P(z) = Ay(z) and Q(z) = An(z 1), then,

{ Hole) =3 {= 0 + An(2)} (35)
Hi(z) =z %2 — AN(z72)Ho(2)
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Figure 13.
Magnitude responses of Ho(2) and H,(2) in example 5.
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Scaling and wavelet functions genevated by analysis and synthesis filters in example 5. It is because the wavelet
filter bank is biorthogonal, but not orthogonal.

Let O(w) be the phase response of Ay(z), the frequency response of Hy(z) is the
same as in Eq.(31), thus the desired phase response of Ay(2) is

04(w) = — (Kl + %)w = —tw, (36)

where 7 = K; + % To be orthogonal, we set K, = 0 and have

Hife) =1 An(e ) o {e 20 1 Ay()} =2 {1 - 2 ani ), (3)
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whose frequency response is

Hy (67) = je /(7 (K111)2) gjn (9%“’) + (K1 + %) w) (38)

It is clear that the magnitude responses satisfy |Ho(¢”)| = |H1(e/"~))| and the
power-complementary relation in Eq.(7). Therefore, this class of wavelet filter
banks is orthogonal and both Hy(z) and H;(z) have approximately linear phase
response. Design of this class of orthogonal wavelet filter banks has been discussed
and applied to lossy to lossless image coding in [24].

Example 6: We consider design of the maximally flat orthogonal wavelet filter
banks with N = 2,4, 6. We have designed Ay(z) with K; = N — 1. The magnitude

MAGNITUDE RESPONSE
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Figure 15.
Magnitude responses of H(z) in example 6.
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Scaling and wavelet functions in example 6.
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responses of Hy(z) are shown in Figure 15. The generated scaling and wavelet
functions are shown in Figure 16, respectively. It is seen in Figure 16 that the
wavelet functions are near symmetric.

5. Conclusions

In this chapter, we have proposed several new classes of wavelet filter banks
with some properties of orthogonality, symmetry and causal stablity by using
allpass filters, which are potential options for readers to choose wavelet basis in
practical applications. As shown in Table 1, first class of wavelet filter banks in
Section 3.1 is orthogonal, but asymmetric, its analysis filters is causal stable. Second
class of wavelet filter banks in Section 3.2 is orthogonal and symmetric, but not
causal. Third and fourth classes of wavelet filter banks are based on the lifting
scheme. Third class in Section 4.1 is biorthogonal, causal stable and near symmetric,
while fourth class in Section 4.2 is orthogonal and near symmetric, but not causal.
There is no solution to all of orthogonality, symmetry and causal stablity. The
wavlet filter banks using allpass filters have been extended to Hilbert transform pair
of wavelets [25], 2D wavelet filter banks [26], and applied to lossy to lossless image
coding [27-30] and scalable video compression [31]. It is possible also to extend
them to higher dimension and irregural signal processing and to apply them to
wavelet denoising, image fusion and so on.

Filter Bank Class Sec.3.1 Sec.3.2 Sec.4.1 Sec.4.2 D-8/8 D-9/7

Filter Type IIR IIR IIR IIR FIR FIR

Orthogonality o) O X @) O X

Symmetry X O A A X O

Causal stablity A X @) X O O
Table 1.

Comparison of the proposed classes of wavelet filter banks with the conventional wavelets D-8/8, D-9/7 in [1].
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DWT discrete wavelet transform
PR perfect reconstruction

FIR finite impulse response
IIR infinite impulse response
HSS half sample symmetric
WSS whole sample symmetric
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Appendix

Digital allpass filter is a computationally efficient signal processing building
block and quite useful in many signal processing applications. One of the most
widely used applications is phase or delay equalizer. Allpass filter possesses unit
magnitude at all frequencies and is a basic scalar lossless building block. The inter-
connection of allpass filters has found numerous applications in practical filtering
problems, such as low sensitivity filter structures, multirate filtering, filter banks
and so on [13].

The transfer function of an Nth-order allpass filter is defined as

N
AN(Z) 727N Zn:Oﬂ"Zn
- b
ZnNZO“: z"

where a, = a,, +ja,; is a complex coefficient in general, and 4, denotes the
complex conjugate of a,,. When a,; = 0, a,, is a real coefficient and An(2) is a real
allpass filter. Thus the real allpass filter is a special case of complex allpass filter. All
poles and zeros of Ay (z) occur in mirror-image pairs with respect to the unit circle,
and then the frequency response Ay (¢/) exhibits unit magnitude at all frequencies,

(39)

i.e., [An(¢“)| = 1 for all w. The phase response of Ay (z) is given by

1 ZnN:O {anr sinnw + a,; cosnw}

SN o {@nr cOSRO — Ay sinnw}

0(w) = —Nw + 2tan (40)

If all poles locate inside the unit circle, then Ay (z) is causal stable. The phase
response decreases monotonically with an increasing frequency and 6(z) =
0(—n) — 2Nz If An(2) is real allpass filter, 6(0) = 0 and 6(z) = —Nz. When one
pole locates at the origin, it is seen that Ay(z) =z 'An_1(z) due to ay = 0. Then
z N is a special case of Ay(z) if all poles locate at the origin. When k poles locate
outside the unit circle, we can divide Ay(z) into two causal stable allpass filters
An_1(z) and A (2), i.e.,

AN(Z) = . (41)

The phase response 0(w) of Ay(z) is the phase difference between Ay_;(2z) and
Ai(2), and 8(z) = 8(—n) — 2(IN — 2k)z. The design problem of allpass filters to
approximate the specified phase response in the Chebyshev sense has been
discussed in [14] and [15].
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A Wavelet Threshold Function for
Treatment of Partial Discharge
Measurements

Caio F.F.C. Cunha, Mariane R. Petraglia,
André T. Carvalho and Antonio C.S. Lima

Abstract

Based on the wavelet transform filtering theory, the chapter will describe the
elaboration of a wavelet threshold function intended for the denoising of the partial
discharge phenomenon measurements. This new function, conveniently named
Fleming threshold, is based on the logistic function, which is well known for its
utility in several important areas. In the development is shown some variations in
the application of the Fleming function, in an attempt to identify the decomposition
levels where the thresholding process must be more stringent and those where it
can be more lenient, which increases its effectiveness in the removal of noisy
coefficients. The proposed function and its variants demonstrate excellent results
compared to other wavelet thresholding methods already described in the
literature, including the famous Hard and Soft functions.

Keywords: wavelet transform, threshold function, partial discharge,
signal denoising

1. Introduction

The analysis of the Partial Discharges (PD) phenomenon, which manifests itself
in the existing imperfections into the insulation of high voltage equipment have
received global acceptance as an important tool for the predictive diagnosis of the
operational conditions of these, allowing taking measures that can safeguard both
the material and the power supply quality of the electrical system.

PD are short duration impulsive signals and, consequently, these can be detected
in a wide frequency range, from a few kHz to GHz. Normally, there is a direct
relationship between the frequency range where there is a higher incidence of PD
pulses and the type of high-voltage equipment evaluated, e.g. transformers and
generators usually emit pulses from a few tens of kHz up to about 30 MHz [1],
whereas Gas Insulated Substations (GIS) are affected by very fast pulses ranging
from 300 MHz to 3 GHz and for cables the spectrum covers frequencies from
300 MHz to 1 GHz.

Figure 1 shows two examples of measured PD pulses in two different HV
equipment, a GIS and a hydro generator. Note the marked white noise presence.
The pulses normally have an exponentially damped oscillatory shape or only an
exponentially damped shape [2].
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Figure 1.
PD pulses measured in: (a) GIS; (b) Hydro generator.

The proper diagnosis of equipment is closely related to the peak amplitude and
shape of the pulses detected. Therefore, it is important to preserve the amplitude
characteristics of the signal (especially the peaks), providing higher Signal to Noise
Ratio (SNR) and lower Amplitude Error (EA).

The application of FFT and STFT filtering is not as effective in the treatment of
non-stationary, transient, and stochastic signals as the PD [3], since these transforms
do not allow a location in the time and frequency domain in the same way as the
wavelet transform does [4, 5] (with better resolution in frequency and worse resolu-
tion in time for the low frequency components of the signal; and worse resolution in
frequency and better resolution in time for the high frequency components of the
signal). Therefore, the performance of these methods becomes limited in comparison
with the wavelet denoising, which presents a capacity of self-adaptation to the signal.

Partial discharges, almost entirely, are electrically detected and quantified, expos-
ing them to the extensive noise interferences that may compromise the PD signals
measurement, limiting the diagnosis accuracy. Different signal processing tools have
been used to extract the PD signals from these noise sources; among them, it is possible
to highlight the Wavelet Transform (WT). The filtering by wavelet processing is
recommended in the extraction of PD signals immersed in Gaussian noise [1, 6].

An efficient application of wavelet processing depends on the careful selection
of the parameters that will concentrate the coefficients on the most suitable
decomposition levels to minimize the PD signal information loss. Among these, we
have the applied WT, the number of decomposition levels, the wavelet functions
used in each of these levels, the method of estimating the threshold value of the
obtained coefficients and the threshold function.

The choice of most of these parameters has already been widely explored in
several works meant to PD processing [2, 6-13]. However, with respect to threshold
functions, most studies do not focus on PD signals denoising but on audio signals
[14-18], Electrocardiogram (ECG) [19-21] or images [22-28]. Therefore, there is a
lack of a dedicated threshold function to improve the PD pulses denoising, in order
to increase the precision in the diagnosis of High Voltage (HV) equipment.

Based on the WT filtering theory, this chapter will be described the development
of a wavelet threshold function aiming to improve the noise reduction in PD mea-
surements. The logistic function serves as an inspiration to this new function [29],
which is well known for its usefulness in numerous areas. Since it is customary to
associate functions of this type with something that refers them to the name of their
developers (e.g., [25]), it was designated as Fleming threshold function.

The denoising performance of the proposed threshold function was compared
with the traditional Hard and Soft functions and with twelve other thresholding
functions. For a fair analysis of the filtering results, were used 2064 simulated and
measured PD pulses contaminated with uniform white noise, Gaussian white noise,
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and Amplitude Modulated (AM) noise. The results showed that our proposal is able to
overcome, qualitatively, and quantitatively, all the confronted functions.

2. Wavelet domain detection

Noise degrades the accuracy and precision of analysis, in addition to reducing
the detection limit of the instrument applied in the PD measurements. Often the
WT is a tool designed to attenuate continuous random noise (white noise), because
after the decomposition of a signal in the wavelet domain can be noted that the
average density of the coefficients is inversely proportional to the dyadic scale 1/2/
(j indicates the level of decomposition), i.e., half of the number of extreme local
coefficients do not spread from a 1/2/ scale to the next 1/2/*! scale, distributing it
uniformly across the scales. As the wavelet coefficients distribution pattern of the
PD signal (which tends to have its energy concentrated in few decomposition
levels) differs from the noise pattern, it becomes easy to identify and separate the
PD signals from the noise [30-32]. However, in wavelet denoising, the noise atten-
uation occurs not only to the white noise but also to the noise with frequency
components that do not match the frequency components of the PD pulses.

Basically, the wavelet shrinkage denoising process involves three steps [13, 31]:

1.Determine the WT decomposition tree (discrete WT, wavelet packet
transform, stationary WT or dual-tree complex WT) to be applied, the
number of decomposition levels J and the wavelet function that will be
employed on each of the j levels (where j = 1,2, ---,]), and then perform the
decomposition of the analyzed signal into its wavelet coefficients;

2. Calculate the threshold values using one of the threshold selection rules, which
depend on statistical estimation of the noise level present in the signal. Apply the
calculated value in a threshold function to thus reduce the coefficients of the noise
figure and preserve the signal coefficients of interest, in our case the PD pulse;

3.Reconstruct the signal by applying the Inverse Wavelet Transform
(corresponding to the decomposition tree selected in the first step) in the
threshold coefficients, to obtain the filtered signal in the time domain.

Signal

(pre-processed orno)

Wavelet Transform

(DeLumpmllwll Iree) \
“Number of Decomposition Wavelet

_ Levelss | avels J Decomposition
[ Wavelet Function of each |

Level j Threshold Value of each

‘ C mfﬂmnls Level j

TIhresholding \ W

’ ’ | of each Level j

| Inverse Wavelet
Transform

-

‘ Denoised Signal

Figure 2.
Signal denoising steps by wavelet transform.

313



Wavelet Theory

Figure 2 illustrates each of these steps involved in the wavelet denoising
processing of a digitalized signal.

As several parameters are involved, they should be carefully selected according
to the signal characteristics, in order to maximize their wavelet coefficients above
the noise level. Thus, filtering performance is closely related to each of these
parameters and some of these will have a greater influence on the quality of
the result. The determination of these parameters shows to be an optimization
challenge [33]. In this chapter, we will focus our attention on the improvement of
the threshold function applied in the second step.

3. Fleming threshold function

In most of the wavelet denoising literature, especially those focused in the
treatment of PD signals, the choice of the threshold function normally falls between
the Hard and the Soft functions. Moreover, it is well known that for PD pulse
filtering the Hard function tends to preserve more of the signal information, pro-
viding a higher SNR and a lower Amplitude Error (AE). However, the Hard esti-
mate has discontinuities, being not differentiable, which ends up causing instability
problems and sensitivity to small changes in the data pseudo-Gibbs effect. The Soft
function is weakly differentiable and produces a high attenuation of the coefficients
and, therefore, the reduction of the amplitude in the resulting signal.

In an attempt to get around these problems, many alternatives are being pro-
posed. The main idea is to generate a high-derivative order thresholding function,
which contributes to its use in optimization algorithms that look for the optimal
parameters to be applied in the thresholding of each signal [34]. Therefore, the
function becomes adaptable to the signal to be processed, improving the quality of
the denoised signal.

When analyzing the threshold functions applied, whether in the area of PD,
audio, ECG, or image processing, it is remarkable that those seek improvements by
combining both, the preservation properties of the coefficients and magnitudes
provided by the Hard function, as well as the differentiation and smoothness pro-
vided by the Soft function. In image processing, the smoothness property is inter-
esting so that the resulting image shows more pleasant contours. In signal
processing, such as audio, ECG, and PD pulse processing, it is important to achieve
better preservation of signal magnitude (peak) and signal noise ratio.

For this reason, many authors have explored functions that correspond to an
interpolation of the Soft and Hard alternatives. As an example, it is possible to
mention functions such as: the Garrote described by Nasiri et al. in [19]; the Non
Negative Garrote described in [12]; the Adaptive Shirinkage showed by Partha Ray
in [35]; the Liu developed by Shan Liu in [16]; the Hui presented in [36]; Stein and
Semi-Soft shown in [12]; and the functions described by Zhang et al. in [37, 38].
However, the majority of the functions cannot adapt to the different signals due to
the fixed transition curve on the threshold value. In these functions, there is still a
greater tendency to smooth the coefficients than to preserve them, not realizing
that for PD signals it is appropriate for the function to be closer to the Hard them to
the Soft threshold function, but still preserving some of the smoothness (differen-
tiability) in the transition of the threshold value, which will allow an improvement
in the EQM and CC.

Following this line of reasoning, we propose a new threshold function similar to
the Hard but being differentiable for higher orders and being able to adjust to each
signal. This proposal is based on the well-known logistic function, shown in
Figure 2, widely used in artificial neural networks, demography, economics,
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probability, statistics, chemistry, etc. Eq. (1) represents the logistic function, where
H is the maximum value of the curve, a controls the slope of this curve and x
corresponds to the value of x at the midpoint of the sigmoid curve dictated by the
numerator value (Figure 3). When the x value tends to +oo the curve approaches H
and when it tends to —oo it approaches to zero.

H

- 1 + e—alx—x0) 1

fx)

Eq. (1) enabled us to develop the threshold function for filtering signals in such a
way that it circumvents the problems previously described. As the objective in the
thresholding process is to preserve the coefficients above the threshold value, it is
easy to see that the maximum value H will be the decomposed wavelet coefficient
wj (which corresponds to the variable x). Thus, the function will maintain sym-
metry when we vary the inclination constant ¢ of the curve. Finally, it is necessary
to move the function along the abscissa axis so that the graph shown in Figure 2
leaves the ordinate axis and stays over the threshold value, this is done by
subtracting the variable x from the value where we want to move the function (xo),
i.e., the value of the coefficients w;; must be subtracted from the threshold value 4.
By making these adaptations, we obtain the following threshold function:

@)k @j

= (2)
1+e*6(ﬂ)j,k*/1) 1+ef(*ﬂ’j,k+/1)

N5 (g Asc) =

For a more efficient implementation, in which it is not necessary to worry about
the fact that the coefficient wj, is positive or negative, Eq. (2) can be rewritten
using the signum (sign) function, which returns +1 if the value is positive and —1 if
the value is negative. Thus, we have:

@yl

1+ < ((—sign(@jp) <oy ) +4) (3)

ﬂf(a)j,k,l,c) =

With high ¢ values, the curve inclination on the threshold point is such that it
approaches the Hard function, but with a smoother (differentiable) transition. For
low ¢ values, the inclination of the function will act with less intensity on the
coefficients below the threshold value and with greater intensity on the coefficients
above this value, i.e., a large part of noisy coefficients may pass and there will be
information losses on those coefficients that represent the signal of interest, in our
case the PD pulse. With the appropriate choice of the ¢ value for each processed
signal, it is possible to obtain a significant improvement in the result of the PD
wavelet denoising in relation to the Hard and the Soft functions.

Considering a threshold value 4 = 1, Figure 4 shows the behavior of the pro-
posed threshold function (called the Fleming function) for different ¢ values (3, 10,
20, 30, 50, 80, 100 e 200). With very low values of ¢ there is the possibility of

H

Jix)

Xo X

Figure 3.
Logistic function.
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Behavior of the Fleming threshold function to A = 1.

""" Coefficients

008 | —Hard

— Soft

0.06 | | s Fleming (\'aryingr]

Thresholded Coefficients

0.1 L L L L
0.1 -0.08 -0.06 -0.04 0.02 0 002 0.04 0.06 0.08 0.1
Coefficients

Figure 5.
Behavior of the Fleming threshold function to A = o, 05.

passing a large number of noisy coefficients, so it is indicated that the value of the
constant be greater than or equal to 5.

In a PD evaluation, most measurements provide signals with amplitude around
mV. Thus, if the WT technique is applied to filter the signals, its decomposed
coefficients will also be in the mV range and by using a threshold rule (in our case
scaledep) the threshold value 1 will be small and usually smaller than 1, mainly for
coefficients that contain more noise than the PD components. When we evaluate
the threshold function for a small threshold value (e.g., A = 0, 05), the accuracy
with which the coefficients are attenuated becomes lower, as illustrated in Figure 5.
Note that even for ¢ = 200, most of the noisy coefficients can pass, different than
what was seen for the threshold value 4 = 1.

One solution to overcome this problem was to adapt Eq. (3) according to the
threshold value when it is considered small (understand as small as 1< 0,5), by
simply changing the ¢ constant that controls the inclination proportionally to the 1
threshold values. With this, we can rewrite Eq. (3) as follows:
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Behavior of the modified Fleming threshold function to A = o0, 05.

Wj & .
if 1>0,5
1 4 ¢((sign(wa) xjx)+2) i
rlf (a)j,k, /1, C) - o (4)
L if 1<0,5

1 + /A ((~sign (o) xoe) +4)

thus, when 1< 0, 5 the lower the 1 threshold value, the greater the rigor in
discarding the coefficients (closer to the Hard function), with a significant
improvement in the function’s behavior, as shown in Figure 6.

Therefore, in Eq. (4) we have a function capable of adapting to different types of
wavelet coefficients, varying between the Soft and the Hard threshold functions
according to the ¢ inclination value defined. Thus, there is a need to define how
(and which) the inclination value should be applied to the coefficients.

3.1 Relevant wavelet coefficient identification

From the idea of identifying the most important coefficients to form the PD
signal, used for the SNRBWS method, we were able to perform a variant on the
threshold function. In this case, we chose to use kurtosis (K,,) as a statistical
measure of the probability distribution’s flatness [39] of the w;;, wavelet coefficient,
because the tapered this curve, the farther from the Normal probability distribution
(Gaussian), which is characteristic of the white noise presence. Therefore, kurtosis
will serve as an indicator to know if we have noisy coefficients (kurtosis close to 3)
or PD components (high kurtosis >3).

Figure 7 shows the detail coefficients at level j = 1 and the detail coefficients at
level j = 6 with their respective histograms. Notice that in Figure 7(a), formed
almost exclusively by noise components, the histogram is very close to the Normal
probability distribution, a fact that is confirmed by the kurtosis value equal to
2.9687; in the Figure 7(b) the coefficients have significant information about the
PD pulse and the histogram is more tapered (leptokurtic), moving away from the
Normal distribution, as indicated by the kurtosis value of 9.9612.

Then, to fulfill the task of identifying the most relevant coefficients to form the
PD signal, it is enough to assume the following the condition regarding the kurtosis
value: if the kurtosis of the coefficient is greater than 4, it must be considered
important and the threshold function will make use of a lower ¢ inclination
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Figure 7.
Wavelet coefficients and histograms of a veal PD pulse: (a) first detail coefficient (kurtosis = 2.9687); (b) sixth
detail coefficient (kurtosis = 9.9612).

constant, allowing the passage of more coefficients, otherwise it will be considered
as noisy coefficients and a much higher inclination constant must be assigned (in
case ¢ = 10%%), eliminating a greater amount of noise, which approximates our
function of the Hard. In equational terms, we have the Eq. (5):

Wje .
K, ) <4
1 +6102°((7:1;gn(wjk)><wj,k)+,l) if ”(wﬁk) =
Wje .
if A>0,5
@i =3 | T A G ¥
if K,>4
Gk if 1<0,5
1 + /A ((sign(@jp) xa0) +2)

®)
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4. Fleming threshold function

In order to perform the evaluation of the Fleming thresholding functions, we
took 2064 signals and submitted to the wavelet denoising processes. Among these
signals, we included real PD measurements from HV equipment and PD simulated
with different levels of uniform white, Gaussian white and AM noise (created of the
same way described in [40]). For each data, we compare the performance of our
proposal against the classical Hard and Soft thresholding, along with 12 other
thresholding functions mentioned in the Section 4.

In addition to thresholding, the wavelet shrinkage process also requires the
choice of the decomposition tree, the mother wavelet, the decomposition levels
number and the threshold value (1) estimation method. As our goal is to evaluate
only the thresholding functions performance, we change only these and keep fixed
the other wavelet parameters necessary to the signal filtering. We chose to use the
FWT structure, due to the ease of its implementation and because it is widely
applied in the treatment of PD signals. We use the SNRBWS method to select the
mother wavelet and the NWDLS method to find the decomposition levels number.
In the threshold value estimative, we chose the scaledep method [3, 40, 41].

Since the Fleming function depends on an ¢ inclination constant, which controls
how the decomposed wavelet coefficients are eliminated or attenuated, we also
compare the results for different values of this constant.

The comparisons were done using statistical parameters as Absolute Mean Error
(AME), Mean Square Error (MSE), Root Mean Square Error (RMSE), Correlation
Coefficient (CC), Normalized Correlation Coefficient (NCC), Energy Difference
(EnD), Signal to Noise Ratio (SNR), Signal to Noise Ratio Difference (DSNR),
Noise Level Reduction (NLR), kurtosis difference (Ak); and local similarity criteria
that involve maximum Magnitude Error (MEmax), minimum Magnitude Error
(MEmin), maximum Peak Time Variation (PTVmax), minimum Peak Time Varia-
tion (PTVmin) and Rise Time Variation (RTV). Some of these parameters are used
to form a fitness function (J,,), composed by global similarity criteria (cs,) and
local similarity criteria (cs;), that can determine the best filtering result. All these
criteria were described in [42].

4.1 Investigating the better inclination value ¢

In a first analysis, it was investigated, through the ] 5, fitness criterion, what is
the best ¢ inclination value to be used in each alternative of the Fleming
thresholding. Table 1 evinced that ¢ = 5 produces the highest amount of best results
per threshold function. In Table 2 both methods produce best results with a lower
constant, in case ¢ = 10 to Fleming and ¢ = 5 to Fleming 2. In this way, it is possible
to recommend not to use inclination values higher than 10.

Function Best J 5, results percentage

Inclination constant ¢

5 10 30 50 100 200 300 500 1000
Fleming 47,09 2500 8,96 4,12 363 1,50 1,07 1,16 7,46
Fleming 2 65,16 11,82 5,52 237 1,79 1,55 078 1,16 9,84

Table 1.
Best results percentage (by ] p,,) comparison between Fleming functions to various inclination constants.
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Function Mean ], results

Inclination constant ¢

5 10 30 50 100 200 300 500 1000
Fleming 2,71 3,12 1,02 0,09 0,73 0,49 0,07 0,93 0,96
Fleming 2 1,34 1,06 0,92 0,89 0,88 0,88 0,88 0,89 0,88

Table 2.
Mean value results (by ] o) comparison between Fleming functions to various inclination constants.

4.2 Comparison between Fleming, Hard and Soft threshold functions

The main objective of building a dedicated threshold function is to make it able
to produce results superior to those of conventional functions. As seen, the most
applied functions in wavelet coefficient filtering are Hard and Soft, not only for PD
signals, but also for image processing, audio signals, etc.

First, we show in Figure 8 the results of the comparison between the first
proposed alternative using ¢ = 5 against Hard and Soft functions. According to the
J ap» we find that the proposed function achieves a higher percentage of better
results than the Hard and Soft. As expected, due to its simplicity, the Soft
thresholding is the fastest in runtime.

We then compare in Figure 9 the second alternative proposed with the Hard and
Soft functions. Note that there is a significant improvement in the number of better
results, achieving superior performance in the EMA and Ak criteria, which did not
occur with the first alternative of our function.

Therefore, is evidenced by the superiority of the proposed alternatives in rela-
tion to the amount of better results obtained compared to the usual Hard and Soft
methodologies. The only drawback is that our second proposal needs a little more
time to be processed, but it is a relatively low price to be paid to achieve better
results in reducing noisy components of PD signals. Also, note that, compared with
the Soft function, the Hard thresholding tends to provide a better preservation of
the PD pulses amplitudes and of the SNR, which confirms the statements made in
the literature [3, 22].

o
I ot
90} (T Foming} {

EMA EOM REQM CC NCC DE SNR DSNR NRR EA . EA_ AP, . DM AT, e,

Best Results (%)

Evaluation Parameter

Figure 8.
Comparison of the better denoising results obtained between the Hard, Soft and Fleming threshold functions.
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Figure 9.
Comparison of the better denoising results obtained between the Hard, Soft and Fleming 2 threshold functions.

In Figure 10 is shown a signal consisting of 3 simulated PD pulses wrapped in
white noise and in AM noise, which was created as performed in [3]. In addition,
note the filtering results for the Hard, Soft, Fleming and Fleming 2 thresholding.
The Soft function tends to considerably attenuate the pulses peak amplitudes; the
Hard function shows greater preservation of these amplitudes; the Fleming function
allows the passage of a little more noise with negligible amplitudes, but it achieves
better preservation of the amplitudes than the Hard and Soft, while the Fleming 2
function is able to solve Fleming’s problem by identifying the coefficients of greater
importance. In this way, the Fleming 2 method presents better amplitudes preser-
vation than the other functions and still manages to eliminate the low amplitude
noise seen with the use of the Fleming. The filtering improvement is also indicated
by the fitness function, with higher value (J, = 16.4607) for the filtering result
using the Fleming 2 thresholding.
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Figure 10.
Comparison of the better denoising results obtained between the Hard, Soft, Fleming and Fleming 2 threshold
Sfunctions to a simulated PD signal.

321



Wavelet Theory

4.3 Comparison between all threshold functions

With the results described in the previous subsection, we have a quantitative
idea of the used method’s capacity, but only with the average results is possible to
have a real sense of the quality of each one. Taking advantage of the opportunity,
we implement the various wavelet thresholding methods (mentioned in Section 4),
including the: Adapt Shrink, Garrote, Hui, Liu, Non Negative Garrote (NNG), Semi
Soft (SS), Stein, Zhang 1 (Z1), Zhang 2 (Z2), Zhang 3 (Z3), Zhang 4 (Z4), and
Zhang 5 (Z5). The required variables for each of these alternatives were designated
according to the specifications provided by the respective authors in the works that
describe them.

Similarly to what was done in Table 1, we made a percentage evaluation of the
amount of best results considering all threshold functions and the proposed Fleming
functions (compared for a constant ¢ = 5). From Tables 3 and 4, the bold values
evidence that the Fleming threshold had a superior performance when compared to
the other alternatives. In terms of fitness, the one with the highest amount of better
filtering results was Fleming. The Stein function outperforms the others in execu-
tion time. The Soft function ends up losing space in practically all the evaluated
criteria, confirming that it is not suitable to treat PD signals, due to the high
attenuation generated in the wavelet coefficients processing.

Parameter Threshold function

Hard Soft Fleming Fleming2 Adaptshrink Garrote  Hui Liu

AME 1,07 0,39 9,01 31,49 5,23 4,80 13,08 6,73
MSE 0,19 0,00 10,22 33,38 7,99 9,25 8,43 5,33
RMSE 0,19 0,00 10,22 33,38 7,99 9,25 8,43 5,33
cc 0,87 0,00 16,57 39,87 3,83 11,97 7,27 2,76
NCC 0,97 0,00 17,59 40,26 3,15 11,92 6,98 2,91
EnD 18,51 0,48 18,12 14,73 1,79 8,91 1,89 9,93
SNR 2,37 0,00 21,17 42,49 0,15 3,39 1,55 2,23
DSNR 2,37 0,00 21,17 42,49 0,15 3,39 1,55 2,23
NLR 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
MEmax 9,40 0,19 20,78 17,78 1,07 8,48 0,24 6,10
MEmin 8,19 0,10 18,70 19,04 2,28 10,17 1,31 8,28
PTVmax 0,73 0,00 6,15 3,20 2,96 5,43 0,48 2,57
PTVmin 1,16 0,00 7,27 4,36 2,86 5,09 0,58 2,96
DM 0,48 0,00 4,36 4,02 1,79 3,39 2,18 0,78
RTV 2,28 0,05 9,01 8,19 1,79 3,05 3,34 2,71
sy 3,25 0,10 20,01 35,71 0,78 5,62 4,89 5,96
s 11,09 0,10 19,04 20,83 0,68 9,64 1,41 7,66
Ak 9,06 0,68 13,86 18,75 4,46 4,89 11,39 6,10
J aps 3,68 0,00 19,23 35,03 0,73 5,18 4,41 7,12
Eorec 1,60 3,59 4,22 0,00 18,27 0,15 0,10 4,51
Table 3.

Percentage of best results by evaluation parameters for all threshold functions.
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Parameter Threshold function
NNG SS Stein 71 Z2 VA] Z4 Z5
AME 0,97 1,02 6,35 1,31 4,36 4,12 7,03 3,05
MSE 2,28 1,11 6,83 1,11 5,14 3,05 2,37 3,29
RMSE 1,70 1,11 7,41 1,11 5,14 2,96 2,37 3,39
cc 1,70 0,39 5,14 1,60 1,55 2,03 0,00 4,46
NCC 1,31 0,39 5,28 1,55 1,07 1,89 0,00 4,75
EnD 2,03 0,48 5,43 2,86 3,59 4,12 1,55 5,57
SNR 1,31 0,78 5,33 0,87 0,05 0,97 0,00 17,34
DSNR 1,21 0,78 5,43 0,87 0,05 0,97 0,00 17,34
NLR 0,00 0,00 0,00 26,26 0,00 0,00 0,00 73,74
MEmax 1,70 0,15 5,81 9,06 1,36 4,36 0,24 13,28
MEmin 1,11 0,05 11,05 5,18 2,71 5,28 0,15 6,40
PTVmax 0,00 1,16 1,79 6,15 5,33 20,16 2,52 41,38
PTVmin 0,00 1,16 1,26 6,06 4,99 18,90 1,31 42,05
DM 0,00 1,79 0,68 7,36 2,42 12,74 37,26 20,74
RTV 0,00 2,66 3,34 4,65 4,65 14,24 18,94 21,08
csy 4,02 2,57 7,95 0,24 1,07 3,59 0,00 4,26
csy 1,55 1,02 8,62 4,55 1,41 4,89 0,78 6,73
Ak 3,49 3,44 6,59 2,81 2,96 6,06 0,29 5,18
Jape 4,41 2,33 8,19 0,44 0,87 4,36 0,00 4,02
Eoxec 0,24 2,37 9,93 18,02 0,00 3,05 0,58 33,38
Table 4.
Percentage of best results by evaluation parameters for all threshold functions.

Parameter Threshold function

Hard Soft  Fleming Fleming Adapt Garrote  Hui Liu

2 shrink

AME 0,021 0,020 0,021 0,021 0,021 0,023 0,023 0,019
MSE 0,020 0,017 0,020 0,020 0,017 0,021 0,025 0,016
RMSE 0,029 0,031 0,029 0,029 0,030 0,030 0,038 0,028
cc 0,770 0,736 0,790 0,787 0,761 0,773 0,713 0,775
NCC 0,769 0,733 0,789 0,786 0,759 0,773 0,706 0,773
EnD 0,302 0,525 0,267 0,283 0,472 0,364 0,571 0,294
SNR 6,47 1,22 6,82 6,83 2,57 6,51 0,00 5,40
DSNR 3,05 -2,20 3,40 3,41 —-0,85 3,09 —3,42 1,98
NLR -37,33 36,57 37,55 —37,52 —36,86 -38,26 36,40 37,16
MEmax 14,13 39,75 12,97 14,77 35,08 13,78 43,78 20,53
MEmin 16,11 35,57 13,20 16,24 30,09 14,03 40,20 17,37
PTVmax 15,71 11,44 11,66 16,28 13,97 13,29 12,45 9,08
PTVmin 23,06 20,14 19,93 23,93 23,45 22,07 23,58 16,49
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Parameter Threshold function
Hard Soft  Fleming Fleming Adapt Garrote Hui Liu
2 shrink

DM 4536,233 4536,207 4536,231 4536,188 4536,217 4536,216 4536,227 4536,236
RTV 11,31 9,87 12,64 11,64 13,94 15,11 10,78 9,53
Sy 3,81 —5,27 5,99 4,31 3,88 3,19 3,86 2,69
es; 2,92 3,59 2,87 2,97 24,71 22,80 31,21 25,11
Ak 23,67 30,79 20,46 23,78 —4,51 1,08 -10,83 —0,55
Japs 0,88 —8,86 3,12 1,33 0,456 0,456 0,458 0,456
texec 0,459 0,455 0,48 0,461 —0,63 4,27 —6,97 2,15

Table 5.

Average results by evaluation parameters for all threshold functions.
Parameter Threshold function

NNG SS Stein z1 72 z3 Z4 Z5

AME 0,019 0,020 0,019 0,022 0,020 0,011 0,036 0,072
MSE 0,016 0,017 0,016 0,017 0,016 0,002 0,172 0,247
RMSE 0,028 0,031 0,028 0,032 0,029 0,017 0,058 0,092
cC 0,762 0,736 0,762 0,624 0,767 0,753 0,122 0,575
NCC 0,759 0,733 0,759 0,623 0,764 0,751 0,117 0,575
EnD 0,357 0,525 0,357 3269 0,477 0,359 0,978 10,527
SNR 4,18 1,23 4,18 2,84 2,52 —78,15 —16,80 4,09
DSNR 0,76 -2,19 0,76 —0,58 —0,90 —81,57 —20,22 0,67
NLR -36,97  —36,57 36,97 —43,48 36,80 45,31 —34,20 —47,92
MEmax 26,41 39,72 26,41 27,26 35,11 98,39 89,02 39,01
MEmin 22,50 35,53 22,50 30,88 30,66 95,69 87,53 61,48
PTVmax 9,92 11,44 9,92 18,99 11,24 10,64 132,89 20,63
PTVmin 17,34 19,80 17,34 23,76 18,87 18,12 174,24 28,26
DM 4536,237 4536,233  4536,237 4536,195 4536,231 4536,246 4536,136 4536,172
RTV 9,57 9,87 9,57 15,23 11,57 9,07 14,38 20,10
Sy —0,58 —5,26 —0,58 —6,30 —1,44 —84,39 —35,96 —8,89
csy 2,90 3,58 2,90 4,26 3,49 5,86 12,31 5,33
Ak 27,85 30,79 27,85 31,62 26,35 30,61 43,79 36,17
]Ap, —3,48 —8,84 —3,48 —10,56 —4,93 -90,25 —48,27 —14,22
toee 0,457 0,455 0,455 0,457 0,464 0,456 0,456 0,456

Table 6.

Average results by evaluation parameters for all threshold functions.

Also was evaluated the average results of the evaluation parameters, according
to the Tables 5 and 6. Note that the fitness Jap, = 3,20 of the Fleming function
(using c = 10) is the highest among all the others, being followed by the Garrote
and the Hard functions. Thus, the proposed alternatives achieve the objective of
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Figure 11.
Comparison of the better denoising results obtained between the all evaluated threshold functions to a measured
PD signal from a hydro generator.
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overcoming other methods, also providing a better qualitative result in the
treatment of PD pulses.

Figure 11 exemplifies the wavelet shrinkage process using each of the
thresholding functions discussed above for a PD signal measured from a hydro
generator. In this case, note that the functions we have created are superior in
preserving the amplitudes of the signals and eliminating the present noise, espe-
cially the filtering using the Fleming 2 function, which obtained the highest level of
Japt compared to the other functions, followed by Fleming, Garrote and Hard
functions. The Soft and the other thresholding alternatives end up causing defor-
mations of the pulses waveforms and greater attenuation of these peak amplitudes.
The Zhang 1 and Zhang 5 functions allow most of the noise to pass through the
denoising process and the Zhang 4 function ends up eliminating the PD signal that
we are interested in obtaining.

5. Conclusions

Was presented a new threshold function called Fleming, which combines the
quality of a strongly differentiable function and a more flexible alternative,
enabling its optimization to provide better results in the PD signals treatment, in
order to preserve its important characteristics for the diagnosis of the HV equip-
ment subjected to the partial discharge analysis. The proposal inspired by the well-
known logistic function [29], which depends on a parameter that controls the
inclination of the curve in the threshold value (calculated a priori). Also was created
a variant of this same function, using a simple idea, but little investigated in the
literature: identifying the decomposed coefficients with the greatest contribution in
the desired signal recovering [3].

With the results described in Section 5, in which hundreds of signals (measured
and simulated) were evaluated, the ability of the Fleming function and its Fleming 2
variant to overcome the most common functions such as Hard and Soft, as well as
twelve other alternatives presented in some publications [15, 19, 22, 35-38]. The
Fleming function can be applied with different inclination values, but for PD
signals, the ideal is that these values are limited between 5 and 10 to provide the best
results.

The Fleming 2 alternative showed the highest percentage of the best results and
the Fleming alternative showed the highest average value in terms of amplitude.
Thus, if the goal is to achieve a higher number of better results, the indicated is to
threshold the wavelet coefficients using the Fleming 2 function, but if the idea is to
achieve better average results, consider using the Fleming function. As for the
average processing time, these functions are relatively fast when compared to the
other evaluated functions, not falling far behind the classic ones Hard and Soft.

The application of the developed thresholding functions is extensible to other
types of signals, such as acoustic emissions, electrocardiogram signals, image
processing, among others. However, in each case it would be necessary to
investigate the appropriate values of the inclination parameter c.
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Chapter 15

Use of Daubechies Wavelets in the
Representation of Analytical
Functions

Paulo César Linhaves da Silva

Abstract

This chapter aims to use Daubechies’ wavelets as basis functions to generate
analytical functions, thus being able to rewrite the Taylor series using these
wavelets. This makes it possible to analyze functions with a high degree of
complexity, in problems that require a high degree of precision in their solution.
Wavelet analysis can be applied to practical problems that require a high degree of
precision, for example, in the study and analysis of electromagnetic propagation
in optical fibers, solutions of differential equations involving engineering problems,
in the transmission of WiFi signals, in the treatment and analysis of biomedical
images, detection of oil sources through the study of seismic signals.

Keywords: wavelets, Daubechies, analytical functions, basis functions, Taylor series

1. Introduction

Wavelets [1] were born from the need to generate functions, especially those
that present singularities, high gradients, discontinuities both in the time domain
and in the frequency domain. Wavelets enable the high-resolution analysis of
functions with these characteristics. An example of a problem that occurs when
generating functions with a Fourier base is the Gibbs phenomenon. Such a
phenomenon occurs because there is no way to represent functions that present
discontinuities, even adding more elements in the base that will generate the
function. A characteristic of wavelets is that they do not produce such an effect.

Wavelets are widely used in the solution of numerical problems in several areas
of knowledge such as image compression, Numerical Harmonic Analysis [2],
financial analysis, oil detection, differential Equations [3, 4], biomedical signals,
analysis of electromagnetic integral Equations [5], optical fibers [6], among others.
Many of these applications use the specific properties of wavelets, such as
coefficients that are determined numerically, multi-resolution analysis to decom-
pose a signal, integrals, and derivatives obtained numerically, energy concentrated
in its compact and base with orthogonal elements.

2. Short introduction to wavelet theory

For the development of topics presented in this chapter, the reader must have
as a prerequisite knowledge of functional analysis, linear algebra, measure theory
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and integration, differential and integral calculus. It is important to note that
the wavelet basis is for the wavelet transform as well as the trigonometric basis
is for the Fourier transform. Generally, the term wavelet is also used as a
wavelet transform. The following subsections present these initial prerequisites
to the reader.

2.1 Preliminaries on Hilbert spaces

In this subsection, some mathematical concepts necessary for a better formal
understanding of the wavelet tool are defined. The definitions, contained in this
section, are due to the author [2].

Definition 2.1 The space H is said to be a Hilbert space, if an inner product <, >,
associated with a standard || = /<, > has been defined in it. And a set of vectors
{v;}, for i €N an orthonormal system is said if the internal product <v,,v, > = S,
form,n €N.

Definition 2.2 A set of vectors {v, } is orthonormal, if and only if, for every finite
set of complex numbers x,,, there is >, a.x, I> = > |an \2, forneN.

Definition 2.3 In Hilbert’s H space, a set of vectors {v, } is said to be a Riez
system, if there are constants 0 <¢ < C < oo such that for any finite set of complex
numbers x,, if you have:

e 3 laal <IN Sl <CY e’ (1)

Definition 2.4 The space L*(R) is said to be an integrable square function space,
that is,

L) = { £ | 1) <o) @

Forf,g € L*(R), define the inner product <f,g> = [, f(x)g(x)dx. On what,
£(x) is the complex conjugate of the function g(x).

In particular ||f|| = |Ifl, = (fR\f(x)|2dx)z, andf is said to be an integrable
square.

Definition 2.5 Let f : R+ C be a function. The support of f, denoted by suppf, is
the closing of the set {x €R : f(x) # 0}. A function f is said to have compact
support if the suppf set is compact.’

Definition 2.6 We say that a function f is generated by the basis functions
{ f1»--f,}» if coefficients exist {c1, ...,c,} such that:

f=> fei 3)
i=1

The concepts presented here about orthogonality and support of a f function,
are fundamental to formalize the definition of wavelet. The following subsection
presents the formal mathematical concept of wavelet.

A set is said to be compact if it is limited and closed.
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2.2 Definition of wavelet

This subsection aims to define wavelet [2], the main mathematical tool used in
the development of this chapter. However, it is necessary to define the expansion
and translation of mathematical operations beforehand.

Definition 2.7 Given a > 0, the expansion operator, D,, defined over a f (x) function
in L' or L* over R, is given by, D, f (x) = a%f(x).

Definition 2.8 Given b € R, the translation operator, Ty, defined over a function f (x),
in L' or L? over R, is given by, T}, f (x) = f (xb).

Thus, using the expansion and translation operations defined above, a family of
functions y ; (x) was built: L? — R, base orthogonal to L*(R).

e} = @0} = DTl e, @

jke

The Definition 2.9, uses the family of functions {y/ ik (x)} s to define the
€

s

term mathematically wavelet.

Definition 2.9 A function w(x) is called wavelet if the collection {y/ ik (x)} es
RE

is an orthogonal basis on L*(R). Where j and k are the resolution and translation of
wavelet respectively.

By varying the values of j and/or k, it is possible to analyze with greater
precision, for example, the behavior of functions that present abrupt changes in
values and discontinuity. This type of analysis makes the wavelet a tool as or more
efficient than the basic Fourier functions.

The definition 2.10 is another way used to define a wavelet.

Definition 2.10 A wavelet? is a short duration wave, which has an average value
equal to zero.

Due to the definition 2.10, wavelets resemble Fourier sine and cosine basis
functions. Analogously to what is done in the Fourier transform, which has sine and
cosine functions as base functions, in wavelet analysis, a function is decomposed
into a base of wavelet functions.

The Fourier transform F(w) expression of a f(¢) function is given by (5):

Flo) = J+Mf(t)e_i“’tdt 5)

—oo

The expression (5) means that the Fourier transform is the sum of every f(z)
sign multiplied by a complex exponential, which can be separated into cosine and
sinusoidal components in the real and complex parts, respectively.

Similarly, the expression of the wavelet transform W ( f) of a functionf'(t), is
given by (6):

Wia(f) = | fomaor ©

—o0

Similarly, the expression of the wavelet transform (6) is the internal product of
the signal to be transformed by a wavelet function.

% Anglophone term to designate a small wave, in the sense of having a fast duration.
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In the following subsection, among the most varied types of wavelets, the
Daubechies wavelets are highlighted, which are the basis for the development of
this chapter.

2.3 Daubechies wavelet properties

At 1988, a family of compact support wavelets [7] is built by Ingrid Daubechies.
This family of wavelets has highly well-located elements. Each member wavelet is
governed by a set of N integer coefficients and k = {0.1, ..., N — 1} coefficients
through scale relations (7) and (8). The a;, and a;_;, coefficients, which appear in the
(7) and (8), are called filter coefficients and verify the following relations:

N-1
=Y ap(2x —k) @
k=0
1
= Y (-Darwp(2x —k) (8)
k=2—N

In the Figures 1 and 2 below, we have the graphical representation of the
Daubechies wavelet functions ¢ and y of kind 4.

The functions ¢ in (7) and y in (8) are called the scale function ¢ and wavelet
function v, respectively. The fundamental support of the scale function® is the
interval [0, N — 1] as the fundamental support of wavelet function y(x) is the
interval [1 — &, ¥]. In the case of N = 4, we have the graphs of the Figures 1 and 2.

—— function wavelet phi(x)
1251

100 1
0.75 4
0.50 1
0.25 4
0.00 1

-0.25 4

T T T T T T T

0.0 05 10 15 20 25 30

Figure 1.
Daubechies wavelets . Source: This figure was generated by the author using the python programming
language.

3 We emphasize that the scale function has energy concentrated in its support that is determined by the
genus of the wavelet, that is, supp(¢) = [0, N — 1], and that the total energy of the scale function is

unitary, that is, Jj:qﬁdx =1.
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- function wavelet psi(x)
15 4

Figure 2.
Daubechies wavelet y. Source: This figure was generated by the author using the python programming language.

To determine the filter coefficients a;, and a1, which appear in the (7) and (8),
we use the relations (9)-(12) below.

N-1
Z&lk =2 (9)
k=0

N-1
> @k = Som (10)
k=0
N1
(=1)"a1 rar-2m =0 (11)
k=0
N-1
N
(—1)*k"a =0, m=01,.., 5L (12)
k=0

where 68, is the Kronecker Delta function.

3. Generating an analytical function of the type x* using wavelets

Analytical functions are those that can be locally around a point x( expanded in a
Taylor series, according to the following expression.

+oo  o(n)
fo =3 L ey (13)
n=0 :

In general according to the author [8], any f(x) function can be represented in
terms of a wavelet base, as follows:

~+oo +o0

f)= > adlc—m)= > cny(). (14)

Mm=—o0 m=—oo
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The cj, coefficients are called moments of the scale functions. In particular, for
f(x) = x*, we have the expression (15), below:

L +o00 Mk )
= 3 G m), s
Since M]fn the moment of the wavelet scales concerning the x* monomial, where k
is the degree of the polynomial, 7 and j are the translation and resolution of the ¢
wavelet. The justification for the construction of the equation is found in the work of

[8-10], in which the author concludes that the ¢y, coefficients for approximating a
monomial of the x* form, using a Daubechies wavelet base ¢, looks like this:
. M

J —_—m
Cp = zjk

(16)
The justification used in the approximation (15) of a polynomial function of type
f(x) = x* derives from the number of null moments,

+oo N
J xku/(x)dx =0, k=01,.., 7~ 1 (17)

According to the Eq. (17), the N Daubechies Wavelet has % vanish moments,
being possible to represent a polynomial of degree at most & — 1, using the ¢(x)
scale function. The polynomial approximation using the scale function is formalized
in the following definition.

Definition 3.1 A wavelet has p vanish moments (18), if and only if, the
wavelet scale function ¢ can generate polynomials of degree up top — 1 [Eq. (19)].
That is, the scale function alone can be used to represent these polynomials. The fact
that it has more null moments means that the scale function can represent more
complex functions.

+o0 N
J XMy (x)dx =0; m=0,1,.., 5~ 1 (18)
N
flx) =py+px+ . +p, x5 k< 5—1 (19)

In general, a Daubechies wavelet of kind N, properly translated and adjusted to
the appropriate resolution level, generates a polynomial of degree &, with the
relation between N and k given by N = 2k + 2. For example, to generate a
polynomial of degree 1 a wavelet of Daubechies of kind 4 is necessary.

To generate a polynomial with 7 + 1 terms, in the function of Daubechies
wavelets of genres 4, 6,8, ..., N — 1, we use the momentum equation and the
polynomial expansion as a function of wavelets.

plx) =) apxt, (20)
k=0
where x*, takes the form
+o0 M]:” )
Kk = m;MZJ—,k¢(2]x — m) (21)
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Substituting the Eq. (21) in (20), we have:
plx szk Z (/) 2]x m (22)

where k is the degree of the polynomial j and m are the resolution and translation
of the wavelet respectively.

In the next subsection, the calculation of the moment generating function,
which appears in the expression 21 as a coefficient of x*, is shown in detail.

4. Moment generating function

The calculation of the moment generating function according to the author [11]
is of fundamental importance to approximate the functions by wavelets. The
deduction of the moment-generating function now begins. For this, the mathemat-
ical expression is used

m

Mt = rkaqﬁ(x —m)dx (23)

—o0

which refers to the moment of the wavelet scale ¢ in relation to the monomial x*.
Form =k = 0, in (23), we have:

+o0
M = J P(x)dx = 1. (24)

Substituting m = 0 in the Eq. (23), we have:

+o0 +o0 —
My~ [ o= | ’eZw (25)
N-1 +o00
Mk = ZaSJ a*p(2x — s)dx. (26)
s=0 —
Note that the variable s, in the Eq (26), also represents a translation.
Making the substitution z = 2x, & = 2, dx = %, we have:
N-1 —+o0
Mt = Z%J akp(2x — 5)dx (27)
s=0 —
1 No1
s=0

Using the substitution x —m =1, ‘2’; =1,dx =dt, in (23), we have:

M = Jerxqu(x —m)dx = zk: (k )mk’MV (29)
m - r 0

—o r=0
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Now consider the equations:
1 N-1
k k
0= S Z(; as M (30)
k (k
ME=YN (V )sk—’Mg (31)
r=0
Substituting Mf in M]f), we have: (note that m = s)
4 N1k
= F ag Z (V )Sk_VM;(’) (32)
s=0 r=0

Now separate the last term of the sum (32), (r = k), to place the term on the left
side of the equation:

1 N-1 k-1 k 1 N-1 k
k ke—r kel rk
MO:WZQSZ(7>S 1%+2]€H_Zﬂ5<r>5 MO (33)
s=0 r=0 s=0
Using the fact that ) a4, = 2, we have
s=0
. 1 k—1 k N-1 Y
M=t S ()M st (34)
° 2<2k - 1) r=0 \" ’ ;
Thus, the equations are obtained
k (k
ME =3 (V )M—M, (35)
r=0
. 1 k—1 k N-1 Y
M =—1——+ ass* "M 36
’ z(zkl)ro(”>; ’ ° G0

From (35), (34), and (24), we get the moment generating function
an : W — R, where % is wavelet space, m is the translation of the scale function
and k is the degree of the polynomial to be approximated.

1 < k—r
2(2}61)20( )Zﬂys ]\46, se m:O,k¢O
My =<, [k (37)
Z%) mk’VMf), se m#0;k+#0
= \r
1, se m=k=0,

The analytical expression for M¥ was developed during the author’s research
[11] and to validate the results found, a comparative study was made with other
numerical results [12, 13] of the scientific literature.
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Similar to what was done with the calculation of the moments for the function ¢,
there is also the calculation of the moments for the function y. This is given by
integral (38)

+o0 N
J x"y(x)dx =0; m=0,1,.., 3~ 1. (38)

—o0

The following is an example of the calculation of the moments for the case of
Daubechies wavelets of a kind N = 4.

Example 4.1 In this example, the Daubechies wavelet of kind 4 is used to
generate the analytical polynomial function f(x) = x. According to the definition
3.1, the scale function of Daubechies of genus N = 4, generates a line (polynomial
of degree 1). To represent a 1 monomial with a 4 Daubechies wavelet in the [0, 1]
range, the translations ¢(x), ¢(x + 1), ¢(x + 2), whose supports are
[0.3], [-1.2], [-2.1], that is:

0 Ml ) Ml M1 Ml
=) S d@xom) =TSR SR D 000 (9)

The support of the linear combination (39), represented in Figure 3, is obtained
by the intersection of the supports of the translations of the function ¢(x). This
intersection results in the interval I = [0.1]. This fact defines well the function to be
integrated in the I range. In Figure 3, the number of translations of the function
¢(x) to generate f(x) = x is illustrated.

Figure 4 shows the graph of translated functions ¢(x), ¢(x + 1) and ¢(x + 2)
respectively, that form a base to generate the function f(x) = x.

The calculation using the moment generating function depends on the
Daubechies wavelet coefficients of kind 4. These coefficients are obtained by the
Egs. (9)-(12), which gives rise to the following non-linear system.

ag + a1 + a + a3 = 2
ay + a? + a} + a} = 2 0
aopay -+ aias =0
—a1 + 2a, — 3a3 =0
0 3
i . | suppo(x) = S,
1 1
_1 ! 1
| : . 12 :
, : , |  supp@(x+1)=s,
! 1
-2 : 1 N
| , | supp@ [X+2)I= s,
-2 | l !
: Ilf\ll\:\f\‘f‘.,\.'\“f\l'\lul ! 3
0 1

S§=S5As10S,

Figure 3.
Translations required to represent the analytical function f (x) = x using Daubechies wavelets of kind 4. Source:
Own authorship.
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—— function phi(x)
= function phi(x+1)
function phi(x+2)

125

100

0.75

0.00

-0.25

Figure 4.

Translations required to represent the analytical function f (x) = x using Daubechies wavelets of kind 4. Source:

This figure was generated by the author using the python programming language.

The solution of this system is the irrational numbers ag, 1,42, a3, given by:

aop = 0,683012701892219
a; = 1.183012701892219
a; = 0,316987298107781
az = —0,183012701892219

(41)

Using the moment generating function for the case where m = 0, we have:

1 /1 3 1 ay+2a; + 3a
1 _ 1-r _ g0 _ 2 2 3
M 2;0<1’)M"6 Sgoass " My (a1 + 2a; + 3a3) =

=0, 633974600 (42)

Proceeding with the calculations, we obtain:

/1
M* =Z( )ml—ng:m+M3:m+W=m+o,633974600

" r=0 r 2
(43)
Replacing the value of m by m = —1, m = —2 and k = 1, we obtain:
M, = —0,366025400 (44)
M, = -1, 366025400 (45)

342



Use of Daubechies Wavelets in the Representation of Analytical Functions
DOI: http://dx.doi.org/10.5772 /intechopen.93885

So, the representation for the x polynomial (for a resolutionj = 0) is:
x = 0,634¢(x) — 0,366¢(x + 1) — 1.366¢(x + 2) (46)

In Figure 5, we have the graphical representation of the function obtained of the
expression (46). Here the function f (x) = x is generated by linear combination of
wavelets ¢(x), ¢(x + 1) and ¢p(x + 2).

The representation for the expression (46) using the summation is given by,

x = Z M}'”

0
ik
m1:72 2

(2/x —my) (47)

The expression for writing polynomials of degrees £ = 2 and k = 3 in terms of
Daubechies wavelets is given by

2. M? .
x? = Z 2].’1:2 (Vx —my) (48)
my=—
0 M3 )
= 2}.’,{33¢(2Jx—m3) (49)
m3=—

See that to generate the polynomials (48), (49) is necessary to use Daubechies
wavelets of kind 6 and 8, according with the definition 3.1.

/= function 0.634phi(x)
= function -0.366phi(x+1)
function -1.366phi(x+2)

=) function x /

) //
.4 4 ' /
|

10

S

5

\
\
|
]

00 02 04 06 08 10

Figure 5.
Function f (x) = x using Daubechies wavelets of kind 4. Source: This figure was generated by the author using
the python programming language.
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4.1 Taylor polynomial using Daubechies wavelets

The Taylor polynomial or Taylor series is an expression that allows the
calculation of the local value of a function f using your derivatives. For this, the
function f must be of class C infinite (represented by C*) which implies that the

fis infinitely derivable in an interval containing a point x¢. The expression for
the Taylor polynomial for the function f is as follows,

oo (k) ()
fo = ST (50)
k=0 ’

The expression (50) developed around x = 0 is:

too (k)
fo =3 LD oy o

k=0

Making use of the expression (21), we have:

) ko
f(x)zz Z fk!(O)l\% (2x —m) (52)

k=0 m=—oc0

The expression (52) is another way of writing Taylor’s polynomial using
Daubechies Wavelets.

Example 4.2 Consider the analytical function f (x) = ¢*, using Daubechies
wavelet of kind a N = 4 is possible to write this function f in terms of this wavelet.
For this, Taylor’s series development around the point xo = 0 of this function is
given by:

=37 (53)

1 .n
x
& ; =14x (54)
Using the expression (46), we have:
frl+x=1+0,634¢(x) — 0,366¢(x + 1) — 1.366¢(x + 2) (55)

The expression (55) allows us to approximate the exponential function using a
base of Daubechies wavelets. This type of approximation, although simple for this
case, is very useful in the case of representation for functions other types.

In the following example, the expression (46) is used to approximate Taylor’s
series developments for the functionss(x) = ¢*,f(x) = cosh (x),g(x) = sinh (x) and
h(x) = In(1+x).

Example 4.3 For the functions f(x) = cosh (x),g(x) = cos (x) and k(x) = sec (x).
Taylor’s series development of these functions around the point xo = 0 is:

o0 2n

cosh (x) = Z (;n)' (56)
n=0 :
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Function Value in x = 1, Taylor Value in x = 1, Daubechies Error %
Series* Wavelets®

s(x) = 2.716666667 2.716735469443329 0.0025%

f(x) = cosh (x) 1.543088161791753 1.543058311287478 0.0019%

g(x) = sinh (x) 1.1750199840127897 1.1750591521108822 0.00376%

h(x) = In(1+x) 0.6456349203122008 0.6456349190214307 1,9.10 7%

“Calculation using Taylor Series.
3Calculation using Daubechies wavelets of kind 4.

Table 1.
Comparison of the values obtained by the Taylor series and by Daubechies wavelets.

sinh (x) = iﬂ (57)
N —(2n+1)!
+o00 n+l_pn
R e .4 (58)
n=1

In order to verify the potentiality of the application of Daubechies wavelets we
will calculate the value of the functions in (53), (56), (57) and (58) evaluated at
point x = 1. Considering only 7 terms in each summation. For obtain the results
using Daubechies wavelets we apply the expression (55) in each summation (53),
(56), (57) and (58). In the Table 1 we have a comparison between the calculation of
the values of the functions s(x) = ¢*,f(x) = cosh (x),g(x) = sinh (x) and k(x) =
In (14 x) evaluated at point x = 1, using the Taylor series and the Daubechies
wavelets of kind 4.

Table 1 appears here only as a way of showing the quality of the approximations
using the Daubechies wavelets of kind 4. Obviously if we want more precise values,
we must use Daubechies wavelets of the kind greater than 4. This will cause changes
in the resolution and translation of each wavelet, but the result will be even better.

5. Conclusions

Daubechies wavelets are quite versatile mathematical tools. They can be used to
analyze, generate, decompose a function, or even a signal that is represented by an
analytical function. This type of application is widely used, for example, in electrical
engineering in studies of magnetic fields and electric fields. The theory exposed in
this chapter provides tools to carry out these studies. The use of the Taylor series as
a way of approximating analytical functions is a very used technique in applied
mathematics. Making use of the Taylor series with wavelets is another option to
perform an approximation of analytical functions. In future work, we are
researching other wavelets, for example Deslauries-Dubuc interpolets, that have an
even better approach quality. As Deslauriers-Dubuc interpolets and others in
research.
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Chapter 16

Higher Order Haar Wavelet
Method for Solving Ditferential
Equations

Jiiri Majak, Mavt Ratas, Kristo Karjust and Boris Shvartsman

Abstract

The study is focused on the development, adaption and evaluation of the higher
order Haar wavelet method (HOHWM) for solving differential equations. Accuracy
and computational complexity are two measurable key characteristics of any
numerical method. The HOHWM introduced recently by authors as an improve-
ment of the widely used Haar wavelet method (HWM) has shown excellent
accuracy and convergence results in the case of all model problems studied. The
practical value of the proposed HOHWM approach is that it allows reduction of the
computational cost by several magnitudes as compared to HWM, depending on the
mesh and the method parameter values used.

Keywords: higher order Haar wavelet method, convergence analysis, accuracy
estimates, improvement of widely used Haar wavelet method

1. Introduction

Wavelets are most commonly used in signal processing applications to denoise
the real signal, to cut a signal into different frequency components, to analyze the
components with a resolution matched to its scale, also in image compression,
earthquake prediction and other algorithms.

However, the current study is focused on the area where the use of wavelet
methods shows a growth trend, i.e., in the solution of differential equations. Many
different wavelets based methods have been introduced for solving differential and
integro-differential equations. The Legendre wavelets are utilized to solve fractional
differential equations in [1-4] and integro-differential equations in [5, 6]. In [7, 8],
the Daubechies wavelet based approximation algorithms are derived to solve ordi-
nary and partial differential equations. In [9], the Lucas wavelets are combined with
Legendre-Gauss quadrature for solving fractional Fredholm—Volterra integro-
differential equations. The series solution of partial differential equations through
separation of variables is developed by using the Fourier wavelets in [10]. The Riesz
wavelets- based method for solving singular fractional integro-differential equa-
tions was developed in [11]. In the studies in [12], the Galerkin method was com-
bined with the quadratic spline wavelets for solving Fredholm linear integral
equations and second-order integro-differential equations. The Chebyshev wavelets
method for partial differential equations with boundary conditions of the telegraph
type is examined in [13].
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The simplest of all wavelet-based approaches was introduced by Alfred Haar
already in 1910 [14]. The Haar wavelet-based approach for solving differential and
integro-differential equations was introduced in 1997 [15, 16]. Based on the Haar
wavelet method (HWM), Chen and Hsiao in [15, 16] proposed an approach where
the higher order derivative involved in the differential or integro-differential equa-
tions is expanded into the series of Haar wavelets. This approach is based on the
nature of Haar functions. Due to the piece-wise constant nature of the Haar func-
tions they are not differentiable but are integrable. In [15, 16], the problems of the
lumped and distributed parameter system and those of linear time delayed systems
were solved. The Chen and Hsiao approach-based HWM was adapted successfully
for solving a wide class of differential, integro-differential and integral equations
[17-45]. Pioneering work in the development of Haar wavelet-based techniques was
conducted by Lepik [17-23], covering ordinary and partial differential equations
[17, 19, 21], integro-differential equations [18], integral equations [20], and
fractional integral equations [22]. The HWM approaches and their applications are
summarized in a monograph [23]. The HWM is adapted for the analysis of
nonlinear integral and integro-differential equations in [24-27], covering one- and
multi-dimensional problems. Solid mechanics, particularly composite structures,
are examined using the HWM in [28-33]. These studies cover free vibration
analysis of orthotropic plates [28], functionally graded composite structures [30-32],
delamination detection in composite beams [29], and other structures.

Some recent trends in the development and application of the HWM can be
outlined as solutions of fractional differential and integro-diffrential equations
[34-38] as well as the development of a non-uniform and adaptive grid. In the case
of fractional differential or integro-differential equations, two principally different
HWM approaches regarding to wavelet expansion are available in the literature.
The aim of the first approach is to expand the highest order fractional derivative
included in the differential equation directly into Haar wavelets, i.e., direct conver-
sion of the Chen and Hsiao approach for fractional differential equations. In
[34-38], the Haar wavelet operational matrix of fractional order integration is
introduced and implemented for solving differential and integro- differential equa-
tions. The aim of the second approach is to utilize the definitions of fractional
derivatives (Caputo derivative, etc.) and convert fractional differential terms into
integrals, which contain integer derivatives only. Such an approach has been intro-
duced by Lepik in [22] and utilized in a number of papers [39-41]. The two
approaches considered are implemented and compared in [42]. It is pointed out in
[42] that the two approaches have the same rate of convergence if the order of the
fractional derivative exceeds one (x > 1). However, if the order of the fractional
derivative is less than one (a < 1), the second approach has the rate of convergence
equal to two, but the rate of convergence of the first approach is 1 + o, i.e., less than
two. Thus, in the case of a < 1, the second approach has a higher convergence rate
and can be preferred.

HWM with a nonuniform grid was introduced in [43] using a proportionally
changing grid size. The same approach was utilized for the free vibration analysis of
non-uniform axially graded beams in [44] and for solving singularly perturbed
differential difference equations of neuronal variability in [45].

In most of the studies [17-45], it was concluded that HWM is simple to imple-
ment. In the review paper [46], it was pointed out that the HWM is efficient and
powerful in solving a wide class of linear and nonlinear reaction-diffusion equa-
tions. However, the convergence theorem and accuracy estimates derived for the
HWM in [47, 48] state that the order of convergence of the Chen and Hsiao
approach-based HWM is equal to two. The latter result is rather modest in the
context of engineering. Comparison of the HWM with widely used numerical
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Figure 1.
Numerical complexity. Free vibration analysis of the nanobeam.

methods in engineering reveals that HWM needs principal improvement in order to
compete with the differential quadrature method (DQM) [49].

The HOHWM as an improvement of HWM was recently introduced by Majak
et al. in [50]. The convergence rate of the method was improved from2to 2 + 2 s,
where s stands for the method parameter. This new method is currently underused,
but the first results obtained have shown that a principal growth of the accuracy can
be achieved with a minimum growth of complexity [51-53]. In [52], the free vibra-
tions analysis of the Euler-Bernoulli nanobeam was performed. Figure 1 shows the
numerical complexity estimates of the HWM and HOHWM solutions yielding a
similar absolute error. Here the numerical complexity is determined by number of
main operations of the most complex subtask - solution of discrete algebraic system
of equations [52].

The logarithmic scale is used in Figure 1 since the complexity of the HWM
appears several orders higher (10"8) than that of the HOHWM (10"3...10"5). These
results were obtained using the method parameter s = 1 (i.e., fourth order conver-
gence). In practice, one of most important factors is the computational cost. In the
case of the considered problem, the computational cost of the HOHWM solution is
10"3...10"5 times lower than that of the HWM. The obtained results hold good in
the case of all four boundary conditions considered: pinned-pinned (P-P), clamped-
pinned (C-P), clamped-clamped (C-C), and clamped-free (C-F).

2. Theoretical basis of the HWM and the HOHWM

This section introduces the Haar functions and presents the theoretical basis of
both, the HWM and the HOHWM, covering basic principles, algorithms, conver-
gence and accuracy issues.

2.1 Haar functions

The HWM and the HOHWM use different approaches, but both use Haar
function expansions for the approximation of derivatives. The Haar functions £;(x),
are given as in [14].

1 for x €[£1(1), &(7))
W) =3 -1 for  xel&li) &) )

0 elsewhere
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wherei =m + k + 1, m = 2/ is a maximum number of square waves deployed in
the interval [A, B] and the parameter k indicates the location of the particular square
wave,

61(6) = A +2kuldx, &5(i) = A + (2k + 1udx, &3(i) = A +2(k + Dudx,  (2)
u=M/m,Ax = (B—A)/(2M),M = 2. (3)
In Eq. (3) M = ?stands for maximum resolution. Obviously, the Haar functions

hi(x) form an orthonormal basis. The integrals of order 7 of the Haar functions (1)
can be expressed as in [17]

0 for  x€[A, &)
w for x€[&(i),&0))
po) = (x — &))" ;!2(96 - &))" for xel&i), &)
(x = &))" =20 — &))" + (x — &))" x € [£(i), B)
| or
’; f elsewhere

(4)

Formulas (4) hold for a general case where i > 1, in the case i = 1 holds P =

%. The interval [A, B] in Egs. (1)-(3) can be converted to the unit interval [0, 1]
by use of the exchange of variables 7 = (x — A)/(B—A) .
In the case of uniform mesh the collocation points can be introduced as.

21-1
JCZZW,Z:]., ,ZM (5)

The elements of the discrete 2M«2M Haar matrix can be expressed as values of
Haar functions in collocation points given by Eq. (5)

The elements of the matrix of #-th order integrals of the Haar function can be
evaluated as

(Pa)il" = P, (1), @)
where p, ;(x) is defined by formulas (4).

2.2 Haar wavelet method (HWM)

The Chen and Hsiao approach based HWM, utilized in [15-49]. can be consid-
ered as a commonly/widely used HWM.

2.2.1 Method description

Let us consider first the #-th order ordinary differential equation in the general
form as.
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G(x,u,u',u”, ...u("’l),u@)) =0. (8)

Let us assume that f(x) is an integrable square and finite function. The Haar
wavelet expansion for the function f (x)is given as (here 4; stand for the unknown
wavelet coefficients).

Fl) = aihi(x). ©)

According to the HWM approach introduced by Chen and Hsiao in [15, 16] the
highest order derivative involved in Eq. (8) is expanded into the series of Haar
wavelets, i.e.,

(10)

_

=

<

2
I

(s
2
=
=

=1
Based on the definition of the Haar function (1)-(3), Eq. (10) can be expressed as.

o0 2/-1

ad"u(x
% =aih + Z Z “21'+k+1h2/+k+1(x)- (11)
=0 k=0

The solution of the differential Eq. (8) can be obtained by integrating Eq. (11)
n-times as.

0o 271
a1x"
u(x) = T + E E Ay s1Pp i ki1 (%) + Br(x). (12)
: =0 k=0

In Eq. (12) p,, i, 441 (%) stand for n -th order integrals of the Haar functions given
by Eq. (4) and Br(x)is a boundary term. Obviously, in the numerical analysis the
finite number of the terms corresponding to the fixed maximum resolution
(N = 2M) can be considered as.

2M 271
alx”
ux) = T Z Z“Z/+k+119n,2f+k+1(x) + Br(x). (13)
’ =0 k=0

The integration constants included in the boundary term Br(x) can be deter-
mined from the boundary conditions. Substituting the solution (13) and its deriva-
tives in the differential Eq. (8) and employing discrete collocation points (5), we
obtain 2M«2M algebraic system of equations for determining unknown wavelet
coefficients 4; . Finally, when the wavelet coefficients a; are known, the solution of
the differential Eq. (8) can be evaluated using expression (13). Note that the collo-
cation points defined by Eq. (5) correspond to uniform mesh. Obviously, various
non-uniform meshes can be utilized instead of Eq. (5).

Let us consider next a partial differential equation in the general form as

u Pu ot
R<x,y’% ou Ou ou Ju ”);0, (14)

where # and p stand for the highest order derivatives with respect tox and y,
respectively. The solution domain is considered rectangle [0, L1]x[0, L,]. According
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to the Chen and Hsiao approach the highest order derivative involved in the differ-
ential equation is expanded into Haar wavelets (in this case of 2D expansion)

Iy 2M; 2M,

pepy SO anhix)h (). (15)

i=1 [=1

In Eq. (15) 2M; and 2M;stand for the number of grid points with respect to x
and y coordinates, respectively. Such a 2D wavelet expansion was introduced by
Lepik in [19] and is most commonly used. Similar to the 1D case, integrating the
relation (15) n-times with respect to x and g times with respect to y, we obtain the
solution of the differential Eq. (14) as [19].

2My 2M,

u(x,y) = DY ap,;(X)p,,0) + Br(x.y). (16)

i=1 |=1

The boundary term By (x,y) includes # + ¢ integration constants which can be
determined from the boundary conditions. Substituting Eq. (16) in the differential
Eq. (14) and satisfying the obtained equation at the collocation points (e.g., in
uniform grid points), we obtain an algebraic system of rank (2M;)*s(2M,)* with
respect to the wavelet coefficients. By substituting the wavelet coefficients in
Eq. (16), the solution of the differential Eq. (14) can be evaluated at any point in the
given domain.

2.2.2 Convergence theorem and accuracy estimates

The convergence theorem for the Chen and Hsiao based HWM was proved by
Majak et al. in [47].

Theorem. Let us assume that f(x) = d%ﬁ € L*(R) is a continuous function
on[0, 1] and its first derivative is bounded.

<n,n>2 (boundary value problems). (17)

Vx €1[0,1] 3 ’dj;gf)

Then, the Haar wavelet method based on the approach proposed by Chen and

Hsiao in [15, 16] will be convergent, i.e., the L? -norm of the error function |Enm|
vanishes as J goes to infinity. The order of convergence is equal to two.

1 2
)] .

The proof is given in [47]. The error bound is derived as.

|Emll, = O

nCo (1 \> 4 n ( 1 )2
Eyl,<™n( L)y 22 n (1) 19
[l < 6 (2]“) 9 (floor(n/2)!)* \2* (19)
In the particular case where n = 1, the error bound can be derived as.
2
n 1
Bl < 2 () - @0)

354



Higher Order Haar Wavelet Method for Solving Differential Equations
DOI: http://dx.doi.org/10.5772 /intechopen.94520

The error bounds (19) and (20) are main/biggest error terms determining the
rate of convergence. A detailed accuracy analysis of the HWM for the fourth order
ordinary differential equations is performed in [48], where two error terms are

pointed out as.
2 4
n |71 1 /1
1Eml2< 35 [(N) *8 (N) ] (21)

It appears that the second error term is the fourth order term, which does not
play any role in the standard HWM application. However, this information is
important in cases where extrapolation is employed for obtained solutions. For
example, by applying the Richardson extrapolation, the first error term is canceled
and the order of convergence increases from two to four (the value three is omitted
since the third order term in error estimate is missing). Furthermore, it has been
shown in [48] that the error estimate includes even order terms only. This aspect
can be considered in further improvement of the HWM.

Obviously, at the same assumptions, the multi-dimensional Haar wavelet
method is also convergent and the rate of convergence is equal to two.

The obtained results will be validated by a number of case studies by computing
the numerical rates of convergence and comparing the obtained and theoretical
results. These results are confirmed in [47-53] and in other papers.

2.3 Higher order Haar wavelet method

As mentioned above, the HOHWM was introduced in [50] as an improvement of
the widely used Chen and Hsiao approach based HWM. The HOHWM is based on:

* higher order wavelet expansion,
e algorithm for determining complementary integration constants.

It can be pointed out that utilizing the higher order wavelet expansion itself does
not provide substantial increase of the rate of convergence and accuracy. The algo-
rithm used for determining complementary integration constants plays key role.

2.3.1 Method description

Let us consider first the #-th order ordinary differential Eq. (8).
According to the the Haar wavelet expansion is expressed as.

n+2s b
M = Zuihi(x),s = 1, 2’ e (22)

n+2s
dx i=1

In the simplest case, wheres = 1, the # + 2 order derivative is expanded into
Haar wavelets. The even values 2 s are used, based on the analysis of error estimates
of the HWM given in the previous section. Integrating the expression (22) n + 2
times with respect to x we obtain the solution of the differential Eq. (8) as.

n+2s o 2/-1

+ Z Zﬂzf+k+1pn+29 2k1(®) +Spr(x) + Hpr (x). (23)
j=0 k=0

a1x

) = (n + 2)!

355



Wavelet Theory

The boundary terms Spr(x) and Hpr(x) include 7 + 25 integration constants c,.

n—1 X" n+2s—1 x"
Ser(x) = Yy, Hpr(x) = > e (24)
r=0 r=n
The integration constants cg,¢1, ...,¢,—1 can be determined from the boundary

conditions. To determine the remaining 2 s integration constants, the following two
algorithms are proposed by authors in [50].
Using selected uniform grid points (nearest to the boundary from both sides).
i i
xizﬁ,xizl—ﬁ,zzo, vys — 1. (25)

Using selected Chebyshev-Gauss—Lobatto grid points (nearest to the boundary
from both sides).

(i—D=x
(N—-1)

1
xizi{l—cos ],izl, S5 =N—5s+1, ...,N. (26)

In the particular case s = 1 the differential Eq. (8) is satisfied in the boundary
points.

G(O,u(O),u’(O),u”(O), ...u("’l)(O),u(m(O))
- O,G(l,u(l),u’(l),u”(l), ...u<"—1>(1),u<">(1)) ~ 0. 27)

Obviously in the latter case the two algorithms considered above, coincide.

3. Numerical convergence analysis and Richardson extrapolation

The derivations of the numerical estimates of the order of convergence, as
well as extrapolation formulas can be found in [54] and are omitted herein for
the sake of conciseness. Let us denote the numerical solutions on a sequence of
nested grids by F;_,, F;_1, F;, corresponding to grid sizes h;_3/hi_1 = hi_1/h; = 2.
Then the order of convergence of the numerical method can be estimated by the
formula.

kE = log

1

Fifl - Fexact
( Fi - Fexact >/log (2), (28)

if the exact solution F,,,. is known. If the exact solution is unknown, the
following formula can be employed [54].

ki = log (%) /log (2). (29)

1

The accuracy of the results can be improved by employing the Richardson
extrapolation formula as [54].

F; —F;_
oyt il

2%* -1 30
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HOHWM(s=1}) HOHWM(s=2) HOHWM(s=3}

== e " . B < L T VA

Figure 2.
Numerical rates of convergence for the HWM and the HOHWM.

The accuracy of the extrapolated results R; can be estimated by applying formu-
las (28) or (29) to these results. The numerical rates of convergence computed for
case study, described in Section 5.1, are depicted in Figure 2.

The numerical rates of convergence determined are in agreement with conver-
gence theorem for the HWM (Section 2.2.2) and relation given for the HOHWM in
Section 2.3 (the rate of convergence of the HOHWM is equal to 2 + 2 s).

4. Complexity analysis

As pointed out above, the accuracy and numerical/time complexity are two key
characteristics for any numerical method, algorithm. The computing time is often
used as a measure of complexity of algorithms using particular software. More
general approach applied commonly in algorithm theory is to estimate the number
of basic operations required by each algorithm. The latter approach is independent
of software used and does not even require execution of the algorithms. For this
reason, in the current study the numerical complexity of the algorithms is estimated
based on the number of basic operations.

According to the HWM and the HOHWM algorithms the solution of the differ-
ential equation is obtained from the solution of the discrete algebraic system of
equations and certain additional operations for composing the linear system and
evaluation of the solution in given points. The mentioned additional operations are
similar for both methods and have lower asymptotic complexity than the solution of
the algebraic system of equations. Thus, the numerical complexity of the HWM and
the HOHWM can be compared based on number of basic operations needed for
solving algebraic system of equations determined by the rank of the algebraic
system of equations (systems are similar by structure).

In the case of the same number of collocations points N, the ranks of the
algebraic systems corresponding to the HWM and the HOHWM are equal to N and
N + 2 s (here s = 1, 2 or 3), respectively. Furthermore, in the cases where the 2 s
complementary integrations constants are determined analytically, the rank of the
algebraic system of equations of the HOHWM reduces to N. Thus, in the case of the
same mesh used the numerical complexity of the HWM and HOHWM is similar (or
equal depending on implementation). However, these solutions have principally
different accuracy (see Tables 1-5) and such comparison is rather theoretical.

In practice, it is important to compare methods, providing the same accuracy. In
the following the given accuracy is fixed by absolute error less than 2.0e-10 and the
complexities of the HWM and the HOHWM are compared in Figure 3. The
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HWM Extrapolated results

N  Solution at point  Absolute = Converg.  Solution at point  Absolute = Converg.
t=0.5 error rate t=0.5 error rate

4 0.60256316864 1.72E-03

8 0.60386098486 4.27E-04 2.0150 0.60429211947 4.49E-06

16 0.60418124220 1.06E-04 2.0037 0.60428798114 3.56E-07 3.6598

32 0.60426104700 2.66E-05 2.0009 0.60428765000 2.44E-08 3.8645

64 0.60428098202 6.64E-06 2.0002 0.60428762718 1.59E-09 3.9385

128 0.60428596477 1.66E-06 2.0001 0.60428762569 1.02E-10 3.9680

256  0.60428721039 4.15E-07 2.0000 0.60428762560 6.40E-12 3.9901

Table 1.
HWM results and extrapolated vesults (Richardon extrapolation,).

HOHWM(s = 1) HOHWM (s = 2, VPA)
N Solution at point ~ Absolute = Converg.  Solution at point Absolute  Converg.
t=0.5 error rate t=05 error rate
4 0.60426829567 1.93E-05 0.60428745306474 1.73E-07
8 0.60428616352 1.46E-06 3.7247 0.60428762225323 3.34E-09 5.6915

16 0.60428752673 9.89E-08 3.8865 0.60428762553096 6.06E-11 5.7827

32 0.60428761918 6.41E-09 3.9477 0.60428762559057 1.03E-12 5.8780

64 0.60428762518 4.08E-10 3.9748 0.60428762559158 1.68E-14 5.9367

128 0.60428762557 2.56E-11 3.9876 0.60428762559160 2.69E-16 5.9679

256 0.60428762559 1.60E-12 4.0076 0.60428762559160 4.25E-18 5.9853

Table 2.
HOHWM (s = 1) and HOHWM (s = 2,VPA).

HOHWM (s = 3,VPA)

N Solution at point t = 0.5 Absolute error Converg. rate
4 0.604287625766393 1.75E-10

8 0.604287625565219 2.64E-11 2.7282

16 0.604287625591526 7.19E-14 8.5195

32 0.604287625591597 2.18E-16 8.3631

64 0.604287625591598 7.32E-19 8.2201
128 0.604287625591598 2.69E-21 8.0890
256 0.604287625591598 9.17E-23 4.8738

Table 3.

HOHWM (s = 3,VPA).

logarithmic scale is used in Figure 3, since the complexities of the HWM and the
HOHWM differ by several magnitudes.

In the case of the HWM the absolute error 2.0e-10 was reached by use of 16,384
collocation points (corresponding algebraic system has 16,384 equations). In the
case of the HOHWM the same accuracy was achieved by use just 64, 16 or 4
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HWM HOHWM (s =1)

N Solution at point  Absolute = Converg. Solution at point  Absolute  Converg.
x=0.5 error rate x=0.5 error rate

4 5.5271847185 9.63E-02 5.4468387805 1.59E-02
8 5.4504966936 1.96E-02 2.2961 5.4315095153 6.20E-04 4.6851
16 5.4355789218 4.69E-03 2.0639 5.4309280380 3.85E-05 4.0087
32 5.4320493805 1.16E-03 2.0155 5.4308919203 2.40E-06 4.0053
64 5.4311787173 2.89E-04 2.0038 5.4308896716 1.50E-07 4.0014
128 5.4309617728 7.23E-05 2.0010 5.4308895312 9.36E-09 4.0003
256 5.4309075816 1.81E-05 2.0002 5.4308895225 5.85E-10 4.0001
512 5.4308940366 4.51E-06 2.0001 5.4308895219 3.66E-11 3.9999
1024 5.4308906505 1.13E-06 2.0000 5.4308895219 2.29E-12 3.9968

Table 4.
Comparison of the HWM and the HOHWM (s = 1).

HWM HOHWM (s =1)

N Solution at point ~ Absolute = Converg.  Solution at point ~ Absolute  Converg.
x=0J5 error rate x=05 error rate

4 7.9429919221 2.31E-01 7.7081052185 4.12E-03
8 7.7555236804 4.33E-02 2.4139 7.7125990532 3.78E-04 3.4430
16 7.7224700620 1.02E-02 2.0789 7.7122525729 3.19E-05 3.5669
32 7.7147496939 2.53E-03 2.0189 7.7122227612 2.12E-06 3.9125
64 7.7128508612 6.30E-04 2.0047 7.7122207750 1.34E-07 3.9795
128 7.7123780687 1.57E-04 2.0012 7.7122206490 8.43E-09 3.9949
256 7.7122599897 3.93E-05 2.0003 7.7122206411 5.27E-10 3.9986
512 7.7122304774 9.84E-06 2.0001 7.7122206406 3.30E-11 3.9974
1024 7.7122230998 2.46E-06 2.0000 7.7122206406 2.13E-12 3.9573

Table 5.
Comparison of the HWM and the HOHWM (s = 1).

1.O0E+12
1.00E+10

1.00E+08

LO0E+08
1.00E+04
1.00E+02 '

1.00E+00
HOHWM(s=1} HOHWM{s=2} HOHWM(s=3}

Figure 3.
Numerical complexities of the HWM and the HOHWM.

collocations points corresponding to the s = 1, s = 2 or s = 3, respectively (i.e. the
algebraic system needed to solve is reduced to 64, 16 or 4 equations). Thus, it can be
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concluded, that making use of the HOHWM instead of the HWM will lead to
principal reduction of numerical complexity of the solution.

The practical value of the developed HOHWM approach is reduction of compu-
tational cost of the solution by several magnitudes (directly determined by numer-
ical complexity). It should be noted that making use of the HOHWM instead of the
HWM, especially in the cases s > 1 will increase implementation complexity, but
not substantially.

5. Case studies

In the following, the two case studies are performed in order to validate the
accuracy and convergence of the recently introduced HOHWM and compare results
with HWM.

5.1 Linear ordinary differential equations

Asarule, the new methods are validated on the samples where the exact solution is
known. Herein, the linear ordinary differential equations are considered as the first
sample problem. Let us consider a sample problem solved in [17] by applying the HWM

2 2
G (t, u(t), d’;(tt) , d;:g”) - d;:gt) + ad’;f) 4 pult) — of (t) = O, (31)

where f (t) is a given function (f(t) = cos (2t)), p, q and rare constant parameters
(a = 0.05, f = 0.15, y = 1). The initial conditions (0) = 0, % (0) = 1 are utilized.

In the case of the HWM, the second order derivative is expanded into Haar
wavelets as

A*u(t)

7 =aH. (32)

In Eq. (32), a and H stand for the coefficient vector (row vector) and the
discrete Haar matrix given by formulas (6), respectively. The solution of the dif-
ferential Eq. (31) is obtained by integrating relation (32) twice with respect to ¢ and
satisfying initial conditions

u(t) = aPy +t, (33)

where the elements of the matrix P, are defined by (7) and the coefficient vector
a is determined by substituting the solution (33) and its derivatives in Eq. (31) as

a = (yf (t) —a— pt)[H + aPy + Py . (34)

In the case of the HOHWM and s = 1, the fourth order derivative is expanded
into Haar wavelets as

d*u(t)

P =aH. (35)

The solution of the differential Eq. (31) is obtained by integrating relation (35)
four times with respect to ¢ and satisfying initial conditions
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3 2
u(t) :aP4+03€+025+t, (36)

The remaining two integration constants in Eq. (36) can be determined by satis-
fying Eq. (31) at the boundary points ¢ = 0 and ¢ = 1. The latter two algebraic
equations can be added to the algebraic system obtained by substituting the solution
(36) and its derivatives in Eq. (31). In the latter case, the algebraic system includes
2M + 2 equations. An alternate approach is to determine the remaining two integra-
tion constants analytically from the same conditions and replace to algebraic system.

The numerical results obtained by utilizing the HWM and the HOHWM are
compared in Tables 1-3.

It can be observed from Tables 1-3 that in the case of the HWM, the order of
convergence tends to two and in the case of the HOHWM, it tends to 2 + 2 s, i.e., to
four if s = 1, to six if s = 2 and to eight if s = 3. Use of HOHWM provides a principal
increase of accuracy. The maximum accuracy obtained by the use of the HWM at
256 collocation points (N = 256) has been achieved by using the HOHWM at 16
collocation points if s = 1, and at 4 collocation points if s = 2. In the case of the
HOHWM and s = 3, the accuracy achieved at 4 collocation points was significantly
higher than that of the HWM with 256 collocation points.

In Figure 4 are shown the error ratios for different mesh (N = 4,16,64 and 256).
The absolute error of the HWM is divided by error of the HOHWM, where blue,
green and gray colors correspond to the HOHWM parameter s values 1,2 and 3,
respectively. Thus, in the case of mesh N = 4, making use of the HOHWM instead of
the HWM reduced the absolute error 8.91E+01 (s = 1) to 9.83E+06 (s = 3) times. In
the case of mesh N = 256, the use of the HOHWM reduced the absolute error 2.59E
+05 (s = 1) to 4.53E+15 (s = 3) times. Since the error ratio depends strongly on the
mesh used, the logarithmic scale was used in Figure 4.

The numerical analysis is performed using MATLAB software. Since the accuracy
achieved by the use of the HOHWM in the case of s = 2 and s = 3 exceeds the limits of the
double precision computing, the variable precision computing (VPA) was used.

Note that this is needed only in the case of particular problems and large mesh
where the accuracy exceeds the limits of double precision computing.

5.2 Nonlinear Lienard equations

The nonlinear differential equation given as

d’u(x) du(x)

de +f(u) d.(:C

+gu)=0 (37)

1.00E+16
1.00E+14
1.00E+12
1.00E+10
100E+08

1.00E+06
100E+04
1.00E+02
N=4 N=16 N=&

1.00E+00
4 N=2568

Figure 4.
Ratios of the absolute error of the HWM and the HOHWM.
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is known as the Lienard equation. In the following, it is assumed that f(#) = 0
and g(u) = 0. Let us consider solution in the interval [0, 1] and assume the boundary
conditions in the form.

u(0) = ug,u(1) = uy. (38)

In the current study the nonlinear differential Eq. (37) is linearized by applying
the quasi-linearization technique as [55].

Pupa(x) | dupa()
3 +
dx dx

ur(x) + %urﬁ—l(-x‘) - du;ix) uy(x) = 0. (39)

Obviously, Eq. (39) can be solved iteratively with respect to r.
In the case of the HWM, the second order derivative is expanded into Haar
wavelets

A’y 1(x)
and the solution of the Lienard Eq. (37) can be derived as
u(x) = ﬂy+1P2 — a,+1xP2(1) + thy (41)

In the case of the HOHWM and s = 1 the fourth order derivative is expanded
into Haar wavelets

d*u,1 (x)

= aH (42)

and the solution of the Lienard Eq. (37) can be derived as

u(x) = ar1Ps — ar11((byy — 2)P4(1) — byyP3(1) — yP2(1)) + bz — brzy,
X -3x  3x
Y6, T3 4h,

(43)

In Egs. (41) and (43), the value of the parameter b, depends on the particular
boundary conditions applied. Let us consider first the following boundary conditions.

u(0) = 0,u(1) = 6tanh (3) (44)

then the exact solution is #(x) = 6 tanh (3x) and b, = 6 tanh (3). The results
obtained by the use of the HWM and the HOHWM are compared in Table 4 (point
x = 0.5 is used).

Next let us consider the following boundary conditions.

u(0) = 0,u(1) = 8tanh (4) (45)

In the latter case, the exact solution is #(x) = 8tanh (4x) and b, = 8 tanh (4). The
results obtained by the use of the HWM and the HOHWM are compared in Table 5.

It can be observed from Tables 4, 5 that the rates of convergence of the HWM
and the HOHWM (with s = 1) tend to two and four, respectively. The accuracy
obtained using the HWM with maximum resolution 2 M = 1024 is achieved in the
case of the HOHWM with only 32 collocation points.
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6. Conclusions

The HOHWM introduced recently by authors as an improvement of the HWM
in order to compete with the numerical methods widely used in engineering. It was
shown that using the HOHWM instead of the HWM will improve principally the
accuracy of the solution and increase the rate of convergence in the case of all
problems studied. It was found that the rate of convergence of the HOHWM
depends on the model parameter s and is equal to 2 + 2 s.

From a practical point of view, it is important that the HOHWM can achieve
the same accuracy as the HWM with significantly lower mesh and reduced
computational cost.

In the simplest case of the HOHWM where s = 1, the order of the convergence of
the HOHWM is equal to four. The user can select suitable s value depending on the
accuracy requirements of a particular problem considered.

In future study, the new method proposed can be extended/adapted for solving
a wide class of differential and integro-differential equations, including fractional
differential equations, multidimensional problems, nonlinear boundary value
problems arising in engineering design.
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COVID-19 Outbreak and
Co-Movement of Global Markets:
Insight from Dynamic Wavelet
Correlation Analysis

Maurice Omane-Adjepong, Imhotep Paul Alagidede
and John Bosco Dramani

Abstract

The COVID-19 pandemic has in its short existence caused economic downturn
and affected global markets. As would be expected, the occurrences of global crises
or shocks often heighten uncertainties in international markets and increase corre-
lations among them. Yet, not much is known of the actual impacts of COVID-19 on
the behavior of global markets. This piece attempts to investigate whether the
COVID-19 crisis has had any impact on the interrelationship structure of interna-
tional markets using the cross-wavelet squared coherence and a dynamic wavelet
correlation technique. It emerges that co-movements of the pairwise series become
stronger (0.70-0.89) during the heightened periods labeled as epidemic and pan-
demic phases of COVID-19, than that of the periods that mark the pre-COVID-19
era (—0.49-0.36), hence announcing the influence of the crisis and eroding pros-
pect of benefiting from a hedge instrument and/or a diversifier. Again, we observe
that stock market-Global REITs have been the most influenced pair, showing sig-
nificantly peaked co-movements (0.63-0.87) during the distinct phases of COVID-
19. We attribute these developments to the loose monetary and financial measures
implemented by central banks of the world. The findings hold important implica-
tions for economic and financial actors regarding diversification, hedging, and
investment risk management.

Keywords: global markets, COVID-19 outbreak, co-movement, RWW(GC, portfolio
diversification

JEL classification: C22, G15

1. Introduction

The COVID-19 pandemic has triggered untold uncertainties in most global
financial and commodity markets. In March 2020, stock price fell intensely,
mortgage-backed securities and yield spread of corporate bonds surged signifi-
cantly, and U.S. Treasury bonds which usually serve as a safe-haven, plunged [1, 2].
Specifically, the behavior of global stock market appears illogical in presence of the
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pandemic to many investors. For instance, S&P500, one of the mega-size stock
markets experienced three phases of changes as the rate of COVID-19 infection
worsens. In phase one, it recorded a high value on 19th February 2020, prior to the
declaration of the outbreak as a pandemic by the World Health Organization
(WHO). However, a surge in the spread of the virus, exacerbated by soaring death
rates, caused panic and created a colossal urgency to accumulate cash balances,
sparking a concurrent selloff in stocks [3]. Thus, in phase two, the S&P500
plummeted by 34% reaching its low on March 23, 2020. In the third phase, S&P500
rose by 30% on April 30, 2020, despite the lockdown orders initiated by many
countries to curb the spread of the virus. In hindsight, stock markets have
performed well, generally, because on the eve of the COVID-19 outbreak been
pronounced a pandemic, the ratio of market capitalization to GDP was higher
compared to its level in 2007, and a little higher than the maximum value during the
dot-com bubble [4]. Analysts attribute the rebound of the stock market partly to
various loose monetary policy and other interventions pursued by central banks [4],
which instilled confidence into shareholders, lightening fears of the health crisis.
Besides, country-specific characteristics such as structural economic fragility and
“at-risk” population, also seem to have had little effect on stock market reactions to
the pandemic [5].

As the pandemic intensifies, bond trading has also encountered challenges,
regardless of the asset’s significance and essential role in the financial market sys-
tem. In the face of the pandemic, the observed behavior of the bond market is
similar to that of the global stock market. For instance, the U.S. Treasury bond and
Canadian government bond markets, in phase one, witnessed an increase in
demand for liquidity as investors embarked on a significant selloff [2]. In phase
two, dealers curtailed the supply of liquidity, which deteriorated trading conditions.
In the third phase, demand gradually reduced, due to some interventions intro-
duced by the respective central banks of these giant economies.

In another development, commodity markets such as crude oil and the real
estate markets equally experienced volatilities as the COVID-19 pandemic unfolds.
On 20th April 2020, a barrel of West Texas Intermediate crude oil to be delivered in
May recorded a negative price, implying sellers had to pay buyers [6]. Though the
price for June also fell over a quarter on 27th April, it however remained a little
above $12 a barrel. Crude oil market analysts attribute these fluctuations to a price-
war between Russia and Saudi Arabia, which they claimed flooded the international
market with crude oil and a slump in demand due to traveling and aviation restric-
tions imposed by countries following the pandemic [7].

A convergence of the uncertainties in the above global markets triggered an
immediate deterioration of business environment with unintended negative conse-
quences on commercial real estate markets. Demand for lease space slumped and
continue to deteriorate as the pandemic unfolds due to the effects of social distanc-
ing and business closures across the globe. However, the impact appears to vary
extensively across the real estate sectors. Whiles some sectors are severely and
directly affected by the pandemic, others are less and indirectly affected. The
performance of the stock market for Real Estate and Investment Trusts (REITs)
reflects the differences in the degree of the uncertainties across different types of
properties [8].

Though the individual global markets’ responses to the COVID-19 pandemic
may seem somehow similar, albeit yet to be determined actual worldwide impact
quantification, there is a strong likelihood of a potential lead-lag co-movement
among the markets, which may be induced or heightened by major news of the
health crisis. There is an astronomical increasing number of empirical studies
towards the reactions of individual global markets to the COVID-19 crisis. In a short
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epistle, Krugman [4] disclosed that the “stock market is not the economy”, and that
“connection between stock growth and the expansion of the real sector of the economy lies
within loose and nonexistence”. Capelle-Blancard and Desroziers [5] confirmed vari-
ous interventions by governments, as well as the believe that loose monetary policy
and lockdown initiatives stimulated the rebound of stocks, they further agreed with
Krugman [4] that there exists a loose relationship between market fundamentals
and stock market uncertainties. Jefferson [7] on the other hand established that
projections of future crude oil prices are uncertain, however, in the absence of
supply-side shocks, oil prices are likely to rebound by the end of the third quarter of
2020. Goodell and Goutte [9] investigate co-movement of Bitcoin with levels of
COVID-19 fatalities and show that the levels of COVID-19 deaths cause a rise in
Bitcoin prices. However, the analyses from the previous studies have failed to
examine coherences and lead-lag behavior among conventional global markets as
they react to the COVID-19 crisis. Again, to the best of our knowledge, the existing
studies have not analyzed the interrelationship structure and reactions of global
markets to distinctive stages of the COVID-19 outbreak.

In response to the identified gaps, this study attempts to offer fresh insights as to
whether major news items of COVID-19 influence the interdependence structure of
international markets. We contribute to the existing literature in two-fold. First, we
explore the degree of co-movement and lead-lag relationship among aggregate
global stock index, commodities, and the REITs market using the cross-wavelet
squared coherence and a rolling-window wavelet correlation (RWWC) technique.
In addition to its ability to address issues of nonlinearity, (non-) economic shocks,
regime shifts, and non-stationarities, the RWWC approach possesses time-varying
attributes that makes it possible to measure the temporal variations of cross-market
correlations over time and frequency domains [10], with implications for heteroge-
neous market actors. Second, we examine the influence of the COVID-19s epidemic
and pandemic stages on global market interrelatedness and determine whether
international investors can hold positions in the markets to offset short-run invest-
ment losses during the crisis.

The remaining structure of the study is set as follows. Section 2 provides a
review of the extant literature. Section 3 discusses the econometric techniques
employed. Section 4 presents the results, while Section 5 provides conclusion and
policy recommendations.

2. Literature review

Ramelli and Wagner [11] found a significant effect of world trade and global
value chain on the value of corporations. Corporate bodies appeared profitable
depending on the location of the epicenter of the pandemic. For instance, stocks of
corporate bodies in China initially appeared risky as the pandemic unfolded while
those in Europe were considered profitable. However, as the epicenter moved to
Europe and America, investors perceived stocks of these regions to be unfavorable,
causing the markets to behave feverishly. Investors were equally alarmed about the
possibility of corporate bodies incurring high debts as well as the survival potentials
of businesses with insufficient cash balances. Though the opportunity cost of hold-
ing cash balances appeared high, there was an increasing need to hold precautionary
cash to soar the value of firms. Capelle-Blancard and Desroziers [5] revealed that
investors in the stock markets were quick to respond to soaring cases of COVID-19,
with advanced economies being highly affected. The authors also unearth that loose
monetary and fiscal policies introduced by central banks and governments caused
interest rates to fall, which moderated the fall in stock prices, making the market
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less responsive to the crisis. Baker et al. [12] argued that the stock market responded
to the pandemic in a way that has never happened in history. The authors attributed
this behavior to a host of factors such as governments’ restraints on economic
activity and the introduction of social distancing measures in the presence of a
service dominated economy. Ehrmann and Jansen [13] revealed the presence of
significant co-movement between stock returns and national stock markets. Inves-
tors placed a high value on global news and the effects were moderated by large
oscillations in global stock markets. However, investors turned to place less value on
firm-specific news, which caused stock returns and national stocks market to move
together. The authors observed that, this relationship was significant for stocks that
are characterized by low co-movement with national market, resulting in a
convergence of beta across stocks.

Haddad et al. [14] in studying the disruptions in debt markets as the pandemic
unfolded made interesting revelations. The authors revealed that bonds that are
usually regarded as safe havens recorded weighty losses which analysts found
difficult to explain applying risk premium channel or standard default. Corporate
bonds traded at a huge discount to their equivalent credit default swaps and this
became worse for many safer bonds. Similarly, liquid bond exchange-traded funds
witnessed a huge discount to their corresponding net asset value. These findings
imply traders attempted to sell safer and high liquid securities to increase cash
balances. However, these disruptions did not see the light of day as the market
recovered in a matter of weeks. The authors attributed the fast recovery of the
bonds market to the unparalleled measures the Fed introduced by purchasing cor-
porate bonds instead of extending credit. Fontaine et al. [2] and Kargar et al. [15]
found that the market for bonds evolved in three phases as the pandemic worsens,
using two-year benchmark bonds for Canada. The first phase witnessed a sharp rise
in the demand for cash balances, which traders did well to accommodate but at a
higher cost. The second phase experienced a massive decrease in the supply of cash
balances by dealers, leading to a huge deficit as demand for cash kept soaring. The
third and final phase saw trading activity and price of cash balance stabilizing due to
the interventions by central banks to assist the financial sector.

Regarding the crude oil market, the Arezki et al. [16] pointed out that net oil-
exporting economies face a dual shock emanating from the health crisis and a fall in
prices of crude oil. However, the shock from the pandemic turned to lead and
influence the collapse in oil prices. This manifested itself through the traveling
restrictions placed on the aviation industry, self-isolation, and social distancing and
complete lockdowns measures introduced by governments around the globe [7].
Elsewhere, Barbosa et al. [17] revealed that the dual shock on net exporting
countries negatively affected the financial and structural health of the oil sector in
an unprecedented manner. Since the intensity and length of the health crisis are
uncertain, the authors suggested net exporting countries should introduce
fundamental intervention to reverse the trend to make the industry profitable
again.

In the Real Estate and Investment Trusts market, Schnure [8] observed that the
social distancing and lockdown measures caused almost all businesses in the global
economy to shut down. There is a high probability that most of these businesses
may find it very difficult to honor their rent in the near future, which will affect
negatively on cash flow of property owners. Again, the authors explained that hikes
in unemployment would cause unspeakably high rent default by households.
Coibion et al. [18] found persistence in low inflation, heightened uncertainty, and
lower mortgage rates as the pandemic worsened. The authors attributed this low
consumer spending and collapse in demand for office space as employees work
from home.
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It is important to mention that the existing literature is yet to explain whether
COVID-19 has influenced the interdependence structure of global markets. Besides,
the influence of the crisis at the onset stage and its transition into a pandemic has
rarely been explored. Thus, applying time-frequency estimation methods, this
paper augments the literature by assessing the extent of co-movement and the
direction of linkages (lead-lag relationship) among selected major global market,
amid COVID-19 major news. Our study provides international investors with fur-
ther insight as they seek to diversify their investment portfolios by purchasing
securities that do not or less co-move to minimize losses under the heightened
market periods of COVID-19.

3. Data and methods

The data for the empirical analysis and the econometric approach for the
multidimensional dynamic correlation measure is explained in this section. As pre-
liminary to the main analysis, static descriptive measures, and a correlation matrix
based on a global measure, computed under different time samples are provided.

3.1 Data

Daily price levels of MSCI All Country World Index (MSCI ACWI), S&P GSCI
Energy Index, S&P GSCI Non-Energy Index, and S&P Global Real Estate and
Investment Trusts (SREITGUP), which spans from January 01, 2016, to August 17,
2020 (giving us 1165 realizations after cleaning and synchronization the
timestamps) are considered and used as proxy for global markets'. The US dollar
denominated price level datasets are sourced from the Bloomberg database termi-
nal. The daily prices are converted to percentage log changes: 7;; = In(P;;/P;;—1) X
100, fori =1, ...,4and t = 2, ..., 1165, where P;; and P;;_; denote the close of day
prices for global market i at day ¢ and ¢ — 1 respectively. The time sample is
foremost divided into pre-COVID-19 crisis (January 01, 2016, to December 07,
2020) and periods marking the onset and duration of COVID-19 (December 08,
2019, to August 17, 2020).

To establish the dynamic impact of the COVID-19 outbreak on the interrela-
tionship structure of international markets and its implication thereon, the crisis
period is further separated into epidemic (December 08, 2020, to March 10, 2020)
and pandemic (March 11, 2020, to August 17, 2020) stages. The dating of these
distinct periods is based on the announcements or timelines of the first patient who
was reported to have developed symptoms of the Wuhan coronavirus (on Decem-
ber 08, 2019) and the subsequent declaration of the outbreak by WHO as a pan-
demic (on March 11, 2020)>.

Table 1 shows summary moment measures for the global markets during the
crisis and non-crisis periods. Compared to the non-crisis, the average daily returns
fairly decrease under the crisis period, with all markets recording low negative
skewness values, indicative of a high tendency of reaping non-positive investment
returns. Noticeably, the markets appear to be more volatile as we transition from

! International bonds, bills, and the currency markets are beyond our scope, perhaps, they could be
considered in future studies.
2 For the applicable COVID-19 timelines, refer to: https://www.weforum.org/agenda/2020/04/corona

virus-spread-covid19-pandemic-timeline-milestones/ (Accessed on July 29, 2020).
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Period I: Pre-COVID-19 crisis Period II: COVID-19 crisis

Mean Std Dev Skew Kurt Mean Std Dev Skew Kurt

MSCI ACWI 0.0359 0.6733 —0.7606  4.6379 0.0131 2.0655 —-1.1728  7.2169

GSCI Energy 0.0486  1.8979 0.1638  3.2746 —0.2060  5.1673 —1.3398 9.8393

GSCI Non-Enr  0.0123  0.5844 —-0.1489 0.7892  0.0019 0.7723 —0.7365 22106

SREITGUP 0.0137  0.6934 —-0.4641 1.8341 —0.1105 2.7274 —-1.6971 9.5034

Table 1.
Descriptive measures.

Period I: Pre-COVID-19 crisis Period II: COVID-19 crisis
(@) (b) (c) (d) @ (b) (c) (d)
(a) MSCI ACWI 1 1
(b) GSCI Energy 0.3668 1 0.4671 1
(c) GSCI Non-Enr 0.2921 0.2511 1 0.5813 0.4340 1
(d) SREITGUP 0.5598 0.1608 0.1450 1 0.8962 0.3764 0.5599 1

Table 2.
Pearson corvelation matrix.

the pre-crisis to the crisis period. For instance, the volatility measures for MSCI
ACWI, S&P GSCI Energy, and the Global REITs (SREITGUP) increased almost
three-fold between the two periods. Meaning, the COVID-19 crisis has ushered in
periods of heightened uncertainty and created a high financial risk

environment. Besides, the return distributions of the markets exhibit relatively
more leptokurtic features under the crisis, hence giving rise to extreme return
realizations.

Results of the Pearson’s unconditional correlations for the market pairs are
presented in Table 2. Except for MSCI ACWI-Global REITs (with correlation
measure of 0.5598), low positive correlations (ranging from 0.1450 to 0.3668)
characterizes the pairs before the coming into being of the crisis. However, all the
pairwise correlations increased in magnitude from low positive to moderately low
positive values (0.3764 to 0.5813), with a peaked measure of 0.8962 for MSCI
ACWI-Global REITs. These static-based measures signal the influence of the
COVID-19 crisis on cross-market relationship, which seems to be in line with the
literature that suggests that financial markets tend to move closely together (i.e.,
increased correlation or co-movement intensity) during turmoil or crisis. Yet,
estimations that are more robust are undertaken to validate these early detections.

3.2 RWWC methodology

To examine the interrelationship structure between the daily percentage log
changes of MSCI ACWI, S&P GSCI Energy Index, S&P GSCI Non-Energy Index,
and S&P Global REITs Index across time and frequency, we employed a dynamic
correlation version of the wavelet correlation approach by Gengay et al. [19]. The
rolling-window wavelet correlation (RWWC) method, which was introduced by
Ranta [20, 21] has recently gained traction in the economics and financial literature,
perhaps due to its ability to unearth the temporal variations of the wavelet correla-
tion for distinct time series, by incorporating a dynamic measure under a
multidimensional setting. Using the Maximal Overlap Discrete Wavelet
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Transformation (simply, MODWT) methodology (see, [22-24]; etc.) and following
Gengay et al. [19], we express the MODWT-based unbiased estimator of the wave-
let correlation for pairs of the market series, X; and Y; for scale 4; as:

el e
(Var(WX)j’t) Var(wy’j’t))l/z (/1 ) ( )

where, 7xy (4;) represent the unbiased estimator of the wavelet covariance for

the wavelet constituents Wy ;. and Wy j+ involving the pair of distinct series, and

o% (/1 ) and o-Y( ;) denote unbiased measures of the wavelet variances for X and Y at
scale 4;.
We specify the MODWT-based unbiased estimator of the wavelet variance as:

1 N-1

~2( ):N :LZW )

jt=L,-1

where, w ;, represent the j"-level MODWT wavelet constituents for market
variable X, L; = (2/ — 1)(L — 1) + 1 give the length of the scale 1; wavelet filter, and

N; =N — L; + 1 present the number of wavelet constituents unaffected by the
boundary. Next, an expression for the computation of a random interval that
captures non-spurious wavelet correlations [21] and offers an approximate

100(1 — 2p)% confidence interval is deduced from the extended work of Whitcher
et al. [25]:

-1 _ -1 _
w , tanh { hfpgy (1)] + 2—2—P)
-

tanh{ h[pxy(1;)] — (N, — 3,)1/2

(3)

where, h(pyy) = tanh ! (pyy) describes Fisher’s z-transformation and N i
remains the number of wavelet constituents that correspond to a particular scale.

To provide short-term investment solutions for traders during the ongoing
COVID-19 crisis, we considered to perform our analysis at the lower frequency
bands or investment horizons, thus, the 2 ~ 4 day band (D1: intraweek), 4 ~ 8 day
band (D2: weekly), and the 8 ~ 16 day band (D3: fortnight), which are associated
respectively with scales 4; of the MODWT time-scale decomposition, where j =

.»3. We computed the RWWC using a 100-day window size, which we rolled
forward one day (or datapoint) at a time, and centred around time ¢. With a sample
size of 1165, we obtained a total of (1165 minus 100 = 1065) windows. We later
varied the window size to 120 (or half-year) to verify the sensitivity of the results to
the choice of window length. The two window sizes, w = 100 and w = 120 trun-
cated on June 04, 2020, and May 20, 2020, respectively, giving us relatively less
information losses compared to using higher window sizes. On the other hand,
selecting very low window lengths plays down on the power of the test, therefore
our choices are not misplaced.

4. Empirical results

We begin the main analysis with results from the cross-wavelet squared coher-
ence method of Grinsted et al. [26]. Under this well-known technique, the estimator
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of interdependence is rooted on a continuous wavelet transform (see, [9, 21, 27];
etc., for detailed explanation) rather than the discrete wavelet transform. Besides,
unlike the RWW(C, the wavelet coherence does not incorporate a dynamic measure
in its computation. Therefore, taken as a precursor to the RWW(C analysis, we
initially gleaned the direction and nature of the interdependence structure that
emerges for the market pairs using the wavelet coherence plots shown in Appendix
B. A general observation of Appendix B reveals that the arrows are mostly pointing
to the right, implying the series are positively correlated, with patches of varying
significant coherences predating the year 2020. Observably, the post-2020 period
recorded a high degree of coherences for pairs involving stock market-Global REITs
and stock market-energy commodities, which witnessed long stretches of white
contours over the frequency bands. These detected peaks in coherences conform to
the contagion effect literature that projects high co-movements (or increased cor-
relation intensity) for financial markets during and/or after the occurrences of
turmoils or major crises. This finding is in line with the findings of Polanco-Mart-
inez et al. [24] who reported strong correlation (0.56-0.87) among global financial
markets during episodes of heightened economic crises, particularly during the
2008 financial meltdown.

Specifically, in Appendix B, we first focus on the behavior of the global stock
market and energy commodity pair. As noted, a significantly strong positive corre-
lation could be gleaned between the 16 and 128 trading day bands, with purloins of
co-movement within the intraweek to fortnight trading frequencies. The strongest
level of coherences falls within March and May 2020, where the equity market
clearly leads energy commodity. This post-2020 co-movement pattern could per-
haps be attributed to the lockdown measures, which brought global transportation
to a temporary halt, hence the lagging of global energy commodity in its interrela-
tionship with stock market. This finding confirms those of Nguyen et al. [28] who
established strong evidence of co-movement (ranging from 0.62-0.89) between
stock and energy markets at the peak of the global financial crisis 2007-2009.
Similar visibly strong coherences, which intensifies at the beginning of 2020 and
beyond, conspicuously grows from the intraweek to half-year trading day bands for
the stock market and Global REITSs pair. It is also important to stress that the
coherences between stock market-Global REITSs stretch over longer periods than
what could be witnessed for the other global market pairs. These zones of strong
correlations are suggestive of contagion impact resulting from the imposition of
measures, implemented by world governments and their central banks to avert
meltdown of the global financial markets.

With respect to stock market and non-energy commodity in Appendix B, we
notice isles of significantly segmented zones of coherences, which mark periods,
before, during, and after the outbreak of COVID-19. Coherences between
energy and non-energy commodities appear generally weak, with few moderately
low correlations concentrated between frequency bands of 8-32, and fairly
distributed across time. Similarly, besides the 32-128 trading day bands of the
opening months of 2020, coherences between energy commodity and global REITs
are equally weak. Finally, we observe patches of moderately low significant co-
movements between non-energy commodity and Global REITs, which appears
mounded within the medium-to-long-run frequencies (16-128) with weak
coherences below the fortnight band, coupled with a nonhomogeneous lead-lag
relationship.

Our RWWC analysis in Figure 1, drawn from a dynamic version of the discrete
wavelet transform is initially estimated using a 100-day window length using
Eq. (3). The estimations from the dynamic approach reveal thought-provoking
findings that may be hardly discernible with static or global measures. The
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Figure 1.

A 100-day RWWC for pairs of selected global markets. Note: the strength of the dynamic wavelet correlation for

the pairs is displayed by the heat map colors, which ranges from weak to high (thus, from blue, cyan, green,

white, yellow, orange, to red respectively), where red (blue) denotes highest (lowest) wavelet correlation
icients within a 95% confidence interval (vefer to the web version of the article for color representation).

horizontal axis of Figure 1 depicts timelines (or time intervals) and the vertical axis
represents frequency bands or investment horizons categorized into D1
(intraweek), D2 (weekly), and D3 (fortnight)3 . A glance from the RWW(C results in
Figure 1 shows that the market pairs are predominantly characterized by weak to

® For recent applications, readers may refer the works by Polanco-Martineza et al., (2018); Omane-
Adjepong and Alagidede [10]; Nguyen et al., (2020); etc.
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moderately low positive correlations, with few abrupt zones of inverse correlations
that completely disappear during the uncertain periods ushered in by the global
outbreak of COVID-19. This latter finding signals a negligible or unlikely opportu-
nity of benefiting from any of the market assets as a safety net tool or instrument to
hedge against short-term losses of an international investment portfolio. Generally,
except for stock market and the Global REITS pair, we observe fairly low but
steadily increasing correlations for the markets over the frequency bands before the
onset of COVID-19.

Particularly in Figure 1, we notice vast yellow to less warm orange regions with
scores of white and green patches before the dating of the COVID-19 crisis for
markets pairs of non-energy and Global REITs on one side, and energy versus Global
REITs at the other side. Similar colors from the correlation heatmap could also be
somehow advance to describe interrelationship behavior for the pairs involving
energy and non-energy commodities, as well as stock market and (non-) energy
commodity. These pre-COVID-19 co-movement patterns mark an era that is gener-
ally dominated by moderately fewer interactive markets, except for the stock market
and Global REITs pair, which exhibited moderately high interactions. Besides, the
latter market pair witnessed strong co-movement across the trading frequencies in
the second to the third quarter of 2016, a period which coincides with the UK’s
referendum on June 23, 2016, to leave European Union. Perhaps, the uncertainties
induced by the referendum accounted for such high cross-market interactions®.

As viewed from Figure 1, the onset and the distinct phases of COVID-19 has had
cause to alter the correlation patterns of the market pairs. For instance, the RWWC
measure becomes strong (warm orange to reddish heatmap colors) during the epi-
demic phase of COVID-19 for stock market-energy commodity and energy
commodity-Global REITs, only to reverse to moderately low correlations, as observed
under the pre-COVID-19 period, thereby signaling a temporal effect of the crisis on
the market pairs. The remaining markets recorded increasing co-movements in the
early period of the epidemic, however, these intensifies and peaks in the latter part of
the epidemic, and subsequently overflows into the pandemic period. Our finding
confirms that of Samadi et al. [29] who provided strong evidence to the effect that
energy market exhibited low co-movement (0.36) during the pre-Ccovid-19 episode,
which later heightened (0.88) during the pandemic era. The results presuppose that
COVID-19 has exerted varying influences on the relatedness of global markets, and as
a result decreased, to a large extent, the tendency of reaping diversification gains.
These strong co-movements could be a consequence of looming heightened financial
instabilities, compelling central banks to implement loose monetary and financial
measures to curtail the effect of the crisis.

From the above context, it would be non-advantageous to hold a position in
pairs of these global markets during the ongoing crisis, more importantly, for the
stock market and Global REITs. As the evidence suggests, the latter pair react more
to global shocks or crises, perhaps, owing to the reason that both markets are
subjected to similar circumstances, hence, in periods where stock prices plummet,
REITs are not overly immune to the perils of falling stock prices.

To ensure the robustness of our results we conduct a sensitivity test by increas-
ing the rolling-window size to 120-days and report the results in Appendix A,
estimated using Eq. (3). Conspicuously, we observe similar trends for the market
pairs, and therefore conclude that our results are invariant with the size of the
rolling-window.

* It is imperative knowing that the weight composition of MSCI ACWI and SREITGUP captures several

developed markets in Europe.
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5. Conclusions

This study investigates the behavior of global markets amid the onset and the
different stages of COVID-19. We represent the first period as pre-COVID-19
(January 1, 2016, to December 07, 2019) - this period is characterized by high
financial market growth and stability; the second period as an epidemic (December
07, 2020, to March 10, 2020), which is considered as relatively high volatility in a
specific country (China) or region; and the last as a pandemic stage (March 11,
2020, to August 17, 2020), branded as a period of heightened global markets
instability. Four selected international markets, namely MSCI AWCI, S&P GSCI
Energy, S&P GSCI Non-energy, and S&P Global REITs are used for the analysis.
We accomplished the goal of the study by applying both static and dynamic mea-
sures to ascertain the extent to which COVID-19 has influence the interrelationship
structure of global markets.

Overall, we detect that COVID-19, through its different stages has generally
affected the relatedness patterns of global markets. Thus, co-movements of the mar-
kets become stronger during the heightened periods of COVID-19’ epidemic and
pandemic, and as a result, erodes, to a greater extent, the likelihood of diversification
benefits. These increases in co-movement are attributed to the loose monetary and
financial measures as well as stringent interventions imposed central banks and
government, worldwide, as panic remediations to curtail global economic meltdown.

In conclusion, hitherto the general observation that global markets comove
during episodes of heightened crisis, our study provides a strong evidence that these
correlations are not just strong during the entire period but stronger at the peak of
the crisis or pandemic stage (March 11, 2020, to August 17, 2020, in the case of
COVID-19). This situation is likely to vary from country to country due to the
degree of aggressive interventions and restrictions introduced by respective central
banks and governments. The findings of this study indicate that health crisis
(COVID-19) can have important implications for global markets through some
transmission channels. It is thus important that policy-makers, through research,
begin to identify these important channels and fashion both institutional and regu-
latory policies to address them. Future research can widen the scope to cover
relevant aspects of this study by asking the following questions; what accounts for
the differences in global markets or countries with dissimilar reactions to COVID-19
pandemic? Can these differences in reaction across global markets and countries be
attributed to different approaches to the conduct of monetary policy or institutional
characteristics? Can the differences in responses of global markets be due to
approaches adopted by various countries in handling the pandemic? Even though
COVID-19 health crisis has been pronounced a global pandemic, its negative impact
has not been equally distributed, leading to dissimilar responses across countries. By
asking and addressing the above questions using different techniques, researchers
will produce findings with a strong heterogeneity.
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Appendix A: A 120-day RWWC for pairs of selected global markets.

Note: the strength of the dynamic wavelet correlation for the pairs is displayed
by the heat map colors, which ranges from weak to high (thus, from blue, cyan,
green, white, yellow, orange, to red respectively), where red (blue) denotes highest
(lowest) wavelet correlation coefficients within a 95% confidence interval (refer to
the web version of the article for color representation).
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Appendix B: Cross-wavelet squared coherence with phase difference for
selected pairs of global markets.

Note: In the wavelet coherence plots, the time interval (01.04.2016—
2017.08.2020) is represented by the horizontal axis, while the vertical axis gives the
frequencies (ranging from a 2-day to 128-day or half-year band). The degree of
coherence is described by the heatmap, where warmer greenish to reddish colors
denote medium-to-high interrelationship, and the light to deep blue indicates weak
to uncorrelated markets. The 5% statistically significant coherence is displayed
within the zones bounded by the white contours, and also confined to the “cone of
influence” (the bell-shaped region), beyond that, coherence estimates become spu-
rious. The direction of coherence is detected through the phase arrows, where the
left and right black arrows denote that the two market series are out-of-phase
(negative correlation or opposite movement) and in-phase (positive correlation or
same direction of movement) respectively. Down pointing arrows put the first
series as a leader; upward arrows mean the second is leading; right and down means
the first series is leading; right and up suggest the first is lagging; the first series lags
when the arrows point left and down, and leads the second series when the direc-
tional arrows point left and up. In all our plots, the first and second series corre-
spond to the positions of the figure caption.
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