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Generally, the term biomass is used for all materials originating from photosynthesis. 
However, biomass can equally apply to animals. Conservation and management of 

biomass is very important. There are various ways and methods for biomass evaluation. 
One of these methods is remote sensing. Remote sensing provides information about 

biomass, but also about biodiversity and environmental factors estimation over a wide 
area. The great potential of remote sensing has received considerable attention over the 
last few decades in many different areas in biological sciences including nutrient status 

assessment, weed abundance, deforestation, glacial features in Arctic and Antarctic 
regions, depth sounding of coastal and ocean depths, and density mapping. The salient 

features of the book include: <br/>Several aspects of biomass study and survey<br/> 
Use of remote sensing for evaluation of biomass<br/> Evaluation of carbon storage in 

ecosystems<br/> Evaluation of primary productivity through case studies
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Preface 

The accurate measurement of ecosystem biomass is of great importance in scientific, 
resource management and energy sectors. In particular, biomass is a direct 
measurement of carbon storage within an ecosystem and of great importance for 
carbon cycle science and carbon emission mitigation. Closing the global carbon budget 
is one of the greatest scientific and societal needs of our time. Quantifying the carbon 
cycle is the most important element in understanding climate change and its 
consequences, yet is poorly understood (Le Toan et al, 2004). As an example, globally 
forests store 85% of terrestrial carbon, yet the amount of carbon contained in the 
earth’s forests is not known to even one significant figure, ranging from 385 to 650 
1015g carbon (Saugier et al. 2001, Goodale et al. 2002, Houghton et al. 2009). It is 
therefore crucial that biomass measurements be improved.  

Measurements of ecosystem biomass have far ranging societal, policy and 
management implications. The anticipated economic and societal burden that will 
result from unmitigated rises in CO2 emissions and losses in ecosystem services alone 
are estimated to be in the trillion of dollars by mid-century (Stern Report, 2008). 
Ongoing international carbon mitigation initiatives need detailed, precise and accurate 
measurements of carbon storage in terrestrial, coastal and aquatic ecosystems to be 
successful. 

Remote Sensing is the most accurate tool for global biomass measurements because of 
the ability to measure large areas. Current biomass estimates are derived primarily 
from ground-based samples, as compiled and reported in inventories and ecosystem 
samples. By using remote sensing technologies, we are able to scale up the sample 
values and supply wall to wall mapping of biomass. Three separate remote sensing 
technologies are available today to measure ecosystem biomass: passive optical, radar, 
and lidar. 

There are many measurement methodologies that range from the application 
driven to the most technologically cutting-edge. The goal of this book is to address 
the newest developments in biomass measurements, sensor development, field 
measurements and modeling. The chapters in this book are separated into five 
main sections. 



XII Preface

In section I (Forests) the authors present recent developments in remote sensing 
using lidar in Chapter 1 Lidar Remote Sensing for Biomass Assessment by J. Rosette, et 
al., Synthetic Aperture Radar in Chapter 2 Forest Structure Retrieval from Multi-
Baseline SAR tomography, by S. Tebaldini, and very high resolution optical imagery 
in Chapter 3 Biomass Prediction in Tropical Forest: the Canopy Grain Approach by C. 
Proisy et al. In Chapter 4 Remote Sensing of Biomass in the Miombo Woodlands of 
Southern Africa: opportunities and limitations for research, N. Ribeiro et al lead us 
through a review of the current state of biomass estimation in Woodland forests of 
Southern Africa. 

Section II (Oceans) of this book addresses biomass estimation of biomass in the oceans. 
In chapter 5 Remote Sensing of Marine Phytoplankton Biomass, T. Moisan et al. provide a 
review of the remote sensing techniques currently used in phytoplankton biomass 
estimation from space. In Chapter 6 Using SVD analysis of combined altimetry and ocean 
color satellite data for assessing basin scale physical-biological coupling in the Mediterranean 
Sea, the authors A. Jordi and G. Basterretxea analyze patterns of phytoplankton 
variability at inter-annual, seasonal and intra-annual scales in the Mediterranean Sea 
based on satellite imagery.  

Section III (Fires) addresses the remote sensing of fires and post-fire monitoring in 
forests. In Chapter 7 Advances in Remote Sensing of Post-Fire Monitoring, I. Gitas et 
al. carry out a detailed review of the current state of remote sensing of burned forest 
areas. Chapter 8 The science and application of Satellite Based Fire radiative energy by E. 
Elicott and E. Vermote examines the effect of forest biomass burning on the biosphere 
and atmosphere. 

In Section IV (Models), the chapters address the combination of remote sensing and 
ecosystem modeling as they relate to biomass. Chapter 9. Resilience and stability 
associated with conversion of boreal forest by J.K. Shuman and H.H. Shugart examines the 
forest composition and biomass across Siberia and the Russian Far East from 
individual based modeling and remote sensing to evaluate forest response to climate 
change. In chapter 10 Estimating biomass dynamics from LAI through a plant model, M. 
Kang et al present a model of plant growth from noisy and incomplete remote sensing 
data.  

Section V (Applications) composed of chapters where biomass is estimated for 
resource management or agricultural applications. In Chapter 11 Mapping aboveground 
and foliage biomass over the Porcupine caribou habitat in northern Yukon and Alaska using 
Landsat and JERS-1/SAR data, W. Chen et al. develop baseline maps of aboveground 
and foliage biomass of forested and non forested areas over the Porcupine caribou 
habitat in northern Yukon and Alaska, using Landsat and JERS-1/SAR data. Chapter 
12 Rice Crop Monitoring with Unmanned Helicopter Remote Sensing Images by K. Swain et 
al. explores the use of unmanned Helicopter Remote sensing for precision agriculture 
and biomass yield estimations in rice plantations. In Chapter 13 Geostatistical 
Estimation of Biomass Stock in Chilean Native Forests and Plantations, the authors J. 

Preface XI 

Hernandez et al. create and validate methods for the estimation of above ground
biomass in Chile using medium spatial resolution satellite imagery, digital elevation 
models and geostatistical modeling. Finally, Chapter 14 Using Remote Sensing To 
Estimate A Renewable Resource: Forest Residual Biomass by A. García-Martín et al.
describes a methodology developed to estimate the amount of Forest Residual 
Biomass potentially suitable for renewable energy production in the pine forests of
Mediterranean areas at regional scales, using optical satellite images and forest
inventory data.

Temilola Fatoyinbo 
Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 

USA
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Lidar Remote Sensing for Biomass Assessment 
Jacqueline Rosette1,3,4, Juan Suárez2,4, Ross Nelson3,  

Sietse Los1, Bruce Cook3 and Peter North1 
1Swansea University,  

2Forest Research 
3NASA Goddard Space Flight Center,  
4University of Maryland College Park 

1,2United Kingdom 
3,4USA 

1. Introduction  
Optical remote sensing provides us with a two dimensional representation of land-surface 
vegetation and its reflectance properties which can be indirectly related to biophysical 
parameters (e.g. NDVI, LAI, fAPAR, and vegetation cover fraction). However, in our 
interpretation of the world around us, we use a three-dimensional perspective.  The 
addition of a vertical dimension allows us to gain information to help understand and 
interpret our surroundings by considering features in the context of their size, volume and 
spatial relation to each other. 
In contrast to estimates of vegetation parameters which can be obtained from passive optical 
data, active lidar remote sensing offers a unique means of directly estimating biophysical 
parameters using physical interactions of the emitted laser pulse with the vegetation 
structure being illuminated. This enables the vertical profile of the vegetation canopy to be 
represented, not only permitting canopy height, metrics and cover to be calculated but also 
enabling these to be related to other biophysical parameters such as biomass.  
This chapter provides an overview of this technology, giving examples of how lidar data have 
been applied for forest biomass assessment at different scales from the perspective of satellite, 
airborne and terrestrial platforms. The chapter concludes with a discussion of further 
applications of lidar data and a look to the future towards emerging lidar developments. 

1.1 Context 
Aside from destructive sampling, traditional methods of calculating biomass for forest 
inventory, monitoring and management often rely on taking field measurements within 
sample plots, such as diameter at breast height (DBH) or Top/Lorey’s height. This effort can 
be time, cost and labour intensive. Extrapolation of field measurements to larger areas relies 
on representative sampling of trees within a land-cover type and correct classification of 
land cover over large areas; both of which have inherent uncertainties.  
Lidar remote sensing complements traditional field methods through data analysis which 
enables the extraction of vegetation parameters that are commonly measured in the field.  



 1 

Lidar Remote Sensing for Biomass Assessment 
Jacqueline Rosette1,3,4, Juan Suárez2,4, Ross Nelson3,  

Sietse Los1, Bruce Cook3 and Peter North1 
1Swansea University,  

2Forest Research 
3NASA Goddard Space Flight Center,  
4University of Maryland College Park 

1,2United Kingdom 
3,4USA 

1. Introduction  
Optical remote sensing provides us with a two dimensional representation of land-surface 
vegetation and its reflectance properties which can be indirectly related to biophysical 
parameters (e.g. NDVI, LAI, fAPAR, and vegetation cover fraction). However, in our 
interpretation of the world around us, we use a three-dimensional perspective.  The 
addition of a vertical dimension allows us to gain information to help understand and 
interpret our surroundings by considering features in the context of their size, volume and 
spatial relation to each other. 
In contrast to estimates of vegetation parameters which can be obtained from passive optical 
data, active lidar remote sensing offers a unique means of directly estimating biophysical 
parameters using physical interactions of the emitted laser pulse with the vegetation 
structure being illuminated. This enables the vertical profile of the vegetation canopy to be 
represented, not only permitting canopy height, metrics and cover to be calculated but also 
enabling these to be related to other biophysical parameters such as biomass.  
This chapter provides an overview of this technology, giving examples of how lidar data have 
been applied for forest biomass assessment at different scales from the perspective of satellite, 
airborne and terrestrial platforms. The chapter concludes with a discussion of further 
applications of lidar data and a look to the future towards emerging lidar developments. 

1.1 Context 
Aside from destructive sampling, traditional methods of calculating biomass for forest 
inventory, monitoring and management often rely on taking field measurements within 
sample plots, such as diameter at breast height (DBH) or Top/Lorey’s height. This effort can 
be time, cost and labour intensive. Extrapolation of field measurements to larger areas relies 
on representative sampling of trees within a land-cover type and correct classification of 
land cover over large areas; both of which have inherent uncertainties.  
Lidar remote sensing complements traditional field methods through data analysis which 
enables the extraction of vegetation parameters that are commonly measured in the field.  



  
Remote Sensing of Biomass – Principles and Applications  

 

4 

Additionally, establishing allometric relationships between lidar and field measurements 
enables estimates to be extrapolated to stand, forest or national scales, which would not be 
feasible or very costly using field survey methods alone.  Key aspects of biomass estimation 
from satellite, airborne and terrestrial lidar systems are outlined below. 

1.2 Principles of lidar remote sensing 
When walking through a woodland on a sunny day, some of the sunlight reaches the 
ground through gaps between the foliage, woody branches and stems; some produces more 
diffuse light at the ground by transmittance though the foliage or reflection between 
different vegetation components and the ground, and some is absorbed by the intercepted 
surfaces. A proportion of the energy is reflected from these surfaces back towards the 
source. The same principles apply to lidar. 
Lidar (Light Detection and Ranging) is an active remote sensing technology, which involves 
the emission of laser pulses from the instrument positioned on a platform, towards a target 
(e.g. woodland). Here, it interacts with the different surfaces it intercepts as outlined above  
(Figure 1). Features further from the sensor will intercept and reflect the laser energy back to 
the sensor later than those closer to it.  
The area which is illuminated by the laser pulse is known as the lidar ‘footprint’. The size of 
the footprint is determined by the laser divergence and the altitude/distance from the target 
of the lidar instrument.  Whether the footprint is of large dimensions in the region of tens of 
metres from the altitude of a satellite sensor, tens of centimetres as generally produced from 
airborne platforms or several millimetres in the case of terrestrial laser scanners, the 
principles remain the same. 
Interactions of the laser pulse with the vegetation depend on the wavelength of the emitted 
pulse and its reflectance, transmittance and absorption rates for each foliage, bark and 
background type (e.g. bare soil, litter, snow, etc).  At wavelengths of 1064 nm (in the near-
infrared region of the spectrum and typical of many lidar systems used for vegetation 
analysis), reflectance and transmittance values may each be commonly ~45%. 
The time for the reflected pulse echoes to be returned to the sensor is measured and, using 
the fact that the laser pulse travels at the speed of light, the total return distance travelled 
between the sensor and the intercepted surfaces can be calculated. The distance between the 
altimeter and the intercepted object is therefore half of this value (Baltsavias, 1999; Wehr et 
al., 1999).  This permits the three-dimensional reproduction of the Earth surface relief and 
above-surface object structures (e.g. vegetation, ice cover, atmospheric aerosols and cloud 
structure). 
Very accurate timing is necessary to obtain fine vertical resolutions. Lidar time units are 
generally recorded in nanoseconds (ns), each being equal to approximately 15cm in one-way 
distance between the sensor and target. Time is measured by a time interval counter, 
initiated on emission of the pulse and triggered at a specific point on the leading edge of the 
returned pulse. This position is not immediately evident and therefore is set to occur where 
the signal voltage reaches a pre-determined threshold value. The steepness of the received 
pulse (rise time of the pulse) is a principal contributory factor to range accuracy and 
depends on the combination of numerous factors such as incident light wavelength, 
reflectivity of targets at that wavelength, spatial distribution of laser energy across the 
footprint and atmospheric attenuation (Baltsavias, 1999). The return pulse leading edge rise 
time is therefore formed by the strength of the return signal from the highest intercepted 
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surfaces within the footprint. This will vary with the nature of the surface; flat ice sheets 
producing abrupt returns with fast leading edge rises and multilayered, complex vegetation 
creating broad returns (Harding et al., 1998; Ni-Meister et al., 2001). 
 

 
Fig. 1. Representation of the interception of foliage, bark or ground surfaces by an emitted 
laser pulse. At each surface, some energy is reflected, transmitted (in the case of foliage) or 
absorbed.  

The location of every returned signal to a known coordinate system is achieved by precise 
kinematic positioning using differential GPS and orientation parameters by the Inertial 
Measurement Unit (IMU).  The IMU captures orientation parameters of the instrument 
platform such as pitch, roll and yaw angles.  Therefore, the GPS provides the coordinates of 
the laser source and the IMU indicates the direction of the pulse.  With the ranging data 
accurately measured and time-tagged by the clock, the position of the returned signal can be 
calculated. 

1.3 Full waveform and discrete return systems 
A waveform is the signal that is returned to the lidar sensor after having been scattered from 
surfaces that the laser pulse intercepts. Full waveform lidar systems record the entire 
returned signal within an elevation range window above a background energy noise 
threshold. An example of this from NASA’s Geoscience Laser Altimeter System (GLAS; 
Section 2) is shown in Figure 2 (left).  The scene shows a two-storey Douglas Fir canopy 
(Pseudotsuga menziesii) on a gentle slope of 4.9°.  Typically, for vegetated surfaces on 
relatively flat ground, a bimodal waveform is produced. 
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surfaces within the footprint. This will vary with the nature of the surface; flat ice sheets 
producing abrupt returns with fast leading edge rises and multilayered, complex vegetation 
creating broad returns (Harding et al., 1998; Ni-Meister et al., 2001). 
 

 
Fig. 1. Representation of the interception of foliage, bark or ground surfaces by an emitted 
laser pulse. At each surface, some energy is reflected, transmitted (in the case of foliage) or 
absorbed.  

The location of every returned signal to a known coordinate system is achieved by precise 
kinematic positioning using differential GPS and orientation parameters by the Inertial 
Measurement Unit (IMU).  The IMU captures orientation parameters of the instrument 
platform such as pitch, roll and yaw angles.  Therefore, the GPS provides the coordinates of 
the laser source and the IMU indicates the direction of the pulse.  With the ranging data 
accurately measured and time-tagged by the clock, the position of the returned signal can be 
calculated. 

1.3 Full waveform and discrete return systems 
A waveform is the signal that is returned to the lidar sensor after having been scattered from 
surfaces that the laser pulse intercepts. Full waveform lidar systems record the entire 
returned signal within an elevation range window above a background energy noise 
threshold. An example of this from NASA’s Geoscience Laser Altimeter System (GLAS; 
Section 2) is shown in Figure 2 (left).  The scene shows a two-storey Douglas Fir canopy 
(Pseudotsuga menziesii) on a gentle slope of 4.9°.  Typically, for vegetated surfaces on 
relatively flat ground, a bimodal waveform is produced. 
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The beginning and end of the waveform signal above the background noise threshold are 
represented by the upper and lower horizontal blue lines respectively (mean noise + 4.5σ in 
the case of GLAS). Amplitude of the waveform (x axis) represents both intercepted surface 
area at each elevation plus the reflectivity of the surfaces at the emitted wavelength 
(1064nm). 
The gradient at the beginning of the signal increases slowly initially due to the relatively 
small surface area of foliage and branch elements at the uppermost canopy. As the energy 
penetrates down through the canopy, the waveform amplitude increases as more features 
are intercepted, before decreasing towards the base of the tree crowns.  A small peak, which 
corresponds to a shorter tree, can be observed above the abrupt, narrow peak, which is 
returned from the ground.  Below the ground surface, the signal can be seen to trail off 
gradually. This relates to both a gentle slope found at this site plus the effect of multiple 
scattering between features within the scene, which serves to delay part of the signal that is 
returned to the sensor. 
Due to the complex waveform signal which is produced, this is often simplified using 
Gaussian decomposition of the waveform (Figure 2, left). Representing the waveform as the 
sum of the Gaussians, smoothes the signal yet allows a means of retaining and identifying 
the dominant characteristics of the signal for easier interpretation. 
Small footprint lidar systems can produce dense sampling of the target surface. The 
returned signal is also in the form of a waveform, however with discrete return systems, 
only designated echoes within the waveform are recorded.  These can be the first and last 
returns, or at times, also a number of intermediate points.  The amalgamation of these 
returns from multiple emitted lidar pulses allows the scene to be reconstructed as a ‘point 
cloud’ of geolocated intercepted surfaces.  This is seen in Figure 2, right, which illustrates 
the same location as seen within the GLAS waveform. The small footprint lidar point cloud 
can be interpreted more intuitively as a dominant upper storey of approximately uniform 
height and a single tree of lower height at the centre of the scene.  Points are coloured with 
respect to their elevation. 
 
 

 
 

Fig. 2. Example of a waveform produced by a large footprint lidar system (left) and a 
discrete return lidar point cloud (right) for a coincident area. Location: Forest of Dean, 
Gloucestershire, UK 
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1.4 Lidar footprint distribution patterns 
Distribution patterns of footprints differ between lidar systems.  Lidar profiling involves the 
systematic location of footprints at intervals along the sensor’s path on the ground.  These 
may be contiguous such as the Portable Airborne Laser System of Nelson et al., 2003 (PALS), 
or placed at discontinuous distances along the ground track in the case of NASA’s 
Geoscience Laser Altimeter System, GLAS (Schutz et al., 2005). This generally permits the 
sampling of extensive areas, however requires a means to extrapolate biophysical parameter 
estimates for areas where data were not acquired. 
Laser scanning, obtained from an airborne platform, occurs perpendicular to the direction of 
travel and generally produces a dense distribution of small footprints. Swath width and 
footprint density are dependent on the altitude and speed of the aircraft plus the scan angle 
applied.  A scanning mirror directs laser pulses back and forth across the flightline causing 
data to be captured typically in a sawtooth arrangement.  The maximum off-nadir scan angle 
for the instrument can be customised according to the needs of each campaign.  Narrower scan 
angles improve the chances of each shot penetrating dense vegetation canopies and of the 
sensor receiving a returned pulse from the ground as there is greater likelihood of a clear path 
through the canopy to the ground.  The usual practice is to create an overlap of flightlines 
similar to photogrammetric surveys of ~60%. Multiple flightlines can then be combined to 
provide full coverage of the desired area by means of specialised software.  Small footprint 
laser scanning is generally operated at the forest scale, largely due to cost implications.   

1.5 Lidar system configurations 
As discussed above, lidar sensors can be operated at different scales from different altitudes 
and different viewing perspectives in relation to the target surface; from above in the case of 
satellite and airborne systems and from below or to the side for terrestrial laser scanners.  
Lidar instrument specifications therefore vary considerably, combining different sampling 
patterns on the ground, density and size of individual laser footprints.   
Nelson et al’s (2008; 2003; 2004) PALS is an example of a small footprint, discrete return, 
lidar profiler which is operated from an aircraft.  Its innovative and portable design has 
permitted sampling and vegetation parameter estimation at regional scales throughout the 
world and may be considered a predecessor to the satellite lidar profiling sensor discussed 
in Section 2. 
The Laser Vegetation Imaging Sensor (LVIS) is an experimental lidar instrument developed 
at NASA Goddard Space Flight Center (GSFC, 2010). It is a full waveform, scanning lidar 
that emits a 1064 nm laser beam at a pulse repetition rate of 100-500Hz. LVIS can operate at 
an altitude in excess of 10 km and this offers the capability of producing swaths up to two 
km wide and medium-sized footprints of 1-80 m diameter (Blair et al., 1999; Dubayah et al., 
2010; GSFC, 2010).  
Until relatively recently, small footprint lidar were almost exclusively restricted to discrete 
return systems within the commercial and operational sector whilst full waveform 
instruments remained a research and development tool.  It should be noted that recent 
advances in data storage capacity are beginning to open opportunities for small footprint, 
full waveform scanning systems, however to date, software to process such data is not 
readily available. 
By necessity, this chapter cannot attempt to fully present all combinations of lidar 
specifications.  Readers should note that the multiple vegetation applications of lidar data lead 
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to wide-ranging variations in sensor design and characteristics as outlined above.  In the 
descriptions within sections 2-4, an example of a satellite sensor is used to demonstrate the 
principles of large footprint, full waveform profiling data, whilst airborne and terrestrial lidar 
instruments are used to provide examples of small footprint, discrete return laser scanning. 

1.6 Key concepts for biomass assessment 
Lidar remote sensing provides a direct estimation of the elevation of intercepted features. In 
the context of vegetation, if signals from the ground and vegetation can be distinguished, 
the relative heights above ground of forest canopies can be calculated.  Since an adequate 
stem diameter and canopy structure are needed to support tree dimensions, vegetation 
height is closely related to volume and therefore biomass.  The sections below provide 
examples of applications of lidar systems for biomass assessment. 

2. Satellite lidar profiling 
NASA‘s Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud and land 
Elevation Satellite (ICESat) is currently the only satellite lidar system to have provided near 
global sampling coverage over an extended period of time. It therefore offers a unique 
dataset of vertical profiles of the Earth’s surface. 
ICESat was launched in January 2003 and the mission continued until the final laser ceased 
firing in the Autumn of 2009.  During this period, the laser was operated for approximately 
month-long periods annually during Spring and Autumn, and additionally during the 
Summer earlier in the mission lifetime.  
This is a full waveform, lidar profiling system which operated at an altitude of 600km, 
travelling at 26,000 km h-1 and emitting 1064nm laser pulses at 40Hz. This caused the Earth’s 
surface to be sampled at intervals with footprint centres positioned 172m apart. Footprint 
diameter and eccentricity have varied considerably between laser campaigns from a major 
axis of 148.6±9.8m to 51.2±1.7m (Figure 3). Comprehensive information regarding the sensor 
are available from Abshire et al., 2005; Brenner et al., 2003; NSIDC, 2010a; Schutz et al., 2005; 
Schutz, 2002. Data plus tools to process them are available free of charge from NSIDC, 
2010b. 

2.1 Characteristics 
The systematic sampling pattern and representation of the vegetation profile within the 
returned lidar waveform signal (Figure 2, left) enables the spatial distribution of vegetation 
parameters to be mapped for large areas.  The seasonal coverage allows near repeat 
measurements at a frequency which would not be feasible using conventional survey methods. 
However the system was designed primarily for cryospheric applications and therefore the 
configuration is not considered optimal for vegetation analysis.  This poses some challenges 
for forestry applications.  Upon sloped, vegetated terrain, vegetation and ground surfaces 
may occur at the same elevations.  This causes the signals from ground and vegetation to be 
combined within the waveform and, where it is not possible to distinguish a ground peak, 
this prevents the signal returned from the vegetation from being reasonably identified.  
Furthermore, dense cloud cover prevents a valid return signal causing gaps in footprint 
sampling (Figure 3). For regions with high cloud cover such as the tropics, this can serve to 
worsen the already-sparse sampling density near the equator, produced by the polar orbit. 

 
Lidar Remote Sensing for Biomass Assessment 

 

9 

 
Fig. 3. Multiple GLAS laser campaigns sampling overlaid on a GoogleEarth image of 
Tambopata, Peru. Missing data are found where dense cloud prevents sufficient energy 
from penetrating to the Earth’s surface and returning to the sensor. 

Within each footprint, if the top of the canopy is assumed to be the start of the waveform 
signal (upper horizontal blue line, figure 2 left), the accuracy with which the signal returned 
from the vegetation can be identified depends on the ability to identify a representative 
ground surface within the waveform.  Methods to achieve this have included the use of an 
independent DTM to account for terrain slope within lidar footprints (Lefsky et al., 2005; 
Rosette et al., 2008) or using Gaussian decomposition of the waveform to locate a peak 
corresponding to the ground surface (Rosette et al., 2008; Sun et al., 2008a; Sun et al., 2008b). 
Vegetation height can therefore be estimated as the elevation difference between the start of 
the waveform signal and the identified ground surface estimated within the waveform. The 
studies above report RMSE as 3+ metres. 

2.2 Applications for biomass estimation 
Most commonly, waveform indices of Height of Median Energy (HOME) or relative height 
percentiles above ground (RHi) are calculated using the cumulative energy distribution 
within this region of the waveform returned from vegetation.  More recently, Lefsky et al., 
2007, devised an alternative method of estimating a vegetation height parameter which 
accounts for terrain and vegetation roughness using the waveform leading and trailing 
edges rather than isolating the signal returned from vegetation. 
The sampling measurements produced within the satellite lidar footprints are typically 
combined with coincident field measurements of biomass.  This enables regression 
equations to be developed using waveform metrics to estimate biomass for the areas 
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sampled by the lidar footprints.  The continuous spatial coverage of optical or radar data 
permit these estimates to be extrapolated. 
Similar data fusion techniques have been used to determine biomass distribution by several 
authors and encompass a wide breadth of vegetation types and have been applied from 
regional to continental scales, including a focus on Africa’s mangrove forest (Fatoyinbo & 
Simard, in press 2011), Siberia (Nelson et al., 2009), Quebec (Boudreau et al., 2008), and for 
mapping throughout Africa (Baccini et al., 2008).  Work is currently underway by the latter 
research group at Woods Hole Research Center, led by Josef Kellndorfer, to estimate tropical 
forest biomass globally (WHRC, 2011). Additionally, research utilising GLAS is in progress 
as part of NASA’s Carbon Monitoring System initiative (NASA, 2010) to determine biomass 
distribution within the US (as well as to produce higher resolution biomass maps at a 
county level using airborne lidar data). 
Global vegetation height products derived from GLAS and optical data (Lefsky, 2010; Los et 
al. 2011) or combining GLAS and radar data (Simard, 2011) open possibilities to improve our 
understanding of global processes (Los et al., 2008) as well as allowing applications for 
biomass assessment. 
However, comparability of data and methods must be taken into consideration.  These 
methods rely on the application of regression equations to extend vegetation parameter 
estimates across large areas. Nelson, 2010 demonstrates how the calculation of biomass is 
often sensitive to the equation applied and lidar sensor characteristics. These inconsistencies 
have implications for repeat analysis and monitoring of change due to the effect of model 
selection and lidar system evolution on the outcome of biomass assessment. 

3. Airborne lidar systems 
3.1 Characteristics 
The use of airborne laser scanning data in forest applications has attracted increasing 
interest over the last decade. Nowadays, lidar is perceived to provide a cost-effective and 
precise assessment of the vertical and horizontal structure of woodland areas and, 
therefore, a valid alternative or complementary approach to current field methods for 
inventory (Wulder et al., 2008). Vertical location of points are often reported to 1ns 
(~15cm) precision whilst horizontal gelocation accuracy may be expected in the region of 
20-30cm. 
In this section, an overview is given of small footprint airborne laser scanning applications 
for both stand-level assessment and the estimation of vegetation parameters at an individual 
tree level.  For a comprehensive description of the use of airborne lidar for forestry purposes 
including forest community structure, growth assessment, tree stability and timber quality, 
please refer to Suárez, 2010. 
Airborne lidar systems provide relatively dense sampling coverage with footprint size in the 
region of tens of centimetres.  However, they are commonly reported to underestimate 
canopy height as a result of point distribution and density.  This is due to some degree of 
canopy penetration of the signal that varies according to species (Næsset, 2004).  In general, 
this underestimation is less pronounced for cone-shaped trees like spruce or Douglas fir 
(Pseudotsuga menziesi) than for spherical-shaped trees like many broadleaves or even Scots 
pine (Pinus sylvestris L.).  Conifers normally create more compact shapes with less energy 
penetration through the canopy than broadleaves.  So, energy returns tend to be produced 
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from the outer layers of the canopy.  However, the degree of penetration is ultimately 
related to a combination of factors such as the sampling density, beam divergence and 
scanning angle (Suárez et al., 2005). 
Possible scenarios may be as illustrated in Figure 4 below. With higher density of laser 
pulses, these difficulties are reduced but at the cost of higher operating expense and flight 
duration restrictions limiting spatial coverage. 
 

 
Fig. 4. Possible scenarios of lidar point cloud interception of the forest canopy. Source: 
Suárez et al., 2005. 

a. Laser hits the true top of the canopy, 
b. Small trees close to larger neighbours are ignored, 
c. The most likely situation: laser returns do not hit the true top of the tree,  
d. One of the pulses is intercepted at a lower height due to canopy penetration wrongly 

suggesting two tree tops,  
e. Trees on a mound can be assigned a greater height in the absence of a good model of 

the ground surface beneath,  
f. In a situation of sparse density of returns some trees can be ignored completely 
Despite common perception, lidar does not create tomographic images and, therefore, they 
cannot be considered as 3-D representations in the strict sense.  Only the gaps in canopy cover 
and transmittance through leaves will allow laser energy to be returned from the ground. As 
with full waveform data, the critical step for the calculation of vegetation height metrics is to 
distinguish between those points returned from ground and non-ground surfaces.     
Since lidar energy penetration through the vegetation canopy will vary with forest structure, 
density and laser scanning angle in particular, the last return of an emitted lidar pulse may 
not necessarily be returned from the ground surface.  Therefore a means of filtering points is 
necessary in order to differentiate those returns reaching the ground from those being 
intercepted at different heights within the canopy (e.g. Kraus & Pfeiffer, 1998; Zhang et al., 
2003).  A thorough comparison of different approaches and a complete description of filters 
can be found in Sithole & Vosselman, 2004. This allows the classification of points into 
ground and vegetation classes (Figure 5). Other algorithms can refine the classification 
further to additionally identify features such as buildings, electricity cables, etc. 
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from the outer layers of the canopy.  However, the degree of penetration is ultimately 
related to a combination of factors such as the sampling density, beam divergence and 
scanning angle (Suárez et al., 2005). 
Possible scenarios may be as illustrated in Figure 4 below. With higher density of laser 
pulses, these difficulties are reduced but at the cost of higher operating expense and flight 
duration restrictions limiting spatial coverage. 
 

 
Fig. 4. Possible scenarios of lidar point cloud interception of the forest canopy. Source: 
Suárez et al., 2005. 

a. Laser hits the true top of the canopy, 
b. Small trees close to larger neighbours are ignored, 
c. The most likely situation: laser returns do not hit the true top of the tree,  
d. One of the pulses is intercepted at a lower height due to canopy penetration wrongly 

suggesting two tree tops,  
e. Trees on a mound can be assigned a greater height in the absence of a good model of 

the ground surface beneath,  
f. In a situation of sparse density of returns some trees can be ignored completely 
Despite common perception, lidar does not create tomographic images and, therefore, they 
cannot be considered as 3-D representations in the strict sense.  Only the gaps in canopy cover 
and transmittance through leaves will allow laser energy to be returned from the ground. As 
with full waveform data, the critical step for the calculation of vegetation height metrics is to 
distinguish between those points returned from ground and non-ground surfaces.     
Since lidar energy penetration through the vegetation canopy will vary with forest structure, 
density and laser scanning angle in particular, the last return of an emitted lidar pulse may 
not necessarily be returned from the ground surface.  Therefore a means of filtering points is 
necessary in order to differentiate those returns reaching the ground from those being 
intercepted at different heights within the canopy (e.g. Kraus & Pfeiffer, 1998; Zhang et al., 
2003).  A thorough comparison of different approaches and a complete description of filters 
can be found in Sithole & Vosselman, 2004. This allows the classification of points into 
ground and vegetation classes (Figure 5). Other algorithms can refine the classification 
further to additionally identify features such as buildings, electricity cables, etc. 
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The use of airborne lidar data in forestry was originally focused on the construction of two 
cartographic products: Digital Terrain Models (DTMs) and Digital Surface Models (DSMs), 
which are used to describe the underlying terrain and top of forest surfaces respectively. 
These products are used to generate canopy height models (CHM) that subsequently 
provide accurate estimates of important forest parameters such as canopy heights, stand 
volume, and the vertical structure of the forest canopy.  The estimation of canopy heights is 
performed by the subtraction of bare ground values (DTM) from the canopy layer (DSM).  
An accurate estimation of a CHM relies heavily on a good approximation of the ground 
surface underneath.   
 

 
Fig. 5. Vegetation distribution and structure shown by classification of an airborne lidar 
point cloud. Data illustrated were provided courtesy of Forest Research, UK. Location: 
Scottish Highlands, UK. 

More recently, increasingly sophisticated means of analysis are being applied for the 
estimation of important parameters at both stand (number of trees, volume, basal area, top 
height, percentage of canopy cover and crown layers) and individual tree level (individual 
tree heights, stem diameters and crown metrics).  The potential areas of application span 
from timber production to biological diversity, carbon sequestration or general 
environmental protection.  Section 3.2 below considers both approaches. 

3.2 Applications for biomass estimation 
3.2.1 Stand level analysis 
Stand-level inventory from airborne lidar follows a method originally devised by Næsset, 
1997a, b.  These two studies are particularly relevant because both have encouraged further 
work based on the notion that lidar data can be used in large-scale forest inventories, 
provided that georeferenced data from field plots could be used in a first phase to develop 
empirical relationships between lidar metrics such as percentiles of relative height above 
ground and the main parameters for forest management. Such relationships are used to 
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estimate, in a second phase, forest stand parameters for all the test plots in the study area, 
known as two–stage procedure for stand inventory (Næsset, 2002).  
In this way, the stand-level approach provides a useful estimation of key stand parameters 
such as top height, canopy cover, tree density, basal area and volume.  The established 
relationships allow forest parameters such as biomass to be directly inferred from the use of 
lidar metrics and for this assessment to be implemented across large forest areas where 
there is lidar coverage. Lidar systems provide point-wise anisotropic sampling unlike the 
full area coverage common in optical systems.  As a result, laser data are interpolated in 
order to convert the same coverage to a continuous surface working-image and allow the 
distribution of forest parameters to be mapped. 
This method does of course have some limitations.  It is heavily dependent on abundant 
field data collection to train empirical relationships between field and lidar data that often 
are not easily transferable to other study areas.  Different relationships may be present for 
morphologically similar species (Norway spruce, Sitka spruce or larch) and additionally, 
stand structure is a significant determinant factor. The effects derived from the spatial 
distribution of gaps, their size and the spatial distribution of standing trees (whether 
perfectly aligned, growing in a natural stand or thinned at different intensities) on the 
vertical interception of laser hits are not parameterised in this approach.   
However, the real value of this method is demonstrated in its application in regional 
studies, where the combination of lidar and field measurements can optimise traditional 
surveys, particularly as part of large area forest inventories (Hollaus et al., 2009).  

3.2.2 Individual tree based inventories 
Variability in characteristics is a feature of natural systems.  Even in systems designed to be as 
uniform as possible, such as planted forests in monocultures, growing differences are inevitable.  
Understanding the factors controlling variability is important in developing our knowledge of 
how ecosystems operate and behave such as the way that trees grow and accumulate biomass 
in response to their environment and close interaction with their neighbours (e.g. competition 
for space, light and nutrients). Identifying and locating trees using airborne lidar data permits 
the spatial variability of biomass distribution within a forest to be considered. 
Canopy delineation algorithms have been developed by several authors and most of these 
detect single trees using an interpolated canopy height model (section 3.1) by the detection 
of local maxima for tree location and watershed or pouring algorithms (as well as 
derivations of these algorithms) for the delineation of single tree crowns (e.g. Popescu et al., 
2003).  However, latterly, approaches are becoming increasingly based on raw data using 
clustering or blob detection methods (e.g. Morsdorf et al., 2004).   
Figure 6 illustrates the delineation of individual tree crowns shown outlined by blue 
polygons and overlaid on a lidar canopy height model. Lighter grey shades indicate taller 
heights which are used to identify tree tops to infer height of individual trees. 
Using known allometric relationships between tree height and crown width (derived from 
crown area) with stem diameter at breast height, volume can be calculated on an individual 
tree basis by approximating tree stems as a cone or by using more sophisticated taper 
functions or a crop form parameter which defines mean taper characteristics in a stand 
(Edwards & Christie, 1981; Matthews & Mackie, 2006).  Individual tree volume can then be 
converted to biomass (by accounting for specific density) allowing the spatial distribution 
and variability of biomass to be mapped. 
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Fig. 6. An example of tree crown delineation with airborne lidar data using object oriented 
analysis in Definiens Developer (Source: Suárez, 2010). 

Results show that lidar can detect most of the crowns of dominant and co-dominant trees in 
mature stands dominated by coniferous species, but finds difficulties for suppressed or sub-
dominant trees, young stands, groups of trees growing in close proximity and for deciduous 
species. This will have an effect on biomass estimation when aggregating individual tree 
estimates to a stand level. 
Small individuals will contribute relatively less to the overall stand volume than larger trees. 
However in many situations they may form a significant contribution to total biomass which 
should be accounted for. Authors such Maltamo et al., 2004 have shown it to be possible to 
predict the height of small trees not detected by lidar using Weibull distributions. 
The detection and estimation of individual tree heights for deciduous species is more 
difficult because of their more spherical crown shape compared to conifers (meaning that 
the tree top and crown boundaries can be located with less certainty using a CHM) and the 
higher probability for the occurrence of more than one apex in each tree.  Moreover, crown 
delineation in deciduous stands becomes more difficult because the crowns of neighbouring 
trees often overlap (this is a common situation in conifer stands too).  
The single tree approach allows individual tree counts, crown volume calculations, canopy 
closure or single tree height estimates. These are important inputs in order to derive 
estimates of diameter at breast height (DBH) distributions, volume or biomass.  Published 
studies show that good results can be achieved with 65% to 90% of correct tree counts 
within conifer stands while for broadleaf trees the results are less accurate and an 
underestimation of volume is often reported. 
Using canopy delineation from airborne lidar data, parameters such as biomass can be 
determined and spatially located in relation to their surroundings. This also allows the 
inhibiting effects on biomass accumulation introduced by larger trees over more 
disadvantaged neighbours to be observed. 
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3.3 Summary 
In operational terms, current usage of airborne lidar data is generally confined to statistical 
analysis at stand/forest scales (Næsset, 1997a, b).  Although the method has undergone 
minor adaptations by several authors, this approach has become a standard practice for 
large-scale inventories in some European countries (Finnish_Forest_Association, 2007; 
Hollaus et al., 2009; Næsset, 2004).  
Airborne lidar point clouds can be understood and interpreted intuitively and vegetation 
can be placed in the context of terrain, access routes and neighbouring competitors. The 
ability to remove the vegetated surface to reveal the terrain beneath provides valuable 
information for management purposes and topographic assessment. 
Regression equations for biomass estimation may be site specific, however good 
relationships have been demonstrated using broad class distinctions such as broadleaves, 
conifers and mixed stands which may be more readily available using optical data or land 
cover type maps. This enables the spatial distribution of biophysical parameters to be 
represented over a forest scale which would be impossible using traditional field 
measurements.  
The cost of airborne coverage may prohibit repeat lidar campaigns and so at best, such 
detailed information is likely to be available infrequently to monitor growth.  However, 
looking to the future, several European countries have undertaken campaigns for partial or 
complete nation-wide coverage of airborne lidar data including The Netherlands (Duong et 
al., 2009), Norway, Austria, Switzerland (Swisstopo, 2011) and Finland 
(Finnish_Forest_Association, 2007). A similar commitment of lidar acquisition is in progress 
in Spain on a region-by-region basis where the value-added benefit of such a resource has 
been recognised for economic and social invigoration (Dielmo, 2011). 
Whilst generally of mid-low point density by necessity of cost and not necessarily intended 
specifically for vegetation applications, nevertheless, such previously-unobtainable national 
vertical profile datasets offer potential applications for a multitude of applications including 
mapping and reducing uncertainty of biomass distribution.  Furthermore, as outlined above, 
airborne lidar data are already playing a significant role in large-scale forest inventory 
efforts.  

4. Terrestrial laser scanning 
4.1 Characteristics 
The small and portable terrestrial lidar systems can be mounted on a static tripod or 
transported on a moving vehicle and therefore can be easily taken into the field.  GPS 
measurements also allow these scans to be geolocated. In contrast to the viewing perspective 
from above provided by satellite and airborne sensors, terrestrial lidar provides a clear view 
of the tree stem, understorey and ground surface (Figure 7). 
This measurement of a relatively small area within viewing distance of the scanner can be 
considered to replicate field plot measurements, however additionally provides an 
understanding of context which would not be possible from field data.  The upward looking 
approach often leads to difficulty in detecting tree tops, however representation of tree 
stems, ground surface roughness and understorey vegetation offer a level of detail which 
cannot be retrieved using airborne instruments. 
This approach causes only the side of stems facing the scanner to be detected in any one scan 
and also obscures the view of trees which are behind those closer to the instrument.  Therefore 
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the combination of several scans is often required to accumulate adequate information for 
analysis of the scene within a plot. Low vegetation and heavy branching can affect the quality 
of the data and in some studies were removed before the site was scanned.  This difficulty is 
especially important with the trees closest to the scanner as they cause the most occlusion. 
Research into the detection and reconstruction of stems (e.g. Huang et al., 2011) and 
branches (e.g. Bucksch & Fleck, 2011) is a current area of development which is of great 
interest.  For forestry purposes this would permit the quality of timber to be determined 
more easily, such as stem straightness, branch number and branch angle. The ability to 
reconstruct the tree geometry from terrestrial laser scanning is unprecedented. Whilst for 
the purposes of forest inventory, the ability to detect the ground surface, height above the 
ground along the tree stem and to determine the size of the stem allows diameter at breast 
height to be directly measured, which is one of the most fundamental operational 
parameters collected by foresters in the field. 
 

  
Fig. 7. Below-canopy plot sampling using terrestrial laser scanning. Images courtesy of 
Forest Research, UK. 

4.2 Applications for biomass estimation 
Terrestrial laser scanning has been applied within the commercial forestry sector.  An 
example of which is TreeMetrics Ltd., Cork, Ireland, who have adapted this technology and 
developed purpose built software called AutoStem Forest™ to process laser scans into forest 
inventory-specific data.  The principle behind this methodology is to extract greater value 
from the resource. 
The application is intended principally to complement existing inventory methods by 
creating and measuring individual tree volumes, their straightness and calculating their 
potential end products.  The technology may be considered as a virtual timber harvesting 
machine that gathers precise data as it scans trees.  By positioning laser scan plots 
throughout a forest, it is possible to measure the variability within the forest and to describe 
the forest as a Timber Warehouse™ for commercial purposes or to map biomass distribution 
for inventory applications. 
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Aside from forestry management objectives, the use of terrestrial lidar can potentially 
complement traditional field data collection by improving the efficiency and accuracy of 
survey approaches.  Whereas the time required to measure the trees within an inventory 
plot by a team of surveyors may be quite considerable, the combination of lidar scans of a 
few minutes each could substantially reduce this whilst providing additional contextual 
information which could not be achieved with field measurements. 
Terrestrial laser scanning measurements are restricted to small area sampling, similar to 
typical field data collection. However, this permits the plot to be ‘revisited’ visually and 
analytically for multiple purposes without returning to the field, allowing the scene to be 
reconstructed to enable trees to be placed in the context of their immediate surroundings. 
For management purposes, this could be invaluable to determine optimum thinning or 
harvesting times or to assess growth trends against model predictions through the 
measurement of diameter increments. 
Once diameter distributions within measured plots are calculated, in the same way as with 
field approaches, allometric relationships allow wider stand-level forest attributes to be 
inferred. If applicable species groupings are known, general DBH-based regression 
equations can be applied to estimate forest stand-level biomass. For sites within the USA, 
Jenkins et al., 2003, 2004 present diameter-driven allometric equations for biomass of North 
American species whilst for Europe, a similar resource is provided by Zianis et al., 2005.  

5. Further applications of lidar remote sensing 
5.1 Forest growth models 
Forest growth models such as the Ecosystem Dynamics model, ED, (Hurtt et al., 2004) and 
the Tree and Stand Simulator, TASS, (Goudie & Stearns-Smith, 2007) enable forest growth 
scenarios to be predicted.  Remote sensing analysis can be used as a valuable tool to provide 
observational inputs to models and in order to produce detailed inventories for long-term 
scenario modelling. 
Airborne lidar stand level analysis can be used to produce statistically-derived model 
inputs. This approach is being undertaken as part of the NASA Carbon Monitoring System 
(NASA, 2010) using an interpolated surface 80th percentile canopy height model as an input 
to the ED model (e.g. Hurtt et al., 2004).  This method can potentially be applied across large 
areas and could be achieved with relatively low density lidar data such as might be acquired 
for regional or national campaigns. 
Alternatively, Suárez, 2010, used a tree list generated from individual tree delineation as 
baseline inventory data from which to predict future scenarios and demonstrate processes at 
work within stands using the distance-dependent model TASS. These processes include 
competition, establishment of a dominance hierarchy and recovery from catastrophic events 
such as wind damage or thinning. This means that the biological principles behind such 
models adapt them to local conditions, unlike empirical models and suggesting wider 
application may be possible. 
The temporal dimension provided by the TASS simulations provides a valuable insight into 
the long-term effects of each stand intervention or natural disturbance.  Not only growth 
increments, but timber products can also be predicted with this method.  In addition, 
management practices can be balanced by the constraints introduced by the future risk of 
wind damage.  The scale of analysis and the possibility of creating future scenarios contribute 
to a substantial reduction in the level of uncertainty associated with forest management. 
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Lidar data therefore provide a useful contribution as a baseline input position from which 
future scenarios can be determined. Subsequent lidar campaigns or observations of 
landcover disturbance from optical data (Huang et al., 2010) could furthermore allow model 
predictions to be validated or calibrated to closer match observed growth trends. 

5.2 Prospects for global modelling  
Vegetation plays a significant role in global climate, water, energy and biogeochemical cycles, 
particularly concerning carbon, with approximately one quarter of atmospheric carbon dioxide 
fixed annually as gross primary production. To accurately model this and other land surface 
processes in General Circulation Models (GCM), properties such as radiation absorption, plant 
physiology, surface characteristics and climatology are required. These models require multi-
temporal global datasets that can only be obtained from remotely sensed sources. 
Computer-generated models of the biosphere provide a valuable means to improve 
understanding of the immensely complex interactions between interdependent systems 
affecting the Earth. By their very nature, models function as generalisations of reality and a 
series of component models replicating the interplay of systems often provide input to 
complex broader-themed Biosphere models. 
Dynamic Vegetation Models are particularly valuable in enabling prediction of the carbon 
balance under changing ecosystem structure and composition brought about by climatic 
changes. Vegetation is often represented within each grid cell as generalised Plant 
Functional Types and climate-driven habitat changes are used to model vegetation 
succession and plant lifecycle. Where vegetation height is currently considered as static over 
time, models could benefit from future global lidar observations of vegetation height (e.g. 
Lefsky, 2010, Los et al., 2011) or biomass, particularly if signal sensitivity permits growth 
over the sensor lifetime to be observed. Furthermore, the use of lidar could inform 
validation of LAI, fractional canopy cover or NDVI products (Los et al., 2008, 2011) which 
are produced using indirect relationships with optical reflectance properties. 

6. Emerging technologies 
6.1 Waveform simulation and multispectral lidar 
Previous work has demonstrated the value of lidar modelling of vegetation for discrete 
return lidar (Disney et al., 2010) and full waveform systems (Ni-Meister et al., 2001; North et 
al., 2010; Sun & Ranson, 2000).  Using a simulation approach, the sensitivity of lidar data to 
surface structural and optical properties can be explored to improve our understanding and 
interpretation of the estimation of lidar-derived biophysical parameters. 
Recent discussions have turned to the prospects of multispectral lidar sensors for vegetation 
analysis (cArbomap, 2011; Woodhouse et al., in press 2011).  This project is led by Dr Iain  
Woodhouse at the University of Edinburgh and the concept has been considered in a 
simulation study by Morsdorf et al., 2009.  The authors demonstrated the opportunity of 
detecting seasonal and vertical change in normalised difference vegetation index (NDVI) 
which would allow canopy and ground signals to be distinguished. The variability of 
chlorophyll content during the growing season was also detected thereby indicating the 
amount of photosynthetically active biomass. 
Additionally, Hancock, 2010 has demonstrated the potential offered by dual wavelength 
lidar using wavelengths selected either side of the electromagnetic spectrum red edge.  A 
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reflectance ratio is calculated and this profile allows the signals within the waveform from 
ground and vegetation to be differentiated.  This would offer a valuable response to the 
challenging situation of combined vegetation and ground signals within large footprint 
waveforms on sloped surfaces. 
Once issues of eye sensitivity at optical wavelengths and energy requirements are fully 
addressed, multispectral lidar concepts could offer the opportunity for enhanced vegetation 
analysis using lidar systems. 

6.2 Photon counting lidar systems 
The emerging technology of photon counting lidar offers the potential for low energy 
expenditure and potential high altitude operation allowing extended laser lifetime and large 
area coverage.  This newest type of lidar technology is currently generally operated at green 
wavelengths (532 nm), in some airborne systems due to a greater efficiency of the detector 
and, in the case of NASA’s ICESat II, as a result of technical readiness. Low laser energy 
output ensures eye safety of these instruments despite operating at a visible wavelength.  A 
high pulse repetition rate and photon detection probability produces a high point density 
even whilst flying at greater altitudes whilst a narrow pulse duration (~1ns) allows photons 
to be located with greater vertical precision. 
One significant factor is that photons returned from the emitted pulse cannot be 
distinguished from ambient noise. Acquiring data at night or dusk would minimise the 
difficulties of noise posed by solar background illumination, and sensor specifications such 
as the use of a small detector instantaneous field of view would also assist this. 
Initial analysis within NASA’s Carbon Monitoring System initiative (NASA, 2010) using the 
3D Mapper single photon scanning lidar developed by Sigma Space Corporation, USA, 
suggests that promising results may be obtained from small footprint photon counting 
sensors for the generation of vegetation products.  The greater point density of the point 
cloud which is produced, in excess of that which is typically collected by discrete return 
airborne lidar data, aims to improve the characterisation of vegetation canopies and offers 
the opportunity for established analysis techniques to be applied to this new technology. 
The Slope Imagining Multi-polarisation Photon-counting Lidar (SIMPL) is an example of an 
airborne small footprint photon-counting profiling lidar which operates at both 1064nm and 
532 nm wavelengths (Dabney et al., 2010).  A single pulse is emitted which is split into four 
beams, each with four channels for green and NIR wavelengths, each of which at parallel 
and perpendicular polarisations. The two polarisations respectively identify photons which 
have been reflected from a single surface or which have undergone multiple scattering.   The 
four beams are distanced approximately 5 metres apart, producing four profile ‘slices’ 
through the canopy. The laser repetition rate of 11.4kHz and an aircraft speed of 
100m/second may be expected to produce 5-15 detected pulses per square metre. 
Using SIMPL, Harding et al., in press 2011, have explored the influence of lidar wavelength 
on the ability to determine standard waveform metrics which may be employed to predict 
biomass. By aggregating detected photons over a distance along the transect, the authors 
calculated a cumulative height distribution (such as that used for waveform or discrete 
return analysis). Height of median energy (HOME) and canopy cover metrics were 
compared and little difference was found between the two wavelengths, suggesting that 
lidars using 532nm could produce comparable biomass estimates to those obtained by 
current 1064nm systems. 
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reflectance ratio is calculated and this profile allows the signals within the waveform from 
ground and vegetation to be differentiated.  This would offer a valuable response to the 
challenging situation of combined vegetation and ground signals within large footprint 
waveforms on sloped surfaces. 
Once issues of eye sensitivity at optical wavelengths and energy requirements are fully 
addressed, multispectral lidar concepts could offer the opportunity for enhanced vegetation 
analysis using lidar systems. 

6.2 Photon counting lidar systems 
The emerging technology of photon counting lidar offers the potential for low energy 
expenditure and potential high altitude operation allowing extended laser lifetime and large 
area coverage.  This newest type of lidar technology is currently generally operated at green 
wavelengths (532 nm), in some airborne systems due to a greater efficiency of the detector 
and, in the case of NASA’s ICESat II, as a result of technical readiness. Low laser energy 
output ensures eye safety of these instruments despite operating at a visible wavelength.  A 
high pulse repetition rate and photon detection probability produces a high point density 
even whilst flying at greater altitudes whilst a narrow pulse duration (~1ns) allows photons 
to be located with greater vertical precision. 
One significant factor is that photons returned from the emitted pulse cannot be 
distinguished from ambient noise. Acquiring data at night or dusk would minimise the 
difficulties of noise posed by solar background illumination, and sensor specifications such 
as the use of a small detector instantaneous field of view would also assist this. 
Initial analysis within NASA’s Carbon Monitoring System initiative (NASA, 2010) using the 
3D Mapper single photon scanning lidar developed by Sigma Space Corporation, USA, 
suggests that promising results may be obtained from small footprint photon counting 
sensors for the generation of vegetation products.  The greater point density of the point 
cloud which is produced, in excess of that which is typically collected by discrete return 
airborne lidar data, aims to improve the characterisation of vegetation canopies and offers 
the opportunity for established analysis techniques to be applied to this new technology. 
The Slope Imagining Multi-polarisation Photon-counting Lidar (SIMPL) is an example of an 
airborne small footprint photon-counting profiling lidar which operates at both 1064nm and 
532 nm wavelengths (Dabney et al., 2010).  A single pulse is emitted which is split into four 
beams, each with four channels for green and NIR wavelengths, each of which at parallel 
and perpendicular polarisations. The two polarisations respectively identify photons which 
have been reflected from a single surface or which have undergone multiple scattering.   The 
four beams are distanced approximately 5 metres apart, producing four profile ‘slices’ 
through the canopy. The laser repetition rate of 11.4kHz and an aircraft speed of 
100m/second may be expected to produce 5-15 detected pulses per square metre. 
Using SIMPL, Harding et al., in press 2011, have explored the influence of lidar wavelength 
on the ability to determine standard waveform metrics which may be employed to predict 
biomass. By aggregating detected photons over a distance along the transect, the authors 
calculated a cumulative height distribution (such as that used for waveform or discrete 
return analysis). Height of median energy (HOME) and canopy cover metrics were 
compared and little difference was found between the two wavelengths, suggesting that 
lidars using 532nm could produce comparable biomass estimates to those obtained by 
current 1064nm systems. 
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NASA’s forthcoming ICESat II mission is due for launch in early 2016 (GSFC, 2011). In 
contrast to ICESat I, its successor will carry a medium footprint, photon-counting profiling 
lidar operating at 532nm wavelength.  This instrument is named ATLAS, the Advanced 
Topographic Laser Altimeter System. The current planned configuration is for a single 
emitted pulse which is split into six beams, arranged as three adjacent pairs. Each pair will 
have a stronger and a weaker beam (100μJ and 25μJ respectively) which aims to address 
issues of detector sensitivity when alternating between bright and dark surfaces such as ice 
and water. A distance of 3.3km is anticipated between each pair and members of the pair 
will be separated by 90m.  The high repetition rate of 10kHz from an altitude of ~496km will 
produce overlapping footprints of 10m diameter which will be distanced at 0.7m intervals. 
1-3 photons are anticipated to be detected per footprint and, although the spatial location of 
photons within the footprint will be unknown, the aggregation of returns along the ground 
tracks will allow a vertical profile to be created. Although, like with its predecessor, the 
primary objective of ICESat II is not the retrieval of vegetation, one of its science objectives is 
measuring vegetation height as a basis for estimating large-scale biomass and biomass 
change (GSFC, 2011). This new technology will offer a new perspective of the world and 
open opportunities for different approaches to global vegetation analysis. 

7. Discussion and conclusion 
Laser altimetry is currently the only technique capable of measuring tree heights in closed 
canopies and therefore offers a remote and non-destructive means of estimating vegetation 
volume, biomass or carbon content to account for vegetation distribution. This avoids 
difficulties posed by inaccessibility, time or cost-intensive field campaigns.  
The replacement of current field-based methods is not contemplated as a realistic option, 
however, data collection in the field can be made more effective and targeted as a result of lidar-
based inventories.  This is already happening in Norway for example, where 90% of stand 
inventories are being made in relation to lidar surveys (E. Næsset, personal communication). 
At present, the retrieval of stand and individual tree parameters is highly dependent on 
field data collection for the calibration and validation of a sensor’s estimates.  However, the 
most efficient use of lidar will require a deeper understanding of the phenomenology of tree 
interception of the laser hits and how this relates to the physical characteristics of the 
vegetation being monitored.  This understanding can be improved using lidar simulation 
models. This may offer the possibility to construct more widely applicable height and 
diameter recovery models using current allometric relationships derived from models or by 
observations from a network of nationwide permanent sample plots. 
The recognition of the importance of biomass mapping and the significant contribution of lidar 
data for this purpose are demonstrated by the investment and commitment by the US 
Congress to research in this field at both county and national scales through the NASA-led 
Carbon Monitoring System initiative (NASA, 2010). This project integrates the use of multiple 
datasets to generate national and county level biomass products. Elsewhere, the investment in 
airborne lidar by several governments for national scale campaigns further demonstrates the 
important role that this technology can play in forest inventory and monitoring. 
Such means of identifying areas of forest biomass change can offer important contributions 
to efforts to inform and encourage practices of Reducing Emissions from Deforestation and 
forest Degradation in developing countries – REDD (Asner et al., 2010; FAO et al., 2008) and 
to report on Land Use, Land Use Change and Forestry – LULUCF (IPCC, 2003). 
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As emerging technologies such as photon counting or multispectral lidar sensors come into 
operation, the capacity for wider coverage and increasingly accurate lidar-derived 
applications for biomass assessment will further expand.   
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1. Introduction

The vertical structure of the forested areas has been recognized by the scientific community as
one major element in the assessment of forest biomass. Dealing with a volumetric object,
the remote sensing techniques that are best suited to infer information about the forest
structure are those that guarantee under foliage penetration capabilities. One important,
widely popular technology used to investigate the forest vertical structure from the above
(typically on board aircrafts) is given by high resolution LIDAR (Light Detection and Ranging)
sensors, whose signals penetrate down to the ground trough the gaps within the vegetation
layer. In the recent years, however, the attention of the scientific community has been drawn
by the use of SAR (Synthetic Aperture Radar) techniques. As opposed to LIDARs, for
which high resolution is crucial, the signals emitted by SARs propagate down to the ground
by virtue of the under foliage penetration capabilities of microwaves. This different way
of sensing the volumetric structure of the imaged objects determines many peculiarities of
SAR imaging with respect to LIDAR, some of which are advantages and other drawbacks.
The most remarkable advantage is perhaps the one due to the ability of microwaves to
penetrate into semi-transparent media, which makes lower wavelength (L-Band and P-Band,
typically) SARs capable of acquiring data almost independently of weather conditions and
vegetation density. Conversely, the most relevant drawback is that the three dimensional (3D)
reconstruction of the imaged objects requires the exploitation of multiple (at least two, but
preferable many) images acquired from different points of view, and hence multiple passes
over the scene to be investigated.
The aim of this chapter is to discuss relevant topics associated with the employment of a
multi-baseline SAR system for the reconstruction of the 3D structure of the imaged targets,
with particular attention to the case of forested areas.
The first topic considered is the design of a multi-baseline SAR system for 3D reconstruction
in the framework of Fourier Tomography (FT), also referred to as 3D focusing. Even though
seldom used in practical applications due to poor imaging quality, FT allows to discuss quite
easily the design and overall features of a SAR tomographic system, and represents the basis
for all of the developments presented in the remainder of this chapter.
The next part of this chapter will focus on operative methods the generation of high-resolution
tomographic imaging from sparse data-sets. This is the case of interest in practical
applications, due to the costs associated with flying a high number of passes and platform
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1. Introduction
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preferable many) images acquired from different points of view, and hence multiple passes
over the scene to be investigated.
The aim of this chapter is to discuss relevant topics associated with the employment of a
multi-baseline SAR system for the reconstruction of the 3D structure of the imaged targets,
with particular attention to the case of forested areas.
The first topic considered is the design of a multi-baseline SAR system for 3D reconstruction
in the framework of Fourier Tomography (FT), also referred to as 3D focusing. Even though
seldom used in practical applications due to poor imaging quality, FT allows to discuss quite
easily the design and overall features of a SAR tomographic system, and represents the basis
for all of the developments presented in the remainder of this chapter.
The next part of this chapter will focus on operative methods the generation of high-resolution
tomographic imaging from sparse data-sets. This is the case of interest in practical
applications, due to the costs associated with flying a high number of passes and platform
trajectory accuracy. T-SAR will be cast here in terms of an estimation problem, considering
both non-parametric and parametric, or model based, approaches. Non-parametric
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approaches provide enhanced resolution capabilities without the need for a-priori information
about the targets. Model based approaches are even more powerful, providing access to a
quantitative, large scale characterization of the forest structure. Nevertheless, model based
approaches are affected by an intrinsic limitation, in that data interpretation can be carried
out only on the basis of the model that has been adopted.
The final part of this chapter will focus on the joint exploitation of multi-polarimetric and
multi-baseline data. It will be shown that under large hypotheses the second-order statistics of
such data can be expressed as a Sum of Kronecker Products (SKP), which provides the basis to
proceed to decomposing the SAR data into ground-only and volume-only contributions even
in absence of a parametric model. Furthermore, the SKP formalism will be shown to provide a
compact representation of all physically valid and data-consistent two-layered models. Such
a feature will be exploited to provide a exhaustive discussion about the validity of such a class
of models for forestry investigation.
Different case studies will be discussed throughout the whole chapter, basing on real data-sets
from the ESA campaigns BIOSAR 2007, BIOSAR 2008, and TROPISAR.

2. SAR tomography

2.1 SAR imaging principles
RADAR (Radio Detection And Ranging) is a technology to detect and study far off targets by
transmitting ElectroMagnetic (EM) pulses at radio frequency and observing the backscattered
echoes. In its most simple implementation, a Radar “knows” the position of a target by
measuring the delay of the backscattered echo. Delay measurements are then converted into
distance, or range, measurements basing on the wave velocity in the medium (most commonly
free space is assumed). Range resolution, � r, is then directly related to the bandwidth of the
transmitted pulse according to well known relation:

� r =
c

2B
(1)

where c is the speed of light and B the signal bandwidth.
A Synthetic Aperture Radar (SAR) system is constituted, in its essence, by a Radar mounted
aboard a moving platform, such as an aircraft or a satellite. As the platform moves along
its trajectory, the Radar mounted aboard transmits pulse waveforms at radio-frequency and
gathers the echoes backscattered from the scene. The ensemble of the echoes recorded along
the track is generally referred to as raw data, meaning that this product is not, in most cases,
directly interpretable in terms of features of the illuminated scene. This happens because
of the small size of the antennas usually employed by SAR sensors (few meters as order of
magnitude), which results in a significantly large beam on the ground. As a consequence,
each recorded echo is determined by a very large number of targets, widely dispersed along
the scene. The procedure through which it is possible to separate the contributions of the
targets within the Radar beam is generally referred to as SAR focusing. Such a procedure
consists in combining the echoes collected along the platform track so as to synthesize a much
longer antenna than the real one, typically ranging from tens of meters in the airborne case
to tens of kilometers in the spaceborne case, and narrow the beam width on the ground to
few meters. After focusing, the contribution of each target is identified by two coordinates,
as shown in see Fig. (1). The first one, conventionally named azimuth, may be though of as
the projection of the platform track onto the Earth’s surface. The other, conventionally named
slant range, denotes the distance from the platform track at any given azimuth location. The
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Fig. 1. SAR acquisition geometry.

result is a complex 2D signal indexed by the slant range, azimuth coordinates, usually referred
to Single Look Complex (SLC) image.
Assuming a narrow bandwidth signal the azimuth resolution, � x, can be obtained as:

� x =
λ

2Ls
r (2)

where λ is the carrier wavelength, Ls is the length of the synthetic aperture, and r is the
stand-off distance between the sensor and the target. Slant range resolution is obtained
according to eq. (1). A further description of SAR image formation is beyond the scopes
of this chapter. For further details, the reader is referred to (1), (2), (3), (4).

2.2 3D SAR imaging
Given the definitions above, a SAR SLC image represents the scene as projected onto the slant
range, azimuth coordinates. This entails the complete loss of the information about the third
dimension, i.e.: about the vertical structure of the targets within the imaged scene. The key to
the recovery of the third dimension is to enhance the acquisition space so as to form a further
synthetic aperture. The easiest way to do this is to employ a multi-baseline SAR system,
where several SAR sensors, flown along parallel tracks, image the scene from different points
of view, see figure (2).
Such a system offers the possibility to gather the backscattered echoes not only along the
azimuth direction, but also along the cross-range direction, defined by the axis orthogonal to
the Line Of Sight (LOS) and to the orbital track. Accordingly, the backscattered echoes can be
focused not only in the slant range, azimuth plane, but in the whole 3D space. Therefore, the
exploitation of multi-baseline acquisitions allows to create a fully 3D imaging system, where
the size of the 3D resolution cell is determined by the pulse bandwidth along the slant range
direction, and by the lengths of the synthetic apertures, according to eq. (2), in the azimuth
and cross range directions, see Fig. (3).
Both 2D and 3D SAR imaging data may be regarded as specializations to the SAR case of the
more general concept of Diffraction Tomography, widely exploited in seismic processing (5).
As such, 3D focusing is analogous to the basic formulation of SAR Tomography (T-SAR), in
which no particular assumption is adopted to describe the imaged scene (6).
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Fig. 2. A multi-baseline SAR system

Fig. 3. Section of the 3D resolution cell in the slant range, cross range plane, represented as a
function of baseline aperture and pulse bandwidth.
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2.3 SAR tomography: mathematical formulation
Consider the case of a multi-baseline data-set, represented by N Single Look Complex (SLC)
monostatic SAR images, properly co-registered and phase flattened (7). Let yn denote a
complex valued pixel in the n− th image, the dependence on the slant range, azimuth location,
(r, x), being made implicit in order to simplify the notation. After (7), each acquisition can be
expressed through the following forward model:

yn =

ˆ
h
(
r�, x�

)
s
(
r�, x�, ξ �

)
exp

(
j
4π

λr
bnξ �

)
dr�dx�dξ � (3)

where: (r�, x�) are the slant range, azimuth coordinates with respect to the center of the SAR
resolution cell; ξ � is the cross range coordinate with respect to the center of the SAR resolution
cell, given by the axis orthogonal to (r�, x�); s (r�, x�, ξ �) is a the scene complex reflectivity,
namely a complex valued quantity accounting for amplitude and phase modifications due to
the interactions of the transmitted pulse with each of the scatterers within the SAR resolution
cell; h (r�, x�) is the end-to-end SAR impulse response (after focusing); bn is the normal baseline
relative to the n − th image with respect to a common master image.
Resolving the integral in (3) with respect to (r�, x�), one gets:

yn =

ˆ
P
(
ξ �
)

exp
(

j
4π

λr
bnξ �

)
dξ � (4)

where
P
(
ξ �
)
=

ˆ
h
(
r�, x�

)
s
(
r�, x�, ξ �

)
dr�dx� (5)

is the target projection within the SAR resolution cell along the cross-range coordinate.
Equation (4) may be thought of as the key equation of T-SAR. It states that the SAR data
and the target projections form a Fourier pair. Hence, the cross-range distribution of the
backscattered power, namely

Sξ (ξ) = E
[
|P (ξ)|2

]
, (6)

can be retrieved by estimating the Fourier Spectrum (FS) of the data with respect to the
normal baselines. The evaluation of (6) for every slant range, azimuth location results in a
3D reconstruction of the imaged scene, in the coordinate system defined by the slant range,
azimuth, cross-range coordinates. Accordingly, the vertical distribution of the backscattered
power can be retrieved by re-sampling the reconstructed scene from the slant range, azimuth,
cross-range coordinates to the ground range, azimuth, elevation coordinates. For sake of
simplicity, in this paper I will suppose that the passage from the cross-range coordinate, ξ,
to elevation, z, can be simply described through the equation

ξ = z/sinθ (7)

where θ is the look angle. Under this assumption, the vertical distribution of the backscattered
power can be obtained from the FS simply as S (z) = Sξ (ξ = z/ sin θ). Notice that such a
simplification does not entail any loss of generality, as the exact reconstruction of the vertical
backscattered power at every ground range, azimuth location can be carried out a-posteriori
through simple geometrical arguments.
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Fig. 3. Section of the 3D resolution cell in the slant range, cross range plane, represented as a
function of baseline aperture and pulse bandwidth.
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2.4 Expected FS for forested areas
A brief discussion is now required about the physics of radar scattering from forested areas,
in order to discuss the expected properties of the FS. Many excellent works have been done
on modeling radar backscattering for forested areas, see for example (8), (9), (10). After these
works, forested areas will be characterized as the ensemble of trunks, canopies, intended as
the ensemble of leaves and branches, and terrain. A simple and widely exploited solution
to describe the scattering behavior of a target above the ground is provided by modeling the
ground as a flat half space dielectric and using image theory. Four Scattering Mechanisms
arise by retaining this approach (11), (12), (9): backscatter from the target; target to ground
double bounce scattering; ground to target double bounce scattering; backscatter from the
target illuminated by the reflected wave, namely ground to target to ground scattering. In the
following the contributions from ground to target to ground scattering will be assumed to be
negligible. In the case of trunks, this assumption is supported by considering that backscatter
is dominated by specular scattering, and may thus be neglected (9). For the same reason,
direct backscatter from the trunks will be neglected as well. The case of the canopy is a little
more delicate, since randomly oriented small objects such as branches and leaves should be
treated as isotropic scatterers. Also in this case, however, it makes sense to retain that ground
to target to ground contributions may be neglected, by virtue of the attenuation undergone by
the wave as it bounces on the ground and propagates through the trunk layer and the canopy
layer of adjacent trees.
Accordingly, higher order multiple scattering will be neglected as well. As for double bounce
scattering, through simple geometric arguments it is possible to see that the distance covered
by the wave as it undergoes the two consecutive specular reflections on the ground and on
the target, or viceversa, is equal to the distance between the sensor and the projection of the
target onto the ground. Therefore, at least on an approximately flat terrain, every double
bounce mechanism is located on the ground. Assuming that trees grows perfectly vertical,
the projection of the trunk onto the ground collapses into a single point. Hence, double
bounce scattering due to trunk-ground interactions may be regarded as a point-like scattering
mechanism, located on the ground. The projection of the canopy onto the ground, instead,
gives rise to a superficial scattering mechanism located on the ground, analogous to ground
backscatter1.
Based on the model here discussed, a forest scenario is to be characterized, from the point
of view of a SAR based analysis, as an ensemble of point like, superficial and volumetric
scatterers. Basing on single polarimetric, multi-baseline observations, the element of diversity
among the different Scattering Mechanisms (SMs) is given by their corresponding FS, see Fig.
(4). Trunk-ground interactions give rise to a point-like SM whose phase center is ground
locked, resulting in an isolated narrow peak in the associated FS, located at ground level.
Ground backscatter and canopy-ground interactions give rise to a superficial, ground locked,
SM. It follows that the associated FS is located at ground level as well, but it is spread along
the cross-range axis. Canopy backscatter gives rise to a volumetric SM whose phase center
is located above the ground, depending on canopy height, from which it follows that the
associated FS is located above the ground, and it is spread along the cross-range axis as well.

2.5 Baseline design
After equation (4), the design of the baseline set for tomographic application may be
performed basing on standard results from Signal Theory (14). In particular, as the aim is

1 It has to be remarked that these conclusions do not apply in the case of bi-static acquisitions, see for
example (13)
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Fig. 4. Pictorial representation of the Fourier Spectra associated to the four scattering
mechanisms discussed. Brown: Trunk-ground scattering; yellow: ground backscattering;
green: canopy backscattering; blue: canopy-ground scattering.

to correctly represent the power spectrum of the data, the baseline set has to be designed
in such a way as to avoid the arising of aliasing phenomena while allowing a sufficient
resolution. As discussed above, equation (4) states that, at each slant range azimuth location,
the complex valued pixel yn associated with the n − th baseline is obtained by taking the
spectral component of target projection corresponding to the spatial frequency:

fn =
2bn

λr
(8)
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Fig. 4. Pictorial representation of the Fourier Spectra associated to the four scattering
mechanisms discussed. Brown: Trunk-ground scattering; yellow: ground backscattering;
green: canopy backscattering; blue: canopy-ground scattering.

to correctly represent the power spectrum of the data, the baseline set has to be designed
in such a way as to avoid the arising of aliasing phenomena while allowing a sufficient
resolution. As discussed above, equation (4) states that, at each slant range azimuth location,
the complex valued pixel yn associated with the n − th baseline is obtained by taking the
spectral component of target projection corresponding to the spatial frequency:
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Assume now that baseline sampling is uniform with baseline spacing �b, i.e.: bn = n�b. It
then follows that the reconstruction of P (ξ) from yn is unambiguous only provided that the
overall extent of the target along the cross-range direction, Hξ , is lower than the inverse of the
frequency spacing, i.e.: Hξ ≤ 1

� f = λr
2�b . After fig. (4) it is immediate to see that:

Hξ =
H

sinθ
+ � rcosθ (9)

where H is forest height. Accordingly, the fundamental constraint to obtain a correct
tomographic imaging of a forest is that2:

H
sinθ

+ � rcosθ ≤ λr
2�b

(10)

which allows to set the baseline spacing as a function of forest height and system features.
Cross range system resolution can be derived analogously to 2, simply by noting that the
overall extent of the synthetic aperture in the cross direction is given by N�b, N being the
total number of tracks. Accordingly:

� ξ =
λr

2N�b
(11)

after which vertical resolution is written immediately as:

� z =
λr

2N�b
sinθ. (12)

Accordingly, the number of tracks is directly related to the vertical resolution of the
tomographic system. Put in these terms, one would be tempted to assume that vertical
resolution can be improved at will, simply by allowing a sufficient number of tracks. There
are factors, though, which pose an upper limit about baseline aperture:

• if different baselines are collected at different times it has to be considered that the scene
can undergo significant changes, resulting in the impossibility to coherently combine
different images. This phenomenon is known in literature as temporal decorrelation (15),
(16).

• It is important to keep in mind that equation (3) is valid upon the condition that the
scene reflectivity is isotropic. This condition generally holds for narrow-angle (i.e.:
small baseline) measurements, whereas it tends to break down in case of wide-angle
measurements.

• Gathering multiple baselines is, in general, associated with high costs, due to the necessity
to use multiple SAR sensors or fly the same sensor many times.

3. SAR Tomography as an estimation problem

Despite being a most powerful tool for system design, casting T-SAR in terms of a
simple evaluation of the data Fourier Transform constitutes too simple an approach for
practical applications. The main reason for this statement is that the capability to resolve

2 This formula is given for typical geometries used in SAR imaging, where the incidence angle is usually
larger than, say, 25°. The case of nadir looking Radar (θ = 0) is not considered here.
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targets in different positions through this simple approach is dramatically limited by the
effective baseline aperture, according to equation (12). Furthermore, the vertical backscatter
distribution that is yielded by Fourier based T-SAR is likely to be affected by the presence
of grating lobes, that can arise in case of uneven baseline sampling (17). It follows that
T-SAR can be more effectively posed as the problem of estimating the vertical distribution
of the backscattered power based on a limited number of observations, that is as a Spectral
Estimation problem. Many excellent works have appeared in literature about the application
of spectral estimation methods to SAR tomography. A possible solution to improve the
vertical resolution and ease the arising of side lobes is to exploit super-resolution techniques
developed in the Direction of Arrival (DOA) framework, such as Capon adaptive filtering,
MUSIC, SVD analysis, Compressive Sensing, and others. In the framework of T-SAR, such
techniques have been applied in a number of works, among which (17), (18), (19), (20).
The main limitation of most super-resolution techniques derives from the assumption that
the scene is constituted by a finite number of point-like scatterers, which hinders their
application in the analysis of scenarios characterized by the presence of distributed targets.
For this reason, super-resolution techniques appear to be mainly suited for the tomographic
characterization of urban areas. A different solution may be found in the works by Fornaro
et al., (21), (22), focused on the analysis of urban areas, and in those relative to Polarization
Coherence Tomography (PCT), due to Cloude, (23), (24), focused on the analysis of forested
areas. The common trait of those works is that super-resolution is achieved by exploiting a
priori information about target location. In the case of forested areas, for example, the a priori
information is represented by ground topography and canopy top height.
Alternatively, a sound characterization of the imaged scene can be given by modeling its
vertical backscattering distribution, in such a way as to pose T-SAR as a Parametric Estimation
problem. Model based techniques have been successfully employed in a number of works
about the analysis of forested areas, see for example (25), (13), (26), (27). Nevertheless, model
based approaches are affected by an intrinsic limitation, in that data interpretation can be
carried out only on the basis of the model that has been adopted.

3.1 Two simple spectral estimators
Spectral estimation techniques are mostly based on the analysis of the data covariance matrix
among different tracks, namely the matrix whose elements are obtained as:

{R}nm = E [yny∗m] (13)

The most simple estimator of the scene backscatter distribution is given by the Periodogram,
which is defined as:

Sp (ξ) = a (ξ)T R̂a (ξ) (14)

where R̂ is the sample estimate of the data covariance matrix defined above and a (ξ) =[
exp

(
j 4π

λr b1ξ
)
· · · · · · exp

(
j 4π

λr bNξ
) ]H

. The Periodogram is formally equivalent to the
Fourier transform of the data with respect to the normal baseline. The vertical resolution
provided by such an estimator is then given by eq. (12).
This limit may be overcome by adaptive filtering techniques. Capon filtering, for example,
designs a filter fmin such that:

fmin = arg min
{

fHR̂f
}

(15)

under the linear constraint
fHa (ξ) = 1 (16)
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of spectral estimation methods to SAR tomography. A possible solution to improve the
vertical resolution and ease the arising of side lobes is to exploit super-resolution techniques
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the scene is constituted by a finite number of point-like scatterers, which hinders their
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This leads to the definition of the Capon Spectral Estimator as:

SC (ξ) = fH
minR̂fmin =

1

a (ξ)H R̂−1a (ξ)
(17)

Such an estimator produces super-resolution capabilities and grating lobes reduction without
the need for a-priori information about the targets, see for example (17), (18). The main
drawback associated with the Capon Spectral Estimator is the poor radiometric accuracy,
especially in presence of a small baseline aperture. Accordingly, the employment of the Capon
Spectral Estimator has to be considered as a compromise. Indeed it results in non accurate
backscattered power values, yet it permits to appreciate details that could not be accessible in
presence of a small baseline aperture.

3.2 Representation of multiple SMs
Dealing with natural scenarios, it is sensible to assume that the target signature changes
randomly from one pixel to another, either in the case of distributed or point-like targets. For
this reason, the data will be assumed to be a realization of a zero-mean complex process, from
which it follows that a unified mathematical treatment of all the SMs described in section 2.4
may be provided by characterizing the second order moments of the data, represented by the
expected value of the interferograms. Under the hypothesis of statistical uncorrelation among
the different SMs, the expected value of the nm − th interferogram may be expressed as:

E [yny∗m] =
K

∑
k=1

σ2
k γ

(k)
nm (18)

where: K is the total number of SMs; σ2
k is the backscattered power associated to the k− th SM;

γ
(k)
nm is the complex interferometric coherence induced by the spatial structure (i.e.: point-like,

superficial, or volumetric) associated with the k − th SM in the nm − th interferogram (15).
After (18), the expression of the data covariance matrix is given by:

E
[
yMByH

MB

] de f
= R =

K

∑
k=1

σ2
k Rk (19)

where: yMB =
[

y1 y2 · · · yN
]T is the stack of the multi-baseline data at a certain slant

range, azimuth location; each matrix Rk is an N × N matrix whose entries are given by the

interferometric coherences associated to the k − th phase center: {Rk}nm = γ
(k)
nm. The role of

each matrix Rk in (19) is to account for the spatial structure associated to each SMs. According
to this interpretation, such matrices will be hereinafter referred to as structure matrices.
Following the arguments presented in section 2.4, the data covariance matrix will be assumed
to be contributed by just two SMs, one associated with volume backscattering, and the
other with the ensemble of all SMs whose phase center is ground locked, namely surface
backscattering, ground-volume scattering, and ground-trunk scattering. Accordingly, eq. (19)
simplifies to:

E
[
yMByH

MB

] de f
= R = σ2

g Rg + σ2
v Rv (20)

the subscripts g, v standing for ground and volume.
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3.3 A simple parametric model
By letting the ground and volume structure matrices depend upon some physically
meaningful parameter, equation (20) provides an easy access point to an effective modeling of
the problem. In this chapter I will consider a very simple model, where both the ground and
the vegetation layer are represented as phase centers plus the associated decorrelation term
arising from the angular spreading described in section 2.4. Hence, the phase of the structure
matrices can be parametrized as:

∠
{

Rg,v
}

nm =
4π

λr
bm − bn

sinθ
zg,v (21)

where zg,v is the elevation of the phase center associated with ground and volume scattering.
As for the amplitudes, instead, the following model will be retained:

∣∣{Rg,v
}

nm

∣∣ = ρ
−|bn−bm |/Δb
g,v (22)

where ρg,v will be referred to as spreading constant and Δb is the average normal baseline
sampling. The role of the spreading constant is to describe in a simple fashion the angular
spreading that arises from the spatial structure associated to each phase center, avoiding the
dependence upon a particular physical model. Given the definition above, the spreading
constant ranges from 0 to 1, corresponding to the cases of pure noise and of a perfectly
coherent received signal (i.e. a point-like scatterer), respectively. For details on more
sophisticated physical models, the reader is referred to (13), (27).

3.3.1 Inversion
In principle, the availability of a model for the covariance matrix suffices for solving for the
unknowns through Maximum Likelihood Estimation (MLE) (28). This solution, however,
would not be efficient, since it requires an exhaustive search in a significantly wide parameter
space. A significant complexity reduction may be achieved by applying the Covariance
Matching Estimation Method (COMET) (29), (30), (31), (32), which allows to solve the problem
by minimizing a weighted Frobenius norm of the difference between the sample covariance
matrix and the model . In formula:

(
ẑg, ρ̂g, ẑg, ρ̂g, σ̂2

g , σ̂2
v

)
= argmin

{
trace

(
R̂−1(R̂ − M)R̂−1(R̂ − M)

)}
(23)

where R̂ is the sample covariance matrix and M is the model matrix, i.e.:

M = σ2
g Rg

(
zg, ρg

)
+ σ2

v Rv (zv, ρv) . (24)

A straightforward extension to the case of multi-polarimetric data can be achieved by

assuming that backscattered powers
(

σ2
g , σ2

v

)
only change with polarization, whereas the

structural parameters
(
zg, ρg,zv, ρv

)
stay the same. See (26) for details.

3.4 A case study: the Remningstorp forest site
This section is devoted to reporting the results of the tomographic analysis of the forest site
of Remningstorp, Sweden, on the basis of a data-set of N = 9 P-Band, fully polarimetric
SAR images acquired by the DLR airborne system E-SAR in the frame of the ESA campaign
BIOSAR 2007. Prevailing tree species in the imaged scene are Norway spruce (Picea abies),
Scots pine (Pinus sylvestris) and birch (Betula spp.). The dominant soil type is till with
a field layer, when present, of blueberry (Vaccinium myrtillus) and narrow thinned grass
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(Deschampsia flexuosa). Tree heights are in the order of 20 m, with peaks up to 30 m. The
topography is fairly flat, terrain elevation above sea level ranging between 120 and 145 m.
The acquisitions have been carried out from March to May 2007. The horizontal baseline
spacing is approximately 10 m, resulting in a maximum horizontal baseline of approximately
80 m. The spatial resolution is approximately 3 m in the slant range direction and 1 m in the
azimuth direction. The look angle varies from 25◦ to 55◦ from near to far range, resulting in
the vertical resolution to vary from about 10 m in near range to 40 m in far range. See also
table (2) in the remainder.
The top row of Fig. (5) shows an optical view of the Remningstorp test site captured from
Google Earth, re-sampled onto the SAR slant range, azimuth coordinates, whereas the bottom
row of the same figure shows the amplitude of the HH channel, averaged over the 9 images.
Backscatter from open areas has turned out to be remarkably lower than that from forested
areas (about 25 dB), as expected at longer wavelengths.
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Fig. 5. Top row: Optical image of the Remningstorp forest site by Google Earth. Bottom row:
Mean reflectivity of the HH channel.

3.4.1 Non tomographic analysis
An analysis of the amplitude stability of the data has been performed by computing the ratio
μ/σ, where μ and σ denote the mean and the standard deviation of the amplitudes of the
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SLC images. The μ/σ index is widely used in Permanent Scatterers Interferometry (PSI) as a
criterion to select the most coherent scatterers in the imaged scene (33). As a result, for both
the HH and VV channels the μ/σ index has resulted to be characterized by extremely high
values (μ/σ > 15), which indicates the presence of a highly stable scattering mechanism in the
co-polar channels. Surprisingly, high values of the μ/σ index (μ/σ > 10) have been observed
in the HV channel as well.
Temporal decorrelation has been evaluated by exploiting the presence of additional zero
baseline images. The temporal coherence at 56 days has been assessed in about γHH

temp � 0.85
in the HH channel, γVV

temp � 0.8 in the VV channel, and γHV
temp � 0.75 in the HV channel,

relatively to forested areas. Accordingly, the temporal stability of the scene is rather good for
all the three polarimetric channels, indicating the presence of a stable scattering mechanism,
especially in the co-polar channels.
The information carried by the co-polar channels has been analyzed by averaging the
backscattered powers and the co-polar interferograms (i.e.: the Hermitian product between
the HH and VV channels) over all the 9 tracks and inside an estimation window as large as
50 × 50 square meters (ground range, azimuth). The distribution of the HH and VV total
backscattered power with respect to the co-polar phase, Δϕ = ϕHH − ϕVV , has shown to be
substantially bimodal, high and low energy values being concentrated around Δϕ ≈ 80◦ and
Δϕ ≈ 0◦, respectively, see Fig.(6). The coherence between the HH and VV channels has been
observed to be rather high in open areas (γcopol ≈ 0.8.), whereas in forested areas it has been
assessed about γcopol ≈ 0.45.
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Fig. 6. Joint distribution of the total backscattered power and the co-polar phase for the
co-polar channels. The total backscattered power has been obtained as the sum between the
HH and VV backscattered powers. The color scale is proportional to the number of counts
within each bin.

3.4.2 Tomographic analysis
A first, non parametric, tomographic analysis has been carried out by evaluating the Capon
spectra of the three polarimetric channels, see for example (18), (17), reported in Fig. (7).
Each spectrum has been obtained by evaluating the sample covariance matrix at each range
bin on the basis of an estimation window as large as 50 × 50 square meters (ground range,
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Fig. 5. Top row: Optical image of the Remningstorp forest site by Google Earth. Bottom row:
Mean reflectivity of the HH channel.

3.4.1 Non tomographic analysis
An analysis of the amplitude stability of the data has been performed by computing the ratio
μ/σ, where μ and σ denote the mean and the standard deviation of the amplitudes of the
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SLC images. The μ/σ index is widely used in Permanent Scatterers Interferometry (PSI) as a
criterion to select the most coherent scatterers in the imaged scene (33). As a result, for both
the HH and VV channels the μ/σ index has resulted to be characterized by extremely high
values (μ/σ > 15), which indicates the presence of a highly stable scattering mechanism in the
co-polar channels. Surprisingly, high values of the μ/σ index (μ/σ > 10) have been observed
in the HV channel as well.
Temporal decorrelation has been evaluated by exploiting the presence of additional zero
baseline images. The temporal coherence at 56 days has been assessed in about γHH

temp � 0.85
in the HH channel, γVV

temp � 0.8 in the VV channel, and γHV
temp � 0.75 in the HV channel,

relatively to forested areas. Accordingly, the temporal stability of the scene is rather good for
all the three polarimetric channels, indicating the presence of a stable scattering mechanism,
especially in the co-polar channels.
The information carried by the co-polar channels has been analyzed by averaging the
backscattered powers and the co-polar interferograms (i.e.: the Hermitian product between
the HH and VV channels) over all the 9 tracks and inside an estimation window as large as
50 × 50 square meters (ground range, azimuth). The distribution of the HH and VV total
backscattered power with respect to the co-polar phase, Δϕ = ϕHH − ϕVV , has shown to be
substantially bimodal, high and low energy values being concentrated around Δϕ ≈ 80◦ and
Δϕ ≈ 0◦, respectively, see Fig.(6). The coherence between the HH and VV channels has been
observed to be rather high in open areas (γcopol ≈ 0.8.), whereas in forested areas it has been
assessed about γcopol ≈ 0.45.
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Fig. 6. Joint distribution of the total backscattered power and the co-polar phase for the
co-polar channels. The total backscattered power has been obtained as the sum between the
HH and VV backscattered powers. The color scale is proportional to the number of counts
within each bin.

3.4.2 Tomographic analysis
A first, non parametric, tomographic analysis has been carried out by evaluating the Capon
spectra of the three polarimetric channels, see for example (18), (17), reported in Fig. (7).
Each spectrum has been obtained by evaluating the sample covariance matrix at each range
bin on the basis of an estimation window as large as 50 × 50 square meters (ground range,
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azimuth). The analyzed area corresponds to a stripe of the data along the slant range direction,
shown in the top panel of Fig. (7). Almost the whole stripe is forested except for the
dark areas in near range, corresponding to bare terrain. It may be observed that the three
spectra have very similar characteristics. Each spectrum is characterized by a narrow peak,
above which a weak sidelobe is visible. As for the co-polar channels, this result is consistent
with the hypothesis that a single scattering mechanism is dominant. It is then reasonable
to relate such scattering mechanism to the double bounce contribution from trunk-ground
and canopy-ground interactions, and hence the peak of the spectrum can be assumed to be
located at ground level. The sidelobe above the main peak is more evident in the HV channel,
but the contributions from ground level seem to be dominant as well, the main peak being
located almost at the same position as in the co-polar channels. Accordingly, the presence of a
relevant contribution from the ground has to be included in the HV channel too.
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Fig. 7. Top panel: mean reflectivity of the data (HH channel) within a stripe as wide as 50 m
in the azimuth direction. The underlying panels show the Capon Spectra for the three
polarimetric channels. At every range bin the signal has been scaled in such a way as to have
unitary energy.
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3.4.3 Parametric tomographic analysis
Results shown here have been obtained by processing all polarizations at once, as suggested
in section 3.3.1.
Figure (8) shows the map of the estimates relative ground elevation. The black areas
correspond to absence of coherent signals, as it is the case of lakes. The estimates relative
to canopy elevation are visible in Fig. (9). In this case, the black areas have been identified by
the algorithm as being non-forested. It is worth noting the presence of a road, clearly visible in
the optical image, see Fig. (5), crossing the scene along the direction from slant range, azimuth
coordinates (1850, 0) to (1000, 5500). Along that road, a periodic series of small targets at an
elevation of about 25 m has been found by the algorithm. Since a power line passes above the
road, it seems reasonable to relate such targets to the echoes from the equipment on the top of
the poles of the power line.
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Fig. 8. Top row: ground elevation estimated by LIDAR. Bottom row: ground elevation
estimated by T-SAR. Black areas correspond to an unstructured scattering mechanism.

As a validation tool, we used LIDAR measurements courtesy of the Swedish Defence Research
Agency (FOI) and Hildur and Sven Wingquist’s Foundation. Concerning ground elevation
the dispersion of the difference zSAR − zLIDAR has been assessed in less than 1 m. Concerning
the estimated canopy elevation, the discrepancy with respect to LIDAR is clearly imputable
to the fact that the estimates are relative to the average the phase center elevation inside the
estimation window, whereas LIDAR is sensitive to the top height of the canopy. In particular,
canopy elevation provided by T-SAR appears to be under-estimated with respect to LIDAR
measurements, as a result of the under foliage penetration capabilities of P-band microwaves.
Figure (10) reports the ratios between the estimated backscattered powers from the ground
and the canopy (G/C ratio), for each polarimetric channel. As expected, in the co-polar
channels the scattered power from the ground is significantly larger than canopy backscatter,
the G/C ratio being assessed in about 10 dB. In the HV channel the backscattered powers
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azimuth). The analyzed area corresponds to a stripe of the data along the slant range direction,
shown in the top panel of Fig. (7). Almost the whole stripe is forested except for the
dark areas in near range, corresponding to bare terrain. It may be observed that the three
spectra have very similar characteristics. Each spectrum is characterized by a narrow peak,
above which a weak sidelobe is visible. As for the co-polar channels, this result is consistent
with the hypothesis that a single scattering mechanism is dominant. It is then reasonable
to relate such scattering mechanism to the double bounce contribution from trunk-ground
and canopy-ground interactions, and hence the peak of the spectrum can be assumed to be
located at ground level. The sidelobe above the main peak is more evident in the HV channel,
but the contributions from ground level seem to be dominant as well, the main peak being
located almost at the same position as in the co-polar channels. Accordingly, the presence of a
relevant contribution from the ground has to be included in the HV channel too.
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3.4.3 Parametric tomographic analysis
Results shown here have been obtained by processing all polarizations at once, as suggested
in section 3.3.1.
Figure (8) shows the map of the estimates relative ground elevation. The black areas
correspond to absence of coherent signals, as it is the case of lakes. The estimates relative
to canopy elevation are visible in Fig. (9). In this case, the black areas have been identified by
the algorithm as being non-forested. It is worth noting the presence of a road, clearly visible in
the optical image, see Fig. (5), crossing the scene along the direction from slant range, azimuth
coordinates (1850, 0) to (1000, 5500). Along that road, a periodic series of small targets at an
elevation of about 25 m has been found by the algorithm. Since a power line passes above the
road, it seems reasonable to relate such targets to the echoes from the equipment on the top of
the poles of the power line.
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estimated by T-SAR. Black areas correspond to an unstructured scattering mechanism.

As a validation tool, we used LIDAR measurements courtesy of the Swedish Defence Research
Agency (FOI) and Hildur and Sven Wingquist’s Foundation. Concerning ground elevation
the dispersion of the difference zSAR − zLIDAR has been assessed in less than 1 m. Concerning
the estimated canopy elevation, the discrepancy with respect to LIDAR is clearly imputable
to the fact that the estimates are relative to the average the phase center elevation inside the
estimation window, whereas LIDAR is sensitive to the top height of the canopy. In particular,
canopy elevation provided by T-SAR appears to be under-estimated with respect to LIDAR
measurements, as a result of the under foliage penetration capabilities of P-band microwaves.
Figure (10) reports the ratios between the estimated backscattered powers from the ground
and the canopy (G/C ratio), for each polarimetric channel. As expected, in the co-polar
channels the scattered power from the ground is significantly larger than canopy backscatter,
the G/C ratio being assessed in about 10 dB. In the HV channel the backscattered powers
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Fig. 9. Top row: canopy elevation estimated by LIDAR. Bottom row: canopy elevation
estimated by T-SAR. Black areas correspond to absence of canopy.

from the ground and the canopy are closer to each other, even though ground contributions
still appear to be dominant, resulting in a ground to canopy ratio of about 3 dB.

3.4.3.1 Single-polarization analysis

This last paragraph is dedicated to reporting the results relative to the elevation estimates
provided by processing the HH, VV, and HV channel separately, compared to estimates
yielded by the fully polarimetric (FP) tomography commented above. The joint distributions
of the elevation estimates yielded by the FP tomography and by the single channel
tomographies are reported in Fig. (11). It can be appreciated that, as expected, ground
elevation is better estimated by processing the co-polar channel, whereas canopy elevation
is better estimated by processing the HV channel. In all cases, however, the estimates are
close to those provided by the FP tomography, proving that the tomographic characterization
of forested areas may be carried out on the basis of a single polarimetric channel, provided
that a sufficient number of acquisitions is available. It is important to note that the canopy
phase center elevation yielded by the VV tomography has turned out to be slightly (between
1 and 2 meters) over estimated, with respect to both the FP tomography and to the HH
and HV tomographies. This phenomenon indicates that the scatterers within the canopy
volume exhibit a vertical orientation, as expected at longer wavelengths (34), (35). This result
shows that effects of vegetation orientation at P-band are appreciable, and measurable by
Tomography, but not so severe to hinder the applicability of the FP Tomography depicted
above.

3.4.4 Discussion
Since the co-polar phase for both ground and canopy backscatter is expected to be null, (36),
the value of Δϕ ≈ 80◦ found in forested areas can only be interpreted as an index of the
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Fig. 10. Ground to Canopy Ratio for the three polarimetric channels.

presence of a dihedral contribution. Now, whereas for a perfect conducting dihedral Δϕ
is exactly 180◦, for a lossy dielectric dihedral a lower value of Δϕ is expected, due to the
electromagnetic properties of the trunk-ground ensemble (in (37) for example, a co-polar
phase of 94◦ has been observed for trunk-ground scattering). What makes the interpretation
of the co-polar signature of forested areas not straightforward is that low values of the
co-polar coherence have been observed, whereas dihedral contributions to the HH and VV
channels are usually assumed to by highly correlated (36). A possible explanation would be
to assume that forested areas are characterized by an almost ideal dihedral scattering plus a
significant contribution from canopy backscatter, which would explain both the low co-polar
coherence and the reduction of Δϕ from the ideal value of 180◦ to 80◦. This interpretation,
however, is not satisfying, since it is not consistent with the presence of highly amplitude
stable targets nor with the Capon spectra in Fig. (7). At this point, a better explanation seems
to be that to consider forested areas as being dominated by a single scattering mechanism,
responsible for (most of) the coherence loss between the co-polar channels, highly coherent
with respect to geometrical and temporal variations, and approximately located at ground
level. From a physical point of view, it makes sense to relate such scattering mechanism to
trunk-ground interactions, eventually perturbed by the presence of understory, trunk and
ground roughness, small oscillations in the local topography, or eventually by canopy-ground
interactions. Casting T-SAR as a parametric estimation problem has allowed to support such a
conclusion by providing quantitative arguments such as the G/C ratios that indicate that not
only in the co-polar channel, but also in the HV channel the contributions from the ground
level dominate those from the canopy. Such result indicates that the ideal dihedral scattering
model does not provide a sufficient description of the HV ground contributions under the
forest, suggesting effects due to understory and volume-ground interactions.
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Fig. 9. Top row: canopy elevation estimated by LIDAR. Bottom row: canopy elevation
estimated by T-SAR. Black areas correspond to absence of canopy.

from the ground and the canopy are closer to each other, even though ground contributions
still appear to be dominant, resulting in a ground to canopy ratio of about 3 dB.

3.4.3.1 Single-polarization analysis

This last paragraph is dedicated to reporting the results relative to the elevation estimates
provided by processing the HH, VV, and HV channel separately, compared to estimates
yielded by the fully polarimetric (FP) tomography commented above. The joint distributions
of the elevation estimates yielded by the FP tomography and by the single channel
tomographies are reported in Fig. (11). It can be appreciated that, as expected, ground
elevation is better estimated by processing the co-polar channel, whereas canopy elevation
is better estimated by processing the HV channel. In all cases, however, the estimates are
close to those provided by the FP tomography, proving that the tomographic characterization
of forested areas may be carried out on the basis of a single polarimetric channel, provided
that a sufficient number of acquisitions is available. It is important to note that the canopy
phase center elevation yielded by the VV tomography has turned out to be slightly (between
1 and 2 meters) over estimated, with respect to both the FP tomography and to the HH
and HV tomographies. This phenomenon indicates that the scatterers within the canopy
volume exhibit a vertical orientation, as expected at longer wavelengths (34), (35). This result
shows that effects of vegetation orientation at P-band are appreciable, and measurable by
Tomography, but not so severe to hinder the applicability of the FP Tomography depicted
above.

3.4.4 Discussion
Since the co-polar phase for both ground and canopy backscatter is expected to be null, (36),
the value of Δϕ ≈ 80◦ found in forested areas can only be interpreted as an index of the
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presence of a dihedral contribution. Now, whereas for a perfect conducting dihedral Δϕ
is exactly 180◦, for a lossy dielectric dihedral a lower value of Δϕ is expected, due to the
electromagnetic properties of the trunk-ground ensemble (in (37) for example, a co-polar
phase of 94◦ has been observed for trunk-ground scattering). What makes the interpretation
of the co-polar signature of forested areas not straightforward is that low values of the
co-polar coherence have been observed, whereas dihedral contributions to the HH and VV
channels are usually assumed to by highly correlated (36). A possible explanation would be
to assume that forested areas are characterized by an almost ideal dihedral scattering plus a
significant contribution from canopy backscatter, which would explain both the low co-polar
coherence and the reduction of Δϕ from the ideal value of 180◦ to 80◦. This interpretation,
however, is not satisfying, since it is not consistent with the presence of highly amplitude
stable targets nor with the Capon spectra in Fig. (7). At this point, a better explanation seems
to be that to consider forested areas as being dominated by a single scattering mechanism,
responsible for (most of) the coherence loss between the co-polar channels, highly coherent
with respect to geometrical and temporal variations, and approximately located at ground
level. From a physical point of view, it makes sense to relate such scattering mechanism to
trunk-ground interactions, eventually perturbed by the presence of understory, trunk and
ground roughness, small oscillations in the local topography, or eventually by canopy-ground
interactions. Casting T-SAR as a parametric estimation problem has allowed to support such a
conclusion by providing quantitative arguments such as the G/C ratios that indicate that not
only in the co-polar channel, but also in the HV channel the contributions from the ground
level dominate those from the canopy. Such result indicates that the ideal dihedral scattering
model does not provide a sufficient description of the HV ground contributions under the
forest, suggesting effects due to understory and volume-ground interactions.
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Fig. 11. Joint distribution of the phase center elevation estimates yielded by processing the
single channels separately (vertical axis) and by the best tomography (horizontal axis). The
black line denotes the ideal linear trend. The color scale is proportional to the natural
logarithm of the number of counts within each bin.

4. Ground-volume decomposition from multi-baseline and multi-polarimetric data

4.1 Introduction
The idea that Radar scattering from forested areas can be well modeled as being constituted
by two Scattering Mechanisms (SMs) has largely been retained in literature. In first place, the
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assumption of two SMs matches the intuitive argument that a forested area is characterized
by the presence of two objects, i.e.: the ground and the vegetation layer. This idea has
been formalized in literature through different physical models, considering the features
of ground and volume scattering in polarimetric data (38), single-polarization tomographic
data, as shown in (26) and in the previous section, or in polarimetric and interferometric
(PolInSAR) data (13), (39), (27). Beside physical soundness, however, the popularity of
two-layered models is also due to the fact that they provide a sufficiently simple mathematical
framework to allow model inversion. This is particularly important in PolInSAR analysis,
where the assumption of two layers results in the coherence loci, namely the distribution of
the interferometric coherence as a function of polarization, to be given by a straight line in the
complex plane (39). This simple geometrical interpretation provides the key to decompose
the interferometric coherence in ground-only and volume-only contributions, after which
ground and volume parameters, like terrain topographic and canopy heights are retrieved.
The analysis of the shape of the coherence loci also provides a direct idea about the soundness
of approximating the scene as being constituted by two SMs, which allows to assess the impact
of model mismatches (35). The Sum of Kronecker Product (SKP) structure has been proposed
in (40) as a general framework to discuss problem inversion in both single and multi-baseline
configurations, and independently on the particular physical model adopted to represent
each SM. Concerning two-layered models, the SKP formalism leads to the conclusion that
the correct identification of the structural and polarimetric properties of ground and volume
scattering is subject to an ambiguity, in that different solutions exist that fit the data covariance
matrix up to the same error. Such an ambiguity is shown to be completely described by two
degrees of freedom, which can be resolved by employing physical models. In other words,
the two dimensional ambiguity following after the SKP structure represents exactly the model
space, meaning that a certain physical model corresponds to a certain solution of problem
ambiguity, and vice-versa. Accordingly, the SKP formalism provides a way to discuss every
possible physical model, by exploring the space of ambiguous solutions. In this chapter,
this methodology is applied to data from the ESA campaigns BIOSAR 2007, BIOSAR 2008
and TROPISAR. Different models are being investigated by exploring different solutions in
the ambiguous space, whose features are discussed basing on polarimetric and tomographic
features.

4.2 The SKP structure
We consider a scenario where Radar scattering is contributed by multiple Scattering
Mechanisms (SMs), as in forested areas, and assume a data-set of N · Np SAR SLC images,
Np being the number of independent polarizations (typically Np = 3 ) and N the number of
passages over the scene. Let yn (wi) denote a complex-valued pixel of the image acquired
from passage n in the polarization identified by the projection vector wi. A simple way to
model the data second order statistics is to assume that: i) different SMs are uncorrelated with
one another; ii) the correlation between any two passages, say n and m, of the k-th SM alone,
rk (n, m), is invariant to polarization (up to a scale factor); iii) the correlation between any two

polarizations, say wi and wj, of each SM alone, ck

(
wi, wj

)
, is invariant to the choice of the

passage (up to a scale factor), see (40) for details. Under the three hypotheses above it follows
that:

E
[
yn (wi) y∗m

(
wj

)]
=

K

∑
k=1

ck

(
wi, wj

)
rk (n, m) ∀wi, wj, n, m (25)
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Fig. 11. Joint distribution of the phase center elevation estimates yielded by processing the
single channels separately (vertical axis) and by the best tomography (horizontal axis). The
black line denotes the ideal linear trend. The color scale is proportional to the natural
logarithm of the number of counts within each bin.

4. Ground-volume decomposition from multi-baseline and multi-polarimetric data

4.1 Introduction
The idea that Radar scattering from forested areas can be well modeled as being constituted
by two Scattering Mechanisms (SMs) has largely been retained in literature. In first place, the
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assumption of two SMs matches the intuitive argument that a forested area is characterized
by the presence of two objects, i.e.: the ground and the vegetation layer. This idea has
been formalized in literature through different physical models, considering the features
of ground and volume scattering in polarimetric data (38), single-polarization tomographic
data, as shown in (26) and in the previous section, or in polarimetric and interferometric
(PolInSAR) data (13), (39), (27). Beside physical soundness, however, the popularity of
two-layered models is also due to the fact that they provide a sufficiently simple mathematical
framework to allow model inversion. This is particularly important in PolInSAR analysis,
where the assumption of two layers results in the coherence loci, namely the distribution of
the interferometric coherence as a function of polarization, to be given by a straight line in the
complex plane (39). This simple geometrical interpretation provides the key to decompose
the interferometric coherence in ground-only and volume-only contributions, after which
ground and volume parameters, like terrain topographic and canopy heights are retrieved.
The analysis of the shape of the coherence loci also provides a direct idea about the soundness
of approximating the scene as being constituted by two SMs, which allows to assess the impact
of model mismatches (35). The Sum of Kronecker Product (SKP) structure has been proposed
in (40) as a general framework to discuss problem inversion in both single and multi-baseline
configurations, and independently on the particular physical model adopted to represent
each SM. Concerning two-layered models, the SKP formalism leads to the conclusion that
the correct identification of the structural and polarimetric properties of ground and volume
scattering is subject to an ambiguity, in that different solutions exist that fit the data covariance
matrix up to the same error. Such an ambiguity is shown to be completely described by two
degrees of freedom, which can be resolved by employing physical models. In other words,
the two dimensional ambiguity following after the SKP structure represents exactly the model
space, meaning that a certain physical model corresponds to a certain solution of problem
ambiguity, and vice-versa. Accordingly, the SKP formalism provides a way to discuss every
possible physical model, by exploring the space of ambiguous solutions. In this chapter,
this methodology is applied to data from the ESA campaigns BIOSAR 2007, BIOSAR 2008
and TROPISAR. Different models are being investigated by exploring different solutions in
the ambiguous space, whose features are discussed basing on polarimetric and tomographic
features.

4.2 The SKP structure
We consider a scenario where Radar scattering is contributed by multiple Scattering
Mechanisms (SMs), as in forested areas, and assume a data-set of N · Np SAR SLC images,
Np being the number of independent polarizations (typically Np = 3 ) and N the number of
passages over the scene. Let yn (wi) denote a complex-valued pixel of the image acquired
from passage n in the polarization identified by the projection vector wi. A simple way to
model the data second order statistics is to assume that: i) different SMs are uncorrelated with
one another; ii) the correlation between any two passages, say n and m, of the k-th SM alone,
rk (n, m), is invariant to polarization (up to a scale factor); iii) the correlation between any two

polarizations, say wi and wj, of each SM alone, ck

(
wi, wj

)
, is invariant to the choice of the

passage (up to a scale factor), see (40) for details. Under the three hypotheses above it follows
that:

E
[
yn (wi) y∗m

(
wj

)]
=

K

∑
k=1

ck

(
wi, wj

)
rk (n, m) ∀wi, wj, n, m (25)
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where K is the total number of SMs. Chosen an arbitrary polarization basis, we can recast (25)
in matrix form as:

W =
K

∑
k=1

Ck ⊗ Rk (26)

where: ⊗ denotes Kronecker product; W (
[
N · Np × N · Np

]
) is the covariance matrix of the

multi-baseline and multi-polarimetric data; the matrices Ck (
[
Np × Np

]
) and Rk ([N × N]) are

such that ck

(
wi, wj

)
= wH

i Ckwj and rk (n, m) = {Rk}nm ({}nm denoting the nm− th element
of a matrix).
Accordingly, model (26) allows to represent each SM through a Kronecker product between
two matrices. The first, Ck, accounts for the correlation among different polarizations, and
thus it represents the polarimetric properties of the k − th SM, see for example (41). The
second, Rk, accounts for the correlation among different baselines, therefore carrying the
information about the vertical structure of the k − th SM 3. The matrices Ck, Rk will be
hereinafter referred to as polarimetric signatures and structure matrices, respectively, by
virtue of their physical meaning.
Following the arguments in (40), it can be shown that in most cases it can be assumed that
the data covariance matrix is constituted by just two Kronecker Products, one associated with
volume backscattering, and the other with the ensemble of all SMs whose phase center is
ground locked, namely surface backscattering, ground-volume scattering, and ground-trunk
scattering. Accordingly, eq. (26) defaults to:

W = Cg ⊗ Rg + Cv ⊗ Rv (27)

where the subscript v refers to volume backscattering and the subscript g refers to all SMs
whose phase center is ground locked. For sake of simplicity, hereinafter we will refer to the
two terms in (27) simply as ground scattering and volume scattering. It is worth noting that
the assumption of two Kronecker Products can be approximately retained also in the case
of an Oriented Volume over Ground (OVoG), by interpreting the matrix Rv as the average
volume structure matrix across all polarizations (40).

4.3 Model representation
The key to the exploitation of the SKP structure is the important result, due to Van Loan and
Pitsianis (42), after which every matrix can be decomposed into a SKP. It is shown in (40) that
the terms of the SKP Decomposition are related to the matrices Ck, Rk via a linear, invertible
transformation, which is defined by exactly K(K − 1) real numbers. Assuming K = 2 SMs, as
in the case of ground and volume scattering, it follows that there exist 2 real numbers (a, b)

3 Neglecting temporal decorrelation and assuming target stationarity, the nm − th entry of the matrix Rk
is obtained as (18), (6), (26):

{Rk}nm =

ˆ
Sk (z) exp {j (kz (n)− kz (m)) z} dz

where z is the vertical coordinate, Sk (z) is the vertical profile of the backscattered power for the k − th
SM, kz (n) is the height to phase conversion factor for the n − th image (7). It is worth noting that
eventual temporal coherence losses would be completely absorbed by the matrices Rk , as discussed in
(40). Accordingly, in presence of temporal decorrelation nothing changes as for the validity of model
(26), but it should be kept in mind that in this case the matrices Rk would represent not only the spatial
structure, but also the temporal behavior of the k − th SM.
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such that:

Rg = aR̃1 + (1 − a) R̃2 (28)

Rv = bR̃1 + (1 − b) R̃2

Cg =
1

a − b

(
(1 − b) C̃1 − bC̃2

)

Cv =
1

a − b

(
− (1 − a) C̃1 + aC̃2

)

where R̃k, C̃k are two sets of matrices yielded by the SKP Decomposition, see (40).
It is very important to point out that the choice of the parameters (a, b) in (28) does affect
the solution concerning the retrieval of the polarimetric signatures and structure matrices
for ground and volume scattering, whereas the sum of their Kronecker products is invariant
to choice of (a, b). In other words, the SKP Decomposition yields two sets of matrices that
can be linearly combined so as to reconstruct exactly the structure matrices and polarimetric
signatures associated with ground and volume scattering. Yet, the coefficients of such a linear
combination are not known. An obvious criterion to eliminate non-physically valid solutions
is to admit only values of (a, b) that yield, through (28), (semi)positive definite polarimetric
signatures and structure matrices for both ground and volume scattering. We will define the
set of values of (a, b) corresponding to physically valid solutions as Region of Physical Validity
(RPV). Details about the RPV are provided in the remainder.
Suppose now that a certain matrix Wmod is the best estimate of the true data covariance
matrix in a certain metric, and also suppose that Wmod can be written as the sum of 2 KPs.
What equations (28) state is that there exist infinite ways of representing the matrix Wmod,
each of which corresponding to a particular value of the parameters (a, b). The parameters
(a, b) then represents the ambiguity of the ground-volume decomposition problem, meaning
that by varying (a, b) within the RPV we end up with different physically valid polarimetric
signatures and structure matrices, yet entailing no variations of the degree of fitness of Wmod
with respect to the original data. In other words, each solution of the ambiguity associated with
the choice of (a, b) within the RPV represents a particular physically valid and data-consistent
model for both the polarimetric signatures and the structure matrices of ground and volume
scattering.

4.4 Regions of Physical Validity (RPV)
In this section we discuss the shape of the RPV, under the assumption that the data covariance
matrix is actually a sum of K = 2 KPs representing ground and volume scattering, according
to model (27).
An exact procedure for the determination of the RPV has been derived in (40), by recasting
equation (28) in diagonal form. Although the procedure is straightforward, its description
involves quite lengthy matrix manipulations. For this reason, we will discuss here the shape
of the RPV by resorting to a useful geometrical interpretation. To do this we will assume
the Polarimetric Stationarity Condition to hold (43), resulting in the structure matrix of each
SM to have unitary elements on the main diagonal, see(40). This property is inherited by
the matrices R̃1,R̃2 in (28), which allows to interpret the off diagonal elements of Rg,Rv as
the complex interferometric coherence of ground and volume scattering (the elements on
their diagonal being identically equal to 1). It is then immediate to see from equation (28)
that, in each interferogram, ground and volume coherences are bound to lie on a straight
line in the complex plane. Accordingly, the optimal choice of the parameters (a, b) is the
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where K is the total number of SMs. Chosen an arbitrary polarization basis, we can recast (25)
in matrix form as:

W =
K

∑
k=1

Ck ⊗ Rk (26)

where: ⊗ denotes Kronecker product; W (
[
N · Np × N · Np

]
) is the covariance matrix of the

multi-baseline and multi-polarimetric data; the matrices Ck (
[
Np × Np

]
) and Rk ([N × N]) are

such that ck

(
wi, wj

)
= wH

i Ckwj and rk (n, m) = {Rk}nm ({}nm denoting the nm− th element
of a matrix).
Accordingly, model (26) allows to represent each SM through a Kronecker product between
two matrices. The first, Ck, accounts for the correlation among different polarizations, and
thus it represents the polarimetric properties of the k − th SM, see for example (41). The
second, Rk, accounts for the correlation among different baselines, therefore carrying the
information about the vertical structure of the k − th SM 3. The matrices Ck, Rk will be
hereinafter referred to as polarimetric signatures and structure matrices, respectively, by
virtue of their physical meaning.
Following the arguments in (40), it can be shown that in most cases it can be assumed that
the data covariance matrix is constituted by just two Kronecker Products, one associated with
volume backscattering, and the other with the ensemble of all SMs whose phase center is
ground locked, namely surface backscattering, ground-volume scattering, and ground-trunk
scattering. Accordingly, eq. (26) defaults to:

W = Cg ⊗ Rg + Cv ⊗ Rv (27)

where the subscript v refers to volume backscattering and the subscript g refers to all SMs
whose phase center is ground locked. For sake of simplicity, hereinafter we will refer to the
two terms in (27) simply as ground scattering and volume scattering. It is worth noting that
the assumption of two Kronecker Products can be approximately retained also in the case
of an Oriented Volume over Ground (OVoG), by interpreting the matrix Rv as the average
volume structure matrix across all polarizations (40).

4.3 Model representation
The key to the exploitation of the SKP structure is the important result, due to Van Loan and
Pitsianis (42), after which every matrix can be decomposed into a SKP. It is shown in (40) that
the terms of the SKP Decomposition are related to the matrices Ck, Rk via a linear, invertible
transformation, which is defined by exactly K(K − 1) real numbers. Assuming K = 2 SMs, as
in the case of ground and volume scattering, it follows that there exist 2 real numbers (a, b)

3 Neglecting temporal decorrelation and assuming target stationarity, the nm − th entry of the matrix Rk
is obtained as (18), (6), (26):

{Rk}nm =

ˆ
Sk (z) exp {j (kz (n)− kz (m)) z} dz

where z is the vertical coordinate, Sk (z) is the vertical profile of the backscattered power for the k − th
SM, kz (n) is the height to phase conversion factor for the n − th image (7). It is worth noting that
eventual temporal coherence losses would be completely absorbed by the matrices Rk , as discussed in
(40). Accordingly, in presence of temporal decorrelation nothing changes as for the validity of model
(26), but it should be kept in mind that in this case the matrices Rk would represent not only the spatial
structure, but also the temporal behavior of the k − th SM.
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such that:

Rg = aR̃1 + (1 − a) R̃2 (28)

Rv = bR̃1 + (1 − b) R̃2

Cg =
1

a − b

(
(1 − b) C̃1 − bC̃2

)

Cv =
1

a − b

(
− (1 − a) C̃1 + aC̃2

)

where R̃k, C̃k are two sets of matrices yielded by the SKP Decomposition, see (40).
It is very important to point out that the choice of the parameters (a, b) in (28) does affect
the solution concerning the retrieval of the polarimetric signatures and structure matrices
for ground and volume scattering, whereas the sum of their Kronecker products is invariant
to choice of (a, b). In other words, the SKP Decomposition yields two sets of matrices that
can be linearly combined so as to reconstruct exactly the structure matrices and polarimetric
signatures associated with ground and volume scattering. Yet, the coefficients of such a linear
combination are not known. An obvious criterion to eliminate non-physically valid solutions
is to admit only values of (a, b) that yield, through (28), (semi)positive definite polarimetric
signatures and structure matrices for both ground and volume scattering. We will define the
set of values of (a, b) corresponding to physically valid solutions as Region of Physical Validity
(RPV). Details about the RPV are provided in the remainder.
Suppose now that a certain matrix Wmod is the best estimate of the true data covariance
matrix in a certain metric, and also suppose that Wmod can be written as the sum of 2 KPs.
What equations (28) state is that there exist infinite ways of representing the matrix Wmod,
each of which corresponding to a particular value of the parameters (a, b). The parameters
(a, b) then represents the ambiguity of the ground-volume decomposition problem, meaning
that by varying (a, b) within the RPV we end up with different physically valid polarimetric
signatures and structure matrices, yet entailing no variations of the degree of fitness of Wmod
with respect to the original data. In other words, each solution of the ambiguity associated with
the choice of (a, b) within the RPV represents a particular physically valid and data-consistent
model for both the polarimetric signatures and the structure matrices of ground and volume
scattering.

4.4 Regions of Physical Validity (RPV)
In this section we discuss the shape of the RPV, under the assumption that the data covariance
matrix is actually a sum of K = 2 KPs representing ground and volume scattering, according
to model (27).
An exact procedure for the determination of the RPV has been derived in (40), by recasting
equation (28) in diagonal form. Although the procedure is straightforward, its description
involves quite lengthy matrix manipulations. For this reason, we will discuss here the shape
of the RPV by resorting to a useful geometrical interpretation. To do this we will assume
the Polarimetric Stationarity Condition to hold (43), resulting in the structure matrix of each
SM to have unitary elements on the main diagonal, see(40). This property is inherited by
the matrices R̃1,R̃2 in (28), which allows to interpret the off diagonal elements of Rg,Rv as
the complex interferometric coherence of ground and volume scattering (the elements on
their diagonal being identically equal to 1). It is then immediate to see from equation (28)
that, in each interferogram, ground and volume coherences are bound to lie on a straight
line in the complex plane. Accordingly, the optimal choice of the parameters (a, b) is the
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Branch Boundary Rank-deficient matrix
a Inner Cv
a Outer Rg
b Inner Cg
b Outer Rv

(29)

Table 1. Rank deficiencies at the boundaries of the region of positive definitiveness.

Fig. 12. Regions of physical validity for the interferometric coherences associated with
ground and volume scattering in the interferometric pair between the first two tracks of the
data-set. N is the total number of available tracks exploited to enforce the positive
definitiveness constraint. The black and blue points denote the true interferometric
coherences associated with ground and volume scattering in the considered interferometric
pair. The red and green segments denote the set of all physically valid solutions obtained by
varying a and b, respectively.

one that corresponds to the true4 ground and volume coherences, whereas the region of
physical validity can be simply associated with two segments along the line passing through
the true ground and volume coherences, see figure 12. By definition, the points outer or
inner boundaries of the two segments correspond to the case where one of the four matrices
{Ck, Rk}k=g,v in equations (28) is singular. In particular, the outer boundaries correspond to
rank-deficient structure matrices, whereas the inner boundaries correspond to rank-deficient
polarimetric signature, as reported in Table 1. In the single baseline case (N = 2) the points
at the outer boundary of both segments belong to the unit circle, indicating that physically
valid ground and volume interferometric coherences are allowed be unitary in magnitude,
see figure 12, left panel. This conclusion is exactly the same as the one drawn in (39),
after which it follows the consistency of the SKP formalism with respect to PolInSAR. As
new acquisitions are gathered, instead, the positive definitiveness constraint results in the
regions of physical validity to shrink from the outer boundaries towards the true ground and
volume coherences, whereas the position of the inner boundary points stay unvaried for the
considered interferogram, figure 12, middle and right panels. Accordingly, the availability of
multiple-baseline results not only in enhanced vertical resolution capabilities, but also in the
progressive elimination of incorrect solutions.

4 Assuming (27).
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Campaign BioSAR 2007
Acquisition System E-SAR - DLR
Acquisition Period Spring 2007

Site Remningstorp, Central Sweden
Scene Semi-boreal forest

Topography Flat
Tomographic Tracks 9 - Fully Polarimetric

Band P-Band
Slant Range resolution 2 m

Azimuth resolution 1.6 m
Vertical resolution 10 m (near range) to 40 m (far range)

Table 2. The BIOSAR 2007 data-set

4.5 Physical interpretation
A straightforward physical interpretation of the polarimetric and structural properties of
models associated with different solutions can be provided by analyzing the inner and outer
boundaries of the RPV:

• The inner boundary solution on branch a results in the volume polarimetric signature to
be rank-deficient. This entails the existence of a polarization where volume scattering
does not contribute, after which it follows that this solution is not consistent with physical
model for forest scattering (44), (38). The ground structure matrix is characterized by the
lowest coherence values, being contaminated by volume contributions. Accordingly, such
a solution is to be discarded.

• The outer boundary solution on branch a results in the volume polarimetric signature to
be full rank, consistently with physical model for forest scattering. The resulting ground
structure matrix is characterized by the highest coherence values compatible with the RPV.
Provided the number of tracks is sufficient, this solution yields an unbiased estimation of
the ground coherences even in presence of coherence losses.

• The inner boundary solution on branch b results in the ground polarimetric signature
to be rank-deficient, consistently with the hypothesis that there exists one polarization
where volume only contributions are present. If this is true, the resulting volume structure
corresponds to the true one. Otherwise, the result is systematically contaminated by
ground contributions, resulting in apparent volume contributions close to the ground.

• The outer boundary solution on branch b results in the ground polarimetric signature
to be full rank. Accordingly, this solution accounts for the presence of ground-locked
contributions in all polarizations. The resulting volume structure matrix is maximally
coherent. If few tracks are employed, this solution acts as an high-pass filter, resulting in
the volume to appear thinner than it is. As the number of available baselines increases, this
solution converges to the true structure for volume contributions in the upper vegetation
layers, whereas volume contributions from the ground level are absorbed into the ground
structure.

4.6 Case studies
We present here experimental results relative to three case studies based on data from the
ESA campaigns BIOSAR 2007 (45), BIOSAR 2008 (46) and TROPISAR. The main features of
the analyzed data are reported in tables 2, 3, 4.
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Branch Boundary Rank-deficient matrix
a Inner Cv
a Outer Rg
b Inner Cg
b Outer Rv

(29)

Table 1. Rank deficiencies at the boundaries of the region of positive definitiveness.

Fig. 12. Regions of physical validity for the interferometric coherences associated with
ground and volume scattering in the interferometric pair between the first two tracks of the
data-set. N is the total number of available tracks exploited to enforce the positive
definitiveness constraint. The black and blue points denote the true interferometric
coherences associated with ground and volume scattering in the considered interferometric
pair. The red and green segments denote the set of all physically valid solutions obtained by
varying a and b, respectively.

one that corresponds to the true4 ground and volume coherences, whereas the region of
physical validity can be simply associated with two segments along the line passing through
the true ground and volume coherences, see figure 12. By definition, the points outer or
inner boundaries of the two segments correspond to the case where one of the four matrices
{Ck, Rk}k=g,v in equations (28) is singular. In particular, the outer boundaries correspond to
rank-deficient structure matrices, whereas the inner boundaries correspond to rank-deficient
polarimetric signature, as reported in Table 1. In the single baseline case (N = 2) the points
at the outer boundary of both segments belong to the unit circle, indicating that physically
valid ground and volume interferometric coherences are allowed be unitary in magnitude,
see figure 12, left panel. This conclusion is exactly the same as the one drawn in (39),
after which it follows the consistency of the SKP formalism with respect to PolInSAR. As
new acquisitions are gathered, instead, the positive definitiveness constraint results in the
regions of physical validity to shrink from the outer boundaries towards the true ground and
volume coherences, whereas the position of the inner boundary points stay unvaried for the
considered interferogram, figure 12, middle and right panels. Accordingly, the availability of
multiple-baseline results not only in enhanced vertical resolution capabilities, but also in the
progressive elimination of incorrect solutions.

4 Assuming (27).
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Campaign BioSAR 2007
Acquisition System E-SAR - DLR
Acquisition Period Spring 2007

Site Remningstorp, Central Sweden
Scene Semi-boreal forest

Topography Flat
Tomographic Tracks 9 - Fully Polarimetric

Band P-Band
Slant Range resolution 2 m

Azimuth resolution 1.6 m
Vertical resolution 10 m (near range) to 40 m (far range)

Table 2. The BIOSAR 2007 data-set

4.5 Physical interpretation
A straightforward physical interpretation of the polarimetric and structural properties of
models associated with different solutions can be provided by analyzing the inner and outer
boundaries of the RPV:

• The inner boundary solution on branch a results in the volume polarimetric signature to
be rank-deficient. This entails the existence of a polarization where volume scattering
does not contribute, after which it follows that this solution is not consistent with physical
model for forest scattering (44), (38). The ground structure matrix is characterized by the
lowest coherence values, being contaminated by volume contributions. Accordingly, such
a solution is to be discarded.

• The outer boundary solution on branch a results in the volume polarimetric signature to
be full rank, consistently with physical model for forest scattering. The resulting ground
structure matrix is characterized by the highest coherence values compatible with the RPV.
Provided the number of tracks is sufficient, this solution yields an unbiased estimation of
the ground coherences even in presence of coherence losses.

• The inner boundary solution on branch b results in the ground polarimetric signature
to be rank-deficient, consistently with the hypothesis that there exists one polarization
where volume only contributions are present. If this is true, the resulting volume structure
corresponds to the true one. Otherwise, the result is systematically contaminated by
ground contributions, resulting in apparent volume contributions close to the ground.

• The outer boundary solution on branch b results in the ground polarimetric signature
to be full rank. Accordingly, this solution accounts for the presence of ground-locked
contributions in all polarizations. The resulting volume structure matrix is maximally
coherent. If few tracks are employed, this solution acts as an high-pass filter, resulting in
the volume to appear thinner than it is. As the number of available baselines increases, this
solution converges to the true structure for volume contributions in the upper vegetation
layers, whereas volume contributions from the ground level are absorbed into the ground
structure.

4.6 Case studies
We present here experimental results relative to three case studies based on data from the
ESA campaigns BIOSAR 2007 (45), BIOSAR 2008 (46) and TROPISAR. The main features of
the analyzed data are reported in tables 2, 3, 4.
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Campaign BioSAR 2008

Acquisition System E-SAR - DLR
Acquisition Period Fall 2008

Site Krycklan river catchment, Northern
Sweden

Scene Boreal forest
Topography Hilly

Tomographic Tracks 6 per flight direction (South-West and
North-East) – Fully Polarimetric

Band P-Band and L-Band
Slant Range resolution 1.5 m

Azimuth resolution at L-Band 1.2 m
Azimuth resolution at P-Band 1.6 m
Vertical resolution at L-Band 6 m (near range) to 40 m (far range)
Vertical resolution at P-Band 20 m (near range) to >80 m (far range)

Table 3. The BioSAR 2008 data-set

Campaign TropiSAR

Acquisition System Sethi- ONERA
Acquisition Period August 2009

Site Paracou, French Guyana
Scene Tropical forest

Topography Flat
Tomographic Tracks 6 - Fully Polarimetric

Band P-Band
Slant Range resolution 1 m

Azimuth resolution 1 m
Vertical resolution �15 m

Table 4. The TropiSAR data-set

All of the result to follow have been obtained by estimating the sample covariance matrix
of the multi-baseline and multi-polarimetric data by multi-looking over a 60 × 60 m (ground
range, azimuth) estimation window.

4.6.1 Models for the volume structure
Figures from13 to 16 report tomographic images of the volume structures as obtained by
taking three different solutions on branch b. The tomographic imaging has been performed
by employing the Capon Spectral Estimator.
All the tomographic profiles behave consistently with the physical features discussed in the
previous section. In particular, all profiles associated with the outer boundary solution result
in very thin volumes at a high elevation, therefore accounting for the upper vegetation layer
only. As the solution is moved towards the inner boundary contributions from the lower
vegetation layer appear. When the inner boundary is reached the the contributions appear
from the ground level up to top forest height. The following points are worth noting:

• Contributions from the ground level are observed in all cases in the inner boundary
solution. As this solution corresponds by construction to the polarization where ground
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Fig. 13. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure.

scattering is not supposed to occur, we conclude that depolarized contributions from the
ground level are present in all data-sets. The extent of such contributions is by far more
relevant in the case of the BioSAR 2007 and BioSAR 2008 P-Band data-sets, witnessing the
sensitivity of the data to both wavelength and forest structure.

• The position along the vertical axis at which the backscattered power drops down is
independent of the choice of the solution, meaning that all solutions carry the same
information about forest top height.

4.6.2 Fitness
The figure below reports the amount of information carried by the data that is correctly
represented by assuming the data covariance matrix is a sum of 1 to 4 KPs. The measurement
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Campaign BioSAR 2008

Acquisition System E-SAR - DLR
Acquisition Period Fall 2008

Site Krycklan river catchment, Northern
Sweden

Scene Boreal forest
Topography Hilly

Tomographic Tracks 6 per flight direction (South-West and
North-East) – Fully Polarimetric

Band P-Band and L-Band
Slant Range resolution 1.5 m

Azimuth resolution at L-Band 1.2 m
Azimuth resolution at P-Band 1.6 m
Vertical resolution at L-Band 6 m (near range) to 40 m (far range)
Vertical resolution at P-Band 20 m (near range) to >80 m (far range)

Table 3. The BioSAR 2008 data-set

Campaign TropiSAR

Acquisition System Sethi- ONERA
Acquisition Period August 2009

Site Paracou, French Guyana
Scene Tropical forest

Topography Flat
Tomographic Tracks 6 - Fully Polarimetric

Band P-Band
Slant Range resolution 1 m

Azimuth resolution 1 m
Vertical resolution �15 m

Table 4. The TropiSAR data-set

All of the result to follow have been obtained by estimating the sample covariance matrix
of the multi-baseline and multi-polarimetric data by multi-looking over a 60 × 60 m (ground
range, azimuth) estimation window.

4.6.1 Models for the volume structure
Figures from13 to 16 report tomographic images of the volume structures as obtained by
taking three different solutions on branch b. The tomographic imaging has been performed
by employing the Capon Spectral Estimator.
All the tomographic profiles behave consistently with the physical features discussed in the
previous section. In particular, all profiles associated with the outer boundary solution result
in very thin volumes at a high elevation, therefore accounting for the upper vegetation layer
only. As the solution is moved towards the inner boundary contributions from the lower
vegetation layer appear. When the inner boundary is reached the the contributions appear
from the ground level up to top forest height. The following points are worth noting:

• Contributions from the ground level are observed in all cases in the inner boundary
solution. As this solution corresponds by construction to the polarization where ground
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Fig. 13. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure.

scattering is not supposed to occur, we conclude that depolarized contributions from the
ground level are present in all data-sets. The extent of such contributions is by far more
relevant in the case of the BioSAR 2007 and BioSAR 2008 P-Band data-sets, witnessing the
sensitivity of the data to both wavelength and forest structure.

• The position along the vertical axis at which the backscattered power drops down is
independent of the choice of the solution, meaning that all solutions carry the same
information about forest top height.

4.6.2 Fitness
The figure below reports the amount of information carried by the data that is correctly
represented by assuming the data covariance matrix is a sum of 1 to 4 KPs. The measurement
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Fig. 14. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure. Note that topography has been removed
such that the ground level is always at 0 m.

is carried out as IK = 1 − εK , εK being defined as:

εK =

∥∥∥Ŵ − ŴK

∥∥∥
F∥∥∥Ŵ

∥∥∥
F

where Ŵ is the sample covariance matrix and ŴK its best estimate in the Frobenius norm by
using K KPs, see (40) for details.
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Fig. 15. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure. Note that topography has been removed
such that the ground level is always at 0 m.

4.7 Discussion
On the basis of the analyzed data-sets, the following conclusions are drawn:

• The assumption of 2 KPs has turned out to account for about 90% of the information
carried by the data in all investigated cases, meaning that two-layered models (ground
plus volume) are well suited for forestry investigations. Accounting for other components,
such as subsurface penetration or differential extinction phenomena, does not appear to be
necessary as for a first-order characterization of the forest structure, their role being limited
to about 10% of the total information content.
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Fig. 14. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure. Note that topography has been removed
such that the ground level is always at 0 m.
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Fig. 15. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure. Note that topography has been removed
such that the ground level is always at 0 m.

4.7 Discussion
On the basis of the analyzed data-sets, the following conclusions are drawn:

• The assumption of 2 KPs has turned out to account for about 90% of the information
carried by the data in all investigated cases, meaning that two-layered models (ground
plus volume) are well suited for forestry investigations. Accounting for other components,
such as subsurface penetration or differential extinction phenomena, does not appear to be
necessary as for a first-order characterization of the forest structure, their role being limited
to about 10% of the total information content.
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Fig. 16. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure. Note that topography has been removed
such that the ground level is always at 0 m.

• The assumption of a ground-free polarization has resulted in an evenly distributed volume
structure in a boreal forest at L-Band and in a tropical forest at P-Band, and in an almost
ground-locked volume structure in a boreal and semi-boreal forest at P-Band, witnessing
the sensitivity of Radar data to wavelength and forest structure. The extent of depolarized
contributions from the ground level suggests ground-volume interaction phenomena may
occur at P-Band in sparse forests. If this is the case, volume backscattering can be retrieved
by allowing ground scattering to be partly entropic.

• The retrieval of forest top height is nearly invariant to the choice of the model. In
this sense, forest top height appears as the most robust indicator of the forest structure
as observed through microwaves measurements, providing a further and independent
argument supporting the validity of PolInSAR for the remote sensing of forested scenarios.
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Fig. 17. Information content represented by taking K KPs for the four analyzed data-sets.

On the other hand, though, retrieving the correct forest height does not provide arguments
to assess the validity of the whole model, as the same top height is consistent with different
physically valid data-consistent models.

5. Conclusions

This chapter has considered the retrieval of information about the forest vertical structure
from multi-baseline SARs.
Considering a purely tomographic formulation of the problem, it has been shown that
the backscattered power associated with a certain depth within the vegetation layer can
be retrieved with a virtually arbitrary resolution, simply by employing a sufficiently large
baseline apertures. Besides costs, however, baseline aperture is upper bounded by physical
constraints arising from the nature of the targets themselves, such as anisotropy and temporal
decorrelation.
Posing T-SAR as an estimation problems greatly helps compensate for the coarse resolution
arising from an insufficient baseline aperture, allowing to retrieve useful information about
the forest structure even in cases where the Fourier resolution is many times the overall
forest height. In particular, T-SAR has been shown to be capable of identifying bald and
forested areas and estimating the elevation and backscattered power of the scattering centers
representing associated with ground and volume scattering. Furthermore, it has been shown
that T-SAR can be employed basing on both single and multi-polarimetric data, which makes
T-SAR a valuable tool to investigate variations of the forest structure with polarization.
The availability of multi-polarimetric and multi-baseline data has been shown to provide
the most information, allowing the decomposition of the data covariance matrix into
ground-only and volume-only contributions even in absence of a parametric model and
largely independently on baseline aperture.
The capability of the SKP formalism to represent all physically valid and data-consistent
two-layered models has allowed an exhaustive discussion about the validity of such a class
of models for the analysis of forested areas. As a result, it has been observed that two SMs
account for more than 90% of the information carried by the data in all investigated cases.
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Fig. 16. Tomographic profiles along an azimuth cut corresponding to three different
physically valid models for the volume structure. Note that topography has been removed
such that the ground level is always at 0 m.

• The assumption of a ground-free polarization has resulted in an evenly distributed volume
structure in a boreal forest at L-Band and in a tropical forest at P-Band, and in an almost
ground-locked volume structure in a boreal and semi-boreal forest at P-Band, witnessing
the sensitivity of Radar data to wavelength and forest structure. The extent of depolarized
contributions from the ground level suggests ground-volume interaction phenomena may
occur at P-Band in sparse forests. If this is the case, volume backscattering can be retrieved
by allowing ground scattering to be partly entropic.

• The retrieval of forest top height is nearly invariant to the choice of the model. In
this sense, forest top height appears as the most robust indicator of the forest structure
as observed through microwaves measurements, providing a further and independent
argument supporting the validity of PolInSAR for the remote sensing of forested scenarios.
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Fig. 17. Information content represented by taking K KPs for the four analyzed data-sets.

On the other hand, though, retrieving the correct forest height does not provide arguments
to assess the validity of the whole model, as the same top height is consistent with different
physically valid data-consistent models.

5. Conclusions

This chapter has considered the retrieval of information about the forest vertical structure
from multi-baseline SARs.
Considering a purely tomographic formulation of the problem, it has been shown that
the backscattered power associated with a certain depth within the vegetation layer can
be retrieved with a virtually arbitrary resolution, simply by employing a sufficiently large
baseline apertures. Besides costs, however, baseline aperture is upper bounded by physical
constraints arising from the nature of the targets themselves, such as anisotropy and temporal
decorrelation.
Posing T-SAR as an estimation problems greatly helps compensate for the coarse resolution
arising from an insufficient baseline aperture, allowing to retrieve useful information about
the forest structure even in cases where the Fourier resolution is many times the overall
forest height. In particular, T-SAR has been shown to be capable of identifying bald and
forested areas and estimating the elevation and backscattered power of the scattering centers
representing associated with ground and volume scattering. Furthermore, it has been shown
that T-SAR can be employed basing on both single and multi-polarimetric data, which makes
T-SAR a valuable tool to investigate variations of the forest structure with polarization.
The availability of multi-polarimetric and multi-baseline data has been shown to provide
the most information, allowing the decomposition of the data covariance matrix into
ground-only and volume-only contributions even in absence of a parametric model and
largely independently on baseline aperture.
The capability of the SKP formalism to represent all physically valid and data-consistent
two-layered models has allowed an exhaustive discussion about the validity of such a class
of models for the analysis of forested areas. As a result, it has been observed that two SMs
account for more than 90% of the information carried by the data in all investigated cases.
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The correct identification of physical models for such two SMs has been shown to be subject
to an ambiguity, mostly associated with the possibility that depolarized contributions occur
at the ground level as well. Furthermore, the correct retrieval of volume top height has been
shown not to constitute a meaningful tool for model validation, being substantially invariant
to the choice of the solution for volume scattering. In this framework it is then clear that
tomographic imaging represents a most valuable tools for the assesment of physical models
of the forest structure, as it allows to see what kind of vertical structure is actually associated
with the chosen model.

6. Acknowledgment

I wish to acknowledge insights and valuable discussions with Prof. Fabio Rocca, Prof. Andrea
Monti Guarnieri, and eng. Mauro Mariotti d’Alessandro at Politecnico di Milano. I also wish
to thank to Dr. Malcom Davidson (ESA), Dr. Irena Hajnsek (DLR), Dr. Kostas Papathanassiou
(DLR), Dr. Fabrizio Lombardini (Universitè di Pisa), Prof. Lars Ulander (FOI), Dr. Pascale
Dubois-Fernandez (ONERA), Dr. Thuy Le Toan (CESBIO) with whom I have discussed many
of the results within this chapter.

7. References

[1] J. C. Curlander and R. N. McDonough, Synthetic aperture radar: systems and signal
processing. New York: John Wiley & Sons, Inc, 1991.

[2] G. Franceschetti and R. Lanari, Eds., Synthetic Aperture Radar processing. CRC Press,
1999.

[3] F. Rocca, “Synthetic aperture radar: A new application for wave equation techniques,”
Stanford Exploration Project Report, vol. SEP-56, pp. 167–189, 1987.

[4] R. Bamler, “A comparison of range-Doppler and wave-number domain SAR focusing
algorithms,” IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 4, pp.
706–713, Jul. 1992.

[5] R.-S. Wu and M.-N. Toksï¿œz, “Diffraction tomography and multisource holography
applied to seismic imaging,” Geophysics, vol. 52, pp. 11–+, Jan. 1987.

[6] A. Reigber and A. Moreira, “First demonstration of airborne SAR tomography using
multibaseline l-band data,” IEEE Trans. on Geoscience and Remote Sensing, pp. 2142–2152,
Sep. 2000.

[7] R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” Inverse Problems,
vol. 14, pp. R1–R54, 1998.

[8] F. Ulaby, K. McDonald, K. Sarabandi, and M. Dobson, “Michigan microwave canopy
scattering models (mimics),” Geoscience and Remote Sensing Symposium, 1988. IGARSS ’88.
Remote Sensing: Moving Toward the 21st Century., International, vol. 2, pp. 1009–1009, Sep
1988.

[9] G. Smith-Jonforsen, L. Ulander, and X. Luo, “Low vhf-band backscatter from coniferous
forests on sloping terrain,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 43,
no. 10, pp. 2246–2260, Oct. 2005.

[10] L. Thirion, E. Colin, and C. Dahon, “Capabilities of a forest coherent scattering model
applied to radiometry, interferometry, and polarimetry at p- and l-band,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 44, no. 4, pp. 849–862, April 2006.

[11] Y.-C. Lin and K. Sarabandi, “Electromagnetic scattering model for a tree trunk above a
tilted ground plane,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 33, no. 4,
pp. 1063–1070, Jul 1995.

56 Remote Sensing of Biomass – Principles and Applications Forest Structure Retrieval from
Multi-Baseline SARs 31

[12] K. Sarabandi, “Scattering from dielectric structures above impedance surfaces and
resistive sheets,” Antennas and Propagation, IEEE Transactions on, vol. 40, no. 1, pp. 67–78,
Jan 1992.

[13] R.N. Treuhaft, P.R. Siqueira, “Vertical structure of vegetated land surfaces from
interferometric and polarimetric radar,” Radio Science, vol. 35, pp. 141–177, 2000.

[14] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. New Jersey: Prentice-Hall,
1997.

[15] H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar echoes,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 30, no. 5, pp. 950–959, sept 1992.

[16] I. Hajnsek, F. Kugler, S.-K. Lee, and K. Papathanassiou, “Tropical-forest-parameter
estimation by means of pol-insar: The indrex-ii campaign,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 47, no. 2, pp. 481 –493, feb. 2009.

[17] F. Lombardini and A. Reigber, “Adaptive spectral estimation for multibaseline SAR
tomography with airborne l-band data,” Geoscience and Remote Sensing Symposium, 2003.
IGARSS ’03. Proceedings. 2003 IEEE International, vol. 3, pp. 2014–2016, July 2003.

[18] F. Gini, F. Lombardini, and M. Montanari, “Layover solution in multibaseline SAR
interferometry,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 38, no. 4, pp.
1344–1356, Oct 2002.

[19] S. Sauer, L. Ferro-Famil, A. Reigber, and E. Pottier, “Multibaseline pol-insar analysis of
urban scenes for 3d modeling and physical feature retrieval at l-band,” Geoscience and
Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pp. 1098–1101, 23-28
July 2007.

[20] X. X. Zhu and R. Bamler, “Very high resolution spaceborne sar tomography in urban
environment,” Geoscience and Remote Sensing, IEEE Transactions on, no. 99, pp. 1–13, 2010.

[21] G. Fornaro and F. Serafino, “Imaging of single and double scatterers in urban areas via
SAR tomography,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 44, no. 12, pp.
3497–3505, Dec. 2006.

[22] G. Fornaro, F. Lombardini, and F. Serafino, “Three-dimensional multipass SAR focusing:
experiments with long-term spaceborne data,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 43, no. 4, pp. 702–714, April 2005.

[23] S. R. Cloude, “Dual-baseline coherence tomography,” Geoscience and Remote Sensing
Letters, IEEE, vol. 4, no. 1, pp. 127–131, Jan. 2007.

[24] ——, “Multifrequency 3d imaging of tropical forest using polarization coherence
tomography,” in Eusar 2008, 2008.

[25] K. Papathanassiou and S. Cloude, “Single-baseline polarimetric SAR interferometry,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 39, no. 11, pp. 2352–2363, Nov
2001.

[26] S. Tebaldini, “Single and multipolarimetric SAR tomography of forested areas: A
parametric approach,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 48, no. 5,
pp. 2375 –2387, may 2010.

[27] M. Neumann, L. Ferro-Famil, and A. Reigber, “Estimation of forest structure, ground,
and canopy layer characteristics from multibaseline polarimetric interferometric sar
data,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 48, no. 3, pp. 1086 –1104,
2010.

[28] H. V. Trees, Detection, Estimation and Modulation Theory, Part I. New York, NY: John Wiley
and Sons, 1968.

[29] P. Stoica and T. Soderstrom, “On reparametrization of loss functions used in estimation
and the invariance principle,” Signal Processing, no. 17, pp. 383–387, 1989.

57Forest Structure Retrieval from Multi-Baseline SARs



30 Will-be-set-by-IN-TECH

The correct identification of physical models for such two SMs has been shown to be subject
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shown not to constitute a meaningful tool for model validation, being substantially invariant
to the choice of the solution for volume scattering. In this framework it is then clear that
tomographic imaging represents a most valuable tools for the assesment of physical models
of the forest structure, as it allows to see what kind of vertical structure is actually associated
with the chosen model.
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1. Introduction 
The challenging task of biomass prediction in dense and heterogeneous tropical forest 
requires a multi-parameter and multi-scale characterization of forest canopies. Completely 
different forest structures may indeed present similar above ground biomass (AGB) values. 
This is probably one of the reasons explaining why tropical AGB still resists accurate 
mapping through remote sensing techniques. There is a clear need to combine optical and 
radar remote sensing to benefit from their complementary responses to forest 
characteristics. Radar and Lidar signals are rightly considered to provide adequate 
measurements of forest structure because of their capability of penetrating and interacting 
with all the vegetation strata.  
However, signal saturation at the lowest radar frequencies is observed at the midlevel of 
biomass range in tropical forests (Mougin et al. 1999; Imhoff, 1995). Polarimetric 
Interferometric (PolInsar) data could improve the inversion algorithm by injecting forest 
interferometric height into the inversion of P-band HV polarization signal. Within this 
framework, the TROPISAR mission, supported by the Centre National d’Etudes Spatiales 
(CNES) for the preparation of the European Space Agency (ESA) BIOMASS program is 
illustrative of both the importance of interdisciplinary research associating forest ecologists 
and physicists and the importance of combined measurements of forest properties.  
Lidar data is a useful technique to characterize the vertical profile of the vegetation cover, 
(e.g. Zhao et al. 2009) which in combination with radar (Englhart et al. 2011) or optical (e.g. 
Baccini et al. 2008; Asner et al. 2011) and field plot data may allow vegetation carbon stocks 
to be mapped over large areas of tropical forest at different resolution scales ranging from 1 
hectare to 1 km². However, small-footprint Lidar data are not yet accessible over sufficient 
extents and with sufficient revisiting time because its operational use for tropical studies 
remains expensive. 
At the opposite, very-high (VHR) resolution imagery, i.e. approximately 1-m resolution, 
provided by recent satellite like Geoeye, Ikonos, Orbview or Quickbird as well as the 
forthcoming Pleiades becomes widely available at affordable costs, or even for free in certain 
regions of the world through Google Earth®. Compared to coarser resolution imagery with 
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requires a multi-parameter and multi-scale characterization of forest canopies. Completely 
different forest structures may indeed present similar above ground biomass (AGB) values. 
This is probably one of the reasons explaining why tropical AGB still resists accurate 
mapping through remote sensing techniques. There is a clear need to combine optical and 
radar remote sensing to benefit from their complementary responses to forest 
characteristics. Radar and Lidar signals are rightly considered to provide adequate 
measurements of forest structure because of their capability of penetrating and interacting 
with all the vegetation strata.  
However, signal saturation at the lowest radar frequencies is observed at the midlevel of 
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and physicists and the importance of combined measurements of forest properties.  
Lidar data is a useful technique to characterize the vertical profile of the vegetation cover, 
(e.g. Zhao et al. 2009) which in combination with radar (Englhart et al. 2011) or optical (e.g. 
Baccini et al. 2008; Asner et al. 2011) and field plot data may allow vegetation carbon stocks 
to be mapped over large areas of tropical forest at different resolution scales ranging from 1 
hectare to 1 km². However, small-footprint Lidar data are not yet accessible over sufficient 
extents and with sufficient revisiting time because its operational use for tropical studies 
remains expensive. 
At the opposite, very-high (VHR) resolution imagery, i.e. approximately 1-m resolution, 
provided by recent satellite like Geoeye, Ikonos, Orbview or Quickbird as well as the 
forthcoming Pleiades becomes widely available at affordable costs, or even for free in certain 
regions of the world through Google Earth®. Compared to coarser resolution imagery with 
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pixel size greater than 4 meters, VHR imagery greatly improves thematic information on forest 
canopies. Indeed, the contrast between sunlit and shadowed trees crowns as visible on such 
images (Fig. 1) is potentially informative on the structure of the forest canopy. Furthermore, 
new promising methods now exist for analyzing these fine scale satellite observations (e.g. 
Bruniquel-Pinel & Gastellu-Etchegorry, 1998; Malhi & Roman-Cuesta, 2008; Rich et al. 2010).  
In addition, we believe that there is also a great potential in similarly using historical series of 
digitized aerial photographs that proved to be useful in the past for mapping large extents of 
unexplored forest (Le Touzey, 1968; Richards, 1996) for quantifying AGB changes through time.  
This book chapter presents the advancement of a research program undertaken by our team 
for estimating above ground biomass of mangrove and terra firme forests of Amazonia using 
canopy grain from VHR images (Couteron et al. 2005; Proisy et al. 2007; Barbier et al., 2010; 
2011). We present in a first section, the canopy grain notion and the fundamentals of the 
Fourier-based Textural Ordination (FOTO) method we developed. We then introduce a dual 
experimental-theoretical approach implemented to understand how canopy structure 
modifies the reflectance signal and produces a given texture. We discuss, for example, the 
influence of varying sun-view acquisition conditions on canopy grain characteristics. A 
second section assesses the potential and limits of the canopy grain approach to predict 
forest stand structure and more specifically above ground biomass. Perspectives for a better 
understanding of canopy grain-AGB relationships conclude this work.  
 

 
Fig. 1. Differences of canopy grain perception between two 300 m square subset images of 
different spatial resolution over a mixed savanna forest-inhabited area, French Guiana. Left: 
a 2.5-m SPOT5 Fusion image acquired in October 2010. Right: a 20-cm aerial photograph 
acquired in July 2010 (© L’Avion Jaune).  

2. The canopy grain approach  
2.1 Notion of canopy grain 
The notion of canopy grain needs to be clarified. In the context of this study, it refers to the 
aspect of the uppermost layer of the forest, i.e. the top canopy. It emerges from the images 
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as soon as the contrast between sunlit and shadowed tree crowns becomes perceptible. This 
property increases with the fineness of image spatial resolution (Fig. 1) that explains why, in 
VHR images, the tropical forest no longer appears as a continuous homogenous layer, or 
‘red carpet’, as it is the case on medium resolution images with pixel size greater than 5 
meters (Fig. 1). Intuitively, the canopy grain depends on both the spatial distribution of trees 
within a scene and the shapes and dimensions of their crowns. The question is then how to 
derive quantitative measurements of such canopy grain texture. Following Rao and Lohse 
(1993), who explained that repetitiveness is the most important dimension of human 
perception for structural textures, our idea is to measure the degree of repetitiveness 
expressed in canopy grain within a forest scene. Two dimensional (2D) Fourier or wavelet 
transforms proved to be well adapted for this purpose (e.g. Couteron, 2002; Ouma et al., 
2006) because they allow shifting canopy grain properties from the spatial domain to the 
frequency domain. Though of larger potential application, we focus in this paper on the 2D 
Fourier-based frequency spectra as a mean for relating tropical forest canopy grain to above-
ground biomass (AGB). 

2.2 The FOTO method  
2.2.1 Workflow up to forest AGB prediction 
The well-known Fourier transform is highly suitable for analyzing repetitiveness of canopy 
grain as it breaks down an intensity signal into sinusoidal components with different 
frequencies. We built on this principle the development of the Fourier-based Textural 
Ordination (FOTO) method to primarily explore the potential of digitized aerial 
photographs and VHR satellite images for predicting tropical forest stand structure 
parameters including AGB (Couteron et al., 2005; Proisy et al. 2007). We summarize, 
hereafter, the flow of operations that yield AGB predictions from FOTO outputs. 
A prerequisite of the method is to mask non-forest areas, such as clouds and their shadows, 
water bodies, savannas, crops and civil infrastructures areas (Fig. 2, step 1). The method 
then proceeds with the specification of a square window size in which 2D-Fourier spectra 
are computed (Fig. 2, step 2). To be clear, the window size WS is expressed in meters as: 

 WS = N.S  (1) 

where N is the number of pixels in the X or Y direction of the image and S is the pixel size 
in meters. WS may influence the FOTO results as discussed in the following sub-section. 
Using large WS also means that spatial resolution of the FOTO outputs and subsequent 
biomass maps will be N times coarser than the spatial resolution of the source image(s). 
Although the use of a sliding window is computationally intensive, it can attenuate the 
effects of both spatial resolution degradation and study areas fringe erosion.  
After windowing the forest images, Fourier radial spectra (or r-spectra) are computed and 
give for each window, the frequency vs. amplitude of a sinusoidal signal that fits the spatial 
arrangement of pixels grey levels (Fig. 2, step 3) as described in the next paragraph. The r-
spectra may be then stacked into a common matrix in which each row corresponds to the r-
spectrum of a given window, whereas each column contains amplitude values. This table is 
then submitted to multivariate analysis techniques (ordinations/classifications). With this 
approach, the study can concern as many images as necessary, providing they have the 
same spatial resolution. The resulting table can, for instance, be submitted to a standardized 
principal component analysis (PCA; Fig. 2, step 4). Window scores on the 3 most prominent  
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VHR images, the tropical forest no longer appears as a continuous homogenous layer, or 
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(1993), who explained that repetitiveness is the most important dimension of human 
perception for structural textures, our idea is to measure the degree of repetitiveness 
expressed in canopy grain within a forest scene. Two dimensional (2D) Fourier or wavelet 
transforms proved to be well adapted for this purpose (e.g. Couteron, 2002; Ouma et al., 
2006) because they allow shifting canopy grain properties from the spatial domain to the 
frequency domain. Though of larger potential application, we focus in this paper on the 2D 
Fourier-based frequency spectra as a mean for relating tropical forest canopy grain to above-
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2.2 The FOTO method  
2.2.1 Workflow up to forest AGB prediction 
The well-known Fourier transform is highly suitable for analyzing repetitiveness of canopy 
grain as it breaks down an intensity signal into sinusoidal components with different 
frequencies. We built on this principle the development of the Fourier-based Textural 
Ordination (FOTO) method to primarily explore the potential of digitized aerial 
photographs and VHR satellite images for predicting tropical forest stand structure 
parameters including AGB (Couteron et al., 2005; Proisy et al. 2007). We summarize, 
hereafter, the flow of operations that yield AGB predictions from FOTO outputs. 
A prerequisite of the method is to mask non-forest areas, such as clouds and their shadows, 
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then proceeds with the specification of a square window size in which 2D-Fourier spectra 
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in meters. WS may influence the FOTO results as discussed in the following sub-section. 
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Although the use of a sliding window is computationally intensive, it can attenuate the 
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Fig. 2. Flow of operations involved in the FOTO analysis up to biomass prediction  

 
Biomass Prediction in Tropical Forests: The Canopy Grain Approach 63 

axes are used as texture indices (the so-called FOTO indices) that are mapped by composing 
red–green–blue (RGB) images expressing window scores values against first, second and 
third axes, respectively. Such FOTO maps have a spatial resolution equal to the window size 
WS. The final step (Fig. 2, step 5) is to relate ground truth forest plot biomass to FOTO 
indices using a linear model of the form: 
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where a0 and ac are the coefficients of the multiple regression of AGB onto the texture indices 
T obtained from the first three PCA axes.  

2.2.2 Computing radial spectra of forest plots 
The computation of radial spectra has to be detailed because such frequency signatures are 
essential components of the canopy grain analysis. It is to note that the calculation of r-
spectra is also possible for any single image extract centered on one forest plot as illustrated 
in the numerous examples provided hereafter.  
Each image extract is subjected to the two dimensional discrete fast Fourier transform 
algorithm implemented in most of the technical computing software. Image intensity 
expressed in spatial XY Cartesian referential domain is transposed to the frequency domain. 
Power spectrum decomposing the image variance into frequency bins along the two Cartesian 
axes is then obtained for each square window (Fig. 2, step 3, right). This latter was 
demonstrated as an efficient way to quantify pattern scale and intensity (Couteron et al. 2006) 
from images of various vegetation types (Couteron et al. 2002; 2006). Assuming that images of 
tropical forest have isotropic properties, the radial spectra are then obtained after azimuthally 
averaging over all travelling directions (Fig. 2, step 3, left). Frequencies are expressed in cycles 
per kilometer, i.e. the number of repetitions over a 1 km distance. The discrete set of spatial 
frequencies f can be also transformed into sampled wavelengths (in meters) as λ=1000/f. For 
example, a frequency of 200 cycles per kilometre corresponds to a wavelength of 5 metres.  

2.2.3 Principal component analysis for regional analysis 
Standardized principal component analysis of the spectra table created by the stacking of all 
r-spectra is a mean to perform regional analysis of canopy grain variations through one or 
several image scenes. For illustration, a 0.5-m panchromatic Geoeye image covering (after 
masking non-forest areas) 11271 hectares of mangroves is analyzed (Fig. 3). The three first 
factorial axes of the PCA accounted for more than 81% of the total variability. The first PCA 
axis opposes coarse and fine canopy grain that correspond to spatial frequencies of less than 
100 cycles/km (=10 m) and more than 250 cycles/km (=4 m), respectively. Intermediate 
spatial frequencies are found with high negative loadings on the second axis.  
From this analysis, we coded window scores on the three main PCA axes as RGB real values 
(Fig. 4). Pioneer and young stages of mangroves are characterized by red–i.e. high scores on 
PC1 only– whereas intergrades between blue and cyan corresponded to areas with adult 
trees (low positive scores on PC1 and negative scores on PC2). Green color maps mature and 
decaying stages of mangrove with high PC2 and very low PC1 scores. Hence, 
coarseness/fineness gradients of thousands of unexplored hectares of mangrove can be 
mapped and allow to capture, at a glance, the overall spatial organization presented in the 
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image. An equivalent result was also obtained using a 1-m panchromatic Ikonos image 
(Proisy et al. 2007). The FOTO analysis is confirmed of prime interest for mangrove 
monitoring studies and for highlighting coastal processes in French Guiana (Fromard et al. 
2004) through the mapping of forest growth stages. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Principal component analysis of Fourier spectra obtained from the FOTO analysis of a 
Geoeye panchromatic image covering 11271 hectares of mangroves in French Guiana. 
Correlation between PCA axes and spatial frequencies are shown in the left graph.  

2.3 The DART modelling method 
Large-scale validation of the FOTO method is highly desirable, to study both the method’s 
sensitivity to complex variations in forest structure and to instrumental perturbations. 
However, it is notoriously difficult to obtain both detailed forest structure information in 
inaccessible tropical environments and cloudless imagery over field plots. It was therefore 
necessary to develop a modeling framework for testing FOTO sensitivity, in simplified but 
controlled conditions (Barbier et al. 2010; 2011; in press).  
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Fig. 4. Panchromatic-derived FOTO map obtained from a Geoeye panchromatic image 
acquired in September 2009. RGB channels code for windows scores on PCA axes. A large 
part of the mangrove area is masked because either under clouds or with bare mud.  

2.3.1 Basic principles 
The 3D Discrete Anisotropic Radiative Transfer (DART) model is a ray-tracing model that 
can simulate, simultaneously in several wavelengths of the optical domain, remotely sensed 
images of heterogeneous natural and urban landscapes with or without relief, using 3D 
generic representations of these landscapes for any sun direction, any view direction or any 
atmosphere (Gastellu-Etchegorry et al., 2004). The model is freely downloadable from 
http://www.cesbio.ups-tlse.fr/fr/dart.html for scientific studies, after signing a charter of use. In 
the case of forests, a DART scene, namely a ‘maket’, is a three-dimensional representation of 
a forest stand within a voxel space. Transmittance and phase functions (the optical 
properties) associated to each voxel depend on the voxel type (leaves, trunk, soil, etc.). 
Leaves cells are modelled as turbid media with volume interaction properties whereas 
others voxel types are taken as solid media with surface properties. Others structural 
characteristics within the cell (e.g. LAI, leaf and branches angle distribution) can be taken 
into account. The scattering of rays from each cell is simulated iteratively in a discrete 
number of directions. We keep the maket size 10% larger than the FOTO window or the 
forest plot sizes in order to avoid border effects. The final DART image is a sub-scene of 
equal dimensions as the reference window or plot.  
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image. An equivalent result was also obtained using a 1-m panchromatic Ikonos image 
(Proisy et al. 2007). The FOTO analysis is confirmed of prime interest for mangrove 
monitoring studies and for highlighting coastal processes in French Guiana (Fromard et al. 
2004) through the mapping of forest growth stages. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Principal component analysis of Fourier spectra obtained from the FOTO analysis of a 
Geoeye panchromatic image covering 11271 hectares of mangroves in French Guiana. 
Correlation between PCA axes and spatial frequencies are shown in the left graph.  

2.3 The DART modelling method 
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Fig. 4. Panchromatic-derived FOTO map obtained from a Geoeye panchromatic image 
acquired in September 2009. RGB channels code for windows scores on PCA axes. A large 
part of the mangrove area is masked because either under clouds or with bare mud.  
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2.3.2 3D forest templates 
A first step within this modeling framework is to reproduce biologically realistic 3D 
templates of forests. Depending on the level of detail and biological realism one is to obtain, 
different approaches can be considered to build 3D forest mock-ups. For instance, the 
Stretch model (Vincent & Arja, 2008) allows accounting for dynamic crown deformations 
through various mechanisms and levels of plant plasticity. However, for our present 
purpose, we focus on variations in size-frequency distributions of trees, without entering 
too much into architectural (i.e. structural and dynamic) details. For this reason, we 
developed the Allostand model (Barbier et al. in press), a simple Matlab® algorithm using a 
DBH distribution, established DBH-Crown-height allometric relationships, and an iterative 
hard-core point process generator, to reproduce ‘lollipop stands’, that is a 3D arrangement 
of trunk cylinders bearing ellipsoid crowns. This forest template matches the DART maket 
requirements, e.g. a list of trees with parameters of their 3D geometry. Such simulation 
framework is particularly well adapted to the study of mangroves forest in which few 
species grow rapidly over areas with no relief (Fig. 5). 
 
 
 

 
 
 
 

Fig. 5. Examples of 110 x 110m mockups obtained for a young Avicennia mangrove of 159 
tDM.ha-1  (top left) and a mixed adult mangrove of 360 tDM.ha-1 (top right). Associated 1-m 
pixel DART images simulated at 0.75 µm are shown below. 
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2.3.3 Virtual canopy images 
In this work, we only simulated mono-spectral images in the visible domain on flat 
topography without taking into account atmospheric effects (Fig. 5). Standard optical 
profiles of reflectance for soil, trunks and leaves are selected from the DART database using, 
for instance, '2D soil-vegetation', '2D bark_spruce' and '3D leaf_decidous' files. Such 
oversimplified images of virtual forest stands composed of trees with 'lollipop-shaped' 
crowns produce homogeneous texture dominated by few frequencies. The FOTO analysis of 
330 DART images however demonstrated their potential for benchmarking textural gradient 
of real forest canopies throughout the Amazon basin (cf. Fig. 3 in Barbier et al. 2010).  

2.4 Influence of instrumental characteristics 
2.4.1 Window size and spatial resolution 
Large windows may include features characterizing landforms such as relief variations 
rather than canopy grain (Couteron et al., 2006) whereas small windows may be unable 
to adequately capture large canopy features observable in mature growth stages. 
However, whatever the window size taken within a reasonable range of variations, i.e. 
75 to 150 m for tropical forest, spatial frequencies should display more or less the same 
patterns of contribution to PCA axes (Couteron et al. 2006). The influence of spatial 
resolution on the sensitivity of r-spectra to capture canopy grain of different forest types 
was highlighted using 1-m panchromatic and 4-m near infrared (NIR) Ikonos images in 
Proisy et al. (2007).  
 

 
Fig. 6. Radial spectra of 2 different mangrove growth stages using 0.5-m and 2-m 
panchromatic and near infrared Geoeye channels. 
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The loss of sensitivity to the finest textures was also observed using 2-m NIR channel of 
Geoeye image (Fig. 6). Whereas r-spectra of 0.5-m and 2-m image extracts displayed the 
same behaviour with an identical dominant frequency, they did not exhibit the same 
profiles for the pioneer stage consisting of a very high density of trees with 2-3 m crown 
diameters. This limitation was also observed for the same forest growth stages after 
comparison of 1-m and 4-m Ikonos channels (see Fig. 4 in Proisy et al. 2007). As the 
limitation with regard to the youngest stages appeared using 2-m channels, it was 
recommended to privilege the use of panchromatic satellite images with metric and sub-
metric pixels. 

2.4.2 Sun and viewing angles: The BTF 
Parameters of VHR image acquisitions such as sun elevation angle θs, viewing angle from 
nadir θv and azimuth angle Φs-v between sun and camera can vary significantly as illustrated 
in Fig. 7. We introduced the bidirectional texture function (BTF; Barbier et al. 2011) diagrams 
to map the influence of different acquisitions conditions in terms of texture perception (Fig. 
8). The finest textures are perceived in the sun-backward configuration whereas the coarsest 
are observed when sun is facing the camera (the forward configuration) due to the loss of 
perception in shadowed areas. These findings show that to ensure a coherent comparison 
between scenes, one must either use images with similar acquisition conditions, or use a BTF 
trained on similar forest areas or derived from a sufficiently realistic physical simulations to 
allow minimizing these effects (Barbier et al. 2011). 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7. Variation of acquisition parameters through a dataset of 292 images. The dataset 
includes 270 Quickbird, 8 Geoeye, 9 Ikonos and 5 Orbview images acquired over tropical 
forest of Bangladesh, Brazil, Cameroun, Central African Republic, French Guiana, India, 
Indonesia, Democratic Republic of Congo. 
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Fig. 8. Example of discrete sampling of θv and s-v acquisition angles with θs =59° (left) to 
generate the Bidirectional Texture Function (BTF). The BTF diagram (right) is computed 
from the mean PC1 scores resulting from the FOTO analysis of numerous DART images and 
3D forest templates. Brighter intensities values imply finer perceived canopy textures.  

3. From canopy grain to AGB  
3.1 Requirements for forest data  
The canopy grain approach must be calibrated at the forest plot scale i.e. by conducting 
forest inventories from which above ground biomass will be estimated. Areas of about 
one hectare are necessary to take into account structural diversity within the forest plot. 
This area of inventory can possibly be reduced for simpler forest stands and plantations, 
but this is basically dependent on the size of the canopy trees since the computation of 
FOTO indices should be meaningful at plot scale (Couteron et al. 2005). AGB estimation 
for each plot will be taken as the AGB of reference to correlate with FOTO indices. Since 
very labor-intensive destructive measures are necessary to acquire biomass values, 
reference field AGB values are generally computed indirectly using pre-established 
allometric functions predicting tree AGB from the measure of the tree diameter at breast 
height (DBH) as explained, for example, by Chave et al. (2005). On this basis prediction of 
stand AGB in reference field plots can be computed by measuring DBH>5cm in young 
forest and DBH>10cm in adult forest. Allometric equation between DBH and tree biomass 
are established from few cut trees that are weighed on site (e.g. Fromard et al. 1998 for 
mangroves and Brown et al, 1989 for tropical moist forest). Due to the extreme difficulty 
of achieving this kind of field work, relationships are often limited to trees with 
DBH<40cm whereas DBH histograms in tropical forest show values above 150 cm. 
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are established from few cut trees that are weighed on site (e.g. Fromard et al. 1998 for 
mangroves and Brown et al, 1989 for tropical moist forest). Due to the extreme difficulty 
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Additionally, for a given species varying tree heights and crowns dimensions may yield 
important mass differences that the parsimonious relationships cannot take into account. 
Selecting an appropriate allometric model is then crucial and the sampling uncertainty 
relative to the size of the study plot should also be addressed carefully (e.g. Chave et al. 
2004). 
Tree location, crown shape, tree height and wood specific gravity also constitute useful 
information that will contribute to the characterization of the forest structure typology.  
Although it remains unrealistic in heterogeneous forests without the help of skilled 
botanists, identification of tree species is advisable in low-diversified situations, since the 
inclusion of a specific wood gravity parameter into allometric equations proved to improve 
significantly the model (Chave et al. 2005). Such additional data will also be valuable for 
initializing 3D forest templates. It is important to note that, in tropical forest, tree height 
measurements from the ground are problematic and cumbersome explaining the 
enthusiasm aroused by Lidar data (e.g. Gillespie et al. 2004). Another important point to 
improve AGB prediction would be to conduct forest inventories simultaneously to image 
acquisitions.  

3.2 Sensitivity to forest structure and AGB 
Assuming that the constituted forest plots dataset is well distributed within the acquired 
scene(s), Fourier r-spectra can be computed for windows centred on each plot. For 
example, when applied to 1-m Ikonos (Proisy et al. 2007) or 0.5-m Geoeye panchromatic 
images (Fig. 9) r-spectra permit good discrimination of a wide array of canopy structures 
of mangroves (Fig. 9). Furthermore pre-adult, mature and decaying mangrove forests 
show contrasted signatures with dominant frequencies around 180, 80, 50 and 30 cycles 
per kilometre. 
Inverting FOTO indices (the three first PCA axes) into AGB of forest plots distributed 
over two different sites (i.e. two different images) yielded good correlations and low 
errors, as presented in Fig. 10. Compared to estimations provided by the P-band HV 
polarisation channel, FOTO-derived AGB did not show saturations over the whole range 
of mangrove biomass (Fig. 9), i.e. up to 500 tDM.ha-1 and rmse error remains acceptable 
(33 tDM.ha-1). This result suggests that, in the case of closed canopies with sub-strata of 
low biomass (e.g. the mangrove ecosystem in French Guiana), the canopy grain approach 
is suitable to map AGB because crown size and spatial distribution are directly 
correlated to standing biomass of the dominant trees. However, one do not forget that 
the remote sensing-based model of AGB is assessed with respect to allometric 
predictions of "true" AGB, i.e. the aboveground dry mass of trees, from dendrometric 
data, so that the quality of the allometric model is potentially an additional source of bias 
(Chave et al. 2004; 2005).  
Good correlations were also obtained between the first axis and tree density (r²= 0.8) or 
mean quadratic DBH (r²=0.71) in tropical evergreen terra firme forest Couteron et al (2005). 
However, forest heterogeneity and presence of relief makes the canopy approach to be 
used carefully, that is one must analyze visually whether the relief influences or not some 
of the PCA axes (e.g. Ploton, 2010). Only axes immune to relief influence should be used 
for biomass prediction otherwise the result may be biased or highly context-dependent. 
Moreover, due to the diversity of forest stand structures in tropical terra firme forests, a 
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sufficient number of studies in diversified locations and contexts are still needed before 
general conclusions can be reached about the robustness of such correlations. 
Independent ongoing studies suggest that the correlation with density is highly context-
specific while the correlation with the mean quadratic diameter may be a more robust 
feature.   
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 9. Radial spectra and associated 100 x 100 m images of different mangrove growth 
stages using a 0.5 m panchromatic Geoeye image acquired in 2009. Forest inventories dated 
of 2010 and 2011. Note the r-spectra of the open canopy decaying stage. A photograph of 
this plot is available in Fig. 11. 
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Fig. 10. Comparison of FOTO- (Proisy et al. 2007) and P-HV-derived (from Mougin et al. 
1999) biomass estimates in mangroves of French Guiana 

3.3 Present limitations of the methods and prerequisite 
In tropical forest, both gaps and multi-strata organization are often observed. Gaps are due 
to accidental tree falls or natural decaying of some canopy trees (Fig. 11, left). In presence of 
gaps, r-spectra tend to be skewed towards low frequencies and this may be erroneously 
interpreted as if the canopy contained large tree crowns (Fig. 9, r-spectrum of the decaying 
stage). In fact, gap-influenced r-spectra cannot be automatically related to the same biomass 
levels and must be removed from the PCA analysis to avoid biases in the AGB-FOTO 
relationship. Identically, the method was so far tested principally on evergreen forests. 
Further studies are needed regarding deciduous forests, not only because of the seasonal 
changes of the canopy aspect, but also because biomass of understorey vegetation often 
found in such forest type is not necessarily negligible. As spectral properties of the 
understorey may influence the overall reflectance of the corresponding pixels, this may be 
all more confusing if there is no intermediate stratum beneath the highest deciduous trees. 
An example of this is provided by the so-called Maranthaceae forest in Africa (Fig. 11, right), 
which presents a fairly closed albeit deciduous canopy and a very scarce intermediate tree 
storey. Such a structure allows the development of a dense herbaceous cover. Without 
relevant field information, results of the FOTO approach may be confusing in those forests. 
Their standing biomass is probably less than for evergreen closed forests since woody 
intermediate storey is missing, whereas both canopies are dominated by trees with large 
crowns. At least, statistical relationships between FOTO indices and AGB should be 
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analyzed after separating deciduous and evergreen forests than may be simultaneously 
present in a given region. Appropriate regional pre-stratification using multispectral 
satellite data and/or L- or P-band polarized signatures (Proisy et al. 2002) may help towards 
this purpose. 
 

 
Fig. 11. Two examples of specific forest structures for which canopy grain and total AGB 
relationships cannot be safely derived without prior-stratification of the main forest types. 
Left: Decaying mangrove, with both large surviving trees and large canopy gaps, French 
Guiana © C. Proisy. Right: Maranthaceae understorey, overtopped by a fairly continuous 
albeit deciduous forest canopy referred to as “Maranthaceae forests” in Cameroun, Africa, 
note the absence of any intermediate tree strata © N. Barbier. 

4. Conclusion 
The canopy grain approach is largely original. It combines common techniques, i.e. Fourier 
transform and principal component analysis to characterize tropical canopy aspect and 
beyond forest structure from images of metric resolution. It can be implemented without 
prior radiometric correction, such as reflectance calibration or histogram range concordance. 
Regarding the increasing availability of metric to sub-metric optical images, the FOTO 
canopy grain analysis demonstrated its potential to capture gradients of forest structural 
characteristics in tropical regions. Within this context, the possible contribution of the 
canopy grain approach to the challenging task of estimating tropical above-ground biomass 
is worth being assessed at very broad scale. Such aim requires conducting simultaneously 
observational and simulation studies aiming at better understanding how canopy grain is 
sensitive to forest structure or biomass in various types of forests under various conditions 
of image acquisitions. There is particularly an important field of research in simulating 
multi-spectral and metric reflectance images from realistic forest 3D templates to identify, 
for instance, the range of conditions for which inversing above ground biomass of tropical 
forests appears possible. Considering the extreme complexity of most the tropical forests, it 
would be illusory to believe that only one remote sensing technique can provide all the 
information required to the AGB inversion. We thus believe that combining canopy grain 
analysis with low frequencies radar-based studies can provide new insights on this problem. 
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intermediate storey is missing, whereas both canopies are dominated by trees with large 
crowns. At least, statistical relationships between FOTO indices and AGB should be 
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analyzed after separating deciduous and evergreen forests than may be simultaneously 
present in a given region. Appropriate regional pre-stratification using multispectral 
satellite data and/or L- or P-band polarized signatures (Proisy et al. 2002) may help towards 
this purpose. 
 

 
Fig. 11. Two examples of specific forest structures for which canopy grain and total AGB 
relationships cannot be safely derived without prior-stratification of the main forest types. 
Left: Decaying mangrove, with both large surviving trees and large canopy gaps, French 
Guiana © C. Proisy. Right: Maranthaceae understorey, overtopped by a fairly continuous 
albeit deciduous forest canopy referred to as “Maranthaceae forests” in Cameroun, Africa, 
note the absence of any intermediate tree strata © N. Barbier. 

4. Conclusion 
The canopy grain approach is largely original. It combines common techniques, i.e. Fourier 
transform and principal component analysis to characterize tropical canopy aspect and 
beyond forest structure from images of metric resolution. It can be implemented without 
prior radiometric correction, such as reflectance calibration or histogram range concordance. 
Regarding the increasing availability of metric to sub-metric optical images, the FOTO 
canopy grain analysis demonstrated its potential to capture gradients of forest structural 
characteristics in tropical regions. Within this context, the possible contribution of the 
canopy grain approach to the challenging task of estimating tropical above-ground biomass 
is worth being assessed at very broad scale. Such aim requires conducting simultaneously 
observational and simulation studies aiming at better understanding how canopy grain is 
sensitive to forest structure or biomass in various types of forests under various conditions 
of image acquisitions. There is particularly an important field of research in simulating 
multi-spectral and metric reflectance images from realistic forest 3D templates to identify, 
for instance, the range of conditions for which inversing above ground biomass of tropical 
forests appears possible. Considering the extreme complexity of most the tropical forests, it 
would be illusory to believe that only one remote sensing technique can provide all the 
information required to the AGB inversion. We thus believe that combining canopy grain 
analysis with low frequencies radar-based studies can provide new insights on this problem. 
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1. Introduction 
Biomass and Leaf Area Index (LAI) are two important biophysical properties of vegetation 
as they inform about vegetation production. LAI is directly related to the exchange of 
energy and mass between plant canopies and the atmosphere (Fassnacht et al., 1997), while 
biomass reflects the amount of carbon converted through photosynthesis and accumulated 
in the different plant components. Thus, the two variables reflect much of the potential and 
actual production of plant ecosystems (Kasischke et al., 2004). 
Fire is ubiquitous in most terrestrial ecosystems causing spatial patterning at many scales 
(Chapin III et al., 2003). In tropical savannas in general and, in the southern African 
savannas in particular, much of the ecosystem functioning is largely defined by the 
combination of climate, fires and herbivory. Andreae (1993) estimated that fires in the 
African and the world savannas account, respectively, for 22% and 42% of the biomass 
burned globally. Moreover, the amount of CO2 exchanged with the atmosphere in southern 
Africa may represent up to 20% of the regional net primary production (Scholes & Andreae, 
2000).  
In spite of the elevated importance of disturbances in miombo woodlands, there still is a gap 
in the understanding of the interaction between them and vegetation. This, results partially 
from the short temporal and spatial scales of observation of much of the existing studies. For 
example, except for the long-term experimental study carried out in Zambia for 15 years 
(Trapnell, 1959), the other studies are all points in space and time, much of them lasted less 
than 5-years. Moreover, they address a specific aspect of miombo woodlands functioning, 
which is important but not sufficient for a complete understanding of this ecosystem. Thus, 
measurements of large spatial- and temporal-scale variations of vegetation production, 
disturbances and their interaction are crucial to fulfill the existing data gaps. This is 
particularly important to understanding the role of this crucial ecosystem in the global 
carbon budget. 
Remote sensing of vegetation production and disturbances is a critical measurement needed 
to extend the field level understanding of ecological, hydrological and biogeochemical 
processes to broader spatial and temporal scales in terrestrial ecosystems (Asner, 2004) and 
the different scales of energy, CO2 and mass exchange between ecosystems and atmosphere 
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(Carlson & Ripley, 1997; Goward et al., 1985; Justice et al., 1998; Running et al., 1995; 
Schlesinger, 1996; Tucker et al. 1985). In areas where detailed and sufficient field data is 
scarce, as in much of the miombo context, the need for remote sensing data and techniques 
is even more important (Justice & Dowty, 1994; Malingreu & Gregoire 1996). Interpretation 
of the spaceborne data on land carbon stocks is needed, not only from the scientic point of 
view, but also within practical carbon management options mentioned in UNFCCC (Kyoto 
Protocol, REDD and REDD+).  
To accurately measure objects on earth from the space several issues have to be considered 
including, the type and characteristics of remote sensing system, the spectral characteristics 
of the target objects, interactions between objects on earth, the statistical methods, among 
others. The advance of new generation of remote sensing such as IKONOS and QUICKBIRD 
optical sensors and, LiDAR and ALOS/PALSAR microwave sensors with high spatial 
resolution opens a new opportunity to improve understanding of miombo dynamics. These 
sensors, allow individual trees to be recognized and thus, large-scale biomass estimation in 
miombo woodlands. However, several constraints still exist and may limit the utilization of 
these data.  
The aim of this chapter is to analyze the opportunities and constraints for the use of remote 
sensing techniques to estimate biomass (and carbon) in the miombo woodlands of southern 
Africa. The chapter also identifies research priorities for remote sensing of biomass in the 
miombo ecoregion. 

2. Brief overview of miombo woodlands ecology  
2.1 Geographic distribution 
Miombo woodlands, herewith referred as Miombo, cover about 2.7 million km2 within the 
southern sub-humid tropical zone of Africa from near the Equator to bellow the Tropic of 
Capricorn (Figure 1). They extend from Tanzania to the Democratic Republic of the Congo 
(DRC) in the north, through Angola, Zambia in the east to Malawi, Zimbabwe and 
Mozambique in the south (Desanker et al., 1997; Frost, 1996).  
Miombo occur within a mean annual precipitation range of 650 to 1,500 mm and more than 
95% of annual rainfall occurs during a single 5-7 months wet season from 
October/November to March/April (Cauldwell & Zieger, 2000; Chidumayo, 1997; Desanker 
et al., 1997; Frost, 1996). Few sites within the region receive more than 5% of their total mean 
annual rainfall during the dry months. Consequently, miombo is divided into dry and wet 
miombo according to the rainfall in the zone of occurrence (White, 1983). Dry miombo 
woodlands occur in the southern portion of the region in Malawi, Mozambique and 
Zimbabwe, in areas receiving less than 1,000 mm of rainfall annually. In contrast, wet 
miombo woodlands occur over much of eastern Angola, DRC, northern Zambia, south 
western Tanzania and central Malawi in areas receiving more than 1,000 mm rainfall per 
year. Variations to this pattern may occur within an area as a result of local variation in 
environmental factors such as altitude and precipitation. 
This ecosystem occurs in geologically old and nutrient poor soils (Chidumayo, 1997; Frost, 
1996). The dominant soils belong to the order Oxisol, which are highly weathered old soils 
with dominance of aluminum and iron oxides and low activity clays. The soils in miombo 
are typically acid (pH between 4.2 and 6.9), have a low Cation Exchange Capacity (CEC: 
1.80-25.10 me100/g) and, are low in nitrogen (0.02-0.62%) and phosphorous (0.0-54 ppm) 
and Total Exchangeable Bases (TEB: 0.35-20.78 me100/g). The range of carbon content in 
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soils is 0.3-3.8% (Chidumayo, 1989; Ribeiro & Matos, unpubl. Data; Sitoe et al., unpubl. Data; 
Walker & Desanker, 2004). Miombo soils have low concentration of organic matter with an 
average in the topsoil of 1% and 2% for dry and wet miombo, respectively (Chidumayo, 
1997). This is a consequence of the abundant termite activities and frequent fire incidence 
(Cauldwell & Zieger, 2000; Chidumayo, 1997).  
 

 
Fig. 1. Map of African vegetation, showing the miombo woodlands in dark green (Source: 
White, 1983). 

2.2 Floristic composition and structure 
Miombo have an estimated diversity of 8,500 species of higher plants, over 54% of which are 
endemic and 4% are tree species. Zambia is considered to be the centre of endemism for 
Brachystegia and has the highest diversity of tree species (Rodgers et al., 1996). The diversity 
of canopy tree species is, however, low and characterized by the overwhelming dominance 
of trees in the genera Brachystegia (miombo in Swahili), Julbernardia and/or Isoberlinia 
(Campbell et al., 1996). Other important tree species in miombo include Pseudolachnostylis 
maprouneifolia, Burkea africana, Diplorhynchus condilocarpon among others. In mature miombo 
these species comprise an upper canopy layer made of 10-20 m high trees and a scattered 
layer of sub-canopy trees. The understorey is discontinuous and composed of broadleaved 
shrubs such as Eriosema, Sphenostylis, Kotschya, Dolichos and Indigofera and suppressed 
saplings of canopy trees. A sparse but continuous herbaceous layer of grasses, forbs and 
sedges composed of Hyparrhenia, Andropogon, Loudetia, Digitaria and Eragrostis (Campbell et 
al., 1996; Desanker et al., 1997) dominate the ground-layer. 
Species composition and structure of miombo vary along the rainfall gradient across the 
region. In the dry miombo, canopy height is less than 15 m and the vegetation is floristically 
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Africa. The chapter also identifies research priorities for remote sensing of biomass in the 
miombo ecoregion. 

2. Brief overview of miombo woodlands ecology  
2.1 Geographic distribution 
Miombo woodlands, herewith referred as Miombo, cover about 2.7 million km2 within the 
southern sub-humid tropical zone of Africa from near the Equator to bellow the Tropic of 
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soils is 0.3-3.8% (Chidumayo, 1989; Ribeiro & Matos, unpubl. Data; Sitoe et al., unpubl. Data; 
Walker & Desanker, 2004). Miombo soils have low concentration of organic matter with an 
average in the topsoil of 1% and 2% for dry and wet miombo, respectively (Chidumayo, 
1997). This is a consequence of the abundant termite activities and frequent fire incidence 
(Cauldwell & Zieger, 2000; Chidumayo, 1997).  
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endemic and 4% are tree species. Zambia is considered to be the centre of endemism for 
Brachystegia and has the highest diversity of tree species (Rodgers et al., 1996). The diversity 
of canopy tree species is, however, low and characterized by the overwhelming dominance 
of trees in the genera Brachystegia (miombo in Swahili), Julbernardia and/or Isoberlinia 
(Campbell et al., 1996). Other important tree species in miombo include Pseudolachnostylis 
maprouneifolia, Burkea africana, Diplorhynchus condilocarpon among others. In mature miombo 
these species comprise an upper canopy layer made of 10-20 m high trees and a scattered 
layer of sub-canopy trees. The understorey is discontinuous and composed of broadleaved 
shrubs such as Eriosema, Sphenostylis, Kotschya, Dolichos and Indigofera and suppressed 
saplings of canopy trees. A sparse but continuous herbaceous layer of grasses, forbs and 
sedges composed of Hyparrhenia, Andropogon, Loudetia, Digitaria and Eragrostis (Campbell et 
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region. In the dry miombo, canopy height is less than 15 m and the vegetation is floristically 
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poor. Brachystegia spiciformis, B. boehmii and Julbernardia globiflora are the dominant canopy 
species. The herbaceous layer varies greatly in composition and biomass and contains 
grasses and suppressed saplings of canopy trees. The wet miombo in turn, presents canopy 
heights greater than 15 m. The vegetation is floristically rich and includes nearly all of the 
characteristic miombo species. B. floribunda, B. glaberrina, B. longifolia, B. wangermeeana and 
Marquesia macroura are widely distributed. The understorey comprises a mixture of grasses, 
bracken (Pteridium aquilinum) and shrubs.  
Biomass distribution is uniform across the ecoregion, with the woody component 
comprising 95-98% of the aboveground biomass in undisturbed stands (Figure 2); grasses 
and herbs make up the remainder (Chidumayo, 1997). However, biomass production is a 
function of rainfall and nutrients. For example, Chidumayo (1997) showed a variation of 
aboveground biomass of 53 t/ha in western dry miombo to 93 t/ha in wet miombo, in 
Zambia.  
 

 
Fig. 2. Beginning of the wet season in mature miombo woodlands in Niassa National 
Reserve, northern Mozambique. A conserved stand where the homogeneous canopy layer is 
evident (Photo by: Ribeiro, N.). 

The key indicator of the linkage between rainfall and miombo production is the observed 
structural and compositional variations following the rainfall gradient, from the drier 
fringes of the miombo to the wetter core area (Desanker et al., 1997). The nutrient cycling 
seems to follow also the rainfall gradient across the region revealing that nutrients limitation 
is a function of moisture regime. Local variations are expected to be much higher and 
strongly affected by disturbances, especially fires and herbivory. The main structural 
characteristics of miombo woodlands are summarized in Table 1. 
Dambos are distinctive features of the miombo and occupy seasonally waterlogged shallow 
valley depressions across the prominent catenas in the region (a regular alternation of two 
or more types of vegetation) (Campbel et al., 1996; Scholes, 1997). Dambos are small islands of 
hygrophilous treeless grasslands emerged in the miombo landscape, which can make up to 
40% of the landscape. They have a particular importance for the ecology of miombo, 
especially as habitat for animal species including some herbivores.  
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Structural 
characteristic Range of values Source 

Woody density  
 1,500-4,100 stems/ha 

Campbell et al., 1995; Chidumayo 1997; 
Grundy 1995; Guy 1981; Ribeiro et al., 
2008a; Strang, 1974; Trapnell, 1959.  

Tree density  
 380-1,400 trees/ha 

Banda et al., 2006; Campbell et al., 1995; 
Chidumayo, 1985; Grundy, 1995; Guy, 
1981; Strang, 1974; Trapnell, 1959. 

Stand basal area  7-24 m2/ha Banda et al., 2006 ; Backéus et al., 2006; 
Freson et al.,1974 ; Lawore et al., 1994;  

Aboveground 
biomass  

1.5 Mg/ha (3-6 years 
old coppice) – 144 
Mg/ha (Mature wet 
miombo); 53-55 
Mg/ha in dry and 
sub-humid miombo 

Chidumayo, 1991; Chidumayo, 1997; Guy, 
1981; Malaisse & Strand, 1973; Ribeiro et al., 
2008b; Sitoe et al. (unpubl. Data) 

Aboveground 
herbaceous 
biomass  

0.1-4.0 Mg/ha (2-5% 
of the total 
aboveground 
biomass) 

Frost, 1996; Ribeiro and Matos (unpubl. 
Data); Sitoe et al. (unpubl. Data)  

Table 1. Summary of structural characteristics of miombo woodlands.  

2.3 Ecological role of disturbances in miombo woodlands 
Changes in the landscape of many types of woodland in Africa have been attributed directly 
to the interactive effect of elephants and fire (Buechner & Dawkins, 1961; Guy, 1981, 1989; 
Laws, 1970; Mapaure & Campbell, 2002; Ribeiro et al., 2008a; Sukumar, 2003; Walpole et al., 
2004). In general, the pattern of change is the same: as elephants over-browse the 
woodlands, laying waste to mature trees, there is an increase in the low woody vegetation 
and grass cover as well as a dramatic increase in fuel load. This allows fire to become 
progressively more intense. Fiercer and frequent fires affect both large trees and saplings 
lowering species diversity. Debarking of large trees by elephants may further expose inner 
tissues to fire damage and death (Laws, 1970; Sukumar, 2003). 
Nearly 90% of fires in miombo are anthropogenic and associated with several human 
activities in the woodland including: hunting, honey collection and shifting agriculture 
(Figure 3). They occur every 1 to 3 years in the dry season from May to October/November 
with a peak in the late dry season (August-October). They are largely fuelled by grasses and 
take place in the understorey with flame heights generally low (Gambiza et al., 2005; 
Trollope et al., 2002). Thus fire intensity and frequency is linked through grass production to 
the previous season rainfall, the intensity of grazing and the extent of woody plant cover 
(Frost, 1996).  
Fire frequency in miombo is expected to be locally highly variable according to fuel 
accumulation rates, the proximity to sources of ignition and interannual climatic variations 
(Chidumayo, 1997; Frost, 1996; Kikula, 1986; Ribeiro 2007; Trapnell, 1959). The impact of fire 
on plants depends on its intensity, frequency, seasonality and interaction with herbivory 
(Bond & Van Wilgen, 1996; Frost, 1984; Ribeiro, 2007; Trollope, 1978). The effect of 
seasonality was studied by Chidumayo (1989), indicating that stem mortality measured over 
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poor. Brachystegia spiciformis, B. boehmii and Julbernardia globiflora are the dominant canopy 
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Marquesia macroura are widely distributed. The understorey comprises a mixture of grasses, 
bracken (Pteridium aquilinum) and shrubs.  
Biomass distribution is uniform across the ecoregion, with the woody component 
comprising 95-98% of the aboveground biomass in undisturbed stands (Figure 2); grasses 
and herbs make up the remainder (Chidumayo, 1997). However, biomass production is a 
function of rainfall and nutrients. For example, Chidumayo (1997) showed a variation of 
aboveground biomass of 53 t/ha in western dry miombo to 93 t/ha in wet miombo, in 
Zambia.  
 

 
Fig. 2. Beginning of the wet season in mature miombo woodlands in Niassa National 
Reserve, northern Mozambique. A conserved stand where the homogeneous canopy layer is 
evident (Photo by: Ribeiro, N.). 

The key indicator of the linkage between rainfall and miombo production is the observed 
structural and compositional variations following the rainfall gradient, from the drier 
fringes of the miombo to the wetter core area (Desanker et al., 1997). The nutrient cycling 
seems to follow also the rainfall gradient across the region revealing that nutrients limitation 
is a function of moisture regime. Local variations are expected to be much higher and 
strongly affected by disturbances, especially fires and herbivory. The main structural 
characteristics of miombo woodlands are summarized in Table 1. 
Dambos are distinctive features of the miombo and occupy seasonally waterlogged shallow 
valley depressions across the prominent catenas in the region (a regular alternation of two 
or more types of vegetation) (Campbel et al., 1996; Scholes, 1997). Dambos are small islands of 
hygrophilous treeless grasslands emerged in the miombo landscape, which can make up to 
40% of the landscape. They have a particular importance for the ecology of miombo, 
especially as habitat for animal species including some herbivores.  
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Table 1. Summary of structural characteristics of miombo woodlands.  
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Changes in the landscape of many types of woodland in Africa have been attributed directly 
to the interactive effect of elephants and fire (Buechner & Dawkins, 1961; Guy, 1981, 1989; 
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woodlands, laying waste to mature trees, there is an increase in the low woody vegetation 
and grass cover as well as a dramatic increase in fuel load. This allows fire to become 
progressively more intense. Fiercer and frequent fires affect both large trees and saplings 
lowering species diversity. Debarking of large trees by elephants may further expose inner 
tissues to fire damage and death (Laws, 1970; Sukumar, 2003). 
Nearly 90% of fires in miombo are anthropogenic and associated with several human 
activities in the woodland including: hunting, honey collection and shifting agriculture 
(Figure 3). They occur every 1 to 3 years in the dry season from May to October/November 
with a peak in the late dry season (August-October). They are largely fuelled by grasses and 
take place in the understorey with flame heights generally low (Gambiza et al., 2005; 
Trollope et al., 2002). Thus fire intensity and frequency is linked through grass production to 
the previous season rainfall, the intensity of grazing and the extent of woody plant cover 
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seasonality was studied by Chidumayo (1989), indicating that stem mortality measured over 
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a two-year period in wet miombo was only 4-3% when both woodland and coppice plots 
were burned in early dry season but 18% and 40% respectively when burned in late dry 
season. 
 

 
Fig. 3. Agriculture and associated fires in the Gorongosa Mountain, Central Mozambique 
(Photos by Ribeiro, N.) 

The tolerance or susceptibility of miombo plants to frequent late dry season fire is a function 
of their growth form, developmental stage, physiological conditions and phenological state 
at the time of burning. For instance, grasses and many non-woody herbs tolerate intense, 
late dry season fires better than most woody plants. During this time of the year most tree 
species produce new leaves, which make them less tolerant to intense fires. Frequent late 
dry season fires also destroy young trees and shrubs, or their aboveground parts, 
preventing the development of taller, more fire resistant size classes (Brookman-Amissah et 
al., 1980; Hopkins, 1965). 
Scientific accounts of elephant damage to vegetation in African savannas and woodlands 
emerged during the 1960s. Buechner & Dawkin (1961) analyzed the vegetation changes in 
the Murchinson Falls National Park, Uganda between 1932 and 1956 and found that tree 
populations had halved during that period. Thomson (1975) report that nearly 67% of the 
500 original mature trees of B. boehmii in Chizarira National Park, Zimbabwe died, and 
another 20% were damaged, transforming relatively dense woodlands into more open 
wooded grasslands. 
Guy (1981) studying miombo changes in the Sengwa Wildlife Research Area, Zimbabwe 
found that the biomass was reduced by 54% between 1972 and 1976. The decline was 
associated with the decreasing number of the dominant tree species, B. boehmii, a species 
markedly selected by elephants. In 1989 the area was dominated by J. globiflora, P. 
maprouneifolia and Monotes glaber but B. boehmii was rare (Guy, 1989). Comparing the 
woodlands inside the research area with those outside (where the elephants population and 
fires were excluded) the author found less tree density (267 stems/ha over 334 stems/ha), 
lower stem area (3.56 m2/ha compared to 9.52 m2/ha) and lower biomass (8.5 t/ha 
compared to 26.2 t/ha). Recently Mapaure & Campbell (2002) working in the same area 
report an overall rate of decrease in woody cover of 0.75% per year. Elephants (significantly 
high negative correlation coefficient, r=-0.90, p<0.05), and fire (r=-0.35, p=0.61) were pointed 
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out as the main cause of decline. The authors noticed that 82% reduction in the elephant 
population by culling between 1979 and 1982, result in a noticeable vegetation recovery. 
However, field observations indicate that some areas were not reverting to miombo, but to 
Combretaceae-dominated thickets. This behavior was also observed by Ribeiro et al. (2008a) 
in the Niassa National Reserve of northern Mozambique. 
Dublin et al. (1990) studied the effects of elephants and fires in the Serengeti-Mara 
woodlands in Kenya and found that the combined effect of fire and elephants caused 
consistently decrease in the recruitment of tree species. Recently Walpole et al. (2004) 
assessed the status of the Mara woodlands (adjacent to the Serengeti National Park). They 
report that species diversity is relatively low, possibly because of decline in the density and 
extent of woodland and thickets originated by increasing elephant population within the 
area. 

3. Remote sensing techniques for biomass estimation in the miombo 
woodlands 
Remote Sensing refers to the acquisition and recording of information about objects on Earth 
without any physical contact between the sensor and the subject of analysis. It provides 
spatial coverage by measurement of reflected and emitted electromagnetic radiation, across 
a wide range of wavebands. Remotely sensed data provide in many ways an enhanced and 
very feasible alternative to manual observation with a very short time delay between data 
collection and transmission.  
Since the first launch of an earth observatory satellite, in July 1972 by the US called Earth 
Resources Technology Satellite (ERTS, later renamed Landsat), remote sensing has been 
increasingly used to acquire information about environmental processes and over the last 
three decades this use has had a substantial increase with the development of modern 
remote sensing technology as radar sensors (ERS, RADARSAT, etc), LiDAR systems and the 
new generation of optical sensors (IKONOS, SPOT-5, GeoEye, etc.). Thus, remote sensing 
techniques are a time-and-cost-efficient method of observing forest ecosystems. 
The capabilities of remote sensing techniques have been lately expanded to serve 
monitoring efforts as well as to provide valuable information on degradation in specific 
areas. Remote sensing, due to its potential to estimate biophysical parameters with 
detention of temporal and spatial variability, becomes a powerful technique. These, in 
combination with field sampling methods may provide detailed estimations of forestry 
parameters. In forest ecosystems, estimation of biophysical parameters has been made by 
a succession of methods. However, the extension of these estimations in space and time 
has obvious limitations especially in highly variable ecosystems such as miombo. 
Moreover, the network of field plots across the miombo ecoregion is not sufficient enough 
to cover it, which imposes further limitations in the use of remote sensing for biomass 
estimation. 
In this section we highlight the uses of remote sensing techniques to derive biomass 
information in miombo. Emphasis is given to optical remote sensing techniques because 
the majority of measurements have been concentrated on these techniques. Radar and 
microwave remote sensing in miombo have, in the last decade, become a useful source of 
information for biomass estimation, but has been barely applied in the  
region. Therefore, radar and microwave remote sensing are also briefly discussed in this 
section.  
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a two-year period in wet miombo was only 4-3% when both woodland and coppice plots 
were burned in early dry season but 18% and 40% respectively when burned in late dry 
season. 
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associated with the decreasing number of the dominant tree species, B. boehmii, a species 
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out as the main cause of decline. The authors noticed that 82% reduction in the elephant 
population by culling between 1979 and 1982, result in a noticeable vegetation recovery. 
However, field observations indicate that some areas were not reverting to miombo, but to 
Combretaceae-dominated thickets. This behavior was also observed by Ribeiro et al. (2008a) 
in the Niassa National Reserve of northern Mozambique. 
Dublin et al. (1990) studied the effects of elephants and fires in the Serengeti-Mara 
woodlands in Kenya and found that the combined effect of fire and elephants caused 
consistently decrease in the recruitment of tree species. Recently Walpole et al. (2004) 
assessed the status of the Mara woodlands (adjacent to the Serengeti National Park). They 
report that species diversity is relatively low, possibly because of decline in the density and 
extent of woodland and thickets originated by increasing elephant population within the 
area. 

3. Remote sensing techniques for biomass estimation in the miombo 
woodlands 
Remote Sensing refers to the acquisition and recording of information about objects on Earth 
without any physical contact between the sensor and the subject of analysis. It provides 
spatial coverage by measurement of reflected and emitted electromagnetic radiation, across 
a wide range of wavebands. Remotely sensed data provide in many ways an enhanced and 
very feasible alternative to manual observation with a very short time delay between data 
collection and transmission.  
Since the first launch of an earth observatory satellite, in July 1972 by the US called Earth 
Resources Technology Satellite (ERTS, later renamed Landsat), remote sensing has been 
increasingly used to acquire information about environmental processes and over the last 
three decades this use has had a substantial increase with the development of modern 
remote sensing technology as radar sensors (ERS, RADARSAT, etc), LiDAR systems and the 
new generation of optical sensors (IKONOS, SPOT-5, GeoEye, etc.). Thus, remote sensing 
techniques are a time-and-cost-efficient method of observing forest ecosystems. 
The capabilities of remote sensing techniques have been lately expanded to serve 
monitoring efforts as well as to provide valuable information on degradation in specific 
areas. Remote sensing, due to its potential to estimate biophysical parameters with 
detention of temporal and spatial variability, becomes a powerful technique. These, in 
combination with field sampling methods may provide detailed estimations of forestry 
parameters. In forest ecosystems, estimation of biophysical parameters has been made by 
a succession of methods. However, the extension of these estimations in space and time 
has obvious limitations especially in highly variable ecosystems such as miombo. 
Moreover, the network of field plots across the miombo ecoregion is not sufficient enough 
to cover it, which imposes further limitations in the use of remote sensing for biomass 
estimation. 
In this section we highlight the uses of remote sensing techniques to derive biomass 
information in miombo. Emphasis is given to optical remote sensing techniques because 
the majority of measurements have been concentrated on these techniques. Radar and 
microwave remote sensing in miombo have, in the last decade, become a useful source of 
information for biomass estimation, but has been barely applied in the  
region. Therefore, radar and microwave remote sensing are also briefly discussed in this 
section.  
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3.1 Remote sensing of biomass using optical sensors  
Passive optical remote sensing, the process of imaging or sampling the interactions between 
electromagnetic energy and matter at selected wavelengths, has the ability to monitor 
terrestrial ecosystems at various temporal and spatial scales and has been widely tested for 
land cover mapping and various forestry applications (Patenaude et al., 2004).  
Remote sensing of vegetation depends on the optical properties of plant tissues (foliage, 
wood, litter, etc.) that determine the landscape-scale reflectance of ecosystems (Asner, 2004; 
Jensen, 1996). Thus, plant species composition, stand structures and associated canopy 
shadows and vegetation vigor (leaves, branches and bark) are important factors affecting 
vegetation reflectance (Lu, 2001). Figure 4 is an example of the spectral signatures of two 
different types of vegetation in comparison with sand and water. In this example is clear the 
discrepant reflectance of vegetation and other targets. The shape of the curves of the two 
vegetation types is similar, but they have dissimilar percent of reflectance, which is due to 
differences in vegetation structure and composition. 
 

 
Fig. 4. Differential spectral signatures of vegetation, sand and water (adapted from 
http://rst.gsfc.nasa.gov/Intro/Part25.html). The Red Edge represents the basis for optical 
remote sensing of vegetation. 

The basis for satellite measurements of vegetation from optical sensors is the differential 
reflection of light in the visible (0.4 to 0.7 μm) and Near-Infrared (NIR~0.8 μm) regions of the 
electromagnetic spectrum originated by the various leaf components (chlorophylls and β-
carotene) and structure. For instance, chlorophyll strongly absorbs light in the red (~0.6 μm) 
while leaf’s structural components highly reflect in the NIR (Jensen, 1996). In the visible part of 
the spectrum (Figure 4) the dominant signal detected by the sensor is the direct scattering. 
Multiple bounces of photons from the forest back to the sensor are small in comparison to 
direct scattering because the chlorophyll and other leaf pigments within the forest foliage are 
highly absorbing at visible wavelengths. At NIR wavelengths, however, the foliage is more 
transparent and multiple scattering becomes more important. Hence, this striking difference in 
light reflectance, known as the red edge (Figure 4), is sensitive to vegetation changes over a 
wider range of vegetation densities (Jensen, 1996; Shugart, et al., 2010). 
Within the same forest stand the sensor measures the aggregate reflectance as a function of 
the wavelength of the tree canopies and understory within a pixel. The reflectance changes 
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seasonally with phenological changes in vegetation. For example in the dry and sub-humid 
miombo most species lose their leaves for 4-5 months of the year in response to the dry 
season. The associated spectral reflectance spectrum within a year is exploited to extract 
information on woodland structure, type, age, condition, biomass, leaf area, and even 
photosynthetic rate (Shugart et al., 2010).  
Differential vegetation reflectance has resulted in the development of numerous vegetation 
indices and biomass estimation techniques that utilize multiple measurements in the visible 
and NIR. Vegetation indices (VIs) are dimensionless metrics that function as indicators of 
relative abundance and activity of green vegetation, often including LAI [most VIs saturate 
at around LAI = 4, Huete et al. (2002)], percentage green cover, chlorophyll content, green 
biomass, and Absorbed Photosynthetically Active Radiation (APAR) (Jensen, 1996). The first 
true VI was the Simple Ratio (eq. 1.) described by Birth & McVey (1968). 
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Where ρNIR is the reflectance in the NIR wavelength and ρRed is the reflectance in the red 
wavelength.  
Rouse et al. (1974) developed what is now known as the Normalized Vegetation Index the 
Normalized Differentiated Vegetation Index (NDVI), a satellite metric used to detect 
changes in pixel-scale vegetation greenness (Asner, 2004). 
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(eq. 2. 17 Symbol definitions are the same as in eq. 1.) NDVI is broadly correlated with both 
chlorophyll and water content of canopies and consequently is linked both theoretically and 
experimentally to LAI, the Fraction of Photosynthetically Active Radiation (fPAR) and the 
biomass of plant canopies (Gamon et al., 1995; Sellers, 1985). SR and NDVI have been further 
developed and improved in other related vegetation indices such as the Soil Adjusted 
Vegetation Index (SAVI, Huete, 1988; Huete & Liu, 1994) and Enhanced Vegetation Index 
presented in eq. 3 (EVI, Huete et al., 2002).  
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Where C1 = 6.0, atmosphere resistance red correction coefficient; C2 = 7.5, atmosphere 
resistance blue correction coefcient; L = 1.0, canopy background brightness correction 
factor; G = 2.5, gain factor. Given that EVI considers the canopy background (L) and 
reflectance in the blue it is more sensible to variability of canopy structure. 
These indexes might be calculated with any sensor [ETM+, MODerate Resolution Imaging 
Spectroradiometer (MODIS)], except for EVI, which is calibrated exclusively for MODIS 
data.  
Most optical remote sensing techniques for biomass estimation essentially explore the 
relationship between field measurements of vegetation parameters with spectral VIs to 
estimate large-scale distribution of biomass. The results vary according to the woodland 
structure and diversity derived from site-specific conditions such as the disturbance regime 
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seasonally with phenological changes in vegetation. For example in the dry and sub-humid 
miombo most species lose their leaves for 4-5 months of the year in response to the dry 
season. The associated spectral reflectance spectrum within a year is exploited to extract 
information on woodland structure, type, age, condition, biomass, leaf area, and even 
photosynthetic rate (Shugart et al., 2010).  
Differential vegetation reflectance has resulted in the development of numerous vegetation 
indices and biomass estimation techniques that utilize multiple measurements in the visible 
and NIR. Vegetation indices (VIs) are dimensionless metrics that function as indicators of 
relative abundance and activity of green vegetation, often including LAI [most VIs saturate 
at around LAI = 4, Huete et al. (2002)], percentage green cover, chlorophyll content, green 
biomass, and Absorbed Photosynthetically Active Radiation (APAR) (Jensen, 1996). The first 
true VI was the Simple Ratio (eq. 1.) described by Birth & McVey (1968). 
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Where C1 = 6.0, atmosphere resistance red correction coefficient; C2 = 7.5, atmosphere 
resistance blue correction coefcient; L = 1.0, canopy background brightness correction 
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reflectance in the blue it is more sensible to variability of canopy structure. 
These indexes might be calculated with any sensor [ETM+, MODerate Resolution Imaging 
Spectroradiometer (MODIS)], except for EVI, which is calibrated exclusively for MODIS 
data.  
Most optical remote sensing techniques for biomass estimation essentially explore the 
relationship between field measurements of vegetation parameters with spectral VIs to 
estimate large-scale distribution of biomass. The results vary according to the woodland 
structure and diversity derived from site-specific conditions such as the disturbance regime 
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and seasonality. Thus, we do not attempt to generalize the relationships between field 
measurements and VIs for miombo, but give some examples that reflect this variation.  
Ribeiro et al. (2008)b worked in northern Mozambique in an area where fires occur annually 
during the dry season with higher incidence in the eastern side, where elephant density is 
also higher. In this area, the combination of fires and elephants imposes high variability of 
miombo structure (Ribeiro et al., 2008a). Under these conditions, the authors found relatively 
low but significant relationships between woody biomass,Leaf Area Index (LAI) measured 
in the field and, NDVI and SR derived from Landsat ETM+ [NDVI (rbiomass =0.30, rLAI = 0.35; 
p < 0.0001) and SR (rbiomass = 0.36, rLAI = 0.40, p < 0.0001)].  
Huete et al. (2002) found that the NDVI saturated in high biomass regions like the Amazon 
(150 Mg/ha or over 15 years of age) while the EVI was sensitive to canopy variations. NDVI 
(r=0.15-0.25) and SR (0.12-0.24) showed to be weakly correlated with biomass in dense 
stands, while the correlation coefficients were considerable (rNDVI=0.46 and rSR=0.50) for the 
less dense site. Recently a study conducted in the savannas and woodlands of the Amazon 
Basin detected quite good relationships between field biomass and MODIS derived NDVI 
with an r2=0.45 (Saatchi et al., 2007). 
A major constraint on the use of spectral VIs in dry and sub-humid ecosystems for 
vegetation studies, is that VIs are likely to underestimate live biomass due to their 
insensitivity to nonphotosynthetic vegetation (NPV) and sensitivity to low organic matter 
content in soils (Okin & Roberts, 2004). The effect of NPV is particularly important in the 
dry miombo where tree density is low (sometimes less than 10%) and disturbances may 
create several open patches in which NPV (such as litter, dry woody material, dry grass in 
the dry season) and soils are a significant component of the surface. In these areas, the effect 
of the exposed soil may be pronounced, while the low organic matter content on soils makes 
them bright and mineralogically heterogeneous. 
The combination of those factors, creates vertical and horizontal structural differences that 
may not be depicted using VIs techniques, especially when using low to medium resolution 
sensors (e.g. 30-m Landsat, 250-m and greater MODIS, etc). In this situation, high spatial 
resolution optical sensors such as 1-4 m IKONOS, 2.5-10 m SPOT-5, among others, can 
detect variations in the spatial distribution of biomass density. This new generation of 
sensors also offer systematic observations at scales ranging from local to global and 
improves the monitoring of inaccessible areas (Rosenqvist et al., 2003). However, these high 
spatial resolution instruments are only available for small geographic areas in the miombo 
ecoregion and thus they are not suitable for large-scale high-resolution ecological 
assessments in this ecosystem. 
The use of Spectral Mixture Analysis (SMA) has become an important technique to 
overcome the spatial and temporal heterogeneity in miombo. SMA uses a linear mixture 
technique to estimate the proportion of each ground’s pixel area that belongs to different 
cover type (Okin & Roberts, 2004). SMA is based on the assumption that spectra of 
materials in a pixel combine linearly with proportion given by their relative abundance. 
For example, an NPV value of 0.50 from SMA indicates that woody tissues, surface litter 
and other dead vegetation occupy 50% of the surface area of the pixel. A combined 
spectrum can thus be decomposed in a linear mixture of its spectral endmembers, spectra 
of distinct material within the pixel. The weighting coefficients of each spectral 
endemember, which must sum up to 1, are then interpreted as the relative area occupied 
by each material in a pixel.  
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Fractional cover of photosynthetic vegetation (PV), NPV and bare substrate are the principal 
determinants of ecosystem composition, physiology, structure, biomass and biogeochemical 
stocks. These also capture the biophysical impact of disturbances caused by both natural 
and human drivers (Asner et al., 2005). In this case, SMA provides the fraction of per-pixel 
reflectance that is accounted for by the selected target. Results from SMA can be directly 
evaluated in field campaigns, including endmember abundance change over time. The 
temporal or spatial change in the NPV fraction can provide a quantitative measure of 
disturbance (Chambers et al., 2007). 
Up to date SMA has not been applied to miombo but due to its capacity to proportionally 
decompose several endmembers in a pixel it is a promising remote sensing technique in 
this ecosystem given the spatial heterogeneity referred previously. Asner et al. (2005) 
applied SMA for the Brazilian Amazon and bordering Cerrado (an ecosystem structurally 
similar to miombo) to estimate vegetation attributes for a large-scale and multi-temporal 
Landsat ETM+ scene spanning the years 1999-2001. Their results showed that PV 
fractional covers for the cerrado range from 74% to 85% depending on the degree of 
woody cover, while the NPV cover varied from ~9% and 12% and bare soil between 2% 
and 10%. The study was able to demonstrate the capacity of this technique to separate 
vegetation types (forests from savannas) as well as different kinds of disturbances 
(logging, grazing, etc).  
In a particular interesting application Asner et al. (1998) applied SMA to invert a 
geometrical-optical model to estimate overstory stand-density and crown dimensions. The 
study applied SMA to a Landsat image to provide estimates of woody cover, herbaceous, 
bare soil and shade fractions. The estimated cover was then used to unmix the contribution 
of woody cover and herbaceous canopies to AVHRR multiangle reflectance data. The 
angular reflectance was used with the radiative transfer (RT) model inversions to estimate 
LAI, PAR and carbon uptake. 
There are two drawbacks of biomass estimation using optical remote sensing techniques: (i) 
eld plots are rarely designed to be related to spaceborne data and (ii) saturation at dense 
leaf canopies restricts estimates to low biomass levels when passive sensor data is used 
(Gibbs et al., 2007). Also, biomass is a three-dimension feature of vegetation. However, the 
ability of optical sensors is limited to two dimensions only, i.e. the upper layers of 
vegetation (Anaya et al., 2009). Remote-sensing systems relying on optical data (visible and 
infrared light) are further limited in the tropics by cloud cover. In view of these drawbacks 
microwave data has become an attractive technique to estimate biomass worldwide and in 
miombo in particular.  

3.2 Radar remote sensing of biomass  
The term radar remote sensing is used to denote the active remote sensing where 
microwave or radio frequency radiation is transmitted to the surface. Microwaves have 
higher wavelengths (3 to 75 cm for vegetation studies) than solar radiation (400 to 2,500 nm) 
that is used by optical remote sensing techniques. Unlike optical sensors, the microwave 
energy penetrates clouds, rain, dust, or fog and allows collection of images, regardless of 
solar illumination, so that the radar images can be generated at any time under the most 
varied weather conditions. The microwaves penetrate into the forest canopy and scatter 
from large woody components (stems and branches) that constitute the bulk of biomass and 
carbon pool in the forested ecosystems.  
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The microwaves in a specific wavelength and polarization is emitted from the sensor to the 
Earth, where it interacts with vegetation (and other objects) and is then backscattered to the 
sensor. Three different bands are commonly used in radar remote sensing of vegetation: P-
band (30 cm) L-band (λ=23.5 cm), C-band (λ=5.8 cm) and X-band (λ=3.1 cm). The sensitivity 
of backscatter measurements at different wavelengths and polarization (horizontal and/or 
vertical) to the size and orientation of woody components and their density makes the radar 
sensors suitable for direct measurements of aboveground woody biomass (carbon stock) 
and structural attributes such as volume and basal area.  
Radar remote sensing has been widely used to map vegetation worldwide, but it is not 
commonly used in miombo. But, given the spatial variability of vegetation in this ecosystem, 
radar is a promising technique to estimate biomass. Another advantage of the radar system 
for miombo is its insensitivity to weather conditions, making wet season measurements 
possible. During that time of the year some areas are inaccessible. The constraint though is 
that radar imagery does not cover large areas in the miombo region nor it is being collected 
frequently, causing difficulties for large-scale frequent monitoring of biomass.  
Pierce et al. (2003) refer that Synthetic Aperture Radar (SAR) is known to have a response 
directly related to the amount of living material that it interacts with. The strong 
relationship between field biomass and radar image intensity and the development of 
approaches to estimate aboveground biomass represents one of the unique applications of 
SAR data in ecology (Kasischke et al., 2004). SAR sensor offers the potential of rapid, 
accurate, high resolution and low cost mapping of the lower biomass density vegetation of 
Africa. Moreover, the 46-day repeat cycle of ALOS/PALSAR allow sufficient images to be 
captured during the year to negate any effects of seasonality and soil moisture, and allow 
the monitoring of landscapes for any changes in aboveground biomass (Mitchard et al., 
2009).  
Interferometric SAR (InSAR), which uses the phase information in signals received taken at 
multiple times to derive very precise measurements of movements on Earth, has been 
widely used. Recent innovations in orbital designs for repeat pass radar interferometry 
(InSAR) will allow the sensor to measure height of forest and provide a vertical dimension 
for accurately resolving the vegetation biomass of forests globally (Chambers et al., 2007).  
The most basic approach to estimating aboveground biomass in forests is to develop a 
multiple-linear regression equation that estimates total biomass as a function of a 
combination of SAR channels or ratio of different channels (Kasischke et al., 2004). For 
example Pierce et al. (2003) studied the relationship between radar L-band (25 cm 
wavelength) and C-band (5.2 cm wavelength) combined and separately, in the regrowth 
forest of the Amazon Basin. The study found that L- and C-band together improve the 
accuracy compared to using only one frequency channel. In a recent study Saatchi et al. 
(2007) found high correlation between radar L-band and field biomass (r2=0.68) in 
woodlands and savannas of the Amazon Basin. The authors were able to produce a multiple 
linear regression model that includes microwave and optical data to estimate the biomass of 
this vegetation type.  
Ribeiro et al. (2008)b correlated contemporary 30-m C-band (5.8 cm) RADARSAT backscatter 
and field woody biomass and LAI data (rbiomass= 0.65 and rLAI=0.57, p<0.0001) to, in 
combination with optical data (30-m Landsat ETM+), produce the aboveground biomass 
map for the Niassa National Reserve (NNR) in northern Mozambique. The results were 
satisfactory but expected to underestimate biomass in dense woodlands due to radar 
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saturation at high biomass levels. The relationship between radar and field biomass in this 
area was further explored by Mitchard et al. (2009) by using ALOS PALSAR, an L-band 
sensor. The authors also studied other forested areas in Africa (Cameroon and Uganda). For 
all sites they found an improved relationship between field biomass and HV-backscatter 
(r2biomass=0.61-0.76, p<0.0001), but with a clear saturation between 150-200 Mg/ha of 
biomass. Biomass prediction was done with fairly good accuracy of ±20% for plots with less 
the 150 Mg/ha. According to the authors these are partly because L-band SAR does not 
respond directly to aboveground biomass, but to aspects of vegetation structure, partially 
due to spatial variability in structure and partially due to radar calibration 
aorthorectification and field estimation errors propagating through the analysis. Also, 
backscatter responds differently to differing soil and vegetation moisture conditions, and 
the surface topography, adding to observed prediction errors. Despite these factors the 
analysis was able to predict, with fairly good accuracy, aboveground biomass from radar 
data for very different in vegetation types. This finding suggests that utilization of L-band 
data should be essential for projects involving the mapping and monitoring of woodland 
and savanna biomass, thus having important implications for carbon-credit projects, such as 
those under proposed REDD schemes (Mitchard et al., 2009). The comparison of Ribeiro et al. 
(2008)b and Mitchard et al. (2009) study for Niassa National Reserve in northern 
Mozambique indicate clearly that L-band is an improvement over C-band for biomass 
prediction in the low biomass miombo in this area.  
Light Detection and Ranging (LiDAR) measurements provide the most direct estimates of 
canopy height and the vertical structure of canopy foliage. Together, these measurements 
enable ecologists to quantify the 3D distribution of vegetation at a landscape scale, to 
understand processes of carbon accumulation and forest succession and to improve the state 
of ecosystem models (Chambers et al., 2007). LiDAR systems incorporate a laser altimeter to 
measure accurately the distance from the sensor to the canopy top and bottom elevations. 
The energy returned from distances between the canopy and ground provides evidence of 
the vertical distribution of sub-canopy strata. One application of LiDAR technology has 
been to map variations in canopy height with meter-level accuracy. Canopy heights can then 
be translated into estimates of aboveground biomass based on the allometric relationships 
between height, basal area and biomass (Shugart et al., 2010). This airborne system has not 
been used in Miombo woodlands (Shugart et al., 2010). 
Other approaches for biomass estimation from radar sensors develop regression equations to 
use different channels of radar imagery for average height and basal diameter estimation and 
then use these parameters to estimate biomass (Kellndorfer et al., 2004; Simard et al., 2006). 
Kellndorfer et al. (2004) used the Shuttle Radar Topography Mission (SRTM) data in 
conjunction with a National Elevation Dataset (NED) to estimate pine canopy height in 
Southeast Georgia, USA. The study indicates that SRTM can be successfully correlated via 
linear regression modeling with ground-measured mean canopy height (r2=0.79-0.86). Mean 
canopy height can a posteriori be used in allometric equation to estimate landscape biomass. In 
a recent study Simard et al. (2006) calibrated the SRTM data using Light Detection and Range 
(LiDAR) data and high resolution Digital Elevation Model (DEM) for the mangrove forests in 
Everglades National Park. The resulting mangrove tree height map (error 2.0 m) was then 
used in combination field data to map the spatial distribution of biomass for the entire area. 
This kind of approach has not been used yet for the miombo or similar woodlands but the 
results above indicate that the technique can be applied to miombo with some caution, due to 
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Everglades National Park. The resulting mangrove tree height map (error 2.0 m) was then 
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This kind of approach has not been used yet for the miombo or similar woodlands but the 
results above indicate that the technique can be applied to miombo with some caution, due to 
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its heterogeneity. This may imply for example that the canopy height estimation may only 
apply to canopy species, while the understory is not completely measured. This should be 
considered a topic of research for miombo, before any conclusion is raised.  
Radar and LiDAR sensors provide complementary information about the forest structure. 
LiDAR is sensitive to eaf material and radar to structural features, which can be combined to 
increase accuracy of biomass and the forest structure estimates (Figure 5). However, the 
signatures have some level of commonality because of biophysical and structural nature of 
forest stands. The vertical distribution of reflective surfaces that can be inferred from LiDAR 
reveals the bole and branch structure supporting the leaves within a near vertical volume of 
the vegetation. LiDAR sensors measure this vertical profile by sampling the forest stand 
along its orbital tracks. Radar provides imaging capability to estimate forest height through 
InSAR configuration or forest volume and biomass through polarimetric backscatter power. 
However, the vegetation signature from radar measurements is from a slanted volume and 
is sensitive to both vertical and horizontal arrangement of vegetation components (leaves, 
branches, and stems). The combination of the two sensors has the capability of providing the 
vegetation three‐dimensional structure at spatial resolutions suitable for ecological studies 
(25–100 m). However, there are limited studies to explore the fusion of the two 
measurements because of the lack of data over the same study areas as well as well-
developed ground data (Shugart et al., 2010). According to the authors this will be an 
ongoing research area for several years to come.  
 

 
Fig. 5. Radar imager maps of observed radar energy returned at various polarization 
transmit-receive combinations (HH, HV, VV, where H is horizontal polarization and V is 
vertical polarization) which are related to the volume and biomass of forest components. 
The multibeam lidar sampler measures the vertical variation in the strength of the scattered 
laser signal, which is related to forest vertical structure profile and biomass. The two signals 
are combined using “fusion” algorithms to improve the accuracy of radar estimates of 
biomass and to extend lidar measurements of structure in both space and time (Source: 
Shugart et al., 2010). 
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This technique is promising in estimating biomass and other parameters for miombo, due 
its high spatial variability associated to disturbances across the region. Relatively to 
herbivory by elephants (tree debarking and debranching) and fires (killing of juvenile 
trees and natural regeneration, soil degradation, killing of adult debarked trees, etc.) data 
fusion from these instruments may have a significant contribution in addressing the 
impacts of these disturbances on biomass production in the region. The immediate result 
will be an improved an informed management of the woodlands in particular for 
conservation areas.  
Future satellite missions plan to make frequent measuring of standing vegetation feasible. 
Houghton et al. (2009) laid out the required specications for these and other future satellite 
missions to signicantly reduce the nowadays existing uncertainties. They claimed, that in 
order to reduce the uncertainty in the land-atmosphere uxes to those of the next uncertain 
term (which is the net carbon uptake of the ocean with an uncertainty of ± 18%) a 
measurement error of less than 2 MgC (or an aboveground biomass uncertainty of about 4 
Mg) per ha is required. It is furthermore argued, that disturbances (deforestation, fires and 
herbivory) are patchy on spatial scales of 100 m and less and only if remote sensing is 
operating on a similar scale, one can clearly identify changes in carbon storage over time 
and minimize sampling errors due to averaging (Kohler & Huth, 2010). 

4. Remote sensing of biomass in miombo woodlands: Opportunities and 
limitations for research 
Miombo display complex vegetation patterns in which dense vegetation alternates with 
sparsely populated or bare soil in response to environmental and disturbance (deforestation, 
fires and herbivory) factors. Low vegetation cover, in some places, and small-scale 
variations in others, can produce unpredictable errors in the quantication of biophysical 
and ecological properties of the vegetation. Ignoring this spatial variation can produce 
inaccurate results, even in fairly homogeneous environments (Aubry & Debouzie, 2001 cited 
by Hufkens et al., 2008; Haining, 1990). 
The use of remote sensing for estimations of vegetation biomass has proved to be of great 
importance to fill up data gaps and to estimate large-scale variations, especially in low 
accessible places. The technique lacks of precision when compared to detailed forest 
inventories. But, for miombo the lack of detailed field data and uncertainty of biomass 
stocks associated to disturbances, make remote sensing one important technique to address 
temporal and spatial variations in biomass.  
Although repeated satellite imaging has improved in resolution over the years, it is still 
limited in detecting fine patterns within savanna vegetation. Some forms of remote sensing, 
such as the sub-meter resolution IKONOS, GeoEye and QUICKBIRD satellite sensors, allow 
individual trees to be recognized. Other, such as microwave remote sensing from radar 
(RADARSAT, ALOS-PALSAR, JERS-1, etc.) and LiDAR provide a three dimensional 
representation of vegetation, which is an improvement over optical remote sensing. 
However, both low-resolution optical and microwave scenes are currently too expensive for 
large-scale or regional studies and they require a substantive amount of processing 
capacities. These represent some of the major limitations for its use in the southern Africa 
region. 
Discriminating between subtypes of savanna vegetation, even simply looking at structural 
differences, has proved a taxing undertaking, especially in places where field data is limited. 
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region. 
Discriminating between subtypes of savanna vegetation, even simply looking at structural 
differences, has proved a taxing undertaking, especially in places where field data is limited. 



 
Remote Sensing of Biomass – Principles and Applications  92

Thus, there is a pressing need to intensify studies calibrating satellite with field 
measurements, albeit the low accessibility of some areas in the miombo ecoregion. In 
addition to spatial measurement, it has long been clear that temporal surveys at varied time 
intervals are required, particularly in biomes that are highly dynamic such as miombo 
(Furley, 2010). 
The problem of biomass retrieval in miombo is compounded by the fact that senescent and 
dead material (also known as NPV) associated with phenology and disturbances can be a 
major component of the total surface cover. These three factors play a major role in both 
abiotic and biotic dynamics of the miombo as explored in Section 2 of this chapter. NPV can 
represent an important carbon pool in this ecosystem. Many common methods for 
estimating vegetation cover and biomass use VIs that are insensitive to the presence of NPV. 
Thus, SMA, data fusion among others may be more appropriate techniques to address 
spatial and temporal variations of biomass in miombo, but they still need to be adapted and 
calibrated for this ecosystem.  
Addressing large-scale and temporal variations of biomass in the different compartments of 
miombo (PV, NPV, soils and underground) has to be enhanced in the near future due to 
their varied contribution to global emissions of greenhouse gases - Carbon dioxide in 
particular. For example, NPV is the main source of fuel-load for fires, which causes large 
amounts of carbon to be lost in the form of carbon dioxide to the atmosphere. Because of 
this, the contribution of miombo to global climate changes may be significant but not 
completely understood yet.  
The southern African region is embarking in the carbon market under the Kyoto Protocol 
and REDD schemes of the UNFCCC. The ability to negotiate in this market and gain a better 
position is dependent on the capacity of a country (or region) to estimate carbon stocks with 
minimal errors. Thus, the advance of remote sensing measurements of biomass from space 
is an important step towards that achievement (Houghton, 2005 cited by Houghton, 2010). 
However, it is important to acknowledge that most remote sensing techniques for 
measurements of biomass usually miss belowground biomass and soil carbon in tropical 
and sub-tropical regions, which may hold a representative fraction of carbon in the whole 
system. Thus, future research should focus on the use of microwave radar remote sensing 
(P-Band and higher) or optical techniques such as SMA and data fusion, that are able to 
differentiate carbon pools.  

5. Conclusions 
Remote sensing of biomass in miombo faces the following constraints: 
1. Biomass variations at scales of less than 25 m associated with season and disturbances 

(fires, herbivory and slash and burn agriculture); 
2. Limited network of field plots due to low accessibility of some areas; 
3. Lack of contemporary field and remote sensing data; 
4. Limited accessibility to improved sensors (high resolution optical, microwave and 

LiDAR data). 
However there are some opportunities that may be explored to improve data generation 
and analysis, thus a better understanding of this ecosystem: 
1. Improved methods to estimate biomass in different compartments of the ecosystem 

(SMA, data fusion, etc.); 
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2. There exist few sites in the region with detailed data on biomass variations that can be 
used to test improved remote sensing techniques. For example, permanent sample plots 
exist in almost all miombo countries. These plots are being frequently evaluated for 
several parameters including biomass and carbon in different compartments;  

3. There are a growing number of remote sensing specialists in the region. In addition, 
several networks (miombo network, safnet, saccnet, among others) are dedicated to 
improve remote sensing techniques and data sharing. These involve not only regional 
but also international senior specialists thus representing a good way of data sharing, 
improve techniques, establish a link between research and decision making, etc. 

In face of the limitations and opportunities for the remote sensing of biomass in miombo, 
there are five research areas of interest in the region that can benefit from the advance of 
remote sensing techniques. The core areas presented below are general and can 
accommodate several research topics according to site particularities. The research themes 
are: 
1. Land use and land cover changes and its effects on miombo biodiversity and biomass; 
2. Improved techniques for spatial and temporal variations of biomass and biodiversity; 
3. Contribution of miombo to the global changes. This may include several topics such as: 

carbon stock assessment for different ecosystem compartments (vegetation, soils, NPV, 
belowground); fire regimes and management; vulnerability and adaptation to climate 
change. 

4. Biomass changes and effects on the availability of resources to human population; 
5. Knowledge Management: from science to policy. 
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Thus, there is a pressing need to intensify studies calibrating satellite with field 
measurements, albeit the low accessibility of some areas in the miombo ecoregion. In 
addition to spatial measurement, it has long been clear that temporal surveys at varied time 
intervals are required, particularly in biomes that are highly dynamic such as miombo 
(Furley, 2010). 
The problem of biomass retrieval in miombo is compounded by the fact that senescent and 
dead material (also known as NPV) associated with phenology and disturbances can be a 
major component of the total surface cover. These three factors play a major role in both 
abiotic and biotic dynamics of the miombo as explored in Section 2 of this chapter. NPV can 
represent an important carbon pool in this ecosystem. Many common methods for 
estimating vegetation cover and biomass use VIs that are insensitive to the presence of NPV. 
Thus, SMA, data fusion among others may be more appropriate techniques to address 
spatial and temporal variations of biomass in miombo, but they still need to be adapted and 
calibrated for this ecosystem.  
Addressing large-scale and temporal variations of biomass in the different compartments of 
miombo (PV, NPV, soils and underground) has to be enhanced in the near future due to 
their varied contribution to global emissions of greenhouse gases - Carbon dioxide in 
particular. For example, NPV is the main source of fuel-load for fires, which causes large 
amounts of carbon to be lost in the form of carbon dioxide to the atmosphere. Because of 
this, the contribution of miombo to global climate changes may be significant but not 
completely understood yet.  
The southern African region is embarking in the carbon market under the Kyoto Protocol 
and REDD schemes of the UNFCCC. The ability to negotiate in this market and gain a better 
position is dependent on the capacity of a country (or region) to estimate carbon stocks with 
minimal errors. Thus, the advance of remote sensing measurements of biomass from space 
is an important step towards that achievement (Houghton, 2005 cited by Houghton, 2010). 
However, it is important to acknowledge that most remote sensing techniques for 
measurements of biomass usually miss belowground biomass and soil carbon in tropical 
and sub-tropical regions, which may hold a representative fraction of carbon in the whole 
system. Thus, future research should focus on the use of microwave radar remote sensing 
(P-Band and higher) or optical techniques such as SMA and data fusion, that are able to 
differentiate carbon pools.  

5. Conclusions 
Remote sensing of biomass in miombo faces the following constraints: 
1. Biomass variations at scales of less than 25 m associated with season and disturbances 

(fires, herbivory and slash and burn agriculture); 
2. Limited network of field plots due to low accessibility of some areas; 
3. Lack of contemporary field and remote sensing data; 
4. Limited accessibility to improved sensors (high resolution optical, microwave and 

LiDAR data). 
However there are some opportunities that may be explored to improve data generation 
and analysis, thus a better understanding of this ecosystem: 
1. Improved methods to estimate biomass in different compartments of the ecosystem 

(SMA, data fusion, etc.); 

Remote Sensing of Biomass in  
the Miombo Woodlands of Southern Africa: Opportunities and Limitations for Research 93 

2. There exist few sites in the region with detailed data on biomass variations that can be 
used to test improved remote sensing techniques. For example, permanent sample plots 
exist in almost all miombo countries. These plots are being frequently evaluated for 
several parameters including biomass and carbon in different compartments;  

3. There are a growing number of remote sensing specialists in the region. In addition, 
several networks (miombo network, safnet, saccnet, among others) are dedicated to 
improve remote sensing techniques and data sharing. These involve not only regional 
but also international senior specialists thus representing a good way of data sharing, 
improve techniques, establish a link between research and decision making, etc. 

In face of the limitations and opportunities for the remote sensing of biomass in miombo, 
there are five research areas of interest in the region that can benefit from the advance of 
remote sensing techniques. The core areas presented below are general and can 
accommodate several research topics according to site particularities. The research themes 
are: 
1. Land use and land cover changes and its effects on miombo biodiversity and biomass; 
2. Improved techniques for spatial and temporal variations of biomass and biodiversity; 
3. Contribution of miombo to the global changes. This may include several topics such as: 

carbon stock assessment for different ecosystem compartments (vegetation, soils, NPV, 
belowground); fire regimes and management; vulnerability and adaptation to climate 
change. 

4. Biomass changes and effects on the availability of resources to human population; 
5. Knowledge Management: from science to policy. 
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1. Introduction 
Interest in phytoplankton diversity has increased in recent years due to its possible role in 
regulating climate by production and consumption of greenhouse gases. For example, gases 
can diffuse across the air-sea interface, many of which are synthesized and emitted by 
certain phytoplankton species or groups. It has been suggested that these variations play an 
important role in moderating our climate through backscattering of solar radiation and 
within cloud formation. Climate will ultimately control fundamental environmental 
conditions that regulate algal growth, including water temperature, nutrients, and light and 
thus can be expected to result in changes in the species composition, trophic structure and 
function of marine ecosystems. In the past several decades, the scientific community has 
witnessed changes in phytoplankton distribution.   
The marine phytoplankton community is diverse and includes on the order of tens of 
thousands of phytoplankton species (Jeffrey & Vesk 1997).  On regional scales, phytoplankton 
biogeography is controlled by the physical, chemical, and meteorological characteristics that 
force ecosystem dynamics.  There is a renewed impetus for new technologies to provide 
information about the phytoplankton community composition over global scales.  Real-time, 
large-scale taxonomic information, if available, could open up new possibilities and 
approaches geared toward monitoring highly-dynamic oceanic processes and phenomena 
such as algal blooms (including harmful algal blooms), frontal structures, eddies, and episodic 
events (storms, river outflow, and wind mixing).  Phytoplankton diversity information 
provides a valuable quantitative database for structuring sophisticated predictive models that 
includes taxonomic phytoplankton community information such as size spectra, probability 
distribution of taxa, and upper trophic level estimations including fisheries productivity 
(Cheson & Case 1986, De Angelis & Waterhouse 1987).   There have been several reviews and 
books written on phytoplankton community structure, dynamics, and biogeochemistry as 
measured by ocean color (Mitchell 1994, Martin 2004, Mueller et al. 2004, Miller et al. 2005, 
Richardson and LeDrew 2006, Longhurst 2007, Robinson 2010). 
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Fig. 1. Distribution of Nitzschia americana (solid square), Nitzschia bicapitata (open circle) and 
Nitzschia pseudonana (open triangle) from shipboard observations.  Modified from Hasle 
(1976).  These data were compiled over several years in order to understand their global 
distribution. 

Approaches have been proposed for remote sensing detection of phytoplankton functional 
types (PFTs) and may be classified as direct (defined as they exploit optical signatures of 
phytoplankton that may be detected by sensors on satellite platforms) or indirect (e.g. 
exploit relationships between chlorophyll-a concentration and functional types).  Both 
approaches have their advantages and limitations. Direct methods are limited to few 
phytoplankton groups that possess optical signatures distinct from other constituents in 
seawater. Indirect methods exploit well-established algorithms for retrieval of chlorophyll-a 
concentrations from ocean color satellite products in combination with phytoplankton 
community structure, which is validated by in situ observations.  Optical sensors have 
ushered in a new capability of remotely sensing the ocean synoptically compared with in 
situ data collected on board ships, which may take years to compile but is is capable of 
exploring ancillary properties inaccessible to remote sensing (Hasle 1976, Figure 1).   Early 
shipboard studies have demonstrated the complexity of the marine ecosystem and how 
distribution, function, and physiology are linked closely to the biochemistry of carbon, 
nitrogen, sulfur, and other elements in the sea.  This chapter discusses how information on 
PFTs may be derived from a combination of satellite data and in situ observations. It is 
anticipated that developing an understanding of the large-scale distributions and variability 
in PFTs will contribute to various ecological problems of the day of paramount economic 
importance, such as providing an ecological basis for fisheries fluctuations and occurrence 
of harmful algal blooms.  Future satellite sensors with improved spectral resolution or 
temporal resolution holds promise for improving the accuracy of retrieval of PFTs and 
understanding their role in the ecology of the ocean.   
Global patterns of diversity for the majority of marine organisms are virtually 
uncharacterized (Worm et al. 2005).  For planktonic organisms, which form the base of the 
marine food web, global ocean geographic distribution of diversity has only been 
characterized for planktonic foraminifera (Rutherford et al. 1999).  Marine biodiversity 
patterns show a worldwide consistency despite differences in environmental conditions of 
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various oceanographic regions  (Irigolen et al. 2004).   Marine phytoplankton diversity, 
similar to terrestrial vegetation, is described as a uni-modal function of phytoplankton 
biomass with an occurrence of maximum diversity at intermediate levels of phytoplankton 
biomass  (sub-bloom concentrations) and low diversity during massive blooms (Irigolen et 
al. 2004).   Similar to terrestrial vegetation, phytoplankton diversity is a unimodal function 
of phytoplankton biomass, with maximal diversity at intermediate levels of phytoplankton 
biomass and minimum diversity during massive blooms. 
 

 
Fig. 2. Ratios of diatoxanthin and carotenoids (to chlorophyll-a) near the Delmarva 
Peninsula against the SeaWiFS 10 year average.  Differences between the values and the 
SeaWiFS average emphasize that the phytoplankton community is structured differently 
from the bulk community (e.g. chlorophyll-a). 

Moreover, the diversity–productivity relationship of oceanic plankton is similar to the 
classical relationship observed in early shipboard collections of phytoplankton. The results 
of PFT distribution return a significantly different pattern compared with the 10-year 
SeaWiFS average, underscoring that underlying biological processes produce a complex 
ecological food web matrix in the ocean (Figure 2). 
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Fig. 3. Monthly SeaWiFS data for 2004 interpreted for phytoplankton, size classes: pico 
(blue); nano (green); micro (red, Aiken  et al. 2009).   
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Our limited understanding of marine ecosystem responses to various physico-chemical 
climate drivers, which include genetic and phenotypic adaptation to the unprecedented 
pace of climate change call for novel methods to study the problem, and remote sensing is 
one of the potential avenues (Falkowski et al. 2004, Chavez et al. 1999).  Understanding the 
cyclical relationship of phytoplankton groups and how the production of greenhouse gases 
relates to temperature and productivity provides a better understanding of their coupling to 
climate (Falkowski et al. 2004).  Changes in phytoplankton community structure could 
potentially provide an early warning for climate-driven perturbations in marine ecosystems 
(Hallegraeff 2010).  Establishing the biogeography of several morphologically and 
genetically distinct marine species is a complex target for which remote sensing may 
provide at best, a partial solution.  
Historically, satellite sensors have provided oceanographers with bulk phytoplankton 
pigment concentrations (e.g. chlorophyll-a) over global scales with synoptic resolution 
(McClain, 2009). Coastal Zone Color Scanner (CZCS) was the beginning of the era of satellite 
remote sensing of ocean color. It was a relatively simple sensor and was successful at the 
retrieval of chlorophyll-a concentrations in open-ocean waters. Models were then developed 
that utilized satellite-derived chlorophyll-a data along with information on 
photosynthetically available radiation and temperature at the sea surface to compute water 
column primary production by remote sensing.  However, CZCS performed poorly in 
coastal waters.  SeaWiFS and MODIS, the successor to the CZCS, had better radiometric 
precision and more wavebands and was designed to address the limitations of CZCS, in 
particular for applications in coastal waters. Satellites with even higher spectral resolution 
followed (e.g. MERIS). Though the newer generations of satellites were designed for 
improving performance in coastal waters, there has been increasing recognition of their 
value in the detection of phytoplankton functional types as well.  These satellite missions 
have provided knowledge and understanding of a variety of events including frontal 
features and episodic blooms on a global basis.  The scientific community has now moved 
onto predicting ecologically significant characteristics of the food web such as size structure 
as interpreted for phytoplankton size classes including picoplankton to microplankton 
(Aiken et al. 2008).  Ocean Color has been recognized as an essential climate variable by the 
Global Climate Observation System (GCOS). As the global time series of ocean color data 
grows (CZCS, MODIS, & SeaWiFS), there is an increase in satellite products available to 
study decadal-scale variations in phytoplankton distribution and primary production.  
Understanding the spatial and temporal distribution of PFTs will allow us to improve our 
knowledge of biologically-mediated fluxes of elements between the upper ocean and the 
ocean interior (Falkowski & Raven, 1997).  The performance of biogeochemical models in 
the ocean has improved substantially as a result of incorporating PFTs into ecosystem 
models.  The spatial variability and concentration of various PFTs are critical to improving 
primary-productivity estimates, and understanding the feedbacks of climate change.   The 
ability to observe PFTs on a global scale that relate to key biogeochemical processes such as 
nitrogen fixation, silicification, and calcification is valuable to studies of marine elemental 
cycles. Despite the paucity of data on functional groups, our understanding of ecosystem 
linkages is improving as we accrue larger amounts of data.  Major divisions of 
phytoplankton taxonomic groups such as diatoms, coccolithophores, dinoflagellates, 
chlorophytes, and cyanobacteria are often separated into distinct functional groups, as these 
taxonomic groups have unique biogeochemical signatures  
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Fig. 3. Monthly SeaWiFS data for 2004 interpreted for phytoplankton, size classes: pico 
(blue); nano (green); micro (red, Aiken  et al. 2009).   
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Fig. 4. Schematic diagram showing sources of variation in optical characteristics which 
influence ocean color. (Keller et al. 1989)  

Aiken et al. (2009) shows how different size classes of phytoplankton are distributed 
globally, and size is often related to function (Nair et al. 2008).  Nonetheless, there are 
limitations to discriminating phytoplankton taxonomic composition or even functional 
groups by remote sensing, due to our inability to discriminate various phytoplankton types 
optically. Remote-sensing reflectance (Rrs (λ)) is influenced by absorption and 
backscattering by seawater, phytoplankton, colored dissolved organic matter, detrital matter 
and other suspended material (Garver & Siegel 1997).  We show the various optical pools 
that contribute to absorption, which contributes to the spectral variability of Rrs (λ, Figure 
4).  Remote sensing of particular types of phytoplankton is only possible if optical 
characteristics are identified for those types that can be used to distinguish them from all 
other types of material in the water. 
New technological developments and improved scientific knowledge have allowed for the 
development of several approaches for detecting phytoplankton biomass and some 
functional groups of phytoplankton including coccolithophores (Balch et al. 1991, Balch et 
al. 1996) and Trichodesmium (Subramanian et al. 1994, 1999 a,b, Hu et al. 2010).  More 
recently, algorithms have been developed to distinguish additional phytoplankton groups 
and size classes (Sathyendranath et al. 2004, Alvain et al. 2005, Moisan et al. 2011ab).  High 
Performance Liquid Chromatography (HPLC) is the in situ method of choice to serve as 
ground truth for satellite products due to its accuracy and rapid processing.  A relatively 
new analysis tool called CHEMical TAXonomy (CHEMTAX) has been developed that is 
designed to yield information on the phytoplankton composition using HPLC data (Mackey 
et al.1996), but it has to be recognized that HPLC models have their limitations (e.g. Latasa 
2007).  
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2. “History of terminology for phytoplankton functional types”: Ecological, 
biogeochemical, and optical definitions 
The Ocean Color community has utilized a reductionist approach to describe  
phytoplankton taxonomic composition and refers to optical signatures of certain 
phytoplankton groups/species or PFTs.   In this chapter, we will refer to Phytoplankton 
Functional Types (PFTs) in order to utilize current terminology.  Please take into account 
that we may be defining groups within different levels of complexity that relate to 
phylogeny or bio-optically similarities etc.   Taxonomic characterization has utilized 
different terminology over the years and we delve into the history of its classification 
because it may define many different levels of complexity.    
Present studies on diversity are not too far removed from the original ideas invoked by G.E. 
Hutchinson’s “Paradox of the Plankton” (Hutchinson, 1961) and J. H. Connell’s 
“Intermediate Disturbance Hypothesis” (Connell, 1978).  Ocean variability, through eddies, 
storms, seasonal cycles, and El Niño, have been documented to play a role in controlling 
diversity.  How this level of stochastic variability manifests itself spatially and temporally 
due to climate change is unknown.  Falkowski & Oliver (2007) suggest that resource 
competition theory is adequate to describe global distribution of marine eukaryotic 
phytoplankton taxa during equator-to-pole and continent-to-land thermal gradients.   These 
results are supportive in light of describing phytoplankton beyond a bulk approach of 
utilizing only chlorophyll a.    
A functional group is used as an ecological term to define a group of organisms that have 
similar biogeochemical processes e.g. nitrogen fixation, silicifiers, and calcifiers (Fauchald & 
Jumars 1979, Reynolds et al. 2002, Nair et al. 2008). Functional groups in phytoplankton are 
defined as groups of organisms related through common biogeochemical processes but are 
not necessarily phylogenetically related (Iglesias-Rodriguez et al. 2002). Homologously 
similar sets of organisms are referred to as “functional groups” or “biogeochemical guilds” 
following Totterdell et al. (1993).    For marine phytoplankton, some attempts have been 
made to organize species within certain classes of phytoplankton according to their 
ecological and biogeochemical function or habitat distribution perspective (Iglesias-
Rodríguez et al. 2002, Smayda & Reynolds, 2003,Vila & Masó, 2005). Thus, terminology has 
finally evolved to the usage of Phytoplankton Functional Type (PFT) or Phytoplankton 
Functional group but these classifications are not necessarily straightforward and include a 
wide range of different taxonomic classification approaches such as size, biogeochemistry, 
or traditional taxonomic hierarchies (see discussion by Nair et al. 2008).  

3. On the road to predicting remote sensing reflectance: Fundamental basis 
between pigments and in vivo absorption  
Algorithm development for remote sensing is focused on estimating the quantities of 
various optically-active constituents in the ocean. Various pigments present in 
phytoplankton play a role in determining the total absorption coefficient of phytoplankton, 
which is a key determinant of the spectral variability in remote-sensing reflectance.  We 
utilize a reconstruction model to demonstrate the spectral variability of photoprotective and 
photosynthetic pigments (Sathyendranath et al. 1987, Bidigare 1990).  There are differences 
in the weight-specific absorption spectra of various in vitro (extracted) phytoplankton 
pigments (Figure 5).   The comparison of maximal peaks of mass-specific absorption spectra 
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and center wavelengths on ocean color satellite platforms proves that coupling taxonomic 
and optical properties is quite challenging (Table 1).  Future sensors with increased 
temporal and spectral resolution will provide more spectral information for development of 
algorithms.  Future development of hyperspectral sensors would cover pigment-specific 
peaks at relatively high spatial and temporal resolution, which would allow retrieval of 
photosynthetic and photo-protective pigments. 
 

 
Fig. 5. Weight-specific in vitro absorption spectra of various pigments, *( )ia  , derived from 
measuring the absorption spectra of individual pigments in solvent and shifting the maxima 
of the spectra according to Bidigare et al. (1990).  Data obtained courtesy of A. Bricaud 
(Bricaud et al. 2004). 

 
SeaWiFS MODIS MERIS OCM2 OCTS CZCS 

412 412 413 415 412 443 
443 443 443 442 443 520 
490 469 490 491 490 550 
510 488 510 512 516 670 
555 531 560 557 565  
670 547 620 620 667  

 555 665    
 645 681    
 667 709    
 678     

Table 1.  Past and present Ocean Color Sensors and their respective center wavelengths (nm).  
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The multi-spectral radiance measurements from the satellite sensor can be corrected for the 
influence of the atmosphere to yield remote-sensing reflectance. It has been demonstrated 
using various types of models (e.g. Morel & Prieur 1977; Sathyendranath & Platt 1988) that 
remote sensing reflectance, Rrs (λ), at a particular wavelength (λ) increases with the back-
scattering coefficient of light at a wavelength, and decreases with the absorption coefficient:   

Rrs (λ) is proportional to bb (λ) / [a (λ) + bb(λ)] 

where bb(λ) is backscattering coefficient and a(λ) is the total absorption coefficient. The total 
absorption coefficient can be partitioned into its components:   

( ) ( ) ( ) ( ) ( )w ph g da a a a a         

where the subscripts w, ph, g, and d relate to seawater, phytoplankton, gelbstoff and detritus, 
respectively. A similar equation can be wiritten for backscatter.  The absorption coefficient 
of phytoplankton can be further broken down into contributions from various pigments to 
the total phytoplankton absorption. 

1
( ) * ( )

n

i ci
i

a C a 


  

where ci is the concentration of the individual pigments derived from HPLC analysis and 
*( )ia   is the absorption coefficient for the phytoplankton pigment.  

As the pigment composition of phytoplankton changes with changes in community 
structure, the absorption spectra will be modified accordingly. Furthermore, it has been well 
demonstrated that the absorption spectra of phytoplankton are also modified by changes in 
the size structure of the community (Duysens 1956; Morel and Bricaud 1981; 
Sathyendranath et al. 1987; Moisan and Mitchell 1999). Therefore, pigment packaging 
significantly affect a*ph (Figure 6).  To the extent that size and function are related, size-
dependent changes may also be related to changes in functional types.  Remote sensing of 
PFTs must rely on such deviations in the spectral signatures of phytoplankton associated 
with changes in the phytoplankton community structure. Note that such approaches can be 
adapted to account for the contribution of mycosporine-like amino acids to absorption in the 
UV regions, which have some but limited taxonomic value (Moisan et al. 2011a, b). 

4. Algorithm development of ocean color phytoplankton functional types 
PFT algorithms have been developed to map the distribution of numerically- and 
ecologically-important organisms that demonstrate an anomalous relationship to a satellite-
derived reflectance product, such as chlorophyll-a.  Generally, algorithm development has 
capitalized on the backscattering or absorption characteristics of a particular phytoplankton 
group, or utilized sophisticated modeling efforts.   In earlier years, a particular 
species/group was targeted, whereas more recently mathematically sophisticated 
algorithms have produced multiple products relating to phytoplankton community 
structure. Both approaches provide valuable data products, which enhance our 
understanding of the spatial and temporal variability in ecological structure and function.  
We present a generalized description of present algorithms for in situ data and satellite-
derived data that describe phytoplankton taxonomic composition.    
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with changes in the phytoplankton community structure. Note that such approaches can be 
adapted to account for the contribution of mycosporine-like amino acids to absorption in the 
UV regions, which have some but limited taxonomic value (Moisan et al. 2011a, b). 

4. Algorithm development of ocean color phytoplankton functional types 
PFT algorithms have been developed to map the distribution of numerically- and 
ecologically-important organisms that demonstrate an anomalous relationship to a satellite-
derived reflectance product, such as chlorophyll-a.  Generally, algorithm development has 
capitalized on the backscattering or absorption characteristics of a particular phytoplankton 
group, or utilized sophisticated modeling efforts.   In earlier years, a particular 
species/group was targeted, whereas more recently mathematically sophisticated 
algorithms have produced multiple products relating to phytoplankton community 
structure. Both approaches provide valuable data products, which enhance our 
understanding of the spatial and temporal variability in ecological structure and function.  
We present a generalized description of present algorithms for in situ data and satellite-
derived data that describe phytoplankton taxonomic composition.    
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Fig. 6. Phytoplankton absorption spectra for a range of Chla (24.6, 18.9, 13.0, 1.91, 0.68, 0.21 
mg m−3) and taxonomic size classes (pico, nano and micro) with decreasing slope from high 
to low aph (λ) and Chla; inset spectra of pico and nanoplankton at expanded range (Hirata 
et al 2008).  
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Prokaryota                      
Synechococcus _        _  _             _  
Prochlorococcus    _  _     _  _             _  
Eukaryota                      _  
Rhodophyt a _        _               
Crypt ophyta _      _   _   _             
Chlorophyc eae _  _       • _        _  _    _  _  
Prasinophyceae _  _       • _        • _   _  _   
Eulgenophyt a _  _        _    _      •     
Eust igmatophyta _         _            _  • 
Bacil lariophyta _     _  _    •   _   _         
Dinophyta _      _    •   _  •     _     
Prymnesiophyta _     _  _  _  • •  _  _   _  _        
Chrys ophyceae _      _  _   •  _  _   _         
Raphidophyceae _     _  _    _    _   _          

Table 2. Distribution of pigments across the divisions and classes of the algae that are 
conventionally measured by high performance liquid chromatography. ● = major pigment 
(>10%); •=minor pigment (≤10%) of the total chorophylls or carotenoids.  (Modified from 
Jeffrey & Vesk 1997) 
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5. Pigments as a diagnostic tool for identifying phytoplankton functional 
types 
Because conventional light microscopy is labor-intensive and biased towards the larger 
phytoplankton, biological oceanographers have sought alternative approaches to derive 
information on community structure of the entire phytoplankton population. The most 
common method to achieve this is by measuring the phytoplankton pigment composition.  
Algal pigments have been routinely used as chemotaxonomic markers in studies of 
phytoplankton ecology and biogeochemistry.  Chlorophyll-a, in its monovinyl and divinyl 
forms, is found within all photosynthetic microalgae and cyanobacteria, and is used as a 
universal proxy of autotrophic biomass.  However, there also exist other chlorophylls and 
carotenoids that are routinely measured by High Performance Liquid Chromatography 
(HPLC) and may serve as class-specific markers.    
It should be noted that most algal pigments are found in more than one class, while some 
are not necessarily present in every member of the same class.   Given the complexity of the 
distribution of pigments between and within various phytoplankton taxa, a number of 
statistical and mathematical methods have been developed to partition the bulk pigment 
biomass into the various phytoplankton groups. In addition to using pigments as class-
specific markers, pigments indices of phytoplankton classes have been developed based on 
certain diagnostic pigments that tend to dominate in a particular size class.  In this section 
we briefly describe these approaches.  For a more detailed review of the use of pigments as 
taxonomic markers see Wright & Jeffrey (2005). 
Pigments in relation to taxa 
The increased use of HPLC pigment analyses in ecological, remote sensing and 
biogeochemical studies of marine systems has created an impetus to try to extract from 
pigment data not only the bulk chlorophyll-a biomass of the entire population, but also the 
distribution of phytoplankton groups from the class to the genus level. The quantitative use 
of pigment markers to assess the relative contribution of taxa to chlorophyll-a biomass is 
still a relatively new and developing area of research.  The task of estimating the 
contribution of various taxa to the pigment signature of natural samples is complex, given 
that many pigments are found in more than one algal class.  The distribution of 
phytoplankton pigments across the various phytoplankton classes is illustrated in Table 1. 
There are three basic approaches used to extract information on algal taxonomic 
composition based on pigments: multiple linear regression (Gieskes & Kraay 1983, 1986), 
inverse methods (Bidigare & Ondrusek 1996, Everitt et al. 1990, Letelier et al. 1993, Vidussi 
et al 2001) and matrix factorization analysis (Mackey et al. 1996, Wright & Jeffrey 2006).   
Multiple linear regression analysis 
The principal motivation behind the use of multiple linear regression studies of phytoplankton 
pigments was to establish a relationship between diagnostic pigments & the ubiquitous light 
harvesting pigment, chlorophyll-a, a universal proxy of phytoplankton biomass.  One of the 
aims of the approach was to account for the fraction of phytoplankton cell biomass that may 
not be detected by conventional microscopy counts.  Using multiple linear regression of 
diagnostic pigments against chlorophyll-a concentration, Gieskes & Kraay (1983) revealed that 
cryptophytes accounted for about half of the chlorophyll-a standing stock during a spring 
bloom study of the central North Sea, although these cells were not detected by microscope 
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Fig. 6. Phytoplankton absorption spectra for a range of Chla (24.6, 18.9, 13.0, 1.91, 0.68, 0.21 
mg m−3) and taxonomic size classes (pico, nano and micro) with decreasing slope from high 
to low aph (λ) and Chla; inset spectra of pico and nanoplankton at expanded range (Hirata 
et al 2008).  
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Synechococcus _        _  _             _  
Prochlorococcus    _  _     _  _             _  
Eukaryota                      _  
Rhodophyt a _        _               
Crypt ophyta _      _   _   _             
Chlorophyc eae _  _       • _        _  _    _  _  
Prasinophyceae _  _       • _        • _   _  _   
Eulgenophyt a _  _        _    _      •     
Eust igmatophyta _         _            _  • 
Bacil lariophyta _     _  _    •   _   _         
Dinophyta _      _    •   _  •     _     
Prymnesiophyta _     _  _  _  • •  _  _   _  _        
Chrys ophyceae _      _  _   •  _  _   _         
Raphidophyceae _     _  _    _    _   _          

Table 2. Distribution of pigments across the divisions and classes of the algae that are 
conventionally measured by high performance liquid chromatography. ● = major pigment 
(>10%); •=minor pigment (≤10%) of the total chorophylls or carotenoids.  (Modified from 
Jeffrey & Vesk 1997) 
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5. Pigments as a diagnostic tool for identifying phytoplankton functional 
types 
Because conventional light microscopy is labor-intensive and biased towards the larger 
phytoplankton, biological oceanographers have sought alternative approaches to derive 
information on community structure of the entire phytoplankton population. The most 
common method to achieve this is by measuring the phytoplankton pigment composition.  
Algal pigments have been routinely used as chemotaxonomic markers in studies of 
phytoplankton ecology and biogeochemistry.  Chlorophyll-a, in its monovinyl and divinyl 
forms, is found within all photosynthetic microalgae and cyanobacteria, and is used as a 
universal proxy of autotrophic biomass.  However, there also exist other chlorophylls and 
carotenoids that are routinely measured by High Performance Liquid Chromatography 
(HPLC) and may serve as class-specific markers.    
It should be noted that most algal pigments are found in more than one class, while some 
are not necessarily present in every member of the same class.   Given the complexity of the 
distribution of pigments between and within various phytoplankton taxa, a number of 
statistical and mathematical methods have been developed to partition the bulk pigment 
biomass into the various phytoplankton groups. In addition to using pigments as class-
specific markers, pigments indices of phytoplankton classes have been developed based on 
certain diagnostic pigments that tend to dominate in a particular size class.  In this section 
we briefly describe these approaches.  For a more detailed review of the use of pigments as 
taxonomic markers see Wright & Jeffrey (2005). 
Pigments in relation to taxa 
The increased use of HPLC pigment analyses in ecological, remote sensing and 
biogeochemical studies of marine systems has created an impetus to try to extract from 
pigment data not only the bulk chlorophyll-a biomass of the entire population, but also the 
distribution of phytoplankton groups from the class to the genus level. The quantitative use 
of pigment markers to assess the relative contribution of taxa to chlorophyll-a biomass is 
still a relatively new and developing area of research.  The task of estimating the 
contribution of various taxa to the pigment signature of natural samples is complex, given 
that many pigments are found in more than one algal class.  The distribution of 
phytoplankton pigments across the various phytoplankton classes is illustrated in Table 1. 
There are three basic approaches used to extract information on algal taxonomic 
composition based on pigments: multiple linear regression (Gieskes & Kraay 1983, 1986), 
inverse methods (Bidigare & Ondrusek 1996, Everitt et al. 1990, Letelier et al. 1993, Vidussi 
et al 2001) and matrix factorization analysis (Mackey et al. 1996, Wright & Jeffrey 2006).   
Multiple linear regression analysis 
The principal motivation behind the use of multiple linear regression studies of phytoplankton 
pigments was to establish a relationship between diagnostic pigments & the ubiquitous light 
harvesting pigment, chlorophyll-a, a universal proxy of phytoplankton biomass.  One of the 
aims of the approach was to account for the fraction of phytoplankton cell biomass that may 
not be detected by conventional microscopy counts.  Using multiple linear regression of 
diagnostic pigments against chlorophyll-a concentration, Gieskes & Kraay (1983) revealed that 
cryptophytes accounted for about half of the chlorophyll-a standing stock during a spring 
bloom study of the central North Sea, although these cells were not detected by microscope 
counts.  The evidence was compelling, given that cryptophytes have a unique ‘pigment 
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fingerprint’ (alloxanthin), and this carotenoid was the most abundant accessory pigment in the 
field samples.  The explanation for the discrepancy between the pigment data and the cell 
counts was that small flagellates and photosynthetic ciliates that harbour alloxanthin are 
poorly preserved in Lugol’s solution, resulting in underestimated cell abundances whereas the 
larger microphytoplankton (diatoms and dinoflagellates) are better preserved and more easily 
to identified. The authors also commented on the difficulty in assigning other pigments, such 
as fucoxanthin, to a particular class, given it is also found in other algal classes, such as 
prymnesiophytes and chrysophytes.  
There are caveats to using the multiple linear regression approach to examine shifts in 
phytoplankton community structure (Gieskes et al. 1988). In the study by Gieskes et al. 
(1988), a clear influence of light adaptation on pigment composition was apparent in surface 
and deep populations, which were characterized by different ratios and intracellular 
concentrations of diagnostic pigments.  As a result, poor taxon specificity of pigment 
markers such as fucoxanthin may mislead authors to conclude that microscopic counts 
provide superior quantitative estimates of taxon-specific biomass compared to pigment 
data. 
Inverse methods 
In order to estimate the contribution of various algal taxa to chlorophyll-a, inverse methods 
have been adopted to studies of phytoplankton pigments.  The inversion method uses ratios 
of chlorophyll-a to accessory pigments based on literature values for representative taxa, 
(Everitt et al. 1990, Letelier et al. 1993, Bidigare et al. 1996).  From these data a series of 
simultaneous equations for each algal group is derived to determine their contribution to 
total chlorophyll-a biomass.  The method also addresses the problem of shared pigments 
between classes by subtracting out the contribution by other taxonomic groups for a 
particular pigment marker.  The culture-based pigment: chlorophyll-a seed values are then 
modified by matrix inversion to the field data to find the least squares best solution. 
Constraints are also applied to the pigment ratios to avoid negative contributions by taxa.   
The inverse method was used by Everitt et al. (1990) to demonstrate that 
nanophytoplankton species dominated the waters of the western Equatorial Pacific, and 
showed significant variation in community structure.  Seasonal changes in the composition 
of phytoplankton groups (Prochlorococcus, other cyanobacteria, prymnesiophytes and 
chrysophytes) that comprise the deep chlorophyll maximum were examined for the Station 
ALOHA time series (Letelier et al. 1993).  This approach has also been adopted by Vidussi et 
al. (2001) to assess the shift in community structure during a spring bloom in the 
northwestern Mediterranean Sea.   

Matrix factorization of HPLC pigments (CHEMTAX) 
CHEMTAX (CHEMical TAXonomy) is a MATLAB program that estimates the relative 
contributions of different phytoplankton taxa to the bulk chlorophyll-a concentration of a 
given sample (Mackey et al. 1996, Wright et al. 2000).  Over the years this method has been 
used to separate out the phytoplankton community into taxonomic groups to at least the 
class, and in some cases, the genus or species level.  To implement this algorithm an input 
pigment matrix is constructed based on knowledge of the kinds of taxa likely to be present 
in the study area and information on the cell-specific pigment composition and 
concentrations of these groups from culture studies.  Unlike the multiple linear regression or 
inversion methods, which use only one or two diagnostic pigment markers for each taxa in 
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the analyses, the CHEMTAX pigment matrixes make use of a wider range of accessory 
pigments. However, some criticisms within the community have occurred regarding its 
application because it assumes constant pigment ratios (Latasa 2007). 
Given that the growth conditions of microalgae are known to influence the pigment 
composition of phytoplankton. The principal factors that led to chromatic adaptation of 
microalgae include the quality and spectral quantity of irradiance and nutrient status.  In 
addition to the effect of taxa, growth conditions of microalgae are known to influence the 
pigment composition of phytoplankton.  The principal factors that lead to chromatic 
adaptation of microalgae include the quality and spectral quantity of irradiance and nutrient 
status.  Variability in pigment composition caused by these factors is seen both in the change 
in the intracellular concentration of the cells as well as the ratios of accessory pigments (such 
as the relative concentrations of photosynthetic or photoprotective pigments).  Therefore, 
similar to inversion methods, it is recommended that sample be divided according to light 
regime before running the matrix factorization. 
Other inverse methods focus on the absorption term related to phytoplankton as has been 
estimated using a wide range of algorithms.  An alternative approach proposed by Bidigare et 
al. (1989 & 1990) utilizes the absorption signatures of the various pigments to reconstruct the 
unpackaged absorption spectra of marine phytoplankton.  Using the pigment outputs for 
various algal groups from CHEMTAX, an unpackaged absorption spectra for a particular 
phytoplankton group can be constructed when regarding the absorption spectra solely as a 
function of the chlorophyll-a concentration and the chlorophyll-a specific absorption spectra.  
Several inverse modeling capabilities are available that can make use of these absorption 
formulations for other pigments.  Moisan et al. (2011ab) have developed a matrix inverse 
modeling technique that produces photoprotective and photosynthetic pigments with 
relatively accurate results (r2 >0.80) using HPLC pigments as validation (Figure 7). 
Modeling pigments in relation to cell size fractions 
Fortuitously, the major taxa of marine phytoplankton tend to fall within the three size 
classes originally proposed by Sieburth (1979), the micro- (>20m), nano- (2-20m) and 
picophytoplankton (<2m).  Thus pigment markers of particular taxonomic groups can 
provide insight into the relative contribution of a particular size class to the pigment 
biomass.  The use of pigment markers to derive a size index of phytoplankton populations 
was proposed by Claustre (1994).   The approach used seven diagnostic pigments to obtain 
an index of the relative contribution of microphytoplankton to pigment biomass integrated 
over the watercolumn.  The two marker pigments ascribed to the microphytoplankton size 
class are fucoxanthin, associated with the diatom fraction, and peridinin, representing the 
dinoflagellate fraction.  The index also used markers pigments that tend be dominant 
accessory pigments in natural populations: 19’-hex, 19’-but, alloxanthin, zeaxanthin and 
chlorophyll-b.  Thus by summing the watercolumn-integrated concentration of diagnostic 
pigments associated with the microphytoplankton fraction, and dividing by the sum of all 
water-column integrated accessory pigments, an index of the relative contribution of 
microphytoplankton to total integrated pigment biomass can be calculated according to the 
equation: 
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Fig. 7. (top) Predicted absorption versus measured absorption (Algorithm II) for values every 
10 nm ranging from 300 nm to 700 nm using matrix inversion methods using a single value 
decomposition.  (bottom) Predicted pigments versus measured HPLC pigments for use in 
photosynthesis and photoprotection pigments.  See Moisan et al. (2011 ab for more details). 
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A Fp value equal to one means that fucoxanthin and peridinin made up the entire integrated 
diagnostic pigment concentration, whereas a value of zero means that neither indicator 
pigment of microphytoplankton were found in the water column. 
The size-based approach was refined by Vidussi et al. (2001) to obtain a pigment-derived 
indices of the contribution of the three size classes of phytoplankton (micro- (>20mm), nano- 
(2-20mm) and picophytoplankton (<2mm) to integrate pigment biomass.  To determine the 
relative contribution of the three size classes to chlorophyll-a biomass, Uitz et al. (2006) 
combined the multiple linear regression analysis of Gieskes et al. (1983, 1988) with the size-
specific index of Vidussi et al. (2001) to derive estimates of all three size fractions and used 
not only to derive an index of the presence of the three size classes, but also to estimate their 
relative contribution to total chlorophyll concentration, similar to the inversion methods and 
CHEMTAX.  It is important to note that in this approach integrated rather than discrete 
pigment concentrations are used.  The approach to using size as a description of the 
phytoplankton community is becoming a well-accepted PFT, which provides an important 
link between the fields of remote sensing and marine ecology. 

6. Modeling trophic structure through correspondence between taxa, size 
and function 
The relationship between phytoplankton size and biogeochemical function has been well 
established.  Diatoms (silicifiers) tend to be large, and their negative buoyancy leads to their 
significant contribution to export production (Sarmiento & Gruber 2004).  
Picophytoplankton, on the other hand, are more important in microbial food webs were 
rapid recycling of organic matter in the surface ocean leads to a reduction in biogenic export 
to the deep ocean.   Recent molecular studies on the picocyanobacterium Prochlorococcus, 
which dominates the chlorophyll-a biomass in the oligotrophic gyres, have revealed that 
many strains are unable to utilize nitrate as a nutrient source, and consequently can be 
considered obligate participants in regenerative production. 
The use of pigment markers to provide insight on the trophic structure of marine 
ecosystems was examined by Claustre (1994).  He proposes that the contribution of 
microphytoplankton (in particular diatoms) to the integrated concentration of diagnostic 
pigments, which can be considered to be a indicator of the f-ratio and hence new 
production.  In addition, information on the contribution of various phytoplankton taxa to 
chlorophyll-a standing stock has led to the generation of taxon-specific maps of primary 
production using global relationships on the relationship between surface chlorophyll-a 
concentration and the ratio of integrated diagnostic pigments to integrated chlorophyll-a 
concentration (Uitz et al. 2006).  Although the simple pigment indices invoked by Claustre 
(1994) and Uitz et al. (2006) cannot resolve instances where other taxa contribute to the 
diagnostic pigment markers used in their analysis, it provides a useful first attempt at 
obtaining information on the global distribution of phytoplankton size classes (Uitz et al. 
2006), the environmental factors that control their biogeography (Bouman et al. 2003) and 
their relative contribution to marine productivity (Bouman et al. 2005, Uitz et al. 2006).  

7. Societal benefits of ocean color approaches to algorithm development for 
key phytoplankton functional types: Fisheries and habs applications 
A fundamental goal of phytoplankton biogeography is to describe how PFTs are distributed 
spatially and temporally and how these patterns relate to processes that control primary 
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production/new production.  Several theories have been postulated about what governs 
biological diversity, which stabilizes community dynamics.   Future satellites with increased 
spectral resolution will allow for algorithms of different proxies for diversity whether the 
products are pigments, size spectra, or biogeochemical indicators.  Such phytoplankton 
diversity indicators will lead to a better understanding of the response of marine ecosystems 
to climate and human activities (Platt et al. 2008, 2009). To date, the scientific community has 
been able to describe phytoplankton community structure based on broad size classes, 
pigmentation, probability of occurrence, or some other index of presence or absence. We 
have focused on two successful applications including fisheries management and harmful 
algal blooms.   
a. Fisheries applications 
Satellite ocean color application on broad scales allow for PFTs, namely diatoms, to be put 
into an ecological context regarding El Niño events in the Humboldt ecosystem (Jackson et 
al. 2011, Figure 8). A locally tuned algorithm for detecting diatom distribution allowed for 
critical observations in shifts in the size structure of the phytoplankton community, which 
provide a food source for anchovies.   Changes in carbon structure will affect food stress on 
the fish populations and appears to influence landings in the following year.  Mapping the 
distribution and abundance of phytoplankton using remotely sensed data assists in the 
creation of targeted and quantitative fishing strategies.   Satellites can provide strategies and 
tools together with modeling and other satellite. Both ocean color and other satellite data, 
coupled with models, can provide resource managers the information of food web 
components (other than the chlorophyll-a product), which may be used to direct shipboard 
sampling on regional scales. 
 

Dec 1997 Dec 2000

 
Fig. 8. Climate-induced changes in the spatial distribution of diatoms in the Humboldt 
system. The figure shows a marked reduction in the presence of diatoms during the 1997 El 
Niño event compared with the control period (December 2000), which represents typical 
oceanic conditions for the study region. The color bar represents the fraction of pixels 
identified as diatoms.  Modified from Jackson et al. (2011).  
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b. Monitoring and tracking through the identification of harmful algal blooms  
Ocean Color satellites have had a valuable application for many marine biological processes 
such as red tides and harmful algal blooms (HABs, reviewed in Stumpf & Tomlinson 2005).  
HABs are not only harmful to the marine ecosystem but substantive economic losses occur 
in coastal regions worldwide and the need for remote detection of blooms is critical 
(Anderson et al. 1997, Schofield et al. 1999, Sellner et al. 2003). HAB events threaten human 
health, living marine resources, and ecosystem health. Their occurrence has increased in 
frequency, duration, and severity over the last several decades (Figure 9).  Current 
monitoring efforts of toxic cells and toxin levels in shellfish tissue are relatively slow and 
lack the synoptic coverage of satellites (Schofield et al. 1999). Nevertheless, HAB monitoring 
can occur at unprecedented scales with detailed shipboard and drifters to predict arrival, 
transport time, and possibly toxicity of the bloom (Figure 9, Schofield et al. 1999). 
Knowledge such as this allows the public to know location, timing of the bloom and close 
any fisheries that are impacted economically.  An excellent example of this type work has 
been conducted on the mesoscale blooms of Karenia brevis in the Gulf of Mexico with ocean 
color derived chlorophyll a and solar stimulated fluorescence (Stumpf et al. 2003, Hu et al. 
2005, Figure 9).  Most HAB studies have focused on monitoring with chlorophyll-a as a 
biomass indicator, however, photo-protective pigments such UV mycosporine-like amino 
acids and gyroxanthin from other non-toxic organisms (Kahru & Mitchell 1998, Moisan et al. 
2011). Several countries all over the world have successfully monitored HABs over broad 
spatial scales with supplemented satellite imagery and aircraft monitoring in the Gulf of 
Mexico that allows for tracking of the bloom by satellite and drifters to notify the public.  
 

 
Fig. 9. Left figure: Harmful algal bloom image in the Gulf of Mexico while using drifters and 
ocean color satellite imagery that allows for tracking for responses to the public (Lohrenz et 
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production/new production.  Several theories have been postulated about what governs 
biological diversity, which stabilizes community dynamics.   Future satellites with increased 
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diversity indicators will lead to a better understanding of the response of marine ecosystems 
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pigmentation, probability of occurrence, or some other index of presence or absence. We 
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algal blooms.   
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coupled with models, can provide resource managers the information of food web 
components (other than the chlorophyll-a product), which may be used to direct shipboard 
sampling on regional scales. 
 

Dec 1997 Dec 2000

 
Fig. 8. Climate-induced changes in the spatial distribution of diatoms in the Humboldt 
system. The figure shows a marked reduction in the presence of diatoms during the 1997 El 
Niño event compared with the control period (December 2000), which represents typical 
oceanic conditions for the study region. The color bar represents the fraction of pixels 
identified as diatoms.  Modified from Jackson et al. (2011).  
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b. Monitoring and tracking through the identification of harmful algal blooms  
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information based on marine ecology and biogeochemistry in the broader context of climate 
change (Falkowski et al. 2004).  Although validated satellite data is not a substitute for ship-
based sampling, in situ information about the physical/biological regimes is still required to 
produce sound ecological products.   Hence, the future lies in the combined utilization of in 
situ data, remote sensing, and modeling.  The remote sensing of PFTs in the ocean will bring 
about a greater understanding of how phytoplankton community structure affects climate 
with biologically-produced greenhouse gases.  In contrast, PFTs will contribute to an overall 
understanding of global marine biodiversity and that knowledge will provide insight on the 
relationship between ecosystem stability and ocean biogeochemistry.   
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1. Introduction  
The ocean is a highly variable system affected by a large range of processes that spans the 
continuous spectra of spatial and temporal scales (Wunsch, 1996). The spatial scales of 
variation range from basin-wide gyres (thousands of kilometers) to turbulence (less than a 
meter), and the time scales from those that are climate related (decades) to short-term 
processes (seconds). Information on this whole range of processes is required for the 
comprehension of the marine system dynamics. Despite the continuous advances in 
technology, remote sensing is the only observing platform capable of providing continuous 
information on biological and physical properties over vast areas of the ocean. With some 
limitations, the regular and repeated coverage offered by satellites is still unachievable 
through in situ measurements. 
Because the ocean is largely opaque over much of the usable electromagnetic spectrum, the 
ability of satellites to capture ocean properties is generally confined to the surface. 
Nevertheless, satellite-borne sensors provide us with a relatively large range of 
measurements such as sea surface color, sea surface height, sea surface temperature, sea 
surface winds, sea surface salinity, waves, and to a lesser extent, current fields. The 
availability, for the first time, of time series expanding for several years or decades at 
regional and global ocean scales has changed our perception of the ocean (Barber & Hilting, 
2000). A majority of these measurements is restricted to physical properties such as 
temperature, sea level or sea surface roughness and inferred variables (currents, winds, etc.). 
The only routinely acquired satellite measurement providing information on ocean 
biological processes is sea surface color. Since early measurements obtained by the Coastal 
Zone Color Scanner (CZCS), sea color sensors have provided quantitative information on 
the distribution of surface chlorophyll (CHL) concentration (an index of phytoplankton 
biomass) at regional to global scales and its variability in space and time (e.g., Abbott & 
Zion, 1987; Antoine et al., 2005; Behrenfeld et al., 2001). This information is relevant to 
estimate the ocean productivity, a key factor for understanding the dynamics of pelagic 
foodwebs and some aspects of climate change.  



  
Remote Sensing of Biomass – Principles and Applications  

 

122 

Sathyendranath, S., Watts, L., & Devred, E. (2004). Discrimination of diatoms from other 
phytoplankton using ocean-colour data. Mar. Ecol. Prog. Ser. 272: 59–68 

Schoeld, O., Bergmann, T., Grzymski, J. & Glenn, S. (1999). Spectral uorescence and 
inherent optical properties during upwelling events off the coast of New Jersey. 
SPIE Ocean Optics XIV 3:60–67 

Sieburth, J. MCN. 1979. Sea microbes. New York: Oxford University Press 491 pp. 
Sellner, S.G., Sellner, K.G., & Brownlee, E.F. (2003). Effects of Barley Straw (Hordeum vulgare) 

on Freshwater and Brackish Phytoplankton and Cyanobacteria. J Applied 
Phycology 15: 525-531 

Smayda, T.J. & Reynolds, C.S. (2003). Strategies of marine dinoflagellate survival and some 
rules of assembly. J Sea Res 49: 95–106 

 Stumpf, R.P., Culver, M.E., Tester, P.A., Tomlinson, M., Kirkpatrick, G.J. & B.A. Pederson. 
(2003). Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean 
color imagery and other data. Harmful Algae News 35: 1–14 

Stumpf, R.P. & Tomlinson, M.C. (2005). Remote sensing of harmful algal blooms. In Remote 
Sensing of Coastal Aquatic Environments, ed. RL Miller, CE Del Castillo, BA 
McKee, pp. 277–96. AH Dordrecht, The Netherlands: Springer. 347 pp. 

Subramanian, A., & Carpenter, E.J. (1994). An empirically derived protocol for the detection 
of blooms of the marine cyanobacterium Trichodesmiumusing CZCS imagery. Int. J. 
Remote Sensing 158: 1559–1569 

Subramanian, A., Carpenter, E.J., Karentz, P.G. & Falkowski, PG. (1999a). Optical properties 
of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and 
spectral photosynthetic characteristics. Limnol. Oceanogr. 44: 608-617 

Subramanian, A., Carpenter, E.J. & Falkowski, P.G. (1999b) Optical properties of the marine 
diazotrophic cyanobacteria Trichodesmium spp. II. Reflectance model for remote 
sensing. Limnol. Oceanogr. 44: 618-627 

Totterdell, I.J., Armstrong, R.A., & Drange, H.  (1993).Trophic resolution. In Evans, G. T. and 
Fasham, M. J. R. (eds), Towards a Model of Ocean Biogeochemical Processes. 
NATO ASI, Vol. I 10. Springer-Verlag, Berlin, pp. 71–92 

Uitz, J., Claustre, H., Morel, A., Hooker, & S.B. (2006). Vertical distribution of phytoplankton 
communities in open ocean: An assessment based on surface chlorophyll. J. 
Geophys. Res. 111:C08005 

Vidussi, F., Claustre, H., Manca, B.B., Luchetta, A., & Marty, J.C. (2001). Phytoplankton 
pigment distribution in relation to upper thermocline circulation in the eastern 
Mediterranean Sea during winter. J Geophys Res 106 (C9): 19,939–19,956 

Vila, M., Giacobbe, M.G., MasÓ M., Gangemi E., Penna A., Sampedro N., Azzaro F., Camp 
J., & Galluzzi L. (2005). A comparative study on recurrent blooms of Alexandrium 
minutum in two Mediterranean coastal areas. Harmful algae 4: 673-695 

Worm, B., Sandow, M., & Oschlies, A.  (2005). Global patterns of predator diversity in the 
open oceans. Science 309: 1365–1369 

Wright, S.W. & RL van den Enden. (2000). Phytoplankton community structure and stocks 
in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) 
determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Research 
Part II: Topical Studies in Oceanography 47 (12-13): 2363-240 

Wright, S.W. & Jeffrey, S.W. (2006). Pigment markers for phytoplankton production. 
Handbook Env Chem 2N: 71-104 

6 

Using SVD Analysis of Combined Altimetry and 
Ocean Color Satellite Data for Assessing Basin 

Scale Physical-Biological Coupling in  
the Mediterranean Sea 

Antoni Jordi and Gotzon Basterretxea 
Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC) 

Spain 

1. Introduction  
The ocean is a highly variable system affected by a large range of processes that spans the 
continuous spectra of spatial and temporal scales (Wunsch, 1996). The spatial scales of 
variation range from basin-wide gyres (thousands of kilometers) to turbulence (less than a 
meter), and the time scales from those that are climate related (decades) to short-term 
processes (seconds). Information on this whole range of processes is required for the 
comprehension of the marine system dynamics. Despite the continuous advances in 
technology, remote sensing is the only observing platform capable of providing continuous 
information on biological and physical properties over vast areas of the ocean. With some 
limitations, the regular and repeated coverage offered by satellites is still unachievable 
through in situ measurements. 
Because the ocean is largely opaque over much of the usable electromagnetic spectrum, the 
ability of satellites to capture ocean properties is generally confined to the surface. 
Nevertheless, satellite-borne sensors provide us with a relatively large range of 
measurements such as sea surface color, sea surface height, sea surface temperature, sea 
surface winds, sea surface salinity, waves, and to a lesser extent, current fields. The 
availability, for the first time, of time series expanding for several years or decades at 
regional and global ocean scales has changed our perception of the ocean (Barber & Hilting, 
2000). A majority of these measurements is restricted to physical properties such as 
temperature, sea level or sea surface roughness and inferred variables (currents, winds, etc.). 
The only routinely acquired satellite measurement providing information on ocean 
biological processes is sea surface color. Since early measurements obtained by the Coastal 
Zone Color Scanner (CZCS), sea color sensors have provided quantitative information on 
the distribution of surface chlorophyll (CHL) concentration (an index of phytoplankton 
biomass) at regional to global scales and its variability in space and time (e.g., Abbott & 
Zion, 1987; Antoine et al., 2005; Behrenfeld et al., 2001). This information is relevant to 
estimate the ocean productivity, a key factor for understanding the dynamics of pelagic 
foodwebs and some aspects of climate change.  



  
Remote Sensing of Biomass – Principles and Applications  

 

124 

The merging of ocean color datasets with other satellite measurements providing 
information of ocean dynamics has potential benefits to the understanding of some aspects 
of the coupling between fluid driven processes and plankton dynamics. In this regard, 
altimetry satellite data allows the characterization of sea level anomaly (SLA), containing 
information on the geostrophic current fields, mesoscale eddy variability and changes in the 
thermocline depth (Le Traon et al., 1998; Stammer, 1997). Lehahn et al. (2007) and Leterme & 
Pingree (2008) investigated the effect of the geostrophic velocity derived from satellite SLA 
on the redistribution of satellite CHL. Also, the impact of mesoscale eddies on the spatial 
patterns of CHL has been analyzed by Siegel et al. (1999, 2008). 
Further insight into the basin-scale dynamics affecting CHL and SLA, as an indicator of 
changes in the thermocline depth, in the equatorial Pacific was provided by Wilson & 
Adamec (2001). Correlations between CHL and SLA data using empirical orthogonal 
function (EOF) analysis show different responses associated with El Niño-Southern 
Oscillation phases. In the global ocean, direct correlations between CHL and SLA are 
predominately negative as lower SLA implies thermocline weakening and consequent 
mixing of the water column, which results in increased nutrient flux to the surface layer and 
phytoplankton biomass enhancement (Wilson & Adamec, 2002). However, there are areas in 
all ocean basins where positive correlations suggest that CHL is affected by processes other 
than thermocline variations. For example, Uz et al. (2001) found positive correlations 
between satellite CHL and SLA associated with the propagation of Rossby waves. These 
studies exemplify how multiple satellite observations are used to understand basin-scale 
dynamics and their impacts on the ocean phytoplankton biomass variability. Following 
these works, Jordi et al. (2009) used the singular value decomposition (SVD) analysis of the 
cross-covariance matrix between satellite CHL and SLA to analyze the regional scale 
dynamics in the northwestern Mediterranean Sea. Their results highlight the role of the 
water mass transported by the regional circulation on the variability of the phytoplankton 
biomass. The SVD analysis may be superior to EOF analysis in identifying correlated spatial 
patterns between pairs of spatial time series (Bretherton et al., 1992). 
In the Mediterranean Sea, a semi-enclosed marginal sea with limited geographical 
dimensions (Fig. 1), ocean color data reveals that oligotrophic conditions prevail for most of 
the year (D’Ortenzio et al., 2002). Biological production is mainly regulated by physical 
processes enhancing nutrient supply to surface layers and by allochtonous inputs from the 
continents and the atmosphere (Barale et al., 2008). Satellite ocean color data in the 
Mediterranean Sea has demonstrated dominance of the seasonal cycle in phytoplankton 
biomass (Bosc et al., 2004). With some regional variations, the typical temperate-latitude 
cycle with maximum biomass in late winter-spring and minimum during summer stratified 
conditions occurs throughout most of the basin (Bricaud et al., 2002). Inter-annual variations 
in CHL concentrations are also noticeable both at a local scale and over the whole basin, and 
have been related to climatic fluctuations (D’Ortenzio et al., 2003). 
Complementarily, altimetry satellite data shows that the sea level variability in the 
Mediterranean is a complex combination of a wide range of spatial and temporal scales 
(Cazenave et al., 2001; Larnicol et al., 2002). Besides the marked seasonal cycle in SLA 
caused by the steric effect, important intra- and inter-annual signals are observed associated 
with permanent or transitory oceanographic structures such as frontal currents and 
mesoscale eddies (Jordi & Wang, 2009; Pujol & Larnicol, 2005). The multiple driving forces 
including the ocean–atmosphere interaction, the phenomenology of the deep water 
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formation and water mass hydrological properties, the frontal currents and mesoscale 
eddies, and the topographic and coastal influence, add complexity to the physical-biological 
coupling in the Mediterranean Sea.  
 

 
Fig. 1. Bathymetry of the Mediterranean Sea. The 200 and 2000 m isobaths are shown with 
gray lines. 

In this work, we analyze the basin scale patterns of phytoplankton variability at inter-
annual, seasonal and intra-annual scales and the associated driving forces in the 
Mediterranean Sea based on 12 years of concurrent ocean color and altimetry satellites data. 
The knowledge of the phytoplankton variability and its relation to ocean circulation is 
critical to understand marine ecosystem dynamics and biogeochemical cycles, with 
implications ranging from marine food webs to climate change. The physical mechanisms 
that regulate phytoplankton patterns in the Mediterranean are analogous to those in larger 
oceanic areas and therefore comprehension of the processes occurring therein are pertinent 
to the understanding of larger areas. 

2. Data and methodology 
2.1 Altimetry satellite data 
The satellite-borne altimetry is initially designed to estimate the sea surface height (SSH) by 
measuring the satellite-to-surface round-trip time of a radar pulse. These measurements 
however include the Earth’s geoid which varies by tens of meters across the ocean and is not 
accurately estimated (Fu et al., 1994). This unknown geoid is removed from satellite 
observations by subtracting a long term mean of the altimeter measurements from the 
observations. However, this procedure removes also the mean dynamic SSH and satellite 
measurements refer only to SLA, which contains information on the geostrophic current 
fields, mesoscale eddy variability and changes in the thermocline depth (Le Traon et al., 
1998; Stammer, 1997). Uncertainties on the location of the satellite on its orbit and 
disturbances of the radar pulse by the atmosphere introduce additional errors in the SLA 
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accurately estimated (Fu et al., 1994). This unknown geoid is removed from satellite 
observations by subtracting a long term mean of the altimeter measurements from the 
observations. However, this procedure removes also the mean dynamic SSH and satellite 
measurements refer only to SLA, which contains information on the geostrophic current 
fields, mesoscale eddy variability and changes in the thermocline depth (Le Traon et al., 
1998; Stammer, 1997). Uncertainties on the location of the satellite on its orbit and 
disturbances of the radar pulse by the atmosphere introduce additional errors in the SLA 
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measurement. Because of these errors, the first altimetry satellites such as Seasat or Geosat 
did not provide very usable and useful data. In 1993, the French Centre National d’Etudes 
Spatiales (CNES) and the US National Aeronautics and Space Administration (NASA) 
launched TOPEX/Poseidon satellite, which included a very precise positioning technique. 
Since then, new accurate altimetry missions were launched: ERS1/2 (in 1993), Geosat 
Follow-On (in 2000), Jason-1 (in 2002), TOPEX/Poseidon interleaved (in 2002), ENVISAT (in 
2003) and Jason-2 (in 2008). The combination of these satellites enables high-precision 
altimetry and improves their spatial and temporal resolution. 
It is now generally accepted that at least three altimeter missions are required to resolve the 
ocean mesoscale variability (Le Traon & Dibarboure, 1999; Pascual et al., 2007). However, 
merging multi-satellite data requires consistent SLA data sets. Homogeneous and 
intercalibrated SLA fields in the Mediterranean Sea created by merging TOPEX/Poseidon, 
ERS1/2, Geosat Follow-On, Jason-1/2, TOPEX/Poseidon interleaved, and ENVISAT 
altimeter measurements, are obtained from AVISO (http://www.aviso.oceanobs.com/) for 
the period October 1997 to December 2009. The data set includes 7-day maps of SLA on a 
0.125º x 0.125º regular grid interpolated in time and space using a global objective analysis 
(Le Traon et al., 1998). The length scale of the interpolation and the e-folding time scale were 
set to 100 km and 10 days (Pujol & Larnicol, 2005). The SLA data is re-binned in space onto a 
0.25º x 0.25º to reduce small-scale variability and in time to the satellite CHL 8-day window 
(see below) in order to be consistent with the temporal resolution of CHL data. 

2.2 Ocean color satellite data 
The first instrument that demonstrated the viability of satellite ocean color measurements 
was the US National Oceanic and Atmospheric Administration (NOAA) and the NASA 
CZCS Experiment aboard the Nimbus-7 satellite (Gordon et al., 1983). Although other 
instruments had sensed ocean color from space, their spectral bands, spatial resolution and 
dynamic range were optimized for land or meteorological use, whereas every parameter in 
CZCS was optimized for use over water to the exclusion of any other type of sensing. The 
CZCS ocean color data, available from 1978 to 1986, allowed a considerable progress in the 
knowledge of spatial and temporal variations in surface CHL in various regions of the 
world ocean (Antoine et al., 1996; Behrenfeld & Falkowski, 1997; Platt & Sathyendranath, 
1988). 
The CZCS provided justification for future ocean color missions such as the Japanese 
National Space Development Agency (NASDA) Ocean Color and Temperature Scanner 
(OCTS) aboard the Advanced Earth Observing Satellite (ADEOS) from 1996 to 1997 (Kishino 
et al., 1997) or the NASA Sea Viewing Wide Field of View Sensor (SeaWiFS) aboard the 
Orbital Science Corporation (OSC) Orbview-II satellite from 1997 to 2010 (Hooker & 
McClain, 2000). Presently, the NASA Moderate Resolution Imaging Spectrometer (MODIS-
A) aboard the NASA Aqua satellite (Esaias et al., 1998), and the European Space Agency 
(ESA) Medium Resolution Imaging Spectrometer (MERIS) aboard the ENVISAT satellite 
(Rast et al., 1999), both launched in 2002, provide a global monitoring of the ocean biomass. 
Other missions exist, with more limited coverage however, such as the Indian OCM 
(Chauhan et al., 2002) or the Korean OSMI (Yong et al., 1999). 
To maintain the level of uncertainty of the derived products within predefined 
requirements, SeaWiFS and MODIS-A ocean color observations are calibrated using long-
term in-situ field data (Bailey and Werdell, 2006). The calibration includes an adjustment of 
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the overall response of the sensor, an atmospheric correction algorithm and the application 
of bio-optical algorithms (Gordon, 1997, 1998). The ocean color data used in this work 
consists of level 3 standard processed 8-day maps of CHL from SeaWiFS and MODIS-A on a 
9 x 9 km regular grid in the Mediterranean Sea obtained from NASA’s Ocean Color web site 
(http://oceancolor.gsfc.nasa.gov, see also McClain (2009)). Merging data from SeaWiFS and 
MODIS-A increases the coverage and reduces the uncertainties in the retrieved variables 
(Maritorena et al., 2010). The CHL produced by those ocean color missions are consistent 
over a wide range of conditions (Morel et al., 2007). We interpolate cloud-free CHL data 
onto the SLA grid of 0.25º x 0.25º resolution using objective analysis with a length scale of 50 
km and and e-folding time scale of 10 days. 
Satellite derived CHL through standard algorithms in the Mediterranean Sea is affected by a 
calibration problem displaying a bias when compared to in situ observations (Bosc et al., 2004; 
Volpe et al., 2007). This difficulty is related to the specific environmental bio-optical 
characteristics of the Mediterranean with respect to other oceanic regions having similar ranges 
of CHL. However, in the present work, we use the standard calibration algorithms because we 
are interested in the phytoplankton variability rather than in the absolute biomass values. The 
satellite derived CHL is used as a proxy for the phytoplankton biomass in the mixed layer. 
Although satellite derived CHL is limited to an optical depth, a reasonable correlation exists 
between the depth integrated and the satellite CHL (Morel and Berthon, 1989). 

2.3 Seasonal cycles and inter- and intra-annual anomalies 
The SLA and CHL variability in the Mediterranean are dominated by the seasonal cycle 
(Larnicol et al., 2002; Bosc et al., 2004). As a first step, it is necessary to remove these seasonal 
variations because otherwise they would dominate the resultant correlations. In our case, we 
calculate the seasonal cycles of SLA and CHL by averaging the value for each grid point and 
each 8-day window. We then subtract the seasonal cycles (8-day mean values) to the original 
time series for each grid point to create anomalies. Finally, we apply a low- and high-pass 
Lanczos filter with a cut-off period of 1 year at each grid point to compute the inter- and intra-
annual anomalies, respectively, of SLA and CHL. 

2.4 Correlation coefficient 
The analysis of the relationships between any two satellite data sets involving large number 
of grid points and time series can be performed in different ways. Correlation is a simple 
method available when the spatial and time domains of data sets are equal. The Pearson’s 
correlation coefficient between two time series p(t) and q(t) with means p  and q  and 
standard deviations σp and σq is defined as 
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where T is the total number of observations. We compute the Pearson’s correlation 
coefficient for each grid point. 

2.5 Singular value decomposition (SVD) analysis of the cross-covariance 
A more sophisticated method to analyze the relationship between any two satellite data sets 
is the SVD analysis of the cross-covariance matrix between the two data sets with the same 
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where T is the total number of observations. We compute the Pearson’s correlation 
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2.5 Singular value decomposition (SVD) analysis of the cross-covariance 
A more sophisticated method to analyze the relationship between any two satellite data sets 
is the SVD analysis of the cross-covariance matrix between the two data sets with the same 



  
Remote Sensing of Biomass – Principles and Applications  

 

128 

data length in time, but not necessarily the same spatial domain (Bretherton et al., 1992). The 
SVD analysis isolates covarying (coupled) spatial patterns of variability that tend to be 
linear related to one another. The SVD analysis is a generalization of empirical orthogonal 
function (EOF) analysis. Rather than extracting the modes that explain the greatest variance 
in a single data set, as in EOFs, the SVD analysis finds the covarying modes that explain as 
much as possible of the covariance between the two data sets. 
Consider two data sets s(x,t) and c(y,t), consisting of SLA anomaly values at Ns grid points 
and CHL anomaly values at Nc grid points (possibly different), both for the same T 
observation times. The data time series s(t) and c(t) at each of the grid points can be 
expanded in terms of a set of N < min(Ns,Nc) vectors or patterns 
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The time series ak(t) and bk(t) are the expansion coefficients and the vectors pk and qk are the 
corresponding spatial patterns. The SVD spatial patterns are othonormal. Each pair of 
coefficients and patterns together (for a given k) make up a mode. The coefficients and 
patterns are chosen so that the first mode maximizes 1 1( ) ( )a t b t , the cross-covariance of the 
expansion coefficients, where the brackets denote the time average over the T observation 
times. Successive pairs explain the maximum squared temporal covariance subject to 
orthogonality of the spatial patterns among themselves. The SVD modes are the 
eigensolutions of the cross-covariance matrix between the two time series. 

3. Correlations between SLA and CHL 
Ocean phytoplankton growth mainly depends on the availability of light and nutrients. 
Whereas light is rarely limiting in surface waters of the Mediterranean Sea (exceptions are 
some areas affected by river discharges), nutrient availability generally regulates 
phytoplankton growth. Since nutrient concentrations are higher in the deep ocean, physical 
processes that favor the supply nutrients from deeper layers into the surface euphotic zone 
will stimulate phytoplankton growth. Stratification and mixed layer depth changes are 
important factors regulating deep nutrient-rich waters supply to the upper ocean layer. SLA 
is indicative of changes in the thermocline depth because SLA primarily reflects the first 
baroclinic mode, which is related to the main thermocline (Stammer, 1997; Wunsch, 1996).  
Figure 2 shows the correlation between the seasonal cycles of SLA and CHL at each grid 
point with shaded colors. Correlations that are not statistically significant at the 95% level 
are shaded white. Negative correlations are observed in most of the Mediterranean Sea, with 
highest (absolute) values in the northern part of the Western basin and lowest values 
between the Ionian and Levantine basins. Also, higher correlations are generally observed in 
oceanic water, off from the shelf. Inverse correlations in the seasonal cycles of SLA and CHL 
are typical of temperate regions where summer stratification inhibits the vertical flux of 
nutrients and winter mixing supplies nutrient-rich subsurface waters fueling phytoplankton 
growth. A few areas such as the Adriatic and Aegean basins, the entrance of the Gulf of 
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Gabes and the Nile River delta display positive correlations. The Adriatic basin is essentially 
controlled by the local winter climatic conditions, rather than the nutrient inputs from 
deeper layers or land sources (Santoleri et al., 2003). The Gulf of Gabes signal may be an 
artifact produced by direct bottom reflection in areas of shallow clear waters (Jaquet et al., 
1999). The other regions with positive correlations are located over the continental shelf and 
receive important terrestrial inputs that may override the control of seasonal thermocline 
oscillation on phytoplankton production in open waters. 
 

 
Fig. 2. Correlation coefficient between SLA and CHL seasonal cycles. The correlation in the 
red and blue areas is statistically significant at 95% level or more. 

Although the large-scale patterns in oceanic areas observed in Figure 2 imply that SLA and 
related thermocline variations have key relevance on seasonal CHL, other physical 
processes also modulate the biological response in the Mediterranean. The correlation 
between SLA and CHL anomalies at inter-annual time scale is mostly negative in oceanic 
areas (Figure 3), suggesting the prevalence of the coupling between SLA and CHL typical of 
temperate areas, as observed for the seasonal cycles. However, areas showing positive 
correlations increase with respect to Figure 2. Water discharges from Rhone, Ebro and Nile 
rivers and from the Black Sea cause these positive correlations in their influence areas. 
Interestingly, positive correlations are also found in the southern part of the Western basin. 
This area is characterized by an intense mesoscale activity produced byAlgerian eddies 
detached from the African coast and propagating to the north (Millot and Taupier-Letage, 
2005). Vertical transfer of nutrients through eddy pumping is a dominant process 
modulating the biological activity in this region (Arnone and La Violette, 1986; Taupier-
Letage et al., 2003). 
The correlation between SLA and CHL anomalies at intra-annual time scales is shown in 
Figure 4. Correlations are not statistically significant in most of the Mediterranean Sea. 
Indeed, the values of the significant correlations are notably lower than the correlations 
between seasonal cycles and anomalies at inter-annual time scales, suggesting that direct 
correlation is not adequate to analyze the relationships between SLA and CHL anomalies at 
intra-annual time scales. 
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Fig. 3. Correlation coefficient between SLA and CHL anomalies at inter-annual time scales. 
The correlation in the red and blue areas is statistically significant at 95% level or more. 

 

 
Fig. 4. Correlation coefficient between SLA and CHL anomalies at intra-annual time scales. 
The correlation in the red and blue areas is statistically significant at 95% level or more. 

4. SVD analysis 
4.1 Inter-annual anomalies 
To gain further insight into the relationship between SLA and CHL anomalies at inter- and 
intra-annual time scales, we use SVD analysis. Figure 5 shows the spatial patterns for the 
first mode, which explains 41% of the covariance between the SLA and CHL inter-annual 
anomalies. Both patterns are scaled to represent the amplitude of SLA and CHL anomalies 
associated with one standard deviation of the corresponding expansion coefficients. Large 
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areas of the Mediterranean Sea present the negative covariations (i.e. SLA increases and 
CHL decreases, or vice versa) typical of temperate areas, particularly in the Tyrrhenian, 
Ionian and Aegean basins. In the Levantine basin and in the southern part of the Western 
basin, areas with positive covariations are observed. These regions are characterized by high 
levels of mesoscale eddy variability (Pujol & Larnicol, 2005). Mesoscale eddies have 
important biological and biogeochemical consequences, driving vertical motions of water 
and lifting subsurface nutrients into the surface euphotic layer (McGillicuddy et al., 1998; 
Oschlies & Garçon, 1998). Positive covariations are also observed in the Adriatic basin, 
which is driven by the local winter climatic conditions (Santoleri et al., 2003), and in coastal 
areas such as Rhone, Ebro, Po and Nile river deltas, suggesting the influence of riverine 
inputs. 
 

 
Fig. 5. First spatial patterns of (a) SLA and (b) CHL anomalies at inter-annual time scales. 
The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 
with 1 standard deviation of the first expansion coefficients. 
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Fig. 3. Correlation coefficient between SLA and CHL anomalies at inter-annual time scales. 
The correlation in the red and blue areas is statistically significant at 95% level or more. 
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important biological and biogeochemical consequences, driving vertical motions of water 
and lifting subsurface nutrients into the surface euphotic layer (McGillicuddy et al., 1998; 
Oschlies & Garçon, 1998). Positive covariations are also observed in the Adriatic basin, 
which is driven by the local winter climatic conditions (Santoleri et al., 2003), and in coastal 
areas such as Rhone, Ebro, Po and Nile river deltas, suggesting the influence of riverine 
inputs. 
 

 
Fig. 5. First spatial patterns of (a) SLA and (b) CHL anomalies at inter-annual time scales. 
The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 
with 1 standard deviation of the first expansion coefficients. 
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The spatial pattern for the second mode is shown in Figure 6, accounting for 28% of the 
covariance between the SLA and CHL anomalies at inter-annual time scales. The areas with 
negative covariations dominate in the Levantine and Aegean basins. Negative covariations 
are also observed in the Ionian basin, with the exception of the Gulf of Gades, although the 
northern and southern parts behave in opposite ways (i.e. SLA increases in the north and 
decreases in the south, both negatively correlated with CHL). This different behavior occurs 
also in the Western basin, between the eastern and western parts. The Adriatic basin and the 
coastal areas covary positively, as observed in the first spatial pattern. 
 

 
Fig. 6. Second spatial patterns of (a) SLA and (b) CHL anomalies at inter-annual time scales. 
The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 
with 1 standard deviation of the second expansion coefficients. 

The time evolution of the first two modes of the SLA and CHL inter-annual anomalies is 
shown in Figure 7. The expansion coefficients for the first and second modes are correlated 
at 0.79 and 0.84 (significant at 99% level), respectively. These high values indicate that inter-
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annual variability is dominated by changes in vertical nutrient fluxes, that are regulated by 
the seasonal themocline dynamics. Mesosecale eddies plays also an important role, 
especially in the Levantine basin and the southern area of the Western basin. The Adriatic 
basin behaves completely different as its response is regulated by climatic conditions. 
Finally, riverine inputs influence the biological response in areas under the influence of 
major rivers. 
 
 

 
 

Fig. 7. Time evolution of normalized (a) first and (b) second expansions coefficients of SLA 
(blue line) and CHL (red line) inter-annual anomalies. 
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Fig. 8. First spatial patterns of (a) SLA and (b) CHL anomalies at intra-annual time scales. 
The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 
with 1 standard deviation of the first expansion coefficients. 

4.2 Intra-annual anomalies 
The spatial pattern for the first mode between the SLA and CHL intra-annual anomalies 
shows a significant positive covariation of SLA and CHL in the whole Mediterranean Sea. 
Note that variations in CHL at this time scale are markedly lower than in other modes. This 
behavior does not agree with that observed at inter-annual time scales, when the winter 
mixing enhances the upward transport of nutrients to the ocean surface. Therefore, other 
physical processes must be regarded in order to explain the biomass enhancement at this 
time scale. One candidate could be a mechanical effect indebted to oscillations in the 
thermocline. The modification of the thermocline depth due to the SLA variation could 
accumulate phytoplankton biomass close to the surface (or vice versa) and thus affect the 
CHL measured by the ocean color satellites without modifying the vertically-integrated 
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biomass. Alternatively, the shoaling of the thermocline could extend the deeper nutrient-
rich layer into the euphotic surface zone, allowing phytoplankton uptake. These 
compression mechanisms of the ocean surface layer would be similar dynamically to the 
compression caused by Rossby waves (Cipollini et al. 2001). This first pattern accounts for 
69% of the total covariance at intra-annual time scales, whereas the second pattern (not 
shown) explains less than 10% of the covariance. 
Figure 9 shows the time evolution of the first mode of the SLA and CHL intra-annual 
anomalies. The figure only shows the period from 2002 to 2006 to facilitate the observation 
of short-term variability. The correlation between the first expansion coefficients for SLA 
and CHL intra-annual anomalies is 0.40 (significant at 99% level). Although the compression 
may play an important role on the enhancement of CHL observed by the satellite, the 
relatively modest value of correlation indicates that processes other than mechanical 
accumulation take place. For example, biological processes related to food web dynamics 
which are not coupled with the SLA should be important. 
 

 
Fig. 9. Time evolution of normalized first expansions coefficients of SLA (blue line) and CHL 
(red line) intra-annual anomalies. 

5. Conclusion 
This study analyzes the basin scale physical-biological coupling in the Mediterranean Sea at 
inter-annual, seasonal and intra-annual time scales based on 12 years of concurrent satellite 
SLA and CHL data. Not surprisingly, the long-term (inter-annual and seasonal) variability 
of SLA and CHL is negatively correlated in most oceanic areas of the Mediterranean Sea. 
This is the typical behavior of temperate regions associated with the availability of nutrients 
in the mixed layer: summer stratification blocks upward entrainment of nutrients from deep 
layers and winter mixing brings nutrients to the surface (Cushing, 1959). In the coastal 
regions, particularly in those areas influenced by major rivers, the biological response is 
controlled by supply of nutrients of continental origin. However, other biological responses 
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to the thermocline oscillations are also observed. The inter-annual SLA and CHL covary in 
areas dominated by mesoscale eddies, such as the Levantine basin and the southern part of 
the Western basin. Cyclonic eddies can enhance primary production by upwelling of 
nutrient rich water (McGillicuddy et al., 1998; Oschlies & Garçon, 1998). In the intra-annual 
variability, the coupling between SLA and CHL is exerted through a mechanical 
compression mechanism, which concentrates nutrients and phytoplankton cells into the 
surface layer. Nevertheless, the overall influence of the mesoscale eddies and the 
compression mechanism in the enhancement of phytoplankton in the Mediterranean Sea 
deserves further study. 
The SVD analysis to link SLA and CHL is a quick, easily accessible and powerful method for 
assessing the ocean physical-biological coupling. Our results demonstrate its strength over 
the direct correlation. The correlation map indicates the spatial covariability of SLA and 
CHL but cannot provide any details about their temporal variability. SVD analysis extracts 
the dominant temporal and spatial components of covariability between SLA and CHL into 
a series of orthogonal functions or statistical modes, and their time evolution or expansion 
coefficients. In addition, the SVD modes can be related to different coupling mechanism. 
This methodology represents a simple alternative to more sophisticated coupled physical-
biological ocean models. There are also other conceptual methods that isolate coupled 
modes of variability between spatial time series, such as joint EOFs or canonical correlation 
analysis. According to Bretherton et al. (1992), the SVD analysis is simpler and superior than 
these other methods in most situations involving geophysical fields. 
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1. Introduction  
Accurate information relating to the impact of fire on the environment and the way it is 
distributed throughout the burned area is a key factor in quantifying the impact of fires on 
landscapes (van Wagtendonk et al. 2004), selecting and prioritizing treatments applied on 
site (Patterson and Yool 1998), planning and monitoring restoration and recovery activities 
(Jakubauskas 1988; Jakubauskas et al. 1990; Gitas 1999) and, finally, providing baseline 
information for future monitoring (Brewer et al. 2005). 
In order to assess economic losses and ecological effects, post-fire impact assessment 
requires precise information on extent, type and severity of fire (short-term impact 
assessment) as well as on forest regeneration and vegetation recovery (long-term impact 
assessment). Assessing the short-term impact is related to the study of fire behaviour, fire 
suppression and fire effects while the long-term impact assessment of fires is needed in 
order to establish post-fire monitoring management and introduce restoration and recovery 
activities. 
As fire sizes increase and time becomes a constraining factor, traditional methods to 
assess post-fire impact on vegetation have become costly and labour-intensive (Bertolette 
and Spotskey 2001; Mitri and Gitas 2008). Given the extremely broad spatial expanse and 
often limited accessibility of the areas affected by fire, satellite remote sensing is an 
essential technology for gathering post-fire related information in a cost-effective and 
time-saving manner (Smith and Woodgate 1985; Chuvieco and Congalton 1988; 
Jakubauskas et al. 1990; White et al. 1996; Patterson and Yool 1998; Beaty and Taylor 2001; 
Escuin et al. 2002).  
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In addition, the development of high spatial and spectral resolution remote sensing 
instruments, both airborne and spaceborne, as well as advanced image analysis techniques 
have provided an opportunity to evaluate patterns of forest regeneration and vegetation 
recovery after wildfire.  
The aim of this chapter is to review the role of Remote Sensing (RS) in post-fire monitoring 
of vegetation recovery. More specifically, traditional and advanced methods and techniques 
that have been so far employed to monitor vegetation regrowth after fire by RS will be 
reviewed and future trends will be identified.  
More specifically, Part 2 deals with the ecological framework of the effects of fire on the 
ecosystem, Part 3 describes the methods and techniques that have so far been employed to 
estimate forest regeneration and vegetation recovery by means of field survey and by RS, Part 
4 focuses on the advances in RS of post-fire vegetation monitoring, Part 5 emphasises on future 
trends in RS of post-fire monitoring, and Part 6 outlines the main conclusions of the chapter. 

2. Ecological framework  
Fire is an integral part of many ecosystems (Trabaud 1994). However, in recent decades the 
general trend in the number of fires and in the surface burned has increased spectacularly. 
This increase can be attributed to: (a) land-use changes (Rego 1992; García-Ruiz et al. 1996), 
and (b) climatic warming (Maheras 1988; Torn and Fried 1992; Amanatidis et al. 1993; Piñol 
et al. 1998; EPA 2001).  
The ecological effects of forest fires are very diverse. This is not only because of the 
complexity of plant communities and the interface of disturbances such as grazing and 
cutting with burning, but also because of the different responses to the type, duration and 
intensity of fire, the season in which it occurs and its frequency (Le Houerou 1987).  
The effect of fire on forested ecosystems can range from disastrous to beneficial. Harmful 
effects include changes in the physical, chemical and biological properties of soils; benefits 
are the removal of accumulated fuels, an increase in water yield, the control of insects and 
diseases, the preparation of seedbeds, and the release of seeds from serotinous cones 
(Kozlowski 2002). 
Specifically, the main effects of fire on soils are the loss of nutrients during burning and the 
increased risk of erosion after burning. The latter is in fact related to the regeneration traits 
of the previous vegetation and to environmental conditions (Pausas et al. 1999). Large fires 
that produce a greater number of intensely burned patches can favour the colonization of 
invasive, fire tolerant species at the expense of rare/endemic species that are less tolerant to 
post-fire conditions. Thus biodiversity is also affected by fire (Dafis 1990). Climate change 
predictions and repercussions of forest fires on erosion, water yield and desertification 
further add to these threats (Moreno et al. 1990). 
The effects of forest fires on vegetation are the most evident due to plants vulnerability to 
burning leading to permanent changes in the composition of the vegetation community, 
decreased vegetation cover, biomass loss and the alteration of landscape patterns (Perez-
Cabello et al. 2009). However, forest fire is the major force in the biological evolution of biota 
such as in the Mediterranean (Naveh 1991). For instance, most Mediterranean plant species 
exhibit effective regeneration mechanisms for overcoming the immediate effects of fire 
(Mooney and Hobbs 1986). Plant species mechanisms can be passive (e.g. thick insulating 
bark), or active (e.g. re-sprouting from underground storage organs and seedlings from fire 
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protected seeds), which may lead to a rapid process of vegetation cover with similar 
characteristics to the previous communities (Perez-Cabello et al. 2009). However, the 
response of vegetation to fire is very complex and it is not easy to generalize because of the 
large number of factors that can affect the regeneration process (e.g. topographic-climatic 
influences, plant composition, topographic parameters, soil characteristics, etc.). 
Natural regeneration (the regrowth of lost or destroyed parts or organs) of disturbed mature 
forests to a pre-disturbance condition is often slow, unpredictable, and fraught with 
difficulties (Kozlowski 2002). The natural regeneration of disturbed forest stands typically 
occurs in four sequential stages:  
1. A stand initiation and regeneration stage: interactions among propagules (including 

seeds in seed banks and those dispersed into a site as well as sprouting or layering of 
residual trees) and soil and climatic conditions. 

2. A thinning or stem exclusion stage: canopy closes and mortality of trees accelerates, 
competition for resources (light, water, mineral nutrients), leaf area index reaches its 
maximum. 

3. A transition or understory regeneration stage: death of some overstorey trees, resulting 
in the formation of gaps in the canopy and the reintroduction of understorey 
vegetation. 

4. A steady-state or old-growth stage: the continuation of a series of successional stages 
beginning in the previous stage and which may culminate in an old-growth climax 
forest (Oliver 1981; Oliver and Larson 1996; Kozlowski 2002).  

Plant species react to fire through different morphological and physiological traits (Perez-
Cabello et al. 2009). Some can survive fires due to protected plant tissues sprouting (e.g. 
underground storage organs) and high growth rates after fire and others can rapidly 
establish seedlings (Buhk et al. 2007). Resprouting ability is a very common survival 
strategy. Post-fire buds respond by producing new shoots (Miller 2000) and this engenders a 
rapid return to pre-fire conditions. Differently, seedling establishment may originate from 
on-site seeds or from off-site seed sources if favourable environmental conditions appear 
following fire (Baeza and Roy 2008). 
The total recovery of a burned area includes different aspects such as revegetation, fauna 
recuperation, biodiversity, landscape aesthetics, ‘natural’ runoff rates and sediment yield 
(Inbar et al. 1998). Opinions about the natural state (the target value of post-fire recovery) 
differ among disciplines. Seen from a soil and water conservation point of view, a return to 
the original vegetation cover is sufficient, while ecologists consider recovery as a return in 
the richness of the original species. From a silvicultural perspective, it is important to 
consider both the quantity and quality of fire-induced tree regeneration (Gould et al. 2002).  
The assessment of the ecological effects of fires on biodiversity, soil degradation and on the 
cycling of carbon and nitrogen requires not only a detailed and accurate mapping of the 
burned areas but also an accurate mapping of the type and severity of fire and of post-fire 
forest regeneration ( for example pine regeneration) and vegetation recovery (for example 
shrub recovery) (Le Houerou 1987; Jabukauskas et al. 1990; Naveh 1991).  

3. Post-fire monitoring using remote sensing  
This part of the chapter consists of three different sections. Section (3.1) provides 
information on field based post-fire vegetation monitoring, section (3.2) discusses the 
airborne and spaceborne sensors used in post-fire monitoring, and section (3.3) introduces 
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the original vegetation cover is sufficient, while ecologists consider recovery as a return in 
the richness of the original species. From a silvicultural perspective, it is important to 
consider both the quantity and quality of fire-induced tree regeneration (Gould et al. 2002).  
The assessment of the ecological effects of fires on biodiversity, soil degradation and on the 
cycling of carbon and nitrogen requires not only a detailed and accurate mapping of the 
burned areas but also an accurate mapping of the type and severity of fire and of post-fire 
forest regeneration ( for example pine regeneration) and vegetation recovery (for example 
shrub recovery) (Le Houerou 1987; Jabukauskas et al. 1990; Naveh 1991).  

3. Post-fire monitoring using remote sensing  
This part of the chapter consists of three different sections. Section (3.1) provides 
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the relative satellite image analysis techniques. The latter, provides a thoroughly description 
of well-known methods employed in post-fire monitoring and discuses studies related to 
the estimation of post-fire albedo and Land Surface Temperature. Subsection (3.3.6) deals 
with the use of SAR data to monitor the post-fire impact on forests. A summary table (Table 
2) is also included.  

3.1 Field based post-fire monitoring  
Traditional methods of recording post-fire impact on vegetation include extensive field 
work or observations from an airborne platform, followed by the initial mapping (manually) 
of resource damage into predetermined classes (Bertolette and Spotskey 2001). As fire sizes 
increase and time becomes a constraining factor, traditional methods have become costly 
and labour-intensive.  
Most studies are carried out in the first years after fire, and are mainly focused on seedling 
germination and on the survival and the restoration of plant cover (Table 1). Several years 
after the fire, measurements usually focus more on the characteristics of, for example, the 
trees, namely height, canopy width, basal diameter and volume. It has been realised that 
long-term monitoring is often required in order to evaluate the resilience of the different 
ecosystems towards forest fires. Normally, in long-term post-fire vegetation monitoring 
sampling units are established right after the fire event and the studied variables are 
monitored for several consecutive years (Calvo et al. 1998; Tarrega et al. 2001).  
The most common sampling technique for monitoring plant populations is the use of 
permanent square plots. Taking into account both species characteristics and the extent of 
the study area, the size, the shape and the number of different plots are determined 
(Arianoutsou 1984; Clemente et al. 1996; Calvo et al. 2002; Cruz et al. 2003; Mitri and Gitas 
2010). Accordingly, and in order to facilitate the objective collection of data on the ground, a 
number of field variables have been measured. In addition, there is a wide variety of 
sampling protocols depending on the type of survey (Daskalakou and Thanos 2004) that 
have been developed.  
The analysis of post-fire vegetation recovery and monitoring can be either structural (involving 
variables such as cover and spatial heterogeneity), which is based on visual or floristic 
assessments (species composition, richness, community diversity, etc.), or a combination of the 
above (Pausas et al. 1999; Eshel et al. 2000; Kazanis and Arianoutsou 2004). In addition, 
protocols used can be distinguished into two general categories, that of plots (Thanos et al. 1996; 
Daskalakou and Thanos 1997; Tsitsoni 1997; Martínez-Sánchez et al. 1999; De Luis et al. 2001; 
Bailey and Covington 2002; Kennard et al. 2002) and that of transects (Ne'eman et al. 1999; 
Pausas et al. 1999; Caturla et al. 2000; Wahren et al. 2001; Gould et al. 2002). 
Pausas et al. (1999) investigated the effect of different environmental conditions (climatic 
zones, aspect, and lithology) on the recovery process. They found large spatial variation in 
plant recovery in different localities with the same aspect, and for different aspects in the 
same locality. The recovery rate was different for different years due to changing climatic 
conditions and was higher on north-facing slopes, which are wetter than south-facing 
slopes. Belda and Meliá (2000) investigated the influence of climate on the natural post-fire 
regeneration of the burned area and found that regeneration followed an exponential curve, 
which was stronger in wet zones and had high correlation coefficients. Tsitsoni (1997) found 
that a high value of organic matter of the burned soil was a favourable factor for natural 
regeneration, as well as the position on the hillside, with lower regeneration indice values 
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for the upper position and increasing values when descending the slope. De Luís et al. 
(2001) investigated the combined effect of fire and rainstorm on short-term ecosystem 
response by simulating high intensity rainfall on burned field plots in a Mediterranean 
shrubland. They found that one-year seedling survival was lower in the plots affected by 
rainfall simulation than in the control plots. A higher mortality rate, as a consequence of 
rainfall, was observed in the most abundant species. Pre-fire conditions may also affect the 
heterogeneity of burn severity, creating a wide range of local and landscape effects 
(Ne'eman et al. 1999). The propagation of fires and recolonisation processes are events that 
depend on the spatial organization of vegetation (Mouillet et al. 2001).  
 
Variables assessed in the field Reference 
Different environmental conditions (climatic 
zones, high intensity rainfall, aspect, and 
lithology) 

(Pausas et al. 1999; Belda and Meliá 2000; De 
Luis et al. 2001) 

Organic matter of the burned soil (Tsitsoni 1997) 
Pre-fire conditions (i.e. spatial organisation 
of vegetation) 

(Calvo et al. 1994; Ne'eman et al. 1999; 
Mouillet et al. 2001) 

Resprouting vigour (plant’s anatomical 
features, and the characteristics of the 
individual before disturbance), intensity of 
disturbance, and the environmental 
conditions after disturbance  

(Lloret and Vilà 1997; Díaz-Delgado and 
Pons 2001)  

Seed banks and germination - Seed number 
contained in soil samples - Cone opening 
and seed dispersal 

(Thanos and Georghiou 1988; Skordilis and 
Thanos 1995; Daskalakou and Thanos 1996; 
Ferrandis et al. 1996; Herranz et al. 1999; 
Keeley 2000)  

Seedling germination, survival and growth 
in a plot and along a transect on which 
samples are taken of plant cover, tree cover, 
tree characteristics or the floristic 
composition and cover per species 

(Thanos et al. 1996; Daskalakou and Thanos 
1997; Tsitsoni 1997; Martínez-Sánchez et al. 
1999; Ne'eman et al. 1999; Pausas et al. 1999; 
Caturla et al. 2000; De Luis et al. 2001; 
Wahren et al. 2001; Bailey and Covington 
2002; Gould et al. 2002; Kennard et al. 2002) 

Post-fire structural dynamics (Calvo et al. 1991) 
Species richness patterns and vegetation 
diversity -density of seedlings – abundance 
of different age classes 

(Pausas et al. 2003; Perula et al. 2003; 
Kavgaci et al. 2010)  

Permanent plot collection per plant 
community type and data reduction - Visual 
cover of the plant species 

(Santalla et al. 2002; Clemente et al. 2009) 

Non-native species cover correlated with 
high native species richness (Hunter et al. 2006) 

Field spectrometry 
(Broge and Leblanc 2000; Thenkabail et al. 
2000; Thenkabail et al. 2002; Mitri and Gitas 
2010) 

Table 1. Field variables assessed to determine post-fire monitoring 
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Vegetative resprouting is possible when buds survive the fire to resprout. Some species 
regenerate by both sexual and vegetative reproduction. Resprouting vigour depends upon 
the plant’s anatomical features, the characteristics of the individual before disturbance 
(plant size, number of shoots and physiological status of the plant), intensity of disturbance, 
and the environmental conditions after disturbance (Lloret and Vilà 1997). Areas where 
sprouting species are available usually show higher recovery rates than areas with mainly 
obligated seeders (Díaz-Delgado and Pons 2001). Seed banks are important in the dynamics 
of many plant communities as they provide an immediate source of propagules for 
recruitment after disturbance.  
Measurements may be focused on the monitoring of seedling germination, survival and 
growth (height) in a plot (Tsitsoni 1997; Martínez-Sánchez et al. 1999; De Luis et al. 2001; 
Bailey and Covington 2002; Kennard et al. 2002), or may be along a transect on which 
samples are taken of plant cover (Caturla et al. 2000), tree cover (Ne'eman et al. 1999), tree 
characteristics (Ne'eman et al. 1999; Gould et al. 2002) or the floristic composition and cover 
per species (Pausas et al. 1999; Wahren et al. 2001).  
Field spectrometry measurements were employed to investigate the spectral properties of 
plants, vegetation recovery, and naturally regenerating forest (Broge and Leblanc 2000; 
Thenkabail et al. 2000; Thenkabail et al. 2002; Mitri and Gitas 2010). More general methods 
to estimate vegetation abundance (Bonham 1989), recovery and forest regeneration in the 
field were adopted.  

3.2 Airborne and spaceborne sensors 
In comparison with extensive and labour-intensive field campaigns, remote sensing offers a 
time- and cost-effective alternative for mapping post-fire vegetation over large areas. 
Ground truthing based on limited sample sets is, however, always suggested for calibration 
and validation purposes (Shaw et al. 1998; Mitri and Gitas 2010). Airborne platforms 
provide a first option to acquire remotely sensed imagery. Stueve et al. (2009) used aerial 
photography in combination with KH-4B (Key Hole 4B) imagery from the CORONA 
mission to detect post-fire tree establishment at an alpine treeline ecotone, whereas Amiro et 
al. (1999) employed airborne measurements to monitor the post-fire energy balance of boreal 
forest. Peterson and Stow (2003) applied Spectral Mixture Analysis on Airborne Data and 
Acquisition and Registration (ADAR) data for the mapping of post-fire chaparral regrowth 
in Southern California. Airborne imagery allows detailed spatial information (Bobbe et al. 
2001). However, despite the increasing availability of digital aerial images, these data are 
rather seldom used. This is explained by the fact that airborne measurements usually cover 
relatively small areas. As a result, many photographs are required to cover large burned 
areas, which subsequently require correction and mosaicking (Gitas et al. 2009). 
In addition to aerial photographs, spaceborne sensors have shown big potential for 
assessing post-fire regrowth effects. Table 2 lists a multitude of studies focusing on the use 
of remote sensing for assessing post-fire vegetation recovery. Satellite sensors are 
characterized by their technical specifications. These technical specifications determine the 
sensor's capabilities with regards to the monitoring of post-fire recovery trajectories. In this 
context, the term resolution is of paramount importance. Resolution is the character of data 
that limits the user's ability to detect and identify an object of feature within the data (Bobbe 
et al. 2001). Resolution is fourfold; difference is made between spatial, temporal, spectral 
and radiometric resolution: 
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 Spatial resolution is a measure of fineness of spatial detail and it determines the 
smallest object that can be identified in the data. For digital sensors, spatial resolution is 
expressed as pixel size. 

 Temporal resolution refers to the sensor's revisiting time, i.e. the time period in which 
the same area is successively sensed. Temporal resolution depends upon orbital 
characteristics. 

 Spectral resolution is a measure of the specific wavelength intervals in which the sensor 
records. It is important to distinguish between broadband sensors, in which reflectance 
values are averaged over relatively wide bandpasses, and hyperspectral sensors, which 
are characterized by the acquisition over many fine wavebands. 

 Radiometric resolution is a measure of the sensor's ability to distinguish between two 
features of similar reflectance. 

Sensor design is a determinant factor when choosing the appropriate image analysis 
technique. In this context, it is important to trade-off between spatial and temporal 
resolution. High to moderate spatial resolution (e.g. smaller than 30 m) acquire only a few 
images a year, while low spatial resolution sensors (e.g. larger than 250 m) are characterized 
by daily image acquisition (Veraverbeke et al. 2011a). 
Most studies listed in Table 2 are based on optical satellite sensors. These images generally 
are subject to preprocessing prior to the analysis. In order to obtain geometrically registered 
top-of-canopy (TOC) reflectance values the imagery usually requires geometric, radiometric, 
atmospheric and topographic corrections (e.g. Veraverbeke et al. 2010a). After the abrupt 
changes caused by the fire, the more gradual vegetation recovery leads to alterations in 
radiometric response at landscape scale. These changes are governed by: (i) disappearance 
of the charcoal/ash, (ii) changes in the proportion of bare soils and (iii) an increase in 
vegetative cover. So far, many studies focused on the red-near infrared (R-NIR) bi-spectral 
space to discriminate between bare soils and vegetated areas because vegetation recovery 
results in higher NIR reflectance values and lower R reflectance values due to augmented 
chlorophyll absorption.  
According to the references included in Table 2, applications conducted for post-fire 
monitoring can be sorted based on the characteristics of the sensor that was used: 
 High resolution sensors: 6 studies were based on airborne imagery, 1 on Quickbird 

imagery and one on KH-4B imagery. 
 Moderate resolutions sensors: the majority of the studies applied Landsat sensors: 27 

studies used Thematic Mapper (TM) images, 10 Enhanced Thematic Mapper plus 
(ETM+) images and 5 Multispectral Scanner images (MSS). In addition, 3 authors 
applied Satellite Pour l'Observation de la Terra (SPOT) Multispectral (XS) data, 2 
Synthetic Aperture Radar (SAR), 1 Earth Observing-1 (EO1) Hyperion and 1 ICESAT 
Geoscience Laser Altimeter System (GLAS). 

 Low resolution sensors: although these sensors are characterized by their low spatial 
resolution, they have the advantage of repeated temporal sampling with high temporal 
frequency. Nine studies used Terra Moderate Resolution Imaging Spectroradiometer 
(MODIS) time series, 5 SPOT Vegetation (VGT) and 5 National Oceanic and 
Atmospheric Administration (NOAA) Advanced Very High Resolution (AVHRR) Data. 

 SAR: three studies used multi-temporal ERS images (C band), in one study the potential 
of ALOS PALSAR (L band) was investigated for post-fire monitoring, while multiple-
polarization aircraft L-band was used to monitor burn recovery in a coastal marsh.  
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Alcaraz-
Segura et al. 

2010 
Greening NDVI Boreal forest / AVHRR 

Amiro et al. 
1999 

Sensible heat 
(H), latent 
heat (LE), 
CO2 flux, 
surface 

radiometric 
temperature 
net radiation

Surface 
energy 
balance 

Boreal forest / 
BOREAS 

Twin Otter 
airborne data 

Belda and 
Melia 2000 / NDVI Mediterranean 

ecosystem / TM 

Bisson et al. 
2008 / NDVI Mediterranean 

ecosystem Selected plots TM, ETM+ 

Bourgeau-
Chavez et al 

2007 

Soil moisture 
variations in 
fire disturbed 

areas 

Regression 
models Boreal forest 

5 10X10 
sample plots, 

randomly 
selected along 

200m long 
transcects 

ERS 2 

Carranza et 
al. 2001 / 

NDVI and 
landscape 
structure 

Mediterranean 
ecosystem 

33 line 
transect plots TM 

Clemente et 
al. 2009 

Fractional 
vegetation 

cover 

NDVI and 
other indices 

Mediterranean 
ecosystem / TM, ETM+ 

Cuevas-
Gonzalez et 

al. 2008 
fAPAR NDVI 

transformation Boreal forest / MODIS 

Cuevas-
Gonzalez et 

al. 2009 
/ NDVI and 

other indices Boreal forest / MODIS 

Diaz-
Delgado and 

Pons 2001 
/ 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / MSS 

Diaz-
Delgado et 

al. 2002 
/ 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / MSS 

Diaz-
Delgado et 

al. 2003 
/ 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / MSS, TM 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Goetz et al. 
2006 / NDVI Boreal forest 11 sites AVHRR 

Goetz et al. 
2010 Tree height LIDAR Boreal forest / GLAS, TM, 

MODIS 
Gouveia et 

al. 2010 / NDVI Mediterranean 
ecosystem / VGT 

Hall et al. 
1991 

Land cover 
classification 

including 
regeneration 

classes 

Supervised 
classification Boreal forest / MSS 

Henry and 
Hope 1998 / NDVI and 

other indices 
Mediterranean 

ecosystem 

36 line 
transect plots 

with plant 
community 

statistics 

XS 

Hernandez-
Clemente et 

al. 2009 
/ NDVI Mediterranean 

ecosystem / TM, ETM+ 

Hicke et al. 
2003 NPP NDVI 

transformation Boreal forest / AVHRR 

Hope et al. 
2007 / NDVI Mediterranean 

ecosystem / TM, ETM+ 

Idris et al. 
2005 / 

NDVI and 
control plot 

selection 

Tropical and 
boreal forest / AVHRR 

Jabukauskas 
et al. 1990 

Land cover 
classification 

including 
regeneration 

classes 

Supervised 
minimum 

distance-to-
mean 

classification 

Temperate 
coniferous 

forest 

32 linguistic 
sample points TM 

Jacobson 
2010 / NDVI and 

other indices 
Woodland 
community / XS 

Kasischke et 
al 2007 

Relations 
between soil 

moisture 
patterns and 
post-fire tree 
recruitment 

Empirical 
relations Boreal forest 2 test sites ERS 1 and 2 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Alcaraz-
Segura et al. 

2010 
Greening NDVI Boreal forest / AVHRR 

Amiro et al. 
1999 

Sensible heat 
(H), latent 
heat (LE), 
CO2 flux, 
surface 

radiometric 
temperature 
net radiation

Surface 
energy 
balance 

Boreal forest / 
BOREAS 

Twin Otter 
airborne data 

Belda and 
Melia 2000 / NDVI Mediterranean 

ecosystem / TM 

Bisson et al. 
2008 / NDVI Mediterranean 

ecosystem Selected plots TM, ETM+ 

Bourgeau-
Chavez et al 

2007 

Soil moisture 
variations in 
fire disturbed 

areas 

Regression 
models Boreal forest 

5 10X10 
sample plots, 

randomly 
selected along 

200m long 
transcects 

ERS 2 

Carranza et 
al. 2001 / 

NDVI and 
landscape 
structure 

Mediterranean 
ecosystem 

33 line 
transect plots TM 

Clemente et 
al. 2009 

Fractional 
vegetation 

cover 

NDVI and 
other indices 

Mediterranean 
ecosystem / TM, ETM+ 

Cuevas-
Gonzalez et 

al. 2008 
fAPAR NDVI 

transformation Boreal forest / MODIS 

Cuevas-
Gonzalez et 

al. 2009 
/ NDVI and 

other indices Boreal forest / MODIS 

Diaz-
Delgado and 

Pons 2001 
/ 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / MSS 

Diaz-
Delgado et 

al. 2002 
/ 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / MSS 

Diaz-
Delgado et 

al. 2003 
/ 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / MSS, TM 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Goetz et al. 
2006 / NDVI Boreal forest 11 sites AVHRR 

Goetz et al. 
2010 Tree height LIDAR Boreal forest / GLAS, TM, 

MODIS 
Gouveia et 

al. 2010 / NDVI Mediterranean 
ecosystem / VGT 

Hall et al. 
1991 

Land cover 
classification 

including 
regeneration 

classes 

Supervised 
classification Boreal forest / MSS 

Henry and 
Hope 1998 / NDVI and 

other indices 
Mediterranean 

ecosystem 

36 line 
transect plots 

with plant 
community 

statistics 

XS 

Hernandez-
Clemente et 

al. 2009 
/ NDVI Mediterranean 

ecosystem / TM, ETM+ 

Hicke et al. 
2003 NPP NDVI 

transformation Boreal forest / AVHRR 

Hope et al. 
2007 / NDVI Mediterranean 

ecosystem / TM, ETM+ 

Idris et al. 
2005 / 

NDVI and 
control plot 

selection 

Tropical and 
boreal forest / AVHRR 

Jabukauskas 
et al. 1990 

Land cover 
classification 

including 
regeneration 

classes 

Supervised 
minimum 

distance-to-
mean 

classification 

Temperate 
coniferous 

forest 

32 linguistic 
sample points TM 

Jacobson 
2010 / NDVI and 

other indices 
Woodland 
community / XS 

Kasischke et 
al 2007 

Relations 
between soil 

moisture 
patterns and 
post-fire tree 
recruitment 

Empirical 
relations Boreal forest 2 test sites ERS 1 and 2 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Kasischke et 
al 2011 

Biomass 
estimation of 
regenerating 

forests 

Empirical 
relations Boreal forest / ALOS 

PALSAR 

Lhermitte et 
al. 2010 / 

NDVI and 
control plot 

selection 

Savannah 
ecosystem / VGT 

Lhermitte et 
al. 2011 / 

NDVI and 
control plot 

selection 

Savannah 
ecosystem / VGT 

Li et al. 2008 / 
NDVI, EVI 
and control 

plot selection

Temperate 
forest / MODIS 

Lozano et al. 
2010 / 

NDVI and 
other indices, 

landscape 
structure 

Mediterranean 
ecosystem / TM, ETM+ 

Lyons et al. 
2008 / Albedo Boreal forest / MODIS 

Malak and 
Pausas 2006 / NDVI Mediterranean 

ecosystem / TM 

Marchetti et 
al. 1995 / Infrared index Mediterranean 

ecosystem / TM 

McMichael 
et al. 2004 LAI NDVI 

transformation
Mediterranean 

ecosystem 

62 sample 
points and 

field 
spectroscopy

TM, ETM+ 

Minchella et 
al. 2009 

Vegetation 
recovery 

Simulations 
with 

scattering 
model 

Mediterranean 
ecosystem / ERS 

Mitchell and 
Yuan 2010 / NDVI Temperate 

forest / TM 

Mitri and 
Gitas 2010 

Land cover 
classification 

including 
regeneration 

classes 

Object-based 
classification 

Mediterranean 
ecosystem / Hyperion 

Palandjian et 
al. 2009 

Classification 
of 4 

regeneration 
classes 

Density 
slicing on 

NDVI data 

Mediterranean 
ecosystem Flux tower Quickbird 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Peterson and 
Stow 2003 

Fractional 
vegetation 

cover 
SMA Mediterranean 

ecosystem / TM, ADAR 

Ramsey et al. 
1999 

Time-since-
burn 

Regression 
analysis 

Marsh 
ecosystem / Aircraft SAR 

Randerson et 
al. 2006 / Albedo Boreal forest 

93 line 
transect 

points and 
field 

spectroscopy

MODIS 

Riaño et al. 
2002 / 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / AVIRIS 

Ricotta et al. 
1998 / 

NDVI and 
landscape 
structure 

Mediterranean 
ecosystem / TM 

Roder et al. 
2008 

Fractional 
vegetation 

cover 
SMA Mediterranean 

ecosystem 
Ground-

based NDVI 
MSS, TM, 

ETM+ 

Sankey et al. 
2008 

Fractional 
vegetation 

cover 
SMA Sagebrush 

community 
Field 

spectroscopy
XS, aerial 

photographs 

Schroeder 
and Pereira 

2002 
/ Landscape 

structure Boreal forest / TM 

Segah et al. 
2010 / NDVI Tropical forest 60 sample 

points TM, VGT 

Shaw et al. 
1998 / NDVI and 

other indices Boreal forest / Field 
spectroscopy 

Steyaert et 
al. 1997 

Land cover 
classification 

including 
regeneration 

classes 

Unsupervised 
cluster 

classification 
Boreal forest / AVHRR, TM 

Stueve et al. 
2009 

Tree 
establishment 
classification

Supervised 
minimum 

distance-to-
mean binary  
classification 

Alpine 
treeline 
border 

Line transect 
plots 

Airborne 
and KH-4B 

imagery 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Kasischke et 
al 2011 

Biomass 
estimation of 
regenerating 

forests 

Empirical 
relations Boreal forest / ALOS 

PALSAR 

Lhermitte et 
al. 2010 / 

NDVI and 
control plot 

selection 

Savannah 
ecosystem / VGT 

Lhermitte et 
al. 2011 / 

NDVI and 
control plot 

selection 

Savannah 
ecosystem / VGT 

Li et al. 2008 / 
NDVI, EVI 
and control 

plot selection

Temperate 
forest / MODIS 

Lozano et al. 
2010 / 

NDVI and 
other indices, 

landscape 
structure 

Mediterranean 
ecosystem / TM, ETM+ 

Lyons et al. 
2008 / Albedo Boreal forest / MODIS 

Malak and 
Pausas 2006 / NDVI Mediterranean 

ecosystem / TM 

Marchetti et 
al. 1995 / Infrared index Mediterranean 

ecosystem / TM 

McMichael 
et al. 2004 LAI NDVI 

transformation
Mediterranean 

ecosystem 

62 sample 
points and 

field 
spectroscopy

TM, ETM+ 

Minchella et 
al. 2009 

Vegetation 
recovery 

Simulations 
with 

scattering 
model 

Mediterranean 
ecosystem / ERS 

Mitchell and 
Yuan 2010 / NDVI Temperate 

forest / TM 

Mitri and 
Gitas 2010 

Land cover 
classification 

including 
regeneration 

classes 

Object-based 
classification 

Mediterranean 
ecosystem / Hyperion 

Palandjian et 
al. 2009 

Classification 
of 4 

regeneration 
classes 

Density 
slicing on 

NDVI data 

Mediterranean 
ecosystem Flux tower Quickbird 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Peterson and 
Stow 2003 

Fractional 
vegetation 

cover 
SMA Mediterranean 

ecosystem / TM, ADAR 

Ramsey et al. 
1999 

Time-since-
burn 

Regression 
analysis 

Marsh 
ecosystem / Aircraft SAR 

Randerson et 
al. 2006 / Albedo Boreal forest 

93 line 
transect 

points and 
field 

spectroscopy

MODIS 

Riaño et al. 
2002 / 

NDVI and 
control plot 

selection 

Mediterranean 
ecosystem / AVIRIS 

Ricotta et al. 
1998 / 

NDVI and 
landscape 
structure 

Mediterranean 
ecosystem / TM 

Roder et al. 
2008 

Fractional 
vegetation 

cover 
SMA Mediterranean 

ecosystem 
Ground-

based NDVI 
MSS, TM, 

ETM+ 

Sankey et al. 
2008 

Fractional 
vegetation 

cover 
SMA Sagebrush 

community 
Field 

spectroscopy
XS, aerial 

photographs 

Schroeder 
and Pereira 

2002 
/ Landscape 

structure Boreal forest / TM 

Segah et al. 
2010 / NDVI Tropical forest 60 sample 

points TM, VGT 

Shaw et al. 
1998 / NDVI and 

other indices Boreal forest / Field 
spectroscopy 

Steyaert et 
al. 1997 

Land cover 
classification 

including 
regeneration 

classes 

Unsupervised 
cluster 

classification 
Boreal forest / AVHRR, TM 

Stueve et al. 
2009 

Tree 
establishment 
classification

Supervised 
minimum 

distance-to-
mean binary  
classification 

Alpine 
treeline 
border 

Line transect 
plots 

Airborne 
and KH-4B 

imagery 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Telesca and 
Lasaponara 

2006 
/ 

Detrended 
fluctuation 
analysis on 
NDVI time 

series 

Mediterranean 
ecosystem 

78 line 
transect plots 

and field 
spectroscopy

VGT 

Van 
Leeuwen 

2008 

Phenological 
metrics NDVI Temperate 

ecosystem / MODIS 

Van 
Leeuwen et 

al. 2010 

Phenological 
metrics 

NDVI and 
control plot 

selection 

Temperate 
and 

Mediterranean 
ecosystems 

78 line 
transect plots 

and field 
spectroscopy

MODIS 

Veraverbeke 
et al. 2012 

Fractional 
vegetation 

cover 

NDVI and 
other indices 

Mediterranean 
ecosystem / TM 

Veraverbeke 
et al. 2012 / 

NDVI, albedo, 
LST and 

control plot 
selection 

Mediterranean 
ecosystem / MODIS 

Veraverbeke 
et al. 2012 

Fractional 
vegetation 

cover 
SMA Mediterranean 

ecosystem 

19 line 
transect 
points 

TM 

Vicente-
Serrano et al. 

2008 
/ NDVI and 

other indices 
Mediterranean 

ecosystem / TM/ETM+ 

Viedma et al. 
1997 

Regeneration 
rate NDVI Mediterranean 

ecosystem / TM 

Vila and 
Barbosa 2010 

Fractional 
vegetation 

cover 

NDVI and 
other indices, 

SMA 

Mediterranean 
ecosystem Field data TM, ETM+ 

White et al. 
1996 / NDVI Boreal forest / TM 

Wittenberg 
et al. 2007 / EVI Mediterranean 

ecosystem / TM, ETM+ 

(ADAR: Airborne Data and Acquisition and Registration, AVHRR: Advanced Very High Resolution 
Radiometer, AVIRIS: Airborne Visible/Infrared Imaging Spectroradiometer, ETM+: Enhanced Thematic 
Mapper plus, EVI: Enhanced Vegetation Index, fAPAR: fraction of Absorbed Photosynthetically Active 
Radiation, GLAS: Geoscience Laser Altimeter System, KH: Key Hole, LAI: Leaf Area Index, LST: Land 
Surface Temperature, LIDAR, Light Detection and Ranging)MSS: Multispectral Scanner, MODIS: 
Moderate Resolution Imaging Spectroradiometer, NDVI: Normalized Difference Vegetation Index, 
NPP: Net Primary Productivity, RADAR: Radio Detection and Ranging, SAR: Synthetic Aperture 
Radar, SMA: Spectral Mixture Analysis, TM: Thematic Mapper, XS: Multispectral VGT: Vegetation 

Table 2. Examples of post-fire vegetation recovery studies using remotely sensed data 
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A review of the studies presented in Table 2, shows that current research mainly focused on 
multispectral Landsat, MODIS, VGT and AVHRR data. The moderate and low resolution 
scales are relatively well documented. For the coarse spatial resolution this usually goes hand 
in hand with time series analysis. The overview also highlights a need for further exploration 
of high spatial resolution and high spectral resolution, i.e. hyperspectral, data. High resolution 
data (e.g. Quickbird, IKONOS) could help in the recognition of individual plants, whereas 
hyperspectral data have the potential to discriminate between different vegetation species 
(Asner and Lobell 2000; Mitri and Gitas 2010; Somers et al. 2010). Besides optical imagery, 
Synthetic Aperture Radar (SAR) data is also worth a more in-depth evaluation. 
From Table 2 it can also be concluded that vegetation recovery studies have been carried out 
in a number of different ecosystems including: 
 Mediterranean ecosystems: 26 studies were conducted in the Mediterranean basin, 

whereas 5 papers concentrate on the Mediterranean ecozone of California (USA). 
 Boreal forests: 20 study areas were carried out in boreal forests of North American and 

the Eurasian boreal zone. 
 Τemperate forests: 5 studies focused on temperate forests.. 
 Other types of forests: 2 studies were conducted in tropical forests, 2 in savannah 

ecosystems, 1 along an alpine treeline border, 1 in a sagebrush community and 1 in a 
marsh ecosystem. 

Post-fire recovery rates depend on fire severity (Diaz-Delgado et al. 2003), soil properties 
(Bisson et al. 2008), post-fire meteorological conditions (Henry and Hope 1998; van Leeuwen 
et al. 2010) and ecotype (Viedma et al. 1997; Veraverbeke et al. 2010b; Lhermitte et al. 2011; 
Veraverbeke et al. 2011b). In fire-adapted sclerophyllous shrub lands, for example, recovery 
only takes a few years (Viedma et al. 1997; Pausas and Verdu 2005) whereas in boreal forests 
recovery lasts several decades (Nepstad et al. 1999). The summary above clearly shows that 
recovery research so far focused on boreal and Mediterranean ecosystems. Table 2 also 
reveals that only 26 % of the papers included in the list were supported by ground truth. 
This highlights a need to conduct research on the remote sensing of post-fire vegetation 
recovery supported by field campaigns, while other ecosystems such as tropical forest and 
savannah ecosystems urgently require a knowledge gain. 

3.3 Image analysis techniques 
Several image analysis techniques are employed in the remote sensing of post-fire recovery. 
Most of the traditional approaches have an origin outside fire applications but their 
methodology is easily adjustable for recovery studies. The most important traditional 
methods are image classification, Vegetation Indices (VIs) and Spectral Mixture Analysis 
(SMA). They are thoroughly discussed below. In addition, one specific technique applicable 
for ecological disturbances, i.e. control plot selection, is also incorporated. Finally, some less 
frequently used approaches are shortly described. 

3.3.1 Image classification 
Since long, multispectral image classification is known to be a powerful technique to 
translate remotely sensed data into ecologically relevant cover classes. Both supervised 
(Jakubauskas et al. 1990; Hall et al. 1991; Stueve et al. 2009; Mitri and Gitas 2010) and 
unsupervised (Steyaert et al. 1997) techniques have been applied in post-fire recovery 
studies. Most applications rely on pixel-based classifiers such as the minimum-distance-
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data Remotely 
sensed data 

Telesca and 
Lasaponara 

2006 
/ 

Detrended 
fluctuation 
analysis on 
NDVI time 

series 

Mediterranean 
ecosystem 

78 line 
transect plots 

and field 
spectroscopy

VGT 

Van 
Leeuwen 

2008 

Phenological 
metrics NDVI Temperate 

ecosystem / MODIS 

Van 
Leeuwen et 

al. 2010 

Phenological 
metrics 

NDVI and 
control plot 

selection 

Temperate 
and 

Mediterranean 
ecosystems 

78 line 
transect plots 

and field 
spectroscopy

MODIS 

Veraverbeke 
et al. 2012 

Fractional 
vegetation 

cover 

NDVI and 
other indices 

Mediterranean 
ecosystem / TM 

Veraverbeke 
et al. 2012 / 

NDVI, albedo, 
LST and 

control plot 
selection 

Mediterranean 
ecosystem / MODIS 

Veraverbeke 
et al. 2012 

Fractional 
vegetation 

cover 
SMA Mediterranean 

ecosystem 

19 line 
transect 
points 

TM 

Vicente-
Serrano et al. 

2008 
/ NDVI and 

other indices 
Mediterranean 

ecosystem / TM/ETM+ 

Viedma et al. 
1997 

Regeneration 
rate NDVI Mediterranean 

ecosystem / TM 

Vila and 
Barbosa 2010 

Fractional 
vegetation 

cover 

NDVI and 
other indices, 

SMA 

Mediterranean 
ecosystem Field data TM, ETM+ 

White et al. 
1996 / NDVI Boreal forest / TM 

Wittenberg 
et al. 2007 / EVI Mediterranean 

ecosystem / TM, ETM+ 

(ADAR: Airborne Data and Acquisition and Registration, AVHRR: Advanced Very High Resolution 
Radiometer, AVIRIS: Airborne Visible/Infrared Imaging Spectroradiometer, ETM+: Enhanced Thematic 
Mapper plus, EVI: Enhanced Vegetation Index, fAPAR: fraction of Absorbed Photosynthetically Active 
Radiation, GLAS: Geoscience Laser Altimeter System, KH: Key Hole, LAI: Leaf Area Index, LST: Land 
Surface Temperature, LIDAR, Light Detection and Ranging)MSS: Multispectral Scanner, MODIS: 
Moderate Resolution Imaging Spectroradiometer, NDVI: Normalized Difference Vegetation Index, 
NPP: Net Primary Productivity, RADAR: Radio Detection and Ranging, SAR: Synthetic Aperture 
Radar, SMA: Spectral Mixture Analysis, TM: Thematic Mapper, XS: Multispectral VGT: Vegetation 

Table 2. Examples of post-fire vegetation recovery studies using remotely sensed data 

 
Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring – A Review 

 

155 

A review of the studies presented in Table 2, shows that current research mainly focused on 
multispectral Landsat, MODIS, VGT and AVHRR data. The moderate and low resolution 
scales are relatively well documented. For the coarse spatial resolution this usually goes hand 
in hand with time series analysis. The overview also highlights a need for further exploration 
of high spatial resolution and high spectral resolution, i.e. hyperspectral, data. High resolution 
data (e.g. Quickbird, IKONOS) could help in the recognition of individual plants, whereas 
hyperspectral data have the potential to discriminate between different vegetation species 
(Asner and Lobell 2000; Mitri and Gitas 2010; Somers et al. 2010). Besides optical imagery, 
Synthetic Aperture Radar (SAR) data is also worth a more in-depth evaluation. 
From Table 2 it can also be concluded that vegetation recovery studies have been carried out 
in a number of different ecosystems including: 
 Mediterranean ecosystems: 26 studies were conducted in the Mediterranean basin, 

whereas 5 papers concentrate on the Mediterranean ecozone of California (USA). 
 Boreal forests: 20 study areas were carried out in boreal forests of North American and 

the Eurasian boreal zone. 
 Τemperate forests: 5 studies focused on temperate forests.. 
 Other types of forests: 2 studies were conducted in tropical forests, 2 in savannah 

ecosystems, 1 along an alpine treeline border, 1 in a sagebrush community and 1 in a 
marsh ecosystem. 

Post-fire recovery rates depend on fire severity (Diaz-Delgado et al. 2003), soil properties 
(Bisson et al. 2008), post-fire meteorological conditions (Henry and Hope 1998; van Leeuwen 
et al. 2010) and ecotype (Viedma et al. 1997; Veraverbeke et al. 2010b; Lhermitte et al. 2011; 
Veraverbeke et al. 2011b). In fire-adapted sclerophyllous shrub lands, for example, recovery 
only takes a few years (Viedma et al. 1997; Pausas and Verdu 2005) whereas in boreal forests 
recovery lasts several decades (Nepstad et al. 1999). The summary above clearly shows that 
recovery research so far focused on boreal and Mediterranean ecosystems. Table 2 also 
reveals that only 26 % of the papers included in the list were supported by ground truth. 
This highlights a need to conduct research on the remote sensing of post-fire vegetation 
recovery supported by field campaigns, while other ecosystems such as tropical forest and 
savannah ecosystems urgently require a knowledge gain. 

3.3 Image analysis techniques 
Several image analysis techniques are employed in the remote sensing of post-fire recovery. 
Most of the traditional approaches have an origin outside fire applications but their 
methodology is easily adjustable for recovery studies. The most important traditional 
methods are image classification, Vegetation Indices (VIs) and Spectral Mixture Analysis 
(SMA). They are thoroughly discussed below. In addition, one specific technique applicable 
for ecological disturbances, i.e. control plot selection, is also incorporated. Finally, some less 
frequently used approaches are shortly described. 

3.3.1 Image classification 
Since long, multispectral image classification is known to be a powerful technique to 
translate remotely sensed data into ecologically relevant cover classes. Both supervised 
(Jakubauskas et al. 1990; Hall et al. 1991; Stueve et al. 2009; Mitri and Gitas 2010) and 
unsupervised (Steyaert et al. 1997) techniques have been applied in post-fire recovery 
studies. Most applications rely on pixel-based classifiers such as the minimum-distance-



 
Remote Sensing of Biomass – Principles and Applications  

 

156 

to-mean (Jakubauskas et al. 1990; Stueve et al. 2009) and maximum likelihood classifiers 
(Hall et al. 1991). While the majority of the studies focused on four or more cover classes 
(Jabukauskas et al. 1990; Hall et al. 1991; Steyaert et al. 1997; Mitri and Gitas 2010), the 
study of Stueve et al. (2009) was restricted to a binary classification of tree establishment 
along an alpine treeline border. A major problem associated with pixel-based 
classifications is the occurrence of salt-and-pepper artifacts. As a solution, object-based 
classification schemes include both spectral and contextual information (Wicks et al. 2002) 
(See more in Section 4).  
Apart from multispectral classification approaches Palandjian et al. (2009) applied density 
slicing on post-fire Normalized Difference Vegetation Index (NDVI) data. As such, they 
discriminated four different regeneration classes. Generally spoken, relatively few studies 
applied image classification to monitor post-fire recovery. This is mainly explained by the 
fact that the spatial resolution of most popular satellite systems (e.g. Landsat) exceeds the 
size of individual regenerating plants. As a result, it is very difficult in these applications to 
find pure training data because most image pixels are mixed. This incites a need to explore 
the potential of high resolution imagery (e.g. Quickbird, IKONOS) to classify individual 
plants. This would also open new research pathways to study the small-scale spatial 
patterns of post-fire vegetation recovery. 

3.3.2 VIs 
By far the most widely used remote sensing technique to assess post-fire recovery is the 
NDVI (Tucker 1979) because of its strongly established relationship with above-ground 
biomass in a wide range of ecosystems (Carlson and Ripley 1997; Henry and Hope 1998; 
Cuevas-Gonzalez et al. 2009). The post-fire environment typically consists of a mixture of 
vegetation and substrate. Theoretically, Soil Adjusted Vegetation Indices (SAVIs) (Huete 
1988; Baret and Guyot 1991; Qi et al. 1994) are better suited for these mixed environments. 
Relatively few studies have assessed the correlation between field estimates of vegetative 
cover and VIs. Clemente et al. (2009) contrasted the NDVI with the SAVI (Huete 1988), 
Transformed SAVI (TSAVI), (Baret and Guyot 1991) and Modified SAVI (MSAVI) (Qi et al. 
1994) for estimating post-fire vegetation regrowth 7 and 12 years after a fire in Spain. The 
NDVI was stronger related to field estimates of vegetation cover than any other index. Vila 
and Barbosa (2010) drew more or less the same conclusion. They also found that the NDVI 
was most accurately related to field data eight years after a fire in Italy. Van Leeuwen et al. 
(2010) also retrieved high correlations between NDVI and field data of recovery. Veravrbeke 
et al. (2012b) comprehensively evaluated thirteen R-NIR vegetation indices for assessing 
post-fire vegetation recovery. They found that the NDVI indeed obtained the best 
correlations with line transect field data and the failure of the SAVIs was due to their 
inability to account for variations in background brightness. This approves the use of the 
NDVI as an appropriate recovery measure, however, it should be noted that the potential of 
spectral indices with a SWIR or MIR spectral band has not been fully explored yet. These 
spectral regions have proven to be very effective in discriminating soil and vegetation 
(Drake et al. 1999; Asner and Lobell 2000). In the context of post-fire recovery, VIs including 
a SWIR or MIR band have shown prospect in the studies of Marchetti et al. (1995), Cuevas-
Gonzalez et al. (2009) and Jacobson (2010). 
Several studies used NDVI data as a linkage to more ecologically relevant parameters such 
as fractional vegetation cover (Clemente et al. 2009; Vila and Barbosa 2010; Veraverbeke et 
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al. 2012b), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), (Cuevas-
Gonzalez et al. 2008), Net Primary Production (NPP), (Hicke et al. 2003) and Leaf Area Index 
(LAI), (McMichael et al. 2004). Usually, these index transforms are based on thorough field 
calibration. Only few studies incorporated a substantial number of field plots to calibrate 
and validate the VI approach (Shaw et al. 1998; Bisson et al. 2008; Clemente et al. 2009; 
Jacobson 2010; Segah et al. 2010; van Leeuwen et al. 2010; Vila and Barbosa 2010; 
Veraverbeke et al. 2011b Hernandez-Clemente et al. 2009). Figure 1 presents an example of 
the relationship between the NDVI and field estimates of vegetative cover which was used 
to model post-fire vegetation cover in the burned area. The majority of the authors, 
however, use the NDVI as a well-accepted methodology without additional field efforts. In 
a mono-temporal context NDVI were related to climatic variables (Belda and Meliá 2000), 
topographic parameters (Mitchell and Yuan 2010) and fire severity (White et al. 1996; 
Mitchell and Yuan 2010).  
Other studies employed multiple images to construct recovery trajectories (Viedma et al. 
1997; Henry and Hope 1998; Ricotta et al. 1998; Carranza et al. 2001; Díaz-Delgado and Pons 
2001; Diaz-Delgado et al. 2002; Riaño et al. 2002; Malak and Pausas 2006; Wittenberg et al. 
2007; Bisson et al. 2008; Vicente-Serrano et al. 2008; Clemente et al. 2009; Hernandez-
Clemente et al. 2009). Where Landsat-based studies allow only a few cloud-free images a 
year (Ju and Roy 2008), satellite sensors with high temporal frequency permit the 
construction of continuous time series. More recently, several authors have explored this 
data type for assessing post-fire effects (Idris et al. 2005; Goetz et al. 2006; Telesca and 
Lasaponara 2006; Li et al. 2008; van Leeuwen 2008; Alcaraz-Segura et al. 2010; Gouveia et al. 
2010; Lhermitte et al. 2010; Segah et al. 2010; van Leeuwen et al. 2010; Lhermitte et al. 2011; 
Veraverbeke et al. 2012a; Veraverbeke et al. 2012c). Thanks to this it is possible to 
discriminate between regeneration patters and seasonal fluctuations (Veraverbeke et al. 
2010b; Lhermitte et al. 2011; Veraverbeke et al. 2012b). A major advantage of multi-temporal 
data is that regression fits between time since fire and NDVI data give reliable recovery rate 
estimates (Viedma et al. 1997; Díaz-Delgado and Pons 2001; Gouveia et al. 2010). Extension 
of these regeneration rates allows prediction on the future state of biomass. This is of major 
interest for decision makers in rangeland management. NDVI data also served as the 
preferred data source for the control plot selection procedure (Díaz-Delgado and Pons 2001; 
Diaz-Delgado et al. 2002; Lhermitte et al. 2010; Lhermitte et al. 2011) and landscape 
ecological applications (Ricotta et al. 1998; Carranza et al. 2001). 

3.3.3 Spectral mixture analysis 
The post-fire environment typically consists of a mixture of vegetation and substrate. Thus, 
monitoring post-fire regeneration processes essentially poses a sub-pixel issue at the 
resolution of most operational satellite systems such as Landsat. A number of image 
analysis techniques accommodating mixing problems exist (Atkinson et al. 1997; Arai 2008) 
with SMA being the most common technique utilized in many applications (Roberts et al. 
1998; Asner and Lobell 2000; Riaño et al. 2002; Roder et al. 2008; Somers et al. 2010). SMA 
effectively addresses this issue by quantifying the sub-pixel fraction of cover of different 
endmembers, which are assumed to represent the spectral variability among the dominant 
terrain features. A major advantage of SMA is its ability to detect low cover fractions, 
something which remains difficult with the traditional vegetation indices (VIs) approach 
(Henry and Hope 1998; Elmore et al. 2000; Rogan and Franklin 2001). Moreover, SMA 
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spectral indices with a SWIR or MIR spectral band has not been fully explored yet. These 
spectral regions have proven to be very effective in discriminating soil and vegetation 
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estimates (Viedma et al. 1997; Díaz-Delgado and Pons 2001; Gouveia et al. 2010). Extension 
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effectively addresses this issue by quantifying the sub-pixel fraction of cover of different 
endmembers, which are assumed to represent the spectral variability among the dominant 
terrain features. A major advantage of SMA is its ability to detect low cover fractions, 
something which remains difficult with the traditional vegetation indices (VIs) approach 
(Henry and Hope 1998; Elmore et al. 2000; Rogan and Franklin 2001). Moreover, SMA 



 
Remote Sensing of Biomass – Principles and Applications  

 

158 

 
Fig. 1. Fractional vegetation cover map (A) three years after the large Peloponnese (Greece) 
fires based on the regression fit between the Landsat Normalized Difference Vegetation Index 
(NDVI) and line transect field ratings of vegetation cover (B) (Veraverbeke et al. 2012b). 
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directly results in quantitative abundance maps, without the need of an initial calibration 
based on field data as with VIs (Somers et al. 2010; Vila and Barbosa 2010). With regards to 
post-fire effects, rather few studies employed SMA to monitor post-fire vegetation responses 
(Riaño et al. 2002; Peterson and Stow 2003; Roder et al. 2008; Sankey et al. 2008; Vila and 
Barbosa 2010; Veraverbeke et al. 2012a). Although results of these studies were consistent, 
most of them were all restricted to simple linear SMA models in which only one spectrum 
was allowed for each endmember. As a consequence, the performance of these SMA models 
often appeared to be suboptimal (Roder et al. 2008; Vila and Barbosa 2010) because these 
models did not incorporate the natural variability in scene conditions of terrain features 
inherent in remote sensing data (Asner 1998). To overcome this variability effect Peterson 
and Stow (2003) applied multiple endmember SMA (MESMA), (Roberts et al. 1998). 
MESMA incorporates natural variability by allowing multiple endmembers for each 
constituting terrain feature. These endmember sets represent the within-class variability 
(Somers et al. 2010) and MESMA models search for the most optimal endmember 
combination by reducing the residual error when estimating fractional covers (Asner and 
Lobell 2000). Rogge et al. (2006) and Veraverbeke et al. (2012a), however, clearly 
demonstrated that reducing the residual error by applying MESMA not always results in 
the selection of the most appropriate endmember spectrum. An initial segmentation of the 
area prior to the unmixing process in order to retain areas which reveal a high similarity in 
the spectral properties of a certain endmember has been presented as a sound and 
computationally efficient solution to address this issue (Rogge et al. 2006; Veraverbeke et al. 
2012a). 
A possible amelioration in post-fire vegetation mapping using SMA could be the 
inclusion of SWIR and MIR spectral regions in the unmixing process. These spectral 
regions have proven to be very effective in discriminating soil and vegetation (Drake et 
al. 1999; Asner and Lobell 2000). Carreiras et al. (2006) demonstrated that adding the 
SWIR-MIR Landsat bands resulted in better estimates of tree canopy cover in 
Mediterranean shrublands. Additionally, enhancing the spectral resolution by 
employing hyperspectral data would increase the amount of spectral detail which would 
benefit the differentiation between spectra (Mitri and Gitas 2008). By including more and 
other spectral wavebands the unmixing model could gain discriminative power. 
Potentially, this would make it even possible to distinguish between non-photosynthetic 
vegetation and substrate (Asner and Lobell 2000; Somers et al. 2010), which appeared to 
be impossible in current applications. 

3.3.4 Control plot selection 
A major difficulty in post-fire time series analysis is that the analysis can be hampered by 
phenological effects, both due to the differences in acquisition data and due to inter-annual 
meteorological variability (Díaz-Delgado and Pons 2001). To deal with these phenological 
effects Diaz-Delgado and Pons (2001) proposed to compare vegetation regrowth in a burned 
area with unburned reference plots within the same image. As such, external and 
phenological variations are minimized among the compared areas. Several authors have 
successfully adapted the reference plot approach (Diaz-Delgado et al. 2002; Diaz-Delgado et 
al. 2003; Idris et al. 2005; Li et al. 2008; van Leeuwen et al. 2010). The reference plot selection 
procedure has, however, two main difficulties. Firstly, large scale application remains 
constrained due to the necessity of profound field knowledge to select relevant control plots. 
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MESMA incorporates natural variability by allowing multiple endmembers for each 
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(Somers et al. 2010) and MESMA models search for the most optimal endmember 
combination by reducing the residual error when estimating fractional covers (Asner and 
Lobell 2000). Rogge et al. (2006) and Veraverbeke et al. (2012a), however, clearly 
demonstrated that reducing the residual error by applying MESMA not always results in 
the selection of the most appropriate endmember spectrum. An initial segmentation of the 
area prior to the unmixing process in order to retain areas which reveal a high similarity in 
the spectral properties of a certain endmember has been presented as a sound and 
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A possible amelioration in post-fire vegetation mapping using SMA could be the 
inclusion of SWIR and MIR spectral regions in the unmixing process. These spectral 
regions have proven to be very effective in discriminating soil and vegetation (Drake et 
al. 1999; Asner and Lobell 2000). Carreiras et al. (2006) demonstrated that adding the 
SWIR-MIR Landsat bands resulted in better estimates of tree canopy cover in 
Mediterranean shrublands. Additionally, enhancing the spectral resolution by 
employing hyperspectral data would increase the amount of spectral detail which would 
benefit the differentiation between spectra (Mitri and Gitas 2008). By including more and 
other spectral wavebands the unmixing model could gain discriminative power. 
Potentially, this would make it even possible to distinguish between non-photosynthetic 
vegetation and substrate (Asner and Lobell 2000; Somers et al. 2010), which appeared to 
be impossible in current applications. 

3.3.4 Control plot selection 
A major difficulty in post-fire time series analysis is that the analysis can be hampered by 
phenological effects, both due to the differences in acquisition data and due to inter-annual 
meteorological variability (Díaz-Delgado and Pons 2001). To deal with these phenological 
effects Diaz-Delgado and Pons (2001) proposed to compare vegetation regrowth in a burned 
area with unburned reference plots within the same image. As such, external and 
phenological variations are minimized among the compared areas. Several authors have 
successfully adapted the reference plot approach (Diaz-Delgado et al. 2002; Diaz-Delgado et 
al. 2003; Idris et al. 2005; Li et al. 2008; van Leeuwen et al. 2010). The reference plot selection 
procedure has, however, two main difficulties. Firstly, large scale application remains 
constrained due to the necessity of profound field knowledge to select relevant control plots. 
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Secondly, the reference plot approach fails to describe within-burn heterogeneity as it uses 
mean values per fire plot. To solve these problems, Lhermitte et al. (2010) proposed a pixel-
based control plot selection method which follows the same reasoning with respect to the 
minimization of phenological effects by comparison with image-based control plots. The 
difference with the reference plot procedure, however, is situated in the fact that the pixel-
based method assigns a unique unburned control pixel to each burned pixel. This control 
pixel selection is based on the similarity between the time series of the burned pixel and the 
time series of its surrounding unburned pixels for a pre-fire year (Lhermitte et al. 2010). The 
method allows the quantification of the heterogeneity within a fire plot since each fire pixel 
is considered independently as a focal study pixel and a control pixel is selected from a 
contextual neighbourhood around the focal pixel. This approach has been used in studies 
assessing the temporal dimension of fire impact and subsequent recovery (Veraverbeke et 
al. 2010b; Lhermitte et al. 2011; Veraverbeke et al. 2011a; Veraverbeke et al. 2012c). Figure 2 
presents an example of the principle of the control plot selection procedure on a NDVI time 
series. With the exception of Veraverbeke et al. (2012c) who also incorporated Land Surface 
Temperature (LST) and albedo data in the procedure, so far, the control plot selection 
procedure has only been applied on NDVI data. Nevertheless, in theory, the control plot 
selection procedure allows any kind of remotely sensed data as input. Moreover, the 
procedure has the potential to provide valuable reference information other disturbance in 
which external forces abruptly remove the vegetation (e.g. volcanic eruptions, landslides, 
hurricanes, tsunamis, etc.). 
 
 
 

 
 
 

Fig. 2. Example of Normalized Difference Vegetation Index (NDVI) time series of a 
burned pixel (black line) and its corresponding control pixel (green line). The control pixel 
mimics how the burned pixel would have behaved without fire occurrence (after 
Veraverbeke et al. (2012c)). 
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Despite of the merits of the control pixel selection procedure as presented by Lhermitte 
et al. (2010) and Veraverbeke et al. (2010b) two constraints remain. Firstly, due to the 
necessity to search in larger windows for pixels in the middle of the burn the 
performance of the procedure is likely to be better near the contours of the burn 
perimeter. On one hand this is inevitable as the potentially most similar neighbour pixels 
are burned. On the other hand one could argue that this phenomenon incites to make the 
control pixel selection settings dependent on the distance to the fire perimeter. The 
procedure is also affected by a second constraint, i.e. the heterogeneity of the unburned 
landscape matrix. It is obvious that the procedure will be more optimal in highly 
homogeneous landscapes, even for large search windows. In contrast, in highly 
heterogeneous mixtures of different land cover types the procedure will potentially fail 
to retrieve similar pixels for small window sizes. It is a hard task to uncouple and 
quantify the effects of both constraints. Solutions to this have the potential to further 
improve the selection procedure. 

3.3.5 Post-fire albedo and land surface temperature  
Besides the use of optical data and its derivatives (e.g. VIs) some authors focused on the 
recovery of remotely sensed bioclimatic variables such as albedo and Land Surface 
Temperature (LST) (Amiro et al. 1999; Lyons and Randerson 2008; Veraverbeke et al. 
(2012c)). The increase in post-fire LST progressively weakens over time (Veraverbeke et al. 
(2012c)), whereas Lyons et al. (2008) and Veraverbeke et al. (2012c)) observed that albedo 
quickly recovers after an initial post-fire drop. The albedo even exceeds pre-fire values when 
char materials are removed and vegetation starts to regenerate (Veraverbeke et al. (2012c)). 
Thus, where the immediate fire effect results in an increased absorption of radiative energy, 
the long-term effect generally is an increased albedo (Amiro et al. 2006; Randerson et al. 
2006). The quantification of these effects, together with an accurate estimation of the amount 
of greenhouse gasses emitted by the fire and the subsequent post-fire carbon sequestration 
of regenerating vegetation, are necessary for a holistic comprehension of the effect of 
wildfires on regional and global climate. In this context, Randerson et al. (2006) 
comprehensively demonstrated that, although the first post-fire year resulted in a net 
warming, the long-term balance was negative. As such they concluded that an increasing 
fire activity in the boreal region would not necessarily lead to a net climate warming. 
Remotely sensed proxies of albedo and LST can also be used to estimate the spatio-temporal 
behaviour of several radiative budget parameters of paramount biophysical importance 
such as sensible and latent heat fluxes (Bastiaanssen et al. 1998; Roerink et al. 2000). The 
immediate post-fire surface warming and its ecological consequences as well as the long-
term post-fire temporal development of heat fluxes could form a relatively unexplored and 
captivating research topic. 

3.3.6 Post-fire monitoring using SAR  
Synthetic-aperture radar (SAR) data has been extensively used for various ecological 
processes (Kasischke et al. 1997) and have been especially useful in areas characterized by 
frequent cloud conditions such as the tropics and in the remote locations of the boreal 
forests. However, the application of SAR data in monitoring vegetation regrowth has been 
rather limited, while in most of the studies empirical relationships between field 
measurements and the backscatter values have been investigated.  
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term post-fire temporal development of heat fluxes could form a relatively unexplored and 
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processes (Kasischke et al. 1997) and have been especially useful in areas characterized by 
frequent cloud conditions such as the tropics and in the remote locations of the boreal 
forests. However, the application of SAR data in monitoring vegetation regrowth has been 
rather limited, while in most of the studies empirical relationships between field 
measurements and the backscatter values have been investigated.  
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Ramsey et al (1999) investigated the use of multiple-polarization aircraft L-band to monitor 
burn recovery in a coastal marsh. The authors found a significant relationship between VH-
polarization and time-since-burn. In addition, Ramsey et al 1999 examined the same 
relationship with scaled SAR returns. Scaled by control data [e.g. VH(burn)-VH(control)], all 
three polarizations (VV, HH, VH) regressions were found significant, with 83% of the time-
since-burn explained by the VH variable. 
Kasischke et all (2011) investigated the utility of L-band ALOS PALSAR data (23.6 cm 
wavelength) for estimating low aboveground biomass in a fire-distributed black spruce 
forests in interior Alaska nearly 20 years after the fire events. Field measurements were 
analyzed against the radar backscatter coefficient.  Significant linear correlations were 
found between the log of the aboveground biomass and σο (L-HH) and σο (L-HV), with 
the highest correlation found when soil moisture was high. Kasischke et all 2011 
concluded that using spaceborne SAR systems to monitor forest regrowth will not only 
require collection of biomass data to establish the relationship between biomass and 
backscatter, but may also require developing methods to account for variations in soil 
moisture. 
Kasischke et al (2007) based on the findings of Bourgeau-Chavez et al (2007) explored the 
relations between soil moisture patterns and post-fire tree recruitment in fire-disturbed 
black spruce forests in Interior Alaska using ERS-1 and ERS-2 C band (5.7 cm wavelength). 
Both Kasischke et al (2007) and Bourgeau-Chavez et al (2007) found high correlations 
between ERS SAR backscatter and measured soil moisture in the burned areas. Furthermore, 
Kasischke et al (2007) found that the measured levels of tree recruitment are related to the 
levels of soil moisture: aspen seedlings were able to germinate and grow within the severely 
burned areas because of adequate soil moisture was present during the growing season. In 
contrast, low aspen recruitment at a severely burned area was attributed to lower soil 
moisture. 
Minchella et al. (2009) used multitemporal ERS SAR images to monitor the vegetation 
recovery in a Mediterranean burned area.  Following a qualitative approach (analysis of the 
multitemporal backscattering signatures) they observed that, due to the increase in soil 
moisture in the backscattering, the measurements, taken throughout at least one year, of the 
similarity between the backscattering of the burned area and the backscattering of a bare soil 
around or inside the burned area, may provide a SAR-based index for the vegetation 
recovery in the burned area. In addition, Minchella et all 2009 used a microwave scattering 
model. A minimization of the distance between simulated results and measured data has 
been carried out using the re-growth rate as the key variable. Results showed that the 
retrieved values were in agreement with in-situ measurements. 
Tanase et al 2011 analyzed SAR metrics from burned forested areas in Spain and Alaska. 
SAR dataset that were used consisted of ERS (C band), TerraSAR-X (X-band), 
Environmental Satellite (Envisat) Advanced SAR (ASAR) (C-band) and ALOS PALSAR (L-
band) images. The authors concluded that for Mediterranean forests, the L-band HV-
polarized SAR backscatter allowed the best differentiation of regrowth phases whereas at X- 
and C-band the HV-polarized backscatter was less sensitive to modification in forest 
structure due to the rapid saturation of the signal. For boreal forest four different regrowth 
phases were separated.  Co-polarized repeat-pass coherence presented weak sensitivity to 
the different forest regrowth phases. Separation was possible only for the most recently 
affected sites (<15 year since disturbance) regardless of the radar frequency. 

 
Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring – A Review 

 

163 

4. Advances in remote sensing of post-fire monitoring  
Given that older generation sensors have many known limitations with respect to their 
suitability for studying complex biophysical characteristics (De Jong et al. 2000, Steininger 
2000, Sampson et al. 2001, Salas et al. 2002), the need to benefit from new generation of high 
spatial and spectral resolution sensors as well as active sensors is of critical importance. 
Accurate quantification of vegetation regeneration could be essential for biodiversity 
assessment, land cover characterization and biomass modelling (Blackburn and Milton 
1995). High spectral resolution facilitates the identification of features while high spatial 
resolution permits accurate location of features (Gross and Scott 1998). Additionally, 
advanced multispectral sensors also allow significantly improved signal to noise ratios 
(Levesque and King 2003).  
The development of new hyperspectral remote sensing instruments, both airborne and 
spaceborne, has provided an opportunity to study vegetation recovery after wildfire (Riaño 
et al. 2002). A number of recent studies have indicated the advantages of using discrete 
narrowband data from specific portions of the spectrum, rather than broadband data, to 
obtain the most sensitive quantitative or qualitative information on vegetation 
characteristics.  
Mitri and Gitas (2010) mapped post-fire vegetation recovery using EO-1 Hyperion imagery 
and OBIA and an overall accuracy of 75.81 % was reported (Figure 3). Object-oriented image 
analysis has been developed to overcome the limitations and weaknesses of traditional 
image processing methods for feature extraction from high resolution images (Mitri and 
Gitas 2004; Mitri and Gitas 2010). The basic difference, especially when compared with 
pixel-based procedures is that image object analysis does not classify single pixels but rather 
image objects that have been extracted in a previous image segmentation step (Baatz and 
Schape 1999). The concept here is that the information that is necessary to interpret an image 
is not represented in a single pixel, but in image objects. Object-based classification involves 
three main steps, namely, image segmentation, object training, and object classification. 
“Ground truth” information using field spectroradiometry instruments is equally important 
for validation of representative image wavebands to be used in object-based classification. 
According to Wicks et al. (2002), object-based classification may result in an increased 
accuracy and more realistic presentation of the environment.  
Furthermore, many applications of remote sensing require high spatial resolution data for a 
correct determination of small objects. For instance, high spatial resolution imagery can be 
used before, during, and after a fire to measure fuel potential, access, progress, extent, as 
well as damage and financial loss. High spatial resolution multispectral data such as 
QuickBird (60 centimetres in panchromatic and 2.4 m in multispectral) can identify not only 
individual tree crowns, but often also the type of tree, estimate biomass, condition and age 
class (Wang et al. 2004, Palandjian et al. 2009). 
LIDAR data have been used extensively for estimating various forest attributes such as 
canopy height, biomass, basal area and LAI forest variables as diameter at breast height, 
volume and density (Dubayah and Drake 2000; Lim et al. 2003a; Bortolot and Wynne 2005) 
and individual tree heights. The limited use of LIDAR data for monitoring vegetation 
regrowth can be attributed to the limited existence of spaceborne LIDAR Also, the operation 
of airborne LIDAR can be hampered by weather conditions, it is cost prohibited and can 
cover only limited areas.  
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Fig. 3. Example of post-fire recovery map obtained after applying object-based classification 
in a Mediterranean ecosystem (Mitri and Gitas 2010). 

However, it is worth mentioning the work of Wulder et al (2009) who used the integration 
of Landsat TM/ETM+ imagery and profiling LIDAR transects to characterize post-fire 
conditions on boreal forest in Canada shortly after the fire event. The main goals of their 
research were to evaluate whether LIDAR can be used to detect changes in vertical forest 
structural characteristics associated with the wildfire and find relationships between the 
vertical information extracted from the LIDAR datasets and horizontal information such as 
the indices NBR, dNBR and RdNBR extracted from the Landsat datasets in pre- and post-
fire conditions. The authors had available LIDAR data collected along the same transect pre- 
and post-fire and could identify differences in forest structure before and after the fire, but 
those differences in structure were more related to post fire effects in dense forest than open 
or sparse forests. However, no significant correlation was found between the Landsat 
measures of post-fire effect and the LIDAR -derived measures of pre-fire forest structure. 
Kim et al (2009) used LIDAR intensity values in conjunction with field measurements to 
distinguish between live and dead standing tree biomass in a mixed coniferous forest in 
USA.  Result of their regression analysis showed that low intensity returns from LIDAR 
were associated with dead tree biomass. It was suggested that knowing the background 
value of dead biomass in the forest (from field observations) one can estimate the additional 
contribution of dead standing tree biomass associated with a fire.  
In addition to the airborne LIDAR applications, there has been a study using the satellite-
based LIDAR instrument Geoscience Laser Altimeter System (GLAS) onboard ICESAT. 
Goetz et al (2010) used the LIDAR data acquired from GLAS to derive canopy structure 
information in burned areas and associated forest regrowth across Alaska. The LIDAR data 
were stratified by age class (using fire perimeters) and vegetation type (using the EVI 
calculated from MODIS NBAR). Data were also analyzed in relation to the burn severity. 
Tree height estimates derived from GLAS data were then compared to field measurements. 
The results showed that the GLAS data have the utility for inferring height properties of 
vegetation in fire disturbed areas of boreal forest, but it was mentioned that the data require 
both careful screening and some knowledge of the study area.   
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Furthermore, even though Polarimetric Interferometric SAR (PolInSAR) data has not been 
used so far for monitoring vegetation regrowth in fire affected areas, PolInSAR proved capable 
in estimating tree height (Papathanasiou and Cloude, 2001). The height estimation with 
PolInSAR has been successfully demonstrated on various forest types, ranging from boreal to 
tropical forests, and achieves high accuracies, (Praks et al. 2007; Garestier et al. 2008; Hajnsek et 
al. 2009). The operation of single-pass interferometric systems (TanDEM-X has been operating 
since May 2010) in space opens the door to a new set of unique applications (Krieger et al. 
2010), one of them being the monitoring of forest biomass after fire.  

5. Future investigation 
Given that older generation sensors have many known limitations with respect to their 
suitability for studying complex biophysical characteristics, the need to benefit from new 
generation of high spatial and spectral resolution sensors as well as active sensors is of 
critical importance. The development of new remote sensing instruments, both airborne and 
spaceborne, has provided an opportunity to advance studies and researches on vegetation 
recovery after wildfire. Future research related to advances in remote sensing in post-fire 
monitoring is expected to focus on the following: 
 Ecosystems with high environmental importance such as tropical forest and savannah 

ecosystems urgently require a knowledge gain. 
 The need to conduct research on the remote sensing of post-fire vegetation recovery 

supported by field campaigns.  
 The potential of spectral indices with a SWIR or MIR spectral band. 
 Given that older generation sensors have many known limitations with respect to their 

suitability for studying complex biophysical characteristics, the need to benefit from 
new generation of high spatial and spectral resolution sensors and active sensors with 
different characteristics is of critical importance. Also the use of combined data 
acquired from more than one sensor. 

 New research pathways to study the small-scale spatial patterns of post-fire vegetation 
recovery are required (e.g. the need to explore the potential of high resolution imagery 
such as QuickBird and IKONOS to classify individual plants). 

 Investigation of the potential of Polarimetric Interferometric SAR data (TanDEM-X) to 
estimate post-fire biomass. 

 Exploitation of advanced image analysis techniques in order to develop automated and 
transferable procedures.  

6. Conclusions 
Based on a review of the literature, a number of conclusions can be drawn: 
 The role of remote sensing is increasingly becoming very important in post-fire 

monitoring. 
 Most research has so far been carried out in areas covered by Mediterranean forests and 

shrublands.  
 Current research is mainly based on the employment of Landsat, MODIS, VGT and 

AVHRR data. The extensive use of moderate and low resolution imagery is related to 
time series analysis. 
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 Vegetation indices and SMA are the main techniques employed so far in post-fire 
monitoring while the NDVI is the most commonly used index due to its strong 
relationship with above-ground biomass in a wide range of ecosystems. Only a small 
number of studies employ image classification due to the fact that the spatial resolution 
of the most commonly used satellite sensors exceeds the size of individual regenerating 
plants 

 A number of developments including: the increase in the number of sensors with 
different characteristics suitable for post-fire monitoring (e.g. LIDAR, hyperspectral), 
the improved access to and availability of satellite data and derived products, and the 
development of new methods and advanced digital image analysis techniques (e.g. 
OBIA, Control plot selection) are expected to move forward research and establish RS 
an operational tool for post-fire monitoring. 
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 Vegetation indices and SMA are the main techniques employed so far in post-fire 
monitoring while the NDVI is the most commonly used index due to its strong 
relationship with above-ground biomass in a wide range of ecosystems. Only a small 
number of studies employ image classification due to the fact that the spatial resolution 
of the most commonly used satellite sensors exceeds the size of individual regenerating 
plants 

 A number of developments including: the increase in the number of sensors with 
different characteristics suitable for post-fire monitoring (e.g. LIDAR, hyperspectral), 
the improved access to and availability of satellite data and derived products, and the 
development of new methods and advanced digital image analysis techniques (e.g. 
OBIA, Control plot selection) are expected to move forward research and establish RS 
an operational tool for post-fire monitoring. 
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1. Introduction 
Biomass burning has been a topic of research interest for many years due to the implications 
for climatic change as a result of landscape alteration and atmospheric loading of aerosols 
and trace gases from pyrogenic emissions (Crutzen & Andreae, 1990).  Crutzen et al. (1979) 
first highlighted the variety of trace gas emissions from tropical forest fires and the potential 
these constituents could have in altering atmospheric chemistry and biogeochemical cycles.  
Subsequent research has demonstrated additional impacts on the biosphere, atmosphere, 
and directly upon humans.  For example, ozone (O3) is produced photochemically in the 
troposphere from hydrocarbon and nitrogen oxides released during vegetation burning and 
results in regional health hazards such as damage to human respiratory systems (Andreae, 
2004; Levine, 2003).  Cicerone (1994) emphasized that some byproducts of biomass burning, 
such as methyl chloride (CH3Cl) and methyl bromide (MeBr), can escape to the stratosphere 
where they are responsible for ozone destruction; resulting in health risks at a much larger 
scale. 
Fire is an integral part of many ecosystems (Kuhry, 1994; Cary and Banks, 2000), but the 
nature of this relationship may change according to some climate models which show fire 
frequency and intensity increasing with global warming trends (Intergovernmental Panel on 
Climate Change [IPCC], 2007).  For example, boreal forests, one of Earth's larger biomes, are 
a key component in global carbon cycling.  In particular, peatland in boreal and sub-arctic 
regions of Earth are estimated to contain 455Gt of carbon, translating to roughly a third of 
the world's soil carbon pool (Brady & Weil, 1999; Gorham, 1991; Moore, 2002; Pastor et al., 
2003), and act as a sink for atmospheric carbon; accounting for an uptake of roughly 12% of 
the global anthropogenic emissions (Moore, 2002).  Carbon sequestered through the process 
of photosynthesis by living vegetation does not exit the boreal system at the same rate since 
respiration via decomposition is retarded.  However combustion of organic matter 
contributes to atmospheric loading of “greenhouse” gases (Kaufman et al., 1990; Page et al., 
2002) and can affect carbon sequestration regimes (Kasischke et al., 1995).  In addition, the 
influence of anthropogenic ignited fires, which accounts for 90% of all biomass burning 
(Levine, 2000), may increase with population growth and the added pressure for land and 
resources.  A result of these driving forces will be greater biomass burning emissions, 
decreased sequestration of carbon, and the potential creation of feedback loops (Kasischke et 
al., 1995a; Chapman and Thurlow, 1998; Moore, 2002). 
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first highlighted the variety of trace gas emissions from tropical forest fires and the potential 
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and directly upon humans.  For example, ozone (O3) is produced photochemically in the 
troposphere from hydrocarbon and nitrogen oxides released during vegetation burning and 
results in regional health hazards such as damage to human respiratory systems (Andreae, 
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where they are responsible for ozone destruction; resulting in health risks at a much larger 
scale. 
Fire is an integral part of many ecosystems (Kuhry, 1994; Cary and Banks, 2000), but the 
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Climate Change [IPCC], 2007).  For example, boreal forests, one of Earth's larger biomes, are 
a key component in global carbon cycling.  In particular, peatland in boreal and sub-arctic 
regions of Earth are estimated to contain 455Gt of carbon, translating to roughly a third of 
the world's soil carbon pool (Brady & Weil, 1999; Gorham, 1991; Moore, 2002; Pastor et al., 
2003), and act as a sink for atmospheric carbon; accounting for an uptake of roughly 12% of 
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of photosynthesis by living vegetation does not exit the boreal system at the same rate since 
respiration via decomposition is retarded.  However combustion of organic matter 
contributes to atmospheric loading of “greenhouse” gases (Kaufman et al., 1990; Page et al., 
2002) and can affect carbon sequestration regimes (Kasischke et al., 1995).  In addition, the 
influence of anthropogenic ignited fires, which accounts for 90% of all biomass burning 
(Levine, 2000), may increase with population growth and the added pressure for land and 
resources.  A result of these driving forces will be greater biomass burning emissions, 
decreased sequestration of carbon, and the potential creation of feedback loops (Kasischke et 
al., 1995a; Chapman and Thurlow, 1998; Moore, 2002). 
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In order to understand the spatial and temporal global distribution of biomass burning, and 
ultimately the potential impacts to the biosphere and atmosphere, regular, broad scale 
monitoring is necessary.  Satellite sensors provide daily, synoptic observations to detect and 
analyze fires (Justice et al., 2002) and therefore a great deal of research to characterize fires 
from remote sensing systems has been performed over the past several decades (e.g. Dozier, 
1981; Kaufman et al., 1998;  Giglio et al., 2003; Wooster et al., 2005; Ichoku & Kaufman, 2005).   

2. Remote sensing of fire 
Information derived from satellites has many advantages to traditional in situ data 
collection.  A global perspective can be achieved to observe various Earth system processes 
allowing monitoring of spatially distinct, inaccessible, or remote locations.  Regular 
monitoring is possible from polar orbiting satellite platforms such as National Aeronautics 
and Space Administration’s (NASA) Aqua and Terra satellites and National Oceanic and 
Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer 
(AVHRR).  In the case of the former, the combination of Aqua and Terra provide nominally 
4 daily “looks” of most locations on Earth.  In addition, geostationary satellites such as 
NOAA’s Geostationary Operational Environmental Satellites (GOES) and the European 
Organization for the Exploitation of Meteorological Satellites’ (EUMETSAT) Meteosat 
provide high temporal resolution (15-30 minute), continental wide observations.   
Many of the channels available from a particular satellite sensor are useful for fire 
monitoring, for example aerosols can be monitored using the the visible and near-infrared 
bands or burn scars can be monitored with the visible, near, and middle infrared bands. 
Burned area mapping, a commonly used metric, is important for estimating total biomass 
consumed and thus emission estimates.  Advanced new algorithms for accurate estimation 
of burned area now address the effect of bi-directional reflectance (Roy et al., 2005); an effect 
which is a function of the sun-target-view geometry influencing the directional dependence 
in reflectance and a potential source of error when using time-series data. 
The retrieval of fire hot-spots provides additional monitoring and measurement capabilities. 
The foundation for fire detection is the enhanced middle infrared radiance emitted during 
flaming or smoldering combustion as described by the Planck function.  In the case of an 
observed fire, radiance values generally peak around 3.7 – 4.0μm, whereas the peak for 
background terrestrial surface temperatures is near 10.0 – 11.0μm; thus temperature 
anomalies can be flagged as potential fire “hot-spots”.  As a result of this rather simple 
relationship, remotely sensed data has had a significant contribution in fire science and 
monitoring.  Heritage systems such as AVHRR and GOES, though not necessarily intended 
to include fire detection or monitoring missions, have proven valuable for this task 
nonetheless (Boles & Verbyla, 2000).  Fire characterization from satellites, such as subpixel 
temperatures and flaming area, was obtained from a method developed by Dozier (1981), 
who introduced a theoretical procedure that exploits the different responses of two channels 
(3 and 4) aboard AVHRR (3.75μm and 10.8μm, respectively) for sub-pixel hot spot detection; 
an approach that set the framework for future sensor fire detection and characteristic 
methodologies (Giglio & Kendall, 2001; Justice et al., 2002; Giglio et al., 2003; Wooster et al., 
2003, 2005). 
The application of hot-spot detections has been employed in numerous studies and for a 
variety of uses. Legg & Laumonier (1999) demonstrated the effectiveness of hot spot 
detections using AVHRR and ATSR (Along Track Scanning Radiometer), as well as burned 
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area estimates using SPOT (Satellite Pour Observation de la Terra) imagery, during the 1997 
Indonesian fire season.  Legg & Laumonier (1999) also employed the United States Defense 
Meteorological Satellite Program (US DMSP) to help eliminate spurious daytime hotspots 
by detecting highly reflective pixels at night, presumably from fire, while excluding known 
human related bright spots.  Kaufman et al. (1990) used AVHRR fire counts to assess trace 
gas and aerosol emissions in the tropics.  Although some of the assumptions about burned 
area and fire detections would later be shown to be erroneous, their research set in motion 
the development of new approaches for using remotely sensed fire information for emission 
estimates (Kaufman, 1998). Aragão et al. (2007) examined drought and fire spatial 
distribution in Amazonia using NOAA-12’s AVHRR and MODIS hot spot detections and 
later Aragão et al. (2008) examined specific interactions between precipitation, deforestation, 
and fires related to the 2005 Brazilian Amazon drought.  More recently, Aragão & 
Shimabukuro (2010), again using MODIS and NOAA-12 hot spots, showed the co-varying 
nature of deforestation and fire activity trends over the past several years in the Brazilian 
Amazon.  Their research has implications for fire and emission policies such as the United 
Nation’s REDD+ (Reducing Emissions from Deforestation and Degradation).  Giglio et al. 
(2010) used active fire detections to expand their burned area product to pre-MODIS data 
using the ATSR and Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall 
Measuring Mission (TRMM).  The active fire burned area was developed using relationships 
based on regression between MODIS-Terra 500 meter burned area reference maps and Terra 
active fire counts.  Morton et al. (2008) showed a clear correlation between fire hot spot 
frequency and land use patterns in Amazonia.  Their research concluded that trends in land 
use intensity and fire frequency were linked.  Such work offers promise for developing 
monitoring schemes to characterize land use transitions to inform policy makers.   
In addition to the above research, a variety near-real time applications of active fire 
detections exist. The U.S. Forest Service Active Fire Mapping Program 
(http://activefiremaps.fs.fed.us/) is an operational system providing invaluable, near-real 
time information about location and timing of fire activity in the United States and Canada 
allowing fire managers to efficiently monitor fires and allocate resources.  The Fire 
Information for Resource Management System (FIRMS,  
http://maps.geog.umd.edu/firms/) delivers timely fire detections, made by MODIS and 
processed through the Rapid Response System (http://rapidfire.sci.gsfc.nasa.gov/), to fire 
managers around the world. 
Development of “new tools” such as fire radiative energy (FRE) can aid in estimating the 
biomass combusted and rates of atmospheric loading trace gases and aerosols.  Calculated 
by determining the amount of energy emitted during fire, FRE may offer an accurate 
measurement of the fire intensity and vegetation consumed per unit time, as will be 
discussed in more detail below.        

3. Combustion, fire energy, and emissions 
3.1 Burned area 
In theory, remotely sensed data should offer the capability to directly quantify atmospheric 
emissions from fire events, but in practice this requires determining the source of emissions 
which involves complex, computationally demanding inversion and geochemical transport 
modeling.  Therefore most current approaches, referred to as the “bottom up” method in 
this paper, involve multiplying the fuel consumed by an emission factor for the atmospheric 
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In order to understand the spatial and temporal global distribution of biomass burning, and 
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use intensity and fire frequency were linked.  Such work offers promise for developing 
monitoring schemes to characterize land use transitions to inform policy makers.   
In addition to the above research, a variety near-real time applications of active fire 
detections exist. The U.S. Forest Service Active Fire Mapping Program 
(http://activefiremaps.fs.fed.us/) is an operational system providing invaluable, near-real 
time information about location and timing of fire activity in the United States and Canada 
allowing fire managers to efficiently monitor fires and allocate resources.  The Fire 
Information for Resource Management System (FIRMS,  
http://maps.geog.umd.edu/firms/) delivers timely fire detections, made by MODIS and 
processed through the Rapid Response System (http://rapidfire.sci.gsfc.nasa.gov/), to fire 
managers around the world. 
Development of “new tools” such as fire radiative energy (FRE) can aid in estimating the 
biomass combusted and rates of atmospheric loading trace gases and aerosols.  Calculated 
by determining the amount of energy emitted during fire, FRE may offer an accurate 
measurement of the fire intensity and vegetation consumed per unit time, as will be 
discussed in more detail below.        

3. Combustion, fire energy, and emissions 
3.1 Burned area 
In theory, remotely sensed data should offer the capability to directly quantify atmospheric 
emissions from fire events, but in practice this requires determining the source of emissions 
which involves complex, computationally demanding inversion and geochemical transport 
modeling.  Therefore most current approaches, referred to as the “bottom up” method in 
this paper, involve multiplying the fuel consumed by an emission factor for the atmospheric 
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species of interest.  Emission estimates for natural and anthropogenic ignited vegetation 
fires are generally calculated using spatially explicit measures of pre-fire fuel loads, fuel 
consumption, and the areal extent of fire impact.  The model presented by Seiler & Crutzen 
(1980) has been used extensively to quantify the mass of fuel consumed: 

 βBAM   (1) 

M is the total dry biomass consumed (kg); A is the burned area (km2); B is the biomass or 
fuel load (kg km-2); and β is combustion efficiency (fraction of available fuel burned).  
Adapting this algorithm to calculate the emission of a particular species requires a priori 
information about the emission factor for a given species for the type of vegetation being 
burned, expressed as grams of species x per kilogram of dry fuel burned (Andreae & Merlet, 
2001).  The equation to estimate emission is then rather straightforward given the fuel 
consumed, as calculated in equation (1): 

 x xE EF M   (2) 

Ex is the emission load of species x (g); EFx is the emission factor for species x for the specific 
vegetation type or biome (g kg-1); and M is the biomass burned in equation [1].   
Traditionally, estimates have been made using statistical information such as FAO data on 
population and land use practices (Robinson, 1989; Seiler & Crutzen, 1980).  Statistical 
information reported at national scales often requires extrapolation due to incomplete 
information, sporadic reporting, and highly variable estimates, especially within developing 
countries undergoing rapid land use change (Andreae, 1991).  Advances in satellite 
technology offer the opportunity to make relatively accurate estimates for several of the 
parameters in equation [2] at synoptic scales (Justice et al., 2002).  For example, Michalek et 
al. (2000) effectively combined Landsat TM data and field measurements to estimate carbon 
release from Alaskan spruce forest fires because of the high spatial resolution (<30m) and 
spectral ability to separate between pre-burn biomass and burn severity of Landsat.  Page et 
al. (2002) estimated 0.19-0.23 Gt of carbon were released to the atmosphere from peat 
combustion during 1997 Indonesian fires.  Their estimates were based on peat thickness, 
pre-fire land cover, and burnt area data collected from ground measurements and Landsat 
TM/ETM imagery.  Satellite imagery proved useful for classifying land cover and 
determining burn scars, but Page et al. (2000) discovered that due to residual haze after fires 
and frequent cloud cover, the use of synthetic aperture radar (SAR) was necessary to 
determine the extent of burnt areas.   
Limitations to the “bottom up” approach include fuel loads and burning efficiency, which 
cannot be directly estimated from satellite observations.  In addition, there is a lack of 
agreement on the proper algorithm to characterize burned area from satellite data (Roy et 
al., 2005).  Korontzi et al. (2004) showed that significant differences between burned area 
algorithm estimates can lead to differences as large as a factor of two in estimates of biomass 
consumed.  Differences in spatial and temporal estimates of burned area products was 
demonstrated by Boschetti et al. (2004) who showed that the GLOBSCAR product had a 
burned area nearly twice as large as the GBA2000. They concluded that such discrepancies 
have serious implications for accurately quantifying emissions from fires (Boschetti et al., 
2004).  The difficulty in accurately measuring these variables leads to an uncertainty in 
emission estimates of at least 50%, and possibly much greater (Robinson, 1989; Andreae and 
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Merlet, 2001; van der Werf et al., 2003; French et al., 2004; Korontzi et al., 2004).  Although 
datasets used for this application are always improving (Roy et al., 2005; van der Werf et al., 
2006), due to the uncertainty in current estimates it is worthwhile to explore other 
approaches. 

3.2 FRP 
Vegetation fires can be thought of as the obverse of photosynthesis in which energy stored 
in biomass is released as heat (equation 3). 

 (C6H10O5)n + O2 + ignition temperature  → CO2 + H2O + heat  (3) 

The cascade of chain of reactions starts with the pre-heating of fuels ahead of the fire front 
and partial pyrolytic decomposition.  Ignition signifies the transfer from pre-heating to 
combustion in which exothermic reactions start and the next phase, encompassing a 
combination of flaming and smoldering combustion, begins.  Flaming combustion occurs 
when flammable hydrocarbon gases released during pyrolysis are ignited with wildfire 
flaming combustion temperatures in the range of 800 – 1400 K (Lobert & Warnatz, 1993).  
Pyrolytic action involves the thermal decomposition of fuel resulting in the release of water, 
CO2, and other combustible gases (e.g. CH4) and particulate matter.  The heat produced, 
often measured as heat yield (MJ/kg), is thermal energy transferred via conduction, 
convection, vaporization, and radiation and provides a metric of the total potential energy 
released if complete combustion of the fuel occurs.  Although other factors, including slope, 
fuel arrangement, and wind speed influence the actual heat yield in a fire event, the 
theoretical value varies very little between fuel types (Stott, 2000; Whelan, 1995).   As 
described by Stefan-Boltzmann’s Law, the radiant component is emitted as electromagnetic 
waves traveling at the speed of light in all directions and is proportional to the absolute 
temperature of the fire (assumed to be a black body) raised to the fourth power.  The 
relationship between fire temperature and spectral radiance was shown to closely match the 
Stefan-Boltzmann law (Radiance = σT4) and thus a simple equation incorporating the 
sample size, emissivity of the fire (with some assumptions needed), and Stefan’s constant 
could provide the rate of fire radiative energy, or fire radiative power (FRP), emitted as 
shown in equation (4). 

 FRP = Asample εσ Σ An Tn4  (4) 

where Asample is the total area of the satellite pixel (m2), ε is the fire emissivity, σ is the Stefan 
Boltzmann constant (5.67x10-8J-1m-2K-4), An is the fractional area of the ith thermal 
component, and Tn4 is the temperature of the ith thermal component (K).   
The foundation for using measurements of FRP is based on the fact that the rate of biomass 
consumed is proportional to the rate of FRE.  Kaufman et al. (1996, 1998) suggested that 
estimates of fuel load combustion and emission rates could be made from satellite 
observations of the radiative energy liberated during fire events.  The hypothesis is that the 
rate of emitted energy (i.e. FRP), and rate of fuel combustion are proportional to the fire size 
and fuel load (A and B, respectively) from equation [1].  It follows then that the rate of 
energy released is directly related to the rate of particulate matter and trace gas emissions.  
Integrating FRP over the lifespan of the fire event provides the total fire radiative energy 
(FRE) released, which in turn is directly proportional to the total fire emissions.   It is the 
radiative component that is estimated from Earth observing satellite sensors, offering an 
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species of interest.  Emission estimates for natural and anthropogenic ignited vegetation 
fires are generally calculated using spatially explicit measures of pre-fire fuel loads, fuel 
consumption, and the areal extent of fire impact.  The model presented by Seiler & Crutzen 
(1980) has been used extensively to quantify the mass of fuel consumed: 

 βBAM   (1) 

M is the total dry biomass consumed (kg); A is the burned area (km2); B is the biomass or 
fuel load (kg km-2); and β is combustion efficiency (fraction of available fuel burned).  
Adapting this algorithm to calculate the emission of a particular species requires a priori 
information about the emission factor for a given species for the type of vegetation being 
burned, expressed as grams of species x per kilogram of dry fuel burned (Andreae & Merlet, 
2001).  The equation to estimate emission is then rather straightforward given the fuel 
consumed, as calculated in equation (1): 

 x xE EF M   (2) 

Ex is the emission load of species x (g); EFx is the emission factor for species x for the specific 
vegetation type or biome (g kg-1); and M is the biomass burned in equation [1].   
Traditionally, estimates have been made using statistical information such as FAO data on 
population and land use practices (Robinson, 1989; Seiler & Crutzen, 1980).  Statistical 
information reported at national scales often requires extrapolation due to incomplete 
information, sporadic reporting, and highly variable estimates, especially within developing 
countries undergoing rapid land use change (Andreae, 1991).  Advances in satellite 
technology offer the opportunity to make relatively accurate estimates for several of the 
parameters in equation [2] at synoptic scales (Justice et al., 2002).  For example, Michalek et 
al. (2000) effectively combined Landsat TM data and field measurements to estimate carbon 
release from Alaskan spruce forest fires because of the high spatial resolution (<30m) and 
spectral ability to separate between pre-burn biomass and burn severity of Landsat.  Page et 
al. (2002) estimated 0.19-0.23 Gt of carbon were released to the atmosphere from peat 
combustion during 1997 Indonesian fires.  Their estimates were based on peat thickness, 
pre-fire land cover, and burnt area data collected from ground measurements and Landsat 
TM/ETM imagery.  Satellite imagery proved useful for classifying land cover and 
determining burn scars, but Page et al. (2000) discovered that due to residual haze after fires 
and frequent cloud cover, the use of synthetic aperture radar (SAR) was necessary to 
determine the extent of burnt areas.   
Limitations to the “bottom up” approach include fuel loads and burning efficiency, which 
cannot be directly estimated from satellite observations.  In addition, there is a lack of 
agreement on the proper algorithm to characterize burned area from satellite data (Roy et 
al., 2005).  Korontzi et al. (2004) showed that significant differences between burned area 
algorithm estimates can lead to differences as large as a factor of two in estimates of biomass 
consumed.  Differences in spatial and temporal estimates of burned area products was 
demonstrated by Boschetti et al. (2004) who showed that the GLOBSCAR product had a 
burned area nearly twice as large as the GBA2000. They concluded that such discrepancies 
have serious implications for accurately quantifying emissions from fires (Boschetti et al., 
2004).  The difficulty in accurately measuring these variables leads to an uncertainty in 
emission estimates of at least 50%, and possibly much greater (Robinson, 1989; Andreae and 
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Merlet, 2001; van der Werf et al., 2003; French et al., 2004; Korontzi et al., 2004).  Although 
datasets used for this application are always improving (Roy et al., 2005; van der Werf et al., 
2006), due to the uncertainty in current estimates it is worthwhile to explore other 
approaches. 

3.2 FRP 
Vegetation fires can be thought of as the obverse of photosynthesis in which energy stored 
in biomass is released as heat (equation 3). 

 (C6H10O5)n + O2 + ignition temperature  → CO2 + H2O + heat  (3) 

The cascade of chain of reactions starts with the pre-heating of fuels ahead of the fire front 
and partial pyrolytic decomposition.  Ignition signifies the transfer from pre-heating to 
combustion in which exothermic reactions start and the next phase, encompassing a 
combination of flaming and smoldering combustion, begins.  Flaming combustion occurs 
when flammable hydrocarbon gases released during pyrolysis are ignited with wildfire 
flaming combustion temperatures in the range of 800 – 1400 K (Lobert & Warnatz, 1993).  
Pyrolytic action involves the thermal decomposition of fuel resulting in the release of water, 
CO2, and other combustible gases (e.g. CH4) and particulate matter.  The heat produced, 
often measured as heat yield (MJ/kg), is thermal energy transferred via conduction, 
convection, vaporization, and radiation and provides a metric of the total potential energy 
released if complete combustion of the fuel occurs.  Although other factors, including slope, 
fuel arrangement, and wind speed influence the actual heat yield in a fire event, the 
theoretical value varies very little between fuel types (Stott, 2000; Whelan, 1995).   As 
described by Stefan-Boltzmann’s Law, the radiant component is emitted as electromagnetic 
waves traveling at the speed of light in all directions and is proportional to the absolute 
temperature of the fire (assumed to be a black body) raised to the fourth power.  The 
relationship between fire temperature and spectral radiance was shown to closely match the 
Stefan-Boltzmann law (Radiance = σT4) and thus a simple equation incorporating the 
sample size, emissivity of the fire (with some assumptions needed), and Stefan’s constant 
could provide the rate of fire radiative energy, or fire radiative power (FRP), emitted as 
shown in equation (4). 

 FRP = Asample εσ Σ An Tn4  (4) 

where Asample is the total area of the satellite pixel (m2), ε is the fire emissivity, σ is the Stefan 
Boltzmann constant (5.67x10-8J-1m-2K-4), An is the fractional area of the ith thermal 
component, and Tn4 is the temperature of the ith thermal component (K).   
The foundation for using measurements of FRP is based on the fact that the rate of biomass 
consumed is proportional to the rate of FRE.  Kaufman et al. (1996, 1998) suggested that 
estimates of fuel load combustion and emission rates could be made from satellite 
observations of the radiative energy liberated during fire events.  The hypothesis is that the 
rate of emitted energy (i.e. FRP), and rate of fuel combustion are proportional to the fire size 
and fuel load (A and B, respectively) from equation [1].  It follows then that the rate of 
energy released is directly related to the rate of particulate matter and trace gas emissions.  
Integrating FRP over the lifespan of the fire event provides the total fire radiative energy 
(FRE) released, which in turn is directly proportional to the total fire emissions.   It is the 
radiative component that is estimated from Earth observing satellite sensors, offering an 
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alternative method to quantify the biomass consumed, and assuming an emission factor is 
known, it also offers the atmospheric emission load. 
Unfortunately, sensors are unable to separate the spatially distinct components of the fire, 
potentially as small as millimeters, and the equation cannot distinguish between fractional 
areas of the entire fire which often are much smaller than the pixel itself.  Thus, different 
methods have been tested and employed to overcome these limitations.  The bi-spectral 
method, using two distinct channels (usually 4 and 11μm), can provide details about the 
fractional size and temperature of sub-pixel fire components (Dozier, 1981; Giglio & 
Kendall, 2001, Wooster et al., 2005), but is plagued by potential errors associated with 
channel misregistration and point spread function (PSF) differences between channels 
(Giglio & Kendall, 2001).  Wooster et al. (2005) suggested that the bi-spectral method is 
effective, but primarily for high resolution sensors (<1km).  The current method used 
aboard MODIS employs a single channel approach with fire and background components 
retrieved solely from the mid-infrared (4μm) channel (Justice et al, 2002).  Kaufman et al. 
(1996, 1998) tested this single channel approach using the MODIS Airborne Simulator 
(MAS), model simulations of fire mixed-temperature pixels (to realistically mimic the non-
homogeneous behavior of biomass burning temperatures), and in situ measurements.  Based 
on the simulated fires, Kaufman et al. (1998) revealed that an empirical relationship exists 
between instantaneous FRE (i.e. FRP) and pixel brightness temperature measured in the 
Moderate Resolution Imaging Spectroradiometer (MODIS) middle infrared channel (4 µm).  
The result was a semi-empirical relationship which forms the basis for the current FRP 
algorithm (equation 5) used aboard MODIS.  The authors also demonstrated the correlation 
between rates of smoke emission and the observed rate of energy released from airborne 
observations with the MAS (Kaufman et al., 1996, 1998).   

 FRP [MW km-2] = 4.34 x 10-19 (T8MIR – T8bg, MIR) (5) 

where FRP is the rate of radiative energy emitted per pixel (the MODIS 4µm channel has 
IFOV of 1km), 4.34x10-19 [MW km-2 Kelvin-8] is the constant derived from the Kaufman et al. 
(1998) simulations, TMIR [Kelvin] is the radiative brightness temperature of the fire 
component, Tbg, MIR [Kelvin] is the neighboring nonfire background component, and MIR 
refers to middle infrared wavelength, typically 4μm.   
Wooster et al. (2003) showed that FRP could also be derived using satellite-based middle 
infrared radiances and a simple power law to approximate Plank’s law.  The ‘MIR radiance’ 
method is applicable for temperatures covering the range of typical vegetation fires (600 – 
1500 K).  As with the ‘MODIS’ method, the MIR method relies on the difference between the 
fire pixel and background, but uses spectral radiance differences rather than brightness 
temperature.  According to Wooster et al. (2005) the radiance methods allows perturbations, 
such as atmospheric effects and pixel area variation across the scan angles, to be accounted 
for after FRP has been derived. 

4. The application of FRE 
Kaufman et al. (1996, 1998) first showed the potential application of FRP and FRE for 
estimating fuel combustion rates and aerosol loading while examining prescribed fires 
during the Smoke, Clouds, and Radiation (SCAR) experiments.  Wooster (2002) investigated 
the relationship between FRP/FRE and fuel consumption using small-scale experimental 
fires in which spectroradiometers recorded the radiative emission for the entire burning 
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process at 5 to 10 second intervals.  Wooster et al. (2003, 2005) expanded on their previous 
work, providing additional evidence of the effectiveness of using instantaneous and total 
FRE measurements to estimate biomass consumed from fire.  Wooster & Zhang (2004) 
demonstrated the application of MODIS FRP observations by verifying the often proposed 
hypothesis that North American boreal fires are generally more intense than Russian boreal 
fires, while Ichoku & Kaufman (2005) used the MODIS FRP and aerosol products to derive 
near real time rates of aerosol emissions at regional scales.  Research by Roberts et al. (2005) 
has shown the effectiveness of using geostationary satellite estimates of FRP from The 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) to quantify rates of fuel 
consumption and characterize the fire intensity daily cycle.  A laboratory investigation of 
FRE and biomass fuel consumption by Freeborn et al. (2008) supported the accuracy of 
Wooster et al.’s (2005) findings and lends credence to the application of satellite based 
measurements of FRE.  Ichoku et al. (2008a), in a coordinated effort with research conducted 
by Freeborn et al. (2008), used laboratory investigations to examine rates and total fire 
radiative energy emitted and associated aerosol emissions.  In both the case of Freeborn et 
al. (2008) and Ichoku et al. (2008a), the relationship between energy emitted, fuels 
consumed, and trace gas and aerosol emission demonstrated the efficacy of using FRE.  
Ichoku et al. (2008b) offered another example of using FRP, but at continental scales while 
investigating the global distribution of MODIS-based FRP estimates and revealed the 
regional distributions of fire intensity.  Their research also showed significant differences in 
diurnal cycles and categorized intensities of FRP between regions which could not be 
explained by ecosystem type alone, suggesting perhaps that land use is a factor.  Roberts & 
Wooster (2008) built upon their previous research (Roberts et al., 2005), showcasing the 
application of high temporal satellite based FRP measurements from the SEVIRI 
geostationary sensor to calculate FRE and estimate biomass combusted.  Boschetti & Roy 
(2009) demonstrated a novel fusion approach to derive FRE based on temporal interpolation 
of MODIS FRP across independently derived burned area estimates.  Their work was 
limited to Australia and the MODIS sensor, but as the authors suggest, the methodology 
could be expanded to other sensors and “is a fruitful avenue for future research and 
validation” (Boschetti & Roy, 2009).  Freeborn et al. (2009) used frequency density 
distributions developed from MODIS and SEVIRI fire radiative power to synthesize the two 
sensors as a means for cross-calibration of their respective estimates.  However, until Ellicott 
et al. (2009) and Vermote et al. (2009) no study had derived FRE at a global scale, in part due 
to limitations in temporal or spatial resolution of satellite sensors.   
A current limitation of fire energy retrieval from satellites is that observations are of 
instantaneous energy (power) over some discrete length of time and space.  To address 
this Ellicott et al. (2009) developed a unique approach to parameterize the temporal 
trajectory of FRP and calculate the integral (i.e. FRE) using MODIS.  The parameterization 
was based on the long term ratio between Terra and Aqua MODIS FRP and diurnal 
measurements of FRP and fire detections made by satellites with greater temporal 
resolution. This included the geostationary sensor SEVIRI and the VIRS aboard TRMM.  
VIRS’s low-inclination orbit (35°) provides observation times which precesses through 24 
hours of local time every 23-46 days, depending on latitude, thus capturing the general 
diurnal trend of fire activity.  In addition, high latitude (and thus high overpass 
frequency) daily observations by MODIS were included.  The result was a global FRE 
product from MODIS at 0.5° spatial and monthly temporal resolution which currently 
spans from 2001 – 2010 (Figure 1). 
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alternative method to quantify the biomass consumed, and assuming an emission factor is 
known, it also offers the atmospheric emission load. 
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 FRP [MW km-2] = 4.34 x 10-19 (T8MIR – T8bg, MIR) (5) 
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temperature.  According to Wooster et al. (2005) the radiance methods allows perturbations, 
such as atmospheric effects and pixel area variation across the scan angles, to be accounted 
for after FRP has been derived. 
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fires in which spectroradiometers recorded the radiative emission for the entire burning 
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process at 5 to 10 second intervals.  Wooster et al. (2003, 2005) expanded on their previous 
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Wooster et al.’s (2005) findings and lends credence to the application of satellite based 
measurements of FRE.  Ichoku et al. (2008a), in a coordinated effort with research conducted 
by Freeborn et al. (2008), used laboratory investigations to examine rates and total fire 
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al. (2008) and Ichoku et al. (2008a), the relationship between energy emitted, fuels 
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regional distributions of fire intensity.  Their research also showed significant differences in 
diurnal cycles and categorized intensities of FRP between regions which could not be 
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of MODIS FRP across independently derived burned area estimates.  Their work was 
limited to Australia and the MODIS sensor, but as the authors suggest, the methodology 
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validation” (Boschetti & Roy, 2009).  Freeborn et al. (2009) used frequency density 
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this Ellicott et al. (2009) developed a unique approach to parameterize the temporal 
trajectory of FRP and calculate the integral (i.e. FRE) using MODIS.  The parameterization 
was based on the long term ratio between Terra and Aqua MODIS FRP and diurnal 
measurements of FRP and fire detections made by satellites with greater temporal 
resolution. This included the geostationary sensor SEVIRI and the VIRS aboard TRMM.  
VIRS’s low-inclination orbit (35°) provides observation times which precesses through 24 
hours of local time every 23-46 days, depending on latitude, thus capturing the general 
diurnal trend of fire activity.  In addition, high latitude (and thus high overpass 
frequency) daily observations by MODIS were included.  The result was a global FRE 
product from MODIS at 0.5° spatial and monthly temporal resolution which currently 
spans from 2001 – 2010 (Figure 1). 
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Fig. 1. Estimated annual mean FRE (MJ/m2) from Aqua (2003-2010) and Terra (2001-2002) 
MODIS.  Integrated energy was calculated from FRP (MW) values derived from a Gaussian 
function using modeled parameters. 

Based on their FRE estimates, Ellicott et al. (2009) estimated biomass consumption totals for 
Africa using FRE-based combustion factors derived by Wooster et al. (2005).  Since Wooster 
et al.’s combustion factor is based on fuels typical for Africa, the estimates were limited to 
this continent.  The results were compared with Roberts & Wooster (2008) who derived 
estimates of fuels consumed from the SEVIRI sensor.  The results showed good agreement 
for a 12 month comparison of FRE-based estimates of dry matter consumed from SEVIRI 
(858 Tg DM) and MODIS (700 Tg DM).  The GFEDv2 (van der Werf et al., 2006) though, 
showed nearly a factor of 3 greater fuel consumption for the same time period and area, 
suggesting that more work needs to be done to characterize the sources and magnitude of 
errors in these estimates. 
Vermote et al. (2009) applied the FRE-approach described above to estimate organic and 
black carbon (OCBC) aerosols emitted from biomass burning in 2003.  The relationship 
between the estimated FRE and a new MODIS-derived inversion product of daily 
integrated, biomass burning aerosol emissions was the foundation of their research.  The 
inversion product (Dubovik et al., 2008) was generated from the MODIS fine mode aerosol 
optical thickness and inverse modeling transport processes adopted from the Goddard 
Chemistry Aerosol Radiation and Transport (GOCART) model.  The process generated fine 
mode aerosol sources (locations and intensities) resulting from biomass burning which were 
then used to derive OCBC estimates.  The relationship between FRE and OCBC was 
analyzed globally within 3 distinct vegetation zones (Figure 2). 
The estimated FRE-based OCBC emission in 2003 was 20 Tg and the spatial pattern clearly 
shows areas of high fire activity and thus OCBC loading (Figure 3).  Though lower than the 
29.6 Tg and 26.1 Tg estimates made by Generoso (2007) and van der Werf et al. (2006), 
respectively, the estimate is still within the error bars of both datasets.  Nevertheless, the 
underestimation raises questions about the sources of uncertainty and error in the 
components used to derive OCBC quantities. 
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Fig. 2. Biome regions adopted from the Global Fire Emissions Database (GFED, van der 
Werf et al., 2006) used for analyzing the relationship between FRE and OCBC aerosol 
emissions (Vermote et al., 2009). 

 

 
 

Fig. 3. Total OCBC (g/m2) emissions estimated from biomass burning for 2003.  High source 
regions include east-central Brazil, central and southern Africa, Southeast Asia, Central 
America, and southeast Russia. 
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5. Uncertainty 
Remote sensing science involves the inference of in situ physical characteristics based on 
electromagnetic energy received at the sensors.  The sensor and inferences made have a 
degree of error, which propagates through processing and into any results produced.   
Giglio & Kendall (2001) explained that while sensors such as AVHRR have effectively 
generated baseline fire products for fire distribution and basic qualitative information for 
parameterization of biomass burning, there are fundamental limitations that need to be 
addressed and could not be improved upon until recently.  A limitation prior to sensors 
such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning 
Enhanced Visible and Infrared Imager (SEVIRI) was that satellite sensors did not have 
dedicated fire channels or did not possess optimal sensor characteristics for fire detection 
(Kaufman et al., 1998).  AVHRR’s mid-infrared channel, for example, is subject to greater 
atmospheric perturbation and, due to sensor capabilities, increased frequency of saturation.   
Advancements of new generations of sensors for fire detection and monitoring have 
included refinements to specific wavelength selection in order to optimize spectral 
characterization (Giglio & Justice, 2003).  Giglio & Kendall (2001) state that in order to 
reliably determine instantaneous fire temperature and area over a wide range of active fire 
sizes using Dozier's method, sensors with higher spatial resolution (~100m) and very high 
(~1000K) middle infrared band saturation would be necessary.  However, replacement of 
the mid-IR channel aboard AVHRR (3.7μm) with a wavelength less sensitive to solar 
radiation (i.e. 3.9μm) would reduce the pixel saturation by half (Giglio & Justice, 2003; 
Kaufman et al., 1998).  Defining higher pixel saturation temperatures and including 
wavelengths that can be used for false alarm detection on MODIS were improvements based 
on experiences with older systems (Justice et al., 2002).   
Earlier work by Schroeder et al. (2008) showed that cloud obscuration in the Brazilian 
Amazon could lead to fire detection omission errors of roughly 11%.  However, commission 
errors may occur as result of cloud shadows and semi-transparent clouds influencing 
surface thermal characteristics.  Another source of commission errors may also result from 
the very efforts to correct for cloud obscuration by leading to an overestimate in the number 
of (assumed) detections.  Schroeder et al. (2010) recently provided a thorough analysis of 
FRP, temperature estimates, and fire area estimates from moderate resolution sensors.  Their 
results showed that location of fires within a pixel can be biased because of the sensor’s 
point spread function leading to as much as a 75% underestimation in FRP.  On the other 
hand, improper characterization of the ambient background surrounding fire pixel(s) can 
result in an overestimation of FRP up to 80%.  This particular situation is mostly prevalent 
in areas of tropical deforestation. 
The accuracy of the empirical formula for computing FRP was taken from the evaluation 
performed by Kaufman et al. (1998), who showed a potential error of 16% using 150 
simulated mixed-energy fire pixels.  Wooster et al. (2003) found a theoretical accuracy 
(RMSD) of 65 x 106 J over a range of 0 to 2000 x 106 J (or 6.5% for the average) using their 
MIR FRE approach.   
MODIS omission rates of small active fires were also observed by Hawbaker et al. (2008).  In 
their study, 73% of Aqua and 66% of Terra active fire detections were missed, primarily 
because of fast moving fire fronts, cloud cover, or spatial resolution.  Hawbaker et al. (2008) 
was clear though that these small fires likely may have little impact in terms of total 
emissions as had been stated previously by Kaufman et al. (1998). 
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Freeborn et al. (2011) highlighted an issue with the MODIS Collection 5 FRP product.  In the 
C5 FRP the calculation of the instantaneous energy (MW) derived from the brightness 
temperature includes a multiplication by the pixel area. Although this is fundamentally 
correct, since energy is measured per unit time and space, the adjustment leads to an 
overestimate with increasing scan angle because the pixel area grows as the scan moves off 
nadir. Interestingly, the opposite effect occurs when examining fire pixel counts (i.e. greater 
number of detections near nadir and decreasing detections with scan angle).  
With regards to the application of FRE-based biomass consumption estimates published by 
Ellicott et al. (2009) and Roberts & Wooster (2008), there is some degree of uncertainty.  
Although the assumption that a single combustion factor is applicable for all fuel types and 
conditions (i.e. moisture content) will incur some bias, in general, heat yield does not vary much 
between fuels (Stott, 2000) and therefore until more research demonstrates otherwise, the two 
cited FRE-based combustion factors (Freeborn et al., 2008; Wooster, 2005) seem realistic. 
Atmospheric attenuation is another component generally unaccounted for.  In simulations 
conducted by Ellicott (unpublished), the MODIS FRP may be underestimated by as much as 
20% (Figure 4).  Similarly, Roberts & Wooster (2008) applied a constant correction factor 
(0.89) to SEVIRI FRP to account for atmospheric transmission loss. 
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Fig. 4. Comparison of simulated surface and TOA FRP.  Radiances were simulated from 
randomly generated fire pixel temperature and fractional area components (fire, 
smoldering, and background).  MODIS Aqua profiles were used to provide realistic 
atmospheric parameters used in the radiative transfer modeling.  The 1:1 (dashed) line is 
plotted for reference. 
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Fig. 4. Comparison of simulated surface and TOA FRP.  Radiances were simulated from 
randomly generated fire pixel temperature and fractional area components (fire, 
smoldering, and background).  MODIS Aqua profiles were used to provide realistic 
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Finally, an error budget provided by Vermote et al. (2009) suggested that the  FRE-
parameterization approach developed by Ellicott et al. (2009) approaches 20% based on 
comparisons with the SEVIRI sensor. 

6. Discussion 
The atmosphere plays a fundamental role in regulating life on Earth.  Changes in 
atmospheric composition can and do affect surface temperatures, hydrology, radiation 
budgets, weather, and even climate.  Therefore, understanding the complex exchanges 
occurring between the atmosphere and surface requires accurate measurements of the 
variables characterizing both; for example atmospheric constituents, surface temperatures, 
and albedo.  Quantifying these variables provides the necessary inputs for modeling the 
dynamic interactions and potential outcomes that result from changes in the relative 
proportions of atmospheric constituents.   In light of the growing evidence for 
anthropogenic induced climate change, accurate characterization of the impact humans are 
having, both directly and indirectly, on altering Earth’s systems is critical to guiding 
mitigation policy. 
To that end, fire radiative energy may provide a efficient and accurate tool to monitor and 
measure biomass consumed and emissions from fire events.  In order to be truly effective 
some of the idiosyncratic issues that plague sensors and algorithms need to be addressed, 
but perhaps most importantly, at least a global scale, is dealing with missed fire detections.  
For this, more comprehensive and distributed validation must occur. 
In order to truly validate FRE estimates, greater spatial and temporal resolution data are 
needed.  The evaluation of the FRE estimates with SEVIRI data offered a comparison with 
FRP retrievals made at higher temporal resolution, but incurred the downside of coarser 
spatial resolution.  Future endeavors would include a scaling approach to test the temporal 
trajectory of instantaneous fire energy and total fire radiative energy released from a fire 
event.  This would include the use of in situ observations, perhaps with a combination of 
field and laboratory experiments to reconcile differences between these two approaches.  
The next tier of retrievals would be from airborne observations, perhaps including both 
tower platforms (for small scale fires) and unmanned aircraft.  The Ikhana unmanned 
airborne vehicle (UAV) used by the fire research at NASA AMES offers some opportunities 
in this regard.  Recent field work demonstrated that while monitoring FRP from a helicopter 
seems ideal, many factors can limit the success of this tactic and that greater flexibility in 
choice of fires to observe and timing allowed for observation is needed.  Moderate to high 
spatial resolution satellite observations would be employed in the next scaling layer and 
allow for greater spatial coverage while being constrained by higher spatial and temporal 
observations.  To that end, geostationary satellite observations would cap the scaling 
approach, providing high temporal (15 – 30 minute) retrievals to aid in characterizing the 
diurnal cycle of fire radiative power as has been shown in this research.  Incorporating 
sensors such as the Geostationary Operational Environmental Satellites (GOES) would offer 
greater spatial coverage beyond the SEVIRI sensor.  Careful consideration of the limitations 
of comparison between sensors at multiple scales would obviously be needed (Schroeder et 
al., 2005). 
Other considerations worth pursuing to improve FRP retrievals from the MODIS sensor 
include parameterization of the sub-surface organic layer burning.     According to French et 
al. (2004) surface organic layer burning is largest source of uncertainty in boreal biomass 
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burning emission estimates.  Page et al. (2002) estimated 0.19-0.23 Gt of carbon released to 
the atmosphere from peat combustion during 1997 Indonesian fires.  Their estimates were 
based on peat thickness, pre-fire land cover, and burnt area data collected from ground 
measurements and Landsat TM/ETM imagery.  Cloud cover has already been revealed by 
Schroeder et al. (2008) to limit fire detection capabilities for Brazilian fires.  The spatial 
resolution of MODIS is another limitation to detecting fires in peatlands (and thus FRP 
estimation) as shown by Siegert et al. (2004).  Developing a connection between field 
estimates of surface and sub-surface organic burning, burned area, and FRP would allow for 
parameterization of this component of fire radiative energy. 
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Finally, an error budget provided by Vermote et al. (2009) suggested that the  FRE-
parameterization approach developed by Ellicott et al. (2009) approaches 20% based on 
comparisons with the SEVIRI sensor. 

6. Discussion 
The atmosphere plays a fundamental role in regulating life on Earth.  Changes in 
atmospheric composition can and do affect surface temperatures, hydrology, radiation 
budgets, weather, and even climate.  Therefore, understanding the complex exchanges 
occurring between the atmosphere and surface requires accurate measurements of the 
variables characterizing both; for example atmospheric constituents, surface temperatures, 
and albedo.  Quantifying these variables provides the necessary inputs for modeling the 
dynamic interactions and potential outcomes that result from changes in the relative 
proportions of atmospheric constituents.   In light of the growing evidence for 
anthropogenic induced climate change, accurate characterization of the impact humans are 
having, both directly and indirectly, on altering Earth’s systems is critical to guiding 
mitigation policy. 
To that end, fire radiative energy may provide a efficient and accurate tool to monitor and 
measure biomass consumed and emissions from fire events.  In order to be truly effective 
some of the idiosyncratic issues that plague sensors and algorithms need to be addressed, 
but perhaps most importantly, at least a global scale, is dealing with missed fire detections.  
For this, more comprehensive and distributed validation must occur. 
In order to truly validate FRE estimates, greater spatial and temporal resolution data are 
needed.  The evaluation of the FRE estimates with SEVIRI data offered a comparison with 
FRP retrievals made at higher temporal resolution, but incurred the downside of coarser 
spatial resolution.  Future endeavors would include a scaling approach to test the temporal 
trajectory of instantaneous fire energy and total fire radiative energy released from a fire 
event.  This would include the use of in situ observations, perhaps with a combination of 
field and laboratory experiments to reconcile differences between these two approaches.  
The next tier of retrievals would be from airborne observations, perhaps including both 
tower platforms (for small scale fires) and unmanned aircraft.  The Ikhana unmanned 
airborne vehicle (UAV) used by the fire research at NASA AMES offers some opportunities 
in this regard.  Recent field work demonstrated that while monitoring FRP from a helicopter 
seems ideal, many factors can limit the success of this tactic and that greater flexibility in 
choice of fires to observe and timing allowed for observation is needed.  Moderate to high 
spatial resolution satellite observations would be employed in the next scaling layer and 
allow for greater spatial coverage while being constrained by higher spatial and temporal 
observations.  To that end, geostationary satellite observations would cap the scaling 
approach, providing high temporal (15 – 30 minute) retrievals to aid in characterizing the 
diurnal cycle of fire radiative power as has been shown in this research.  Incorporating 
sensors such as the Geostationary Operational Environmental Satellites (GOES) would offer 
greater spatial coverage beyond the SEVIRI sensor.  Careful consideration of the limitations 
of comparison between sensors at multiple scales would obviously be needed (Schroeder et 
al., 2005). 
Other considerations worth pursuing to improve FRP retrievals from the MODIS sensor 
include parameterization of the sub-surface organic layer burning.     According to French et 
al. (2004) surface organic layer burning is largest source of uncertainty in boreal biomass 
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burning emission estimates.  Page et al. (2002) estimated 0.19-0.23 Gt of carbon released to 
the atmosphere from peat combustion during 1997 Indonesian fires.  Their estimates were 
based on peat thickness, pre-fire land cover, and burnt area data collected from ground 
measurements and Landsat TM/ETM imagery.  Cloud cover has already been revealed by 
Schroeder et al. (2008) to limit fire detection capabilities for Brazilian fires.  The spatial 
resolution of MODIS is another limitation to detecting fires in peatlands (and thus FRP 
estimation) as shown by Siegert et al. (2004).  Developing a connection between field 
estimates of surface and sub-surface organic burning, burned area, and FRP would allow for 
parameterization of this component of fire radiative energy. 
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1. Introduction 
A clear understanding of boreal forest dynamics is critical to developing an accurate 
representation of the Earth’s response to climate change.  The Russian boreal forest is the 
largest continuous forest region on Earth and a tremendous repository of terrestrial organic 
carbon.  The boreal forest has experienced significant warming over the past several decades 
and is expected to be impacted by global climate change (Chapin et al., 2000; McGuire et al., 
2002; Soja et al., 2007).  Siberian summers in the past century were warmer than any century 
in the past millennium, and future climate scenarios indicate that the region will continue 
warming, by some accounts between 2° and 10°C by 2100 (IPCC 2007; Soja et al., 2007).  
Warming climate will likely exert influence on species distributions and land cover types in 
the boreal forest regions (Ustin and Xiao 2001; Tchebakova et al., 2005; Tchebakova et al., 
2009).  In particular, these temperature increases have led to the shift of treelines northward 
or upslope of previous climate limits, and a reduction in cone and seed yield for Larix sibirica 
and Pinus slyvestris which changes forest composition and structure (Kharuk et al., 2009; 
Soja et al., 2007).  These changes are important indicators of how Eurasian boreal forests 
may respond to, and ultimately amplify, increases in average global temperature. 
These land cover changes can force alterations in regional climate through modifications in 
surface albedo and land/atmosphere energy fluxes (Bonan et al., 1992; Chapin et al., 2000; 
Baldocchi 2000; Amiro 2001; Beringer et al., 2005; Soja et al., 2007), as well as in global 
climate through changes in carbon sequestration and release patterns (Bonan 2008; Snyder et 
al., 2004).  Global climate model (GCM) results have shown that clearing boreal forest alters 
surface albedo, and  substantially cools the Earth, not only in the boreal region but across 
the Northern Hemisphere (Bonan et al., 1992), and has the greatest effect on global mean 
temperature when compared to the removal of other biomes (Snyder et al., 2004).  Betts 
(2000) found surface albedo changes associated with the growth of coniferous evergreen 
trees led to significant increases in average global temperature large enough to overshadow 
the effect of carbon storage by growing evergreen forest in that region.  Bioclimatic 
modeling predicts that by 2090 vegetation change across Siberia will create an albedo shift 
and increase overall net radiation, thereby producing enhanced warming above that already 
predicted for the high latitudes (Vygodskaya et al., 2007).  Larch (Larix spp.) forest, 
dominated by both L. sibirica and L. gmelinii, covers extensive regions in Siberia.  Field 
observations have documented shifts from larch to evergreen conifer forests, dominated by 
trees such as spruce (Picea spp.) or fir (Abies spp.) that are tolerant of higher temperatures 
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(Kharuk et al., 2007).  Because larch is a deciduous conifer, this shift to evergreen dominance 
would lead to an albedo decrease, particularly in winter, when evergreen trees tend to mask 
laying snow relative to deciduous species (Betts and Ball 1997).  The difference in summer 
albedo is smaller but also significant, with larch albedo measured at approximately 0.13 and 
evergreen species around 0.09 (Hollinger et al., 2010)   This reduction of albedo associated 
with the shift in forest type indicates that increased temperatures may lead to a positive 
feedback response: a warmer climate accelerates the natural succession from larch to 
evergreen conifer forest and the resultant albedo promotes additional warming.  Areas of 
southern Siberia identified as vulnerable to premature replacement of larch by evergreen 
conifers would undergo a local significant albedo shift of approximately 5.1 W m-2 following 
conversion from dominant larch to evergreen conifer stands (Shuman et al., 2011).   
Identification of areas prone to vegetation change is crucial in efforts to mitigate the effects 
of potential forest type conversion.  Remote sensing technology has advanced to a point 
which allows for estimation of biomass and detailed evaluation of land cover and land use 
change.  Estimation of Russian forest biomass directly from Moderate Resolution Imaging 
Spectroradiometer (MODIS) data provided estimates of a distribution of biomass classes 
that correlated well to ground measured forest biomass with signatures from a minimum of 
training sites (Houghton et al., 2007).  Detailed characterization of vegetation by remote 
sensing technology provides land cover maps for areas within Russia that are not easily 
accessible, and at a more frequent temporal resolution than is possible to obtain using field-
based mapping techniques.  A NOAA/AVHRR-derived vegetation map for a remote section 
of northern Siberia provides detailed information regarding latitudinal transition zones, 
vegetation differences inside each zone and variability along vertical transects for 
mountainous areas (Kharuk et al., 2003).  This type of high quality map for a remote area 
provides land cover information essential to evaluating vegetation changes in response to 
climate change.  Remotely sensed data can be used to identify areas undergoing a change in 
land cover type and assess the direction and magnitude of any albedo shift associated with 
such a change. Vegetation models can be used to provide information regarding the specific 
type of vegetation change and the location where this change is most likely to occur, and can 
thus inform vegetation monitoring efforts based on remotely sensed data.   
In the past 20 years, individual-based models (IBMs) have been used to provide increasingly 
accurate predictions and simulations of forests (Mladenoff 2004; Scheller and Mlandenoff 
2007).  The model used in this study, FAREAST, is in a class of IBMs called “gap models” 
(Shugart and West 1980) that simulate individual trees, specifically their growth, mortality, 
and decomposition into litter in a relatively small area, typically the size of a forest gap.  Forest 
gap models established according to the approach of Botkin et al., (1972) and Shugart and 
West (1977) are based upon the concept of “gap phase” replacement (Watt 1947).  Gap models 
account for competition among individuals of multiple tree species for light and other 
resources, with the outcome determining the composition and structure of the forest through 
aggregation of homogenous mosaic patches through time (Shugart 1984).  Testing of gap 
models is divided into verification and validation (Mankin et al., 1977; Cale et al., 1983; Rykiel 
1996; Sargent 1984), and involves evaluating the ability of the model to predict species 
successional dynamics and biomass accumulation for the region of model development.  Gap 
models have been verified and validated for a variety of forests world-wide (Botkin et al., 1972; 
Shugart and West 1977; Shugart, 1984 and its reprinting 1998, 2003; Kienast 1987; Leemans and 
Prentice 1989; Kienast and Krauchi 1991; Bugmann 2001).  The initial tests of the FAREAST 
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model included a simulation of forest composition and basal area at different elevations on 
Changbai Mountain in China, with statistical comparison to inventory data and then 
qualitative comparisons to observed forest type at 31 sites in the Russian Far East and Siberia 
(Yan and Shugart 2005).  Further validation of the model using linear regression of model 
generated and independent forest inventory data indicated that FAREAST successfully 
captures the natural biomass dynamics of mixed-species forests across the vast geographic 
area and varied climatic conditions of Russia (Shuman and Shugart 2009; Shuman 2010). 
The use of gap models allows for the evaluation of novel conditions or the addition of a 
new species for the purpose of evaluating the impact on existing vegetation.  The impact 
that changing climate has on forests at local and regional scales has been explored with 
several different forest gap models (Shugart 1984; Solomon 1986; Pastor and Post 1988; 
Dale and Franklin 1989; Urban et al., 1993; Lasch and Lindner 1995; Bugmann 1996; Yan 
and Zhao 1996; Bugmann and Solomon 2000; Zhang et al., 2009).  IBMs can be used to 
develop a vegetation “signature” for the response of ecosystems to change, especially 
climate change.  Using a boreal forest gap model to assess climate change effects, Bonan 
(1989a,b) investigated the responses to several climate change predictions from global 
climate models along the north-facing and south-facing slopes of boreal forests near 
Fairbanks, Alaska.  The black spruce forests growing on cold north-facing slopes were 
largely unaffected by the climatic warming, but white spruce forests on the relatively 
warmer south-facing slopes were strongly affected by the change in climate.  Conditions 
predicted in the climate change scenarios for south-facing slopes were outside the 
ecological conditions under which the common tree species near Fairbanks are known to 
be able to persist.  For white spruce, the limiting condition identified by the model results 
appeared to be moisture stress and not the direct effects of temperature change.  A decade 
later, Barber et al., (2000) investigated tree ring data to determine the effect that several 
decades of warmer than usual temperatures in the Fairbanks area had had on white 
spruce stands and confirmed Bonan’s model predictions with evidence for moisture-stress 
effects in the tree ring dataset. 
In this study, the FAREAST model is used to simulate forest composition and biomass at 372 
sites across Siberia and the Russian Far East for the purpose of evaluating forest response to 
climate change.  Climate sensitivity analysis is performed in order to assess the resilience 
and stability of forest structure and composition to altered climate at multiple spatial scales.  
The model was used to simulate the impact of changes in temperature and precipitation on 
both total and genus-specific biomass at sites across Siberia and the Russian Far East, and 
for six different regions representing areas of high and low diversity. Comparisons of 
regions within areas of high and low diversity provide a tool to evaluate the relationship 
between diversity and the response of the system to changing climate.  Model runs with and 
without European Larch (Larix decidua) are compared in order to assess the potential for the 
introduction of this species to mitigate the effects of climate change, especially the positive 
feedback among temperature, forest type and surface albedo.   

2. Methods 
2.1 Model simulation across Siberia and Russian Far East 
FAREAST was run at a total of 372 sites across Siberia and the Russian Far East (RFE) from 
the eastern coast to the western border of the range limits of L. sibirica.  FAREAST uses 
monthly climate parameters derived from historical station data to compute daily 
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temperature and update soil water content.  In particular, at each site, the model’s climate 
inputs are drawn from a statistical distribution of monthly values for minimum and 
maximum mean temperature and precipitation that is derived from 60 years of data 
recorded at local weather stations (NCDC 2005a, 2005b).  The model also uses values for soil 
field capacity, and soil carbon and nitrogen from Stolbovoi and McCallum (2002) for each 
site.   
The birth, growth, and eventual death of individual trees are determined in response to 
competition for light and local site parameters such as soil moisture and nutrient 
availability, which are updated annually with bio-environmental conditions and available 
nutrients.  Complete model processing details are available in Yan and Shugart (2005).  
Fifty-eight different tree species are included in FAREAST simulations, and can be 
grouped into ten genera (Abies spp., Betula spp, Larix spp., Picea spp., Pinus spp. Populus 
spp., Tilia spp., Quercus spp., Fraxinus spp., and Ulmus spp.) and two collections of less 
common species (other deciduous and other coniferous).  These species represent the 
genera that dominate Northern Eurasian forests, and include species that were added 
when the original geographic area of interest for the model in Yan and Shugart (2005) was 
expanded to cover all of Russia (Shuman and Shugart 2009).  Twenty-five parameters 
describe each species and determine which species has an advantage in terms of 
competition for light or nutrients, or tolerance to lack of water.  Tree growth and 
regeneration is limited by functions describing local light, temperature, nutrients and 
drought dynamics determined through interaction and annual update of soil water and 
available carbon and nitrogen.  Tree mortality each year is a consequence of a Monte 
Carlo realization of individual species probability of mortality plus added probability of 
mortality on that individual from stress or disturbances.  Successional dynamics are 
therefore a result of competition between tree species for light and nutrients, as well as 
limitations to growth imposed by local environmental conditions.  Each site uses a unique 
species list drawn from species range information created in ESRI ArcGIS (2008) using 
range information adapted from Nikolov and Helmisaari (1992) and Hytteborn et al., 
(2005).  At each site, 200 independent twelfth-hectare plots were simulated for 500 years 
and the modeled biomass values were averaged for each species in each year of the model 
run.  This average produces a landscape-level approximation of succession, which 
includes the natural disturbance associated with the death of individual trees. 

2.2 Climate sensitivity analysis 
The authors evaluated biomass for the total forest, Larix spp., and evergreen conifers at 372 
sites across Siberia  in response to changes in temperature and precipitation, and to the 
inclusion of European Larch (Larix decidua) (Table 1).   
 

Treatments used in climate sensitivity analysis 
Change in temperature Base + 4 degrees 
Change in precipitation Base  10% 

Introduction of Larix decidua Base + Larix decidua 

Table 1. A total of 12 treatments including the base condition, combinations of temperature 
and precipitation change and Larix decidua addition to the available species pool were used. 
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L. decidua has a higher tolerance for an increased number of warm days than do species of 
larch native to Siberia and the RFE.  This gives L. decidua an advantage over other species of 
larch for establishing in areas with warmer temperatures.  The climate scenarios used in this 
analysis are based on the moderate predictions of temperature and precipitation increase 
that are made by global climate models for portions of Eurasia (IPCC 2007).  For the base 
scenario, no changes are made to the distributions of monthly temperature and precipitation 
values derived from historical records.  The remaining climate scenarios employ a linear 
increase in temperature or precipitation or both from the start of simulation, year zero, to 
year 200 of the simulation.  This is followed by an additional 300 years of simulation during 
which the climate stabilizes around the conditions attained in year 200.  For each of the 12 
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temperature and update soil water content.  In particular, at each site, the model’s climate 
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run.  This average produces a landscape-level approximation of succession, which 
includes the natural disturbance associated with the death of individual trees. 

2.2 Climate sensitivity analysis 
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Treatments used in climate sensitivity analysis 
Change in temperature Base + 4 degrees 
Change in precipitation Base  10% 

Introduction of Larix decidua Base + Larix decidua 

Table 1. A total of 12 treatments including the base condition, combinations of temperature 
and precipitation change and Larix decidua addition to the available species pool were used. 
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southern Siberia and low biomass across the northernmost sites.  The successional dynamics 
across western Siberia in response to baseline climate feature a larch-dominated system 
persisting over time (Figure 2a).  In the warmer southern portions of the region, larch forest 
undergoes a transition to mixed evergreen conifer and deciduous broad-leaved species 
beginning around year 230 (Figure 2b).  This transition continues and by year 500, the 
southern portion of Siberia becomes a mixed larch and evergreen conifer forest (Figure 2c).   

 
Fig. 2. Species distribution in western Siberia, a subset of the total area and dataset, for the 
baseline (a, b, c) and temperature increase (d, e, f) climates. 

3.2 Climate sensitivity analysis  
3.2.1 Continental scale results 
Biomass response to the temperature treatment is significant (p<0.001), continues to the end 
of simulation for total forest and Larix spp. biomass (Figure 3), and is reflected in the shift in 
species distribution over time (Figure 2).  By year 130, the effects of the response to warming 
can already be seen when compared to the base climate (Figure 2a) in the shift of species 
dominance from larch to evergreen conifer and other species at sites in southwestern Siberia 
(Figure 2d).  The presence of evergreen conifers and other species, in what was larch-
dominated forest under the historical climate (Figure 2b), expands across more of southern 
Siberia by year 230 (Figure 2e), and by year 500 Siberia is no longer a larch-dominated forest 
under increased temperature conditions (Figure 2f).   
At the continental scale non-parametric factorial ANOVA results for biomass (tC ha-1) under 
the temperature, precipitation, and European Larch (Larix decidua) treatments indicated that 
all classes of biomass were affected (p<0.001) (Figure 3).  The temperature and L. decidua 
treatments have the strongest and most persistent effect on biomass throughout the 
simulation.  L.decidua appears to be well-adapted to establishing across the region and 
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affects biomass in all groups (total forest, Larix spp., and evergreen conifer) at the 
continental scale for the entire simulation.  There is an effect of precipitation change on 
biomass, but this effect occurs only later in succession, at year 140, and alters total forest and 
evergreen conifer biomass, not Larix spp. biomass (Figure 3).    
 

 
Fig. 3. Non-parametric factorial ANOVA results for climate sensitivity analyses for 372 sites 
across Siberia and Russian Far East.  Shown in colors corresponding to figure legend are 
comparisons to baseline biomass values that were significant to p<0.001 for treatment effects 
of temperature, precipitation, and Larix deciuda on total forest, Larix spp., and evergreen 
conifer biomass.   

3.2.2 High diversity regional and local scale results 
Sites in the Amur region of the Russian Far East (RFE) have an average of 38 individual tree 
species, and are classified for this analysis as high diversity.  Within the high diversity 
regions, the non-parametric factorial ANOVA results showed a sporadic response (p<0.001) 
to the temperature and European Larch (L. decidua) treatments for the biomass classes 
measured (Figure 4).  In contrast to the continental effect, the high diversity regions showed 
minimal response to the treatment effects of temperature increase and L. decidua addition, 
and no response to the effect of precipitation change.   
Local results for the high diversity regions are variable depending on local climate 
conditions.  The southwestern RFE (SW RFE) region under the base climate has mixed 
deciduous forests in the early successional stages which mature into mixed deciduous and 
evergreen conifer forests.  Larch is present in SW RFE region, but is not a dominant species 
at any point during succession.  Local scale analysis in SW RFE shows that the increased 
temperature alters the late successional dynamics by drastically reducing or replacing 
evergreen conifers with mixed deciduous species as early as year 150; this is reflected in the 
response (p<0.001) of evergreen conifer biomass from year 120 until the end of simulation 
(Figure 4).  The L. decidua treatment does not significantly affect biomass in SW RFE region.   
With base climate conditions at sites in the northern RFE (N RFE) there is an initial 
pioneering stage dominated by Larix spp. which then transitions to evergreen conifer (Picea 
spp.) dominant forest (Figure 5a).  The effect of temperature increase of 4°C across 200 years 
accelerates and alters the transition to a mixed-species forest dominated by Pinus spp. rather 
than Picea spp. (Figure 5b).  This is reflected in the effect of the temperature treatment 
(p<0.001) on total forest biomass and Larix spp. biomass in late succession after year 200 for 
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pioneering stage dominated by Larix spp. which then transitions to evergreen conifer (Picea 
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than Picea spp. (Figure 5b).  This is reflected in the effect of the temperature treatment 
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Remote Sensing of Biomass – Principles and Applications  

 

202 

sites in N RFE (Figure 4).  Even with the increased biomass of the larch canopy created with 
the introduction of L. decidua the transition from larch to Pinus spp. in late succession still 
occurs under increased temperature conditions (Figure 5c), with strong similarity to the 
species shift seen without inclusion of L. decidua (Figure 5b).   
 

 
 

Fig. 4. Non-parametric factorial ANOVA results for climate sensitivity analyses in two high 
diversity sites of the Amur region in the Russian Far East: northern Russian Far East (N 
RFE) and southwestern Russian Far East (SW RFE).  Shown in colors corresponding to 
figure legend are comparisons to baseline biomass values that were significant to p<0.001 
for treatment effects of temperature, precipitation, and Larix deciuda on total forest, Larix 
spp., and evergreen conifer (EC) biomass.   

 

 
 

Fig. 5. Simulated species biomass dynamics (tC ha-1) for high diversity Burukan site in 
northern Amur region of the Russian Far East (N RFE).  Species composition by 
dominant genera is shown over 500 simulated years starting from bare ground for the 
base historical climate (a), temperature increase (b), and temperature increase with  
Larix decidua (c).   
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3.2.3 Low diversity regional and local scale results 
The 279 sites across Siberia and the remainder of the RFE have an average of 9 individual 
tree species, and are classified as low diversity for this analysis.  Similar to the continental 
response, within the low diversity regions the non-parametric factorial ANOVA results 
showed a consistent response (p<0.001) to temperature and L. decidua treatments for 
biomass of the total forest, Larix spp., and evergreen conifers when compared to baseline 
biomass values (Figure 6).  Specifically the temperature increase in low diversity regions 
affects total forest and Larix spp. biomass early in succession and prior to year 200 (Figure 
6).  These regions also display a synchrony or lag response with total forest and Larix spp. 
biomass being closely connected in terms of the timing of the significant departure from 
baseline biomass.  In all low diversity regions analyzed, except central Siberia, the response 
of evergreen conifer biomass to warming occurs after the response of total forest and Larix 
spp. biomass.  The effect of the precipitation treatment was significant (p<0.001) in only one 
low diversity region analyzed, central Siberia.   
 

 
Fig. 6. Non-parametric factorial ANOVA results for climate sensitivity analyses in low 
diversity sites of Siberia.  Shown in colors corresponding to figure legend are comparisons 
to baseline biomass values for treatment effects of temperature, precipitation, and Larix 
decidua that were significant to p<0.001 for total forest, Larix spp., and evergreen conifer (EC) 
biomass.  NW Siberia is the northwestern Siberia region.  E and W Irkutsk regions are in 
southern Siberia.   
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sites in N RFE (Figure 4).  Even with the increased biomass of the larch canopy created with 
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species shift seen without inclusion of L. decidua (Figure 5b).   
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The low diversity regions under historical site conditions have a successional pattern of 
increasing Larix spp. biomass to year 200, followed by the slow establishment of evergreen 
conifers with Larix spp. maintaining a significant presence to the end of simulation (Figure 
7a).  The temperature treatment accelerates the establishment of evergreen conifers and at 
some sites causes a complete collapse of larch biomass in many of the low diversity sites 
around year 200 when the temperature has increased by 4C (Figure 7b).  Successional 
dynamics in northwestern Siberia represent an exception to this general pattern.  The colder 
regional temperatures in northwestern Siberia do not promote transition from Larix spp. to 
evergreen conifer, rather there is persistent Larix spp. dominance (Figure 7d).  Northwestern 
Siberia does not experience the collapse of larch that is seen at sites further south (Figure 
7b), but does transition to forests dominated by evergreen conifers in late successional 
stages in response to warming (Figure 7e).  This late successional transition is similar to the 
natural succession dynamics of central and southern Siberia under base climate conditions 
(Figure 7a).  The effect of the L. decidua treatment on Larix spp. biomass is immediate and 
continues to the end of simulation in all low diversity regions (Figure 6), indicating that L. 
decidua easily establishes and contributes to overall biomass in these regions.  The inclusion 
of L. decidua in the low diversity regions under base climate conditions delays and 
suppresses the transition to evergreen conifers.  L. decidua acts to prevent the collapse of 
larch in response to warming that is observed in low diversity areas in central Siberia 
(Figure 7b,c).   
 
 
 
 

 
 
 
 

Fig. 7. Simulated mixed species biomass dynamics (tC ha-1) for low diversity sites in Siberia.  
Species composition by the dominant genera over 500 simulated years starting from bare 
ground for the base historical climate (a,d), temperature increase (b,e), and temperature 
increase with Larix decidua (c,f).   
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4. Discussion  
4.1 Model simulation across Siberia and RFE 
Biomass patterns from simulation of mature forest under historical climate conditions reflect 
the idea that areas with increased plant diversity have increased productivity (Tilman and 
Downing 1994; Chapin et al., 1997, Bengtsson et al., 2000), with areas of higher biomass 
located in the areas of increased diversity in the Amur region of the RFE.  The 93 high 
diversity sites are all located in the Amur region of the RFE and have an average of 38 
individual tree species.  The remaining 279 sites have an average of 9 individual tree species.  
The Amur region of the RFE also has higher average temperatures and precipitation values 
than across Siberia and the remainder of the RFE which allows a more diverse group of 
species to actively compete and achieve optimal biomass without climate limitations.  
Similar biomass results from past simulations which allow 44 individual tree species to 
grow at all sites without range limitation across Siberia and the RFE suggest it is the severe 
climate, and not a decreased species diversity, which limits the amount of total biomass 
across the interior of Russia (Shuman and Shugart 2009).   
Successional dynamics across the study area under base climate reflect fundamental 
competition dynamics among species.  Larch (Larix spp.) is highly tolerant of cold 
temperatures, but is one of the most shade-intolerant genera in the region (Nikolov and 
Helmisaari 1992).  As the forest matures, competition for light becomes a key factor in 
determining which species becomes dominant.  In northwestern Siberia, the cold 
temperatures prevent many species from competing with the cold-tolerant larch.  Central 
and southern Siberia do not experience the severely cold temperatures of northwestern 
Siberia, and evergreen conifers actively compete with larch.  Due to the shade-intolerance of 
larch, these forests transition to evergreen dominance as seen in the base climate simulation 
(Figure 2a,b,c).  The transition from larch to evergreen conifer is also a product of the lack of 
insect or wildfire disturbance in these simulations.  At each site the results are a landscape-
level approximation of succession, which includes the natural disturbance caused by the 
death of individual trees.  Warming climate is expected to cause increases in total area 
burned, fire-season length, and the severity of fire (Overpeck et al., 1990; Kasischke et al., 
1995; Stocks et al., 1998; Soja et al., 2004; Soja et al., 2007).  Similarly, the incidence of insect 
disturbance is also expected to become more prevalent with warming conditions (Holling 
1992, Volney and Fleming 2000; Logan et al., 2003).  Understanding the intrinsic successional 
dynamics isolates the direct response of the system to changing climate.  Establishing the 
response of the system without the added changes of disturbance provides a strong basis for 
deconstructing the complexities of the system response to climate change. 

4.2 Climate sensitivity analysis  
4.2.1 Continental scale discussion 
Larch is shade-intolerant and, in all but the coldest regions, evergreen conifers naturally 
replace larch over time, especially when no disturbance occurs that can rejuvenate the larch 
by providing open gaps of sunlight (Nikolov and Helmisaari 1992).  The shift from 
deciduous larch to evergreen conifer forest is accelerated across Siberia under warming 
conditions (Figure 2), and implies a significant change in albedo.  Following 200 years of 
forest development, larch-dominated forests are replaced with evergreen conifer-dominated 
forests in areas across Siberia.  In southern Siberia, where forests are vulnerable to early 
replacement of larch by evergreen conifer, there would be a local significant albedo shift of 
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Siberia, and evergreen conifers actively compete with larch.  Due to the shade-intolerance of 
larch, these forests transition to evergreen dominance as seen in the base climate simulation 
(Figure 2a,b,c).  The transition from larch to evergreen conifer is also a product of the lack of 
insect or wildfire disturbance in these simulations.  At each site the results are a landscape-
level approximation of succession, which includes the natural disturbance caused by the 
death of individual trees.  Warming climate is expected to cause increases in total area 
burned, fire-season length, and the severity of fire (Overpeck et al., 1990; Kasischke et al., 
1995; Stocks et al., 1998; Soja et al., 2004; Soja et al., 2007).  Similarly, the incidence of insect 
disturbance is also expected to become more prevalent with warming conditions (Holling 
1992, Volney and Fleming 2000; Logan et al., 2003).  Understanding the intrinsic successional 
dynamics isolates the direct response of the system to changing climate.  Establishing the 
response of the system without the added changes of disturbance provides a strong basis for 
deconstructing the complexities of the system response to climate change. 
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by providing open gaps of sunlight (Nikolov and Helmisaari 1992).  The shift from 
deciduous larch to evergreen conifer forest is accelerated across Siberia under warming 
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forests in areas across Siberia.  In southern Siberia, where forests are vulnerable to early 
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approximately 5.1 W m-2 if the larch stands are replaced by evergreen conifers (Shuman et 
al., 2011).  This represents a local increase in average annual absorbed surface radiation of 
between 2 and 7%.  Albedo difference was the driver of the results of the modeling 
experiments completed by Bonan et al., (1992), Betts (2000), and Snyder et al., (2004) all of 
whom predicted the effects of such an albedo shift would extend beyond the boundaries of 
the boreal region.  Chapin et al., (2000) documented similar albedo differences between 
forest and shrub tundra in Alaska with an increase in absorbed radiation leading to a 
warming trend that extends beyond the tundra.  Similar to the modeling results for the 
boreal region, and the finding from the Alaskan tundra, the albedo shift implied by the 
successional dynamics shown in our forest simulations have the potential to increase 
temperatures across the region and create a positive feedback of regional warming.  In 
particular, our results establish that there will be local shifts from larch to evergreen conifer.  
The resultant increase in the amount of absorbed incoming radiation has the potential to 
impact surrounding regions and set off a cascade of species shifts towards evergreen 
conifers, which in turn promote more warming.  This positive feedback is of great concern 
across Siberia. 
The response at the continental scale is most similar to the results for the low diversity 
regions for all treatments.  This is not surprising given that 75% of the sites included in 
the continental-scale analysis are classified as low diversity, with an average of 9 tree 
species.  Historically, this system maintains existing vegetation through cycles of 
predictable disturbance and succession, which support the regeneration of larch following 
fire (Chapin et al., 2004).  The repetition of this successional sequence across the broad 
range of climatic conditions found in the boreal region creates a resilient vegetation 
composition with stable cycles of vegetation states (Chapin et al., 2004).  The climate 
change scenarios considered here modify the vegetation composition in a new way, which 
in turn alters the successional history and reduces the resilience of vegetation, thereby 
forcing a new vegetation state to emerge.  The larch-dominated forests appear sensitive to 
an increase in temperature very early in succession when the overall stand age is also 
young.  The evergreen conifer dominated forests seem to be sensitive to changes in 
precipitation at mid-succession when there is a mix of stand ages from young to mature 
trees.  Mid-succession is also the natural transition point, under base conditions, between 
larch and evergreen conifer, so the response to precipitation is likely connected with the 
emergence of evergreen conifers as the dominant species.  The connection between 
precipitation and evergreen conifers is explored in more detail with the regional scale 
analysis.   
At the continental scale, total forest and Larix spp. biomass are highly responsive to the L. 
decidua treatment and show a pattern similar to that of the forests in low diversity regions.  
These results suggest that low species diversity makes the system vulnerable to 
establishment by a new species, but highlight the potential of the introduction of L. decidua 
to be used in the mitigation or management of the albedo shift caused by transition to 
evergreen conifer dominance.  L. decidua has the same characteristics as existing Siberian 
larch species, and thus forests dominated by this species have higher albedo, and decreased 
absorbed incoming radiation, when compared to stands of evergreen conifers in the same 
region.  Maintaining larch-dominated stands across the region would delay the positive 
feedback triggered by the albedo shift that is associated with conversion from deciduous 
larch to evergreen forest.   
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4.2.2 High diversity regional and local scale discussion 
The response to the temperature and L .decidua treatments in the high diversity regions 
highlights the importance of analysis of local climate and successional dynamics.  The 
climate and L. decidua treatments do not have the strong effect on biomass in these high 
diversity regions of the RFE that is seen at the continental scale and in low diversity 
regions.  Sites in the northern RFE (N RFE) region fall within larch’s optimal growth 
ranges for both temperature and precipitation.  Larch establishes strongly and 
competitively in N RFE in early succession followed by a transition to Picea spp. 
dominance under base climate conditions.  The high diversity in the area indicates there is 
strong competition, and L. decidua does not have unique characteristics which allow it to 
establish in this region.    
Under warmer conditions in the N RFE in late succession there is a transition, not to Picea 
spp., but to Pinus spp. dominance.  This highlights the importance of genus-level analysis.  
These genera are typically combined into a single evergreen conifer group, both for the 
purposes of global climate models and for the regional scale analysis presented here.  Such a 
grouping prevents the detection of this shift between the two evergreen conifer species.  
This shift has the potential for further exploration in association with altered albedo values.  
Measured in the boreal forest of Canada, the summer albedo difference between Pinus spp. 
(0.086) and Picea spp. (0.081) is negligible, but the winter albedo for Pinus spp. (0.150) and 
Picea spp. (0.108) is more significant (Betts and Ball 1997).  The albedo values in the RFE are 
likely similar to these Canadian species, and there is potential, with the winter albedo 
difference, to alter total annual absorption of surface radiation in response to the shift from 
Picea spp. to Pinus spp. with warming.  Unlike the low diversity regions, the successional 
dynamics resulting from including L. decidua as a species in simulation are similar to those 
observed in response to warming, with late successional dominance by Pinus spp.  This 
result suggests that introduction of L. decidua would not be a useful strategy for mitigation 
of vegetation shifts in this region.   
The response to the climate and L. decidua treatments in southwestern (SW) RFE is also a 
product of local climate conditions.  The SW RFE region has a climate with temperatures 
which place it in the upper limit of tolerance for larch, creating a climate in which the 
native larch species cannot compete and establish.  Under base climate conditions, it is 
difficult for larch to compete, so it is not surprising that larch continues to be absent under 
warmer conditions.  Even with increased tolerance for warmer conditions, L. decidua 
cannot effectively compete with other species in the SW RFE, and does not have a 
significant impact on biomass.  Under base climate conditions, the SW RFE has mixed 
evergreen and deciduous species in the mature forest late in succession.  With warming 
temperatures, there is an increase in biomass of mixed deciduous trees, and a decrease in 
evergreen conifer biomass.  The decrease of evergreen conifers is balanced by the increase 
of mixed deciduous trees, so the effect on total biomass is not consistent and lasts only 60 
years.   
The high diversity areas in the RFE have high ecological resilience and stability, which allow 
them to maintain basic ecosystem function following climate change and avoid irreversible 
shifts to another vegetation state.  Stability is the ability of a system to return to equilibrium 
following temporary disturbance, and resilience is the persistence of a system and its ability 
to absorb change and disturbance without changing state (Holling 1973).  In other terms, 
stability is a persistence of the system state and a consequence of interactions within the 
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approximately 5.1 W m-2 if the larch stands are replaced by evergreen conifers (Shuman et 
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the boreal region.  Chapin et al., (2000) documented similar albedo differences between 
forest and shrub tundra in Alaska with an increase in absorbed radiation leading to a 
warming trend that extends beyond the tundra.  Similar to the modeling results for the 
boreal region, and the finding from the Alaskan tundra, the albedo shift implied by the 
successional dynamics shown in our forest simulations have the potential to increase 
temperatures across the region and create a positive feedback of regional warming.  In 
particular, our results establish that there will be local shifts from larch to evergreen conifer.  
The resultant increase in the amount of absorbed incoming radiation has the potential to 
impact surrounding regions and set off a cascade of species shifts towards evergreen 
conifers, which in turn promote more warming.  This positive feedback is of great concern 
across Siberia. 
The response at the continental scale is most similar to the results for the low diversity 
regions for all treatments.  This is not surprising given that 75% of the sites included in 
the continental-scale analysis are classified as low diversity, with an average of 9 tree 
species.  Historically, this system maintains existing vegetation through cycles of 
predictable disturbance and succession, which support the regeneration of larch following 
fire (Chapin et al., 2004).  The repetition of this successional sequence across the broad 
range of climatic conditions found in the boreal region creates a resilient vegetation 
composition with stable cycles of vegetation states (Chapin et al., 2004).  The climate 
change scenarios considered here modify the vegetation composition in a new way, which 
in turn alters the successional history and reduces the resilience of vegetation, thereby 
forcing a new vegetation state to emerge.  The larch-dominated forests appear sensitive to 
an increase in temperature very early in succession when the overall stand age is also 
young.  The evergreen conifer dominated forests seem to be sensitive to changes in 
precipitation at mid-succession when there is a mix of stand ages from young to mature 
trees.  Mid-succession is also the natural transition point, under base conditions, between 
larch and evergreen conifer, so the response to precipitation is likely connected with the 
emergence of evergreen conifers as the dominant species.  The connection between 
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to be used in the mitigation or management of the albedo shift caused by transition to 
evergreen conifer dominance.  L. decidua has the same characteristics as existing Siberian 
larch species, and thus forests dominated by this species have higher albedo, and decreased 
absorbed incoming radiation, when compared to stands of evergreen conifers in the same 
region.  Maintaining larch-dominated stands across the region would delay the positive 
feedback triggered by the albedo shift that is associated with conversion from deciduous 
larch to evergreen forest.   
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system where the next state of the system is predictable from within the system (Margalef 
1968; Lewontin 1969; Child and Shugart 1972).  Ecological resilience is therefore related to 
the magnitude of disturbance or change that can be absorbed before the system transitions 
to another stability domain (Folke et al., 2004; Gunderson 2000, Peterson et al., 1998).  In the 
N RFE, the successional cycle from larch-dominance to evergreen-dominance is the expected 
cycle between vegetation states, because this is the response for base climate conditions.  
Both N RFE and SW RFE respond to an increase in temperature with a shift in the dominant 
species during late succession, but these late successional groups are functionally similar to 
the assemblage of species that exist under the base climate.  This is an indication that this 
group of high diversity regions in the Amur region of the RFE does not experience a change 
in vegetation state with in response to climate change, and is resilient to the perturbations 
associated with this amount of climate change.   
The concept of response diversity adds to the conclusion that the system in the Amur 
region of the RFE is resilient by defining the range of reactions to environmental change 
among species contributing to the functioning of a given ecosystem (Elmqvist et al., 2003; 
Folke et al., 2004).  The RFE region has high response diversity, which means that it has 
functionally similar species sets which respond differently to environmental change and 
provide a buffer that protects the system against failure and increases tolerance to 
disturbance or climate change (Elmqvist et al., 2003; Folke et al., 2004).  In other words, 
there are species in the system capable of maintaining the original state of ecosystem 
function under the new conditions following change; a concept also known as the 
insurance hypothesis (Folke et al., 1996, Naeem and Li 1997).  High response diversity 
within an ecosystem increases the chances of reorganization or restart of the system into 
the desired state after disturbance (Chapin et al., 1997; Bengtsson et al., 2000; Elmqvist et 
al., 2003).  The altered climate disturbed the ecosystem, but because of the high diversity 
of the SW and N RFE, the species can reorganize and maintain the same vegetation state 
and ecosystem function that is observed throughout succession when the system is not 
disturbed by climate change.  Therefore the diversity of species in this region allows for 
replacement of one species with another functionally similar one under new climate 
conditions.  It is also the adaptability of the system under altered climate which prevents 
a substantial contribution to biomass from the introduction of L. decidua.  Neither a change 
in climate, nor the addition of a single species (L. decidua) leads to a change in ecosystem 
function in this high diversity system.  
It is important to note that the RFE regions analysed display ecological resilience and high 
response diversity for the both temperature increase and precipitation change treatments 
evaluated.  There is a response to temperature in both regions, but not at the same 
magnitude as that of the low diversity areas.  These results suggest that increased amounts 
of climate change may have a stronger impact on the system.  Further analysis is necessary 
to determine if the RFE system is equally resilient when the temperature is increased by 
more than 4C, or if it can restart under this altered climate condition following disturbance, 
such as fire or insect outbreak, that take the system back to bare ground.  The results seen in 
this study indicate only a slight sensitivity of the mid- to late-successional stages, at and 
beyond year 200, which correspond to the time in the simulation when the temperature had 
increased to 4C.  The early successional stages are comprised of a different set of species 
which may not show the same high resilience or response diversity displayed by the mid- to 
late-successional stages in the RFE.   
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4.2.3 Low diversity regional and local scale discussion 
The response of the low diversity regions to the altered climate treatment is similar to that 
observed at the continental scale.  These low diversity regional scale responses, in conjunction 
with the low average diversity across the 372 sites considered at the continental scale, further 
emphasize the difference of the response in the high and low diversity areas.  Similar to analysis 
at the continental scale, the response of the low diversity regions to treatments is connected to 
the transition from larch to evergreen dominance, which occurs across the southern and central 
portion of Siberia, and is accelerated by warming.  Northwestern Siberia has the coldest 
temperatures compared to the other regions, and these cold temperatures naturally suppress 
evergreen conifer establishment during late succession under base climate.  The patterns of 
successional dynamics in central Siberia under base conditions and in northwestern Siberia in 
response to warming climate suggest that the model is predicting consistent transitions.  Under 
warming conditions, northwestern Siberia is exposed to temperatures more similar to those in 
the base condition in central Siberia.  Thus, the forests in northwestern Siberia have similar 
dynamics under warming conditions to those seen in the central Siberia region for the base 
climate (Figure 7a,e). The temperature treatment results suggest that, with 4C of warming, the 
larch-dominated system across southern and central Siberia will be prematurely replaced with 
evergreen conifer and other deciduous trees, and the forests of northwestern Siberia will warm 
enough that evergreen conifers will be able to effectively establish.   
The lack of response in northwestern and southern Siberia, and the late response in central 
Siberia, to the effect of precipitation change suggests a connection between evergreen conifer 
presence and seasonal precipitation.  The precipitation treatment is significant in only one of 
the low diversity regions analyzed (i.e., central Siberia). Within the central Siberia region there 
is a short-lived response of total forest biomass to precipitation change at year 240, and a 
longer period of response of evergreen conifer biomass from year 300 to 500.  Of the six 
regions analyzed, central Siberia has one of the lowest average seasonal precipitation curves; it 
is closest to that of northwestern Siberia.  Forests within central Siberia naturally transition 
from a larch-dominated to an evergreen-conifer dominated system, with larch as a secondary 
species (Figure 7a).  This successional transition is similar to local dynamics at sites in both 
East and West Irkutsk, regions in southern Siberia that both have higher precipitation than 
central Siberia.  Northwestern Siberia, which has similar precipitation to central Siberia, does 
not experience a natural shift from larch- to evergreen conifer-dominance.  The colder regional 
temperatures in northwestern Siberia suppress evergreen conifer growth, thereby helping 
larch to maintain dominance (Figure 7d).  These observations suggest that the precipitation 
treatment response in central Siberia is a result of both the lower seasonal precipitation, and 
the presence of evergreen conifers late in succession in this region.  In other words, the 
transition from larch- to evergreen conifer-dominant in central Siberia, combined with the low 
annual precipitation, creates a region which is responsive to precipitation change (Figure 6).  
The variability across the low diversity regions suggests that differences in response to climate 
treatments are a result of local conditions and species composition over time.  The continental 
scale analysis shows a response to precipitation for both total forest and evergreen conifer 
biomass.  This suggests that many of the sites considered in this continental scale analysis have 
low seasonal precipitation, and are dominated by moisture-sensitive evergreen conifers later in 
succession.  
There are marked differences between the results for the high and the low diversity regions, 
which demonstrate differences in the stability and resilience of these regions.  The high 
diversity areas of the RFE have high ecological resilience and maintain basic ecosystem 
function as a result of similarly functioning species replacing one another following climate 
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which demonstrate differences in the stability and resilience of these regions.  The high 
diversity areas of the RFE have high ecological resilience and maintain basic ecosystem 
function as a result of similarly functioning species replacing one another following climate 
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change.  The low diversity regions, however, have low resilience and cannot maintain basic 
ecosystem function following climate change, specifically temperature increase.  This is shown 
by the collapse of dominant larch species following the 4C increase in sites in central and 
southern Siberia, and the fact that the northwestern Siberia sites shift to an entirely new stable 
state, which is not seen under base conditions in this region, in response to warming climate 
conditions.  The collapse of larch in southern regions in response to a temperature increase 
suggests that larch is particularly vulnerable, and that the systems’ response threshold may be 
exceeded with the 4C increase.  With fewer species present, it is more likely that extinctions 
will alter ecosystem processes (Chapin et al., 1997).  Furthermore, the diversity of the area is so 
low that there are no species capable of fulfilling the original ecosystem function under the 
new conditions following change.  Additionally, differences in sensitivity among functionally 
different species, in this case larch and evergreen conifers, make the ecosystem vulnerable to 
change (Chapin et al., 1997).   
Holling (1992) hypothesized that the vegetation of the boreal forest would buffer initial 
climate changes, but that there would be a limit to the buffering and an abrupt vegetation 
change would follow.  These results follow Holling’s hypothesis and suggest an abrupt shift 
in vegetation in response to temperature increase.  This abrupt vegetation change is 
congruent with the identification of this system as having low resilience and stability when 
compared with the high diversity areas of the RFE.  Chapin et al., (2004) suggested that 
vegetation within central portions of the boreal forest would remain stable for long periods 
followed by abrupt changes to a new state, which is what we see in the results for the low 
diversity areas in central Siberia.  Low diversity areas do not have the appropriate pool of 
species to continue the cycle of succession and reorganization following change, thus the 
system in these areas is flipped into a different state (Bengtsson et al., 2000).  The results 
presented here are consistent with field measurements documenting the shift of treelines 
northward or upslope of previous climate limits, and a reduction in cone and seed yield for 
L. sibirica (Kharuk et al., 2009; Soja et al., 2007).  They are also consistent with bioclimatic 
model results predicting a replacement of taiga with forest-steppe or steppe environments 
across southern Siberia (Tchebakova et al., 2005; Vygodskaya et al., 2007; Tchebakova et al., 
2009).  These results also suggest that warming temperatures will lead to a shift in the ability 
of larch to establish and may signal a collapse of the species in this genus.   
The introduction of L. decidua to the low diversity sites may help to buffer the perturbations 
associated with a warming climate.  Unlike the high diversity regions in the RFE, the low 
diversity areas showed a strong response of biomass to the inclusion of L. decidua.  Local 
scale analysis with warming conditions shows that the inclusion of L. decidua prevents the 
collapse of larch in central Siberia and delays transition to evergreen conifer dominance in 
northwestern Siberia.  L. decidua is competitive in this low diversity area, and fills an 
important functional niche when temperatures are increased.  Existing larch species cannot 
tolerate the warmer conditions, and their collapse opens functional space for the warm 
adapted L. decidua.  These results, though theoretical, provide evidence that it is possible to 
address the issue of species replacement, and associated albedo shift, with techniques 
involving species management or introduction.   

5. Conclusion 
The FAREAST model was used to simulate forest successional dynamics across a region 
with broad geographic and climatic variability, and examine the behavior of forests at 
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different scales in response to altered climate.  The model simulated forest growth at high 
diversity sites in the Amur region of the RFE and low diversity sites across Siberia and the 
remainder of the RFE.  The model successfully captures the natural successional dynamics 
of forests for base climate conditions across the area.   
Results of the climate sensitivity analysis indicate that a 4C increase impacts the biomass of 
the total forest, Larix spp., and evergreen conifers at the continental scale, and in low 
diversity regions, early in succession.  The effect of temperature is highly significant 
throughout most of the simulation in low diversity areas, whereas there is little effect of 
temperature in high diversity regions.  Results at the continental scale suggest that the 
forests across much of Siberia and the RFE behave as a low diversity system.  The early 
effect of temperature, across areas where larch is naturally dominant in early succession, 
suggests that larch is particularly vulnerable to temperature increase.  In areas outside the 
cold northern portion of Siberia, larch is shown to abruptly collapse in response to warming.    
The effect of altered precipitation was significant at the continental scale, and in one low 
diversity region in central Siberia in mid- to late-succession following evergreen conifer 
establishment.  Central Siberia, in addition to experiencing a late successional shift from 
larch- to evergreen conifer-dominance, has low seasonal precipitation.  This suggests that 
sites that respond to the precipitation treatment have low annual precipitation, and are 
dominated by moisture-sensitive conifers.  The precipitation effect was not significant in the 
high diversity regions, which have different dominant evergreen species in late succession.   
Concepts of ecological stability and resilience are used to explain the variable response of 
the high and low diversity areas to altered climate.  The high diversity regions showed high 
stability and resilience for they maintained overall species and biomass dynamics in 
response to changing climate, and had replacement of one species by a functionally similar 
species under new climate conditions.  Unlike the high diversity regions, the low diversity 
regions across Siberia show low ecological stability and resilience.  The low diversity areas 
displayed a strong response of biomass to the climate treatments, and locally showed the 
collapse of the dominant larch species under increased temperatures.  It is this the lack of 
diversity in the response of functionally similar species to environmental change, and thus 
an inability to maintain ecosystem function with altered conditions, which creates the low 
ecological stability across the low diversity areas of Siberia.  
L. decidua, the warmer adapted European larch, was added to the species list to gauge the 
potential of this species to prevent a premature shift to evergreen vegetation, and the 
associated albedo shift, in response to climate change.  L. decidua established strongly in the 
low diversity system, but not in the high diversity areas of the RFE.  Due to the increased 
diversity in the Amur region of the RFE, there are native species which can fill the same 
functional space under new climate conditions as the species which were dominant under 
base climate conditions, thereby creating high resilience and stability.  It is this pool of 
locally available species which prevents L. decidua from significantly impacting biomass in 
the high diversity regions of the RFE.  Within the low diversity regions, however, local scale 
results show that L. decidua becomes established and acts to prevent the collapse of larch in 
response to warming and delay the shift to an evergreen conifer-dominated forest.  It is the 
low diversity which contributes to the lack of resilience and stability under altered climate, 
but also allows for strong establishment of L. decidua.  Therefore L. decidua is uniquely 
adapted to establish in this low diversity system as well as to prevent the positive feedback 
associated with a premature shift to evergreen conifer-dominance.   
This study establishes that larch-dominated forests across Siberia will transition to a 
different vegetation state, and have an altered species composition, in response to climate 
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change.  The low diversity regions, however, have low resilience and cannot maintain basic 
ecosystem function following climate change, specifically temperature increase.  This is shown 
by the collapse of dominant larch species following the 4C increase in sites in central and 
southern Siberia, and the fact that the northwestern Siberia sites shift to an entirely new stable 
state, which is not seen under base conditions in this region, in response to warming climate 
conditions.  The collapse of larch in southern regions in response to a temperature increase 
suggests that larch is particularly vulnerable, and that the systems’ response threshold may be 
exceeded with the 4C increase.  With fewer species present, it is more likely that extinctions 
will alter ecosystem processes (Chapin et al., 1997).  Furthermore, the diversity of the area is so 
low that there are no species capable of fulfilling the original ecosystem function under the 
new conditions following change.  Additionally, differences in sensitivity among functionally 
different species, in this case larch and evergreen conifers, make the ecosystem vulnerable to 
change (Chapin et al., 1997).   
Holling (1992) hypothesized that the vegetation of the boreal forest would buffer initial 
climate changes, but that there would be a limit to the buffering and an abrupt vegetation 
change would follow.  These results follow Holling’s hypothesis and suggest an abrupt shift 
in vegetation in response to temperature increase.  This abrupt vegetation change is 
congruent with the identification of this system as having low resilience and stability when 
compared with the high diversity areas of the RFE.  Chapin et al., (2004) suggested that 
vegetation within central portions of the boreal forest would remain stable for long periods 
followed by abrupt changes to a new state, which is what we see in the results for the low 
diversity areas in central Siberia.  Low diversity areas do not have the appropriate pool of 
species to continue the cycle of succession and reorganization following change, thus the 
system in these areas is flipped into a different state (Bengtsson et al., 2000).  The results 
presented here are consistent with field measurements documenting the shift of treelines 
northward or upslope of previous climate limits, and a reduction in cone and seed yield for 
L. sibirica (Kharuk et al., 2009; Soja et al., 2007).  They are also consistent with bioclimatic 
model results predicting a replacement of taiga with forest-steppe or steppe environments 
across southern Siberia (Tchebakova et al., 2005; Vygodskaya et al., 2007; Tchebakova et al., 
2009).  These results also suggest that warming temperatures will lead to a shift in the ability 
of larch to establish and may signal a collapse of the species in this genus.   
The introduction of L. decidua to the low diversity sites may help to buffer the perturbations 
associated with a warming climate.  Unlike the high diversity regions in the RFE, the low 
diversity areas showed a strong response of biomass to the inclusion of L. decidua.  Local 
scale analysis with warming conditions shows that the inclusion of L. decidua prevents the 
collapse of larch in central Siberia and delays transition to evergreen conifer dominance in 
northwestern Siberia.  L. decidua is competitive in this low diversity area, and fills an 
important functional niche when temperatures are increased.  Existing larch species cannot 
tolerate the warmer conditions, and their collapse opens functional space for the warm 
adapted L. decidua.  These results, though theoretical, provide evidence that it is possible to 
address the issue of species replacement, and associated albedo shift, with techniques 
involving species management or introduction.   

5. Conclusion 
The FAREAST model was used to simulate forest successional dynamics across a region 
with broad geographic and climatic variability, and examine the behavior of forests at 
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different scales in response to altered climate.  The model simulated forest growth at high 
diversity sites in the Amur region of the RFE and low diversity sites across Siberia and the 
remainder of the RFE.  The model successfully captures the natural successional dynamics 
of forests for base climate conditions across the area.   
Results of the climate sensitivity analysis indicate that a 4C increase impacts the biomass of 
the total forest, Larix spp., and evergreen conifers at the continental scale, and in low 
diversity regions, early in succession.  The effect of temperature is highly significant 
throughout most of the simulation in low diversity areas, whereas there is little effect of 
temperature in high diversity regions.  Results at the continental scale suggest that the 
forests across much of Siberia and the RFE behave as a low diversity system.  The early 
effect of temperature, across areas where larch is naturally dominant in early succession, 
suggests that larch is particularly vulnerable to temperature increase.  In areas outside the 
cold northern portion of Siberia, larch is shown to abruptly collapse in response to warming.    
The effect of altered precipitation was significant at the continental scale, and in one low 
diversity region in central Siberia in mid- to late-succession following evergreen conifer 
establishment.  Central Siberia, in addition to experiencing a late successional shift from 
larch- to evergreen conifer-dominance, has low seasonal precipitation.  This suggests that 
sites that respond to the precipitation treatment have low annual precipitation, and are 
dominated by moisture-sensitive conifers.  The precipitation effect was not significant in the 
high diversity regions, which have different dominant evergreen species in late succession.   
Concepts of ecological stability and resilience are used to explain the variable response of 
the high and low diversity areas to altered climate.  The high diversity regions showed high 
stability and resilience for they maintained overall species and biomass dynamics in 
response to changing climate, and had replacement of one species by a functionally similar 
species under new climate conditions.  Unlike the high diversity regions, the low diversity 
regions across Siberia show low ecological stability and resilience.  The low diversity areas 
displayed a strong response of biomass to the climate treatments, and locally showed the 
collapse of the dominant larch species under increased temperatures.  It is this the lack of 
diversity in the response of functionally similar species to environmental change, and thus 
an inability to maintain ecosystem function with altered conditions, which creates the low 
ecological stability across the low diversity areas of Siberia.  
L. decidua, the warmer adapted European larch, was added to the species list to gauge the 
potential of this species to prevent a premature shift to evergreen vegetation, and the 
associated albedo shift, in response to climate change.  L. decidua established strongly in the 
low diversity system, but not in the high diversity areas of the RFE.  Due to the increased 
diversity in the Amur region of the RFE, there are native species which can fill the same 
functional space under new climate conditions as the species which were dominant under 
base climate conditions, thereby creating high resilience and stability.  It is this pool of 
locally available species which prevents L. decidua from significantly impacting biomass in 
the high diversity regions of the RFE.  Within the low diversity regions, however, local scale 
results show that L. decidua becomes established and acts to prevent the collapse of larch in 
response to warming and delay the shift to an evergreen conifer-dominated forest.  It is the 
low diversity which contributes to the lack of resilience and stability under altered climate, 
but also allows for strong establishment of L. decidua.  Therefore L. decidua is uniquely 
adapted to establish in this low diversity system as well as to prevent the positive feedback 
associated with a premature shift to evergreen conifer-dominance.   
This study establishes that larch-dominated forests across Siberia will transition to a 
different vegetation state, and have an altered species composition, in response to climate 
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change, especially increased temperature.  L. decidua has been identified as a species capable 
of strong establishment across Siberia, and with the capacity to prevent the positive 
feedback associated with vegetation shift, from larch to evergreen conifer, in the region.  
These results deal with the response of the current system to controlled climate change.  
Future studies need to address the ability of the system to restart following disturbance, 
under altered climate conditions.  Early successional species, such as larch may not be able 
to establish dominance in conditions, which have already warmed.  In this case, the 
expected successional dynamics will be completely altered.   
These results highlight potential for the use of remote sensing data in areas identified as 
vulnerable to vegetation change.  Modeling studies offer the opportunity to identify a 
signature of climate change in vegetation dynamics in advance of those changes occurring 
on the ground.  Remote sensing technology can be used to track land cover changes in areas 
identified by model results as vulnerable to vegetation shift.  Furthermore, the results of this 
study indentify a positive feedback cycle where warming creates vegetation shift, which 
then creates further warming.  The detailed vegetation maps derived from remote sensing 
data offer a capability to evaluate locations where vegetation shift has occurred in an effort 
to track the progress of this positive feedback cycle and assess the direction and magnitude 
of any albedo shift associated with such a change. Vegetation monitoring informed by 
modeling efforts provide a robust tool in responding to and identifying vegetation changes 
due to climate change. 
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Future studies need to address the ability of the system to restart following disturbance, 
under altered climate conditions.  Early successional species, such as larch may not be able 
to establish dominance in conditions, which have already warmed.  In this case, the 
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1. Introduction 
Remote sensing images provide very rich and useful information linked to relevant 
biophysical parameters such as the LAI (Leaf Area Index), fCOVER (fraction of vegetation 
cover) or fAPAR (fraction of Absorbed Photosynthetically Active Radiation). At the 
moment, several techniques for estimating such variables are available and widely used in 
many applications, such as estimation of the total biomass and monitoring the dynamics in 
canopy vegetation (Baret et al., 2007; Lecerf et al., 2008). For several years, a large number of 
Very High Spatial Resolution (VHSR) satellites, such as Quickbird, Geoeye and Ikonos, have 
been launched, and very important missions such as the Venus and the Sentinel-2 are 
expected in 2012 and 2013. This provides possibility of having more or less temporal 
consistency in VHSR observations of the land use on relevant agricultural sites. However, 
because of the heterogeneity of the available VHSR data, in particular due to their different 
wavelengths sensibility and of the intrinsic errors induced by the estimation processes, the 
resulting time series of biophysical parameters are more or less noisy. As a matter of fact, 
the estimated variables may only poorly fit their actual dynamics. The estimation of the 
complete sequence of such parameters is then of prime importance, in particular if one 
wants to analyze the evolution of the biomass. 
In this chapter, we propose to explore the possibilities of using tools issued from tracking 
techniques, in particular particle smoothing, to recover time-consistent series of LAI (Doucet 
et al., 2001; Kitagawa, 1996) from noisy and incomplete observations. Such techniques, 
based on Monte-Carlo strategies, allow performing the estimation of an unknown state 
function, LAI in current case, according to a given dynamical model and to possibly 
corrupted measurements. The dynamical model on which we rely on is GreenLab model, a 
functional-structural plant model simulating plant development and growth (Yan et al., 
2004). Given model parameters, GreenLab can compute the evolution of LAI, the biomass 
production and partitioning, the organ size and biomass. Inverse method can be applied to 
estimate hidden model parameters by fitting model output with measured data (Kang et al., 
2008).  We suppose that from remote sensing data observing agricultural parcels, the type of 
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function, LAI in current case, according to a given dynamical model and to possibly 
corrupted measurements. The dynamical model on which we rely on is GreenLab model, a 
functional-structural plant model simulating plant development and growth (Yan et al., 
2004). Given model parameters, GreenLab can compute the evolution of LAI, the biomass 
production and partitioning, the organ size and biomass. Inverse method can be applied to 
estimate hidden model parameters by fitting model output with measured data (Kang et al., 
2008).  We suppose that from remote sensing data observing agricultural parcels, the type of 
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crops can be identified, on which some GreenLab hidden parameters can be initialized. 
Besides, we suppose that the noisy time series of LAI has been estimated from remote 
sensing images, which have occluded area due for instance to cloud coverage, aerosols, etc. 
The objective is to construct a continuous LAI series by re-estimating GreenLab model 
parameters. This finally enables to simulate the complete plant growth and to output 3D 
evolution of the observed crops, using empirical geometrical parameters for the given crop. 
The overall strategy is illustrated in Fig. 1. The different steps of the methodology are 
presented in following sections.  
 

 
Fig. 1. Illustration of overall process of estimating biomass dynamics from remote sensing 
images 

2. Overall framework 
In section 2.1, we first introduce methods of estimating parameters from remote sensing 
images. In section 2.2, the concepts of GreenLab model are presented. Section 2.3 introduces 
the filtering technique used to recover time consistent series of LAI. 

2.1 Estimating type of crop and LAI from remote sensing data 
Estimating the type of crop of an observed field from remote sensing data is an old problem 
that has been widely studied by the computer vision and remote sensing community. This 
belongs to the classification issue where various families of approaches exist. One can 
roughly identify two methodologies: pixel-based and region-based classification techniques, 
see for instance Congalton (1992) and Yan et al. (2006). The first family aims at assigning to 
each pixel of the image a label corresponding to the nature of the culture, independently to 
its neighborhood. This performs efficiently when the spatial resolution of the data is low, 
yielding more or less homogeneity of the pixel reflectance for a given culture. On the other 
hand, the region-based techniques are useful when dealing with images of high or very high 
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resolution. In this case, the variability of the image luminance inside a given culture is high, 
and the pixel reflectance is not informative. Texture analysis strategies can be used to 
characterize and label the different crops, which use 1st or 2nd order statistical criteria or 
more advanced techniques like wavelets (Lefebvre et al., 2010). Many commercial software 
(e.g. Idrisi, ENVI or eCognition) allow this kind of classification. 
Estimating the biophysical variables, such as LAI, fCOVER or fAPAR, from satellite 
observations can provide crucial information for numbers of applications, for instance, 
monitoring changes in canopy vegetation at global or regional scales, identifying bare soils, 
or detecting grassland areas. Among the different techniques available, there is a technique 
based on the inversion of the SAIL+PROPSPECT radiative transfer model (Verhoef, 1984; 
Jacquemoud and Baret, 1990) using training samples and neural networks, as introduced in 
(Baret et al., 2007). The SAIL model deals with light scattering by leaf layers with application 
to canopy reflectance model, and PROSPECT is about leaf optical properties spectra. It has 
been proved in (Baret et al., 2007; Lecerf et al., 2008) that this approach performs efficiently 
for low, medium, high and very high-resolution data and is therefore adapted to the 
variability of satellite images available. 

2.2 GreenLab model 
GreenLab model simulates the two basic processes of plant: development (organogenesis) 
and growth (organ expansion). In GreenLab, the organogenesis is simulated by an 
automaton, which gives the dynamics of number, age and type of organs in plant 
architecture (Yan et al., 2004). The organ expansion is simulated by a source-sink approach. 
At each time step t, the source function gives the biomass production of a plant, Qt, as a 
function of plant leaf area St and environmental factor Et, see Eqn. (1).  
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In Eqn. (1), SP represents the projection area of an individual plant, which is equivalent to 
the inverse of planting density d when crop canopy is closed, i.e, SP=1/d. r is a model 
parameter that can be estimated inversely (Kang et al., 2008; Guo et al., 2006; Dong et al., 
2008). In case that Et represents the intercepted light by crop, r means light use efficiency. 
The ratio St/SP gives a LAI series.   
The produced biomass is shared among all growing organs in proportion to their current 
sink strength, based on common pool hypothesis. For an organ of type O and age j, its 
increment is biomass in computed as in Eqn. (2). 
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In GreenLab, each type of organs (e.g. blade, sheath, internode, female organ) has certain 
relative sink strength PO, which may vary during the expansion of an individual organ, 
described by an empirical function fOj. Total plant demand Dt is sum of sink strength from 
all growing organs. The organ biomass, which is the accumulation of biomass increment 
during its life time, is dependent on the ratio between biomass production and demand 
(Qt/Dt), called source-sink ratio. According to the appearance time of each individual organ 
given by the automaton, and its increment in biomass since appearance, the biomass of all 
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crops can be identified, on which some GreenLab hidden parameters can be initialized. 
Besides, we suppose that the noisy time series of LAI has been estimated from remote 
sensing images, which have occluded area due for instance to cloud coverage, aerosols, etc. 
The objective is to construct a continuous LAI series by re-estimating GreenLab model 
parameters. This finally enables to simulate the complete plant growth and to output 3D 
evolution of the observed crops, using empirical geometrical parameters for the given crop. 
The overall strategy is illustrated in Fig. 1. The different steps of the methodology are 
presented in following sections.  
 

 
Fig. 1. Illustration of overall process of estimating biomass dynamics from remote sensing 
images 

2. Overall framework 
In section 2.1, we first introduce methods of estimating parameters from remote sensing 
images. In section 2.2, the concepts of GreenLab model are presented. Section 2.3 introduces 
the filtering technique used to recover time consistent series of LAI. 

2.1 Estimating type of crop and LAI from remote sensing data 
Estimating the type of crop of an observed field from remote sensing data is an old problem 
that has been widely studied by the computer vision and remote sensing community. This 
belongs to the classification issue where various families of approaches exist. One can 
roughly identify two methodologies: pixel-based and region-based classification techniques, 
see for instance Congalton (1992) and Yan et al. (2006). The first family aims at assigning to 
each pixel of the image a label corresponding to the nature of the culture, independently to 
its neighborhood. This performs efficiently when the spatial resolution of the data is low, 
yielding more or less homogeneity of the pixel reflectance for a given culture. On the other 
hand, the region-based techniques are useful when dealing with images of high or very high 

 
Reconstructing LAI Series by Filtering Technique and a Dynamic Plant Model 

 

219 
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individual organs in plant can be computed. As the ratio between blade biomass and 
specific leaf weight, at any time, leaf area St and consequently LAI, can be computed 
recursively in GreenLab model. For some simple case, analytical equation can be written 
explicitly. For example, for maize, LAI at a given time t can be written as in Eqn. (3). 
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Where qBt,j is biomass of a j-aged leaf blade, NBt,j is the number of such leaf (being one or 
zero for maize of single stem structure), λt is specific leaf weight, TB is expansion duration 
of a leaf.  
GreenLab model is a generic model that has been applied to different crops, such as wheat 
(Kang et al., 2008), maize (Guo et al., 2006), and tomato (Dong et al., 2008; Kang et al., 2010), 
from which the dynamic growth and development process of crop are rebuilt. In model 
calibration, the hidden model parameters controlling the source and sink function, such as 
organ sink strength PO, were estimated inversely from the measured plant data, such as total 
organ biomass and individual organ size, using weighted root square error as the criterion 
(Guo et al., 2006). LAI can be thus reconstructed by the calibrated model and compared with 
measured data, as in Fig. 2. 
 
 
 
 

 
 
 
 

Fig. 2. LAI from measurement (dots) and GreenLab simulation (solid lines): (a) wheat  
(Kang et al., 2008), (b) chrysanthemum (Kang et al., 2006). 
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Initialisation of GreenLab parameters is dependent on the crop type, for which a common 
development and growth pattern exists. For example, a maize plant generally starts by 
vegetative growth with short internodes and finishes with a tassel, although the amount of 
leaves and position of cob in main stem may vary. Such development pattern is considered 
in initializing GreenLab organogenesis model. As to functional parameters, it is found that 
some are more or less stable for different seasons and population densities (Ma et al., 2008) 
for a given cultivar. Initialization of these parameters may be done according to previous 
modelling experience, and they will be re-estimated in following stage. In building 3D plant, 
an organ geometry library will be called and transformed according to their computed size 
and position to assemble the full plant structure. Geometrical parameters, such as organ 
insertion angle, are set empirically.  
Compared to traditional processed-based models (PBM), the feature of GreenLab lies in 
the modelling of plant architecture and its effect of biomass production, thereby making 
simulation of plant plasticity possible. Besides, GreenLab simulates plant growth as a 
whole dynamic system, and different variables like leaf area, stem height, spike weight 
are linked to each other, instead of being modeled independently. Nevertheless, the two 
types of model can build interface by fitting LAI from GreenLab simulation with LAI 
from a PBM (Feng et al., 2010). On this basis, crop fields can be simulated and visualized 
dynamically, giving the expected LAI. The similar principle can be applied to fitting noisy 
LAI from remote sensing data.  

2.3 Filtering technique 
To cope with temporal inconsistencies likely to occur when one estimates LAI on each image 
independently, we suggest the imposition of a temporal constraint, here, the GreenLab plant 
growth model.  
The dynamic coherence can be enforced by embedding the estimation problem within a 
filtering process. Roughly speaking, two main families can be used: variational or stochastic 
approaches. Variational techniques, also known as variational data assimilation, perform the 
estimation by minimizing a cost-function issued from a deterministic formalization in a 
Bayesian framework of the problem. It extracts the best compromise between observations, 
dynamic model and confidence measure. Due to a rewriting in a dual space (Lions, 1971), 
the gradient of the cost-function can efficiently be obtained using a forward-backward 
integration of the dynamical model, and such techniques are very adapted when one deals 
with large system states. On the drawback, non-linear dynamic models need to be managed 
in an incremental framework corresponding to a succession of linearized problems. On the 
other hand, when one deals with smaller system’s state and non-linear dynamic models, 
stochastic techniques as the particle filter or the particle smoother, related to Monte Carlo 
approaches, are strongly adapted. The main idea consists in manipulating a set of particles 
more or less connected to the final state to estimate, the latter resulting from linear 
combination of such particles. In the next paragraph we introduce the main principles. 
The system state to recover at time t, noted xt, is submitted to a dynamical model f up to 
some uncertainties. This results in a stochastic process of the form in Eqn. (4) 

 xt = f(xt-1)+ nt  (4) 

where nt is a centered Gaussian noise of variance σn2. In addition to this dynamic process, 
we are able to observe the system state as in Eqn. (5): 

 yt = g(xt)+ vt (5) 
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individual organs in plant can be computed. As the ratio between blade biomass and 
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approaches, are strongly adapted. The main idea consists in manipulating a set of particles 
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combination of such particles. In the next paragraph we introduce the main principles. 
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where g is a (linear or not) observation operator and vt a Gaussian noise of varianceσv2. 
Particle filtering, also known as Sequential Monte Carlo (Doucet et al., 2001), is an attractive 
way to recover the system state xt for all t∈[1,T]. It can be shown that a sequential estimation 
of xt can be obtained through the following system, starting from (a) an available sequential 
observation of sequence y1:t = y1,…, yt ; (b) an initial distribution of the system’s state p(x1) ; 
(c) transition model p(xt|xt-1) and observation model p(yt|xt) respectively, related to the 
stochastic processes f and g presented above. See (Doucet et al., 2001) for details. Steps 
include: 
1. Choose a set of N samples (or particles) x1i, i=[1, …, N] randomly taken from the initial 

distribution p(x1) and compute p(y1|x1); 
2. Prediction step: for all t∈[2,T] and the set of samples x t-1| t-1 i, generate the predicted 

samples xt| t-1i=f(xt-1|t-1i)+ nti for each particle and get Eqn. (6): 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )t t t t t t tp x y p x x p x y dx       (6) 

3. Correction step: from the distribution p(xt| y1:t-1) and the new observation yt, we have a 
result as in Eqn. (7): 

 

1:
1:

1:

1: 1
| 1 1: 1

1: 1

( , )( | )
( )

( | ) ( | ) ( ) ( | )
( | ) ( | )

t t
t t

t

t t t t
t t t t

t t t t t

p x yp x y
p y

p y x p x y w t p x y
p y x p x y dx


 





 


 (7) 

Eqn. (7) can be approximated from the set of particles using Eqn. (8): 
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 where δxti is the dirac function in xti and the weight function is as in Eqn. (9): 
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Therefore, once the system at time t-1 has been obtained, the process consists in generating a 
prediction of all particles at time t thanks to the transition p(xt|xt-1) and the available 
observations y1:t-1 = y1,…, yt-1. These predictions are then corrected by taking into account the 
new observation yt in a second step. The final estimated distribution is obtained from the set 
of particles and their associated weights w(xt| t-1i). This is the main principle of the 
sequential particle filtering.  
When the whole sequence is available, i.e. all observations y1:T = y1,…, yT are available for all 
time t, a smoothing version of the previous technique can be applied by taking into account 
future observations. From the first estimation issued from the previous process, the idea 
consists in performing a backward exploration in order to correct the weights of the 
different particles. This is the so-called forward-backward smoother. 
The idea consists in reweighting the particles recursively backward in time, starting from 
the end time T to the initial one. It can be shown that rewriting the distribution p(xt|y1:T) in 
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terms of backward transitions p(xt|xt+1,y1:T) yields, after several manipulations, to reweight 
all the particles with Eqn. (10): 
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Therefore, the process consists in first performing a sequential filtering and then, to 
reweight the particles backward in time. More details can be found in (Doucet et al., 2001). 
This is the process we suggest to use in this application to recover consistent LAI values 
from noisy observed ones.  

3. Computational experiment 
In this computational experiment, we rely on the filtering technique to recover LAI sequence 
using the GreenLab model. We suppose the noisy LAI can be obtained from remote sensing 
data. Here we use synthetic data from GreenLab model so that the true values of yt are 
known for evaluation.  

3.1 Case study 
We chose maize plant for a case study on application of the filtering method presented 
above. According to previous study on maize plant (Guo et al., 2006), we set model 
parameters in GreenScilab, an open source software for implementing GreenLab model. 
The LAI can is part of model output, as shown in Fig. 3 (a). By arranging the simulated 3D 
maize plant according to the given density, a virtual maize field can be simulated. Fig. 3 
(b) shows such an image at a plant age. It is supposed that the aim is to recover this LAI 
sequence from noisy data of LAI obtained from remote sensing images at several different 
stages. 
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Fig. 3. Synthetic result from GreenLab model. (a) simulated LAI dynamics of virtual maize 
from GreenLab model; (b) top view of a virtual maize field;  
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where g is a (linear or not) observation operator and vt a Gaussian noise of varianceσv2. 
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Eqn. (7) can be approximated from the set of particles using Eqn. (8): 
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Therefore, once the system at time t-1 has been obtained, the process consists in generating a 
prediction of all particles at time t thanks to the transition p(xt|xt-1) and the available 
observations y1:t-1 = y1,…, yt-1. These predictions are then corrected by taking into account the 
new observation yt in a second step. The final estimated distribution is obtained from the set 
of particles and their associated weights w(xt| t-1i). This is the main principle of the 
sequential particle filtering.  
When the whole sequence is available, i.e. all observations y1:T = y1,…, yT are available for all 
time t, a smoothing version of the previous technique can be applied by taking into account 
future observations. From the first estimation issued from the previous process, the idea 
consists in performing a backward exploration in order to correct the weights of the 
different particles. This is the so-called forward-backward smoother. 
The idea consists in reweighting the particles recursively backward in time, starting from 
the end time T to the initial one. It can be shown that rewriting the distribution p(xt|y1:T) in 
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terms of backward transitions p(xt|xt+1,y1:T) yields, after several manipulations, to reweight 
all the particles with Eqn. (10): 
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Therefore, the process consists in first performing a sequential filtering and then, to 
reweight the particles backward in time. More details can be found in (Doucet et al., 2001). 
This is the process we suggest to use in this application to recover consistent LAI values 
from noisy observed ones.  

3. Computational experiment 
In this computational experiment, we rely on the filtering technique to recover LAI sequence 
using the GreenLab model. We suppose the noisy LAI can be obtained from remote sensing 
data. Here we use synthetic data from GreenLab model so that the true values of yt are 
known for evaluation.  

3.1 Case study 
We chose maize plant for a case study on application of the filtering method presented 
above. According to previous study on maize plant (Guo et al., 2006), we set model 
parameters in GreenScilab, an open source software for implementing GreenLab model. 
The LAI can is part of model output, as shown in Fig. 3 (a). By arranging the simulated 3D 
maize plant according to the given density, a virtual maize field can be simulated. Fig. 3 
(b) shows such an image at a plant age. It is supposed that the aim is to recover this LAI 
sequence from noisy data of LAI obtained from remote sensing images at several different 
stages. 
 

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Leaf area index

Plant Age

LA
I

  
Fig. 3. Synthetic result from GreenLab model. (a) simulated LAI dynamics of virtual maize 
from GreenLab model; (b) top view of a virtual maize field;  
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3.2 Recovering consistent series of LAI 
We tested our smoothing approach on the sequence of synthetic values of LAI generated 
from the GreenLab model, see Fig. 4 (blue line). From this sequence, we have randomly 
extracted some points on which we have added noise (black points). We assume that these 
points correspond to measurements obtained on the corresponding field from remote 
sensing images. They represent an incomplete time series of noisy values of LAI. From these 
inconsistent series, we have generated a smooth version from the forward-backward 
smoother presented in the previous section, using GreenLab as a dynamic model. This is 
depicted in Fig. 4 (green line). From this synthetic example, it is obvious to observe that the 
new series is consistent with the expected ground truth. This is confirmed when observing 
the quantitative values of the Root Mean Square Error between the ground truth, the noisy 
and reconstructed data shown in Table 1.  
In order to highlight the benefit of the use of a dynamical model, we have blurred in a 
stronger way the series. We have assumed that during a long time period in which the 
variation of LAI is maximal, no observations are available (due, for instance, to the 
maintenance of the sensor, a too large cloud covering during the winter, etc.). In addition, to 
take into account the errors related to the acquisition process itself, we have also blurred the 
remaining data. This results in a strongly noisy sequence of LAI, as shown with the black 
points in Fig. 5.  
 
 

 
 
 
Fig. 4. Recovering LAI series from noisy data, with a synthetic LAI sequence (blue line), a 
noisy version (black points), and a recovered time series under the GreenLab model (green 
line) 
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Fig. 5. Recovering LAI series from strongly noisy data, with a synthetic LAI sequence (blue 
line), a strongly noisy version (black points), and a recovered time series under the 
GreenLab model (green line) 

From Fig. 5, one can immediately observe that during the period corresponding to the main 
evolution of LAI where no data are acquired, a simple interpolation technique without any 
prior model would result in incorrect values and dramatically underestimate the LAI. At the 
opposite, using the forward-backward smoother, the recovered series of Fig. 5 (green line) is 
very closed to the original one, despite this difficult testing situation. The RMS error is 
slightly higher than the previous situation (when observations are less noisy) but is still very 
competitive. These results demonstrate the great benefit of recovering the data under the 
constraint of a dynamic model. 
 

 RMSE Original data RMSE Reconstructed data 

Noisy series (Fig. 4) 0.6145 
for 25 observed values 

0.09341 
for 256 recovered time steps 

Strongly noisy series 
(Fig. 5) 

0.9951 
for 18 observed values 

0.10055 
for 256 recovered time steps 

Table 1. Root Mean Square Errors for the two noisy sequences tested 

These experiments on noisy and strongly noisy synthetic data demonstrate the possibility of 
the framework presented in this chapter (schematized in Fig. 1) to recover time consistent 
series of LAI with fine time resolution from a small set of noisy image observations. The 
practical issue with real images is under development.  
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3.3 Plant growth reconstruction 
Using the estimated hidden GreenLab parameters in recovering the series of LAI, one can 
simulate the dynamics of biomass production and partitioning, as shown in Fig. 6(a), and 
the 3D model of the observed plants, as shown in Fig. 6(b). As for a maize plant, Fig. 6(a) 
gives the total plant biomass (g) in black line, and the allocation to leaf blade (green), sheath 
(blue), internode (brown), cob (red) and male flower (purple). Recall that empirical 
geometrical parameters are used in building the 3D structure.  
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                              (a)                                      (b) 
Fig. 6. Computed result from calibrated model. (a) biomass production and its allocation 
among different type of organs; (b) a 3D maize plant. 

4. Conclusion 
In this chapter, we have presented a framework of estimating LAI series from remote 
sensing images using filtering techniques and GreenLab model. Computational experiment 
was done on synthetic data to show the feasibility of full process. The result shows that by 
embedding a dynamic model, the LAI series can be recovered even if the source data from 
remote sensing images are very noisy and sparse. And in doing so, the GreenLab model can 
be calibrated partially to simulate biomass production and allocation. The advantage of 
embedding a crop model is that the knowledge on crop development and growth can be 
used in recovering LAI series, and the link between LAI and biomass production make it 
possible to estimate biomass production from remote sensing data, which is the ultimate 
aim of estimating LAI. 
Yet this theoretical work needs to be further tested by real remote sensing sources. 
Challenges include the initialization of model parameters, such as the setting on topological 
parameters and initial source and sink parameter. Detection of crop type can help to solve 
this issue by providing empirical parameters. Yet their values are not necessary to be 
accurate, and other information from remote sensing, such as leaf chlorophyll content and 
leaf water content, may compensate. On the other hand, the combination of a functional-
structural plant model as GreenLab brings many possibilities. For example, as the three-
dimensional structures of crop are built, it is possible to run radiative transfer model in 
virtual canopy. Although the result will be dependent on the definition of geometrical 
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structure and optical properties of individual organs, it provides a possibility of validating 
the reconstructed canopy dynamics by comparing the virtual canopy with the obtained high 
resolution source images. The development of remote sensing technique and advance in 
plant modelling are increasing the interdisciplinary research of these two areas. 
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1. Introduction  
The linkage between caribou and the aboriginal people in the North America has existed for 
thousands of years. Caribou have played a critical role in the economy, culture, and way of 
life of the aboriginal people (Hall, 1989; Madsen, 2001). Currently, there are 60 major 
migratary tundra caribou herds circum-arctic, of which 30 are located in North America, 
including the Porcupine caribou herd in northern Yukon, Canada and northern Alaska, USA 
(Russell et al., 1992; Russell et al., 1993; Russell & McNeil, 2002; Russell et al., 2002; Griffith 
et al., 2002). The Porcupine caribou herd has been at the centre of debate between wildlife 
habitat conservation and industrial development in the Arctic because of the potential oil 
drilling in the Arctic National Wildlife Refuge (ANWR) 1002 area, which happens to largely 
overlap with the calving ground of the Porcupine caribou herd (Griffith et al., 2002; Kaiser, 
2002; National Research Council, 2003; Heuer, 2006).  
One of the objectives of the Canadian International Polar Year (IPY) project entitled 
“Climate Change Impacts on Canadian Arctic Tundra Ecosystems (CiCAT): 
Interdisciplinary and Multi-scale Assessments” was to assess the impact of climate change 
on caribou habitats over Canada’s north, in close collaboration with the CircumArctic 
Ranfiger Monitoring and Assessment network (CARMA) (http://www.rangifer.net 
/carma/). Because of the vastness and remoteness of the arctic landmass, inherent logistic 
difficulty, and high cost of conducting field measurements, an approach that is solely based 
on field inventory is clearly impractical for monitoring and assessing the impact of climate 
on caribou habitats. Satellite remote sensing can monitor land surfaces from space 
repeatedly and consistently over large areas. Therefore, remote sensing provides a powerful 
tool for monitoring and assessing the impact of climate on caribou habitats, when calibrated 
and validated against the field measurements and other independent data.  
In this study, we report the development of baseline maps of aboveground and foliage biomass 
over the Porcupine caribou habitat in northern Yukon and Alaska, using Landsat and JERS-
1/SAR data. Specifically, we will (1) describe aboveground and foliage biomass measurement, 
(2) establish and validate relationships between measurements and remote sensing indices, and 
(3) map aboveground and foliage biomass for the Porcupine caribou habitat. 



 11 

Mapping Aboveground and Foliage Biomass 
Over the Porcupine Caribou Habitat in Northern 

Yukon and Alaska Using Landsat and  
JERS-1/SAR Data 

Wenjun Chen, Weirong Chen, Junhua Li, Yu Zhang, Robert Fraser,  
Ian Olthof, Sylvain G. Leblanc and Zhaohua Chen 

Canada Centre for Remote Sensing, Natural Resources Canada 
Canada 

1. Introduction  
The linkage between caribou and the aboriginal people in the North America has existed for 
thousands of years. Caribou have played a critical role in the economy, culture, and way of 
life of the aboriginal people (Hall, 1989; Madsen, 2001). Currently, there are 60 major 
migratary tundra caribou herds circum-arctic, of which 30 are located in North America, 
including the Porcupine caribou herd in northern Yukon, Canada and northern Alaska, USA 
(Russell et al., 1992; Russell et al., 1993; Russell & McNeil, 2002; Russell et al., 2002; Griffith 
et al., 2002). The Porcupine caribou herd has been at the centre of debate between wildlife 
habitat conservation and industrial development in the Arctic because of the potential oil 
drilling in the Arctic National Wildlife Refuge (ANWR) 1002 area, which happens to largely 
overlap with the calving ground of the Porcupine caribou herd (Griffith et al., 2002; Kaiser, 
2002; National Research Council, 2003; Heuer, 2006).  
One of the objectives of the Canadian International Polar Year (IPY) project entitled 
“Climate Change Impacts on Canadian Arctic Tundra Ecosystems (CiCAT): 
Interdisciplinary and Multi-scale Assessments” was to assess the impact of climate change 
on caribou habitats over Canada’s north, in close collaboration with the CircumArctic 
Ranfiger Monitoring and Assessment network (CARMA) (http://www.rangifer.net 
/carma/). Because of the vastness and remoteness of the arctic landmass, inherent logistic 
difficulty, and high cost of conducting field measurements, an approach that is solely based 
on field inventory is clearly impractical for monitoring and assessing the impact of climate 
on caribou habitats. Satellite remote sensing can monitor land surfaces from space 
repeatedly and consistently over large areas. Therefore, remote sensing provides a powerful 
tool for monitoring and assessing the impact of climate on caribou habitats, when calibrated 
and validated against the field measurements and other independent data.  
In this study, we report the development of baseline maps of aboveground and foliage biomass 
over the Porcupine caribou habitat in northern Yukon and Alaska, using Landsat and JERS-
1/SAR data. Specifically, we will (1) describe aboveground and foliage biomass measurement, 
(2) establish and validate relationships between measurements and remote sensing indices, and 
(3) map aboveground and foliage biomass for the Porcupine caribou habitat. 
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2. Data sources and methods 
2.1 Field measurements of aboveground and foliage biomass 
Field measurements were made in Yukon and North Western Territories (Fig. 1). 
Aboveground biomass was measured at 43 sites in the summer of 2004 along the Dempster 
Highway, which goes through the winter and summer ranges of the Porcupine caribou 
habitat (Fig. 1). Foliage biomass was measured at 10 non-treed sites along the Dempster 
Highway in the summer of 2006, and again in the summer of 2008 at 11 non-treed sites in 
the Ivvavik National Park. The Ivvavik National Park is located at northern tip of the Yukon 
and overlaps with the calving ground and summer range of the Porcupine caribou herd. 
Details of measurement procedure, calculation method, and results are described as follows. 
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Fig. 1. Locations of the Porcupine caribou calving ground, summer range, and winter range, 
as well as that of the aboveground and foliage biomass measurement sites along the 
Dempster Highway transect during the summers of 2004 and 2006, and in the Ivvavik 
National Park during the summer of 2008. 

We selected sites that were representative of local vegetation conditions, relatively 
homogenous, and of size at least 3 × 3 Landsat pixels (i.e., > 90 m × 90 m), to ensure that the 
field measurements can be reliably correlated with Landsat-scale remote sensing indices. In 
the north where the growing season is very short, biophysical parameters (e.g., foliage 
biomass) vary significantly both during the beginning and end of the growing season, but 
are relatively stable and achieve their maximums during the middle of the growing season. 
Therefore, we measured aboveground biomass and foliage biomass during middle of 
growing season (e.g., July 18-27, 2004, July 19-27, 2006, and July 15-26, 2008).  
We used a systematic approach to sample and measure the aboveground biomass: layer by 
layer from top to the ground. If a site was sparsely treed woodland, we first measured tree 
biomass with a variable sampling plot scheme using a prism (Halliwell & Apps, 1997). The 
basic principle of the variable sampling plot scheme is that each tree is selected using a 
circular plot with a radius r that is proportional to its diameter at the breast height (DBH). 
The constant of proportionality is called the plot radius factor (PRF), and thus for tree i we 
can write:  
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 i i i iPRF r / DBH or r PRF DBH    (1) 

with DBH is in centimeters and plot radius is in meters, PRF is in m cm-1. A tree is included 
or “in” if DBHi > ri/PRF, and excluded or “out” otherwise. A difficulty may arise as whether 
to include or exclude a tree if it’s at the edge, namely, DBHi ≈ ri/PRF. If this is the case, the 
distance from the plot centre to the tree is measured. Using the tree's DBH and the 
appropriate PRF, this distance can then be compared to the radius of the plot as calculated 
by equation 1, and the tree place "in" or "out" of the plot after-the-fact. The measurements 
included tree height, diameter at breast height (DBH), and stand density. The heights of 
trees are recorded using a laser height measurement instrument (Impulse Forest Pro, 
Lasertech, Clarkston, MI, USA). Trees for height measurement are selected on basis of the 
point plot scheme. The value of DBH was measured using a tape. The stocking and biomass 
of the trees were then calculated on basis of allometric equations.  
If tree regeneration was present, we measured the biomass of the seedlings using a fixed 
circular plot of radius of 3.99 m. The measurements included counting the number of stems 
per tree species, selecting an average-sized seedling to estimate its ground stem diameter, 
height, and sampling one or two average-sized seedling to measure its fresh and oven-dry 
weight.  
For the understory layers, namely, high shrub, low shrub, herbs/graminoids, moss, and 
lichen, we harvested samples at five 1 m × 1 m plots to measure the total aboveground 
biomass: four at four directions and one random (Fig. 2). All the aboveground biomass 
within the plots were cut and collected into plastic bags and their green biomass weighed. 
Out of the five plots, we selected one representative plot to conduct an intensive sampling. 
For this plot, we measured the average height, visually estimate the ground cover 
percentage, and then cut and weighed the fresh biomass, sequentially, for tall shrub, low 
shrubs, herbs/graminoids, moss, and lichen. The ratio of green to oven-dry biomass was 
measured by bringing a sample of the aboveground biomass from the plot back to 
laboratory. 
If a site had no trees, then we applied the aforementioned understory procedure. Note that 
the plot number and design of a specific site were determined on basis of site conditions: the 
more heterogeneous and sparse the vegetation is at a site, the more plots are needed (Chen 
et al., 2009b; Chen et al., 2010b). The procedure was modified for tall shrubs if the tall shrubs 
(higher than 50 cm) were clustered instead of homogeneous distribution. Our field 
experience indicated that it was often the case for tall shrubs. In this case, we measured the 
biomass of tall shrubs using a fixed circular plot of radius = 3.99 m. The measurements 
included identifying shrub species, counting number of clusters of shrub in the plot, and 
selecting two average-sized clusters of shrub for more extensive sampling. All aboveground 
biomass of the two clusters of shrub were cut and weighed for total green biomass. A 
fraction of the biomass was brought back to measure the ratio of oven-dry to fresh weight. If 
there are more than one tall shrub species, we repeated the measurements for each of them. 
The procedure for low shrub, herbs/graminoids, moss, and lichen remain the same. 
For foliage biomass measurement during the summers of 2006 and 2008, we selected only 
non-treed sites. At each sites, five 1 m × 1 m plots were sampled (Fig. 3). Fig. 3 shows a 
photograph of the field sampling at a coastal plain site in the Ivvavik National Park during 
the summer of 2008. At each plot, all plants were harvested, sorted into dead and live, 
different species, and leaves and stem, and recorded for their fresh weights. A fraction of the 
harvested biomass for all components were brought back to the laboratory, oven-dried, and 
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Fig. 1. Locations of the Porcupine caribou calving ground, summer range, and winter range, 
as well as that of the aboveground and foliage biomass measurement sites along the 
Dempster Highway transect during the summers of 2004 and 2006, and in the Ivvavik 
National Park during the summer of 2008. 

We selected sites that were representative of local vegetation conditions, relatively 
homogenous, and of size at least 3 × 3 Landsat pixels (i.e., > 90 m × 90 m), to ensure that the 
field measurements can be reliably correlated with Landsat-scale remote sensing indices. In 
the north where the growing season is very short, biophysical parameters (e.g., foliage 
biomass) vary significantly both during the beginning and end of the growing season, but 
are relatively stable and achieve their maximums during the middle of the growing season. 
Therefore, we measured aboveground biomass and foliage biomass during middle of 
growing season (e.g., July 18-27, 2004, July 19-27, 2006, and July 15-26, 2008).  
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layer from top to the ground. If a site was sparsely treed woodland, we first measured tree 
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basic principle of the variable sampling plot scheme is that each tree is selected using a 
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The constant of proportionality is called the plot radius factor (PRF), and thus for tree i we 
can write:  

Mapping Aboveground and Foliage Biomass Over the Porcupine Caribou  
Habitat in Northern Yukon and Alaska Using Landsat and JERS-1/SAR Data  

 

233 

 i i i iPRF r / DBH or r PRF DBH    (1) 
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Lasertech, Clarkston, MI, USA). Trees for height measurement are selected on basis of the 
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of the trees were then calculated on basis of allometric equations.  
If tree regeneration was present, we measured the biomass of the seedlings using a fixed 
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per tree species, selecting an average-sized seedling to estimate its ground stem diameter, 
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weight.  
For the understory layers, namely, high shrub, low shrub, herbs/graminoids, moss, and 
lichen, we harvested samples at five 1 m × 1 m plots to measure the total aboveground 
biomass: four at four directions and one random (Fig. 2). All the aboveground biomass 
within the plots were cut and collected into plastic bags and their green biomass weighed. 
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For this plot, we measured the average height, visually estimate the ground cover 
percentage, and then cut and weighed the fresh biomass, sequentially, for tall shrub, low 
shrubs, herbs/graminoids, moss, and lichen. The ratio of green to oven-dry biomass was 
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If a site had no trees, then we applied the aforementioned understory procedure. Note that 
the plot number and design of a specific site were determined on basis of site conditions: the 
more heterogeneous and sparse the vegetation is at a site, the more plots are needed (Chen 
et al., 2009b; Chen et al., 2010b). The procedure was modified for tall shrubs if the tall shrubs 
(higher than 50 cm) were clustered instead of homogeneous distribution. Our field 
experience indicated that it was often the case for tall shrubs. In this case, we measured the 
biomass of tall shrubs using a fixed circular plot of radius = 3.99 m. The measurements 
included identifying shrub species, counting number of clusters of shrub in the plot, and 
selecting two average-sized clusters of shrub for more extensive sampling. All aboveground 
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weighed. Oven-dry foliage biomass of vascular plants were than calculated using the ratio 
of oven-dry to fresh foliage biomass and the corresponding fresh weight records. 
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Fig. 2. Plot design for measuring aboveground and foliage biomass at non-forested sites. 

The tree oven-dry aboveground biomass at a woodland site was calculated using Canada-
wide tree biomass equations by Evert (1985) and the Weibull tree-size distribution function 
within a stand by Chen (2004).  
In order to determine the tree-size distribution for a woodland site, the Parameter Prediction 
Method (PPM) based on basal area was implemented (Chen, 2004). With measured average 
DBH, height, and stand density (trees ha-1) as inputs, the tree-size distribution function gives 
15 tree-size classes for each site, and output mean DBH, height, and number of trees for each 
class. Here, we used trembling aspen functions for hardwood species, jack pine functions for 
all pine species and pine-mixture, black spruce functions for all spruce and fir species, and 
mixed-stand function for mixed softwoods/hardwoods. 
The Canada-wide biomass equations calculate the oven-dry biomass of stem, bark, and 
crown of a single tree for 18 Canadian tree species (Evert, 1985), with a given DBH and 
height.  Using the information of tree-size distribution and the biomass equations, we first 
calculated each biomass component (stem, bark, and crown), added these components to get 
total aboveground biomass, and then multiplied with the number of trees in each tree-size 
distribution class to get the total tree biomass per hectare, Bt, in t ha-1.  
The aboveground oven-dry biomass of clustered high shrub and regenerating trees at a site, 
Bs in t ha-1, was calculated by 

 1 2( )
2 5

s s c
s s

b b NB R
  (2)  

where (bs1 + bs2)/2 is the mean green biomass of the two clusters of shrub sampled or that of 
regenerating trees (kg per cluster or regenerating tree), Nc is the number of clusters of shrub 
or regenerating trees in the 3.99 m-radius plot, and Rs is the ratio of oven-dry to fresh 
biomass for shrub or the regenerating trees.  
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Fig. 3. Photograph showing biomass sampling at a coastal plain site in the Ivvavik National 
Park, July 25, 2008. Front are 3 northern students from Aklavik, NWT (left to right: 
Alexander Gordon, Jayneta Pascal & Kayla Arey), and at the background Weiroing Chen of 
CCRS was sampling root biomass (photo by Wenjun Chen).  

The aboveground oven-dry biomass of graminoids, herbs and shrubs in the lower layers, Bg 
in t ha-1, was calculated by 
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where bg1, bg2, bg3, bg4, and bg5 are, respectively, the aboveground green biomass of the 
graminoids/herbs and shrubs mixture for each of the five plots in a site (kg m-2), and Rg is 
the ratio of oven-dry to fresh biomass for the mixture of graminoids/herbs and shrubs.  The 
oven-dry biomass of lichen, Bl in t ha-1, was calculated by 

 1 2 3 4 5 1 2( ) ( ) 1000
5 2

l l l l l l l
l l

p p p p p b bB R    
  (4)  

where Pl1, Pl2, Pl3, Pl4, and Pl5 are, respectively, the percentage of lich ground cover at the 5 
plots, bl1 and bl2 are, respectively, the fresh lichen biomass of each of the two 10-cm by 10-cm 
samples collected from one of the plots (kg m-2), and Rl is the ratio of oven-dry to fresh 
biomass for lichen. The oven-dry biomass of live moss, Bm in t ha-1, was calculated by 

 1 2 3 4 5 1 2( ) ( ) 1000
5 2

m m m m m m m
m m m

p p p p p b bB R D    
  (5)  

where Pm1, Pm2, Pm3, Pm4, and Pm5 are, respectively, the percentage of moss ground cover at 
the 5 plots, bm1 and bm2 are, respectively, the aboveground green biomass of each of the two 
1-cm depth, 10 cm by 10 cm square moss samples collected from one of the plots (kg m-2), 
Dm is the depth of alive moss in cm, and Rm is the ratio of oven-dry to green biomass for 
moss. The aboveground biomass for a site, Ba, was thus the summation of all these 
components where proper. 
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weighed. Oven-dry foliage biomass of vascular plants were than calculated using the ratio 
of oven-dry to fresh foliage biomass and the corresponding fresh weight records. 
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where (bs1 + bs2)/2 is the mean green biomass of the two clusters of shrub sampled or that of 
regenerating trees (kg per cluster or regenerating tree), Nc is the number of clusters of shrub 
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The calculation of foliage biomass, Bf in unit g m-2, was similar to that of aboveground 
biomass, except that only the foliage component of vascular plants was included. 

2.2 Remote sensing data sources and processing 
Nearly clear-sky Landsat TM/ETM+ level 1G orthoimagery was downloaded from the 
United Stated Geological Survey (USGS) website (http://earthexplorer.usgs.gov) and from 
the Centre for Topographic Information (CTI) of Natural Resources Canada, available 
through Geogratis (http://geogratis.cgdi.gc.ca/). 23 scenes are needed to cover the entire 
Porcupine caribou habitat. Most of them were acquired within the middle growing season 
(July 10 to August 15) during 1999 – 2003. Only Bands 3 (0.63–0.69 μm), 4 (0.75–0.90 μm), 
and 5 (1.55–1.75 μm) were used in the study, because Bands 1-3 are highly correlated, as are 
Bands 5 and 7. Prior to further analysis, all scenes, if necessary, were re-projected to Lambert 
Conformal Conic (LCC) projection with 95o W, 49o N as the true origin and 49o N and 77o N 
as standard parallels. Surface reflectance was derived by radiometrically normalizing each 
scene to 250 m resolution clear sky MODIS imagery, which was a 10-day composite 
acquired during July 21-31, 2001 with matching bands calibrated to a strip of 
atmospherically corrected Landsat TM/ETM+ images. A Landsat mosaic of surface 
reflectance was then generated with further normalizations for individual scenes if 
substantial discrepancy exists. All radiometric normalization and calibration equations were 
developed using a Scattergram Controlled Regression method (Elvidge et al., 1995; Yuan & 
Elvidge, 1996; Chen et al., 2010a). Furthermore, clouds and forested areas were removed and 
masked, and the mosaic was clipped based on the Porcupine caribou habitat boundary.  
The JERS-1/SAR datasets were extracted from the North America JERS mosaics (acquired in 
the summer of 1998) to cover the Porcupine caribou habitat (Kyle McDonald, JPL, personal 
communication). In addition, data of 1:50000 DEM covering the habitat were also obtained 
for orthorectifying the JERS mosaic. The North America JERS summer mosaics were not 
precisely geo-referenced, because topographic distortions were not removed during the 
mosaic process due to the lack of adequate DEM (Sheng & Alsdorf, 2005). Visual inspection 
showed that the offset between the JERS mosaic and the Landsat images may be 300 m ~ 
5000 m. The positioning error was expected to be much larger in mountainous regions. 
In this study, we employed a SAR image simulation method from DEM data to correct 
topographic distortions (Sheng & Alsdof, 2005). Briefly speaking, this method includes four 
steps: (1) simulating a SAR image in an azimuth-range projection from the DEM according 
to imaging geometry of real SAR image; (2) collecting ground control points that tie the 
uncorrected SAR image to the simulated SAR image; (3) warping the real SAR image to the 
simulated SAR image using a polynomial function fitted from the ground control points; 
and (4) projecting the warped real SAR image back to the DEM map coordinate system. The 
method requires three types of inputs: individual scene of SAR imagery, DEM data, and 
SAR imaging geometry parameters (i.e. sensor altitude H, minimum look angle θ, the orbital 
azimuth angle β). Since the year-day file, which contains the date of specific JERS image’s 
acquisition, was delivered with the JERS mosaics data, we could extract individual path 
image in the JERS mosaic. The path image was used as an input in place of individual scene 
of JERS. In addition, since the imaging geometry information of the individual path in the 
JERS mosaic was unavailable, general JERS imaging geometry parameters were used in the 
SAR simulation method. For the purpose of image matching for ground control point 
selection, a correct geometry was preferred but is not necessary (Sheng and Alsdof, 2005; 
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Linder and Meuser; 1993). In this study, we used H = 568000 meter, θ =35 degree, and β =190 
degree in SAR image simulation. Finally, the Digital Number (DN) values of JERS mosaic 
could be converted to backscatter coefficients σ (in db format) by the equation: 

 1020 log 48.54DN     (6) 

The co-registered and geo-referenced Landsat TM/ETM+ and JERS-1 mosaics were then 
compared with measurements of aboveground and foliage biomass, with their best-fit 
relationships being applied back to the mosaics to produce maps of aboveground and 
foliage biomass over the Porcupine caribou habitat, as outlined in Fig. 4. 
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Fig. 4. Flow chart describing the procedures of using field measurements and remote 
sensing data to produce aboveground and foliage biomass baseline maps. 

3. Results and discussions 
3.1 Measured aboveground and foliage biomass over the Porcupine caribou habitat 
Table 1 summarizes the mean value, standard deviation, and range of aboveground biomass 
measured at sites within and around the Porcupine caribou winter and summer range along 
the Dempster Highway, Yukon, during the summer of 2004. Average values of measured 
aboveground biomass of sparsely treed woodland, low-high shrub lands, and mixed 
graminoids-dwarf shrub-herb lands were, respectively, 57.3, 11.1, and 2.3 t ha-1. Within each 
vegetation type, the ranges of measured aboveground biomass were very large. The 
standard deviations of measured aboveground biomass among sites were often larger than 
their corresponding mean values, especially for low-high shrubs and mixed graminoids-
dwarf shrub-herb, and when all types of vegetation were considered. The measured 
aboveground biomass ranged from 10 to 100 t ha-1 for sparsely treed woodlands, from 1 to 
100 t ha-1 for the low-high shrub sites, from 0.5 to 10 t ha-1 for mixed graminoids-dwarf 
shrub-herb sites. These measurements indicate that there are significant overlaps in the 
ranges of aboveground biomass between sparsely treed woodlands and low-high shrub 
sites, and between low-high shrub sites and mixed graminoids-dwarf shrub-herb sites.  
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The calculation of foliage biomass, Bf in unit g m-2, was similar to that of aboveground 
biomass, except that only the foliage component of vascular plants was included. 

2.2 Remote sensing data sources and processing 
Nearly clear-sky Landsat TM/ETM+ level 1G orthoimagery was downloaded from the 
United Stated Geological Survey (USGS) website (http://earthexplorer.usgs.gov) and from 
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JERS mosaic was unavailable, general JERS imaging geometry parameters were used in the 
SAR simulation method. For the purpose of image matching for ground control point 
selection, a correct geometry was preferred but is not necessary (Sheng and Alsdof, 2005; 

Mapping Aboveground and Foliage Biomass Over the Porcupine Caribou  
Habitat in Northern Yukon and Alaska Using Landsat and JERS-1/SAR Data  

 

237 

Linder and Meuser; 1993). In this study, we used H = 568000 meter, θ =35 degree, and β =190 
degree in SAR image simulation. Finally, the Digital Number (DN) values of JERS mosaic 
could be converted to backscatter coefficients σ (in db format) by the equation: 

 1020 log 48.54DN     (6) 

The co-registered and geo-referenced Landsat TM/ETM+ and JERS-1 mosaics were then 
compared with measurements of aboveground and foliage biomass, with their best-fit 
relationships being applied back to the mosaics to produce maps of aboveground and 
foliage biomass over the Porcupine caribou habitat, as outlined in Fig. 4. 
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Fig. 4. Flow chart describing the procedures of using field measurements and remote 
sensing data to produce aboveground and foliage biomass baseline maps. 

3. Results and discussions 
3.1 Measured aboveground and foliage biomass over the Porcupine caribou habitat 
Table 1 summarizes the mean value, standard deviation, and range of aboveground biomass 
measured at sites within and around the Porcupine caribou winter and summer range along 
the Dempster Highway, Yukon, during the summer of 2004. Average values of measured 
aboveground biomass of sparsely treed woodland, low-high shrub lands, and mixed 
graminoids-dwarf shrub-herb lands were, respectively, 57.3, 11.1, and 2.3 t ha-1. Within each 
vegetation type, the ranges of measured aboveground biomass were very large. The 
standard deviations of measured aboveground biomass among sites were often larger than 
their corresponding mean values, especially for low-high shrubs and mixed graminoids-
dwarf shrub-herb, and when all types of vegetation were considered. The measured 
aboveground biomass ranged from 10 to 100 t ha-1 for sparsely treed woodlands, from 1 to 
100 t ha-1 for the low-high shrub sites, from 0.5 to 10 t ha-1 for mixed graminoids-dwarf 
shrub-herb sites. These measurements indicate that there are significant overlaps in the 
ranges of aboveground biomass between sparsely treed woodlands and low-high shrub 
sites, and between low-high shrub sites and mixed graminoids-dwarf shrub-herb sites.  
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Dominant vegetation 
type 

Mean 
(t ha-1) 

Standard 
deviation (t ha-1) 

Range 
(t ha-1) 

Number of 
sites 

Sparse woodland 57.3 34.0 9.1 – 94.5 8 
Low-high shrub 11.1 11.4 2.0 – 47.2 19 

Graminoids-dwarf shrub 2.3 2.2 0.4 – 8.3 16 
All types 16.4 25.6 0.4 – 94.5 43 

Table 1. Mean value, standard deviation, and range of aboveground biomass measured at 
sites within and around the Porcupine caribou winter and summer range along the 
Dempster Highway, Yukon, during the summer of 2004. 

 

 Dominant vegetation 
type Mean Standard 

deviation Range Number 
of sites 

Foliage 
biomass  
(g m-2)  

Low-high shrub 135.4 36.3 95.3 – 198.4 6 
Graminoids-dwarf 
shrub 65.3 16.3 37.9 – 92.3 9 

Coastal tussock 87.9 22.2 63.1 – 106.1  3 
Rock lichen 11.3 10.2 0.0 – 20.0 3 
All types 80.8 47.2 0.0 – 198.4 21 

Abovegro
und 
biomass 
(t h-1) 

Low-high shrub 7.02 7.58 0.36 – 18.16 6 
Graminoids-dwarf 
shrub 3.11 2.64 0.32 – 8.55 9 

Coastal tussock 0.77 0.53 0.21 – 1.27 3 
Rock lichen 0.65 0.57 0.0 – 1.06  3 
All types 3.54 4.83 0.0 – 18.16 21 

Table 2. Mean value, standard deviation, and range of foliage biomass measured at sites 
within and around the Porcupine caribou winter and summer ranges along the Dempster 
Highway, Yukon during the summer of 2006, as well as at sites within and around the 
Porcupine caribou calving ground and summer range inside the Ivvavik National Park, 
Yukon during the summer of 2008. Also shown are statistics for the corresponding 
aboveground biomass measurements.  

Similarly, the foliage biomass values measured at sites within a specific dominant 
vegetation type also varied significantly (Table 2). For example, foliage biomass ranges from 
95.3 to 198.4 g m-2 for low-high shrub sites, 37.9–92.3 g m-2 for mixed graminoids-dwarf 
shrub-herb sites, 63.1–106.1 g m-2 for coastal plain tussock sites, and 0.0–20.0 g m-2 for hill-
top rock lichen sites. Consequently, assigning aboveground or foliage biomass value to a site 
according to its vegetation type can result in substantial error (Gould et al., 2003; Walker et 
al., 2003).  

3.2 Relationships between aboveground biomass and remote sensing indices 
In this study, we investigated the applicability of both optical and radar data as well as their 
combinations. To obtain the best regression model for estimating aboveground biomass, 
robust multiple regressions were conducted between field-measured aboveground biomass 
and various remote sensing-derived variables such as TM spectral reflectance, vegetation 
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indices, and JESR-1/SAR backscatter coefficients. We used 3 × 3 pixels (i.e., 90 m by 90 m) 
averaged value in place of single pixel value in order to reduce the effect of erroneous 
spectral features, e.g., features of adjacent pixels may have been assigned to some field plots 
of the data due to errors in image registration and the location of sample plots. The Landsat 
images were re-sampled to 100 m resolution for matching the resolution of the North 
America JERS summer mosaic.  
For the sites along the Dempster Highway, we found that strong correlations exist between 
ln(Ba) and remote sensing signals (Table 3). When all types were mixed, the strongest 
correlation was found against the L-band JERS-1/SAR backscatter, followed by the Landat 
B4/B5 (Fig. 5). The Landsat bands 3 and 5 show strong negative relationships for the sparse 
woodlands and all types mixed, but not for shrub and graminoids lands.  
 

 B3 B4 B5 B4/B5 SR NDVI SWVI JERS 
Sparse 
woodland 

r -0.77 -0.18 -0.78 0.40 0.53 0.21 0.44 0.68 
r2 0.59 0.03 0.61 0.16 0.28 0.04 0.19 0.46 

Low-high- 
Shrub 

r -0.17 0.04 -0.39 0.59 0.47 0.26 0.59 0.42 
r2 0.03 0.00 0.15 0.35 0.22 0.07 0.35 0.18 

Graminoid
s-dwarf 
shrub 

r -0.13 0.22 0.01 0.21 0.26 0.31 0.18 0.64 

r2 0.02 0.05 0.00 0.04 0.07 0.10 0.03 0.41 

All types 
r -0.65 -0.02 -0.68 0.70 0.63 0.53 0.68 0.73 
r2 0.42 0.00 0.46 0.49 0.40 0.28 0.46 0.53 

Table 3. Correlation coefficient (r) and coefficient of determination (r2) between ln(Ba) and 
remote sensing indices for mixed graminoids-dwarf shrub-herb, low-high shrub, sparse 
woodlands, and all types for aboveground biomass measurements along the Dempster 
Highway in 2004. Remote sensing indices include Landsat red band reflectance (B3), near 
infrared band reflectance (B4), shortwave infrared band reflectance (B5), ratio of B4/B5, 
simple ratio (SR = B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + 
B3)), shortwave vegetation index (SWVI = (B4 - B5)/(B4 + B5)), and L-band JERS-1/SAR 
backscatter coefficient (JERS). 
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Dempster Highway, Yukon, during the summer of 2004. 
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Table 2. Mean value, standard deviation, and range of foliage biomass measured at sites 
within and around the Porcupine caribou winter and summer ranges along the Dempster 
Highway, Yukon during the summer of 2006, as well as at sites within and around the 
Porcupine caribou calving ground and summer range inside the Ivvavik National Park, 
Yukon during the summer of 2008. Also shown are statistics for the corresponding 
aboveground biomass measurements.  

Similarly, the foliage biomass values measured at sites within a specific dominant 
vegetation type also varied significantly (Table 2). For example, foliage biomass ranges from 
95.3 to 198.4 g m-2 for low-high shrub sites, 37.9–92.3 g m-2 for mixed graminoids-dwarf 
shrub-herb sites, 63.1–106.1 g m-2 for coastal plain tussock sites, and 0.0–20.0 g m-2 for hill-
top rock lichen sites. Consequently, assigning aboveground or foliage biomass value to a site 
according to its vegetation type can result in substantial error (Gould et al., 2003; Walker et 
al., 2003).  

3.2 Relationships between aboveground biomass and remote sensing indices 
In this study, we investigated the applicability of both optical and radar data as well as their 
combinations. To obtain the best regression model for estimating aboveground biomass, 
robust multiple regressions were conducted between field-measured aboveground biomass 
and various remote sensing-derived variables such as TM spectral reflectance, vegetation 
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indices, and JESR-1/SAR backscatter coefficients. We used 3 × 3 pixels (i.e., 90 m by 90 m) 
averaged value in place of single pixel value in order to reduce the effect of erroneous 
spectral features, e.g., features of adjacent pixels may have been assigned to some field plots 
of the data due to errors in image registration and the location of sample plots. The Landsat 
images were re-sampled to 100 m resolution for matching the resolution of the North 
America JERS summer mosaic.  
For the sites along the Dempster Highway, we found that strong correlations exist between 
ln(Ba) and remote sensing signals (Table 3). When all types were mixed, the strongest 
correlation was found against the L-band JERS-1/SAR backscatter, followed by the Landat 
B4/B5 (Fig. 5). The Landsat bands 3 and 5 show strong negative relationships for the sparse 
woodlands and all types mixed, but not for shrub and graminoids lands.  
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All types 
r -0.65 -0.02 -0.68 0.70 0.63 0.53 0.68 0.73 
r2 0.42 0.00 0.46 0.49 0.40 0.28 0.46 0.53 

Table 3. Correlation coefficient (r) and coefficient of determination (r2) between ln(Ba) and 
remote sensing indices for mixed graminoids-dwarf shrub-herb, low-high shrub, sparse 
woodlands, and all types for aboveground biomass measurements along the Dempster 
Highway in 2004. Remote sensing indices include Landsat red band reflectance (B3), near 
infrared band reflectance (B4), shortwave infrared band reflectance (B5), ratio of B4/B5, 
simple ratio (SR = B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + 
B3)), shortwave vegetation index (SWVI = (B4 - B5)/(B4 + B5)), and L-band JERS-1/SAR 
backscatter coefficient (JERS). 

 

-2

-1

0

1

2

3

4

5

0.5 1 1.5 2 2.5

Landsat B4/B5

Ln
(B

a
) (

t h
a-1

)

-12 -10 -8 -6

JERS-1 backscatter  
Fig. 5. Scatter plots between ln(Ba) and Landsat B4/B5 as well as JERS-1/SAR backscatter 
coefficients. 



  
Remote Sensing of Biomass – Principles and Applications  

 

240 

Many vegetation indices have been developed and applied for estimating aboveground 
biomass (Anderson & Hanson, 1992; Anderson et al., 1993; Mutanga & Skidmore, 2004; Lu 
2005). In Table 3, we examined 4 vegetation indices: ratio of Landsat B4/B5, simple ratio (SR 
= B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + B3)), shortwave 
vegetation index (SWVI = (B4 - B5)/(B4 + B5)). In general, vegetation indices can partially 
reduce the impacts on reflectance caused by environmental conditions and shadows, thus 
improve correlation between AGB and vegetation indices, especially in those sites with 
complex vegetation stand structures (Lu et al., 2004). However as shown in Table 3, not all 
vegetation indices are significantly correlated with aboveground biomass. Consequently, 
various degrees of success had been obtained in estimating aboveground biomass using 
Landsat vegetation indices (Sader et al., 1989; Lee & Nakane, 1996; Nelson et al., 2000; 
Steininger, 2000; Foody et al., 2003; Phua & Saito, 2003; Zheng et al., 2004). For example, 
Nelson et al. (2000) found that aboveground biomass cannot be reliably estimated using 
Landsat data without the inclusion of secondary forest age. Steininger (2000) explored the 
ability of Landsat data for estimating aboveground biomass of tropical secondary forests 
and found that saturation was a problem for advanced successional forests.  
Similarly, different degrees of success had been obtained in previous studies of using 
radar data for estimating aboveground biomass, with longer-wavelength L-band and P-
band SAR data proven to be more valuable (Sader, 1987; Le Toan et al., 1992; Rauste et al., 
1994; Ranson et al., 1997; Luckman et al., 1997; Kurvonen et al., 1999; Kuplich et al., 2000; 
Tsolmon et al., 2002; Sun et al., 2002; Castel et al., 2002; Santos et al., 2002). For example, 
Kuplich et al. (2000) used JERS-1/SAR data for aboveground biomass estimation of 
regenerating forests. Sun et al. (2002) found that multi-polarization L-band SAR data were 
useful for estimating aboveground biomass of forest stands in mountainous areas. Castel 
et al. (2002) identified the significant relationships between the backscatter coefficient of 
JERS-1/SAR data and the stand biomass of a pine plantation. Santos et al. (2002) used 
JERS-1/SAR data to analyse the relationships between backscatter signals and biomass of 
forest and savanna formations. The significant correlation between aboveground biomass 
and JERS-1/SAR backscatter coefficient, as shown in Table 3 and Fig. 4, indicates that 
longer-wavelength L-band SAR data are also valuable in the Arctic. Nevertheless, the 
saturation problem is also common in estimating aboveground biomass using radar data 
(Luckman et al., 1997; Balzter, 2001, Lucas et al., 2004; Kasischke et al., 2004). For example, 
Luckman et al. (1997) found that the longer-wavelength L-band SAR image was more 
suitable to discriminate different levels of forest biomass up to a certain threshold than 
shorter-wavelength C-band SAR data.  
To take advantages of the ability of Landsat vegetation indices and JERS-1/SAR backscatter 
coefficient, we used both data for estimating aboveground biomass. The best fit relationship 
between aboveground biomass and JERS-1/SAR backscatter coefficient σ as well as Landsat 
B4/B5 for all types mixed in the Dempster Highway study area is given by: 

 ln( ) 2.3759(B4/B5)+0.5542 +4.0948aB  , (7) 

with a coefficient of determination r2 = 0.72, and standard estimation error (SEE) = 0.78. 
Because the logarithmic equations could introduce a systematic bias when used for back 
calculating biomass, it has now become fairly widely recognized that a correction factor is 
necessary to counteract this bias (Sprugel, 1983). The correction factor (CF) can be calculated 
by using the formula: 
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For equation (7), the CF = 1.35. The 1:1 comparison of estimated aboveground biomass using 
CF-corrected equation (7) and the measured values for the sites along the Dempster 
Highway is shown in Fig. 6, with the slope = 0.95, r2 = 0.72, and SEE = 13.5 t h-1 over 
measured aboveground biomass range from 0.4 to 94.5 t h-1. These results agreed well with 
the finding of Moghaddam et al. (2002) that the estimation accuracy of forest biomass was 
significantly improved when radar and optical data were used in combination, compared to 
estimates using a single data type alone.  
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Fig. 6. A 1:1 comparison between estimated and measured aboveground biomass values for 
the calibration sites along the Dempster Highway transect measured during the summer of 
2004. For clarity over the low biomass range, the results are shown on the log-log scale. 

3.3 Validation of aboveground biomass relationship with remote sensing indices  
In a previous study (Chen et al., 2009a), we validated equation (7) using aboveground 
biomass measurements at 33 sites around Yellowknife, Northwest Territories, and Lupin 
Gold Mine, Nunavut Territories. The 1:1 comparison of estimated aboveground biomass 
and the measurements for the Yellowknife and Lupin Gold Mine study area indicates that 
the equation holds up very well, with r2 = 0.81, slope =1.17, and SEE = 9.67 t h-1 over 
measured aboveground biomass range from 0.9 to 103.3 t h-1. 
In this study, we further validated the relationship using measurements collected over the 
same study area at later dates. We used aboveground biomass measured at 21 sites along 
the Dempster Highway during the summer of 2006 in the Ivvavik National Park during the 
summer of 2008, where foliage biomass was the main measurement target, to validate the 
above relationship. Fig. 7 shows the validation result, with the slope = 0.91, r2 = 0.90, and 
SEE = 1.5 t h-1 over measured aboveground biomass range from 0 to 18.16 t h-1.  
These validation results suggest that the aboveground biomass can be reliably estimated 
using Landsat B4/B5 and JERS-1/SAR backscatter coefficient.   
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calculating biomass, it has now become fairly widely recognized that a correction factor is 
necessary to counteract this bias (Sprugel, 1983). The correction factor (CF) can be calculated 
by using the formula: 
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2 /2SEECF e  (8) 

For equation (7), the CF = 1.35. The 1:1 comparison of estimated aboveground biomass using 
CF-corrected equation (7) and the measured values for the sites along the Dempster 
Highway is shown in Fig. 6, with the slope = 0.95, r2 = 0.72, and SEE = 13.5 t h-1 over 
measured aboveground biomass range from 0.4 to 94.5 t h-1. These results agreed well with 
the finding of Moghaddam et al. (2002) that the estimation accuracy of forest biomass was 
significantly improved when radar and optical data were used in combination, compared to 
estimates using a single data type alone.  
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Fig. 6. A 1:1 comparison between estimated and measured aboveground biomass values for 
the calibration sites along the Dempster Highway transect measured during the summer of 
2004. For clarity over the low biomass range, the results are shown on the log-log scale. 

3.3 Validation of aboveground biomass relationship with remote sensing indices  
In a previous study (Chen et al., 2009a), we validated equation (7) using aboveground 
biomass measurements at 33 sites around Yellowknife, Northwest Territories, and Lupin 
Gold Mine, Nunavut Territories. The 1:1 comparison of estimated aboveground biomass 
and the measurements for the Yellowknife and Lupin Gold Mine study area indicates that 
the equation holds up very well, with r2 = 0.81, slope =1.17, and SEE = 9.67 t h-1 over 
measured aboveground biomass range from 0.9 to 103.3 t h-1. 
In this study, we further validated the relationship using measurements collected over the 
same study area at later dates. We used aboveground biomass measured at 21 sites along 
the Dempster Highway during the summer of 2006 in the Ivvavik National Park during the 
summer of 2008, where foliage biomass was the main measurement target, to validate the 
above relationship. Fig. 7 shows the validation result, with the slope = 0.91, r2 = 0.90, and 
SEE = 1.5 t h-1 over measured aboveground biomass range from 0 to 18.16 t h-1.  
These validation results suggest that the aboveground biomass can be reliably estimated 
using Landsat B4/B5 and JERS-1/SAR backscatter coefficient.   
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Fig. 7. A 1:1 comparison between estimated and measured aboveground biomass values for 
the validation sites along the Dempster Highway transect measured during the summer of 
2006 and in the Ivvavik National Park during the summer of 2008. For clarity over the low 
biomass range, the results are shown on the log-log scale. 

3.4. Relationships between foliage biomass and remote sensing indices 
As shown in Table 4, the Landsat-based SR can explain 81% variations in measured foliage 
biomass within the Porcupine caribou habitat. The explanation power of other Landsat-
based indices in the descending order is 76% for the ratio of B4/B5, 71% for SWVI, and 67% 
for NDVI. Single band reflectance of Landsat has lower power of explanation.  
 

 B3 B4 B5 SR NDVI B4/B5 SWVI 
r -0.73 0.52 -0.54 0.90 0.82 0.87 -0.84 
r2 0.53 0.27 0.29 0.81 0.67 0.76 0.71 

SEE 31.4 39.1 38.6 20.6 26.4 21.9 25.2 

Table 4. Correlation coefficients (r), coefficient of determination (r2), and standard estimation 
error (SEE, in g m-2) between foliage biomass (Bf) and remote sensing signals for foliage 
biomass measured at the 21 sites along the Dempster Highway in 2006 and in the Ivvavik 
National Park in 2008. Remote sensing indices include Landsat red band reflectance (B3), 
near-infrared band reflectance (B4), shortwave infrared band reflectance (B5), ratio of B4/B5, 
simple ratio (SR = B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + 
B3)), and shortwave vegetation index (SWVI = (B4 - B5)/(B4 + B5)).    

In comparison with results for aboveground biomass shown in Table 3, Landsat-based 
vegetation indices have a much improved power of explanation for foliage biomass (Table 
4). This is in good agreement with the fact that optical sensors mainly capture canopy 
information, thus the optical sensor data are more suitable for estimation of canopy 
parameters such as foliage biomass than aboveground biomass, as demon stared by 
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previous studies (Franklin & Hiernaux, 1991; Hall et al., 1995; Chen & Cihlar 1996; Turner 
et al., 1999; Brown et al., 2000; Chen et al., 2002; Wylie et al., 2002; Phua & Saito, 2003; 
Laidler & Treitz, 2003; Lu, 2004). The best fit relationship between foliage biomass (Bf, g 
m-2) and Landsat-based simple ratio (SR) over the Porcupine caribou habitat is given as 
follows 

  16.62  - 1.1906fB SR , (9) 

with r2 = 0.81, SEE = 20.6 g m-2, F= 81, P = 2.7×10-8, and n = 21 (Fig. 8).   
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Fig. 8. Relationship between Landsat simple ratio and foliage biomass measured at sites 
along the Dempster Highway during the summer of 2006 and in the Ivvavik National Park 
during the summer of 2008. 

Because we had only a relative small sample size of foliage biomass over the Porcupine 
caribou habitat, we didn’t leave a fraction of the foliage biomass measurement points as 
validation. Nevertheless, we did find a similar relationship between Landsat-based simple 
ration and foliage biomass for the Bathurst caribou habitat located in Northwest Territory, 
Nunavut Territory, and northern Saskatchewan (Chen et al., 2011), with r2 = 0.86, SEE = 26.3 
g m-2, F= 158, P = 2.6×10-12, and n = 27.  

3.5 Baseline maps of aboveground and foliage biomass 
Applying equations (7) and (8) to the co-registered and geo-referenced Landsat and JERS-
1/SAR mosaics data over the Porcupine caribou habitat, we produced aboveground 
biomass for the Porcupine caribou habitat. Fig. 9 shows aboveground biomass distribution 
in circa 2000 over the Porcupine caribou habitat.  
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Fig. 7. A 1:1 comparison between estimated and measured aboveground biomass values for 
the validation sites along the Dempster Highway transect measured during the summer of 
2006 and in the Ivvavik National Park during the summer of 2008. For clarity over the low 
biomass range, the results are shown on the log-log scale. 

3.4. Relationships between foliage biomass and remote sensing indices 
As shown in Table 4, the Landsat-based SR can explain 81% variations in measured foliage 
biomass within the Porcupine caribou habitat. The explanation power of other Landsat-
based indices in the descending order is 76% for the ratio of B4/B5, 71% for SWVI, and 67% 
for NDVI. Single band reflectance of Landsat has lower power of explanation.  
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SEE 31.4 39.1 38.6 20.6 26.4 21.9 25.2 

Table 4. Correlation coefficients (r), coefficient of determination (r2), and standard estimation 
error (SEE, in g m-2) between foliage biomass (Bf) and remote sensing signals for foliage 
biomass measured at the 21 sites along the Dempster Highway in 2006 and in the Ivvavik 
National Park in 2008. Remote sensing indices include Landsat red band reflectance (B3), 
near-infrared band reflectance (B4), shortwave infrared band reflectance (B5), ratio of B4/B5, 
simple ratio (SR = B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + 
B3)), and shortwave vegetation index (SWVI = (B4 - B5)/(B4 + B5)).    

In comparison with results for aboveground biomass shown in Table 3, Landsat-based 
vegetation indices have a much improved power of explanation for foliage biomass (Table 
4). This is in good agreement with the fact that optical sensors mainly capture canopy 
information, thus the optical sensor data are more suitable for estimation of canopy 
parameters such as foliage biomass than aboveground biomass, as demon stared by 
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previous studies (Franklin & Hiernaux, 1991; Hall et al., 1995; Chen & Cihlar 1996; Turner 
et al., 1999; Brown et al., 2000; Chen et al., 2002; Wylie et al., 2002; Phua & Saito, 2003; 
Laidler & Treitz, 2003; Lu, 2004). The best fit relationship between foliage biomass (Bf, g 
m-2) and Landsat-based simple ratio (SR) over the Porcupine caribou habitat is given as 
follows 

  16.62  - 1.1906fB SR , (9) 

with r2 = 0.81, SEE = 20.6 g m-2, F= 81, P = 2.7×10-8, and n = 21 (Fig. 8).   
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Fig. 8. Relationship between Landsat simple ratio and foliage biomass measured at sites 
along the Dempster Highway during the summer of 2006 and in the Ivvavik National Park 
during the summer of 2008. 

Because we had only a relative small sample size of foliage biomass over the Porcupine 
caribou habitat, we didn’t leave a fraction of the foliage biomass measurement points as 
validation. Nevertheless, we did find a similar relationship between Landsat-based simple 
ration and foliage biomass for the Bathurst caribou habitat located in Northwest Territory, 
Nunavut Territory, and northern Saskatchewan (Chen et al., 2011), with r2 = 0.86, SEE = 26.3 
g m-2, F= 158, P = 2.6×10-12, and n = 27.  

3.5 Baseline maps of aboveground and foliage biomass 
Applying equations (7) and (8) to the co-registered and geo-referenced Landsat and JERS-
1/SAR mosaics data over the Porcupine caribou habitat, we produced aboveground 
biomass for the Porcupine caribou habitat. Fig. 9 shows aboveground biomass distribution 
in circa 2000 over the Porcupine caribou habitat.  
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Fig. 9. Aboveground biomass distribution over the Porcupine caribou habitat circa 2000. The 
3-d effect was generated using the DEM data. 

The amount of aboveground biomass was less than 5 t ha-1 for most area of the Porcupine 
caribou calving ground located in northern coastal area in both Alaska and Yukon. Along 
the coastal line and at high mountain ridges, the aboveground biomass further decreased to 
less than 2 t ha-1. For the summer and winter ranges of the Porcupine caribou habitat to the 
south, the values of aboveground biomass generally increased, with a large percentage of 
the areas having aboveground biomass in the range of 5-20 t ha-1, as well as a significant 
fraction of the area of 2-5 t ha-1 aboveground biomass. The areas of aboveground biomass 2-
5 t ha-1 appeared to be dominated by graminoids and herbs, while those of 5-20 t ha-1 
aboveground biomass were mainly shrub land. The Porcupine summer and winter ranges 
also had a small fraction of area that had more than 20 t ha-1 aboveground biomass, likely 
associated with treed woodland. Areas of 0-2 t ha-1 aboveground biomass also occur in the 
summer and winter ranges of the Porcupine caribou habitat, mostly happened at high 
mountain ridges. 
The information on foliage biomass can be more useful to local caribou management boards 
and researchers because it is directly related forage availability (Russell et al., 1993; Russell 
& McNeil, 2002; Russell et al., 2002). Using equation (9), we developed circa 2000 foliage 
biomass distribution over the Porcupine caribou habitat (Fig. 10). 
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Fig. 10. Foliage biomass distribution over the Porcupine caribou habitat cirac 2000. The 3-d 
effect was generated using the DEM data. Areas covered by water, forest, and cloud were 
blocked out.   

Fig. 10 shows the circa 2000 foliage biomass distribution of non-forest land areas in the 
Porcupine caribou habitat. Because of lacking foliage biomass measurements over forested 
land, foliage biomass was not estimated over forest areas in the Porcupine caribou habitat 
and areas covered forests were blocked out in Fig. 10. We also blocked out water and cloud-
cover areas in Fig. 10. As shown in Fig. 10, most of the northern coastal areas in Alaska and 
Yukon, over which the calving ground of the Porcupine caribou habitat is located, had a 
quite high foliage biomass from 50 to > 100 g m-2. This is a contrast to the distribution of the 
aboveground biomass. Over these same coastal areas the aboveground biomass was quite 
low. Both aboveground biomass and foliage biomass were found to be lower at high 
mountain ridges, and coastal beaches. 
The foliage biomass map reveals that on average the amount of seasonal peak foliage 
biomass in the calving ground of the Porcupine caribou herd was similar to that in the 
summer range, and was even higher if only the concentrated calving ground over the 
Northern Alaska and Yukon coastal plain is concerned (Table 5). To the contrast, the 
average seasonal peak foliage biomass in the calving ground of the Bathurst caribou herd 
was much lower than that in the summer range during the same time period (Chen et al., 
2011). This result agree well with the ground survey by Griffith et al. (2001), which 
suggested that on June 14, during 1998-1999, the total available forage was 63 g m-2 for the 



  
Remote Sensing of Biomass – Principles and Applications  

 

244 

 
Fig. 9. Aboveground biomass distribution over the Porcupine caribou habitat circa 2000. The 
3-d effect was generated using the DEM data. 

The amount of aboveground biomass was less than 5 t ha-1 for most area of the Porcupine 
caribou calving ground located in northern coastal area in both Alaska and Yukon. Along 
the coastal line and at high mountain ridges, the aboveground biomass further decreased to 
less than 2 t ha-1. For the summer and winter ranges of the Porcupine caribou habitat to the 
south, the values of aboveground biomass generally increased, with a large percentage of 
the areas having aboveground biomass in the range of 5-20 t ha-1, as well as a significant 
fraction of the area of 2-5 t ha-1 aboveground biomass. The areas of aboveground biomass 2-
5 t ha-1 appeared to be dominated by graminoids and herbs, while those of 5-20 t ha-1 
aboveground biomass were mainly shrub land. The Porcupine summer and winter ranges 
also had a small fraction of area that had more than 20 t ha-1 aboveground biomass, likely 
associated with treed woodland. Areas of 0-2 t ha-1 aboveground biomass also occur in the 
summer and winter ranges of the Porcupine caribou habitat, mostly happened at high 
mountain ridges. 
The information on foliage biomass can be more useful to local caribou management boards 
and researchers because it is directly related forage availability (Russell et al., 1993; Russell 
& McNeil, 2002; Russell et al., 2002). Using equation (9), we developed circa 2000 foliage 
biomass distribution over the Porcupine caribou habitat (Fig. 10). 

Mapping Aboveground and Foliage Biomass Over the Porcupine Caribou  
Habitat in Northern Yukon and Alaska Using Landsat and JERS-1/SAR Data  

 

245 

Alaska

Yukon

 
Fig. 10. Foliage biomass distribution over the Porcupine caribou habitat cirac 2000. The 3-d 
effect was generated using the DEM data. Areas covered by water, forest, and cloud were 
blocked out.   

Fig. 10 shows the circa 2000 foliage biomass distribution of non-forest land areas in the 
Porcupine caribou habitat. Because of lacking foliage biomass measurements over forested 
land, foliage biomass was not estimated over forest areas in the Porcupine caribou habitat 
and areas covered forests were blocked out in Fig. 10. We also blocked out water and cloud-
cover areas in Fig. 10. As shown in Fig. 10, most of the northern coastal areas in Alaska and 
Yukon, over which the calving ground of the Porcupine caribou habitat is located, had a 
quite high foliage biomass from 50 to > 100 g m-2. This is a contrast to the distribution of the 
aboveground biomass. Over these same coastal areas the aboveground biomass was quite 
low. Both aboveground biomass and foliage biomass were found to be lower at high 
mountain ridges, and coastal beaches. 
The foliage biomass map reveals that on average the amount of seasonal peak foliage 
biomass in the calving ground of the Porcupine caribou herd was similar to that in the 
summer range, and was even higher if only the concentrated calving ground over the 
Northern Alaska and Yukon coastal plain is concerned (Table 5). To the contrast, the 
average seasonal peak foliage biomass in the calving ground of the Bathurst caribou herd 
was much lower than that in the summer range during the same time period (Chen et al., 
2011). This result agree well with the ground survey by Griffith et al. (2001), which 
suggested that on June 14, during 1998-1999, the total available forage was 63 g m-2 for the 
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Bathurst caribou calving ground, in comparison with 460 g m-2 for the Porcupine caribou 
calving ground. Of the 63 g m-2 forage over the Bathurst caribou calving ground, 33 g m-2 
was lichen and moss, 14 g m-2 was stand dead, and only 16 g m-2 was vascular biomass. On 
the contrast for the Porcupine caribou calving ground, 50 g m-2 was lichen and moss, 250 g 
m-2 was stand dead, and 160 g m-2 was vascular biomass. The live biomass over the 
Porcupine calving ground was 10 time that over the Bathurst calving ground. In addition, 
the high value of stand dead over the Porcupine calving ground also suggest the high 
foliage biomass value over previous years. The difference in calving ground foliage biomass 
collaborates well with the fact that cows of the Bathurst herd leave calving ground soon 
after giving birth while those of Porcupine herd stay for a much longer period (Griffith et 
al., 2001).  
 

 Porcupine Bathurst Data sources 
Measured foliage biomass, 
calving ground (g m-2) 63 - 106 17 - 94 This study, Chen et al. 

(2011) 
Area-averaged foliage biomass, 
calving ground (g m-2) 78 24 This study, Chen et al. 

(2011) 
Measured foliage biomass, 
summer range (g m-2) 14 – 198 17 - 267 This study, Chen et al. 

(2011) 
Area-averaged foliage biomass, 
summer range (g m-2) 69 43 This study, Chen et al. 

(2011) 
Milk production (l d-1) 2.02 1.09 – 1.79 Griffith et al. (2001) 
Calve growth rate (g d-2) 493 150 - 407 Griffith et al. (2001) 
Cow body weight range (kg) 83 - 96 66 - 78 Griffith et al. (2001) 

Table 5. Comparison of measured and area-averaged foliage biomass values between 
Porcupine caribou habitat and Bathurst caribou habitat. The area-averaged values were 
calculated from the circa 2000 baseline foliage biomass maps. Field measurement of foliage 
biomass over the Bathurst caribou habitat was conducted during the summer of 2005 (Chen 
et al., 2011). Also included in the comparison are cow milk production, calve growth rate, 
and cow body weight. 

The difference in calving ground forage availability, in turn, results in difference in 
caribou biological measures (Table 5). For example, the body weights of Porcupine cows 
are about 20% higher than that of Bathurst herd (Griffith et al., 2001). The Bathurst cow 
milk production was 1.09 – 1.79 liter per day, against 2.02 liter per day by an average 
Porcupine caribou cow, with the corresponding calve growth rate being 150 -407 gram 
per day for the Bathurst herd against 493 gram per day for that of the Porcupine herd 
(Table 5).   

4. Conclusions 
Aboveground biomass was measured at 43 sites in the summer of 2004 along the Dempster 
Highway, which goes through the winter and summer ranges of the Porcupine caribou 
habitat. The measured aboveground biomass ranged 10-100 t ha-1 for sparsely forested 
woodlands, 1-100 t ha-1 for the low-high shrub sites, and 0.5-10 t ha-1 for mixed graminoids-
dwarf shrub-herb sites. 
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Foliage biomass was measured at 10 non-forested sites along the Dempster Highway in the 
summer of 2006, and again in the summer of 2008 at 11 non-forested sites in the Ivvavik 
National Park located at northern tip of Yukon, which overlaps with the calving ground and 
summer range of the Porcupine caribou herd. The measured foliage biomass ranged 0.95-2 t 
ha-1 for low-high shrub sites, 0.38-0.92 t ha-1 for mixed graminoids-dwarf shrub-herb sites, 
0.63-1.06 t ha-1 for coastal tussock sites, and < 0.2 t ha-1 for hill-top rock lichen sites.  
When all data points were pooled together, the best relationship between aboveground 
biomass and remote sensing data was found to be with the combination of JERS-1 
backscatter and Landsat B4/B5, with r2 = 0.72. Validation using aboveground biomass 
measurements at foliage biomass measurement sites gives similar result, with the slope = 
0.91, r2 = 0.90, and SEE = 1.5 t h-1 over measured aboveground biomass range from 0 to 18.16 
t h-1. Similar validation results were obtained using aboveground biomass measurements at 
33 sites around Yellowknife, Northwest Territories, and Lupin Gold Mine, Nunavut 
Territories in a previous study (Chen et al., 2009a), with r2 = 0.81, slope =1.17, and SEE = 9.67 
t h-1 over measured aboveground biomass range from 0.9 to 103.3 t h-1.  
For the foliage biomass, the Landsat-based simple ration gives the best fit, with r2 = 0.81, 
SEE = 20.6 g m-2, F= 81, P = 2.7×10-8, and n = 21.  
Appling these relationships to the mosaic of Landsat and JERS-1 images covering the entire 
Porcupine caribou habitat, we produced baseline maps of aboveground biomass and foliage 
biomass for the Porcupine caribou habitat. The foliage biomass map reveals that on average 
the amount of seasonal peak foliage biomass in the calving ground of the Porcupine caribou 
herd was similar to that in the summer range, and was even higher if only the concentrated 
calving ground over the Northern Alaska and Yukon coastal plain is concerned. To the 
contrast, the average seasonal peak foliage biomass in the calving ground of the Bathurst 
caribou herd was much lower than that in the summer range during the same time period. 
The difference in calving ground foliage biomass collaborates well with the fact that cows of 
the Bathurst herd leave calving ground soon after giving birth while those of Porcupine 
herd stay for a much longer period, which in turn partially explain why the Porcupine 
caribou calves can have several times higher growth rate and the body weights of Porcupine 
cows are about 20% higher than that of Bathurst herd.  
It should be emphasized, however, that assessment of the impacts of climate change on the 
Porcupine caribou habitat requires integration of various information sources from remote 
sensing products, climate records, and other relevant tempo-spatial data. Furthermore, there 
are many other factors besides the habitat, such as harvest, predators, diseases/parasites, 
industrial development, extreme weather events, climate change, and pollution, may 
influence the abundance of a caribou herd. Therefore, this work is just one of the first steps 
towards informed and proper decision-making that balances the needs of caribou habitat 
protection and industrial development under a global change environment.     

5. Acknowledgment 
This study is financially supported by grants from the Canadian IPY program through a 
project entitled “Climate Change Impacts on Canadian Arctic Tundra Ecosystems (CiCAT): 
Interdisciplinary and Multi-scale Assessments”, Canadian Space Agency’s Government 
Related Initiatives Program (GRIP) through a project entitled “ParkSPACE: Towards an 
Operational Satellite-based System for Monitoring Ecological Integrity of Arctic National 
Parks”, and from the Earth Sciences Sector, NRCan’s “Climate Change Geosciences 



  
Remote Sensing of Biomass – Principles and Applications  

 

246 

Bathurst caribou calving ground, in comparison with 460 g m-2 for the Porcupine caribou 
calving ground. Of the 63 g m-2 forage over the Bathurst caribou calving ground, 33 g m-2 
was lichen and moss, 14 g m-2 was stand dead, and only 16 g m-2 was vascular biomass. On 
the contrast for the Porcupine caribou calving ground, 50 g m-2 was lichen and moss, 250 g 
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Porcupine calving ground was 10 time that over the Bathurst calving ground. In addition, 
the high value of stand dead over the Porcupine calving ground also suggest the high 
foliage biomass value over previous years. The difference in calving ground foliage biomass 
collaborates well with the fact that cows of the Bathurst herd leave calving ground soon 
after giving birth while those of Porcupine herd stay for a much longer period (Griffith et 
al., 2001).  
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Foliage biomass was measured at 10 non-forested sites along the Dempster Highway in the 
summer of 2006, and again in the summer of 2008 at 11 non-forested sites in the Ivvavik 
National Park located at northern tip of Yukon, which overlaps with the calving ground and 
summer range of the Porcupine caribou herd. The measured foliage biomass ranged 0.95-2 t 
ha-1 for low-high shrub sites, 0.38-0.92 t ha-1 for mixed graminoids-dwarf shrub-herb sites, 
0.63-1.06 t ha-1 for coastal tussock sites, and < 0.2 t ha-1 for hill-top rock lichen sites.  
When all data points were pooled together, the best relationship between aboveground 
biomass and remote sensing data was found to be with the combination of JERS-1 
backscatter and Landsat B4/B5, with r2 = 0.72. Validation using aboveground biomass 
measurements at foliage biomass measurement sites gives similar result, with the slope = 
0.91, r2 = 0.90, and SEE = 1.5 t h-1 over measured aboveground biomass range from 0 to 18.16 
t h-1. Similar validation results were obtained using aboveground biomass measurements at 
33 sites around Yellowknife, Northwest Territories, and Lupin Gold Mine, Nunavut 
Territories in a previous study (Chen et al., 2009a), with r2 = 0.81, slope =1.17, and SEE = 9.67 
t h-1 over measured aboveground biomass range from 0.9 to 103.3 t h-1.  
For the foliage biomass, the Landsat-based simple ration gives the best fit, with r2 = 0.81, 
SEE = 20.6 g m-2, F= 81, P = 2.7×10-8, and n = 21.  
Appling these relationships to the mosaic of Landsat and JERS-1 images covering the entire 
Porcupine caribou habitat, we produced baseline maps of aboveground biomass and foliage 
biomass for the Porcupine caribou habitat. The foliage biomass map reveals that on average 
the amount of seasonal peak foliage biomass in the calving ground of the Porcupine caribou 
herd was similar to that in the summer range, and was even higher if only the concentrated 
calving ground over the Northern Alaska and Yukon coastal plain is concerned. To the 
contrast, the average seasonal peak foliage biomass in the calving ground of the Bathurst 
caribou herd was much lower than that in the summer range during the same time period. 
The difference in calving ground foliage biomass collaborates well with the fact that cows of 
the Bathurst herd leave calving ground soon after giving birth while those of Porcupine 
herd stay for a much longer period, which in turn partially explain why the Porcupine 
caribou calves can have several times higher growth rate and the body weights of Porcupine 
cows are about 20% higher than that of Bathurst herd.  
It should be emphasized, however, that assessment of the impacts of climate change on the 
Porcupine caribou habitat requires integration of various information sources from remote 
sensing products, climate records, and other relevant tempo-spatial data. Furthermore, there 
are many other factors besides the habitat, such as harvest, predators, diseases/parasites, 
industrial development, extreme weather events, climate change, and pollution, may 
influence the abundance of a caribou herd. Therefore, this work is just one of the first steps 
towards informed and proper decision-making that balances the needs of caribou habitat 
protection and industrial development under a global change environment.     
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1. Introduction 
Agricultural crop, one of the biological entities, is sensitive to its environmental condition 
including various soil and crop inputs. Alteration in environmental condition causes 
reduction in crop productivity (such as crop yield and total biomass etc.). Ultra-modern 
technology such as, precision agriculture (PA) is capable to prevent crop damage and 
maintain crop productivity. PA is the technology of applying correct amount of crop input 
at the exact place and time of requirement. Application of PA technology has become 
increasingly prevalent among the farmers from developed countries as well as developing 
countries due to its capability for optimizing crop yield by facilitating sound crop status 
monitoring (Zhang and Taylor, 2001). Mostly, satellite images have been used as the 
primary source of information for analyzing crop status in precision agriculture. However, 
obtaining up-to-date aerial photography is very expensive, the quality is variable, and data 
processing is also intensive and complicated. Innovative new technologies to acquire timely 
and accurate crop information are required for the success of PA technology.  
Assessment of leaf radiation has the potential to detect nitrogen (N) deficiency and is a 
promising tool for N management and monitoring. Moreover, over-fertilization may result 
in surface runoff and pollute subsurface water (Wood et al., 1993; Auernhammer et al., 1999; 
Daughtry et al., 2000; Zaman et al., 2006). Chlorophyll is an indirect indicator of nitrogen 
status and is used in optical reflectance-based variable-rate nitrogen application technology 
(Lee and Searcy, 2000; Jones et al., 2004; Alchanatis et al., 2005; Kim and Reid, 2006; Min et 
al., 2008). Biermacher et al. (2006) used sensor-based systems to determine crop nitrogen 
requirements and estimated that the variable-rate system had the potential to achieve a net 
profit of about $22 to $31 per ha. The ability to accurately estimate plant chlorophyll 
concentration can provide growers with valuable information to estimate crop yield 
potential and to make decisions regarding N management (Kahabka et al., 2004; Reyniers 
and Vrindts, 2006; Zaman and Schumann, 2006). 
Spectroradiometry has been useful in the research environment for determining principal 
wavebands and spectral patterns that relate to nutrient stress (Noh et al., 2004; Tumbo et al. 
2001). High spectral resolution and the ability to account for temporal changes are distinct 
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advantages. Okamoto et al. (2007) used a hyperspectral line-scanning camera for weed 
detection. This system produced hyperspectral images from a Specim ImSpector V9 imaging 
spectrograph mounted on a tractor that was set to move slowly through the field. Principal 
spectral components could be extracted and analyzed using various discrimination schemes. 
However, on-the-go hyperspectral sensing is slow and impractical, since enough area must 
be covered per sweep for timely data acquisition over large field areas. 
Biomass is an important trait in functional ecology and growth analysis. The typical methods 
for measuring biomass are destructive, laborious and time consuming. Thus, they do not allow 
the development of individual plants to be followed and require many individuals to be 
cultivated for repeated measurements. Non-destructive method may be an option to overcome 
these limitations. Crop residue estimation has been accomplished using RADARSAT images 
(Jensen et al., 1990; McNairn et al., 1998), using LANDSAT images (Thoma et al., 2004), and 
using images captured by radio-controlled model aircraft (Hunt et al., 2005). 
Prediction of yield using remote sensing images has been practiced by many researchers 
(Fablo and Felix, 2001; Alvaro et al., 2007). Rice crop area has been estimated from Landsat 
images (Tennakoon et al., 1992) for wide-scale yield prediction. Canopy reflectance was 
estimated at panicle initiation stage using a portable spectroradiometer (LI-1800, LICOR) 
with a remote cosine receptor attached to a 1.5 m extension arm for smaller-scale yield 
prediction (Chang et al., 2005). Yield prediction has also been accomplished for corn (Chang 
et al., 2003; Kahabka et al., 2004), cotton (Thomasson et al., 2000) wheat (Doraiswamy et al., 
2003), citrus (Zaman et al., 2006) and wild blueberry (Zaman et al., 2010). Tea leaf yield was 
estimated using vegetation indices such as normalized difference vegetation index (NDVI) 
and triangular vegetation index (TVI) (Rama Rao et al., 2007). 
Rice (Oriza sativa L.), which is the staple food of most Asian countries, accounts for more 
than 40% of caloric consumption worldwide (IRRI, 2006). Annual rice production was 
approximately 590 million tons and yield was 4.21 ton ha-1 in Asia for 2006 (FAOSTAT, 
2007). The profit from cultivating a rice crop is derived from the crop grain yield and total 
biomass produced. Predicting rice yield at or around the panicle initiation stage would 
provide valuable information for future planning and yield expectations.  

2. Low altitude remote sensing (LARS) system 
Site-specific management of inputs characteristic of PA promotes conservation of agricultural 
resources while maintaining crop viability. However, the application of satellite-based images 
still cannot fulfill the specific requirements of PA technology. Stafford (2000) observed that 
satellite images for application of PA are handicapped in terms of spectral and temporal 
resolution and can be affected by variable weather conditions. Lamb and Brown (2001) 
indicated that the low-resolution satellite images only beneficial for large-scale studies, are not 
appropriate for the small-scale farms prevalent in many areas of Asia, for example. 
Additionally, satellites providing higher-resolution images, e.g., QuickBird (DigitalGlobe, 
Longmont, Colo.) and ASTER (National Aeronautics and Space Administration, Washington, 
D.C.), have long revisit times, making them of limited utility for any application that might 
require frequent images (nutrient stress monitoring, for example). In the past, researchers had 
used manned aerial vehicles (helicopters and aero planes) to acquire surface images (Table 1). 
Though a large area can be mapped within short time, cost involved in the aerial vehicles is 
very high and also requires sophisticated system, trained operators, and professionals. 
Therefore, an unmanned helicopter is used for aerial image acquisition.  
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Systems/ 
Facilities 

Equipment Applications (size and structure) 

GPS 
/INS Laser Camera Large 

Areas
Small areas 
(< 2-4 km2 ) 

Route 
mapping

Complex 
buildings/ 
structures 

Aircraft Yes Yes Film based 
and digital Yes Yes/No Yes No 

Helicopter Yes Yes Digital No Yes Yes No 

Terrestrial 
system 
(car, train) 

Yes Yes Digital No Yes/No Yes No 

RC- 
Helicopter Yes Yes Digital No Yes Yes Yes 

Table 1. Comparative benefits of remote image acquisition platforms 

LARS is a relatively new concept of remote image acquisition currently discussed by 
agriculturists implementing precision agriculture technology. As the name suggests, it is a 
system of acquiring images of the earth surface from a lower altitude as compared to the 
commercial remote sensing satellites. In this system, the images are acquired mostly below 
cloud cover and very near field features of interest. Low-altitude remote sensing using 
unmanned aerial vehicles can be an inexpensive and practical substitute for sophisticated 
satellite and general aviation aircraft, and it is immediately accessible as a tool for the 
farmer. 
Various unmanned LARS systems have been developed and used in the remote image 
acquisition for PA applications. Some LARS platforms, kites (Aber et al., 2002), balloons 
(Amoroso and Arrowsmith, 2000; Seang and Mund, 2006), high-clearance tractors 
(Bausch and Delgado, 2005), and unmanned airplanes and helicopters (Sugiura et al., 
2002; Fukagawa et al., 2003; Eisenbiss, 2004; Herwitz et al., 2004; Sugiura et al., 2004; 
Hunt et al., 2005; MacArthur et al., 2005, 2006; Xiang and Tian, 2006, 2007a, 2007b; Huang 
et al., 2008) have been successfully using for PA applications in different cropping 
systems.  
These platforms were mounted with image acquisition devices and location measuring 
receivers, which can fly over agriculture farms and targeted areas for capturing images. As 
indicated by Sugiura et al. (2002) the major drawbacks of unmanned helicopters are limited 
payload capacity and precise control over working speed of the system. Thus, mounted 
systems operation has to be programmed properly to neutralize the effect of wind speed. 
The low payload capacity of the system was adjusted by selecting light weight mounting 
equipment and tools. Stombaugh et al. (2003) suggested replacing heavy weight 
professional digital cameras with light weight, low cost, commercial digital cameras. As the 
individual images acquired by the LARS system covers small area, geo-referenced images 
can be mosaic for mapping entire farmland and targeted areas. Global positioning system 
(GPS) was used in aerial platforms for obtaining aircraft location information (Hayward et 
al., 1998), for geo-referenced videobased remote sensing images (Thomoson et al., 2002) and 
in VRT system guidance (Fadel, 2004). Buick (2002) proposed the guidelines to select proper 
GPS receivers for specific applications. 



 
Remote Sensing of Biomass – Principles and Applications  

 

254 

advantages. Okamoto et al. (2007) used a hyperspectral line-scanning camera for weed 
detection. This system produced hyperspectral images from a Specim ImSpector V9 imaging 
spectrograph mounted on a tractor that was set to move slowly through the field. Principal 
spectral components could be extracted and analyzed using various discrimination schemes. 
However, on-the-go hyperspectral sensing is slow and impractical, since enough area must 
be covered per sweep for timely data acquisition over large field areas. 
Biomass is an important trait in functional ecology and growth analysis. The typical methods 
for measuring biomass are destructive, laborious and time consuming. Thus, they do not allow 
the development of individual plants to be followed and require many individuals to be 
cultivated for repeated measurements. Non-destructive method may be an option to overcome 
these limitations. Crop residue estimation has been accomplished using RADARSAT images 
(Jensen et al., 1990; McNairn et al., 1998), using LANDSAT images (Thoma et al., 2004), and 
using images captured by radio-controlled model aircraft (Hunt et al., 2005). 
Prediction of yield using remote sensing images has been practiced by many researchers 
(Fablo and Felix, 2001; Alvaro et al., 2007). Rice crop area has been estimated from Landsat 
images (Tennakoon et al., 1992) for wide-scale yield prediction. Canopy reflectance was 
estimated at panicle initiation stage using a portable spectroradiometer (LI-1800, LICOR) 
with a remote cosine receptor attached to a 1.5 m extension arm for smaller-scale yield 
prediction (Chang et al., 2005). Yield prediction has also been accomplished for corn (Chang 
et al., 2003; Kahabka et al., 2004), cotton (Thomasson et al., 2000) wheat (Doraiswamy et al., 
2003), citrus (Zaman et al., 2006) and wild blueberry (Zaman et al., 2010). Tea leaf yield was 
estimated using vegetation indices such as normalized difference vegetation index (NDVI) 
and triangular vegetation index (TVI) (Rama Rao et al., 2007). 
Rice (Oriza sativa L.), which is the staple food of most Asian countries, accounts for more 
than 40% of caloric consumption worldwide (IRRI, 2006). Annual rice production was 
approximately 590 million tons and yield was 4.21 ton ha-1 in Asia for 2006 (FAOSTAT, 
2007). The profit from cultivating a rice crop is derived from the crop grain yield and total 
biomass produced. Predicting rice yield at or around the panicle initiation stage would 
provide valuable information for future planning and yield expectations.  

2. Low altitude remote sensing (LARS) system 
Site-specific management of inputs characteristic of PA promotes conservation of agricultural 
resources while maintaining crop viability. However, the application of satellite-based images 
still cannot fulfill the specific requirements of PA technology. Stafford (2000) observed that 
satellite images for application of PA are handicapped in terms of spectral and temporal 
resolution and can be affected by variable weather conditions. Lamb and Brown (2001) 
indicated that the low-resolution satellite images only beneficial for large-scale studies, are not 
appropriate for the small-scale farms prevalent in many areas of Asia, for example. 
Additionally, satellites providing higher-resolution images, e.g., QuickBird (DigitalGlobe, 
Longmont, Colo.) and ASTER (National Aeronautics and Space Administration, Washington, 
D.C.), have long revisit times, making them of limited utility for any application that might 
require frequent images (nutrient stress monitoring, for example). In the past, researchers had 
used manned aerial vehicles (helicopters and aero planes) to acquire surface images (Table 1). 
Though a large area can be mapped within short time, cost involved in the aerial vehicles is 
very high and also requires sophisticated system, trained operators, and professionals. 
Therefore, an unmanned helicopter is used for aerial image acquisition.  

 
Rice Crop Monitoring with Unmanned Helicopter Remote Sensing Images 

 

255 

Systems/ 
Facilities 

Equipment Applications (size and structure) 

GPS 
/INS Laser Camera Large 

Areas
Small areas 
(< 2-4 km2 ) 

Route 
mapping

Complex 
buildings/ 
structures 

Aircraft Yes Yes Film based 
and digital Yes Yes/No Yes No 

Helicopter Yes Yes Digital No Yes Yes No 

Terrestrial 
system 
(car, train) 

Yes Yes Digital No Yes/No Yes No 

RC- 
Helicopter Yes Yes Digital No Yes Yes Yes 

Table 1. Comparative benefits of remote image acquisition platforms 

LARS is a relatively new concept of remote image acquisition currently discussed by 
agriculturists implementing precision agriculture technology. As the name suggests, it is a 
system of acquiring images of the earth surface from a lower altitude as compared to the 
commercial remote sensing satellites. In this system, the images are acquired mostly below 
cloud cover and very near field features of interest. Low-altitude remote sensing using 
unmanned aerial vehicles can be an inexpensive and practical substitute for sophisticated 
satellite and general aviation aircraft, and it is immediately accessible as a tool for the 
farmer. 
Various unmanned LARS systems have been developed and used in the remote image 
acquisition for PA applications. Some LARS platforms, kites (Aber et al., 2002), balloons 
(Amoroso and Arrowsmith, 2000; Seang and Mund, 2006), high-clearance tractors 
(Bausch and Delgado, 2005), and unmanned airplanes and helicopters (Sugiura et al., 
2002; Fukagawa et al., 2003; Eisenbiss, 2004; Herwitz et al., 2004; Sugiura et al., 2004; 
Hunt et al., 2005; MacArthur et al., 2005, 2006; Xiang and Tian, 2006, 2007a, 2007b; Huang 
et al., 2008) have been successfully using for PA applications in different cropping 
systems.  
These platforms were mounted with image acquisition devices and location measuring 
receivers, which can fly over agriculture farms and targeted areas for capturing images. As 
indicated by Sugiura et al. (2002) the major drawbacks of unmanned helicopters are limited 
payload capacity and precise control over working speed of the system. Thus, mounted 
systems operation has to be programmed properly to neutralize the effect of wind speed. 
The low payload capacity of the system was adjusted by selecting light weight mounting 
equipment and tools. Stombaugh et al. (2003) suggested replacing heavy weight 
professional digital cameras with light weight, low cost, commercial digital cameras. As the 
individual images acquired by the LARS system covers small area, geo-referenced images 
can be mosaic for mapping entire farmland and targeted areas. Global positioning system 
(GPS) was used in aerial platforms for obtaining aircraft location information (Hayward et 
al., 1998), for geo-referenced videobased remote sensing images (Thomoson et al., 2002) and 
in VRT system guidance (Fadel, 2004). Buick (2002) proposed the guidelines to select proper 
GPS receivers for specific applications. 



 
Remote Sensing of Biomass – Principles and Applications  

 

256 

Thomson and Sullivan (2006) observed that both agricultural aircraft and unmanned aerial 
vehicles (UAVs) may potentially more easily scheduled and accessible remote sensing 
platforms than the remote sensing satellites and general aviation aircraft customarily used 
in the U.S. However, use of agricultural aircraft is limited to those areas where aerial crop 
spraying is prevalent. Hunt et al. (2005) used a radio-controlled helicopter-mounted image 
acquisition system to estimate biomass and nitrogen status for corn, alfalfa, and soybean 
crops. Digital photographs have been used for site-specific weed control for grassland 
swards (Gebhardt et al., 2006; Beerwinkle, 2001), for tomato (Zhang et al., 2005) and for wild 
blueberry (Chang et al., 2011). Chen et al. (2003) using an high-elevation tractor system, 
indicated that multi-spectral images at 555, 660, and 680 nm wavelength band centers 
demonstrated good prediction ability for determining the nitrogen content of rice plants. 
This chapter is intended to focus on the effectiveness of low-altitude remote sensing (LARS) 
images obtained by a multispectral imaging platform mounted in a radio-controlled 
unmanned helicopter to estimate rice crop parameters as a function of varying nutrient 
availability. Non-destructive image analysis technique is used to estimate rice yield and 
total biomass. It also examines the effectiveness of near-real time estimation of protein 
content from nutrient availability with rice leaf. Consistent with the fact that most 
multispectral cameras small enough to be used in unmanned aerial vehicles utilize pre-
defined wavebands for feature detection, applicability of the widely used NDVI 
incorporating these wavebands is evaluated. 

2.1 System components  
A radio-controlled model helicopter (X-Cell Fury 91, Miniature Aircraft, Orlando, USA) is 
equipped with a Tetracam agricultural digital camera (ADC) (Tetracam, Inc., Chatsworth, 
Cal.), (Table 2). It is also equipped with various sensors, such as: C-100 Magnetic compass 
(to obtain platform orientation angle from North), Inertial Measurement Unit (to obtain roll 
and pitch orientation angles), Barometric sensor (to measure pressure variation for altitude 
measurement), COM-1288 GPS receiver (to provide position information: latitude and 
longitude), digital camera (to acquire multispectral (G-R-NIR) images) etc., monitored by a 
PC-104 based CPU-1232 microprocessor. A PC-104 compatible Power Supply Unit (ACS-
5150), being powered from an external 12Vdc battery, is used to supply the necessary power 
to all the sensors including microprocessor (Figures 1 and 2).  
The camera is a wideband multispectral camera utilizing a CMOS CCD (charge-coupled 
device) with a Bayer filter mask for multispectral imaging (Table 2). The unmanned 
helicopter weighed about 6 kg with a payload capacity of 5 kg. The radio console is capable 
of controlling the unmanned helicopter within a 1 km radius. The system uses a battery-
initiated glow fuel (250 mL) engine, supporting 15 min of flight at length. A 
spectroradiometer with wavelength range of 350 to 2350 nm (Spectra Co-op, Inc., Tokyo, 
Japan) can be used to estimate reflectance at ground level in the red (at 660 nm) and NIR 
bands (at 800 nm). Bandwidth at each center is 2.5 nm. 
A control program, developed in “C” programming language, was used for the DOS 
operating system based microprocessor, to coordinate, the simultaneous clicking of digital 
camera and obtaining the readings from the sensors, and to store the information as a file in 
the storing device. The program enabled the system to acquire image and sensor reading at 
minimum time interval of 12 seconds. The images and corresponding sensor readings as 
digital number (0-255) were supplied to the image processing algorithm.  
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Fig. 1. LARS system operation: (a) R/C helicopter mounted with image acquisition system, 
(b) acquiring image in rice crop, and c) major components. 

 

Characteristics Values 

Image size (resolution) 1280  1024 (1.3 Mpixel) 

Pixel size 6.01 micron 

Ground pixel resolution 0.000707 m/pixel (estimated) 

Spectral bands 
3 (green, red, and NIR); band centers and bandwidths are 
fundamentally equivalent to Landsat bands TM2, TM3, and 
TM4 

Lens type C-mounted 

Lens 8.5 mm 

Triggering Manual/cable switch triggering 

Table 2. Specification of the Tetracam ADC Green-Red-NIR sensors 
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Fig. 2. Schematic representation of the LARS image acquisition system 

As individual images, of digital camera covers very small ground area, is mosaic with the 
algorithm to develop a single map of the study area. HIPSC software converts the digital 
numbers into relevant sensor readings and used them to carry out image processing 
operations, such as: image rotation, image mosaic and reflectance index (NDVI, Green 
NDVI etc.) estimation. The software can develop site-specific zone maps based on variation 
in reflectance index values and also provide ground control points (GCPs) for mosaic image 
geo-registration using commercial software.  

2.2 Field preparation and data acquisition 
The experimental site is located in Pathumthani Province, Thailand (14° 12' N, 100° 37' E) for 
the study. The site may be located anywhere in the world, but, the soil properties have to be 
measured accurately. The soil of the experimental site belonged to the clay textural class 
with average bulk density of 1.38 g cm-3 and pH of 4.2. Three replicates were made, and the 
treatment plots, each of size 10 m  10 m, randomly distributed within each replicate. To 
estimate the nitrogen application rate, the total nitrogen present in the soil was tested using 
standard methods (Kjeldahl apparatus). At the experimental site, the concentration of pre-
existing nitrogen was classified as low (<0.18%) level for all the plots, as per the local 
Agricultural Extension Service guidelines.  
For the underlined experiment, the plots were well-watered using flood irrigation and 
carefully maintained for pest control to ensure uniform yield potential. The rice seeds 
were broadcasted (on 14 Dec. 2006) in accordance with local practices under irrigated 
farming conditions. Nitrogen fertilizer was applied at five rates: 0%, 25%, 50%, 75%, and 
100% of recommended values, representing 0, 33, 66, 99, and 132 kg ha-1, respectively. 
Plots with different nitrogen rates were maintained to promote a wide range of rice yield 
so the effectiveness of LARS images could be evaluated for varying nutrient availability. 
This follows a similar technique by Chen et al. (2003), who used four N rates (0, 45, 90, 
and 135 kg ha-1) in field experiments with a Tainung 67 rice crop for multispectral image 
analysis. An early rice variety, Supanburi-1 (95 day period), was used in the study, as this 
is one of the most popular variety in central Thailand. Urea (46-0-0) was applied as the 
source of nitrogen for the study. Different nitrogen rates along with recommended 
phosphorous fertilizer were applied 30 days after sowing rice. Images were obtained 
twice with the LARS system just before panicle initiation stage (45 and 65 days after 
planting, Figure 1b).  
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The altitude has to be selected considering the camera's field of view to acquire a single 
image for each treatment plot. Images with effective dimensions of 18 m  14 m were 
collected from a 20 m flying height, covering a single plot. For field application the height 
can be varied as per the suitability of the researcher, to cover wider area in each image. 
Flight altitude was recorded with a height sensor (MPXAZ4115A barometric sensor, 
Freescale Semiconductor, Austin, Tex.) mounted on the LARS system. Images are obtained 
at five different heights, and the images obtained closest to the 20 m height were selected for 
analysis. Five ground-based reflectance readings were obtained for the rice canopy and 
BaSO4 standard white reference board using the Spectroradiometer in each of the 
experimental plots. The ground-based readings were obtained immediately after the LARS 
system-based image acquisition. The plot-wise ground-based reflectance value is calculated 
as the mean of the five readings. 

2.3 Image pre-processing 
Multispectral images acquired by the Tetracam ADC camera (.dcm format) were converted 
into .tiff format for analysis. The .tiff format reduces the storage space and also effectively 
retains the image quality for image processing. Images were uploaded to Pixelwrench 
software (Tetracam, Inc., Chatsworth, Cal.), which contains programs for deriving one of 
several vegetation indices (.hdr format) from raw image data. An NDVI image was 
produced for each test plot, and the average NDVI index was estimated using the custom-
developed program in the C programming language from images acquired by the LARS-
mounted sensors (Figure 3). Ground-based reflectance data were collected to estimate mean 
NDVI of the experimental plots (NDVISPECTRO). NDVISPECTRO was estimated using the 
software provided by the Spectroradiometer manufacturer. Linear regression models can be 
developed in SAS (ver. 9.1, SAS Institute, Inc., Cary, N.C.) or any standard software. 
 

 
(a) (b) (c) 

Fig. 3. Stages of image processing: (a) raw image with plot boundaries (as taken by the 
image acquisition system), (b) plot-scale image of the rice crop, and (c) NDVI image 

3. Validation of LARS setup 
The normalized difference vegetation index (NDVI) is the mostly adopted reflectance index 
for agricultural cropping and vegetation studies (Rouse et al., 1973) given as; 

 NIR RNDVI
NIR R





  (1) 

Where, NIR: Radiance value for Near-infrared band; R: Radiance value for Red band. 
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3. Validation of LARS setup 
The normalized difference vegetation index (NDVI) is the mostly adopted reflectance index 
for agricultural cropping and vegetation studies (Rouse et al., 1973) given as; 

 NIR RNDVI
NIR R





  (1) 

Where, NIR: Radiance value for Near-infrared band; R: Radiance value for Red band. 
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The Green Normalized Differential Vegetation Index (GNDVI) to establish the suitability of 
reflectance index for rice cropping with variable nitrogen rates (Gitelson et al., 1996) was 
also used. GNDVI, based on the greenness level, represented by the chlorophyll content 
determining the radiance level of the leaf surface, was very significant for the rice crop 
monitoring. The GNDVI was estimated as follows, 

 NIR GGNDVI
NIR G





  (2) 

Where, NIR: Radiance value for Near-infrared band; G: Radiance value for Green band.  
The NDVI index was also calculated from ground level Spectrophotometer radiance values 
using the Eqn. 1 for establishing suitability of LARS system. Around five readings were 
taken from each plot in order to estimate the average NDVI for each treatment plots. The 
SPAD 502 meter readings of leaf greenness can be converted into Chlorophyll content by the 
following equation for rice cropping (Markwell et al., 1995). 

3.1 Relationship between reflectance indices and variable N-treatments 
The graph of NDVISPECTRO and NDVILARS plotted for the different N-treatments showed 
positive response with increased recommended nitrogen rates. The NDVI index, taken 45 
days after sowing, showed weak relationship with nitrogen treatment rates, attaining 
coefficient of determination (r2) of 0.60. As, the fertilizer application, just two weeks 
before date of testing, response time may not be enough to influence plant leaf radiance 
level to greater extent (Figure 4). However, the relationship was stronger (r2 ≈ 0.85) with 
higher  NDVI values, ranging from 0.70 to 0.90, for second set of Spectrophotometer reading 
taken at booting stage (for 65 days old plants).  NDVILARS, estimated from LARS images, 
were very low, after 45 days of sowing, ranging from 0.2 to 0.6, due to the lower radiance 
value of soil, exposed in gaps between the plants’ leaves. The radiance level of the crop 
leaves, covering the whole plot area with least exposed area at booting stage, attained 
their original values (with NDVI between 0.85 to 1.0). NDVILARS at booting stage showed 
strong relationship with r2 of 0.73 for different N-treatment rates (Figure 4b). The 
greenness index (GNDVI) plotted against variable nitrogen rates showed, lower 
correlation with r2 of 0.66 and 0.7, for the images taken at 45 days and 65 days 
respectively, with slightly strong relationship for the later. The lower range of GNDVILARS 
index had values ranging from 0.5 to 0.6 at booting stage, maintained positive response 
with higher nitrogen rates (Figure 4c). 

3.2 Suitability of reflectance indices determined from LARS images  
Cross comparison analysis was carried out to testify the applicability of LARS images 
through indices such as NDVILARS and GNDVILARS with the Spectrophotometer reading index 
such as NDVISPECTRO by plotting graphs between them (Figure 5). The NDVILARS was 
proportional to that of NDVISPECTRO with r2 of 0.72 and 0.79 for 45 days and 65 days old rice 
crop, respectively. The NDVILARS ranges from 0.85 to 1.0 showing sound crop coverage 
throughout the plot at booting stage of crop. The lower range NDVILARS value (0.2~ 0.5) for 
45 days crop made the reading unsuitable to represent the crop in crop modeling and 
predictions. The higher r2 value (≈ 0.7) for indices estimated from LARS images (NDVILARS, 
GNDVILARS) with index from ground Spectrophotometer reading (NDVISPECTRO) showed the 
suitability of the proposed system for crop status studies.   

 
Rice Crop Monitoring with Unmanned Helicopter Remote Sensing Images 

 

261 

 
Fig. 4. Variation of vegetation index with N-treatment rates; a) NDVISPECTRO; b) NDVILARS ; c) 
GNDVILARS 
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Fig. 4. Variation of vegetation index with N-treatment rates; a) NDVISPECTRO; b) NDVILARS ; c) 
GNDVILARS 
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Fig. 5. Comparison of indices based on groundtruthing data and LARS images; NDVISPECTRO 
with; a) NDVILARS; b) GNDVILARS 

3.3 Discussions 
For the experiment, the recommended amount of fertilizer was applied to 40 days old crop 
and the first set images and groundtruthing were taken at 45 days. The leaf coverage was 
low with a major share of exposed soil resulting in lower correlation of green indices (NDVI 
and GNDVI) values. The coefficient of determination (r2) was improved visibly for 65 days 
old crop with denser crop leaving little exposed soil. As observed, 65 days old crop, LARS 
and ground measurements, was better suited, hence selected for crop status monitoring 
studies. Variation in green indices (NDVI and GNDVI) showed symmetry with the variation 
of nitrogen level for different treatments. 
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4. Estimation of crop parameters  
4.1 Estimation of total biomass 
Biomass is a plant attribute that is time consuming and difficult to measure or estimate, but 
easy to interpret. Biomass is regarded as an important indicator of ecological and 
management processes in the vegetation. Biomass estimation facilitates accurate 
management decisions regarding chemical and fertilizer applications, estimation of yield, 
and post harvest handling of stover (Pordesimo et al., 2004).Quantifying spatial variation in 
pasture and crop biomass can help to direct management practices and improve farm 
productivity, through accurate and informed movements of grazing rotations, crop and 
pasture nutrient management and also yield prediction (Trotter et al., 2008). Measurement 
of plant biomass by harvesting is destructive, expensive and time consuming (Reese et al., 
1980). de Matthaeis et al. (1995) used AIRSAR data collected over the agricultural fields to 
monitor biomass variation. They found that the L-band is more effective for crops with low 
plant density, while C-band is better for high plant density crops. 

4.1.1 Calculations 
The rice biomass (threshed rice plant without the grain) of three sampled areas, 4 m2 each, 
were collected and weighted. The moisture content (w.b.) of the threshed rice plant was 
estimated using standard method. The dry weight of the threshed rice plant was estimated 
and converted into the total biomass weight per ha i.e. (ton/ha). 

 Total biomass (ton/ha) = 10000(100 . .) .
12 1000

M C BiomassWt  


  (3) 

Where, 
Total biomass: Weight of rice plant (without rice grain) in ton/ha 
BiomassWt: Weight of threshed rice plant (without rice grain) 
M.C.: Moisture content of weighed rice plant (w.b.) 

Total oven-dried (Abdullah et al., 1992) biomass was ranged from 3.58 to 7.36 ton ha-1 for the 
different treatments (Table 4). Total dry biomass weight between the treatments showed 
significant differences at the 0.10 level but no significant difference between replicates. 
 

N Rate 
Treatment 

Replicate 
Average 

1 2 3 
0 kg ha-1 3.58 4.25 6.30 4.710 
33 kg ha-1 5.51 5.84 5.64 5.660 
66 kg ha-1 5.57 5.97 5.77 5.771 
99 kg ha-1 6.50 7.36 5.97 6.611 
132 kg ha-1 5.57 6.63 7.30 6.501 

Table 3. Total biomass (ton ha-1) of the experimental plots 

Linear calibrations curves were developed in SAS 9.1 to estimate the biomass from NDVI 
index values calculated from LARS images. From these results, NDVILARS could explain 76% 
of the variation in biomass weight (r2 = 0.760, RMSE = 0.598 ton ha-1, Figure 6). 
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pasture and crop biomass can help to direct management practices and improve farm 
productivity, through accurate and informed movements of grazing rotations, crop and 
pasture nutrient management and also yield prediction (Trotter et al., 2008). Measurement 
of plant biomass by harvesting is destructive, expensive and time consuming (Reese et al., 
1980). de Matthaeis et al. (1995) used AIRSAR data collected over the agricultural fields to 
monitor biomass variation. They found that the L-band is more effective for crops with low 
plant density, while C-band is better for high plant density crops. 

4.1.1 Calculations 
The rice biomass (threshed rice plant without the grain) of three sampled areas, 4 m2 each, 
were collected and weighted. The moisture content (w.b.) of the threshed rice plant was 
estimated using standard method. The dry weight of the threshed rice plant was estimated 
and converted into the total biomass weight per ha i.e. (ton/ha). 

 Total biomass (ton/ha) = 10000(100 . .) .
12 1000

M C BiomassWt  


  (3) 

Where, 
Total biomass: Weight of rice plant (without rice grain) in ton/ha 
BiomassWt: Weight of threshed rice plant (without rice grain) 
M.C.: Moisture content of weighed rice plant (w.b.) 

Total oven-dried (Abdullah et al., 1992) biomass was ranged from 3.58 to 7.36 ton ha-1 for the 
different treatments (Table 4). Total dry biomass weight between the treatments showed 
significant differences at the 0.10 level but no significant difference between replicates. 
 

N Rate 
Treatment 

Replicate 
Average 

1 2 3 
0 kg ha-1 3.58 4.25 6.30 4.710 
33 kg ha-1 5.51 5.84 5.64 5.660 
66 kg ha-1 5.57 5.97 5.77 5.771 
99 kg ha-1 6.50 7.36 5.97 6.611 
132 kg ha-1 5.57 6.63 7.30 6.501 

Table 3. Total biomass (ton ha-1) of the experimental plots 

Linear calibrations curves were developed in SAS 9.1 to estimate the biomass from NDVI 
index values calculated from LARS images. From these results, NDVILARS could explain 76% 
of the variation in biomass weight (r2 = 0.760, RMSE = 0.598 ton ha-1, Figure 6). 
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Fig. 6. Estimation of biomass with NDVILARS values 

4.2 Estimation of rice yield  
The rice crop was harvested from three sample areas of 4 m2 from each plot, 102 days after 
sowing for this experiment. The moisture content (% w.b.) at the time of weighing was 
estimated using a field moisture meter (Kett PM600, Ohta-Ku, Tokyo, Japan). The yield of 
each plot (100 m2 area) was estimated as the average of three sampled areas and converted 
to a ton-per-hectare area using the following equation. Rice yield was estimated at 14% 
moisture content (MC) for each treatment (Field crop report, 1998). 

 1 (100 ) 10000  (  )  
86 1000
MC RWYield ton ha

A
   


 

  (4) 

Where, 
MC = moisture content (% wet basis) 
RW = weight of rice (kg) 
A = harvested area (m2) 

Rice yield, ranged from as low as 1.88 ton ha-1 (0 kg ha-1 N) to 3.68 ton ha-1 (132 kg ha-1 N) 
based on a 14% MC, illustrates the effectiveness of the fertilizer treatment rates on rice yield 
(Table 4). The crop yield variation was also tested for statistical significance (Johnson and 
Bhattacharyya, 2001). Yield data between the treatments showed significant differences at 
the 0.10 and 0.05 levels, whereas differences were not significant among the replicates 
 
N Rate 
Treatment 

Replicate Average 1 2 3 
0 kg ha-1 1.88 1.97 1.64 1.83 
33 kg ha-1 2.13 2.87 3.28 2.76 
66 kg ha-1 2.78 2.70 3.44 2.97 
99 kg ha-1 2.37 3.85 3.52 3.25 
132 kg ha-1 3.52 3.36 3.68 3.52 

Table 4. Rice yield (ton ha-1) of the experimental plots 
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The regression model, developed for rice yield with NDVI index value in SAS 9.1, indicated 
a good fit (r2 = 0.728, RMSE = 0.458 ton ha-1, Figure 7). Variation among the replicates might 
be due to initial nutrient levels present in the soil from randomly selected plots.  
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Fig. 7. Estimation of rice yield with NDVILARS values. 

4.3 Estimation of protein content  
Protein content is one of the major food nutrients to determine quality of the food-grain. It 
could be measured as the total available nitrogen content in the food stuff (Kennedy, 1995). 
The rice was powdered and sieved before testing for total nitrogen with standard method. 
The linear model of total nitrogen against NDVILARS (with r2 = 0.591, Figure 8) showed 
positive relationships, and would be useful to the farmers, as they can get idea of quality of 
rice grain well in advance, at booting stage (from the image taken during booting stage).  

 
Fig. 8. Estimation of protein content with NDVILARS values. 
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Where, 
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Rice yield, ranged from as low as 1.88 ton ha-1 (0 kg ha-1 N) to 3.68 ton ha-1 (132 kg ha-1 N) 
based on a 14% MC, illustrates the effectiveness of the fertilizer treatment rates on rice yield 
(Table 4). The crop yield variation was also tested for statistical significance (Johnson and 
Bhattacharyya, 2001). Yield data between the treatments showed significant differences at 
the 0.10 and 0.05 levels, whereas differences were not significant among the replicates 
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The regression model, developed for rice yield with NDVI index value in SAS 9.1, indicated 
a good fit (r2 = 0.728, RMSE = 0.458 ton ha-1, Figure 7). Variation among the replicates might 
be due to initial nutrient levels present in the soil from randomly selected plots.  
 

 

y = 22.753x - 18.342 
2 R   = 0.7283 

RMSE = 0.4581 

0.00 

0.75 

1.50 

2.25 

3.00 

3.75 

4.50 

0.85 0.88 0.91 0.94 0.97 1 

Rep. 1 
Rep. 2 
Rep. 3 

NDVI    LARS

-1
 

Yi
el

d 
(to

ns
 h

a 
  )

 

 
Fig. 7. Estimation of rice yield with NDVILARS values. 

4.3 Estimation of protein content  
Protein content is one of the major food nutrients to determine quality of the food-grain. It 
could be measured as the total available nitrogen content in the food stuff (Kennedy, 1995). 
The rice was powdered and sieved before testing for total nitrogen with standard method. 
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positive relationships, and would be useful to the farmers, as they can get idea of quality of 
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4.4 Discussions 
The NDVI value, calculated from the LARS images collected for 65 days old crop, was 
suitable to estimate the total biomass (r2 = 0.760) and rice crop yield (r2 = 0.728). The protein 
content estimated through NDVI value was marginally suitable, capable to provide overall 
rice crop quality before-hand. The LARS system is suitable for real and near-real time crop 
parameter estimation, monitoring and evaluations. The NIR sensors can be substituted with 
any professional camera or cheap digital camera to optimize cost involved. The overall 
efficiency of the LARS system will be dependent on the sensors mounted on the helicopter. 
A skilled labor can easily handle the whole system with least supervision. The LARS not 
only replaces the satellite based image processing system but also ground level 
spectrophotometer, chlorophyll content measuring equipments. With little time, the system 
will be ready for taking images, for instance, just after rainfall.  

5. Field application of LARS systems 
Sugiura et al. (2007) mounted a thermal band camera on unmanned helicopter platform to 
estimate soil water status in paddy fields and correlation was obtained between the thermal 
image temperature and soil moisture content. The coefficient of determination (r2) for 
moisture content and temperature model at 10.00 a.m. and 3.00 p.m. were 0·69 and 0·64 
respectively (Figure 9).  

 
Fig. 9. Soil moisture content estimation with LARS images (Sugiura et al., 2007) 

The r2 between moisture content and difference in temperature was 0·42. The development 
was intended assisting in proper irrigation scheduling and monitoring water stressed 
situations for rain-fed cropping. Ishii et al. (2005) developed a system that can generate a 
map regarding crop status obtained by mounting an imaging sensor on an unmanned 
helicopter. They achieved an accuracy of 38 cm using RTK GPS receiver and GDS unit. The 
maps are accurate enough to be used for variable rate nutrients and pesticides application 
for the farmland.  
Lenthe et al. (2007) used unmanned helicopter based IR thermography imaging system as a 
tool for monitoring the microclimatic conditions promoting incidence and severity of 
diseases within wheat fields with a high spatial resolution. Zhou et al. (2009) used R44 
helicopter for aerial electrostatic spraying system. The results of the studies showed that 
electrostatic spraying with helicopters could produce uniform and fine droplets with better 
droplet adhesion and distribution, higher depositing efficiency, lower environmental 
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contamination; lower pesticide application rate and aerial spray can improve efficiency for 
prevention and cure pests in agriculture and forestry. 

6. Conclusions  
A radio-controlled helicopter-based LARS system can be used to acquire multispectral 
images over a rice canopy to estimate rice yield. The study indicated that the LARS platform 
could substitute for satellite-based and costly airborne remote sensing system. Images are 
obtained successfully by the multispectral camera mounted on the radio-controlled 
helicopter at a height of 20 m over rice plots. Rice yield and total biomass were found to be 
significantly different at the 0.05 and 0.1 significance levels, respectively, under different N 
treatment regimes. The relationship between NDVILARS and NDVISPECTRO (r2 = 0.897, RMSE 
= 0.012) shows  the applicability of LARS sensor-based images for estimating NDVI values, 
which varied over the five levels of applied N. A linear regression model shows a good fit 
(r2 = 0.728, RMSE = 0.458 ton ha-1) for estimating total biomass for rice using LARS image-
based NDVI values. A linear model (r2 = 0.760, RMSE = 0.598 ton ha-1) indicates that rice 
yield could also be predicted with NDVI values derived from LARS images. The protein 
content can be positively estimated well in advance to actual crop harvesting. The regression 
model procedure outlined herein can be followed for larger rice fields by recording crop 
input rates and acquiring LARS images. 
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1. Introduction  
There are a variety of approaches to estimate above ground biomass (AGB), which can be 
classified according to the data source being used (Koch and Dees, 2008): field 
measurement, remotely sensed data or ancillary data used in GIS-based modeling. Field 
measurements are based on destructive sampling or direct measurement and the application 
of allometric equations (Madgwick, 1994). Recently, remotely sensed data, from both 
passive and active sensors, have become an important data source for AGB estimation. In 
this chapter we will  focus on the use of optical multispectral data such as TM/ETM+ to 
estimate AGB.  Generally, biomass is either estimated via a direct relationship between 
spectral response and biomass using multiple regression, k-nearest neighbor, neural 
networks, inverse canopy models or through indirect relationships, whereby attributes 
estimated from the remotely sensed data, such as leaf area index (LAI), structure (crown 
closure and height) or shadow fraction are used in equations to estimate biomass (Wulder, 
1998). Here, we discuss the use of remote sensing data of moderate spatial resolution as 
input to estimate AGB. Research has demonstrated that it is more effective to generate 
relationships between field measurements and moderate spatial resolution remotely sensed 
data (e.g., LANDSAT), and then extrapolate these relationships over larger areas using 
comparable spectral properties from coarser spatial resolution imagery (e.g., MODIS) 
(Steininger, 2000; Lu, 2005; Phua and Saito, 2003; Foddy el al., 2003; Fazakas et al., 1999; Roy 
and Ravan, 1996; Zheng et al., 2004; Mickler et al., 2002). In general terms, LANDSAT TM 
and ETM+ data are the most widely used data of remotely sensed imagery for forest 
biomass estimation, but data from other moderate spatial resolution sensors have also been 
used, including ASTER and HYPERION data. In this chapter we present approaches that are 
currently being developed in Chile. Specifically, we introduce methods for the estimation of 
AGB using medium spatial resolution satellite imagery and digital elevation models. The 
main objective is to create, calibrate and validate such methods for applications. We 
developed an alternative approach in the estimation of AGB using LANDSAT ETM + 
imagery and SRTM digital elevation models as covariates for geostatistical modeling. From 
the spatial perspective, AGB data correspond to an array of points in space (x, y), while 
covariates correspond to a set of data that has a large number of samples in geographic 
space (extracted from each pixel), some of which having overlap with the available AGB  
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main objective is to create, calibrate and validate such methods for applications. We 
developed an alternative approach in the estimation of AGB using LANDSAT ETM + 
imagery and SRTM digital elevation models as covariates for geostatistical modeling. From 
the spatial perspective, AGB data correspond to an array of points in space (x, y), while 
covariates correspond to a set of data that has a large number of samples in geographic 
space (extracted from each pixel), some of which having overlap with the available AGB  
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data. The method can estimate the spatial variation of AGB at a stand or sub-stand level, 
and measure the uncertainty attached to the estimation,  depending on local conditions. 
These results are promising and demonstrate the feasibility of using this approach in the 
evaluation and monitoring of stock biomass or communal farm scale.  They are applicable to 
the actual landscape configuration of the country, open a series of new interest in research 
and development, and constitute a novel way to solve the problem of assessing biomass 
stocks. 

2. Multispectral data for forest biomass estimation 
Some remote sensing studies using LANDSAT TM/ETM + imagery have focused on 
estimating the forest attributes through correlation or regression analysis with the spectral 
response obtained from the images. The estimated attributes may include basal area, AGB, 
canopy closure, diameter at breast height (DBH), tree height, stand density, and leaf area 
index (LAI) (Franklin, 1986; Horler and Ahern, 1986; Peterson et al., 1986 and 1987; Lathrop 
and Pierce, 1991; Ardo, 1992; Curran et al., 1992; Cohen and Spies, 1992; Gemmell, 1995; 
Kimes et al., 1996; Trotter et al., 1997; Turner et al., 1999; Eklundh et al., 2001; Lu et al., 2004; 
Hall et al., 2006). One of the methods used to estimate attributes of forests from LANDSAT 
imagery is the direct correlation with radiometric values where regression relationships can 
be calculated between spectral bands, band ratios or vegetation indices (Franklin, 1986; Roy 
and Ravan, 1996; Jakubauskas and Price, 1997; Foody et al., 2003; Labrecque et al., 2006). The 
most used way to perform this kind of method is by applying stepwise forward variable 
selection. Table 1 summarizes some studies using this method in several countries. 
Some of the advantages of using remotely sensed data are through the provision of a 
synoptic view of the study zone, capturing the spatial variability in the attributes of interest 
such as biomass, dominant height or crown closure (Zhen et al., 2007). Remotely sensed data 
can also be used to fill spatial and temporal gaps in forest inventory attributional data, 
improving estimates of forest biomass and carbon stocks, which can done for large areas as 
they are not limited by the extend of forest inventories (Birdsay, 2004; Fournier et al., 2003). 
However, the complicated vegetation stand structures in mature forest and in advanced 
successional forests often  make the results less accurate given similar TM reflectance even if 
the above ground biomass varies significantly. This disadvantage is often called data 
saturation. For instance, in Manaus (Brazil) the canopy reflectance of tropical secondary 
successional forests saturated when AGB approached about 15 kg m-2 or vegetation age 
reached over 15 years (Steininger, 2000). Nelson et al. (2000) analyzed secondary forest age 
and AGB estimation using Landsat TM data and found that AGB cannot be reliably 
estimated without the inclusion of secondary forest age. The main approach to overcome 
this problem is to include further co-variables independent to reflectance values. 
The k-NN method has become popular for forest inventory mapping and applications of 
estimation over the last years (McRoberts et al., 2007; McRoberts and Tomppo, 2007; Bafetta 
et al., 2009; Tomppo et al., 2009; Maselli et al., 2005; Tomppo and Halme, 2004; Thessler et 
al., 2008). The basic idea of this method is to estimate a target attribute of an object, i.e. AGB, 
using its similarity to objects with known attributes. Its application has focused on 
estimating continuous variables such as size, age, height, basal area, mean DBH, standing 
volume, and leaf area (Tomppo et al., 2009; McRoberts et al., 2007; Bertini et al, 2007; 
Tomppo and Halme, 2004).  
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Sensor Study area Estimation method References 

TM 5 Manaos, Brazil Lineal and exponential 
regression Steininger (2000) 

TM 5 Pará state and Rondônia, 
Brazil Multiple regression Lu (2005) 

TM 5 Sabah, Malaysia Exponential regression Phua and Saito 
(2003) 

TM 4 and 
5 

Manaos, Brazil; Danum 
Valley, Malaysia; Khun 

Kong, Thailand 

Multiple regression and 
neural network analysis Foddy el al.(2003) 

TM 5 Sweden K nearest neighbor (k-NN) Fazakas et al. (1999) 

TM 5 Madhav National Park, 
India Multiple regression Roy and Ravan 

(1996) 
ETM+ Wisconsin, USA Multiple regression Zheng et al. (2004) 
ETM+ Southwest USA PnET  productivity model Mickler et al. (2002) 

Table 1. Examples of methods using LANDSAT data for estimation of forest biomass.  

3. Estimation of biomass in Chilean forests 
Estimation studies of forest biomass in Chile began to appear in the late 80's, primary for 
plantation of Pinus radiata (Caldentey, 1989) and, subsequently, for some local native species 
(Caldentey, 1995; Garfias, 1994; Herrera and Waisberg, 2002; Schlegel, 2001; Schmidt et al., 
2009).  In native forest, the background data is limited. The estimation method to be applied 
depends to the forest composition, structure and site variability. Natural forests are highly 
variable in the these attributes (Donoso, 1993; Gajardo, 1994; Luebert and Pliscoff, 2006) while 
plantations have less variation because they are monospecific and grow under intensive 
management regimes, designed to standardize the size and the quality of all trees (Lewis and 
Ferguson, 1993; Lavery, 1986; Gerding, 1991; Toro and Gessel, 1999). Secondary native forests, 
especially those dominated by the genus Nothofagus, have an intermediate degree of variation 
and heterogeneity (Donoso, 1981; Donoso, 1993; FIA, 2001). Traditionally, AGB estimation 
methods are based on sampling methods designed to assess standing timber (Husch et al., 
1993; Anuchin, 1960; Bitterlich, 1984, Avery and Burkhart, 1994; Loetsch et al., 1973; Prodan et 
al., 1997). There is no reason for a different design because the volume/biomass ratio is 
relatively constant mainly depending on wood density. For the same reason, existing 
inventory plots can be used to estimate AGB directly. The AGB estimation method, which is 
usually performed for trees larger than 5 cm in diameter at breast height (DBH) and the 
understory is not included, should be done  taking the following steps: 
a. Estimate AGB at individual tree level. Given the high cost of measuring the biomass 

into its components (stem, bark, branches and leaves) it is preferable to use existing 
allometric equations for biomass by species and component. These equations depend on 
easy-to-measure state variables (i.e. DBH and height (H) ) and allow estimating AGB in 
similar trees within the stand (Keith et al., 2000; Wang, 2006; Baker et al., 1984; Ares and 
Braener, 2005; Zewdie et al., 2009; Ketterings et al., 2001). The biomass components are 
estimated based on basic density samples (dry weight / green volume) multiplied by 
the total volume of the component (Keith et al., 2000; Steininger, 2000; Ishii and Tatedo, 
2004; Hall et al., 2006). All these functions have the following generic form: 
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can also be used to fill spatial and temporal gaps in forest inventory attributional data, 
improving estimates of forest biomass and carbon stocks, which can done for large areas as 
they are not limited by the extend of forest inventories (Birdsay, 2004; Fournier et al., 2003). 
However, the complicated vegetation stand structures in mature forest and in advanced 
successional forests often  make the results less accurate given similar TM reflectance even if 
the above ground biomass varies significantly. This disadvantage is often called data 
saturation. For instance, in Manaus (Brazil) the canopy reflectance of tropical secondary 
successional forests saturated when AGB approached about 15 kg m-2 or vegetation age 
reached over 15 years (Steininger, 2000). Nelson et al. (2000) analyzed secondary forest age 
and AGB estimation using Landsat TM data and found that AGB cannot be reliably 
estimated without the inclusion of secondary forest age. The main approach to overcome 
this problem is to include further co-variables independent to reflectance values. 
The k-NN method has become popular for forest inventory mapping and applications of 
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al., 2008). The basic idea of this method is to estimate a target attribute of an object, i.e. AGB, 
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estimating continuous variables such as size, age, height, basal area, mean DBH, standing 
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inventory plots can be used to estimate AGB directly. The AGB estimation method, which is 
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understory is not included, should be done  taking the following steps: 
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into its components (stem, bark, branches and leaves) it is preferable to use existing 
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c
i i i i iB f(DBH ,H ,S )    

where: 
c
iB            is the biomass of component c in the  ith tree  

iDBH      is the diameter at breast height of the  ith tree   

iH          is the total height for the ith tree  

iS            is an estimator of the sound/dead biomass proportion of the ith tree 

i             is the regression error of the ith tree 

(1) 

b. Estimation of AGB for areal units. To this end, one has to use sampling plots within the 
target units and then their statistics as the estimates. In order for this to work properly, 
it is necessary to measure DBH, species and some health variable of the tree (usually 
subjective). In natural forests, due to the high variability for trees having the same DBH 
range, it is better make measurements of H and S in order to improve the precision of 
the results. In plantations (more homogeneous forests) the same can be made by 
applying a subsample for H and then to estimate the rest using a regression model for 
H as a function of the DBH. 

The estimated AGB at plot level has the following generic form: 

jn
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where: 
c
jB   is the biomass of the component c for the jth plot (ton/ha) 

jn      is the number of trees in the jth plot  

jF     is the hectare expansion factor for the jth plot  

(2) 

c. Estimation of biomass at the stand, local, regional or national levels. The scales of 
interest for estimating AGB ranges from stand up to national levels according to the 
scale of the project. From stand level estimations the other aggregation levels can easily 
be archived by simply adding other stands estimation into the calculation. The biomass 
estimate at stand level has the following generic form:  

m
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   

 where: 
c
rB        is the biomass of the component c for the rth stand (ton) 

 a          is the total area of the stand (ha) 
m         is the number of plots within a the stand

(3) 

The use of optical satellite and topography data as auxiliary variables (covariables) allow the 
accuracy of AGB estimations to improve because they are based on their spatial covariation 
to field data by applying geostatistical interpolation. Using topographic data, the AGB 
variation is scaled to the actual values for that area, and then, AGB can be obtained by 
overlaying any available administrative division (stands, sites or districts). 
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Fig. 1. Alternative AGB estimation based on the type of the available data. 

According to the available data one can use different methods to estimate AGB (Figure 
1).If data are traditional forest inventory plots, estimates should be made by using 
traditional statistical parameters for total and average quantities, which don´t give any 
explicit information about the spatial variability of forest attributes. If data are 
georeferenced, distributed in such a way that they represent the whole territory of 
interest, then a spatial interpolation method, such as inverse distance interpolation or 
kriging, can be applied. The former approach has the advantage of being an unbiased 
probabilistic method where the degree of confidence (accuracy) can be calculated. The 
basic assumption behind kriging interpolation is that the spatial dependence models 
described in variograms assume the behavior of a regionalized variable, which is not 
necessarily true in reality and should be proved. On the other hand, if it is possible to 
have other variables (covariates), which besides being cheaper to obtained, are spatially 
well correlated to the variable of interest (AGB), then they can used to somehow correct 
the weakness of kriging by accounting for spatial discontinuities or irregularities found in 
nature (Coulston, 2008). 

3.1 Native forest description 
Chilean forests cover an area of 15.6 million hectares (20.7% of the national territory), of 
which 13.4 million hectares are natural forests (85.9% of the forested area). Currently 3.6 
million hectares of forest are secondary forests (CONAF et al., 1999). Mixed forest of 
Nothofagus obliqua, Nothofagus alpina and Nothofagus dombeyi are one of the most important 
forest types in the country and cover 1.5 million hectares (12.2% of the total native forest). 
The genus Nothofagus has ten species that have a high economic value because of the quality 
of their wood. These Nothofagus forests area concentrated between 36° 30' S and 40° 30' S and 
between 100 and 1,000 m a.m.s.l. in Central Chile. They are present in both mountain ranges, 
costal and the Andes, where N. obliqua occupies the lowest areas (between 100 and 600 m, 
approximately), N. alpina intermediate ones (between 600 and 900 m) and N. dombeyi the 
highest (between 900 and 1,000 m), resulting in overlap ecotones with pure and mixed 
formations (CONAF et al., 1999; Donoso, 1981; Gajardo 1994). The main secondary species in 
these mixed Nothogafus second growth forest are Aextoxicon punctatum, Genuine avellana, 
Laurelia sempervirens, Persea lingue and Eucryphia cordifolia (Donoso, 1981). Today, a major 
part of these forests exhibit some state of degradation or have some form of human 
perturbation (Donoso, 1981; Gajardo, 1994). Nevertheless, they have a high productive 
potential and they need to be managed to improve their current condition. Usually, the 
quantification of these resources is done by applying volume tables or biomass functions, 
but these biomass functions rarely exist for native species and have only local applications 
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(Caldentey, 1995; Donoso et al., 2010; Garfias, 1994; Gayoso et al., 2002; Herrera and 
Waisberg, 2002; Sáez, 1991; Schlegel, 2001, Schmidt et al., 2009) (see Table 2). For native 
species, the biomass estimation methods most used in Chile are regression or allometry for 
the average tree (see section 3.0). In recent years, further attention has been paid in less 
expensive methods to assess AGB in native forests, based on remote sensing data and 
spatially explicit methods (Peña, 2007; Valdez et al., 2006). 

3.2 Plantation description 
In Chile, forest plantations are the main supply source of industrial raw material, with a 
total of near 40 million cubic meters. Pinus radiata D. Don is the main commercial species 
behind these massive commercial activities, with 80% of participation, followed by 
eucalyptus with 20% participation (CORMA, 2011). The plantations are concentrated in 
the central coastal area of Chile, between latitude 32 º S and 42 º S (Figure 2), covering a 
wide range of soils types (Schlatter, 1977; Schlatter and Gerding, 1984), environmental 
conditions (Fuenzalida, 1965; Madgwick, 1994) and silvicultural management regimes 
(Lewis and Ferguson, 1993; Lavery, 1986; Gerding, 1991). The land ownership structure is 
highly concentrated in two large forestry companies, which together owned 53% of the 
total planted area (CNE, GTZ / INFOR, 2008; Leyton, 2009), and the problem of 
quantifying wood supply has been primarily addressed by the private sector. Therefore, 
little public information exists on the area, location, age, species and management regime of  
plantations (CORMA, 2011). In contrast, the private sector has a large network of forest 
inventory information and has built growth simulators for the main species for different 
areas (i.e. Radiata and Eucasim models), types of site and management schemes and 
bucking (Fundación Chile, 2005; Morales et al., 1979). Some studies on the availability of 
wood for the forest industry (CORMA, 2011), carbon sequestration by plantations 
(Gilabert et al., 2010), AGB stocks for energy projects (INFOR, 2010, CNE / GTZ / INFOR, 
2008) have been made by combining regional forest inventory data and these simulation 
models.  
 
Chile 
Region Forest Type AGB 

(Mg/ha) Author 

VIII N. alpina second growth forest 104 Garfias, 1994 
X Evergreen 194 to  663 Schlegel, 2001 

X Mixed N. obliqua, N. alpina and  
N. dombeyi 285 Herrera and Waisberg, 

2002 
XII Nothofagus pumilio 380 to 447 Caldentey, 1995 

Table 2. Above ground biomass of different types of forest and locality. 

4. Remote sensing based biomass estimation 
4.1 Description of the study areas and field data collection 
We consider four study areas, two predominantly plantations (pine and eucalyptus) and 
two covered with mostly second growth Chilean oaks: Nothofagus obliqua, Nothofagus alpina 
and Nothofagus dombeyi. In both cases, one of the areas has a farm spatial scale and the other 
a municipality level (Table 3). Figure 2 shows the geographic location of the four areas of 
study. 
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Forest type Study area Ha Description 

Plantations 
Pantanillos 400 Mainly Pinus radiata and few Eucaliptus 

globulus stands, both at different ages 
with intensive management. Quivolgo 20 000 

Native, 
secondary 
forest 

Monte Oscuro 1 600 
Mainly N. obliqua with several secondary 

tolerant species and informal 
management. 

Curacautín 20 000 
Mixed of N. obliqua, N.Alpina, N. dombeyi 

at different ages and without 
management. 

Table 3. Description of the study areas 

We used a random sampling design and concentric circular sampling units (8m radius). All 
the data were collected in summer 2010 and the total size of the sampling was 348 plots, with 
an average sampling intensity of one sampling units every 63.2 hectares. Each selected tree 
was measured for DBH and one out of three for total height (H). For young plantations where 
understory foliage did not allow seeing trees at DBH we used circular plots with a radius of 
5.65 m. In plantations stands where individuals grew in clusters - coppice type - we counted 
the number of individuals per unit and DBH and H was measured for the smaller and bigger 
trees. Biomass calculations were performed using the methods presented in Section 3. 

4.2 Methods 
4.2.1 ETM+ and SRTM data acquisition and preprocessing  
LANDSAT ETM + images were obtained from the Earth Explorer Web site of the United 
States Geological Survey (USGS). Additionally, the SRTM digital elevation model (90 m) 
was freely downloaded from the site Earth Explorer. Bands ETM+ 1, 2, 3, 4, 5 and 7 were 
grouped into a single file and then projected to WGS84 UTM 18 South or 19 South, 
according to the area to which they correspond. Subsequently, there were a series of 
preprocessing steps as detailed below: 
a. SLC-off Correction: The images acquired after 2003 have missing data due to 

malfunction of an instrument called Scan Line Corrector (Figure 3). This so-called SLC-
off error was corrected using ENVIRM software application, which fits the flaw by using 
two images with the error in different areas, i.e. non-overlapping. Interpolation is 
performed considering the local histogram of the two images. 

b. Geometric Correction: The images were rectified using Chilean regular cartography 
1:50.000 with at least 30 control points per image and a root mean square error less than 
30 m was achieved. 

c. Radiometric corrections: Standard radiometric corrections were applied on all images to 
reduce the atmospheric effect following the method proposed by Chavez (1996), and for 
the topographic the one proposed by Riaño et al. (2003). 

Once ETM+ and SRTM were co-registered, several variables were then derived: 
a. Normalized Difference Vegetation Index or NDVI (Tucker, 1979).  
b. Tasseled Cap bands: Brightness (TC1), Greenness (TC2) and Wetness (TC3). The other 

three components (TC4, TC5 and TC6) do not have a direct biophysical interpretation 
but were also calculated to take into account the complete data variation.  

c. Slope, Aspect and Altitude were directly calculated from SRTM data. 
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(Caldentey, 1995; Donoso et al., 2010; Garfias, 1994; Gayoso et al., 2002; Herrera and 
Waisberg, 2002; Sáez, 1991; Schlegel, 2001, Schmidt et al., 2009) (see Table 2). For native 
species, the biomass estimation methods most used in Chile are regression or allometry for 
the average tree (see section 3.0). In recent years, further attention has been paid in less 
expensive methods to assess AGB in native forests, based on remote sensing data and 
spatially explicit methods (Peña, 2007; Valdez et al., 2006). 

3.2 Plantation description 
In Chile, forest plantations are the main supply source of industrial raw material, with a 
total of near 40 million cubic meters. Pinus radiata D. Don is the main commercial species 
behind these massive commercial activities, with 80% of participation, followed by 
eucalyptus with 20% participation (CORMA, 2011). The plantations are concentrated in 
the central coastal area of Chile, between latitude 32 º S and 42 º S (Figure 2), covering a 
wide range of soils types (Schlatter, 1977; Schlatter and Gerding, 1984), environmental 
conditions (Fuenzalida, 1965; Madgwick, 1994) and silvicultural management regimes 
(Lewis and Ferguson, 1993; Lavery, 1986; Gerding, 1991). The land ownership structure is 
highly concentrated in two large forestry companies, which together owned 53% of the 
total planted area (CNE, GTZ / INFOR, 2008; Leyton, 2009), and the problem of 
quantifying wood supply has been primarily addressed by the private sector. Therefore, 
little public information exists on the area, location, age, species and management regime of  
plantations (CORMA, 2011). In contrast, the private sector has a large network of forest 
inventory information and has built growth simulators for the main species for different 
areas (i.e. Radiata and Eucasim models), types of site and management schemes and 
bucking (Fundación Chile, 2005; Morales et al., 1979). Some studies on the availability of 
wood for the forest industry (CORMA, 2011), carbon sequestration by plantations 
(Gilabert et al., 2010), AGB stocks for energy projects (INFOR, 2010, CNE / GTZ / INFOR, 
2008) have been made by combining regional forest inventory data and these simulation 
models.  
 
Chile 
Region Forest Type AGB 

(Mg/ha) Author 

VIII N. alpina second growth forest 104 Garfias, 1994 
X Evergreen 194 to  663 Schlegel, 2001 

X Mixed N. obliqua, N. alpina and  
N. dombeyi 285 Herrera and Waisberg, 

2002 
XII Nothofagus pumilio 380 to 447 Caldentey, 1995 

Table 2. Above ground biomass of different types of forest and locality. 

4. Remote sensing based biomass estimation 
4.1 Description of the study areas and field data collection 
We consider four study areas, two predominantly plantations (pine and eucalyptus) and 
two covered with mostly second growth Chilean oaks: Nothofagus obliqua, Nothofagus alpina 
and Nothofagus dombeyi. In both cases, one of the areas has a farm spatial scale and the other 
a municipality level (Table 3). Figure 2 shows the geographic location of the four areas of 
study. 
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Forest type Study area Ha Description 

Plantations 
Pantanillos 400 Mainly Pinus radiata and few Eucaliptus 

globulus stands, both at different ages 
with intensive management. Quivolgo 20 000 

Native, 
secondary 
forest 

Monte Oscuro 1 600 
Mainly N. obliqua with several secondary 

tolerant species and informal 
management. 

Curacautín 20 000 
Mixed of N. obliqua, N.Alpina, N. dombeyi 

at different ages and without 
management. 

Table 3. Description of the study areas 

We used a random sampling design and concentric circular sampling units (8m radius). All 
the data were collected in summer 2010 and the total size of the sampling was 348 plots, with 
an average sampling intensity of one sampling units every 63.2 hectares. Each selected tree 
was measured for DBH and one out of three for total height (H). For young plantations where 
understory foliage did not allow seeing trees at DBH we used circular plots with a radius of 
5.65 m. In plantations stands where individuals grew in clusters - coppice type - we counted 
the number of individuals per unit and DBH and H was measured for the smaller and bigger 
trees. Biomass calculations were performed using the methods presented in Section 3. 

4.2 Methods 
4.2.1 ETM+ and SRTM data acquisition and preprocessing  
LANDSAT ETM + images were obtained from the Earth Explorer Web site of the United 
States Geological Survey (USGS). Additionally, the SRTM digital elevation model (90 m) 
was freely downloaded from the site Earth Explorer. Bands ETM+ 1, 2, 3, 4, 5 and 7 were 
grouped into a single file and then projected to WGS84 UTM 18 South or 19 South, 
according to the area to which they correspond. Subsequently, there were a series of 
preprocessing steps as detailed below: 
a. SLC-off Correction: The images acquired after 2003 have missing data due to 

malfunction of an instrument called Scan Line Corrector (Figure 3). This so-called SLC-
off error was corrected using ENVIRM software application, which fits the flaw by using 
two images with the error in different areas, i.e. non-overlapping. Interpolation is 
performed considering the local histogram of the two images. 

b. Geometric Correction: The images were rectified using Chilean regular cartography 
1:50.000 with at least 30 control points per image and a root mean square error less than 
30 m was achieved. 

c. Radiometric corrections: Standard radiometric corrections were applied on all images to 
reduce the atmospheric effect following the method proposed by Chavez (1996), and for 
the topographic the one proposed by Riaño et al. (2003). 

Once ETM+ and SRTM were co-registered, several variables were then derived: 
a. Normalized Difference Vegetation Index or NDVI (Tucker, 1979).  
b. Tasseled Cap bands: Brightness (TC1), Greenness (TC2) and Wetness (TC3). The other 

three components (TC4, TC5 and TC6) do not have a direct biophysical interpretation 
but were also calculated to take into account the complete data variation.  

c. Slope, Aspect and Altitude were directly calculated from SRTM data. 
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Fig. 2. Forest resources in Chile and geographical location of the study areas.  
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Fig. 3. LANDSAT ETM+ SLC-off Correction. Left: before, with the uncorrected data, right: 
after with the multidate correction.   

4.2.2 Data integration 
The integration of all layers of information was carried out in GIS environment (ArcGIS 
9.3RM) and grouped into four classes: 
a. Field data, which contain the observed AGB (target variable) and its coordinates. 
b. ETM spectral bands, excluding the thermal band, plus their derivatives: NDVI and 

Tasseled Cap components (covariates). 
c. Topographic information derived from SRTM data: elevation, slope, and orientation 

(covariates). 
d. Vector files with property boundaries, stands, and base cartography support, which are 

useful in the stratification of the results and administrative aggregation. 
For each of the four study areas a database was generated, which was used subsequently in 
the geostatistical analysis. Data were treated as point processes or count variables in the bi-
dimensional space. Each set of field data is associated with a specific geographical area, for 
which all values to a resolution of 16 or 30 meters were considered in a comprehensive 
manner. Figure 4 shows the general methodological approach and the generic structure of 
the databases for each area. 
From here and for the remaining sections, we considered biomass and all covariates 
mentioned above as regionalized variables to be able to follow the formality of geostatistical 
analysis. First, we performed a variogram analysis with the aim of studying the spatial 
autocorrelation of biomass and its spatial dependence with covariates. The result is a set of 
spatial models called variograms for the variable of interest (biomass) and the covariates. In 
all cases, we analyzed the anisotropy of the models, incorporating it explicitly in subsequent 
interpolations whenever possible. The variograms were used in the spatial estimation of 
biomass via cokriging. The exploratory analysis and modeling process were performed 
using IsatisRM geostatistical software and MatlabRM environment.  
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4.2.2 Data integration 
The integration of all layers of information was carried out in GIS environment (ArcGIS 
9.3RM) and grouped into four classes: 
a. Field data, which contain the observed AGB (target variable) and its coordinates. 
b. ETM spectral bands, excluding the thermal band, plus their derivatives: NDVI and 

Tasseled Cap components (covariates). 
c. Topographic information derived from SRTM data: elevation, slope, and orientation 

(covariates). 
d. Vector files with property boundaries, stands, and base cartography support, which are 

useful in the stratification of the results and administrative aggregation. 
For each of the four study areas a database was generated, which was used subsequently in 
the geostatistical analysis. Data were treated as point processes or count variables in the bi-
dimensional space. Each set of field data is associated with a specific geographical area, for 
which all values to a resolution of 16 or 30 meters were considered in a comprehensive 
manner. Figure 4 shows the general methodological approach and the generic structure of 
the databases for each area. 
From here and for the remaining sections, we considered biomass and all covariates 
mentioned above as regionalized variables to be able to follow the formality of geostatistical 
analysis. First, we performed a variogram analysis with the aim of studying the spatial 
autocorrelation of biomass and its spatial dependence with covariates. The result is a set of 
spatial models called variograms for the variable of interest (biomass) and the covariates. In 
all cases, we analyzed the anisotropy of the models, incorporating it explicitly in subsequent 
interpolations whenever possible. The variograms were used in the spatial estimation of 
biomass via cokriging. The exploratory analysis and modeling process were performed 
using IsatisRM geostatistical software and MatlabRM environment.  
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Fig. 4. Methodological framework for the integration of information and preparation of files 
for geostatistical analysis.  

4.2.3 Variogram analysis 
The values of a regionalized variable such as biomass are not independent, in the sense that 
the value observed in a site provides information about the values of neighboring sites (i.e. 
one is more likely to find a high value of biomass near other high values). In the 
geostatistical interpretation of the regionalized variable this intuitive notion of dependence 
is described by the formulation of random functions, which model the way the values 
observed in different sites relate to each other by a multivariate probability distribution. 
The moment of order 1 of a random function (expected value or mean) involves a single 
spatial position and does not actually deliver information on spatial dependence. In 
contrast, the moments of order 2 (especially, the variogram) are defined with the help of two 
spatial positions, i.e. the smallest set that can be considered to describe the spatial 
"interaction" between values. These are the moments that give a basic description and 
operations of the spatial continuity of the regionalized variable.  
Variogram analysis consists in calculating an experimental variogram from the available 
data, and subsequently fitting a theoretical variogram model. The experimental variogram 
measures the mean squared deviation between pairs of data values, as a function of the 
separation vector (distance and orientation) between the two data. The characteristics of this 
variogram are related to the characteristics of the regionalized variable (Isaaks and 
Srivastava, 1989; Chilès and Delfiner, 1999), in particular: 
a. The behavior of the variogram near the origin reflects the short-scale variability of the 

variable. 
b. The increase of the variogram reflects the loss of spatial correlation with the separation 

vector. It may depend on the direction of this vector, indicating the existence of 
directions with greater spatial continuity than others (anisotropy). 

c. The range of correlation, for which the variogram reaches a sill (plateau), indicates the 
distance at which two data do no longer have any correlation. 

In practice, the anisotropy can be identified by comparing experimental variograms 
calculated along various directions of space, for example oriented 0°, 45°, 90° and 135° with 
respect to the x-axis. Often, this test is completed by drawing a “variogram map”. When 
there is isotropy, the experimental variograms in different directions overlap and concentric 
circles are drawn in the variogram map. Otherwise, one may distinguish geometric 
anisotropies, in which the variogram map draws concentric ellipses; in such a case, the 
modeling rests upon the experimental variograms along the main anisotropy axes, which 
correspond to the axes of the ellipses. 
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Once calculated, the experimental variogram is fitted with a theoretical model, which 
usually consists of a set of basic nested structures with different shapes, sills and/or ranges 
(Gringarten and Deutsch, 2001). Examples of basic structures include the nugget effect 
(discontinuous component), as well as the spherical, exponential, cubic, Gaussian and 
power models (Chilès and Delfiner, 1999). 
In the multivariate case, one has to calculate the experimental variogram of each variable 
(direct variogram), as well as the cross-variograms between each pair of variables, which 
measure the spatial correlation structure of the set of coregionalized variables. The fitting of 
a nested structure model is subject to mathematical constraints, reason for which one 
usually resorts to automatic or semi-automatic fitting algorithms (Wackernagel, 2003). 

4.2.4 Interpolation by kriging 
Kriging aims at estimating the value of the regionalized variable (here, AGB) at a position 
with no data, as accurately as possible, using the data available in other positions. It is 
structured according to the following steps: 
a. Linearity constraint: The estimator must be a linear combination (i.e., a weighted 

average) of the data. 
b. Unbiasedness constraint: This step expresses that the expected error is zero: if one 

considers a large number of identical kriging configurations, the average estimation 
error approaches zero. The absence of bias does not guarantee that errors are small, 
only that they cancel out on average. 

c. Optimality constraint: according to the above steps, the estimator is subject to one or 
more constraints but is not fully specified. The last step consists in minimizing the 
estimation error variance, which measures the dispersion of the error around its zero 
mean, therefore the uncertainty in the true unknown value. Intuitively, this restriction 
means that if a large number of identical kriging configurations are considered, the 
statistical variance of the estimation errors is as small as possible. In addition to the 
estimated value, one can also calculate this minimal estimation error variance, known 
as the “kriging variance”. 

The weighting of the data depends on the spatial continuity of the regionalized variable, as 
modeled by the variogram, and on the spatial configuration of the data and location to 
estimate. In general, closer data receive larger weights than data located far from the target 
location, but this may be counterbalanced by other effects. For instance, data that are 
clustered in space tend to convey redundant information and may therefore receive small 
weights; data located along directions of little spatial continuity (with a small variogram 
range) may also be underweighted with respect to data located along directions of greater 
continuity. 
There exist many variants of kriging, depending on the assumptions about the first-order 
moment or mean value (in particular, whether it is known or not, constant in space or not) 
and on the areal support of the value to estimate (“point” support identical to that of the 
data, or “block” support larger than that of the data) (Chilès and Delfiner, 1999). The 
multivariate extension of kriging is known as cokriging, which makes use not only of the 
data of the variable to estimate (primary variable), but also of covariates that are cross-
correlated with this primary variable (Wackernagel et al., 2002). The determination of 
cokriging weights and of the error variance relies on the set of modeled direct and cross 
variograms (Wackernagel, 2003). 
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4.2.3 Variogram analysis 
The values of a regionalized variable such as biomass are not independent, in the sense that 
the value observed in a site provides information about the values of neighboring sites (i.e. 
one is more likely to find a high value of biomass near other high values). In the 
geostatistical interpretation of the regionalized variable this intuitive notion of dependence 
is described by the formulation of random functions, which model the way the values 
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contrast, the moments of order 2 (especially, the variogram) are defined with the help of two 
spatial positions, i.e. the smallest set that can be considered to describe the spatial 
"interaction" between values. These are the moments that give a basic description and 
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Variogram analysis consists in calculating an experimental variogram from the available 
data, and subsequently fitting a theoretical variogram model. The experimental variogram 
measures the mean squared deviation between pairs of data values, as a function of the 
separation vector (distance and orientation) between the two data. The characteristics of this 
variogram are related to the characteristics of the regionalized variable (Isaaks and 
Srivastava, 1989; Chilès and Delfiner, 1999), in particular: 
a. The behavior of the variogram near the origin reflects the short-scale variability of the 

variable. 
b. The increase of the variogram reflects the loss of spatial correlation with the separation 

vector. It may depend on the direction of this vector, indicating the existence of 
directions with greater spatial continuity than others (anisotropy). 

c. The range of correlation, for which the variogram reaches a sill (plateau), indicates the 
distance at which two data do no longer have any correlation. 

In practice, the anisotropy can be identified by comparing experimental variograms 
calculated along various directions of space, for example oriented 0°, 45°, 90° and 135° with 
respect to the x-axis. Often, this test is completed by drawing a “variogram map”. When 
there is isotropy, the experimental variograms in different directions overlap and concentric 
circles are drawn in the variogram map. Otherwise, one may distinguish geometric 
anisotropies, in which the variogram map draws concentric ellipses; in such a case, the 
modeling rests upon the experimental variograms along the main anisotropy axes, which 
correspond to the axes of the ellipses. 
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Once calculated, the experimental variogram is fitted with a theoretical model, which 
usually consists of a set of basic nested structures with different shapes, sills and/or ranges 
(Gringarten and Deutsch, 2001). Examples of basic structures include the nugget effect 
(discontinuous component), as well as the spherical, exponential, cubic, Gaussian and 
power models (Chilès and Delfiner, 1999). 
In the multivariate case, one has to calculate the experimental variogram of each variable 
(direct variogram), as well as the cross-variograms between each pair of variables, which 
measure the spatial correlation structure of the set of coregionalized variables. The fitting of 
a nested structure model is subject to mathematical constraints, reason for which one 
usually resorts to automatic or semi-automatic fitting algorithms (Wackernagel, 2003). 

4.2.4 Interpolation by kriging 
Kriging aims at estimating the value of the regionalized variable (here, AGB) at a position 
with no data, as accurately as possible, using the data available in other positions. It is 
structured according to the following steps: 
a. Linearity constraint: The estimator must be a linear combination (i.e., a weighted 

average) of the data. 
b. Unbiasedness constraint: This step expresses that the expected error is zero: if one 

considers a large number of identical kriging configurations, the average estimation 
error approaches zero. The absence of bias does not guarantee that errors are small, 
only that they cancel out on average. 

c. Optimality constraint: according to the above steps, the estimator is subject to one or 
more constraints but is not fully specified. The last step consists in minimizing the 
estimation error variance, which measures the dispersion of the error around its zero 
mean, therefore the uncertainty in the true unknown value. Intuitively, this restriction 
means that if a large number of identical kriging configurations are considered, the 
statistical variance of the estimation errors is as small as possible. In addition to the 
estimated value, one can also calculate this minimal estimation error variance, known 
as the “kriging variance”. 

The weighting of the data depends on the spatial continuity of the regionalized variable, as 
modeled by the variogram, and on the spatial configuration of the data and location to 
estimate. In general, closer data receive larger weights than data located far from the target 
location, but this may be counterbalanced by other effects. For instance, data that are 
clustered in space tend to convey redundant information and may therefore receive small 
weights; data located along directions of little spatial continuity (with a small variogram 
range) may also be underweighted with respect to data located along directions of greater 
continuity. 
There exist many variants of kriging, depending on the assumptions about the first-order 
moment or mean value (in particular, whether it is known or not, constant in space or not) 
and on the areal support of the value to estimate (“point” support identical to that of the 
data, or “block” support larger than that of the data) (Chilès and Delfiner, 1999). The 
multivariate extension of kriging is known as cokriging, which makes use not only of the 
data of the variable to estimate (primary variable), but also of covariates that are cross-
correlated with this primary variable (Wackernagel et al., 2002). The determination of 
cokriging weights and of the error variance relies on the set of modeled direct and cross 
variograms (Wackernagel, 2003). 



  
Remote Sensing of Biomass – Principles and Applications  

 

284 

4.2.5 Kriging and cokriging neighborhood 
Quite often, the amount of available data is large and using all of the available data is 
impractical and a selection of the most relevant data is required. One therefore defines a 
local window or “kriging neighborhood” in which to search for nearby data and to perform 
local estimation. The shape of the neighborhood should explicitly consider the detected 
anisotropies, by making the search radius dependent on the variogram range: the larger the 
range along a direction, the larger the search radius. Typically, the neighborhood is defined 
by placing an ellipse around the target location, and selecting a given number of data within 
this ellipse. The justification for such a practice is the so-termed screening effect, according 
to which the closest data screen out the influence of farthest data (David, 1976; Stein, 2002). 
Also, to avoid the selection of clustered data that convey redundant information, it is good 
practice to divide the neighborhood into several angular sectors (e.g., quadrants or octants) 
and to look for data within each sector (Isaaks and Srivastava, 1989). 
Such a definition of the kriging neighborhood is, however, mainly heuristic and one is 
usually not aware of which data are really worth being included in the neighborhood, and 
which data can be discarded without deteriorating the estimation. The optimal 
neighborhood actually depends on the variogram of the variable of interest, as the screening 
effect does not occur with every variogram model. Some generic guidelines have been 
provided by Rivoirard (1987) to validate the choice of a given neighborhood in the 
univariate context. 
In the multivariate case, the design of the neighborhood is more complex and critical. For 
instance, the data of a covariate may be screened out by the collocated data of the primary 
variable or, on the contrary, they may supplement the primary data and provide useful 
information to improve local estimation. As suggested by recent publications (Rivoirard, 
2004; Subramanyam and Pandalai, 2008), the decision to include or not the covariate data 
should consider the correlation structure of the coregionalized variables and the sampling 
scheme (in particular, whether or not all the variables are measured at all the sampling 
locations). Some options include: 
a. Single search: the data points are selected according to their proximity to the target 

location, irrespective of which variable(s) is (are) informed at these data points. 
b. Two-part search: the first one is a selection of the nearby data of the primary variable, 

ignoring the information of covariates; the second one is a selection of the nearby data 
of the covariates, ignoring the information of the primary variable. The advantage of 
this strategy is to decouple the search of data according to the nature of the variable 
(primary or covariate). The disadvantage is that the search and the resolution of the 
cokriging equations must be carried out as many times as there are variables to 
estimate. 

4.3 Results 
4.3.1 Selection of variables 
To estimate AGB we used ordinary cokriging (i.e., cokriging with unknown means that are 
assumed constant at the scale of the neighborhood) considering all the available covariates. 
Cokriging only works with linearly independent variables, for which there is no colinearity 
or "redundancy" of information. For this reason, the spectral bands TM1 to TM7 were 
excluded from the analysis since these variables can be deduced from that of the other 
variables such as Tasseled Cap components and NDVI. Also, the orientation variable 
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corresponds to an angle between 0 and 360 degrees, so the value 0 represents the same 
information as the value 360. In order to prevent very different values to represent equal or 
nearly equal angles, we replaced the angles by their cosines and sines. Thus, in addition to 
the primary variable (AGB), we used the following 11 covariates in all the analyses: altitude 
(ALT), orientation cosine and sine (ASPECT), slope (SLOPE), normalized difference 
vegetation index (NDVI), and the six Tasseled Cap components (TC1, TC2, TC3, TC4, TC5 
and TC6). 

4.3.2 Variogram analysis  
While there is much information from the covariates (tens of thousands to millions of 
records) from which experimental variograms can be calculated in a very detailed way, 
information is scarcer with the primary variable (AGB) that has only a few hundreds of 
positions with field data. Because of the limited data available for the country, the inference 
of the variograms of the primary variable and the cross variograms between this variable 
and all covariates is difficult. To determine the spatial correlation structure, we chose one of 
the following alternatives, depending on the case under study: 
a. Use of traditional experimental directional variograms, calculated along the identified 

main directions of anisotropy (Pantanillos case study). 
b. Use of omnidirectional variograms, when anisotropy was not detectable for the primary 

variable (AGB) due to the scarcity of data (Quivolgo and Curacautín case studies). 
c. Use of centered covariance as a substitute to the variogram (Chilès and Delfiner, 1999) 

in case the experimental variogram is too erratic (Monte Oscuro case study). 
As an illustration, Figure 5 shows the experimental and modeled variograms for AGB, 
Brightness (TC1), Greenness (TC2) and Wetness (TC3), along the two identified main 
directions of anisotropy (north-south N0ºE and east-west N90ºE), for the Pantanillos area. 
For TC1, TC2 and TC3, the spatial variability appears to be greater along the north-south 
direction than along the east-west. These direct variograms, together with that of the other 
covariates and with the cross-variograms (a total of 78 variograms), have been jointly fitted 
thanks to the algorithm proposed by Goulard and Voltz (1992), using a nugget effect and 
nested exponential and power basic structures. 

4.3.3 Cokriging neighborhood definition and application 
To run cokriging, it is also necessary to define a neighborhood containing the data relevant 
to the local estimation. Given the very different number of data between the variables (AGB 
with very few data in comparison with covariates), we decided to use a two-part search: 
a. For AGB we considered the 15 closest available data. 
b. For each covariate, the 50 closest data were considered. 
Cokriging was performed with an ad hoc MATLAB routine, since no known commercial 
software is able to perform cokriging with the above specifications and 11 covariates. The 
results are estimated values and error variances for AGB. The estimates were made for all 
the study areas, at the nodes of a grid with cells of 16m × 16m or 30m × 30m, depending on 
the case study, assuming unknown mean values for all the variables (ordinary cokriging).  
Since not all the land in each area is covered by vegetation, we subsequently multiplied the 
estimates and error variances by the fraction of the cells located inside the identified stands, 
using vector digital layers of their boundaries. Figures 6 and 7 present the field data and 
identified stands, as well as the cokriging results for the Pantanillos area. 



  
Remote Sensing of Biomass – Principles and Applications  

 

284 

4.2.5 Kriging and cokriging neighborhood 
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Fig. 5. Experimental (dots and dashed lines) and modeled (solid lines) variograms along the 
directions N0°E (black) and N90°E (blue) for AGB (top left), TC1 (top right), TC2 (bottom 
left) and TC3 (bottom right) in Pantanillos study area. 
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Fig. 6. Field data for Pantanillos area (179 data), measuring above ground biomass (ton/ha) 
(left), and fraction of each grid cell (16m × 16m) contained in stands (right) 

4.4 Conceptualizing and generalizing the method 
The estimation approach we developed is a real alternative for assessing AGB at communal 
and regional scales. It has a relatively low implementation costs when compared to 
traditional methods (i.e. inventories of land) and can be used to assess and monitor the stock 
of biomass over time on a country-wide scale. Although it requires field data, it is possible 
to estimate other areas using the already gained knowledge (in particular, the spatial 
correlation structure, via the direct and cross variogram models). The idea is based on two 
hypotheses: 
a. The amount of biomass available at any point in the geographical space depends, first, 

on the productivity of the site and, second, on the status of the vegetation that grows on 
it. 

b. Using satellite data (reflectance in several bands of optical range of the electromagnetic 
spectrum) and topography attributes, we can estimate both the productivity of the site 
and the vegetation status in an integrated manner. Then we can estimate the spatial 
variation of biomass concentrations. Using terrain data, the variation is scaled to the 
actual values for specific areas and subsequently aggregated at any available 
administrative division (stands, sites or districts). 
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Fig. 7. Cokriging results for Pantanillos area. Above: Original estimate (left) and processed 
(right) biomass (ton/ha). Bottom: Variance of estimation error for AGB (ton2/ha2), original 
(left) and processed (right).  

In order to apply this approach in the estimation of AGB in any area the following steps 
should be done: 
a. Selection of the geographic area: It is first necessary to define the limits of the study area 

and the stands of interest. One may not be able to divide into stands if one does not 
have enough previous information and the results can be aggregated in the proper 
spatial division later (see step f). 

b. Gathering and processing satellite images: The images used should be subject to the 
following treatments: 
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i. Eliminate the presence of clouds and systematic errors. In the case of Landsat ETM + 
error must be corrected SLC-off explicitly. 

ii. Geometric correction for integration into GIS environment. 
iii. Radiometric correction to reduce topographic and atmospheric errors. 
iv. Calculation of vegetation indexes and Tasseled Cap components.  
c. Collection of field data: Field data can be collected especially for AGB estimation or can 

be available from previous inventories. Data should be expressed in biomass per unit 
area (i.e. hectare) and associated with a point in geographical formal space (i.e., UTM 
coordinates). Whatever the case, the field estimations of biomass can be made in any of 
the following cases: 

i. If data are available at the individual tree, apply allometric equations by species. 
ii. If data are aggregated for each plot, apply biomass functions. 
d. Data checking and cleaning: To perform the geostatistical analysis, it is necessary to 

create integrated data tables that incorporate both the biomass data, obtained from field 
data, plus all available covariates (satellite and topographical). The data should be 
reviewed, validated, and one should eliminate those displaying an aberrant behavior. 

e. Geostatistical modeling: Using the data structure obtained in step d, perform 
geostatistical analysis including the following sub-steps: 

i. Analysis of multivariate spatial correlation (variogram analysis) to obtain experimental 
direct and cross variograms and to fit variogram models required for interpolation. 

ii. Obtain local estimations of biomass and levels of uncertainty (estimation error 
variances) via cokriging throughout the study area. 

iii. Masking for estimating administrative units or stands of interest. To get accurate 
estimates, it is important to rule out areas with no vegetation. 

f. Report results and prepare associated maps. 
In the previous paragraphs, one of the most important steps is the collection of field data. 
These data allow modeling the autocorrelation of biomass in space and its cross-correlation 
with satellite and topographic variables. When these data are available, the procedure for 
the estimation should be the one already described. However, sometimes no data are 
available or they cannot be collected on time or the costs are not reasonable. In this case, one 
may use known variogram models to make a "blind" estimation using a slightly alternative 
method: simple cokriging, which assumes that the average biomass is known. We propose 
that this average can be obtained using the forest growth simulators that are available in 
many countries, e.g., Radiata and Eucasim growing models and software in Chile. 

5. Conclusions 
The use of covariates extracted from SRTM elevation model and LANDSAT images allows 
for estimates with a greater level of detail than those obtained by using only data field. This 
can be corroborated by comparing the estimates by cokriging with those that would be 
obtained with univariate kriging. We hypothesize that the set of covariates accounts, 
through their spatial dependence, for two fundamental aspects to explain existing biomass: 
a. The quality of the forest site. Topographic variables (altitude, slope and orientation) 

inform in a synergistic way about the quality of the specific potential growing 
conditions (forest site).  

b. Vegetation health and vigor are jointly captured by the vegetation indices and Tasseled 
Cap components. 
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The approach to this scale of work, using medium spatial resolution sensors, is to estimate 
AGB independently of species or plant community types and then overlap stands 
boundaries, or any other administrative division, to obtain the associated total AGB stocks. 
Coregionalization models (direct and cross variograms) are simplifications of reality; in 
particular, they may not detect anisotropies when having a too small amount of field data, 
allowing only for an omnidirectional inference. The number of field data should be such 
that the inference of AGB variogram is feasible, which is usually achieved with more than 
100 data in each stratum. In order for this number to be reduced, we recommend the 
sampling of the area (site) to be as regular as possible, i.e. avoiding samples clustered in 
space. 
In the future, we suggest identifying other covariates correlated with AGB, for example, an 
indicator of the amount of sunlight available or a local indicator of the ground geometry 
(concave, convex or plane) that is related to the availability of water. These indicators could 
be calculated from a digital elevation model, already available at several spatial resolutions. 
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1. Introduction 
Regarding the three objectives of European Union (EU) energy policy (secure supply, 
competitiveness and environmental protection) the EU Commission published the 
Communication entitled ‘White Paper: Energy for the Future - Renewable Sources of 
Energy’ (EU Commission, 1997; Mourelatou & Smith, 2004). This document, which was the 
starting point for the European promotion and development of renewable energy, stated the 
objective that 12% of energy production in 2010 would come from renewable sources. In 
Spain, this objective was recognized by the government in 1999 in the Plan to the Promotion 
of Renewable Energies (PPRE). To achieve this objective, the PPRE focused on increasing the 
use of biomass, identifying forest residues as one of the biomass sources. Specifically, this 
document established an increase in the use of forest residual biomass to 450 000 tonnes of 
petroleum equivalent per year (TPE/year) (IDAE, 1999). 
Among the different sources of renewable energy, this chapter focuses on forest residual 
biomass (FRB). This term refers to branches, foliage, and unmerchantable stem tops that are 
commercially unsuitable in terms of the timber obtained from regular operations in forest 
management or in timber exploitation (Esteban et al., 2004; IDAE, 1999; Velázquez, 2006). 
Following the ‘complete-tree concept,’ the term ‘branches’ include the wood and bark of live 
and dead branches; ‘foliage’ refers to all leaves-needles, new shoots and reproductive 
organs; and the ‘unmerchantable stem top’ is the upper section of the stem that is left 
unutilized in logging operations due to its small diameter and high degree of branching (the 
bottom stem diameter of this unmerchantable top usually ranges from 5 to 10 cm) (Hakkila 
& Parikka, 2002). The treatments commonly applied to these residues in Spain include 
controlled burning, stacking within the forest and, less commonly, splintering to improve 
their incorporation into the soil (IDAE, 2005a, 2007; Velázquez, 2006). 
However, this biomass segment can also be used as a source of energy in heating 
applications (fuel for domestic or industrial stoves and boilers) and in the generation of 
electricity (replacing fossil fuels in power stations) (Asikainen et al., 2002; IDAE, 2005b), 
with the majority of the residue currently being utilized for the latter in Spain (IDAE, 2007). 
The benefits associated with this energy-related use can be divided into two types: 
environmental and socio-economic. The first benefits are generated in the production phase, 
as the recovery and elimination of FRB reduces the risk of forest fires and their severity 
(IDAE, 2005a; Velázquez, 2006), and also because the implementation of silviculture can 



  
Remote Sensing of Biomass – Principles and Applications  

 

296 

Valdez R, M.; González&De Los Santos, H. M. (2006). Estimación de cobertura arbórea 
mediante imágenes Satelitales multiespectrales de alta resolución. Agrociencia 
40(3): 383-394 p. ISSN 1405-3195. 

Wackernagel, H. (2003). Multivariate Geostatistics: an Introduction With Applications, Third 
Edition, Springer, Berlin 

Wackernagel, H.; Bertino, L.; Sierra, J.P. & González del Río, J. (2002). Multivariate Kriging 
for Interpolating With Data From Different Sources, In: Quantitative Methods for 
Current Environmental Issues, C.W. Anderson, V. Barnett, P. Chatwin & A.H. El 
Shaarawi, (Eds.), 57-75, Springer-Verlag, London 

Wang, Ch. (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese 
temperate forests. Forest Ecology and Management 222 (2006) 9–16 

Wulder, M. (1998). Optical remote-sensing techniques for the assessment of forest inventory 
and biophysical parameters. Progress in Physical Geography, 22, pp. 449–476. 

Zewdie, M.; Olsson, M. & Verwijst, Th. (2009). Above-ground biomass production and 
allometric relations of Eucalyptus globulus Labill. coppice plantations along a 
chronosequence in the central highlands of Ethiopia. Biomass and Bioenergy  33 
(2009) 421–428 

Zheng, D.; Heath, L.S. & Ducey, M.J. (2007). Forest biomass estimated from MODIS and FIA 
data in the Lake States: MN, WI, and MI, USA. Forestry 2007, 80, 265-278. 

Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J. & Ryu, S. (2004). 
Estimating aboveground biomass using LANDSAT 7 ETM+ data across a managed 
landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93, 402–411 

14 

Using Remote Sensing to Estimate a 
Renewable Resource: Forest Residual Biomass 

A. García-Martín, J. de la Riva, F. Pérez-Cabello and R. Montorio 
Department of Geography and Spatial Management, University of Zaragoza, Zaragoza, 

Spain 

1. Introduction 
Regarding the three objectives of European Union (EU) energy policy (secure supply, 
competitiveness and environmental protection) the EU Commission published the 
Communication entitled ‘White Paper: Energy for the Future - Renewable Sources of 
Energy’ (EU Commission, 1997; Mourelatou & Smith, 2004). This document, which was the 
starting point for the European promotion and development of renewable energy, stated the 
objective that 12% of energy production in 2010 would come from renewable sources. In 
Spain, this objective was recognized by the government in 1999 in the Plan to the Promotion 
of Renewable Energies (PPRE). To achieve this objective, the PPRE focused on increasing the 
use of biomass, identifying forest residues as one of the biomass sources. Specifically, this 
document established an increase in the use of forest residual biomass to 450 000 tonnes of 
petroleum equivalent per year (TPE/year) (IDAE, 1999). 
Among the different sources of renewable energy, this chapter focuses on forest residual 
biomass (FRB). This term refers to branches, foliage, and unmerchantable stem tops that are 
commercially unsuitable in terms of the timber obtained from regular operations in forest 
management or in timber exploitation (Esteban et al., 2004; IDAE, 1999; Velázquez, 2006). 
Following the ‘complete-tree concept,’ the term ‘branches’ include the wood and bark of live 
and dead branches; ‘foliage’ refers to all leaves-needles, new shoots and reproductive 
organs; and the ‘unmerchantable stem top’ is the upper section of the stem that is left 
unutilized in logging operations due to its small diameter and high degree of branching (the 
bottom stem diameter of this unmerchantable top usually ranges from 5 to 10 cm) (Hakkila 
& Parikka, 2002). The treatments commonly applied to these residues in Spain include 
controlled burning, stacking within the forest and, less commonly, splintering to improve 
their incorporation into the soil (IDAE, 2005a, 2007; Velázquez, 2006). 
However, this biomass segment can also be used as a source of energy in heating 
applications (fuel for domestic or industrial stoves and boilers) and in the generation of 
electricity (replacing fossil fuels in power stations) (Asikainen et al., 2002; IDAE, 2005b), 
with the majority of the residue currently being utilized for the latter in Spain (IDAE, 2007). 
The benefits associated with this energy-related use can be divided into two types: 
environmental and socio-economic. The first benefits are generated in the production phase, 
as the recovery and elimination of FRB reduces the risk of forest fires and their severity 
(IDAE, 2005a; Velázquez, 2006), and also because the implementation of silviculture can 
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improve the health of forests (Eriksson et al., 2002; Raison, 2002). Environmental benefits are 
also obtained in the application phase. Considering only the combustion process, the energy 
produced is almost neutral in terms of carbon dioxide, as the amount of CO2 emitted to the 
atmosphere due to FRB combustion is the same than the fixed in the FRB formation (net 
primary production). In addition, sulphur and chlorine emissions are very low. 
Consequently, taking into account only the combustion process, the generation of energy 
from FRB does not contribute to an increase in greenhouse gasses (Hakkila & Parikka, 2002; 
IDAE, 2005a). The social and economic benefits can be separated into two categories: (i) 
those that occur at the national scale, associated with a reduction in the use of non-
renewable fossil fuels (Domínguez, 2002; Eriksson et al., 2002; IDAE, 2005a), and (ii) those 
that occur at the local scale, as the utilization of a waste product leads to increasing harvests, 
transportation, and utilization of forest residues in power stations, which also leads to an 
increase in rural employment. These considerations are important for rural areas in which 
the level of unemployment and depopulation is a public policy issue, and where increased 
employment can help to support a population that can maintain the natural environment 
(Borsboom et al., 2002; Domínguez, 2002; IDAE, 2005a, 2007). 
Despite the benefits outlined above, previous studies conducted before the subsequent 
revision of PPRE, the Plan to Renewable Energies 2005–2010 (PRE), showed that the use of 
FRB had a long way to go in achieving the anticipated objectives. In the PRE analysis, the 
lack of specific methodologies to assess the regional-scale quantity of FRB was identified as 
one of the main problems (IDAE, 2005a). This is a fundamental concern because power 
stations that use FRB require knowledge of the amount of resource available (Esteban et al., 
2004; IDAE, 2005b, 2007; Velázquez, 2006). To overcome this problem, a methodology is 
needed that quantifies the potential of this forest resource in a given area. This is an 
important matter considering that the new Plan to Renewable Energies in Spain 2011-2020 
(currently being written using the provisions of Directive 2009/28/EC) set a final energy 
consumption target of 20% derived from renewable energy, doubling the previous mark in 
the 2010 Plan (MITYC, 2010). 
Several studies have demonstrated the effectiveness of satellite images in estimating forest 
variables, including biomass. These studies were carried out using both passive (optical) and 
active (radar and lidar) sensors. Focusing on optical sensors, different experiments have been 
conducted using multispectral or hyperspectral coarse spatial resolution data (i.e. Anaya et al., 
2009; Muukkonen & Heiskanen, 2007) and fine spatial resolution data (i.e. Gonzalez et al., 
2010; Proisy et al., 2007); although the most frequent experiments have been performed using 
medium spatial resolution data, mainly using Landsat Thematic Mapper (TM) or Enhanced 
Thematic Mapper Plus (ETM+) data (Lu, 2006; Powell et al., 2010). Radar data has also been 
used extensively, establishing significant correlations between biomass and radar backscatter 
at C-band (Kurvonen et al., 2002) and L-band (Austin et al., 2003; Lucas et al., 2010), with the 
latter being more consistent and robust. Recently, forest biomass assessment research has 
focused on using polarimetric synthetic aperture radar interferometry (PolInSAR) and laser 
scanning systems (lidar) data, mostly by means of airborne sensors. Koch (2010) offers a 
complete review of the recent advances and future developments in this issue. 
Images derived from remote sensing register continuous and complete information across a 
landscape and such images can be obtained at frequent intervals. These characteristics help to 
overcome some of the problems associated with inventory methods exclusively based on field 
work, interpolation techniques and GIS (Franklin, 2001; Lu, 2006; Salvador & Pons, 1998a). 
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Thus, remotely sensed data have not only facilitated an increase in the speed, cost efficiency, 
precision, and timeliness of inventories, but they have also allowed the construction of maps of 
forest attributes with spatial resolutions and accuracies that were not feasible even a few years 
ago (McRoberts & Tomppo, 2007). These advances have made remotely sensed data the 
primary source for biomass estimation (Lu, 2006). However, no studies have yet presented a 
technique for biomass estimation that is consistent, reproducible and entirely applicable at 
regional scales (Muukkonen and Heiskanen, 2005; Powell et al., 2010), especially in forests 
located in areas of irregular topography and characterized by heterogeneity in species 
composition, complex stand structures and environmental conditions (Brown et al., 1999; Lu & 
Batistiella, 2005; Lu, 2006; Mallinis et al., 2004;). Those characteristics are inherent features of 
Mediterranean forests (Shoshany, 2000), where not many studies have been carried out. 
The objective of this chapter is to explain a methodology developed to estimate the amount 
of FRB potentially suitable for renewable energy production in the pine forests of 
Mediterranean areas at regional scale, using satellite images and forest inventory data. It is 
intended, therefore, to eliminate a major barrier to the use of this renewable source of 
energy. In turn, by using a plain methodology, it is intended that the method developed can 
be adopted by decision makers and land managers for both forest management and regional 
planning, considering that energy planning is a major component of land management. 
For this study, we used FRB data obtained from allometric equations applied to the Second 
Spanish National Forest Inventory (NFI-2) (dependent variable) and spectral data from 
Landsat 5 TM imagery (independent variable). In order to avoid the effects of forest 
heterogeneity in the establishment of accurate predictive models, different methods were 
tested to extract the spectral data from the Landsat images. 

2. Materials and methods 
The methodology applied in this study was developed in the framework of geographic 
information technologies (Remote Sensing and Geographical Information Systems, GIS) as 
information sources and tools for forest management. The software Erdas Imagine was used 
to process the Landsat images, ARC-GIS was used for the management of ancillary 
information, and SPSS was employed for statistical analyses. 
The methodology proposed and developed in this study was divided into five phases or 
steps. Firstly, FRB data was obtained by means of field work and pre-existing forest data. 
Secondly, suitable satellite images were selected and different treatments were applied in 
order to convert the data to a suitable format for quantitative analysis and to guarantee the 
validity of the results. Thirdly, three different methods were used to relate field data and 
radiometric information in order to overcome the difficulties involved in estimating forest 
parameters in heterogeneous Mediterranean forests. The fourth phase focused on 
developing and running regression models to map FRB in the study area, and to evaluate 
and compare the results at pixel level obtained using the applied extraction methods. 
Finally, the best model was selected for application to a recent image to quantify the amount 
of FRB at present time in the study area. 

2.1 Study area 
The study area is the Province of Teruel, which is located in the northeastern Iberian 
Peninsula (Figure 1). This province was selected in the context of the LIGNOSTRUM project 
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(2002-2005), of which the present research was a component. The aim of the Spanish 
government-financed LIGNOSTRUM project was to increase the use of agricultural and 
forest residues as energy resources. There were two main reasons for selecting this territory 
as a setting to measure the benefits of energy use of forest residues: (i) the presence of large 
agricultural and forest areas; and (ii) the existence of economically disadvantaged rural 
areas. 
 

 
Fig. 1. Location of the study area 

There are three characteristics of this province that mean difficulties to achieve the objective 
of estimate FRB using satellite images: (i) the size of the province (14,804 km2), (ii) the 
concentration of forest resources in the mountain areas (as the topography modifies the 
reflectance values of equal ground covers), and (iii) the Mediterranean characteristics of 
these forests (presence of multiple species with a complex spatial structure resulting from 
multiple interrelationships between different ecological factors and a history of human 
activity extending back for many centuries). These peculiarities determined the types of 
images that were used, the treatments applied to the images and the methods applied to 
extract the radiometric data. Among all types of forests present in the study area, only pine 
forests were selected for study since they represent slightly over 71% of the total forest area 
of the province and they have the greatest potential for FRB generation from harvest (IDAE, 
2007; MMA, 1996). 

2.2 FRB data 
Aboveground biomass (AGB) is normally estimated using allometric equations that relate it 
to tree data, usually diameter at breast height (DBH) and height (Ketterings et al., 2001; 
Montero et al., 2005; Pilli et al., 2006; Wang, 2006; Zianis & Mencuccini, 2004). These 
equations show a large variation related to tree species, geographic location (Ketterings et 
al., 2001; Montero et al., 2005), and other factors such as climate and tree population age 
(Zianis & Mencuccini, 2004). Few biomass equations have been developed for Spain 
(Montero et al., 2005), with even fewer focusing on residual biomass (in some cases, crown 
biomass has been assessed). Consequently, it was necessary to develop specific FRB 
regressions for each pine species in the study area for application to pre-existing tree 
dimensional data. 
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At the start of the LIGNOSTRUM project in 2002 the most recent, accurate, and complete 
information on the dimensional parameters of trees in the forests of the study area was 
found in the Second National Forest Inventory (NFI-2), which was completed in 1994 
(MMA, 1996). The Spanish NFI is carried out every 10 years as a systematic field sampling 
of permanent plots. These plots are located in the corners of the UTM 1x1 km grid of the 
1:50,000 National Topographic Cartography that are within forested areas. The placement of 
plots in the field was performed using georeferenced 1:30,000 aerial photographs and 
topographic cartography. Plots have a circular shape with radii ranging from 5 m to 25 m 
depending on the DBH of the trees; only trees with a DBH greater than 7.5 cm were 
considered. The NFI-2 fieldwork in Teruel Province was undertaken from March to August 
1994, sampling a total of 2083 plots. The DBH (two perpendicular diameters measured at a 
height of 1.30 m) and total height (accurate to within half a meter) were measured for all 
trees. A detailed description of NFI-2 is provided in the summary report of the inventory 
(MMA, 1996). 
Taking into account these characteristics of NFI-2, we devised a species-based sampling 
strategy to obtain FBR regressions. We located all the sample areas in forests managed by 
the Teruel Environment Service owing to the destructive nature of this sampling. Fieldwork 
was carried out from November 2003 to June 2004. For each species, the distribution of 
sampling points was proportional to the number of trees, the volume of wood, and the 
stand basal area documented in NFI-2 data. We considered a normal diameter range from 
7.5 to 40 cm because these are the minimum diameters recorded in NFI-2 data and they are 
the most frequently observed in the tables of production of the study area. 
In the field, we used a scale with an accuracy of 250 grams to obtain the wet weight of the 
residual biomass. In addition, we took two size measurements for each sampled tree: DBH 
(accuracy of 5 mm) and height (centimeter accuracy). Finally, to avoid the influence of the 
variations in the degree of wetness in the samples, we collected samples of leaves and 
branches in the different trees in order to calculate the dry weight by applying the method 
described by Joosten et al. (2004). 
The total number of sampled trees was 186 (30 of Pinus sylvestris, 59 of Pinus halepensis, 57 of 
Pinus nigra, and 40 of Pinus pinaster). We obtained a regression equation for each species, but 
two in the case of Pinus pinaster regarding the tree origin (natural or reforested) (Table 1). 
 

Species 
Nº of 

sampled 
trees 

Models R2a 
Std. 

Desv. 
(kg) 

Weight (X-k) 

P. sylvestris 30 FRB=0.064·DBH3.3/H1.5 0.974 12.298 - 
P. nigra 57 FRB=338.416·e-35.116/DBH 0.910 18.836 1/DBH 
P. halepensis 59 FRB=0.067 DBH3/H 0.969 13.063 1/(DBH*(1+ORI)) 
P. pinaster 
natural 28 FRB=1.101·10-3·DBH4/H 0.973 6.004 - 

P. pinaster 
reforested 12 FRB=1.97·10-

4·DBH3.823·H0.337 0.974 12.175 - 

Table 1. Regression equations obtained by species, R2 adjusted, standard error associated 
and weight expression to accomplish the assumption of residual homocedasticity. Source: 
Alonso et al., (2005), where FRB is forest residual biomass, DBH is tree diameter at breast 
height, H is tree height, and ORI is the tree origin (0=reforested; 1=natural) 
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(2002-2005), of which the present research was a component. The aim of the Spanish 
government-financed LIGNOSTRUM project was to increase the use of agricultural and 
forest residues as energy resources. There were two main reasons for selecting this territory 
as a setting to measure the benefits of energy use of forest residues: (i) the presence of large 
agricultural and forest areas; and (ii) the existence of economically disadvantaged rural 
areas. 
 

 
Fig. 1. Location of the study area 
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equations show a large variation related to tree species, geographic location (Ketterings et 
al., 2001; Montero et al., 2005), and other factors such as climate and tree population age 
(Zianis & Mencuccini, 2004). Few biomass equations have been developed for Spain 
(Montero et al., 2005), with even fewer focusing on residual biomass (in some cases, crown 
biomass has been assessed). Consequently, it was necessary to develop specific FRB 
regressions for each pine species in the study area for application to pre-existing tree 
dimensional data. 
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Pinus nigra, and 40 of Pinus pinaster). We obtained a regression equation for each species, but 
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In applying the obtained FRB equations to the NFI-2 plots, we only chose those in which 
pines were among the range used in the equations, thus obtaining 617 plots. These residual 
biomass data were linked to a table with all of the other NFI-2 variables, including their 
locations in UTM coordinates. To avoid complexity associated with the mixture of tree 
species in the spectral data of the Landsat image, we selected only monospecies pine plots 
(Salvador & Pons, 1998b). In addition, we removed from the dataset plots located in an area 
affected by a wildfire that occurred in 1994 and those affected by cloud shadows in the 
southeast corner of the Landsat image. Following this selection process, a total of 482 plots 
were finally obtained. We created a point map with these plots to read the Landsat TM 
spectral information. The estimated residual biomass in selected plots ranged from 0.107 to 
64.720 tons/ha. This large range is related to the high degree of heterogeneity of 
Mediterranean forests. 

2.3 Image pre-processing and development of new spectral indices 
Among the different types of remote sensing data available to achieve the objective of this 
research, Landsat images were selected because they are one of the most common in 
forestry-related applications and estimates of aboveground biomass (AGB) at regional-local 
scales (i.e. Fazakas et al., 1999; Foody et al., 2001, 2003; Gasparri et al., 2010; Hall et al., 2006; 
Labrecque et al., 2003, 2006; Lu, 2005; Lu & Batistiella, 2005; Lu et al., 2004; Mäkelä & 
Pekkarinen, 2004; Mallinis et al., 2004; Meng et al., 2009; Powell et al., 2010; Roy & Ravan, 
1996; Salvador & Pons, 1998a, 1998b; Steininger, 2000; Tangki & Chappell, 2008; Wulder et 
al., 2008; Zheng et al., 2004, 2007). In addition, taking into account the research objectives, 
there were two other important reasons for using Landsat images. Firstly, essentially all of 
the study area was represented in one scene, an advantage over other approaches in which 
errors are introduced owing to inconsistencies in radiometric corrections, necessary when 
multiple scenes are used (Chuvieco, 2002; Foody et al., 2003). Secondly, the methodology 
would be useful and replicable in other areas with similar characteristics because of the 
systematic and frequent coverage of Landsat images over time as well as their ease of 
distribution at no cost to users via the Internet (Chander et al., 2009). 
The study used two Landsat 5 TM images recorded on 10 June 1994 and 5 July 2008 (Path 
199/Row 32). The earlier image was selected on the basis of temporal coincidence with NFI-
2 field work, so it was useful in performing the methodology, whereas the later image was 
chosen for a recent FRB estimation and inventory in the study area. 
We applied three pre-processing techniques to both images to obtain radiometric variables 
consistent and suitable to be related to field data, and to guarantee the applicability of the 
estimation model carried out with the 1994 image to the 2008 image: (i) geometric correction, 
(ii) radiometric correction, and (iii) transformations and ratios. The importance of accurate 
geometric rectification in the present research arises from the fact that the image data were 
linked with ground data. Both Landsat TM images were geometrically rectified into a local 
UTM projection using a second-order polynomial model. The rectification model 
incorporated a Digital Elevation Model (DEM) with 25 m spatial resolution. Ground Control 
Points (GCPs) were taken from high-resolution ortho-photographs (pixel size = 1 x 1 m). A 
total of 125 GCPs were used to re-project each image with an estimated Root Mean Squared 
Error (RMSE) of 0.60 and 0.48 pixels, respectively. A nearest-neighbor resampling technique 
was used to minimize changes in the radiometric values of the ground data, with the pixel 
re-projected to 25 m. The radiometric correction addresses atmospheric and topographic 

 
Using Remote Sensing to Estimate a Renewable Resource: Forest Residual Biomass 

 

303 

effects in the surface reflectivity registered in both Landsat images. In this process, the 
relative data on surface reflectivity given in digital numbers (DN) is transformed into an 
absolute form in reflectance values. In areas of rough terrain, as in the present study area, a 
good topographic normalization is required to compensate for the varying solar 
illumination associated with the irregular shape of the terrain. To accomplish this, first, the 
default transmittance method, proposed in Chavez (1996), was applied to eliminate the 
atmospheric effects present in both Landsat images. Second, conversion from DN values to 
reflectance measurements was carried out using the Minnaert Correction Method (Colby, 
1991). Different transformations (determine in previous work focusing on forest parameter 
estimation) were applied to the 1994 image to increase the amount of spectral information, 
including different vegetation indices. Figure 2 shows the location of the 482 NFI-2 plots 
over a false colour band combination 7/4/3 (RGB) of the study area. 
 

 
Fig. 2. Location of the 482 NFI-2 plots over a false colour band combination 7/4/3 (RGB) of 
the study area 

2.4 Linking FRB ground data to 1994 radiometric data 
As mentioned previously, heterogeneity is an inherent characteristic of Mediterranean 
forests and is one of the main factors that complicates forest parameter estimation in this 
area using remote sensing images. This is mainly because spatial heterogeneity is registered 
in the satellite image, resulting in a large spectral variability in the spectral response of the 
areas covered by these forests. This introduces difficulties in building accurate predictive 
models. As a result, two NFI-2 plots with equal amounts of FRB can show different 
reflectance values because of the presence of other landscape elements (i.e. firebreaks, trails), 
the position of the FRB plot on the border of another land cover type (i.e. scrublands, 
farmlands) or because of high variability within the forested area (presence of different tree 
species, ages). In addition, other problems detected in previous research in Mediterranean 
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effects in the surface reflectivity registered in both Landsat images. In this process, the 
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forests are inaccuracies in the localization of inventory field plots, small plot sizes, and the 
small number of plots used in the analysis (Mallinis et al., 2004; Maselli & Chiesi, 2006; 
Salvador & Pons, 1998a, 1998b; Shoshany, 2000; Vázquez de la Cueva, 2005). 
The present study tested three different methods to extract the radiometric data in order to 
overcome the problems outlined above and achieve accurate FRB regression models: (i) 
fixed pixel windows or kernels, (ii) visual analysis, and (iii) spectral segmentation. 

2.4.1 Fixed pixel windows 
The use of kernels or fixed pixel windows greater than one pixel is the most common 
method to extract radiometric information in works focused on forest parameter estimation 
by means of satellite images using field plots data (i.e. Foody et al., 2001; Hall et al., 2006; 
Labrecque et al., 2003; Lu et al., 2004; Lu, 2005; and Lu & Batistiella, 2005 Roy & Ravan, 
1996). In our case, taking into account the high variability of Mediterranean forests, a 3 x 3 
pixel window centered on each plot was used to extract the mean value and standard 
deviation for all radiometric variables derived from the 1994 image. Following the 
methodology used in Labrecque et al. (2003), the variability in each plot was calculated over 
the six spectral reflectance bands using Pearson’s coefficient of variation (CV) (1): 

 SCV
X

  (1) 

where S is the standard deviation calculated for the 3 x 3 pixel window centered on each 
plot and X is the average calculated for the same window. 
Thus, information is obtained regarding the degree of spectral heterogeneity within the 
immediate surroundings of each plot: plots with high CV have a high degree of spatial 
heterogeneity, while plots with low CV are the most homogeneous. With the aim of 
determining the influence of spectral heterogeneity on estimates of FRB, the CV values were 
used to divide the sample into 10 homogeneity levels. Initially, we calculated the thresholds 
needed to delimit the 10 CV percentiles in each reflectance band and, after that, these 
thresholds were used to create 10 groups of plots as follows: the first group contained all of 
the plots, the second contained only those plots whose CV values were lower than that of 
percentile 9 in all TM bands, the third contained only those plots whose CV values were 
lower than that of percentile 8 in all of the TM bands, and so on, until the 10 groups were 
delineated. As a result, the first of the delineated groups contains the plots with the highest 
degree of spectral heterogeneity, while the last contains the plots that are the most 
homogeneous. For the rest of this chapter, these plot groups are named using the CV 
percentile employed in creating them. Figure 3 shows the differences regarding the degree 
of spectral heterogeneity within the immediate vicinity among one plot classified in group 
CV9 and another classified in group CV4. 

2.4.2 Visual analysis 
In the second method to extract the radiometric data from Landsat image, we use visual image 
analysis to delimit homogeneous FRB units larger than the NFI-2 plots. Different studies have 
demonstrated that biomass can be estimated more accurately if the ground data is referenced 
over areas larger than the pixel level using similar units in forest and spectral characteristics 
(Hyyppä & Hyyppä 2001; Muukkonen & Heiskanen, 2005; Zheng, 2004). In addition, this 
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method avoids some problems related to the use of fixed windows, as they do not completely 
eliminate errors in image registration and location of the sample plots, may intersect several 
stands with different spectral and forest characteristics, and not fit well with the limited spatial 
and spectral resolution of Landsat data (Mäkelä & Pekkarinen, 2001; Mäkelä & Pekkarinen, 
2004; Muukkonen & Heiskanen, 2005; Pekkarinen, 2002). 
FRB cartography with stands larger than NFI-2 plots did not exist in the study area; however, 
the interpretation of high-resolution aerial photographs has shown to be useful in forest-
inventory applications such as stratification, volume estimation, and measurements of forest 
characteristics (Lu, 2006; Mäkelä & Pekkarinen, 2004). In this context, the high-resolution 
ortho-photographs used in geometric rectification were applied to extend the plot areas to 
larger sizes with visually similar composition and forest structure. This was performed using a 
“heads-up,” on-screen digitizing technique within a GIS application. The selected NFI-2 plots, 
with their respective radii size, were displayed over the composite digital aerial photograph 
with 1 m spatial resolution. Where possible, larger homogeneous areas containing the in situ 
plots were then defined. Aragon 1:50,000 digital forest cartography was used to guarantee the 
pure composition of the new areas. To avoid errors in the results, only homogeneous areas 
with a high degree of similarity between observations from the aerial photographs of the NFI-
2 plots were selected. As a result, a total of 131 areas were selected. In addition, when 
extracting mean values, only those pixels located in the core areas of the delimited stand were 
selected. Pixels located on the borders were avoided, as these can reflect properties of 
landscape elements in the immediate vicinity of the delimited stands (Figure 4). 
 
 
 
 
 

 
 
 
 
 

Fig. 3. (a) 3 x 3 pixel window centred on a plot with high heterogeneity (high CV); (b) 3 x 3 
pixel window centred on a plot with low heterogeneity (low CV) 
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the interpretation of high-resolution aerial photographs has shown to be useful in forest-
inventory applications such as stratification, volume estimation, and measurements of forest 
characteristics (Lu, 2006; Mäkelä & Pekkarinen, 2004). In this context, the high-resolution 
ortho-photographs used in geometric rectification were applied to extend the plot areas to 
larger sizes with visually similar composition and forest structure. This was performed using a 
“heads-up,” on-screen digitizing technique within a GIS application. The selected NFI-2 plots, 
with their respective radii size, were displayed over the composite digital aerial photograph 
with 1 m spatial resolution. Where possible, larger homogeneous areas containing the in situ 
plots were then defined. Aragon 1:50,000 digital forest cartography was used to guarantee the 
pure composition of the new areas. To avoid errors in the results, only homogeneous areas 
with a high degree of similarity between observations from the aerial photographs of the NFI-
2 plots were selected. As a result, a total of 131 areas were selected. In addition, when 
extracting mean values, only those pixels located in the core areas of the delimited stand were 
selected. Pixels located on the borders were avoided, as these can reflect properties of 
landscape elements in the immediate vicinity of the delimited stands (Figure 4). 
 
 
 
 
 

 
 
 
 
 

Fig. 3. (a) 3 x 3 pixel window centred on a plot with high heterogeneity (high CV); (b) 3 x 3 
pixel window centred on a plot with low heterogeneity (low CV) 
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Fig. 4. (a) Homogeneous area delimited using high-resolution aerial photographs; (b) Core 
pixels of the homogeneous area used to extract spectral data from the Landsat TM image 

2.4.3 Spectral segmentation 
The main problems in constructing predictive models related to the extraction of 
radiometric data using high-resolution aerial photographs of delimited forest area are: (i) 
human errors in the establishment of limits during the visual image interpretation process, 
(ii) assumption of a FRB constant value for the entire homogeneous area based on a point 
location that is not representative of larger forest stands (Pekkarinen, 2002). 
Image segmentation can be applied to delimit homogeneous spectral features as a reference 
for spectral data extraction (Hall et al., 2006; Mäkelä & Pekkarinen, 2001; Pekkarinen, 2002). 
In this study, the segmentation algorithm RGB clustering incorporated in the software Erdas 
Imagine was applied. The essential parameters that control the results in this method are the 
RGB composition (which is used to apply the segmentation), the stretch applied to each 
band in the composition, and the number of bins into which each band is divided. Four 
different segmentations were performed, modifying the stretch (2 or 4 standard deviations) 
and the bins (7-6-6 and 4-3-3) using a RGB composition TM7-TM4-TM3 to model the 
heterogeneity of the analyzed forest (Table 2). In addition, in order to remove pixels within 
the immediate vicinity that were not attributable to the IFN-2 plot, the obtained image 
segments containing field plots were then intersected with 3 x 3 pixel windows, resulting in 
a mask of homogeneous pixels. Thus, the mean pixel value for each image band was then 
computed from the pixels that belong to the same spectral category as that of the central 
pixel of the NFI-2 plot (Figure 5).   
 

Segmentation Number of Std. dev. in 
each band 

Number of bins 
Red Green Blue 

S1 2 7 6 6 
S2 4 7 6 6 
S3 2 4 3 3 
S4 4 4 3 3 

Table 2. Parameters considered in the four different segmentations performed using RGB 
composition TM7-TM4-TM3 
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Fig. 5. Procedure to extract radiometric data combining the use of segmentation and 3 x 3 
pixel windows with restrictions 

2.5 FRB mapping and validation method 
We used Pearson’s coefficient to explore the feasibility of building accurate and 
representative predictive models using the plot groups derived from the three extraction 
methods. After this selection, each of the three groups was divided into two samples: 80% of 
the sample was used to carry out the predictive model and the remaining 20% was used to 
validate it. This sample division in each group was made randomly to guarantee the 
execution of the estimation equations and the validation processes. Moreover, to assess the 
robustness of the models, the sample division was done five times, completing the 
respective estimation model and its validation each time. 
The multiple linear regression model was performed, using the option “stepwise” to include 
only the significant variables (p < 0.05). In addition, performance was verified for all of the 
principles assumed for this type of regression at the model and variable level. To evaluate 
the performance of models, the coefficient of determination (R2) was used, and the Root 
Mean Square Error (RMSE) and the relative RMSE (RMSEr) were calculated using 20% of the 
sample previously reserved for the validation. Finally, the best model conducted with each 
of the extraction methods was applied to the 1994 Landsat data in order to obtain the FRB 
estimation cartography. The three derived cartographies were validated using plots not 
included in the groups considered in the regression models, and the RMSE and RMSEr were 
calculated to evaluate the results. 

2.6 Model application and inventory 
The results obtained with the June 1994 Landsat image (selected on the basis of its temporal 
coincidence with NFI-2 fieldwork) at the regression model level and in the cartography 
validation (in terms of R2 and RMSE and RMSEr, respectively) were analyzed. Then, the 
most suitable estimation model was selected for application to the July 2008 Landsat image. 
As a result, current information was obtained about the potential quantity of this energy 
resource and its spatial distribution in the study area. 

3. Results 
3.1 Models run using fixed pixel windows to extract the radiometric information 
Table 3 shows the correlation coefficients tendency of the original bands and some of the 
variables derived from them correlated to FRB in the first nine groups delimited using the 
CV. As expected, higher correlations were obtained with increasing spectral homogeneity 
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Fig. 4. (a) Homogeneous area delimited using high-resolution aerial photographs; (b) Core 
pixels of the homogeneous area used to extract spectral data from the Landsat TM image 
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human errors in the establishment of limits during the visual image interpretation process, 
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In this study, the segmentation algorithm RGB clustering incorporated in the software Erdas 
Imagine was applied. The essential parameters that control the results in this method are the 
RGB composition (which is used to apply the segmentation), the stretch applied to each 
band in the composition, and the number of bins into which each band is divided. Four 
different segmentations were performed, modifying the stretch (2 or 4 standard deviations) 
and the bins (7-6-6 and 4-3-3) using a RGB composition TM7-TM4-TM3 to model the 
heterogeneity of the analyzed forest (Table 2). In addition, in order to remove pixels within 
the immediate vicinity that were not attributable to the IFN-2 plot, the obtained image 
segments containing field plots were then intersected with 3 x 3 pixel windows, resulting in 
a mask of homogeneous pixels. Thus, the mean pixel value for each image band was then 
computed from the pixels that belong to the same spectral category as that of the central 
pixel of the NFI-2 plot (Figure 5).   
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Fig. 5. Procedure to extract radiometric data combining the use of segmentation and 3 x 3 
pixel windows with restrictions 

2.5 FRB mapping and validation method 
We used Pearson’s coefficient to explore the feasibility of building accurate and 
representative predictive models using the plot groups derived from the three extraction 
methods. After this selection, each of the three groups was divided into two samples: 80% of 
the sample was used to carry out the predictive model and the remaining 20% was used to 
validate it. This sample division in each group was made randomly to guarantee the 
execution of the estimation equations and the validation processes. Moreover, to assess the 
robustness of the models, the sample division was done five times, completing the 
respective estimation model and its validation each time. 
The multiple linear regression model was performed, using the option “stepwise” to include 
only the significant variables (p < 0.05). In addition, performance was verified for all of the 
principles assumed for this type of regression at the model and variable level. To evaluate 
the performance of models, the coefficient of determination (R2) was used, and the Root 
Mean Square Error (RMSE) and the relative RMSE (RMSEr) were calculated using 20% of the 
sample previously reserved for the validation. Finally, the best model conducted with each 
of the extraction methods was applied to the 1994 Landsat data in order to obtain the FRB 
estimation cartography. The three derived cartographies were validated using plots not 
included in the groups considered in the regression models, and the RMSE and RMSEr were 
calculated to evaluate the results. 

2.6 Model application and inventory 
The results obtained with the June 1994 Landsat image (selected on the basis of its temporal 
coincidence with NFI-2 fieldwork) at the regression model level and in the cartography 
validation (in terms of R2 and RMSE and RMSEr, respectively) were analyzed. Then, the 
most suitable estimation model was selected for application to the July 2008 Landsat image. 
As a result, current information was obtained about the potential quantity of this energy 
resource and its spatial distribution in the study area. 

3. Results 
3.1 Models run using fixed pixel windows to extract the radiometric information 
Table 3 shows the correlation coefficients tendency of the original bands and some of the 
variables derived from them correlated to FRB in the first nine groups delimited using the 
CV. As expected, higher correlations were obtained with increasing spectral homogeneity 
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and a decreasing number of plots. All of the groups showed significant correlations, with 
the majority of the considered variables yielding p-values of generally p < 0.05, with the one 
exception being the first CV group, as this group contained only three plots. In all groups, 
the highest coefficients of correlation were obtained for variables related to wetness 
information (TM band 5 –TM5-, TM band 7 –TM7-, the third principal component -PC3-, the 
third tasseled cap component -TC3-, the moisture stress index –MSI-, and the sum of TM5 
and TM7 -MID57-), reaching similar coefficients than the Normalized Difference Vegetation 
Index (NDVI). The coefficients of these variables increased from values of 0.450–0.460 in the 
group of percentile 10 to more than 0.850 in the group of percentile 3 with all results being 
statistically significant. 
 

 CV10 CV9 CV8 CV7 CV6 CV5 CV4 CV3 CV2 
Nº plots 482 381 285 208 149 111 68 36 14 

TM1 -0.435* -0.493* -0.500* -0.529* -0.550* -0.513* -0.542* -0.708* -0.647* 
TM2 -0.409* -0.468* -0.470* -0.484* -0.499* -0.454* -0.495* -0.713* -0.638* 
TM3 -0.413* -0.474* -0.477* -0.492* -0.512* -0.464* -0.512* -0.734* -0.673* 
TM4 -0.199* -0.257* -0.232* -0.189* -0.163* -0.110 -0.213 -0.267 -0.573* 
TM5 -0.451* -0.524* -0.521* -0.552* -0.576* -0.552* -0.641* -0.793* -0.791* 
TM7 -0.452* -0.521* -0.523* -0.562* -0.603* -0.571* -0.639* -0.788* -0.780* 
PC1 -0.429* -0.498* -0.493* -0.509* -0.528* -0.489* -0.560* -0.737* -0.743* 
PC2 -0.032 0.012 -0.037 -0.087 -0.153 -0.194* -0.115 -0.213 0.410 
PC3 0.421* 0.474* 0.508* 0.590* 0.656* 0.663* 0.754* 0.869* 0.853* 
TC1 -0.414* -0.482* -0.475* -0.483* -0.493* -0.451* -0.521* -0.707* -0.721* 
TC2 0.310* 0.334* 0.371* 0.436* 0.494* 0.506* 0.546* 0.664* 0.425 
TC3 0.453* 0.525* 0.541* 0.603* 0.654* 0.645* 0.750* 0.852* 0.852* 

NDVI 0.457* 0.510* 0.525* 0.587* 0.634* 0.605* 0.684* 0.807* 0.737* 
SAVI 0.455* 0.507* 0.523* 0.585* 0.632* 0.603* 0.682* 0.805* 0.735* 
MSI -0.458* -0.518* -0.540* -0.618* -0.669* -0.674* -0.772* -0.883* -0.864* 

MID57 -0.454* -0.525* -0.525* -0.558* -0.590* -0.562* -0.641* -0.792* -0.787* 

Table 3. Pearson’s coefficient of correlation (R) between spectral variables and plots at the 
level of 3 x 3 pixel windows (* correlation is significant at the 0.05 level); TM, Thematic 
Mapper; PC, principal component analysis; TC, tasseled cap transform; NDVI, normalized 
difference vegetation index; SAVI, soil adjusted vegetation index; MSI, moisture stress 
index; MID57, sum of middle infrared wavelengths 

These results show that the degree of spectral heterogeneity determines the feasibility of 
building accurate predictive models. Thus, if the groups with more plots are used, the 
models will have low prediction capacity. By contrast, if the groups with lower numbers of 
plots are used, the models will have higher predictive capacity, but, in turn, the models will 
be biased to the sample, being not representative of all of the forests of Teruel Province. 
Therefore, we selected the CV4 group because, among the groups characterized by an 
elevated homogeneity of plots (allowing execution of models with high R2), it is the one 
with the most number of plots (68). Scatter plots comparing FRB and the spectral variables 
clearly reveal nonlinear relationships. As a result, the most suitable standard transformation 
was applied to the independent and dependent variables in order to guarantee the linearity 
principle in the multiple linear regression model (logarithmic –ln-, square root –sq-, 
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exponential –exp- and inverse –inv-) (Hair et al., 1998). Table 4 shows linear regression 
models performed with each one of the five random divisions of its sample. All of them 
include only one variable, which is always related to water content in vegetation. The lack of 
a second variable in these models is due to the high degree of auto-correlations between the 
spectral variables. This avoids violation of one of the principles of multiple linear regression 
models. Even so, the R2 values achieved were higher than 0.7. Consequently, they are 
suitable for FRB estimation in our study area. The results obtained from validation using 
20% of the sample showed that the model run with MID57 (TM5+TM7) is the most suitable, 
because the RMSEr was only 26.67%, significantly lower than the others. As a result, it was 
selected to obtain FRB cartography with the 1994 Landsat image, using the pine forest areas 
in the Aragon 1:50,000 cartography as a mask (Figure 6). 
 

Model Variable R2a β0 β1 
RMSE

(ton/ha) 
RMSEr 

(%) 
N1 ln_MID57 0.711 18.879 -4.663 4.843 26.67 
N2 ln_TM5 0.713 17.933 -5.073 4.591 43.38 
N3 ln_TM5 0.750 17.900 -5.053 4.767 51.91 
N4 ln_TM7 0.735 12.603 -3.906 6.144 42.92 
N5 ln_TM5 0.750 18.253 -5.204 4.792 34.93 

Table 4. Linear regression models obtained from 3 x 3 pixel windows 

 

 
Fig. 6. The regression model selected using fixed pixel windows and the FRB map produced 
applying it 

3.2 Models completed using visual analysis to extract the radiometric information 
Correlation analysis completed using homogeneous areas derived from visual analysis 
showed that spectral variables related to wetness yielded the highest Pearson coefficients. 
Among them, TM5, TM7, TC3, MSI and MID57 were identified as the best predictor 
variables, with an R > 0.68. In addition, vegetation indices were again the second group of 
variables that showed high correlation levels, with NDVI showing the strongest correlation 
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and a decreasing number of plots. All of the groups showed significant correlations, with 
the majority of the considered variables yielding p-values of generally p < 0.05, with the one 
exception being the first CV group, as this group contained only three plots. In all groups, 
the highest coefficients of correlation were obtained for variables related to wetness 
information (TM band 5 –TM5-, TM band 7 –TM7-, the third principal component -PC3-, the 
third tasseled cap component -TC3-, the moisture stress index –MSI-, and the sum of TM5 
and TM7 -MID57-), reaching similar coefficients than the Normalized Difference Vegetation 
Index (NDVI). The coefficients of these variables increased from values of 0.450–0.460 in the 
group of percentile 10 to more than 0.850 in the group of percentile 3 with all results being 
statistically significant. 
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Table 3. Pearson’s coefficient of correlation (R) between spectral variables and plots at the 
level of 3 x 3 pixel windows (* correlation is significant at the 0.05 level); TM, Thematic 
Mapper; PC, principal component analysis; TC, tasseled cap transform; NDVI, normalized 
difference vegetation index; SAVI, soil adjusted vegetation index; MSI, moisture stress 
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These results show that the degree of spectral heterogeneity determines the feasibility of 
building accurate predictive models. Thus, if the groups with more plots are used, the 
models will have low prediction capacity. By contrast, if the groups with lower numbers of 
plots are used, the models will have higher predictive capacity, but, in turn, the models will 
be biased to the sample, being not representative of all of the forests of Teruel Province. 
Therefore, we selected the CV4 group because, among the groups characterized by an 
elevated homogeneity of plots (allowing execution of models with high R2), it is the one 
with the most number of plots (68). Scatter plots comparing FRB and the spectral variables 
clearly reveal nonlinear relationships. As a result, the most suitable standard transformation 
was applied to the independent and dependent variables in order to guarantee the linearity 
principle in the multiple linear regression model (logarithmic –ln-, square root –sq-, 
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exponential –exp- and inverse –inv-) (Hair et al., 1998). Table 4 shows linear regression 
models performed with each one of the five random divisions of its sample. All of them 
include only one variable, which is always related to water content in vegetation. The lack of 
a second variable in these models is due to the high degree of auto-correlations between the 
spectral variables. This avoids violation of one of the principles of multiple linear regression 
models. Even so, the R2 values achieved were higher than 0.7. Consequently, they are 
suitable for FRB estimation in our study area. The results obtained from validation using 
20% of the sample showed that the model run with MID57 (TM5+TM7) is the most suitable, 
because the RMSEr was only 26.67%, significantly lower than the others. As a result, it was 
selected to obtain FRB cartography with the 1994 Landsat image, using the pine forest areas 
in the Aragon 1:50,000 cartography as a mask (Figure 6). 
 

Model Variable R2a β0 β1 
RMSE

(ton/ha) 
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(%) 
N1 ln_MID57 0.711 18.879 -4.663 4.843 26.67 
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Table 4. Linear regression models obtained from 3 x 3 pixel windows 

 

 
Fig. 6. The regression model selected using fixed pixel windows and the FRB map produced 
applying it 

3.2 Models completed using visual analysis to extract the radiometric information 
Correlation analysis completed using homogeneous areas derived from visual analysis 
showed that spectral variables related to wetness yielded the highest Pearson coefficients. 
Among them, TM5, TM7, TC3, MSI and MID57 were identified as the best predictor 
variables, with an R > 0.68. In addition, vegetation indices were again the second group of 
variables that showed high correlation levels, with NDVI showing the strongest correlation 
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(Table 5). Finally, note that scatter plots comparing FRB and spectral variables also showed 
nonlinear relationships; therefore both independent and dependent variables were 
transformed using standard transformation before introducing them in the SPSS software 
for the linear regression analysis. 
 

Variable R Variable R 
TM1 -0.633* PC3 0.678* 
TM2 -0.628* TC1 -0.648* 
TM3 -0.638* TC2 0.537* 
TM4 -0.330* TC3 0.708* 
TM5 -0.693* NDVI 0.652* 
TM7 -0.688* SAVI 0.651* 
PC1 -0.665* MSI -0.708* 
PC2 -0.174* MID57 -0.692* 

Table 5. Pearson’s coefficient of correlation (R) between spectral variables and homogeneous 
areas delimited by visual analysis (* correlation is significant at the 0.05 level) 

Consequently, it is possible to run estimation models using visual homogeneous areas 
with similar accuracy level as with fixed windows because the correlation coefficients are 
comparable. Therefore, the main difference in the analysis made using visual 
homogeneous data comes from the number of plots included, which is nearly double that 
of the group of percentile 4 (131 versus 68). As a result, the probability of constructing an 
over-fitted model is reduced (Hair et al., 1998). Therefore, this method to extract 
radiometric data appears to be more suitable to perform regression models for FRB 
estimation, as these models could be more representative of all environmental 
characteristics of Teruel pine forests. 
Only one of the five models successfully included more than one independent variable 
(Table 6), owing to the high auto-correlation between them. The variable chosen in each 
regression attempt depends on sample divisions; but in all cases, this variable was related to 
wetness. The model run with the sample N3 was selected to produce a map (Figure 7), as it 
showed good conciliation between its R2 and its RMSEr. In addition, this model allowed 
direct comparison to the previous extraction method because both models use the same 
radiometric variable (MID57). 
 

Model Variable R2a β0 β1 β2 
RMSE

(ton/ha) 
RMSEr 

(%) 
N1 ln_MID57 0.610 16.822 -3.960 - 12.207 64.95 
N2 ln_TM5 0.562 16.625 -4.541 - 7.497 41.78 
N3 ln_MID57 0.595 17.675 -4.191 - 8.839 59.48 

N4 
MSI, 

inv_TM4 0.579 6.649 -5.909 45.999 8.079 54.32 

N5 ln_TM5 0.558 17.492 -4.838 - 11.238 56.68 

Table 6. Linear regression models obtained using homogeneous areas delimited by visual 
analysis 
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Fig. 7. The regression model selected using homogeneous areas delimited by visual analysis 
and the FRB map produced applying it  

3.3 Models carried out using spectral segmentation to extract the radiometric 
information 
The correlation analysis using the data derived from the third extraction method was only 
performed using the plot groups CV7 and CV6 for two reasons: (i) to directly reject in the 
analysis the plots with high probability of containing radiometric data related to different 
spectral features than the FRB data; and (ii) to identify a regression model with similar R2 
values than were derived from the use of fixed 3 x 3 windows, but using a higher number 
of plots, making it more representative of the entire study area. In addition, only NFI-2 
plots inside areas classified as pine forest in the Aragon 1:50,000 forest map were 
considered for this analysis. As is shown in Table 7, the radiometric variables related to 
wetness were again the most correlated. In addition, it was shown that the correlation 
coefficients increase as the homogeneity in the sample increases, independently of the 
performed segmentation. Focusing on these results, only the S4 segmentation in group 
CV6 shows higher regression coefficients than using a fixed 3x3 window without 
restrictions. Concretely, the maximum R value S4 was reached using the variables TM7 
and MID57 (R>0.7). 
Nonlinear relationships between the dependent variable (FRB) and the independent 
variables (radiometric data) were again revealed; thus transformations were applied. 
Table 8 shows the regression models that were obtained using plots within group CV6. 
Four models were performed using a wetness radiometric variable. This type of variable 
was also selected initially in the only one model that used more than one variable. The R2 
coefficients were situated between 0.53 and 0.59 and only one model indicated an RMSEr 
lower than 40% in its validation. Owing to the limited difference in terms of R2, this 
model with the lowest RMSEr was selected to derive FRB cartography for the study area 
(Figure 8). 
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(Table 5). Finally, note that scatter plots comparing FRB and spectral variables also showed 
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Consequently, it is possible to run estimation models using visual homogeneous areas 
with similar accuracy level as with fixed windows because the correlation coefficients are 
comparable. Therefore, the main difference in the analysis made using visual 
homogeneous data comes from the number of plots included, which is nearly double that 
of the group of percentile 4 (131 versus 68). As a result, the probability of constructing an 
over-fitted model is reduced (Hair et al., 1998). Therefore, this method to extract 
radiometric data appears to be more suitable to perform regression models for FRB 
estimation, as these models could be more representative of all environmental 
characteristics of Teruel pine forests. 
Only one of the five models successfully included more than one independent variable 
(Table 6), owing to the high auto-correlation between them. The variable chosen in each 
regression attempt depends on sample divisions; but in all cases, this variable was related to 
wetness. The model run with the sample N3 was selected to produce a map (Figure 7), as it 
showed good conciliation between its R2 and its RMSEr. In addition, this model allowed 
direct comparison to the previous extraction method because both models use the same 
radiometric variable (MID57). 
 

Model Variable R2a β0 β1 β2 
RMSE

(ton/ha) 
RMSEr 

(%) 
N1 ln_MID57 0.610 16.822 -3.960 - 12.207 64.95 
N2 ln_TM5 0.562 16.625 -4.541 - 7.497 41.78 
N3 ln_MID57 0.595 17.675 -4.191 - 8.839 59.48 

N4 
MSI, 

inv_TM4 0.579 6.649 -5.909 45.999 8.079 54.32 

N5 ln_TM5 0.558 17.492 -4.838 - 11.238 56.68 

Table 6. Linear regression models obtained using homogeneous areas delimited by visual 
analysis 
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Fig. 7. The regression model selected using homogeneous areas delimited by visual analysis 
and the FRB map produced applying it  

3.3 Models carried out using spectral segmentation to extract the radiometric 
information 
The correlation analysis using the data derived from the third extraction method was only 
performed using the plot groups CV7 and CV6 for two reasons: (i) to directly reject in the 
analysis the plots with high probability of containing radiometric data related to different 
spectral features than the FRB data; and (ii) to identify a regression model with similar R2 
values than were derived from the use of fixed 3 x 3 windows, but using a higher number 
of plots, making it more representative of the entire study area. In addition, only NFI-2 
plots inside areas classified as pine forest in the Aragon 1:50,000 forest map were 
considered for this analysis. As is shown in Table 7, the radiometric variables related to 
wetness were again the most correlated. In addition, it was shown that the correlation 
coefficients increase as the homogeneity in the sample increases, independently of the 
performed segmentation. Focusing on these results, only the S4 segmentation in group 
CV6 shows higher regression coefficients than using a fixed 3x3 window without 
restrictions. Concretely, the maximum R value S4 was reached using the variables TM7 
and MID57 (R>0.7). 
Nonlinear relationships between the dependent variable (FRB) and the independent 
variables (radiometric data) were again revealed; thus transformations were applied. 
Table 8 shows the regression models that were obtained using plots within group CV6. 
Four models were performed using a wetness radiometric variable. This type of variable 
was also selected initially in the only one model that used more than one variable. The R2 
coefficients were situated between 0.53 and 0.59 and only one model indicated an RMSEr 
lower than 40% in its validation. Owing to the limited difference in terms of R2, this 
model with the lowest RMSEr was selected to derive FRB cartography for the study area 
(Figure 8). 
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 Segmentation 
S1 

Segmentation  
S2 

Segmentation  
S3 

Segmentation  
S4 

Fixed 3x3 
without 

restrictions 

 CV7 CV6 CV7 CV6 CV7 CV6 CV7 CV6 CV7 CV6 

Nº plots 182 130 182 130 182 130 182 130 182 130 

TM1 -0.595* -0.616* -0.600* -0.621* -0.599* -0.617* -0.606* -0.628* -0.598* -0.630* 

TM2 -0.585* -0.617* -0.580* -0.613* -0.573* -0.609* -0.579* -0.619* -0.585* -0.632* 

TM3 -0.594* -0.638* -0.591* -0.640* -0.588* -0.629* -0.597* -0.641* -0.602* -0.657* 

TM4 -0.224* -0.182* -0.243* -0.210* -0.220* -0.192* -0.224* -0.188* -0.240* -0.205* 

TM5 -0.622* -0.678* -0.642* -0.696* -0.635* -0.684* -0.638* -0.696* -0.650* -0.698* 

TM7 -0.605* -0.683* -0.625* -0.696* -0.621* -0.685* -0.632* -0.704* -0.641* -0.701* 

PC1 -0.592* -0.653* -0.608* -0.663* -0.601* -0.651* -0.606* -0.664* -0.615* -0.668* 

PC2 -0.059 -0.131 -0.063 -0.147 -0.084 -0.156 -0.082 -0.154 -0.082 -0.159 

PC3 -0.563* -0.621* 0.579* 0.634* 0.573* 0.621* 0.591* 0.636* 0.605* 0.649* 

TC1 -0.578* -0.629* -0.588* -0.637* -0.581* -0.624* -0.584* -0.636* -0.595* -0.643* 

TC2 0.437* 0.477* 0.443* 0.484* 0.445* 0.479* 0.453* 0.484* 0.449* 0.491* 

TC3 0.609* 0.670* 0.629* 0.694* 0.622* 0.678* 0.636* 0.696* 0.654* 0.700* 

NDVI 0.626* 0.665* 0.627* 0.660* 0.626* 0.655* 0.634* 0.657* 0.630* 0.665* 

SAVI 0.624* 0.663* 0.625* 0.657* 0.624* 0.653* 0.631* 0.655* 0.628* 0.663* 

MSI -0.592* -0.640* -0.629* -0.667* -0.617* -0.652* -0.633* -0.667* -0.643* -0.676* 

MID57 -0.618* -0.684* -0.638* -0.699* -0.632* -0.687* -0.639* -0.702* -0.648* -0.701* 

Table 7. Pearson’s coefficient of correlation (R) between spectral variables and data obtained 
using segmentation and 3x3 pixel windows with restrictions and without restrictions  
(* correlation is significant at the 0.05 level) 

 

Model Variable R2a β0 β1 β2 
RMSE

(ton/ha) 
RMSEr 

(%) 

N1 
TC3, 

ln_TM1 0.547 7.746 0.303 -1.087 9.064 44.95 

N2 ln_MID57 0.535 16.409 -3.888 - 5.657 35.58 
N3 ln_TM7 0.560 11.395 -3.411 - 8.840 50.07 
N4 ln_MID57 0.596 16.563 -3.928 - 9.688 66.67 
N5 ln_MID57 0.533 16.217 -3.846 - 8.231 51.01 

Table 8. Linear regression models obtained using segmentation and 3 x 3 pixel windows 
with restrictions 
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Fig. 8. The regression model selected using segmentation and 3 x 3 pixel windows with 
restrictions and the FRB map produced applying it  

3.4 FRB cartography validation 
The accuracy assessments of every regression equation (RMSE and RMSEr) were completed 
using plots that showed the same homogeneity criteria as was used to run the model. 
However, since the selected estimation models have been applied to each one of the Landsat 
pixels located in forested areas in Teruel Province, the degree of success in these must also 
be evaluated at that scale. 
To accomplish this, the NFI-2 plots excluded from the estimation models and their 
validation were considered. In order to guarantee the results, those plots that were 
affected by inaccuracies in their field location and/or by the radiometric response of 
different landscape elements located in their immediate vicinity, were removed from the 
validation sample. Consequently, group CV8 was used since it includes a high number of 
plots, which ensures that the validation results were not biased by using only the ideal 
plots.   
As it can be seen in figure 9, the results show few differences between the three maps. 
Those obtained from 3 x 3 fixed windows yieded a RMSEr of 64.26%, while spectral 
homogeneous forest areas had RMSEr values of 66, 71% and 65.06%, respectively. These 
results at pixel level can be considered tolerable for the study area considering previous 
experiments using similar methodologies for boreal environments less affected by 
heterogeneity than Mediterranean forests. Thus, Tokola et al. (1996), Tokola & Heikkila 
(1997), Mäkkelä & Pekkarien (2001) and Katila & Tomppo (2001) reported RMSEr to 
estimate forest parameters such us timber volume or total volume from about 65% to 
more than 100%. In this respect, it is important to emphasize that estimation error in 
cartography derived from satellite images decreases with an increase in the size of the 
area used to validate it. For example, Fazakas et al. (1999) showed a RMSEr of 66.5% at 
pixel level, but when using an aggregation area of 598 ha, the RMSEr was 8.7%. However, 
it was not possible to carry out a similar analysis in our study area because no other FRB 
data were available at any scale. 
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Fig. 8. The regression model selected using segmentation and 3 x 3 pixel windows with 
restrictions and the FRB map produced applying it  

3.4 FRB cartography validation 
The accuracy assessments of every regression equation (RMSE and RMSEr) were completed 
using plots that showed the same homogeneity criteria as was used to run the model. 
However, since the selected estimation models have been applied to each one of the Landsat 
pixels located in forested areas in Teruel Province, the degree of success in these must also 
be evaluated at that scale. 
To accomplish this, the NFI-2 plots excluded from the estimation models and their 
validation were considered. In order to guarantee the results, those plots that were 
affected by inaccuracies in their field location and/or by the radiometric response of 
different landscape elements located in their immediate vicinity, were removed from the 
validation sample. Consequently, group CV8 was used since it includes a high number of 
plots, which ensures that the validation results were not biased by using only the ideal 
plots.   
As it can be seen in figure 9, the results show few differences between the three maps. 
Those obtained from 3 x 3 fixed windows yieded a RMSEr of 64.26%, while spectral 
homogeneous forest areas had RMSEr values of 66, 71% and 65.06%, respectively. These 
results at pixel level can be considered tolerable for the study area considering previous 
experiments using similar methodologies for boreal environments less affected by 
heterogeneity than Mediterranean forests. Thus, Tokola et al. (1996), Tokola & Heikkila 
(1997), Mäkkelä & Pekkarien (2001) and Katila & Tomppo (2001) reported RMSEr to 
estimate forest parameters such us timber volume or total volume from about 65% to 
more than 100%. In this respect, it is important to emphasize that estimation error in 
cartography derived from satellite images decreases with an increase in the size of the 
area used to validate it. For example, Fazakas et al. (1999) showed a RMSEr of 66.5% at 
pixel level, but when using an aggregation area of 598 ha, the RMSEr was 8.7%. However, 
it was not possible to carry out a similar analysis in our study area because no other FRB 
data were available at any scale. 
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Fig. 9. RMSEr differences between FRB maps obtained using the three extraction methods 

3.5 Inventory of potentially available FRB 
Previous research has shown the utility of wetness variables obtained from Landsat TM 
images to estimate FRB, regardless of the image date in the summer period. This is 
because these kinds of variables yield high and similar estimation FRB models using 
June, July and August scenes. In addition, statistical differences were not found in the 
moisture content of the four pines studied over the 3 month period (García-Martín et al., 
2008a).  
In relation to results in previous sections, the model selected using the extraction of 3 x 3 
fixed windows was applied to the MID57 neocanal image derived from the July 2008 
Landsat image in order to inventory the FRB. This model was finally selected because it 
had higher predictive power (R2 of 0.711 versus 0.595 on the model selected in the visual 
analysis method and 0.535 in the segmentation method) and allows the development of 
maps with the lowest estimation error. This last point shows that the limited set of plots 
used in the 3 x 3 fixed windows method is as representative for FRB estimation as those 
used in the other two methods, although they were composed of nearly double the 
number of plots. 
Figure 10 shows the estimation cartography obtained for the entire study area. This 
cartography allows calculation of the total amount of FRB resource at the provincial 
level, which amounts to 5,449,252 tons. In addition, with the high spatial resolution (25 x 
25 m), the cartography precisely reveals the richest regions and FRB distribution within 
them. 
This makes this cartography especially suitable for determining optimal areas, taking into 
account other spatial variables that also determine the technical and economic feasibility in 
the harvest of this renewable energy resource, for example: (i) slope, which influences the 
possibility of using machinery and its efficiency; (ii) distance to forest tracks, which 
determines a portion of the transport costs; and (iii) area of forest stands, which is related to 
the necessary displacement during the working day. These three spatial factors and the 
quantity of FRB derived from remote sensing data at 25 m resolution can be integrated into 
a Geographical Information System (GIS) to identify areas more suitable for harvest of FRB, 
with attention to principles of sustainable ecological forest management (Pascual et al., 2007; 
García-Martín et al., 2011). 
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Fig. 10. FRB in the study area in July 2008 

4. Conclusions 
This study demonstrates the utility of Landsat TM images and forest inventory data in 
estimating FRB in Mediterranean areas. The methodology employed provides a continuous 
and complete estimation of FRB that overcomes problems associated with the limitations of 
point inventory. This information can be very useful in determining the most suitable areas 
in which to install power stations that make use of this resource; the lack of this type of 
information is one of the main problems currently facing the industry. As a result, an 
increase in the use of this kind of biomass resource will help to achieve the stated objectives 
of renewable energy production in Spain. Moreover, this is especially important considering 
two facts: (i) the current socio-economic context, with an increase in the price of petrol due 
to international instability, and public concerns regarding nuclear power, owing to 
Fukushima incident; and (ii) biomass is currently the only renewable energy that can be 
used as a strategic source of energy, as it is always available independent of weather 
conditions and can be stored easily prior to use (Jarabo, 1999). 
The three sources of information typically used for biomass estimation (data from field 
sampling, satellite imagery and ancillary data) (Lu, 2006) have been carefully integrated, 
bearing in mind the specific characteristics of the Mediterranean environment. Thus, to 
reduce the problem that heterogeneity introduced into estimation models, three different 
methods were tested to extract radiometric data from a TM image. In agreement with 
previous studies focused on AGB estimation (i.e. Foody, 2001; Lu et al., 2004; Lu, 2005; Lu & 
Batistiella, 2005; Steininger, 2000) and with previous analyses carried out with our data 
(García-Martín et al., 2006, 2008a, 2008b), the derived spectral variables related to wetness 
showed the strongest correlations to FRB, independent of the method used to extract the 
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4. Conclusions 
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point inventory. This information can be very useful in determining the most suitable areas 
in which to install power stations that make use of this resource; the lack of this type of 
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increase in the use of this kind of biomass resource will help to achieve the stated objectives 
of renewable energy production in Spain. Moreover, this is especially important considering 
two facts: (i) the current socio-economic context, with an increase in the price of petrol due 
to international instability, and public concerns regarding nuclear power, owing to 
Fukushima incident; and (ii) biomass is currently the only renewable energy that can be 
used as a strategic source of energy, as it is always available independent of weather 
conditions and can be stored easily prior to use (Jarabo, 1999). 
The three sources of information typically used for biomass estimation (data from field 
sampling, satellite imagery and ancillary data) (Lu, 2006) have been carefully integrated, 
bearing in mind the specific characteristics of the Mediterranean environment. Thus, to 
reduce the problem that heterogeneity introduced into estimation models, three different 
methods were tested to extract radiometric data from a TM image. In agreement with 
previous studies focused on AGB estimation (i.e. Foody, 2001; Lu et al., 2004; Lu, 2005; Lu & 
Batistiella, 2005; Steininger, 2000) and with previous analyses carried out with our data 
(García-Martín et al., 2006, 2008a, 2008b), the derived spectral variables related to wetness 
showed the strongest correlations to FRB, independent of the method used to extract the 
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radiometric data. Analyses undertaken revealed statistically significant correlations with the 
three methods, but the use of 3 x 3 pixel windows and CV were indicated as the most 
appropriate to isolate a homogeneous group of plots that allow the most accurate regression 
equations (R2>0.7). In addition, despite the fact that these models were performed using half 
of the plots than those derived from the other two extraction methods, it was representative 
of the entire study area, as was shown in the validation results obtained at pixel level 
(RMSEr was similar in the cartographies obtained from the three methods). The visual 
analysis method did not yield such good results probably because of inaccuracies in the 
delineation of the homogeneous areas and because of the assumption of a constant value of 
BRF for the entire area from one precise location. The segmentation method did not improve 
the results either. This fact can be related to the lack of success to model effectively the 
spatial distribution pattern of BRF in the study area using RGB clustering. Finally, it is 
important to note that any of the methodologies tested to extract radiometric data 
successfully completed multivariate regressions models. This was because of the high auto-
correlation among the well-correlated radiometric variables with FRB (wetness variables 
and vegetation indices). The use of these variables together will run a model affected by 
collinearity. 
Validation cartography was based at the pixel level using plots that had not been previously 
used in the regression equation, removing only those with higher probability of error. This 
approach ensured the independence of the validation. RMSEr obtained in the three 
cartographies (above 65%) were better or at the same level than those produced in previous 
experiments conducted in boreal environments to estimate forest parameters using Landsat 
images. This is a positive result considering the higher complexity of Mediterranean forests. 
The remaining errors in the estimates of FRB can be related to the factors highlighted in 
García-Martín et al. (2008a,b): (i) inaccuracies in the fieldwork undertaken to establish the 
allometric equations and statistical analyses of the equations; (ii) problems involved in 
relating NFI plots to satellite data, mainly related to inaccuracies in the plot field placement 
(the three methodologies applied in the present study in linking ground data and remotely 
sensed data helped to reduce this problem, but it is still possible that errors were present in 
the final sample data); (iii) inaccuracies related to heterogeneity of the sample, because 
different pine species were considered and they are distributed in different regions of the 
study area; and (iv) limitations related to the spectral, radiometric, and spatial resolution of 
the TM in highly heterogeneous environments. However, despite these limitations, the size 
of the scenes and ease of distribution at no cost, make Landsat TM the most suitable in terms 
of achieving the objective of developing a useful methodology for estimations of FRB at 
regional-scales. 
Finally, in order to improve outcomes, different lines of research should be considered. 
Firstly, different segmentation methods other than RGB clustering should be explored to 
determine if they can better model the forest spatial pattern and, as a result, obtain more 
accurate estimation models. Concerning this, the eCognition and the Definiens Developer 
segmentation procedures offer the possibility of considering additional features together 
with spectral data, based on similarities in shape and size. Secondly, focusing only on 
Landsat data, it is necessary to explore the use of other statistical methods that allow highly 
auto-correlated dependent variables to be considered jointly. In addition, it would be useful 
to explore the capability of hyperespectral sensors to identify narrow spectral bands highly 
correlated to FRB and poorly correlated between them and to examine the capability of SAR 
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data from different sensors. This will allow the execution of better predictive multivariate 
regression models not affected by collinearity. Lastly, it would be useful to integrate data 
from physical variables that can be related to FRB quantity and distribution such as 
elevation, slope and aspect, as well as diverse biophysical parameters such as soil, lithology 
and climate. 
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radiometric data. Analyses undertaken revealed statistically significant correlations with the 
three methods, but the use of 3 x 3 pixel windows and CV were indicated as the most 
appropriate to isolate a homogeneous group of plots that allow the most accurate regression 
equations (R2>0.7). In addition, despite the fact that these models were performed using half 
of the plots than those derived from the other two extraction methods, it was representative 
of the entire study area, as was shown in the validation results obtained at pixel level 
(RMSEr was similar in the cartographies obtained from the three methods). The visual 
analysis method did not yield such good results probably because of inaccuracies in the 
delineation of the homogeneous areas and because of the assumption of a constant value of 
BRF for the entire area from one precise location. The segmentation method did not improve 
the results either. This fact can be related to the lack of success to model effectively the 
spatial distribution pattern of BRF in the study area using RGB clustering. Finally, it is 
important to note that any of the methodologies tested to extract radiometric data 
successfully completed multivariate regressions models. This was because of the high auto-
correlation among the well-correlated radiometric variables with FRB (wetness variables 
and vegetation indices). The use of these variables together will run a model affected by 
collinearity. 
Validation cartography was based at the pixel level using plots that had not been previously 
used in the regression equation, removing only those with higher probability of error. This 
approach ensured the independence of the validation. RMSEr obtained in the three 
cartographies (above 65%) were better or at the same level than those produced in previous 
experiments conducted in boreal environments to estimate forest parameters using Landsat 
images. This is a positive result considering the higher complexity of Mediterranean forests. 
The remaining errors in the estimates of FRB can be related to the factors highlighted in 
García-Martín et al. (2008a,b): (i) inaccuracies in the fieldwork undertaken to establish the 
allometric equations and statistical analyses of the equations; (ii) problems involved in 
relating NFI plots to satellite data, mainly related to inaccuracies in the plot field placement 
(the three methodologies applied in the present study in linking ground data and remotely 
sensed data helped to reduce this problem, but it is still possible that errors were present in 
the final sample data); (iii) inaccuracies related to heterogeneity of the sample, because 
different pine species were considered and they are distributed in different regions of the 
study area; and (iv) limitations related to the spectral, radiometric, and spatial resolution of 
the TM in highly heterogeneous environments. However, despite these limitations, the size 
of the scenes and ease of distribution at no cost, make Landsat TM the most suitable in terms 
of achieving the objective of developing a useful methodology for estimations of FRB at 
regional-scales. 
Finally, in order to improve outcomes, different lines of research should be considered. 
Firstly, different segmentation methods other than RGB clustering should be explored to 
determine if they can better model the forest spatial pattern and, as a result, obtain more 
accurate estimation models. Concerning this, the eCognition and the Definiens Developer 
segmentation procedures offer the possibility of considering additional features together 
with spectral data, based on similarities in shape and size. Secondly, focusing only on 
Landsat data, it is necessary to explore the use of other statistical methods that allow highly 
auto-correlated dependent variables to be considered jointly. In addition, it would be useful 
to explore the capability of hyperespectral sensors to identify narrow spectral bands highly 
correlated to FRB and poorly correlated between them and to examine the capability of SAR 
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data from different sensors. This will allow the execution of better predictive multivariate 
regression models not affected by collinearity. Lastly, it would be useful to integrate data 
from physical variables that can be related to FRB quantity and distribution such as 
elevation, slope and aspect, as well as diverse biophysical parameters such as soil, lithology 
and climate. 
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