
Coding Theory
Recent Advances, New Perspectives

and Applications

Edited by Sudhakar Radhakrishnan
and Sudev Naduvath

Edited by Sudhakar Radhakrishnan
and Sudev Naduvath

This book explores the latest developments, methods, approaches, and applications
of coding theory in a wide variety of fields and endeavors. It consists of seven

chapters that address such topics as applications of coding theory in networking and
cryptography, wireless sensor nodes in wireless body area networks, the construction

of linear codes, and more.

Published in London, UK

© 2022 IntechOpen
© spainter_vfx / iStock

ISBN 978-1-83969-409-7

C
oding Th

eory - Recent A
dvances, N

ew
 Perspectives and A

pplications

Coding Theory -
Recent Advances,

New Perspectives and
Applications

Edited by Sudhakar Radhakrishnan
and Sudev Naduvath

Published in London, United Kingdom

Supporting open minds since 2005

Coding Theory - Recent Advances, New Perspectives and Applications
http://dx.doi.org/10.5772/intechopen.92539
Edited by Sudhakar Radhakrishnan and Sudev Naduvath

Contributors
Sandeep Kaur Kuttal, Benjamin Riethmeier, Abim Sedhain, Mahammad Firose Shaik, M. Monica
Subashini, G.Jaya Amrutha, Surdive Atamewoue Tsafack, Fitzroy Nembhard, Marco M. Carvalho, Özen
Özer, Jagmohan Tanti, Md. Helal Ahmed, Sumant Pushp, Sergio Venturini

© The Editor(s) and the Author(s) 2022
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2022 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Coding Theory - Recent Advances, New Perspectives and Applications
Edited by Sudhakar Radhakrishnan and Sudev Naduvath
p. cm.
Print ISBN 978-1-83969-409-7
Online ISBN 978-1-83969-410-3
eBook (PDF) ISBN 978-1-83969-411-0

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

5,800+
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

143,000+
International authors and editors

180M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Selection of our books indexed in the Book Citation Index (BKCI)
in Web of Science Core Collection™

Meet the editors

Dr. R. Sudhakar is a professor and head of the Department of
Electronics and Communication Engineering, Dr. Mahalingam
College of Engineering and Technology, Pollachi, India. He is
also an associate editor for IEEE Access, from which he received
the Outstanding Associate Editor Award in 2019. He is a review-
er of sixteen international journals, including IEEE Transactions
on Systems, Man, and Cybernetics: Systems, International Arab

Journal of Information Technology, and International Journal of Computer and Elec-
trical Engineering, among others. He has published 110 papers in international, and
national journals and conference proceedings. His areas of research include digital
image processing, image analysis, wavelet transforms, and digital signal processing.

Dr. Naduvath is an Associate Professor of Mathematics at Christ
(Deemed to be University), Bangalore, India. He has been teach-
ing at the collegiate level since 2001 and has been a researcher
in mathematics since 2011. His areas of specialization are graph
theory, discrete mathematics, algebra, and number theory.
Dr. Naduvath has more than 130 publications in international
research journals to his credit. He has been a reviewer for many

reputable publications including Mathematical Reviews, zbMATH, MAA Reviews,
and Computing Reviews. He is a member of the editorial board of ten research jour-
nals and on the referee panel of more than fifty others.

Contents

Preface XI

Chapter 1 1
Abel and Euler Summation Formulas for SBV() Functions
by Sergio Venturini

Chapter 2 15
Algebraic Approximations to Partial Group Structures
by Özen Özer

Chapter 3 33
Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
by Mahammad Firose Shaik, M. Monica Subhashini and G. Jaya Amrutha

Chapter 4 53
How Do Web-Active End-User Programmers Forage?
by Sandeep Kaur Kuttal, Abim Sedhain and Benjamin Riethmeier

Chapter 5 69
A Public Key Cryptosystem Using Cyclotomic Matrices
by Md. Helal Ahmed, Jagmohan Tanti and Sumant Pushp

Chapter 6 89
Conversational Code Analysis: The Future of Secure Coding
by Fitzroy Nembhard and Marco M. Carvalho

Chapter 7 107
Non Classical Structures and Linear Codes
by Surdive Atamewoue Tsafack

XIII

1

15

33

53

69

89

107

Contents

Preface

Chapter 1
Abel and Euler Summation Formulas for SBV() Functions
by Sergio Venturini

Chapter 2
Algebraic Approximations to Partial Group Structures
by Özen Özer

Chapter 3
Dynamic HUB Selection Process in Wireless Body Area Network
(WBAN) by Mahammad Firose Shaik, M. Monica Subhashini and G. Jaya
Amrutha

Chapter 4
How Do Web-Active End-User Programmers Forage?
by Sandeep Kaur Kuttal, Abim Sedhain and Benjamin Riethmeier

Chapter 5
A Public Key Cryptosystem Using Cyclotomic Matrices
by Md. Helal Ahmed, Jagmohan Tanti and Sumant Pushp

Chapter 6
Conversational Code Analysis: The Future of Secure Coding
by Fitzroy Nembhard and Marco M. Carvalho

Chapter 7
Non Classical Structures and Linear Codes
by Surdive Atamewoue Tsafack

Preface

Coding theory consists of techniques that enable the reliable delivery of digital
data over unreliable communication channels. Such techniques allow coding, while
decoding enables the reconstruction of the original data in many cases. These
techniques have various applications in a variety of fields including computer
science and telecommunication. These techniques also enrich the areas of
information theory and error detection with various other real-life applications.
This comprehensive book explores the latest developments, methods, approaches,
and applications of coding theory in a wide variety of fields and endeavors. It is
compiled with a view to provide researchers, academicians, and other interested
readers with an in-depth discussion of the latest advances in the field. It consists
of seven chapters that address a variety of subjects.

Chapter 1, “Abel and Euler Summation Formulas for SBV() Functions” by
Sergio Venturini, focuses on the natural setting for various Abel and Euler-Maclaurin
summation formulas and their applications.

Chapter 2, “Algebraic Approximations to Partial Group Structures” by Özen Özer,
algebraically demonstrates some structures of partial groups (Clifford Semigroup).

Chapter 3, “Dynamic HUB Selection Process in Wireless Body Area Network
(WBAN)” by Mahammad Firose Shaik, M. Monica Subhashini and G. Jaya Amrutha,
deals with wireless sensor nodes placed in, on, or around the human body to create
wireless body area networks (WBANs), which are used for collecting physiological
and vital signals from humans in real-time.

Chapter 4, “How Do Web-Active End-User Programmers Forage?” by Sandeep
Kaur Kuttal, Abim Sedhain, and Benjamin Riethmeier, discusses the programming
behavior of web-active end-users and informs researchers and professionals on
how to create better support for the debugging process, which can be adapted by
researchers to understand other aspects of programming such as implementing,
reusing, and maintaining code.

Chapter 5, “A Public Key Cryptosystem Using Cyclotomic Matrices ” by Md. Helal
Ahmed, Jagmohan Tanti and Sumant Pushp, proposes an arithmetic approach for
designing asymmetric key cryptography.

Chapter 6, “Conversational Code Analysis: The Future of Secure Coding” by
Fitzroy Nembhard and Marco M. Carvalho looks at the limitations of existing
approaches to secure coding and proposes a methodology that allows programmers
to scan and fix vulnerabilities in program code by communicating with virtual
assistants on their smart devices.

Preface

Coding theory consists of techniques that enable the reliable delivery of digital
data over unreliable communication channels. Such techniques allow coding, while
decoding enables the reconstruction of the original data in many cases. These
techniques have various applications in a variety of fields including computer
science and telecommunication. These techniques also enrich the areas of
information theory and error detection with various other real-life applications.
This comprehensive book explores the latest developments, methods, approaches,
and applications of coding theory in a wide variety of fields and endeavors. It is
compiled with a view to provide researchers, academicians, and other interested
readers with an in-depth discussion of the latest advances in the field. It consists
of seven chapters that address a variety of subjects.

Chapter 1, “Abel and Euler Summation Formulas for SBV() Functions” by
Sergio Venturini, focuses on the natural setting for various Abel and Euler-Maclaurin
summation formulas and their applications.

Chapter 2, “Algebraic Approximations to Partial Group Structures” by Özen Özer,
algebraically demonstrates some structures of partial groups (Clifford Semigroup).

Chapter 3, “Dynamic HUB Selection Process in Wireless Body Area Network
(WBAN)” by Mahammad Firose Shaik, M. Monica Subhashini and G. Jaya Amrutha,
deals with wireless sensor nodes placed in, on, or around the human body to create
wireless body area networks (WBANs), which are used for collecting physiological
and vital signals from humans in real-time.

Chapter 4, “How Do Web-Active End-User Programmers Forage?” by Sandeep
Kaur Kuttal, Abim Sedhain, and Benjamin Riethmeier, discusses the programming
behavior of web-active end-users and informs researchers and professionals on
how to create better support for the debugging process, which can be adapted by
researchers to understand other aspects of programming such as implementing,
reusing, and maintaining code.

Chapter 5, “A Public Key Cryptosystem Using Cyclotomic Matrices ” by Md. Helal
Ahmed, Jagmohan Tanti and Sumant Pushp, proposes an arithmetic approach for
designing asymmetric key cryptography.

Chapter 6, “Conversational Code Analysis: The Future of Secure Coding” by
Fitzroy Nembhard and Marco M. Carvalho looks at the limitations of existing
approaches to secure coding and proposes a methodology that allows programmers
to scan and fix vulnerabilities in program code by communicating with virtual
assistants on their smart devices.

IV

Finally, Chapter 7, “Non Classical Structures and Linear Codes” by Surdive
Atamewoue Tsafack , discusses fuzzy sets and hyperstructures, which are consid-
ered non-classical structures for the construction of linear codes.

Dr. Sudhakar Radhakrishnan
Professor,

Department of Electronics and Communication Engineering,
Dr. Mahalingam College of Engineering and Technology,

Coimbatore – District, Tamilnadu, India

Dr. Sudev Naduvath
Christ University,
Bengaluru, India

XIV

Chapter 1

Abel and Euler Summation
Formulas for SBV ð Þ Functions
Sergio Venturini

Abstract

The purpose of this paper is to show that the natural setting for various Abel and
Euler-Maclaurin summation formulas is the class of special function of bounded
variation. A function of one real variable is of bounded variation if its distributional
derivative is a Radom measure. Such a function decomposes uniquely as sum of
three components: the first one is a convergent series of piece-wise constant func-
tion, the second one is an absolutely continuous function and the last one is the so-
called singular part, that is a continuous function whose derivative vanishes almost
everywhere. A function of bounded variation is special if its singular part vanishes
identically. We generalize such space of special function of bounded variation to
include higher order derivatives and prove that the functions of such spaces admit a
Euler-Maclaurin summation formula. Such a result is obtained by deriving in this
setting various integration by part formulas which generalizes various classical Abel
summation formulas.

Keywords: Euler summation, Abel summation, bounded variation functions,
special bounded variation functions, Radon measure

1. Introduction

Abel and the Euler-Maclaurin summation formulas are standard tool in number
theory (see e.g. [1, 2]).

The space of special functions of bounded variation (SBV) is a particular subclass
of the classical space of bounded variation functions which is the natural setting for
a wide class of problems in the calculus of variations studied by Ennio De Giorgi and
his school: see e.g. [3, 4].

The purpose of this paper is to show that this class of functions (and some
subclasses introduced here of function of a single real variable) is the natural
settings for (an extended version of) the Euler-Maclaurin formula.

Let us describe now what we prove in this paper.
In Section 2 we obtain some “integration by parts”-like formulas for functions of

bounded variations which imply the various “Abel summation” techniques (Propo-
sitions (0.6), (0.7), and the relative examples) and in Section 3 we give some
criterion for the absolute summability of some series obtained by sampling the
values of a bounded variations function.

The last section contains the proofs of the main result of this paper (Theorem
(0.1)) that we will now describe.

We denote by C1 ð Þ (resp. Ck a, b½ �ð ÞÞ, L1 ð Þ and L∞ ð Þ respectively the space of
continuously differentiable functions (resp. k-times differentiables functions on the

1

closed interval a, b½ �), the space of Lebesgue (absolutely) integrable functions and
the space of essentially bounded Borel functions on .

Given f :  !  and x ∈ we set

f xþð Þ ¼ lim
h!0þ

f xþ hð Þ, (1)

f x�ð Þ ¼ lim
h!0�f xþ hð Þ, (2)

δf xð Þ ¼ f xþð Þ � f x�ð Þ: (3)

We denote by BV ð Þ the space of bounded variation complex functions on ;
we refer to [5, 6] for the main properties of functions in BV ð Þ.

Any real function of bounded variation can be written as a difference of two non
decreasing functions. It follows that if f ∈BV ð Þ then f xþð Þ, f x�ð Þ and δf xð Þ exist
for each x ∈ and the set x ∈jδf xð Þ 6¼ 0f g is an arbitrary at most countable subset
of . Moreover, the derivative f 0 xð Þ exists for almost all x ∈ and f 0 xð Þ ∈L1 ð Þ.

Let f ∈BV ð Þ. We denote by df the unique Radon measure on  such that for
each open interval �a, b ⊂½

df ð�a, b½Þ ¼ f a�ð Þ � f bþ
� �

: (4)

We recall that f is special if for any bounded Borel function u

ð


u xð Þdf xð Þ ¼

ð


u xð Þ f 0 xð Þdxþ

X
x ∈

u xð Þδf xð Þ: (5)

We denote by SBV ð Þ the space of all special functions of bounded variation.
We also say that f ∈BVloc ð Þ (resp. f ∈ SBVloc ð Þ) if for each a, b ∈, with a< b
the function

f xð Þ ¼
0 if x< a or x> b,

f xð Þ if a≤ x≤ b,

(
(6)

is in BV ð Þ (resp. SBV ð Þ).
We define SBVn ð Þ inductively setting

SBV1 ð Þ ¼ SBV ð Þ, (7)

and for each integer n> 1

SBVn ð Þ ¼ f ∈ SBV ð Þj f 0 ∈ SBVn�1 ð Þ� �
(8)

We denote by Bn and Bn xð Þ, n ¼ 1, 2, … respectively the Bernoulli numbers and
the Bernoulli functions. Let us recall that

B1 xð Þ ¼
0 if x ∈,

x� x½ � � 1
2

if x ∈n,

8><
>:

(9)

where x½ � stands for the greatest integer less than or equal to x and Bn xð Þ, n ¼
2, 3, … are the unique continuous functions such that

2

Coding Theory - Recent Advances, New Perspectives and Applications

Bn xþ 1ð Þ ¼ Bn xð Þ, (10)

B0
n xð Þ ¼ nBn�1 xð Þ, (11)
Ð 1
0Bn xð Þdx ¼ 0: (12)

Moreover B2nþ1 ¼ 0 for n>0 and Bn ¼ Bn 0ð Þ for n> 1.
The main results of this paper is the following theorem.
Theorem 0.1 Let f ∈ SBVm ð Þ, m≥ 1 and suppose f , … , f mð Þ ∈L1 ð Þ. Then
X
n ∈

f nþð Þ þ f n�ð Þ
2

¼
ð


f xð Þdxþ

X
x ∈

Xm

k¼1

�1ð Þk�1

k!
Bk xð Þδ f k�1ð Þ xð Þ

þ �1ð Þm�1

m!

ð


Bm xð Þ f mð Þ xð Þdx:

(13)

Remark. The sum “
P

x ∈” in the right hand side of the above “Euler-Maclaurin
formula” (13) is actually a sum over the subset of the x ∈ such that some of the
terms Bk xð Þδ f k�1ð Þ xð Þ do not vanish. We point out that such a set can be an arbitrary
at most countable subset of .

Remark. Let p and q, p< q be two integers and let f be a function of class Cm on
the interval p, q½ �. Set f xð Þ ¼ 0 when x is outside of the interval p, q½ �. Then the
classical Euler-Maclaurin formula (see, e.g. Section 9.5 of [7])

Xq�1

k¼p

f kð Þ ¼
ðq
p
f xð Þdxþ

Xm

k¼1

Bk

k!
f k�1ð Þ qð Þ � f k�1ð Þ pð Þ

� �

þ �1ð Þm�1Bm

m!

ðq
p
Bm xð Þ f mð Þ xð Þdx,

(14)

follows easily from Theorem 0.1.
Remark. Any f ∈BV ð Þ decomposes uniquely as f ¼ f 1 þ f 2 þ f 3, where f 1 xð Þ

can be written in the form

f 1 xð Þ ¼
Xþ∞

n¼1

φn xð Þ (15)

where each φn xð Þ is a piece-wise constant function, f 2 xð Þ is an absolutely
continuous function and f 3 xð Þ is a singular function, that is f 3 xð Þ is continuous and
f 03 xð Þ ¼ 0 for almost all x ∈. Then f ¼ f 1 þ f 2 þ f 3 is special if, and only if, f 3 ¼ 0
and in this case, for each bounded Borel function u xð Þ,

ð


u xð Þdf 1 xð Þ ¼

X
x ∈

u xð Þδf xð Þ, (16)

Ð
u xð Þdf 2 xð Þ ¼ Ðu xð Þ f 0 xð Þdx: (17)

In this paper we do not need of the existence of such a decomposition.

2. Integration by parts formulas

Our starting point is the following theorem:

3

Abel and Euler Summation Formulas for SBV (R) Functions
DOI: http://dx.doi.org/10.5772/intechopen.100373

Theorem 0.2 Let f , g :  !  two complex function. Assume that
f ∈BV ð Þ∩L1 ð Þ and g ∈BVloc ð Þ∩L∞ ð Þ. Then

ð


f xþð Þdg xð Þ þ

ð


g x�ð Þdf xð Þ ¼ 0, (18)

ð


f x�ð Þdg xð Þ þ

ð


g xþð Þdf xð Þ ¼ 0, (19)

ð



f xþð Þ þ f x�ð Þ
2

dg xð Þ þ
ð



g xþð Þ þ g x�ð Þ
2

df xð Þ ¼ 0: (20)

Proof: Let a, b ∈ with a< b. Theorem 7.5.9 of [5] yields

ð

�a,b½
f xþð Þdg xð Þ þ

ð

�a,b½
g x�ð Þdf xð Þ ¼ f b�ð Þg b�ð Þ � f aþð Þg aþð Þ, (21)

ð

�a,b½
f x�ð Þdg xð Þ þ

ð

�a,b½
g xþð Þdf xð Þ ¼ f b�ð Þg b�ð Þ � f aþð Þg aþð Þ: (22)

Since f ∈L1 ð Þ then necessarily

lim
b!þ∞

f b�ð Þ ¼ lim
a!�∞

f aþð Þ ¼ 0: (23)

Since g ∈L∞ ð Þ then g xþð Þ and g x�ð Þ are bounded and we also have

lim
b!þ∞

f b�ð Þg b�ð Þ ¼ lim
a!�∞

f aþð Þg aþð Þ ¼ 0: (24)

and hence one obtains the formulas (18) and (19) taking the limits as a ! �∞
and b ! þ∞ respectively in (21) and (22).

Formula (20) is obtained summing memberwise (18) and (19) and dividing by
two. □

Next we prove:
Theorem 0.3 Let f , g :  !  two complex function. Assume that

f ∈BV ð Þ∩L1 ð Þ and g ∈ SBVloc ð Þ∩L∞ ð Þ and suppose that g0 ∈L∞ ð Þ. Then
ð


f xð Þg0 xð Þdxþ

X
x ∈

0
f xþð Þδg xð Þ þ

ð


g x�ð Þdf xð Þ ¼ 0, (25)

ð


f xð Þg0 xð Þdxþ

X
x ∈

0
f x�ð Þδg xð Þ þ

ð


g xþð Þdf xð Þ ¼ 0, (26)

ð


f xð Þg0 xð Þdxþ

X
x ∈

0 f xþð Þ þ f x�ð Þ
2

δg xð Þ þ
ð



g xþð Þ þ g x�ð Þ
2

df xð Þ ¼ 0: (27)

where

X
x ∈

0
≔ lim

a!�∞
b!þ∞

X
a< x< b

: (28)

Moreover, if the function f also is continuous then

4

Coding Theory - Recent Advances, New Perspectives and Applications

ð


f xð Þg0 xð Þdxþ

ð


g xð Þdf xð Þ ¼ 0, (29)

Proof: Given a, b ∈, a< b set

g a, b, xð Þ ¼
0 x≤ a,
g xð Þ a< x< b,
0 x≥ b:

8><
>:

(30)

The function h xð Þ ¼ g a, b, xð Þ is in SBV ð Þ∩L∞ ð Þ. Hence, formula (18) yields

ð


f xþð Þdh xð Þ þ

ð


h x�ð Þdf xð Þ ¼ 0: (31)

Since h ∈ SBV ð Þ we have

ð


f xþð Þdh xð Þ ¼

ðb
a
f xþð Þg0 xð Þdxþ

X
x ∈

f xþð Þδg a, b, xð Þ: (32)

But f xþð Þ ¼ f xð Þ for almost all x ∈ and hence

ð


f xþð Þdh xð Þ ¼

ðb
a
f xð Þg0 xð Þdxþ

X
x ∈

f xþð Þδg a, b, xð Þ, (33)

which combined with (31) yields

ðb
a
f xð Þg0 xð Þdxþ

X
x ∈

f xþð Þδg a, b, xð Þ þ
ð


g a, b, x�ð Þdf xð Þ ¼ 0: (34)

Using the definition of g a, b, xð Þ we have

X
x ∈

f xþð Þδg a, b, xð Þ ¼ f aþð Þg aþð Þ þ
X

a< x< b

f xþð Þδg xð Þ, (35)

and hence

X
a< x< b

f xþð Þδg xð Þ ¼ �f aþð Þg aþð Þ �
ðb
a
f xð Þg0 xð Þdx�

ð


g a, b, x�ð Þdf xð Þ: (36)

As in the proof of the previous theorem we have

lim
a!�∞

f aþð Þg aþð Þ ¼ 0: (37)

Since f ∈L1 ð Þ and g0 ∈L∞ ð Þ then f g0 ∈L1 ð Þ and hence

lim
a!�∞
b!þ∞

ðb
a
f xð Þg0 xð Þdx ¼

ð


f xð Þg0 xð Þdx: (38)

The Radonmeasure df xð Þ is bounded and the functions x↦ g a, b, x�ð Þ are
equiboundedwith respect to a and b; by the Lebesgue dominated convergencewe have

5

Abel and Euler Summation Formulas for SBV (R) Functions
DOI: http://dx.doi.org/10.5772/intechopen.100373

lim
a!�∞
b!þ∞

ð


g a, b, x�ð Þdf xð Þ ¼

ð


g x�ð Þdf xð Þ: (39)

From (36) it follows that

lim
a!�∞
b!þ∞

X
a< x< b

f xþð Þδg xð Þ ¼
X
x ∈

0
f xþð Þδg xð Þ ¼ �

ð


f xð Þg0 xð Þdx�

ð


g x�ð Þdf xð Þ (40)

which is equivalent to (25).
The proof of (26) is obtained in a similar manner using (19) instead of (18), and

(27) is obtained summing memberwise (25) and (26) and dividing by two.
If the function g is continuous then g xþð Þ ¼ g x�ð Þ ¼ g xð Þ for each x ∈,

X
x ∈

0
f xþð Þδg xð Þ ¼ 0, (41)

and (29) follows from, e.g., (25).
□

Example. This example shows that in the hypoteses of Theorem (0.3) the series

X
x ∈

0
f xþð Þδg xð Þ (42)

is not, in general, absolutely convergent. Indeed, set

f xð Þ ¼ 0 if x≤ 1=2,

1=x2 if x> 1=2,

�
(43)

and

g xð Þ ¼ 1 if
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
< x≤

ffiffiffiffiffi
2n

p
, n ∈,

0 if
ffiffiffiffiffi
2n

p
< x≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
, n ∈:

(
(44)

Then the integral

ð


f 0 xð Þg xð Þdx ¼

Xþ∞

n¼1

ð ffiffiffiffi2np

ffiffiffiffiffiffiffiffi
2n�1

p df xð Þ ¼ �
Xþ∞

n¼1

1
2n 2n� 1ð Þ (45)

is absolutely convergent, but the series

X
x ∈

0
f xþð Þδg xð Þ ¼

Xþ∞

n¼1

�1ð Þn
n

(46)

is convergent but not absolutely convergent.
We also have the following theorem.
Theorem 0.4 Let f , g :  !  two complex function. Assume that

f ∈ SBV ð Þ∩L1 ð Þ and g ∈ SBVloc ð Þ∩L∞ ð Þ and suppose that g0 ∈L∞ ð Þ. Then
ð


f 0 xð Þg xð Þdxþ

ð


f xð Þg0 xð Þdxþ

X
x ∈

δf xð Þg xþð Þ þ
X
x ∈

0
f x�ð Þδg xð Þ ¼ 0, (47)

6

Coding Theory - Recent Advances, New Perspectives and Applications

ð


f 0 xð Þg xð Þdxþ

ð


f xð Þg0 xð Þdxþ

X
x ∈

δf xð Þg x�ð Þ þ
X
x ∈

0
f xþð Þδg xð Þ ¼ 0, (48)

ð


f 0 xð Þg xð Þdxþ

ð


f xð Þg0 xð Þdxþ

X
x ∈

g xþð Þ þ g x�ð Þ
2

δf xð Þ

þ
X
x ∈

0 f xþð Þ þ f x�ð Þ
2

δg xð Þ ¼ 0,

(49)

where

X
x ∈

0
≔ lim

a!�∞
b!þ∞

X
a< x< b

(50)

If the function g also is continuous then

ð


f 0 xð Þg xð Þdxþ

ð


f xð Þg0 xð Þdxþ

X
x ∈

g xð Þδf xð Þ ¼ 0, (51)

Proof: Let f and g be as in the theorem. By formula (26) we have

ð


f xð Þg0 xð Þdxþ

X
x ∈

0
f x�ð Þδg xð Þ þ

ð


g xþð Þdf xð Þ ¼ 0: (52)

Since f ∈ SBV ð Þ, using the fact that g xþð Þ ¼ g xð Þ for almost all x ∈, we obtain

ð


g xþð Þdf xð Þ ¼

ð


g xð Þ f 0 xð Þdxþ

X
x ∈

g xþð Þδf xð Þ: (53)

Then (52) and (53) yield (47). Formulas (48) and (49) are obtained in a similar
manner using respectively Formulas (25) and (27) instead of (26).

If the function g is continuous then g xþð Þ ¼ g x�ð Þ ¼ g xð Þ for each x ∈,

X
x ∈

0
f xþð Þδg xð Þ ¼ 0, (54)

and (51) follows from, e.g., (47). □
Theorem 0.4 generalizes to high order derivatives.
Theorem 0.5 Let f , g :  !  two complex function. Let m>0 be a positive

integer. Assume that f ∈ SBVm ð Þ with f , … , f mð Þ ∈L1 ð Þ and g ∈ SBVm
loc ð Þ with

g, … , g mð Þ ∈L∞ ð Þ. Then

�1ð Þ m�1ð Þ
ð


f mð Þ xð Þg xð Þdxþ

ð


f xð Þg mð Þ xð Þdx

þ
X
x ∈

Xm

k¼1

�1ð Þk�1δ f k�1ð Þ xð Þg m�kð Þ xþð Þ

þ
X
x ∈

0Xm

k¼1

�1ð Þk�1 f k�1ð Þ x�ð Þδg m�kð Þ xð Þ ¼ 0,

(55)

7

Abel and Euler Summation Formulas for SBV (R) Functions
DOI: http://dx.doi.org/10.5772/intechopen.100373

�1ð Þ m�1ð Þ
ð


f mð Þ xð Þg xð Þdxþ

ð


f xð Þg mð Þ xð Þdx

þ
X
x ∈

Xm

k¼1

�1ð Þk�1δ f k�1ð Þ xð Þg m�kð Þ x�ð Þ

þ
X
x ∈

0Xm

k¼1

�1ð Þk�1 f k�1ð Þ xþð Þδg m�kð Þ xð Þ ¼ 0,

(56)

�1ð Þ m�1ð Þ
ð


f mð Þ xð Þg xð Þdxþ

ð


f xð Þg mð Þ xð Þdx

þ
X
x ∈

Xm

k¼1

�1ð Þk�1δ f k�1ð Þ xð Þ g
m�kð Þ x�ð Þ þ g m�kð Þ xþð Þ

2

þ
X
x ∈

0Xm

k¼1

�1ð Þk�1 f k�1ð Þ x�ð Þ þ f k�1ð Þ xþð Þ
2

δg m�kð Þ xð Þ ¼ 0,

(57)

Proof:We prove first the formula (55). The proof is by induction on m. When
m ¼ 1 (55) reduces to (47). Assume that (55) holds for m� 1, that is

�1ð Þ m�2ð Þ
ð


f m�1ð Þ xð Þg xð Þdxþ

ð


f xð Þg m�1ð Þ xð Þdx

þ
X
x ∈

Xm�1

k¼1

�1ð Þk�1δ f k�1ð Þ xð Þg m�k�1ð Þ xþð Þ

þ
X
x ∈

0Xm�1

k¼1

�1ð Þk�1 f k�1ð Þ x�ð Þδg m�k�1ð Þ xð Þ ¼ 0:

(58)

Replacing f with f 0, k with kþ 1 and changing the sign we obtain

�1ð Þ m�1ð Þ
ð


f mð Þ xð Þg xð Þdx�

ð


f 0 xð Þg m�1ð Þ xð Þdx

þ
X
x ∈

Xm

k¼2

�1ð Þk�1δ f k�1ð Þ xð Þg m�kð Þ xþð Þ

þ
X
x ∈

0Xm

k¼2

�1ð Þk�1 f k�1ð Þ x�ð Þδg m�kð Þ xð Þ ¼ 0:

(59)

Replacing g with g m�1ð Þ in (47) we obtain

ð


f 0 xð Þg m�1ð ÞÞ xð Þdxþ

ð


f xð Þgm xð Þdx

þ
X
x ∈

δf xð Þg m�1ð Þ xþð Þ þ
X
x ∈

0
f xþð Þδg m�1ð Þ xð Þ ¼ 0:

(60)

Summing (59) and (60) we obtain (55).
The proofs of (56) and (57) are similar.

□
We say that a function f ∈ SBVloc ð Þ is a step function if f 0 xð Þ ¼ 0 for almost

every x ∈.

8

Coding Theory - Recent Advances, New Perspectives and Applications

The following propositions are easy consequences of Theorem (0.4).
Proposition 0.6 Let u, v½ �⊂ be a bounded closed interval and let f be an

absolutely continuous function on the closed interval u, v½ �. Let g ∈ SBVloc ð Þ be a
step function. Then

ðv
u
f 0 xð Þg xð Þdx ¼ f vð Þg v�ð Þ � f uð Þg uþð Þ �

X
u< x< v

f xð Þδg xð Þ: (61)

Proof: First we extend the functions f as zero outside of the interval u, v½ �. We
may also assume that the function g is zero outside of a bounded open interval
containing the closed interval u, v½ �. Observe that then f uþð Þ ¼ f uð Þ, f v�ð Þ ¼ f vð Þ
and f u�ð Þ ¼ f vþð Þ ¼ 0 and therefore δf uð Þ ¼ f uð Þ, δf vð Þ ¼ �f vð Þ and δf xð Þ ¼ 0 for
x 6¼ u, v. By (47), we have

ð


f 0 xð Þg xð Þdxþ

ð


f xð Þg0 xð Þdxþ

X
x ∈

0
f xþð Þδg xð Þ þ

X
x ∈

g x�ð Þδf xð Þ ¼ 0: (62)

Since g is a step function then g0 xð Þ ¼ 0 for almost all x ∈ and hence it follows
that

ð


f 0 xð Þg xð Þdx ¼ �

X
x ∈

0
f xþð Þδg xð Þ �

X
x ∈

g x�ð Þδf xð Þ: (63)

The function f by construction has compact support, and hence, as f vþð Þ ¼ 0,
we have

X
x ∈

0
f xþð Þδg xð Þ ¼ f uþð Þ g uþð Þ � g u�ð Þð Þ þ

X
u< x< v

f xþð Þδg xð Þ

¼ f uð Þg uþð Þ � f uð Þg u�ð Þ þ
X

u< x< v
f xþð Þδg xð Þ,

(64)

and

X
x ∈

g x�ð Þδf xð Þ ¼ g u�ð Þδf uð Þ þ g v�ð Þδf vð Þ ¼ f uð Þg u�ð Þ � f vð Þg v�ð Þ: (65)

Summing memberwise the last two formulas we obtain

X
x ∈

0
f xþð Þδg xð Þþ

X
x ∈

g x�ð Þδf xð Þ ¼ �f vð Þg v�ð Þ þ f uð Þg uþð Þ

þ
X

u< x< v
f xþð Þδg xð Þ,

(66)

as desired. □
Proposition 0.7 Let f , g ∈ SBVloc ð Þ be two step function. Let u, v½ �⊂ be a

bounded closed interval. Then

X
u< x< v

g xþð Þδf xð Þ ¼ f v�ð Þg v�ð Þ � f uþð Þg uþð Þ �
X

u< x< v
f x�ð Þδg xð Þ: (67)

Proof: Set both the functions f and g to zero outside the closed interval u, v½ �.
Then formula (47) yields

9

Abel and Euler Summation Formulas for SBV (R) Functions
DOI: http://dx.doi.org/10.5772/intechopen.100373

X
x ∈

f xþð Þδg xð Þ þ
X
x ∈

g x�ð Þδf xð Þ ¼ 0: (68)

But then
X
x ∈

f xþð Þδg xð Þ ¼ f uþð Þg uþð Þ þ
X

u< x< v
f xþð Þδg xð Þ, (69)

and
X
x ∈

g x�ð Þδf xð Þ ¼ �f v�ð Þg v�ð Þ þ
X

u< x< v
g x�ð Þδf xð Þ; (70)

hence

f uþð Þg uþð Þ þ
X

u< x< v
f xþð Þδg xð Þ � f v�ð Þg v�ð Þ þ

X
u< x< v

g x�ð Þδf xð Þ ¼ 0, (71)

which is equivalent to (67). □
Example 1. (Abel summation I) Let anð Þ, n ∈ be a sequence of complex

numbers such that an ¼ 0 for n< <0. Then the function

A xð Þ ¼
X
n< x

an (72)

is a step function in SBVloc ð Þ. If f ∈C1 u, v½ � then Proposition (0.6) yields
ðv
u
f 0 xð ÞA xð Þdx ¼ f vð ÞA v�ð Þ � f uð ÞA uþð Þ �

X
u<n< v

f nð Þan: (73)

Example 2. (Abel summation II) Let anð Þ, bnð Þ, n ∈ be two sequence of complex
numbers. Let f , g !  be defined respectively setting f xð Þ ¼ an and g xð Þ ¼ bn when
n≤ x< nþ 1, n ∈. Clearly f , g ∈ SBVloc ð Þ and they are two step functions. Let be
given two integers p and q, p< q. Set u ¼ p and v ¼ qþ 1. Then it is easy to show that

X
u< x< v

g xþð Þδf xð Þ ¼
Xq

n¼pþ1

bn an � an�1ð Þ (74)

and

X
u< x< v

f x�ð Þδg xð Þ ¼
Xq

n¼pþ1

an�1 bn � bn�1ð Þ; (75)

hence, Proposition (0.7) yields

Xq

n¼pþ1

bn an � an�1ð Þ ¼ aqbq � apbp �
Xq

n¼pþ1

an�1 bn � bn�1ð Þ: (76)

3. Sampling estimates

In this section we give some conditions which ensures the absolute convergence
of series of the form

P
x ∈E f x�ð Þ þ f xþð Þð Þ=2 where f is a function absolutely

integrable of bounded variation and E is a countable subset of .

10

Coding Theory - Recent Advances, New Perspectives and Applications

The basic estimate is given in the following lemma.
Lemma 0.8 Let A⊂ be an open subset and let F⊂A be a finite subset of A.

Assume that there exist a>0 such that

x1, x2 ∈F, x1 6¼ x2) ∣x1 � x2∣ ≥ a,
x ∈F, y ∈nA) ∣x� y∣ ≥ a=2:

(77)

Then, for any complex functionf ∈BV ð Þ∩L1 ð Þ we have

X
x ∈F

f x�ð Þ þ f xþð Þ
2

�����

�����≤
1
a

ð

A
∣f xð Þ∣dxþ 1

2

ð

A
∣df ∣ xð Þ (78)

Proof: Let define

g xð Þ ¼
0, if x< � 1=2 or x ¼ 0 or x≥ 1=2,

xþ 1=2, if � 1=2≤ x<0,

x� 1=2, if 0≤ x< 1=2,

8><
>:

(79)

and set

G xð Þ ¼
X
y ∈F

g
x� y
a

� �
: (80)

For each x ∈ we have

G x�ð Þ þ G xþð Þ
2

¼ G xð Þ (81)

By Eq. (27)

�
X
x ∈

0 f xþð Þ þ f x�ð Þ
2

δG xð Þ ¼
ð


f xð ÞG0 xð Þdxþ

ð


G xð Þdf xð Þ: (82)

We also have

δG xð Þ ¼ �1 if x ∈ F,
0 if x ∈nF,

�
(83)

which implies

�
X
x ∈

0 f xþð Þ þ f x�ð Þ
2

δG xð Þ ¼
X
x ∈F

f x�ð Þ þ f xþð Þ
2

: (84)

Set

E ¼ ⋃
x ∈F

�x� a, xþ a :½ (85)

Then F⊂E⊂A and

G0 xð Þ ¼ 1=a if x ∈E,
0 if x ∈nE,

�
(86)

11

Abel and Euler Summation Formulas for SBV (R) Functions
DOI: http://dx.doi.org/10.5772/intechopen.100373

and hence

ð


f xð ÞG0 xð Þdx ¼ 1

a

ð

E
f xð Þdx: (87)

Moreover we have G xð Þ ¼ 0 if x ∈nE and hence

X
x ∈F

f x�ð Þ þ f xþð Þ
2

¼
ð


f xð ÞG0 xð Þdxþ

ð


G xð Þdf xð Þ

¼ 1
a

ð

E
f xð Þdxþ

ð

E
G xð Þdf xð Þ:

(88)

Taking modules, and observing that ∣G xð Þ∣ ≤ 1=2 for each x ∈E, we obtain

X
x ∈F

f x�ð Þ þ f xþð Þ
2

�����

�����≤
1
a

ð

E
∣f xð Þ∣dxþ

ð

E
∣G xð Þkdf ∣ xð Þ:

≤
1
a

ð

A
∣f xð Þ∣dxþ 1

2

ð

A
∣df ∣ xð Þ,

(89)

as required.
Corollary 0.9 Let f ∈BV ð Þ∩L1 ð Þ and let E⊂R be a countable subset. If there

exists a real constant a>0 such that for each pair of distinct x1, x2 ∈E we have
∣x1 � x2∣ ≥ a then

X
x ∈E

f x�ð Þ þ f xþð Þ
2

����
����< þ∞: (90)

Proof: It suffices to choose A ¼ ; lemma (0.8) yields easily the assertion.
□

4. Proof of Theorem 0.1

Inserting Bm xð Þ instead of gm xð Þ in formula (57) of Theorem 0.5 we easily obtain

X
n ∈

0 f nþð Þ þ f n�ð Þ
2

¼
ð


f xð Þdxþ

X
x ∈

Xm

k¼1

�1ð Þk�1

k!
Bk xð Þδ f k�1ð Þ xð Þ

þ �1ð Þm�1

m!

ð


Bm xð Þ f mð Þ xð Þdx:

(91)

By Corollary 0.9 it follows that

X
n ∈

0 f nþð Þ þ f n�ð Þ
2

¼
X
n ∈

f nþð Þ þ f n�ð Þ
2

(92)

is an absolutely convergent series, and hence Theorem 0.1 follows.

12

Coding Theory - Recent Advances, New Perspectives and Applications

Author details

Sergio Venturini
Dipartimento di Matematica, Università di Bologna, Bologna, Italy

*Address all correspondence to: sergio.venturini@unibo.it

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

13

Abel and Euler Summation Formulas for SBV (R) Functions
DOI: http://dx.doi.org/10.5772/intechopen.100373

References

[1] Graham Everest and Thomas Ward.
An Introduction to Number Theory.
Springer-Verlag, 2005.

[2] Henri Cohen. Number Theory Volume
II: Analytic and Modern Tools, volume
240 of Graduate Texts in Mathematics.
Springer-Verlag, 2007.

[3] Ennio De Giorgi and Luigi Ambrosio.
New functionals in the calculus of
variations. Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Nat. (8), 82(2):199–210
(1989), 1988.

[4] L. Ambrosio, M. Miranda, Jr., and D.
Pallara. Special functions of bounded
variation in doubling metric measure
spaces. In Calculus of variations: topics
from the mathematical heritage of E. De
Giorgi, volume 14 of Quad. Mat., pages
1–45. Dept. Math., Seconda Univ.
Napoli, Caserta, 2004.

[5] Stanislaw Lojasiewicz. An
Introduction to the Theory of Real
Functions. Wiley, 1988.

[6] Luigi Ambrosio, Nicola Fusco, and
Diego Pallara. Function of Bounded
Variation and Free Discontinuity
Problems. Oxford Mathematical
Monographs. Oxford University Press,
2000.

[7] Ronald L. Graham, Donald E. Knuth,
and Oren Patashnik. Concrete
Mathematics. Addison-Wesley
Publishing Company, 1989.

14

Coding Theory - Recent Advances, New Perspectives and Applications

Chapter 2

Algebraic Approximations to
Partial Group Structures
Özen Özer

Abstract

In this work, we use ‘Partial Group’ notion and we do further investigations
about partial groups. We define ‘Partial Normal Subgroup’ using partial
conjugation criteria and we prove few results about partial normal subgroups
analogous to normal groups. Also, we define congruence relation for partial
groups and via this relation, we state ‘The Quotient of Partial Group or Factor
Group’. We give isomorphism theorems for partial groups. Explicitly, this is an
analogous concept to group theory and our main is where differences partial
groups from groups.

Keywords: partial group, partial normal subgroup, partial quotient group,
isomorphism theorems for partial groups

1. Introduction

It is defined that a group is a set equipped with an operation described on it such
that it has some properties as associated elements, an identity element, and inverse
elements. Another definition can also be given as algebraic that the group is the set
of all the permutations for algebraic expression’s roots that displays the typical that
the assembly of the permutations pertains to the set.

If questions are “how was group theory developed?, What is the importance of
group theory in science or real life? investigated for the mathematical topic group
theory, then we can understand easily why we work on the structures of the theory
of the many types of groups.

As we know from the literature, some primary sources are determined in the
development of group theory such as Algebra (Lagrange in the 17. century),
Number Theory (Gauss in the 18. century) (Euler’s product formula, Combinator-
ics, Fermat’s Last Theorem, Class group, Regular primes, Burnside’s lemma),
Geometry (Klein, 1874), and Analysis (Lie, Poincaré, Klein in the 18. Century). It
seems that three main areas have been described as Number Theory and Algebra
(Galois theory, equation with degree 5, Class field theory), Geometry (Torus,
Elliptic curves, Toric varieties, Resolution of singularities), and analysis in
mathematics. Topology (((co)homology groups, homotopy groups) and algebraic
part of it (Eilenberg–MacLane spaces, Torsion subgroups, Topological spaces), the
Theory of Manifolds (manifolds with a metric), Algebra, Dynamical systems,
Engineering (to create digital holograms), Combinatorial Number Theory, Mathe-
matical Logic, Geometry in Riemannian Space, and Lie Algebra also belongs these
three subjects.

15

Group theory is used not just inmathematics but also in computer science, physics,
chemistry, engineering, and other sciences. Especially symmetry has a big potential
property in the group theory. That is why it is considered as representation theory in
physics. For example; mathematical works on quantummechanics were done by von
Neumann,Molecular Orbital Theory. Also, the StandardModel of particle physics, the
equations ofmotion, or the energy eigenfunctions use group theory for their orbitals,
classify crystal structures, Raman and infrared spectroscopy, circular dichroism spec-
troscopy,magnetic circular dichroism spectroscopy or getting periodic tables-gauge
theory, the Lorentz group-the Poincaré’s group inmodern chemistry or physics. Also,
group theory is defined as representation theory in physics. A lot of groupswith prime
caliber built-in cryptography for elliptic curve do a service for public-key cryptography
andDiffie–Hellman key exchange takes advantage of cyclic groups (especially finite)
too. Additionally, cryptographic protocols also consider infinite nonabelian groups.

We can state the applications of the group theory also in real life as follows:

1.Shopping online (we use our credit card with encryption which is obtained by
group structure in RSA algorithm)

2.Music (Elementary group theory is used for the 12-periodicity in the circle of fifths
in musical set theory. Transformational theory patterns musical transformations
as if they are elements of a mathematical group, cyclic groups create octave and
other notions, the musical actions of the dihedral groups.)

3.Medical science (to find out breast cancer) and computer science (robotics
computer vision and computer graphics) and material sciences.

4.Machine learning, communication network, signal processing, etc.…

5.Pipeline system, which is described as the Application - Business Object -
Network Node Layer, is patterned and investigated by the theory of group.
These systems are also related with vectors, matrices determined by group
structures, and so on.

Thus, tools of the group theory are useful for working on applications in many
different sciences and also real life as mentioned above.

Basic and simple examples can be given for usual groups as follows:

• Vector spaces V,þð Þ have group structures under the addition of vectors with
some properties of the scalar multiplication *.

• For p primes, elements of  ∗
p ⊆p have algebraic structures under

multiplication with unit 1.

• Assume that F be a number field and m is a natural number. Then S ¼ SL m,Fð Þ
can be determined to be the set of all regular m�m matrices with logins in F.
This is a usual group with a ∗ b described by the multiplication of matrices.

We can ask readers “whether or not these examples are partial group”?
Sm is demonstrated by symmetric groups such that it includes m! permutations

where m objects are taken from a set A. As an illustration, we can give the
symmetric group S3. Supposing that A ¼ a, b, cf g and S3 contains following objects;
identity element:

16

Coding Theory - Recent Advances, New Perspectives and Applications

Identity element ¼ a b c
a b c

� �
and others are;

a b c
b a c

� �
,

a b c
a c b

� �
,

a b c
c b a

� �
,

a b c
b c a

� �
,

a b a
c a b

� �

There are some properties in finite or infinite usual group theory. Some of them
can be seen as follows:

• Each of the elements in the finite group has finite order.

• If H is a finite group, then it is satisfied for each of the subgroups of H:

• Assuming that X,Y are groups. Then, the product of them is defined by X �
Y ¼ a, bð Þja∈X, b∈Yf g with unit element e≔ eX, eYð Þ, where we write eX, eY
are identity element and inverse elements are in the form of a�1, b�1� �

of in
X,Y, respectively.

• Suppose that X be a usual group and a in X. So, the cyclic group ah i becomes a
subgroup of X. As an illustration, we can say that mð , +) is a cyclic group that
satisfies 1h i ¼ m.

• If X be a usual group with order p (p is prime), X is also a cyclic group.

• X is abelian usual group iff center of X equals to X:

• Let us consider Sm and its two permutations. These are conjugate iff their cycle
types are equal/same according to their ordering.

• …

• … .

If literature (briefly, references [1–47]) is investigated, then it is easily seen that
partial groups are considered as topological structures more than algebraic struc-
tures. It is tried to prepare some new algebraic perspectives/approximations for the
partial group. As we know, there are many algebraic infrastructures such as finite-
infinite group, abelian-nonabelian group, quaternion group, symmetric group,
cyclic group, simple group, free group, orbits and stabilizers of the group, Lie
group, and various kinds of theorems such as Sylow theorems, Cauchy theorem,
Lagrange theorem, Cayley theorem, Isomorphism theorems as well as actions of
groups for usual group theory.

An effect algebra is introduced in the foundations of mechanics [1]. Further-
more, effect algebra subjects are fundamental in fuzzy probability theory [2, 3].
Also, partial group is defined by [4] and used for topological and homological
investigations. A pregroup can be defined as following:

A pregroup, [5], of a set P containing an element 1, each element p∈P has a
unique inverse p�1 and to each pair of elements p, t∈ P there is defined at most one
product pt ∈ P so that;

a. 1 ∗ p = p ∗ 1 ¼ p is always defined,

b. p * p�1 = p�1 * p = 1 is always defined,

17

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

c. If p ∗ t is defined then t�1 ∗ p �1 is defined and equal to (p ∗ t)�1.

d. If r ∗ p and p ∗ t are defined then either r ∗ p ∗ tð Þ is defined if and only if
r ∗ pð Þ ∗ t is defined in which case two are equal.

e. If q ∗ r, r ∗ p and p ∗ t are defined then either q ∗ r ∗ pð Þ is defined or r ∗ p ∗ tð Þ is
defined.

Every pregroup is a partial group, but the converse is not true in general. In that
meaning a partial group definition can be stated as follows:

A set P is a partial group in the meaning of ([6], Lemma 4.2.5) if each associated
pair x, yð Þ∈P X P there is at most one product x:y so that:

1.There is an element 1 ∈P satisfying x.1 = 1. x ¼ x for each x∈P.

2.For each x∈P there exists an element x�1 so that x.x�1=x�1.x=1

3.If x:y ¼ z is defined so is y�1.x�1 = z�1.

Inspiring by the groupoid and effect algebra [7] gave an alternative partial group
definition as an algebraic style. They introduced partial subgroup, partial group homo-
morphism, etc. as an analog investigation for group theory. Moreover, readers can
learn/consider a lot more structural results on the subject from others [8–47].

In this work, some (remained ones can be considered from readers using our
works) fundamental results are given for partial groups. Similarities and differences
have been noticed between usual groups and partial groups. Several of them also are
described in this work.

Also, we do further investigations for partial groups in algebraic style. We define
partial normal subgroup and give isomorphism theorems for partial groups. This
work is important because it has both topological and algebraic applications. It can
be expanded to rings or other algebraic structures.

2. Preliminary results

Recently, an algebraic structure named as partial group (also known as Clifford
Semigroup is isomorphic to an explicit partial group of partial mappings and it is a
semigroup with central idempotents) is investigated with new structures in the
literature.

A partial group (Clifford semigroup) is a regular semigroup (it means if M is a
semigroup of group G then idempotent elements of M exchange with H’s all
elements). Another definition can be given for the partial group as “A regular
semigroup with its central idempotents is named by Clifford semigroup.”

Additionally, several partial algebras such as partial monoid, partial ring, partial
group ring, partial quasigroup etc.… have been worked. For example, Jordan Holder
Theorem of composition series is known to hold in every abelian category. The
classical theory of subnormal series, refinements, and composition series in groups is
extended to the class of partial groups which is known to be precisely the classes of
Clifford semigroups, or equivalently semilattices of groups. Also, relations among
the language theory, words, partial groups, universal group, and homology theory
have been considered with an arrow diagram of the partial group.

In this chapter, we first state some basic properties of partial groups which are
mentioned in several references.

18

Coding Theory - Recent Advances, New Perspectives and Applications

Definition 2.1 [7] Suppose G* is a nonempty set: G* is called as a partial group if
the following conditions hold for all x, y, and z∈ G *:

(G1) If xy, xyð Þz, yz and x yzð Þ are defined, then the equality xyð Þz ¼ x yzð Þ is valid.
(G2) For each x∈G*

, there exists an e∈G* such that xe and ex are defined and
the equality xe ¼ ex ¼ x is valid.

(G3) For each x∈G*, there exists an x’∈G* such that xx’ and x’x are defined and
the equality xx’ ¼ x’x ¼ e is valid.

The e∈G* satisfies (G2) is called the identity element of G* and the X’∈G*

satisfies (G3) is called the inverse of x and denoted by x�1.
Another way, we can give partial definition as follows:
Definition 2.2. Let M be a semigroup. It is called a partial group if the

followings are held.

i. Every k∈M has a partial identity ek

ii. Every k∈M has a partial inverse k�1

iii. Mapping eM : M ! M, k↦ek is a semigroup homomorphism

iv. Mapping β : M ! M, k↦k is a semigroup antihomomorphism.

Note:

i. Let M be a semigroup. A partial identity of k, when exists, is unique and
idempotent such that denoted by ek.

ii. Let M be a semigroup. A partial inverse of k ϵ M, when exists, is uniquely
denoted by k�1.

Definition 2.3. The regular element of the M semigroup is defined if there
exists s ∈M such that ysy = y. Each element ofM is regular element also M is
named by regular semigroup.

Definition 2.4. M semigroup is called as completely regular semigroup for
every element s ∈M ysy = y and ys = sy are satisfied.

Note. Unions of groups give us completely regular semigroups which are named
by Clifford semigroups.

Definition 2.5. Let M be a semigroup. Elements k and s of a semigroup M are
said to be inverse of each other if and only if sks = s and ksk = k.

Then following theorem can be given from the literature.
Theorem 2.1. The following results are equivalent to each other for a semigroupM:

i. M is a Clifford semigroup,

ii. There exists r ∈ S such that wrw = w and wr = rw for every w ∈M,

iii. M is a semilattice of groups,

iv. M is a completely regular inverse semigroup.

Proposition 2.1. M is a completely regular semigroup iff there are ekand k�1 for
every k ϵ M.

Proposition 2.2 [7] Every group is a partial group and every partial group which
is closed under its partial group operation is a group.

19

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

Proposition 2.3. Assuming that M is a partial group. Then, the following are
given:

• Every idempotent element in partial group M is its own partial identity and
partial inverse,

• Let k ϵ M:Then, e�1
k ¼ ek ¼ ekð Þ�1 is hold.

• Suppose that k ϵ M: k�1� ��1 ¼ k is satisfied.

Example 2.1 [7] Following sets with the given operation, can be seen as an
example to the partial groups:

1.Let G ¼ {0,�1,… ,�n} where n∈+ and + be known addition operation on Z.
Then it is easily seen that G is a partial group but is not a group.

2.Let G ¼ *∪ 1
n : n∈Z
� +}where  *¼ � 0f g: So it is obvious that G is a partial

group but is not a group by the known multiplication on .

3.Let G ¼ �r, r½ � where r∈+ and + be known addition operations on . Then it
is obvious G is a partial group but is not a group.

Definition 2.6 [7] Suppose G* be a partial group, m∈Z+, and a∈G*. If am is
defined and m is the least integer such that am¼ e, the number m is called the order
of a. In this case, it is called that a has a finite order element. If there does not exist
an m∈Z+ such that am¼ e, (if only a0 ¼ e); then it is called that a has infinite order.
The order of a is denoted by aj j.

Example 2.2 [7] G ¼ 1,�1, i,�i, 2i,� i
2

� �
with the multiplication operation on 

is a partial group and ∣i∣ ¼ 4, 2ij j ¼ ∞.
Definition 2.7 [7]. Suppose G*be a partial group.  Gð *Þ ¼ x∈Gf

∣If ax and xa are defined for all a∈A; ax ¼ xag is called the center of G.
Lemma 2.1 [7] A partial group is called centerless if Z (G*) is trivial i.e., consists

of only the identity element. If G* is commutative then G* = Z (G*).
Definition 2.8. Supposing that M ¼ Gp be a partial group and  ¼ Hp be a

subset of M: is called by sub partial group of M if  is a sub semigroup of M and
ek, k

�1 are in  for all k∈.
Especially, M and the set of idempotents elements of M are sub partial groups

of M.
Definition 2.9 [7] Let G* be a partial group and H* be a nonempty subset of G*. If

H* is a partial group with the operation in G* thenH* is called a partial subgroup ofG*.
Example 2.3 [7] In Example 2.2 the set G*¼ 0,�1, … ,�nf gwhere nϵ+ and + be

known addition operation on  is a partial group and let H*¼ 0,�1, … ,�kf g where
0≤ k≤ n and k∈. Then H* is a partial subgroup of G*.

Lemma 2.2 [7] Let G* be a partial group and H* be a nonempty subset of G*.H * is
a partial subgroup of G* if and only if the following conditions hold:

i. e∈H*;

ii. a�1∈H* for all a∈H*.

Moreover, Let G * be a partial group and let a be an element of G* such that the
elements {ak for all k∈} are defined. Denote af k; k∈g ¼ < a> It is clear that the

20

Coding Theory - Recent Advances, New Perspectives and Applications

set < a> is a partial subgroup of G*. The partial subgroup < a> of G* is called the
cyclic partial subgroup generated by a. If there exists an element a in G* such that
< a> ¼ G *, then G* is called a cyclic partial group.

Example 2.4 [7] Let G ¼ e, a, b, cf g⊂ S ¼ e, a, b, c, df g and “:” be a partially
defined operation on G as in Table 1.

Remark. Note that c:b is undefined. ThenG is not a group but it is a partial group.
Additionally, in this partial group, < a> ¼ G,G is the cyclic partial group. But all
partial subgroups of a cyclic partial group can not be cyclic. For instance, the partial
subgroupH ¼ e, a, cf g is not cyclic. But in group theory, if a group is cyclic, all sub-
groups of it are also cyclic. The partial groups are different fromgroups in thatmeaning.

Definition 2.10. Assume that M ¼ Gp be a partial group and k∈M: Then, we
define Mk ¼ s∈M : ek ¼ esf g.

Theorem 2.2. Suppose that M is a partial group and k∈M: Then, Mk is a
maximal subgroup M of which has identity ek and M ¼ ⋃ Mk : k∈Mf g.

Definition 1.11 [7] Let M and N be partial groups. A function σ : M⟶N
is called a partial group homomorphism if for all a, b∈M such that ab is defined in
M, σ að Þσ(b) is defined in N and

σ abð Þ ¼ σ að Þσ bð Þ:

If σ is injective as a map of sets, σ is said to be a monomorphism. If σ is
surjective, σ is called an epimorphism.

Definition 2.12. For a partial group homomorphism σ : M⟶N it is defined
kerσ ¼ k∈M : σ kð Þ ¼ eσ kð Þ

� �
and Imσ ¼ σ kð Þ : k∈Mf g. Also, σ : M⟶N is

named isomorphism if it is bijective.
As a consequence of the definition the following lemmas can be given:
Definition 2.13. Suppose that σ : M⟶N be a partial group homomorphism.

Then, we define ker σ ¼ k∈M : σ kð Þ ¼ eσ kð Þ
� �

and Imσ ¼ σ kð Þ : k∈Mf g.
Theorem 2.3. Assuming that σ : M⟶N be a partial group homomorphism

and k∈M. Then, the following are given.

i. σ ekð Þ ¼ eσ kð Þ:

ii. σ k�1� � ¼ σ kð Þ�1:

iii. kerσ is a subpartial group of M:

iv. Imσ is a subpartial group of N.

v. σ Mkð Þ is a subpartial group of Nσ kð Þ:

vi. σ�1 Nek

� �
is a subpartial group of M.

: e a b c

e e a b c

a a b c e

b b c e a

c c e d b

Table 1.
(G) is a partial group even it has not a group structure.

21

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

Proposition 2.4 [7] Suppose M,N be partial groups and σ : M⟶N be a
homomorphism of partial groups. Then the following conditions are satisfied:

i. If A is a partial subgroup of M, then σ(A) is a partial subgroup of N.

ii. If B is a partial subgroup of N, then σ�1(B) is a partial subgroup of M.

Proposition 2.5. Let σ : M⟶N be a homomorphism of partial groups. Then, it
is obtained that

σ ekð Þ ¼ eσ kð Þ, σ k�1� � ¼ σ kð Þð Þ�1 for all k∈M:

Definition 2.14. A sub partial group  ¼ Hp of M ¼ Gp is named wide if the set
of idempotent elements ofM is a subset of  ¼ Hp and normal, written ⊲M. (if it is
wide and kk�1 ⊆ for all k ϵ MÞ:It is also trivial that the set of idempotents
elements of M is a normal subgroup of M and it is called the set of idempotents
elements of M the trivial normal subpartial group of M.

Theorem 2.4. Assuming that M be a partial group and k∈M, then

i. Mk is a maximal subgroup of M with identity ek.

ii. M ¼ ⋃ Mk : k∈Mf g ¼ ⋃ Mek : ek is
�

in the set of idempotents elements
of Mg.

Theorem 2.5. IfM is a partial group, then the set of idempotents elements of M
is commutative and central.

Definition 2.15. For a partial group homomorphismσ : M⟶N it is defined
kerσ ¼ k∈M : σ kð Þ ¼ eσ kð Þ

� �
and Imσ ¼ σ kð Þ : k∈Mf g. Also, σ : M⟶N is

named isomorphism if it is bijective.
Definition 2.16. σ is named as idempotent separating if σ ekð Þ ¼ σ esð Þ implies that

ek ¼ es, where ek, es are in the set of idempotent elements of M for a partial group
homomorphism σ : M⟶N .

3. Partial normal subgroups

In group theory, normal subgroup plays an important role in the classification of
groups and gives lots of algebraic results. Now, we will construct an analog defini-
tion for partial groups. Throughout Gp will denote the partial group. In this chapter,
we should notice that if G is a group, then G is a partial group with fect ef g. Also, [8]
in a group every element has a unique inverse, but in partial groups [7] for every
element a∈G, we have Inv að Þ 6¼ 0 because of that reason the identity element of
the group differs from the identity element of the partial group. We can continue to
work under these assumptions. From here on in, we will use the notation Gp for
partial groups.

Definition 3.1 (Partial Conjugation Criteria). Let Gp be a partial group, the
element gp.xp.gp

�1 (or gp
�1.xp.gp) is called partial conjugate of xp by gp for fixed

gp,xp∈G p.
Theorem 3.1. Let Gp be a partial group and Np be a partial subgroup of Gp then

following conditions are satisfied:

i. Np is normal in Gp if and only if for all xp∈Np and gp∈Gp we have gp
�1.xp.

gp∈Np

22

Coding Theory - Recent Advances, New Perspectives and Applications

ii. Np is normal in Gp if and only if for every element of Np all partial
conjugates of that element also lie in Np.

Proof:

i. It comes from the definition of partial normal subgroup.

ii. ():) Let Np is partial normal subgroup in Gp. Then we need to show
for every xp∈Np and fixed gp∈Np the partial conjugates gp

�1.xp.gp lies in
Np. Since gp∈Np then gp∈Gp. Also, since Np is a partial normal subgroup
of Gp gp

�1.xp.gp∈Np, this gives the proof.

((:) Conversely, let for every element of Np all partial conjugates of that
element lie in Np: Then it comes directly from partial subgroup definition Conclu-
sion(s). It is preferable to include a Conclusion(s) section which will summarize the
content of the book chapter.

Remark 3.1. Any partial subgroup Hp⊆Gp has right and left congruence
(equivalence) class that cannot be the same. But if left and right congruence classes
are the same (i.e., for any x∈Gp, Hp.x = x.Hp) then Hp is called as normal partial
subgroup.

Theorem 3.2. Let Gp be a partial group and Np be a partial subgroup of a partial
group Gp and so the following conditions are coincided:

Proposition 3.1.

i. N p is a partial normal subgroup of a partial group Gp.

ii. gp.Np=Np.gp for all gp∈Gp,

iii. gp.Np.gp
�1⊆Np for all gp∈Gp.

Proof:
(i))(ii) IfNp is a partial normal subgroup ofGp then it is easy that for all xp∈Np

and gp∈Gp we have gp.xp.gp
�1∈Np and from just before the theorem gp.Np.gp

�1∈Np.
(iii))(ii) Let gp be an element of Gp: We need to see gp.Np¼ N p.gp. Assume

that xp∈ gp.Np. Then xp = gp.n1 is satisfied for n1∈Np. Sincex p.gp
�1 = gp.np.gp

�1

and gp.Np.gp
�1⊆Np we have xpgp

�1∈N pand so that there exists an n2∈Np such
that xp.gp

�1 = n2. If we product from right with gp then we have the xð p.gp
�1Þ.gp =

n2.gp equality.
Using the associativity property the equality becomes xp.(gp

�1.gp) = n2.gp
and using identity element property and converse element property we get xp = n2.
gp∈Np.gp. It implies that gp.Np⊆Np.gp. In a similar way gp

�1.Np.gp⊆Np and we
have Np.gp⊆ gp.Np. Therefore we obtain gpNp = Np.gp.

(ii))(i) Supposing that gp∈Gp we have to prove gp.np.gp
�1 is contained in Np

for all np∈N p. Since gp.Np = Np.gp, we can say that gp.np∈Np.gp for all np∈Np.
Then, by associativity gp.np.gp

�1 is contained in Np.gp.gp
�1 and then for all np∈Np,

gp.np.gp
�1.

Lemma 3.1. The center of a partial group Gp is a partial normal subgroup of Gp.
Proof: The center of a partial group is defined as below:
Ζ (Gp)= xf p∈GjIf for every gp∈Gp xp.gp and gp.xp are defined, xp.gp¼ gp.xpg.
Let gp∈Gp and xp∈ Ζ (Gp) then we need to show gp.xp.gp

�1 is contained in
Ζ Gð pÞ. Since xp∈ Ζ Gð p) for every gp∈Gp if gp.xp and xp.gp is defined then xp.
gp = gp.xp. Using this argument gp.xp.gp

�1=xp.gp.gp
�1=xp∈ Ζ Gð p) and then we have

Z(Gp) is a partial normal subgroup of Gp.

23

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

Proposition 3.2. Let φ: Gp! Hp be a partial group homomorphism. Then the
kernel of φ is partial normal subgroup of Gp.

Proof: Let K = Ker(φÞ. We know that Ker(φ) is a partial subgroup of Gp. Suppose
that y∈K and gp∈Gp. Then using the fact φ is a partial group homomorphism

φ gp:yp:gp
�1

� �
¼ φ gp

� �
:φ yp
� �

:φ gp
�1

� �

¼ φ gp
� �

:eHp:φ gp
�1

� �

¼ φ gp
� �

:φ gp
�1

� �

¼ eHpwe have φ gp:yp:gp
�1

� �
¼ eHp

and we get gp.yp.gp
�1 ∈K. So Ker(φÞ is a partial normal subgroup of Gp.

Partial normal subgroups
Theorem 3.3. Suppose Gp is a partial group and Hp is a partial subgroup of Gp.H

p is a partial normal subgroup of Gp if and only if (aHp) (bHp) = abHp equality holds
for all a, b∈Hp.

Proof:
():) Suppose Hp is a partial normal subgroup of Gp. We need to see the equality

(aHp) (bHp) = abHp holds.
(⊆ :) Let x∈ (aHp) (bHp) then ∃h,h 2∈H such that x = (ah1) (bh2). By using

associativity property, we get x ¼ (h1bh2). From the identity element,
x = abb�1h1bh2 is obtained. Considering associativity property we can write x ¼ ab
(b�1h1b)h2. Since Hp is a partial normal subgroup of Gp, b

�1h1b∈Hp Then x ∈ abH
p and this implies that (aHp) (bHp) ⊆ abH p.

(⊇ :Þ Conversely, let y∈ abH p then there exists an h∈H p such that y ¼ abh.
So we can write y = abh as follows; y ¼ aeð Þ bhð Þ∈ (aHp) (bHp). It implies that abHp

⊆ (aHp) (bHp). Therefore aHð p) (bHp)¼ abH p

((:) Let us consider (aHp) (bHp) ¼ abH p for all a, b∈Gp. If h∈Hp and g∈G p

then we must see whether or not ghg�1∈H: Using associativity property and
considering hypothesis; ghg�1 = (gh)(g�1e) ∈ (gHp)(g

�1Hp) = gg�1Hp = Hp. This
implies that ghg�1∈Hp. So that Hp is a partial normal subgroup of Gp.

Theorem 3.4. Suppose Gp be a partial group and H,K are partial subgroups of
Gp. If K is a partial normal subgroup of Gp, then the following cases are satisfied:

i. H ∩K is a partial normal subgroup of H.

ii. If K and H are partial normal subgroups of Gp and H ∩K = ef g then hk ¼
kh ðor, HK ¼ KH) for every h∈H and every k∈K.

Proof:

i. Since H and K are partial subgroups, H ∩K is also a partial subgroup of G.
By H ∩K ⊆K we can conclude that H ∩K is also a partial subgroup of H. Let
consider a∈H ∩K and h∈H: Since a, h∈H, ha and hah�1 can be defined. It
gives that hah�1∈ H Also since K is a partial normal subgroup of Gp we
have hah�1∈K . It shows that H ∩K is a partial normal subgroup of H.

ii. Let H be a partial normal subgroup of Gp, H ∩K ¼ ef g and h∈H and k∈K.
Since H is a partial normal subgroup, we know that k:h:k�1∈H . If h.k.h�1.
k�1∈H then we get h:k:hð �1).k�1 ∈ K by K is a partial normal subgroup. So

24

Coding Theory - Recent Advances, New Perspectives and Applications

we have, h.k.h�1.k�1 ∈ H ∩K ¼ ef g. Then h.k.h�1.k�1=e and so, hk ¼ kh;
for all h∈H, k∈K. Thus, we prove that HK ¼ KH.

Proposition 3.3. Let Gp be a partial group and Hp be a partial subgroup of index
2 in Gp: Then Hp is a partial normal subgroup in Gp.

Proof: Let Hp be a partial subgroup of index 2 in Gp and gp be an element of Gp.
If gp∈Hp, then gpHp = Hpgp is satisfied. If gp is not in Hp, two left cosets must be as
Hp and gpHp. Since left cosets are disjoint we know gp.Hp = Gp�Hp. Also, the right
cosets are disjoint so we can write Hp.gp = Gp�Hp. Thus gpHp = Hpgp for all gp∈Gp.
So Hp is normal.

Example 3.1. Let Gp be an abelian partial group. Then any subgroup of Gp is a
partial normal subgroup of Gp.

Proof:
If Gp is an abelian partial group and xp.yp∈G p then xp.yp = yp.xp for every

xp.yp∈Gp. If gp.xp.gp
�1∈Np then Np is a partial subgroup of Gp. Using the

hypothesis we get

gp:xp:gp
�1 ¼ gp:gp

�1:xp

¼ eGp

¼ xp ∈Np

Therefore, the partial subgroup Np is the partial normal subgroup of Gp.
Example 3.2. Let Hp and Kp be any partial normal subgroup of Gp. Then Hp�Kp

is also a partial normal subgroup of Gp�Gp.
Proof:
Hp�Kp = {np¼(hp,kp) hj p∈Hp and kp∈Kp}. We have to show that for all gp in

Gp and np in Hp�Kp gp.np.gp
�1 is in Hp�Kp.

gp:np ¼ gp: hp, kp
� �

¼ gp:hp, gp:kp
� �

and

gp:np:gp
�1 ¼ gp:hp, gp:kp

� �
:gp

�1

¼ gp:hp:gp
�1, gp:kp:gp

�1
� �

and since Hp and Kp are partial normal subgroups of Gp, then gp.hp.gp
�1∈H p,

and gp.kp.gp
�1∈Kp and so that (gp.hp.gp

�1, gp.kp.gp
�1)∈Hp�Kp. Then the Cartesian

product of two partial normal subgroups is also a partial normal subgroup.
Theorem 3.5. Let be a partial group and Np be a partial normal subgroup of Gp.

The congruence moduloNp is a congruence relation for the partial group operation “:”.
Proof. Let xRNpy denote that x and y are in the same coset, that is;

xRNpy⟺ x:N p ¼ y:Np

Let xRNpx and yRN py. To demonstrate that RNp is a congruence relation for :,
we need to show, reflexivity, symmetry, and transitivity. These axioms are obvious
from the definition of relation.

Theorem 3.6. If Np is a partial normal subgroup of a partial group Gp and
Gp¼ Np is the set of all cosets of Np in Gp, then Gp∕Np is a partial group under the
operation given by aNð pÞ bNð pÞ ¼ abN p.

25

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

Proof. Let aNp, bNp,cNp∈Gp∕Np. We must see partial group axioms are
satisfied:

(G1) If (aNp)(bNp)¼ abN p. bNð pÞ cNð pÞ ¼ bcN p and a.(bcNp) are defined then

a: bcNp
� � ¼ aNp

� �
bNp
� �

cNp
� �� �

¼ ð aNp
� �

bNp
� �� �

cNp
� �

¼ abð ÞcNp

(G2) For any aNp in Gp∕Np, eNp is a candidate for identity element, i.e.,

aNp
� �

eNp
� � ¼ aeNp

¼ aNp

and

eNp
� �

aNp
� � ¼ eaNp

¼ aNp

(G3) Since is a partial group a∈Gp has an inverse a ∈́Gp. For every aNp in
Gp∕Np a ́Np is a candidate for the inverse of aNp.

aNp
� �

a Ńp
� � ¼ aáð ÞNp

¼ eNp

¼ Np

This completes the proof.
Definition 3.2. Let Gp be a partial group and Np is a partial normal subgroup of

Gp, then the partial group Gp∕Np is called the quotient of the partial group or factor
group of Gp by Np.

Proposition 3.4. Let f : Gp⟶H p be a homomorphism of partial groups, then
the kernel of f is a partial normal subgroup of Gp. Conversely, if Np is a partial
normal subgroup of Gp, then the map

Q
: Gp⟶Gp∕Np given by

Q
(ap)¼ aNp is an

epimorphism with kernel Np.
Proof: Kerf ¼ xf p∈Gp jf xð pÞ ¼ eH pg, we need to show that if xp∈Kerf and

ap∈Gp whether or not apxpap
�1∈Kerf if and only if f (apxpap

�1Þ ¼ f að p)f (xp)
f að p

�1)¼ eH p

So, a pxpap
�1∈Kerf . Therefore, Kerf is a partial normal subgroup of Gp. It is

trivial that
Q
: Gp⟶Gp∕Np is surjective. Ker

Qð Þ ¼ {xpj
Q
(xp)¼ epNp}¼ Np.

Theorem 3.7. Let f : G p! Hp is partial group homomorphism andNp is a partial
normal subgroup of Gp contained in the kernel of f , then there is exactly unique
homomorphism f : Gp∕Np⟶Hp such that f aNð pÞ ¼ f að Þ for all a∈Gp. Besides
Imf ¼ Imf and kerf ¼ (kerf Þ /Np.f an isomorphism if and only if f is an epimorhism
and Np¼ ker f .

Proof: f : G p!
f
H p, Gp⟶Gp∕Np, Gp∕Np !

f
Hp diagram is commutative. If

b∈ aNp, then b ¼ an p,n p∈N and also f (bp)¼ f (anp)¼ f (a)f (np)¼ f að Þe ¼ f að Þ,
sinceNp≤ ker f . Therefore, f has the same effect on every element of aNp and the map
f : Gp∕Np⟶Hp given by f (aNp)¼ f að Þ. It is easily seen that f is a well-defined
function. Nowwe need to prove whether or not f is a homomorphism of partial groups.

f aNp:bNp
� � ¼ f abNp

� � ¼ f abð Þ

26

Coding Theory - Recent Advances, New Perspectives and Applications

¼ f að Þ:f bð Þ

¼ f aNp
� �

:f bNp
� �

So, f is a partial group homomorphism. Imf ¼ Imf and aNp∈ kerf⇔f að Þ ¼ e ⟺

a∈ kerf , whence

kerf ¼ aNpja∈ kerf
� �

¼ kerf∕Np

f is unique since it is completely determined by f . Also, f is a partial group if and
only if f is an epimorphism of partial groups f is a monomorphism if and only if for
kerf ¼ ker fð Þ∕Npker f equal to Np.

Example 3.3. In Example 2.2, it is stated that G ¼ f0,�1,�2,… ,�n} is a partial
group with known addition operation on . We can easily say that the subset N =
{0,�1,�,… ,�n� 1g of G is a partial subgroup of G. Let us show whether or not N is
a partial normal subgroup. If gp

�1 + np + gp∈N for all gp∈Gp then N is a partial
normal subgroup. gp

�1¼ gp in this group so that gp + np + gp∈Np i.e. np∈N and
then N is a partial normal subgroup of G.

Theorem 3.8 (First Isomorphism Theorem for Partial Groups). Let Gp, Hp be
partial groups and f : Gp⟶H p be partial group epimorphism then Gp∕Ker f is
isomorphic to Hp.

Proof:We know that ker f is a partial normal subgroup of Gp. Then Gp∕Ker f is
defined. Let show Ker f ¼ K and g: Gp∕K⟶H p mapping defined as
g aKð Þ bKð Þð Þ ¼ g abKð Þ ¼ f abð Þ for every aK, bK ∈Gp∕K.

Since g a:bKð Þ ¼ f abð Þ ¼ f að Þf bð Þ ¼g aKð Þg bKð Þ then g is a homomorphism.
Since f is onto there exists a∈Gp such that f að Þ ¼ h then aK ∈Gp∕K and
g aKð Þ ¼ f að Þ ¼ h and g is onto. For one-to-one conditions let aK, bK ∈Gp∕K and

g aKð Þ ¼ g bKð Þ ifff að Þ ¼ f bð Þ
f bð Þ�1f að Þ ¼ f bð Þ�1f bð Þ ifff b�1a

� � ¼ eHp

b�1a∈K or kerf iffaK ¼ bK

Then, g is an isomorphism and Gp∕Ker f ffi Hp.
Lemma 3.2. Let Gp be a partial group and Hp be a partial subgroup of Gp and Np

be a partial normal subgroup of Gp. If Hp is a partial normal subgroup of Gp; then
HpNp is a partial normal subgroup of Gp.

Proof: Trivial.
Theorem 3.9 (Second Isomorphism Theorem for Partial Groups). Let Gp be a

partial group. Hp be a partial subgroup of Gp and Np be a partial normal subgroup of
Gp, then the following isomorphism holds:

HpNp∕Np ffi Hp Hp ∩Np
� �

Proof: It can be easily seen using First Isomorphism Theorem. So, the proof is
left to the reader.

Theorem 3.10 (Third Isomorphism Theorem for Partial Groups). Let Gp be a
partial group and Hp,Np partial normal subgroups of Gp with Hp≤Np Then Hp is
also a partial normal subgroup of Np.N∕Hp is a partial normal subgroup of Gp∕Hp

and also Gp∕Np is isomorphic to Gð p∕Hp)∕(Np∕Hp).

27

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

Proof: Let define f : Gp∕Hp ⟶Gp∕Np, f aHð pÞ ¼ aN p First let show f is well-
defined: If aHp = bHp then we need to prove whether or not f aHð pÞ ¼ f bHð pÞ. Since
aHp = bHp then ab�1∈Hp and Hp≤Np,ab

�1∈Np. Since ab
�1∈Np then aNp = bNp

and so that f aHð pÞ ¼ f bHð pÞ, i.e., f is well defined. f is homomorphism. And using
the First Isomorphism Theorem we can conclude the result.

4. Conclusion

There are some papers such as solvable partial groups, topological structures of
partial group, Transitivity Theorem-Thompson Theorem of partial groups, k-partial
groups, primitive pairs of partial groups so on related with the partial group in the
literature. It is known that every group is partial but the converse is not true. That is
why some structures are different from each other for the usual group and partial
group.

In this chapter, some structures of partial groups (Clifford Semigroup) are
sought to demonstrate algebraically. At the beginning of the chapter (preliminaries
section), several fundamental results of partial groups with some numerical exam-
ples are given from the literature. For example, if A and B be two usual groups such
that the intersection of them is equal to {1 = e}, then the union of subgroups of A
and subgroups of B is a partial group. Partial normal groups and partial quotient
groups have introduced an analog of the group theory. By using them, a number of
isomorphism theorems are proved for partial groups with several other ideas. All
results are obtained using closely group theory as algebraic approximations. Readers
also may consider/investigate other structures/properties of the partial groups
different from the group as algebraically.

Conflict of interest

The author declare no conflict of interest.

Author details

Özen Özer
Department of Mathematics, Faculty of Science and Arts, Kırklareli University,
Kırklareli, Turkey

*Address all correspondence to: ozenozer39@gmail.com; ozenozer@klu.edu.tr;
ooozenozer@gmail.com

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

28

Coding Theory - Recent Advances, New Perspectives and Applications

References

[1] Foulis D, Bennett MK. Effect algebras
and unsharp quantum logics. Foundations
of Physics. 1994;24:1331-1352

[2] Beltrametti EG, Bugajski S. A classical
extensions of quantum mechanics.
Journal of Physics A: Mathematical and
General. (IOP Publishing Ltd). 1995;28
(12):3329-3343

[3] Bugajski S. Fundamentals of fuzzy
probability theory. International Journal
of Theoretical Physics. 1996;35:
2229-2244

[4] Jekel S. Partial Groups, Northeastern
Univeristy Representation Seminar Talk
10/08/2013. Northeastern University.
DOI: 10.13140/2.1.1409.3127

[5] Stallings JR. The cohomology of
pregroups. In: Gatterdam RW, Weston
KW, eitors. Lecture Notes in
Mathematics. Heidelberg: Springer; 1973

[6] Isaacs M. Finite Group Theory.
American Mathematical Society. In:
Graduate Studies in Mathematic. Vol,
92. Rhode Island, USA: Hardcover MSC;
2008. p. 350. Primary 20; Print ISBN:
978-0-8218-4344-4

[7] Ciloglu Sahin Z, Ceven Y.
Generalization of groups: Partial groups.
In: Emerging Applications of
Differential Equations and Game
Theory. IGI Global; 2020. pp. 1-12.
DOI: 10.4018/978-1-7998-0134-4.ch001

[8] Bogopolski O. Introduction to Group
Theory, EMS, Textbooks in
Mathematics. Switzerland: European
Mathematical Society; 2008.
DOI: 10.4171/041

[9] Abd-Allah AM, Abdallah ME-GM.
Quotient in partial groups. Delta Journal
of Science. 1984;8(2):470-480

[10] Abd-Allah AM, Abdallah ME-GM.
On Clifford semigroup. Pur. Math.
Manuscr. 1988;7:1-17

[11] Abd-Allah AM, Aggour AI, Fathy A.
Strong semilattices of topological
groups. Journal of Egyptian
Mathematical Society. 2016;24:597-602.
DOI: 10.1016/j.joems.2016.03.003

[12] Abd-Allah AM, Aggour AI, Fathy A,
k-partial groups, Journal of Egyptian
Mathematical Society. 2017;25(3):
276-278. doi: 10.1016/j.joems.2017.01.008

[13] Aschbacher M. Finite Group Theory.
Cambridge Studies in Advanced
Mathematics. 1st ed. Vol. 10. Cambridge:
Cambridge University Press; 1986

[14] Bender H. On groups with abelian
Sylow 2-subgroups. Mathematische
Zeitschrift. 1970;117:164-176

[15] Bergelson V, Blass A, Hindman N.
Partition theorems for spaces of variable
words. Proceedings of the London
Mathematical Society. 1994;68:449-476

[16] BrandtW. Über eine
Verallgemeinerung des Gruppengriffes.
Mathematische Annalen. 1926;96:360-366

[17] Brown R. Topology and Groupoids.
Oxon: McGraw-Hill; 2006 this updated
version first published in 2006 by www.
groupoids.org.uk Deganwy, United
Kingdom

[18] Delizia C, Dietrich H, Moravec P,
Nicotera C. Group in which every non-
abelian subgroup is self-centeralizing.
Journal of Algebra. 2016;462:23-36

[19] Dokuchaev M, Exel R, Piccione P,
Partial representations and partial group
algebras. 1999. arXiv: math/990312

[20] Exel R. Partial actions on groups and
actions of inverse semigroups.
Proceedings of American Mathematical
Society. 1998;126:3481-3494

[21] Exel R, Partial Group Actions,
Campus de Cantoblanco, Universidad

29

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

Aut’onoma de Madrid, Lecture Notes at
ICMAT. 2013

[22] Falcon FJ, Nünez RM. Santilli
automorhism of partial groups.
American Journal of Modern Physics.
2007;4(5–1):47-51

[23] Feit W, Thompson J. Solvability of
groups of odd order. Pacific Journal of
Mathematics. 1963;13(3):775-1029

[24] Feldman A. Fitting height of
solvable groups admitting fixed point
free automorphismgroups. Journal of
Algebra. 1978;53:268-295

[25] Flavell P. A new proof of the
solvable signalizer functor Theorem.
Journal of Algebra. 2014;398:350-363

[26] Flavell P. Primitive pairs of p-
solvable groups. Journal of Algebra.
2010;324(4):841-859

[27] Glauberman G. Correspondences of
characters for relatively prime operator
groups. Candian Journal of
Mathematics. 1968;20:1465-1488

[28] Glauberman G. On solvable
signalizer functors in finite groups.
Proceedings of the London
Mathematical Society. 1976;33(3):1-27

[29] Glauberman G. Prime-power factor
groups of finite groups. Mathematische
Zeitschrift. 1968;107:159-172

[30] Goldschmidt DM. Solvable
signalizer functors on finite groups.
Journal of Algebra. 1972;21:131-148

[31] Goldschmidt DM. 2-signalizer
functors on finite groups. Journal of
Algebra. 1972;21:321-340

[32] Gonzalez A. An extension theory for
partial groups and localities. ArXiv:
1507.04392v2. 2015

[33] Gorenstein D. Finite Simple Groups:
An Introduction to Their Classification.
New York: Plenum Press; 1982

[34] Howie JM. An Introduction to
Semigroup Theory. Academic Press;
1976

[35] Humphreys JF. A Course in Group
Theory. Oxford: Oxford University
Press; 1996

[36] James G, Liebeck M.
Representations and Characters of
Groups. 2nd ed. Cambridge: Cambridge
University Press; 2004

[37] Kurzweil H, Stellmacher B. The
Theory of Finite Groups: An
Introduction. New York: Universitext,
Springer-Verlag; 2004

[38] Lamp C. Duality for partial group
action. International Electronic Journal
of Algrebra. 2008;4:53-62

[39] Martineau R. Elementary abelian
fixed point free automorphism groups.
The Quarterly Journal of Mathematics.
1972;23(2):205-212

[40] Meierfrankenfeld U, Stellmacher B.
F-Stability in finite groups. Transactions
of the American Mathematical Society.
2009;361(5):2509-2525

[41] N’Dao Y, Ayado A. Generalization
of Isomorphism Theorems Groups to
Partial Groups. HAL archives; 2013 Id:
hal-00850152

[42] Shult E. On groups admitting fixed
point free operator groups. Illinois Journal
of Mathematics. 1956;9(4):701-720

[43] Steinberg B. Representation Theory
of Finite Groups An Introductory
Approach. Universitext. New York:
Springer-Verlag; 2012

[44] Suzuki M. Group Theory II. Berlin:
Springer-Verlag; 1986

[45] Thompson J. Finite group with fixed
point free automorphisms of prime
order. Proceedings of the National

30

Coding Theory - Recent Advances, New Perspectives and Applications

Academy of the United States of
America. 1959;45:578-581

[46] Trudeau R. Introduction to Graph
Theory. New York: Kent State
University Press; 1996

[47] Vogt RM. Convenient category of
topological spaces for algebraic
topology. Proceedings of the Advanced
Study Institute of Algebra. 1970;XXII:
545-555

31

Algebraic Approximations to Partial Group Structures
DOI: http://dx.doi.org/10.5772/intechopen.102146

33

Chapter 3

Dynamic HUB Selection Process
in Wireless Body Area Network
(WBAN)
Mahammad Firose Shaik, M. Monica Subhashini
and G. Jaya Amrutha

Abstract

Wireless body area network (WBAN), a part of WSN, plays a pivotal role in
the remote health monitoring system, these days. Wireless sensor nodes placed in,
on, or around the human body are used to create WBAN. This WBAN is mainly
used for collecting physiological and vital signals from humans in real-time using
sensor nodes. It consists of different sensor nodes and hub, which collects the data
from sensor nodes and send them to the gateway. High data rates at HUB cause the
damage of an organ receiving high temperature in tissue by electromagnetic signals
for a long period. In this chapter, by considering parameters such as the specific
absorption rate, Battery Level, Priority of sensor nodes, and signal to noise inter-
ference (SINR) a HUB is selected dynamically, which shares the work of the HUB
among different sensor nodes. So that workload on HUB decreases and shares its
work accordingly to other sensor nodes concerning the data collected through the
software LabVIEW. This chapter also illustrates the network (testbed) created using
sensors for practically making the change in HUB by using the microcontroller,
power, LM 35, BP sensor, Heartrate sensors arranged in a network through Arduino
programming. In both these cases, the negative effect of electro-magnetic signals
in WBAN, and the tissue damage in humans reduce for remote-health monitoring
while increasing the network lifetime.

Keywords: WSN, WBAN, Tissue damage, Dynamic HUB, Specific Absorption Rate,
Battery level, Priority, Signal to Inference Ratio, Sensors, LabVIEW, Fuzzy system,
Network Life

1. Introduction

Wireless Body Area Network is a part of Wireless sensor network (WSN).
Wireless body area network contributes a wide range in health monitoring and
broadened its applications considerably [1]. Many lives have been passed down
through centuries, due to lack of physical evidence and analyzing the patient up to a
tolerance value. WBANs are becoming the limelight in the medical field, expanding
their applications in a real-time world by collecting the vitals through implanted
sensor nodes. A standard for WBAN as IEEE 802.15.6 is formulated by the IEEE
fraternity. This had triggered many types of research to study its uses in WBANs [2].

Coding Theory - Recent Advances, New Perspectives and Applications

34

A tremendous increase in recent technology in the subject of sensing, process-
ing has fueled interest in the technology-based health care system. This is an added
advantage to assist an elderly patient [3]. Sensor nodes in WBANs are mounted on
the surface or inside the patient skin. These nodes are tiny, light-weighted with the
required power and energy. The role of these sensor nodes is to transmit the data
from source to destination through the skin as a medium. A loss in the medium
occurs where signals or data are absorbed by neighboring tissues, which causes a
surge in the temperature of the tissue. Likely, this might cause tissue damage. This is
an emerging problem throughout the world, causing the patient to endanger tissue
or organ with unbearable pain.

WBAN is lauded for its function through sensor nodes and core nodes, known
as HUB which acts as a switchyard between sensor nodes and the gateway. HUB is a
fixed sensor node that cannot be varied according to IEEE 802.15.6. The sharing of
continuous data through HUB involves higher transmission rates. In contrast, SAR,
battery level, Priority of the sensor node, and Signal to Inference Ratio (SINR) are
compared to other sensor nodes for better transmission [4].

In this chapter, a HUB is selected dynamically in software based on the selec-
tion process through the fuzzy decision systems as shown in Figure 1. The fuzzy
system converts the numeric value into crisp data where the fuzzy logic is applied
and calculates the output based on fuzzy rules. It compares the input data with the
standard parametric values of SAR, Battery level, Priority, and SINR (Signal to
Inference Ratio). The front panel in LabVIEW is used to collect the data and the
processing of fuzzy comparison is done in a block diagram, where every step of
data is easy to monitor. The system considers the estimated parameters for different
sensor nodes by comparing and gives an estimated sensor node as a HUB.

The effect of changing the HUB dynamically is analytically carried out on a
testbed using the microcontroller(ESP-32) which is a 32-bit microcontroller with
34 general purpose IO’s, 10 touches sensing IO’s, DAC, ADC, pulse counter, UART,
I2C interface, Wi-Fi and Bluetooth as inbuilt application functions, that are mainly
used for sending the data(vitals collected) to patients or doctors or neighbors. The
sensors used in this testbed are based on application-specific(i.e., in our chapter, we
used LM35 for temperature, BMP180 for Blood Pressure measurement, Heartbeat
sensor monitoring with finger probe).

The remainder of the work is organized as follows: a description of the relevant
work carried out in a focused area is described in the second section. Section 3,
gives a glance view of the proposed technique in experimental way and analysis
is done. Selection 4, illustrates a detailed overview of the prototype developed,

Figure 1.
Fuzzy logic for dynamic HUB selection.

35

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

presenting the obtained simulation results and discussion in Section 5. The last
section,6, gives a conclusion about the chapter.

2. Related work

The benefits of selecting dynamic HUB through different metrics had a sharp
fall down in the damaging of tissues or organs throughout the human body. From
the outside, the deployed sensor nodes may be good but practically this causes
patients an emergency condition which raises their complexity of the problem.

Not many studies have been made for the reduction of this effect on a sick
person. As SAR is considered a major conflict for the rise, studies are made only on
estimating and evaluating SAR [5].

By considering the location of the destination node in WBAN as a major part,
Ahmed et al. proposed a technique compared to the SAR (Specific Absorption Rate)
values under various conditions. It is used to estimate the SAR response on the
human body.

Another proposed technique by Wu and Lin to adjust a relay node across the
wrist and arm. In return, this will make sensor nodes transmit data packets to HUB
with the lowest SAR values and efficient packet rate transmission. This uses an algo-
rithm known as practical swarm optimization to maintain and identify the position
of the relay node. No literature survey is added to their works. The performance of
HUB is analyzed by Cicioglu and Calhan [6].

Later on, Cicioglu and Calhan made their study on implementing the tech-
niques to maintain a HUB without any loss or damage to survivors [7]. Some
other works may be added based on WBAN and SAR issues, but there is no
literature study other than a specific absorption-based dynamic HUB selection,
This work is extended with the fuzzy-based system in our chapter along with
a new additional parameter SINR(Signal to Interference Noise Ratio). This is a
major factor while transmitting the data or collecting the information from a
patient. If a patient moves or any sensors placed in the network are in motion,
then Interference occurs which weakens the network lifetime and manipulates
the accurate data. The other major factor causing a signal to be disturbed is noise,
which will be eradicated by implementing SINR in our dynamic HUB selection
process. When compared to another literature survey, SINR is implemented in
this chapter, to reduce the noise, interference and increasing the network life-
time. The proposed method selects a hub based on few parameters along with the
signal interference or disturbance during the transmission for better and reliable
communication.

2.1 HUB selection process parameters

At first sight, it looked like a typical problem for selecting a hub dynamically
in WBANs. Wireless body area network has emerged their development through
WSNs. Later on, by estimating the drawbacks of fixed HUB, a need for the selection
of dynamic HUB has established. The wireless transmission density is neglected in
the evaluating process.

A new hub is selected from the parameters like SAR, Battery Level, Priority of
the sensor node, and SINR as in Table 1.

The parameter that we seek in the selection process plays an eminent role in the
broadcast between sensor nodes and the gateway. This can be sorted for a multi-
purpose decision-making system using Fuzzy-based rules. The criterions used are
SAR, Battery level, Priority, and SINR.

Coding Theory - Recent Advances, New Perspectives and Applications

36

If the sensor node has values of SAR less than 1.6 w/kg, battery level in or
around the range of 0–4 Joules, the priority of the sensor nodes which is given
lowest priority is considered in selecting HUB. And SINR with a range above 20db is
best for a new hub. The mentioned parameters above are according to the standard
values based on LTE and IEEE fraternity. The illustration of the parameters consid-
ered in selecting HUB is depicted below.

2.2 SAR

In today’s life, communication devices like mobiles, Wi-Fi have become a common
part of the human lifecycle. The electromagnetic interference (EMI) radiation emitted
from these devices is mean to be absorbed by a human being at a period of transmit-
ting data. SAR expresses the amount of radiation absorbed by the body, generally
represented in terms of Watt per kilogram. The SAR value is differently applicable for
children [8]. Any of the communication devices near to tissue can cause damage as it
continuously sends data to HUB, so a fuzzy-based rule with membership function as in
Figure 2 is implemented. The specified SAR rate according to FCC is 1.6 W/Kg [5].

This term is generated by

 Radiation d =  
 
dW dt
dM

 (1)

Here W is the power (W),
M is the mass (Kg), and.
t is the time (sec).

Figure 2.
SAR membership function.

Parameters Low Medium High

SAR (W/kg) 0–1.6 1.6–2.2 2.25–3

BATTERY LEVEL (Joules) 0–1.3 1.4–2 2–5

PRIORITY OF NODES 0–2 2–5 5–8

SINR (dB) 0–12 12–20 20–50

Table 1.
HUB selection parameters table.

37

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

2.3 Battery level

The limit used is Battery level for HUB selection is as in Figure 3. Sensor nodes
Used for WBANs have specific defined energy and power [9].

The sensor nodes can be utilized for a long time if energy is efficiently imple-
mented. As the HUB requires more energy, a fixed hub will lose its required stamina
if used for a long time at work. A sensor node is selected as a hub if it is ready to
apply the maximum energy after the first sensor node failure, increasing the overall
network lifetime.

2.4 Priority of sensor node

A priority of the sensor nodes in WBANs is considered as the parameter in the
selection process for the new hub Figure 4. The highest priority is given to impor-
tant vitals like EGG, EEG which transmit data quickly and a need to live for a longer
period. In this selection process, the sensor node with the least priority is picked as a
hub to transfer high packets.

2.5 SINR

This is the new parameter utilized in our chapter to bring down the interface
or disturbances in the network. There are various data traffics in WBAN’s, for

Figure 3.
Battery level range.

Figure 4.
Priority sensor membership function graph.

Coding Theory - Recent Advances, New Perspectives and Applications

38

instance, merging of one signal with another or moment of a network from place
to place. In wireless communication systems such as networks, SINR is used as the
rate of information transfer representing the received signal strength. As the noise
in the signal plays an efficient role in decreasing the data accuracy received at the
receiver. Moreover, it is defined as the ratio of signal strength to the interference or
noise of the signal. For communication link quality, SINR plays a pivotal role. SINR
is used for identifying moisture and thermal noise at the sink, in wireless com-
munication if any interference occurs at the data transmission, path loss takes space
which results in great network disturbance. So, SINR is utilized to reduce this effect
in data transmission.

This is also used to avoid interference in the affected sensor node. Then,
a fuzzy-based membership function is used to calculate SINR ranges (0db to
12db, 12db to 20db, 20db to 50db) where the disturbance occurred due to the
transmission period is sorted. In Telecommunication LTE measures the values in
terms of powers of the signals that is considered as a standard value in wireless
transmission of data. The SINR, greater than 20db is selected as HUB as shown
in Figure 5. This is done by sharply bounded values in fuzzy-based logic for
 calculating the candidacy value, which decides the HUB using all parameters.
The lowest noise signal reflects the highest valued SINR in quality of the network
and interference.

3. Experimental results and analysis

LabVIEW (Lab Virtual Instrumentation Engineering Workbench) is a software
platform developed by national instruments for data acquisition, controlling, and
automation using Microsoft windows, various types of UNIX, Linux Mac OS. It
is widely applicable for its features like graphical representation which are highly
recommended for engineers and scientists, where data flow can be known and
each step can be monitored if required. It also consists of different libraries with
different toolkits and the major advantage of this is it is easily configurable with
hardware, mainly for processing. The programs operated in LabVIEW are known as
Vis. LabVIEW is a geographical programming language to create block diagrams in
a block diagram panel. This is a user-friendly environment made up of a front panel
and block diagram as shown in Figure 6 for the dynamic HUB selection process
along with the fuzzy-based functions.

Figure 5.
SINR range in the membership function.

39

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

The below-shown Figure represents the block diagram of the fuzzy-based
system(the logic used) for selecting a HUB. Briefly, it collects the sensor data from
the parametric values and processes an output by using fuzzy logic. For instance,
two sensor nodes are first implemented on the front panel as shown in Figure 7.

In the front panel and block diagram, the input is given manually. The block
diagram consists of loops and control lines where the flow of data virtually visible.

Figure 6.
Block diagram of LabVIEW for dynamic HUB selection.

Coding Theory - Recent Advances, New Perspectives and Applications

40

The fuzzy system is an inbuilt library function in LabVIEW. The fuzzy system uses
an engine to convert numeric data into crisp value as shown in Figure 1 by imple-
menting the bordered values through fuzzy rules and the output is shown in the
candidacy membership function [10].

The Fuzzy output is taken and the common logic is used for a candidacy value
with the highest based on the four parameters. The greatest Candidacy value will
be considered as a new HUB, Which will be displayed in a string format in the
LabVIEW front panel. This output is calculated as in Figure 8 which considers
the low(0–10), medium(10–20), high(20–30) range. Out of which the highest
candidacy sensor node will be selected as a Dynamic HUB by using AND or OR
functions.

Figure 7.
Front panel code using 2 sensor nodes.

Figure 8.
Candidacy membership function.

41

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

3.1 About fuzzy and its rules

The Fuzzy-logic was initially proposed by a professor, at a university in 1965,
named Lofti Zadeh [11]. It is described as a mathematical representation of
executed numerical values, would rather say describing words than numbers. In
this case, the fuzzy rules set understands the linguistic form of entered parameters
i.e., SAR, Battery Level, Priority, SINR, and the controls convert them using an
inference engine, membership function, and if-then rules presented in fuzzy rules
set. This process is known as Fuzzification. Also, the conversion of if-then rules
(which are expandable depending on the user application) to crisp data is known
to be a defuzzification process [12]. The candidacy value is formed based on these
Fuzzy based rules. There are different formations in which a HUB is selected. Out of
the six sensor nodes used, we consider the rules formed are 81 which are depicted in
below Table 2.

Sl. No. SINR SAR Battery Level priority Candidacy level

1 Low Low Low Low Low

2 Low Low Low Medium Low

3 Low Low Low High Low

4 Low Low Medium Low Low

5 Low Low Medium Medium Low

6 Low Low Medium High Low

7 Low Low High Low Normal

8 Low Low High Medium Low

9 Low Low High High Low

10 Low Medium Low Low Low

11 Low Medium Low Medium Low

12 Low Medium Low High Low

13 Low Medium Medium Low Low

14 Low Medium Medium Medium Low

15 Low Medium Medium High Low

16 Low Medium High Low Low

17 Low Medium High Medium Low

18 Low Medium High High Low

19 Low High Low Low Low

20 Low High Low Medium Low

21 Low High Low High Low

22 Low High Medium Low Low

23 Low High Medium Medium Low

24 Low High Medium High Low

25 Low High High Low Low

26 Low High High Medium Low

27 Low High High High Low

28 Medium Low Low Low Low

Coding Theory - Recent Advances, New Perspectives and Applications

42

Sl. No. SINR SAR Battery Level priority Candidacy level

29 Medium Low Low Medium Low

30 Medium Low Low High Low

31 Medium Low Medium Low Low

32 Medium Low Medium Medium Low

33 Medium Low Medium High Low

34 Medium Low High Low High

35 Medium Low High Medium Low

36 Medium Low High High Low

37 Medium Medium Low Low Low

38 Medium Medium Low Medium Low

39 Medium Medium Low High Low

40 Medium Medium Medium Low Low

41 Medium Medium Medium Medium Low

42 Medium Medium Medium High Low

43 Medium Medium High Low Low

44 Medium Medium High Medium Low

45 Medium Medium High High Low

46 Medium High Low Low Low

47 Medium High Low Medium Low

48 Medium High Low High Low

49 Medium High Medium Low Low

50 Medium High Medium Medium Low

51 Medium High Medium High Low

52 Medium High High Low Low

53 Medium High High Medium Low

54 Medium High High High Low

55 High Low Low Low Normal

56 High Low Low Medium Low

57 High Low Low High Low

58 High Low Medium Low Normal

59 High Low Medium Medium Low

60 High Low Medium High Low

61 High Low High Low High

62 High Low High Medium Normal

63 High Low High High Normal

64 High Medium Low Low Low

65 High Medium Low Medium Low

66 High Medium Low High Low

67 High Medium Medium Low Low

68 High Medium Medium Medium Low

69 High Medium Medium High Low

43

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

4. Prototype for dynamic HUB selection

The Dynamic Hub selection outraced the results of the traditional hub by
implementing it in LabVIEW through Fuzzy based system. This is now tested by a
prototype developed on the testbed to have a look at the changes in HUB selection
concerning the real-time body measurements. As technology has a great impact on
health and mobile phones these days become a valuable asset for a normal man. On
this point, we connected an app that stores information about the vitals from the
human body. Here, an embedded C is evolved to change the HUB dynamically and is
provided in a mobile app where the HUB selection is shown in the app. The embed-
ded communication devices used are for the programming of the network as they are
designed for a special purpose rather than the general tasks of computers. These are
inbuilt with memory storage, a processor, and some peripherals. It can assist using C,
ALP, and VB, etc. It also stores the information about the vitals collected for future
purposes. As discussed above, the root cause for tissue damage is the temperature
rise, working for a longer period in the network. In this prototype, a traditional hub is
changed according to the vitals collected from the patient. Based on the functionality
and requirement, the embedded system is deployed in our mobiles and so as in this
work. The different sensors used in the prototype are described below in Figure 9,
where the network is placed on the surface of the body.

ESP-32 is a 2.4 GHz microcontroller with both Wi-Fi and Bluetooth combination
chip designed for better power and good reliability with a wide range of applications,
which consists of an I2C bus interface, recovery memory, ROM, SRAM, temperature
sensor, touch sensor, clock generator, a serial peripheral interface, DAC, ADC,
UART (Universal Asynchronous Receiver Transmitter), PWM, Wi-Fi, and Bluetooth
peripherals along with radio receiver and transmitter.10 capacitive sensing GPIOs
present in the microcontroller are useful for our project as we use a touch sensor for
monitoring the heart rate through the illusion of light by finger and the other three
sensors are deployed.

The deployment materials used here are a Power supply, Temperature sensor,
Heartbeat sensor, Blood pressure monitoring device. The power supply is used
to convert high voltage to a low voltage supply, which consists of a transformer,

Sl. No. SINR SAR Battery Level priority Candidacy level

70 High Medium High Low High

71 High Medium High Medium Medium

72 High Medium High High Low

73 High High Low Low Low

74 High High Low Medium Low

75 High High Low High Low

76 High High Medium Low Low

77 High High Medium Medium Low

78 High High Medium High Low

79 High High High Low Normal

80 High High High Medium Low

81 High High High High Low

Table 2.
Fuzzy rules.

Coding Theory - Recent Advances, New Perspectives and Applications

44

regulator, filter, and rectifier. The temperature sensor, LM 35 is used here to convert
the temperature into electrical signals. Yet, it does not require any calibration and
best suitable for our work. Having said that, this is considered a low power supply
and low self-heat not more than 0.10c in still air, most widely used in remote applica-
tions. The different male and female connection wires are used for creating a system.

5. Results and discussion

In this section, the results of selecting a HUB in both software and by using a
Prototype for decreasing the damage of tissue when placed on the surface of the body
are delineated. By using the LabVIEW-based Fuzzy rules, a dynamic HUB is selected
by following the standard metric values of parameters. Here, six sensor nodes are
considered and shown, which sensor node is changing as a HUB. As LabVIEW is a
step-by-step procedure, we can identify the process and rectify if any mistakes hap-
pen. Whereas in the prototype developed, we considered three different sensor nodes
in a testbed to run the code and examine the HUB selection process dynamically.

5.1 In LabVIEW using fuzzy

In this stage, the drawbacks of using a fixed HUB are rectified by using a
dynamic HUB. We considered six sensor nodes for instance and process a dynamic
HUB selection using the Fuzzy system in LabVIEW. The Fuzzy-based system
consists of if-then rules in the fuzzy decision system.

The parameter values are considered from manual input through the front panel,
as it is utilized to display the input and output of any program. The input given
starts working in the block diagram through the Fuzzy library function as shown
in Figure 1. The input of the Fuzzy system, consists of three sub-parts namely,

Figure 9.
Hardware kits.

45

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

entering the data, membership function, Fuzzy rules, and candidacy output. The
candidacy value is sent back to the block diagram through a fuzzy out system with
candidacy results and continues the process in a block diagram. As the simulation
begins, the sensor node parameter value is considered and sends the information
packet from all neighbors to default HUB. The aforementioned parameters are
selected based on the universal standard values maintained by their respective
standards. The proposed technique using Fuzzy gives an output candidacy value
by comparing all sensor nodes’ parametric values in the fuzzy decision system. The
sensor node with the highest candidacy value I selected as a HUB. The front panel in
the software implies the input to a fuzzy engine through a block diagram. Later on,
by calculating the graph and candidacy value, a HUB is selected and presented in
the front panel in string format.

Here the input is taken through the front panel and the process is done through
fuzzy logic presented in block diagram when running the code present in it. If a
sensor node has values of SAR less than 1.6 w/kg, battery level in or around the range
0–4 Joules, the SINR greater than 20db, the priority of the sensor nodes is considered
and selected as a HUB. The sensor nodes are encountered with different cases such
as when all the values are similar or whenever two sensor nodes exhibit the same
values, then it is based on the priority of the sensor nodes, which selects the dynamic
HUB. The priority of the sensor nodes plays the main role when all other parameters
are in balance. In this project, the sensors like ECG, EEG, Temperature are used and
temperature being the least sensor as it does not require monitoring continuously,
while heartbeat and ECG are given the highest priority whose analysis is required for
long hours. This helps in increasing the network lifetime by utilizing the least priority
sensors.

The Figure above shown is an example of a front panel result that is selected as a
dynamic HUB when placed on the surface of the human body. If any of these values
change with time accordingly then the HUB is selected based on the change in para-
metric values. This makes the fuzzy system easy for multi-systems and increases the
overall network lifetime by four times to a fixed hub.

Initially, a random node is selected as the default hub to send the information
from source to sink and it is as shown in Figure 10. There are certain cases to exam-
ine our work. Here, When two sensor nodes of the same values are considered then
the fuzzy rules are codded as it predicts the least priority sensor as Dynamic HUB as

Figure 10.
Default dynamic HUB selected.

Coding Theory - Recent Advances, New Perspectives and Applications

46

said having the least priority leads to un usage of a node for a long time which can
enrich the network for the long run. This is laid out in Figure 11.

5.2 In prototype using sensors

The hardware kit developed here is made up of three pivotal sensors essential
for the human body as of vitals. These are heart rate sensors, Blood pressure, and
temperature. The heart rate sensor is a digital output that works using a microcon-
troller. When a finger is placed, it works on the light modulation on the illusion of
blood flow, a red light which transfers from transmitter to receiver, counting the
pulses through light flow. Generally used for the measuring of heart rate. Blood
Pressure is measured using a mercury column. A Cuff with an oscillatory device in
it is wrapped above the upper arm, where it produces vibrations in blood flow in
the artery between systole and diastole pressures. The Aurdino Uno on the Arduino
Desktop IDE (Arduino software) is used for code. An Arduino board is completely
open-source and user-independent which uses a sketchbook, a place to store the
programs. The Arduino program is developed by using a delay for our project to
identify the sensor node to change as HUB. This can be negotiated for practical
usage. The node change is identified by naming the sensors like A, B, and C.

The node change for values change in a mobile app is exposed as in above
Figure 12. The last sensor used is LM 35, for measuring the temperature of a
body. This also uses a microprocessor that converts the input and processed value
to digital form for manual purposes. A finger grip for heart rate and a hand cliff
BP equipment along with LM 35, temperature sensor are used for deployment of
network and are together shown as in Figure 11.

The power supply is used for the input source to run the equipment. We can also
find, collect or store the vital information collecting in the mobile app for further
utility. The change in values for physical movement or activity or exercise results in
the change of HUB, which is shown in the mobile app as below in Figure 13.

Here, in our chapter Arduino board is used for deploying the program in
Micro Processor. A Bluetooth terminal is considered as NODES A, B, and C and
performs the program as shown below. In this project, we are supposed to work
offline. If we want to use Arduino UNO offline then an Arduino Desktop IDE needs
to be installed. The UNO is programmed using the Arduino Software(IDE), our

Figure 11.
Similar nodes HUB selection.

47

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

integrated Development common to all our boards. Connection is done from UNO
board to system is through A B USB cable, sometimes known as a USB printer cable.
Furthermore, the sensor nodes are connected with the desired pins in the micro-
controller, which runs through the program shown below. The sensors give input to
Arduino through a microcontroller, where the code is executed and gives the output
in selecting a HUB based on the change in values of collected information. A delay
function is used in our program for the identification of HUB change which is not
required in real-time health monitoring.

6. Conclusion

The work carried out is to select a dynamic HUB for reducing the damage of
tissue when an entire network is placed on a human body wirelessly to collect the

Figure 12.
Dynamic HUB identification.

Figure 13.
Information in the node through the mobile app.

Coding Theory - Recent Advances, New Perspectives and Applications

48

data and send it to a receiver through a gateway. This chapter improvises the HUB
features regarding fixed HUB drawbacks. With our proposed fuzzy-based frame-
work, Hub can be changed from one sensor node to another with a change in para-
metric values manually. WBAN has become more reliable for patient monitoring.
When compared to the one study about dynamic HUB, in this chapter, we imposed
a new parameter to reduce the noise or interference of signal while the patient is in
motion. This largely builds on the coherence of the system.

Practically, instead of using fixed HUB traditionally, a variable method is
adopted and developed in the testbed. The sensors used in selecting the dynamic
HUB are the heartbeat sensor, BP sensor(BP180), and temperature sensor(LM35),
and other sensor nodes that can be utilized for other purposes of healthcare, in the
real world. Different sensor nodes used in our project are real-time applications
and the most useful values in analyzing a patient. The energy consumption of HUB
that has a critical importance for the lifetime of WBAN is minimized, resulting in
an extended network lifetime. By selecting a dynamic HUB, the load work on a tra-
ditional HUB decreases and share the burden among all other sensor nodes, which
results the larger network life. To that, the selection of dynamic HUB results is
reducing the damage of tissue while increasing the network lifespan. In the future,
more parameters can be included either in software and hardware for efficient
working of the network.

Acknowledgements

The authors of this Chapter would like to thank each member of Intech-Open
resource, the world’s leading publisher of open access to books, built by scientists,
for scientists. We thank every individual on board for considering our work of
Dynamic HUB selection through recent technologies in your “Coding Theory-
Recent Advances, New Perspectives, and Applications”, by a chapter.

We also like to extend our special thanks to Mr. Josip Knapic, Author Service
Manager, who helped us throughout the process by queries and made a way for our
financial aid by making a free publication. Without your support, this could not be
possible. Thank you everyone for the opportunity to explore our work into a bigger
entity. Finally, we would like to thank our friends, family, and colleagues, who sup-
ported us consistently over a period for what we are today.

Appendices and nomenclature

Code for selecting a Dynamic HUB.
// code for Blood Pressure.
#include”Bluetooth.Serial.h”.
#!defined(CONFIG_BT_ENABLED)||!defined(CONFIG_BLUEDROID_

ENABLED).
#ERROR Bluetooth is not enabled! Please run’make menuconfig’ to enable it.
#endif.
BluetoothSerail SErialBT;
Void setup() {.
Serail.begin(9600);
SerailBT.begin(“NODE_C);//Bluetooth device name.
Serial println(“The device started, now you can pair it with Bluetooth!”);
}

49

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

Void loop() {.
Float p = analogRead(34);
SerailBT.print(“P:” + String(p));
Float v = analogRead(32)/200;
SerailBT.println(“v:” + String(v));
Delay(5000);
}
//Code for heart Beat Sensor.
#include”Bluetooth.Serial.h”.
#!defined(CONFIG_BT_ENABLED)||!defined(CONFIG_BLUEDROID_

ENABLED).
#ERROR Bluetooth is not enabled! Please run’make menuconfig’ to enable it.
#endif.
BluetoothSerail SErialBT;
Int hs = 13;
Int hb = 0;
Void setup() {.
Serial begin(9600);
SerialBT.begin(“NODE_B”);//Bluetooth device name.
Serial.Println(“The device started, now you can pair it with Bluetooth!”);
}
Void loop() {.
Double x = millis();
hb = 0;
while(millis() < x + 5000).
{
If(digitalRead(hs)==0).
{
Hb = hb + 1;
Delay(300);
}
}
hb = hb*5;
SerialBT.print(“H:” + String(hb));
Float v = analogRead(35)/200;
SerialBT.Println(“V:” + String(v));
delay(3000);
}
//Code for Temperature Sensor.
#include”Bluetooth.Serial.h”.
#!defined(CONFIG_BT_ENABLED)||!defined(CONFIG_BLUEDROID_

ENABLED).
#ERROR Bluetooth is not enabled! Please run’make menuconfig’ to enable it.
#endif.
BluetoothSerail SErialBT;
Void setup() {.
Serial begin(9600);
SerialBT.begin(“NODE_A”);//Bluetooth device name.
Serial.Println(“The device started, now you can pair it with Bluetooth!”);
}
Void loop() {.
Float t = (analogRead(34)/2.7)/2.3;

Coding Theory - Recent Advances, New Perspectives and Applications

50

Author details

Mahammad Firose Shaik1*, M. Monica Subhashini2 and G. Jaya Amrutha1

1 VRSEC, Vijayawada, India

2 School of Electrical Engineering, VIT, Vellore, India

*Address all correspondence to: mahammadfirose.shaik2015@vit.ac.in

SerialBT.println(“T:” + String(t));
Float v = analogRead(35)/200;
SerialBT.Println(“v:” + String(v));
Delay(3000);
}

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

51

Dynamic HUB Selection Process in Wireless Body Area Network (WBAN)
DOI: http://dx.doi.org/10.5772/intechopen.98613

References

[1] Latre B.,Braem B.,Moerman I. et al; A
Survey on Wireless Body Area Network,
Wireless Netws17(1), 1-18, 2011.DOI:
10.1007/s11276-010-0252-4.

[2] Hayeineh T., Almashaqueb G., Ullah
S et al: A Survey of wireless technology
co-existance in WBAN: analysis and
open research Issues. Wireless Network,
20.2165-2199(2014).DOI:10.1007/
s11276-014-0736-8.

[3] S. Movassaghi, M. Abolhasan
and D. Smith: Cooperative Scheduling
with graph coloring for interference
mitigation in Wireless Body Area
Networks. 2014 IEEE Wireless
communications and Networking Confer
ence(WCNC),2014,pp.1691-1696,
DOI: 10.1109/WCNC.2014.6952484.

[4] Shaik M. F.,Komanapally, V.L .N &
Subhashini M, M: A Comparative
study of Interference and Mitigation
Techniques in WBAN. Wireless Pers
Commun 98, 2333-2365,2018,
DOI:10.1007/s11277-017-4977-6.

[5] Ahmed A., Halepoto I. A., Khan U.
A., Kumar S., and Bhangwar A.R:I-RP:
Interference Aware Routing Protocol for
WBAN: Mobile Web and Intelligent
Information Systems. 2018, Lecture
notes in computer science, Vol 10995.
Springer,charm. DOI:10.1007/978-3-
319-97163-6_6

[6] M.Cicioglu and A. Calhan:
Performance analysis of Dynamic HUB
Selection Algorithm for WBAN.2016,6
th international conference on control
Engineering & Information
Technology(CEIT),2018,pp.1-5,DOI:
10.1109/CEIT.2018.8751776

[7] M.Cicioglu and A Calhan: Dynamic
HUB selection process Based on Specific
Absorption Rate for WBANs.IEEE
sensors Journal,vol. 19, no. 14, pp.
5716-5722, 15 july 15, 2019,DOI:10.1109/
JSEN.2019.2906044.

[8] R. P. Findlay and P. J. Dimblyow: SAR
in children from exposure to wireless
local area networks(WLAN).2012.
pp. 733-736, DOI: 10.1109/APEMC.
2012.6237853

[9] Nikolic, G., Nikolic, T., Stojcev M.,
Petrovic B., and Jovanovic G: Battery
Cpacity Estimation of Wireless Sensor
node. In: 2017 IEEE 30th International
Conference on Microelectronics(MIEL),
pp.279-282

[10] K. P. Adlassing: Fuzzy set theory in
medical diagnosis,IEEE Transaction on
Systems,Man, Cybernetics, Vol 16, no.
2,pp.260-265,1986, DOI:10.1109/
TSMC.1986.4308946.

[11] L. A. Zadeh,: Fuzzy Sets,
Fuzzy logic, Fuzzy systems:selected
papers by Lofti A. Zadeh, 1996.
DOI:10.1142/9789814261302_0021

[12] M. F. Shaik and M. M. Subhashini:
Anemia diagnosis by Fuzzy logic using
LabVIEW.2017,I2C2.pp.1-5.DOI:10.1109/
I2C2.2017.8321790

53

Chapter 4

How Do Web-Active End-User
Programmers Forage?
Sandeep Kaur Kuttal, Abim Sedhain
and Benjamin Riethmeier

Abstract

Web-active end-user programmers spend substantial time and cognitive effort
seeking information while debugging web mashups, which are platforms for
creating web applications by combining data and functionality from two or more
different sources. The debugging on these platforms is challenging as end user
programmers need to forage within the mashup environment to find bugs and on
the web to forage for the solution to those bugs. To understand the foraging behav-
ior of end-user programmers when debugging, we used information forging theory.
Information foraging theory helps understand how users forage for information and
has been successfully used to understand and model user behavior when foraging
through documents, the web, user interfaces, and programming environments.
Through the lens of information foraging theory, we analyzed the data from a
controlled lab study of eight web-active end-user programmers. The programmers
completed two debugging tasks using the Yahoo! Pipes web mashup environment.
On analyzing the data, we identified three types of cues: clear, fuzzy, and elusive.
Clear cues helped participants to find and fix bugs with ease while fuzzy and elusive
cues led to useless foraging. We also identified the strategies used by the partici-
pants when finding and fixing bugs. Our results give us a better understanding of
the programming behavior of web-active end-users and can inform researchers and
professionals how to create better support for the debugging process. Further, this
study methodology can be adapted by researchers to understand other aspects of
programming such as implementing, reusing, and maintaining code.

Keywords: Information Foraging Theory, End-user programming, Debugging,
Visual Programming, Web Mashups

1. Introduction

In modern times, mass communication, mass media, and networking technolo-
gies have enabled access to vast amounts of knowledge that are distributed across
many continents and time-zones, thus allowing web-active end-users to achieve
great feats.

Web-active end-users (also referred to as end-users or end-user programmers)
are people who lack programming experience but are engaged in internet activities
[1]. There is a substantial number of web-active end-users and their number is con-
tinuously growing. The end-users often create applications to complete tasks such
as finding apartments to rent in a certain location, tracking flights, and alerting

Coding Theory - Recent Advances, New Perspectives and Applications

54

drivers regarding traffic jams. One approach to create such applications is utilizing
web mashups programming environments.

Web mashup programming environments allow for creating applications from
distributed heterogeneous web sources and functions. Most of the mashup pro-
gramming environments are visual in nature. Some examples include Yahoo! Pipes
[2], IBM mashup maker [3], xfruit [4], Apatar [5], Deri pipes [6], and JackBe [7].
The visual nature of these programming environments allows application creation
using code abstraction to ease the programming process. However, the abstraction
of code can add complexity of accessing the information, debugging, and compre-
hending large programs within these environments [1, 8, 9].

Further, end-users create mashup applications by seeking information from
the complex ecosystem of the web, which is composed of evolving heterogeneous
formats, services, standards, and languages [8]. Seeking information on the web is
challenging, as the relevant information is scattered across numerous web sources
that end-users must find and manually analyze, an information-seeking problem
that costs both time and cognitive effort.

In this chapter, we observe the behavior of end-users while debugging, one of
the most difficult aspects of programming [10]. Debugging mashup programs
is even more challenging as end-user programmers must locate bugs within the
abstract web mashup environment and then locate solutions on the web to fix bugs.
The lack of debugging support within mashup environments increases the com-
plexity of finding bugs [9]. Further, finding correct solutions to fix bugs is compli-
cated as the web is a huge compilation of heterogeneous resources.

Currently, it is not clear how web-active end-users seek for bugs in their pro-
gram and their solutions on the web. Hence, we used an information seeking theory
called Information Foraging Theory.

Information Foraging Theory (IFT) can expand our understanding of the
information-seeking problems of web-active end-user programmers while debug-
ging. IFT posits that people seek information in the same manner as predators
forage for their prey, where predators are the end-users, and the prey is the bugs
or bug fixes they are searching for. The hunting grounds or ‘patches’ where web-
active end-users search for these bugs or fixes would be their IDE or the websites
they visit and the scents the web-active end-users follow are given by different cues
(e.g., links) found on the web [11–15]. IFT has been applied successfully to diverse
domains such as documents, the web, user interfaces, and programming environ-
ments [15–23].

Past research on web mashups have focused on creating web tools that increase
the ease and effectiveness of creating applications by end-user programmers
[24–28]. While past IFT research on programming environments has investigated
debugging and navigational behavior of professional programmers [19–21]. No
prior research exists to understand the debugging behavior of web-active end-user
programmers. The only research relevant to this chapter is our own [8], where we
created a debugging support for web mashups and investigated the debugging
behavior of end-user programmers using IFT with and without the support. Based
on this prior research, we found IFT to be the most relevant choice to understand
the information-seeking behavior during mashup debugging.

To understand the debugging behavior of end-user programmers we conducted
a controlled lab study of eight students who were not computer science majors.
The study participants completed their tasks using Yahoo! Pipes, a mashup envi-
ronment, as it provided the best debugging support at the time. The participants
completed two debugging tasks using a think-aloud protocol. We investigated
how end-users forage for information within the IDE as well as the web using IFT

55

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

theory. Our analyses discovered new cues and strategies that end-user programmers
pursued while locating the bugs in the mashup environment and foraging the web
for fixing the bugs.

This chapter is organized as follows. Section 2 describes the debugging behavior
of end-user programmers. Section 3 describes Information Foraging Theory, IFT
terminologies from Yahoo! Pipes, and relevant literature. Section 4 describes the
background and related work on web mashups, and Yahoo! Pipes. Section 5 describes
the methodology and results from the lab study. This section discusses the cues
utilized by end-user programmers and their behavior during debugging tasks and
provides recommendations. Section 6 summarizes our findings and suggests how
web mashup environments can improve the debugging process.

2. Debugging and end-user programmers

Debugging is the process of finding and fixing bugs in the code. Programmers
often struggle to debug and hypothesize the “when”, “why” and “how” of the bug
[29–32]. Debugging is even more challenging for end-user programmers as in one
study [33] they spent two-thirds of their time foraging for bugs, while professionals
spent only half of their time.

Professionals and end-users use web resources to complete their programming
tasks. For example, in one study, novice programmers spent about 19% of their
programming time in foraging the web for information such as selecting and using
tutorials, searching with synonyms, finding code snippets, and using the web to
debug [34], while they spent 35% of their time navigating source code [35]. Vessey
[36] investigated both professionals and end-users’ debugging approach and
found that professionals took a breadth-first approach whereas end-users took a
depth-first approach. Our study found that in mashup environments the end user
programmers struggle foraging for solutions to bugs on the web.

A major huddle for programmers during debugging is understanding the error
messages to fix bugs in the code. Naveed and Sarim [37] analyzed how presentation
of error messages affected debugging and programming in IDEs. To fix a bug, first
programmers must understand what the error is and where it is located. Mashup
environments tend to show errors without much explanation or direction for the
end-user to comprehend [9]. End-users struggle to adapt code from tutorials and
web forums [38] while fixing bugs. They often struggle with debugging due to lack
of knowledge and experience in software engineering and interactive programming
environments [39]. Our study confirms that end-user programmers struggle with
the lack of or unclear error messages in IDEs.

Understanding end-user programmers’ behavior while debugging can help to
build better debugging tools that facilitates programming tasks effectively and
efficiently. Phalgune et al. [40] studied oracle mistakes - mistakes users make
about which values are right and which are wrong - that impact the effectiveness of
interactions, testing, and debugging support for end-users. Kuttal et al. [41] added
version support to Yahoo! Pipes and investigated how versioning can help end-user
programmers to create and debug mashups. Servant et al. [42] create support that
allowed panning and zooming of a canvas that contained the snapshots of the code.
Myers and Ko suggested various interaction features for IDE to improve debug-
ging such as full visibility of code and timeline visualization of changing values of
variables at run-time [43]. Our study helps to understand how end-user program-
mers debug from a theory perspective that can inform better debugging support for
mashup environments.

Coding Theory - Recent Advances, New Perspectives and Applications

56

3. Web mashups

Web mashups allow end-users to build applications by integrating data and
functionalities from various web services into a single application. The visual web
mashup programming environments facilitate easy creation of applications by end-
user programmers who have very little knowledge and experience in programming.
Mashup environments provide a full set of functions to the end-users to build new
applications.

End-users often create situational mashups as per their specifications [44]. For
example, a mashup can take data from Instagram and combine it with Google Maps
to display the most recent images and videos of any given location. Users can get the
data from APIs, Information Feeds (e.g., Really Simple Syndication (RSS)), or they
can collect data by scraping various web pages. Mashup application can be executed
within the client’s browser, in a server, or combination of both. The advantage of
rendering the application in a client’s web browser is to give users the opportunity to
interact with it. Mashups are popular because of their dynamic content creation and
ability to build and share applications through publicly hosted repositories [45].

End-users often develop mashup applications using visual black-box oriented
programming environments. Mashup programming environments such as Yahoo!
Pipes [2], IBM mashup maker [3], xfruit [4], Apatar [5], Deri Pipes [6], and JackBe
[7] provide an easy-to-use visual environment to support the mashup development.
Cappiello at el. [46] researched mashup development frameworks oriented towards
end-user development to allow users to compose different resources at different
levels of granularity relying on the user interface (UI) of the application. Ennals and
Gay created MashMaker [24], a tool which allowed end-users to create web mashups
without needing to write much code/script. Other mashup creation tools to facilitate
end user programmers include MapCruncher [25], Marmite [26], Automator [27],
Creo [28], and TreeSheet [47]. Rather than directly studying mashup environments
or creating new mashup tools, we qualitatively observe how end-users debug and
forage for solutions in programs built in these mashups.

Grammel and Storey [9] investigated various mashup development environ-
ments and found lack of debugging support in these environments. Similarly, Stolee
and Elbaum [48] studied how we can improve the refactoring of pipe-like mashups,
i.e., Yahoo! Pipes for end-users. We focus on understanding end-user programmers’
behavior while debugging mashups instead of creating support for mashups.

3.1 Yahoo! Pipes

Now defunct, Yahoo! Pipes was introduced in 2007 and was one of the most pop-
ular mashup creation environments that helped users to “rewrite the web” during its
existence. During its first year of existence, the Yahoo! Pipes platform executed over
5,000,000 pipes per day. As a visual programming environment, Yahoo! Pipes was
well suited for representing the solutions to dataflow-based processing problems.
Yahoo! Pipes “programs” helped in combining simple commands together such
that the output of one acted as the input for the other. The Yahoo! Pipes engine also
facilitated the wiring of modules together and the transfer of data between them.

The Yahoo! Pipes environment was made up of three major components: the
canvas, the library (list of modules), and the debugger (refer Figure 1). Users used
the canvas to create the pipes. The library situated to the left of the canvas, con-
sisted of various modules that were categorized according to functionality. Users
dragged modules from the library and placed them on the canvas, then proceeded to
connect them to other modules as their need. The debugger, located at the bottom,
helped users check the runtime output of the modules.

57

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

The inputs and output of the pipes supported different formats. For input, most
common formats were APIs, HTML, XML, JSON, RDF, and RSS feeds. Similarly,
pipe output formats were RSS, JSON, and KML. The inputs and outputs between
modules were primarily RSS feed items consisting of parameters and descriptions.
Yahoo! Pipes modules provided manipulation actions that could be executed on
these RSS feed parameters. In addition to items, Yahoo! Pipes also allowed datatypes
like URL, location, text, number, and date-time to be defined by users.

Figure 1 shows the interface and components of the Yahoo! Pipes environment.
The pipe displayed in the figure takes Reuter’s Newsfeed (RSS feed) as input using
a Fetch Feed module which is then filtered (using a Filter module) based on users’
input (sports). These results are converted from English to Greek using a Translate
module inside a Loop module. The pipe titles are limited to the first seven results
using the truncate module. In Figure 1, the debugger window displays the runtime
output from the Fetch Feed module.

Yahoo! Pipes allowed the creation and rendering of the pipes on the client side
while the executing and storing of the pipe was done on the Yahoo! Servers. The
data between the client and server was transfer using JSON format. Yahoo! Pipes
allowed end-users to share their pipe (code) as well as reuse other user’s pipes by
cloning.

Stolee et al. [49] analyzed 32,000 mashups from Yahoo! Pipes repositories based
on popularity, configurability, complexity, and diversity. Wang and Wang [50] used
Yahoo! Pipes to build a mobile news aggregator application. We used Yahoo! Pipes
for this study as it had the best debugging support at the time of the research.

4. Information Foraging Theory and Yahoo! Pipes

Information Foraging Theory (IFT) was developed by Pirolli and Card [11]
to understand how people search for information. IFT was inspired by optimal
foraging theory, which is a biological theory explaining how predators hunt for

Figure 1.
Yahoo! Pipes.

Coding Theory - Recent Advances, New Perspectives and Applications

58

their prey in the wild. Optimal foraging theory predicts whether a prey (animal)
will try to maximize the energy it gains or minimize the expense to obtain a fixed
amount of energy [12]. Similarly, while foraging for information, users must realize
their maximum return on information gain at minimum expenditure of their time.
Therefore, users, when possible, will modify their strategies to maximize their rate
of gaining valuable information [13]. Table 1 elaborates the IFT terminologies along
with examples from Yahoo! Pipes.

IFT has helped to improve the understanding of the users’ behaviors and inter-
actions on the web. In the very beginning, research was done for general Internet
users, which led to the foundation of IFT [15, 18, 51]. Research has been done to
observe and study foragers on the web [8, 15, 21, 51]. IFT has been used to improve
the usability of web sites [52] as it has helped to explain and predict why people
click a particular link, text, or button on a website [14]. In this research, we qualita-
tively analyze multiple end-user’s foraging behavior to find solutions for their bugs
on the web.

IFT has also been used to understand software engineering and software devel-
opment [8, 19, 20] along with its collaborative environments [17]. Piorkowski et al.
have explored foraging behavior and the difference in foraging between desktop
and mobile integrated development environment (IDE) [53]. Niu et al. used IFT to
design navigation affordances in IDEs [54]. Similarly, IFT has been used to find out
the optimal team size for open-source projects [55]. IFT can help to understand the
foraging behavior of web-active end-user programmers when engaged in program-
ming activities such as comprehension, reusage of code, implementation, debug-
ging and testing. This research focuses on the debugging behavior of web-active
end-user programmers.

Researchers have built computational models of user information foraging
behavior when completing tasks [14, 56, 57]. These models have also helped in pre-
dicting the effects of social influences on IFT [58]. The researchers have developed

IFT
Terminologies

Definitions Bug Finding (Examples) Bug Fixing (Examples)

Prey Bugs; solutions Finding bug B2 (url does
not lead to the right web
site) in Fetch Feed module

Finding the correct url
and putting it in the
Fetch Feed module that
contains B2

Information
Patch

Localities in the code,
documents, examples,
web-pages and displays
that may contain the prey
[23]

Yahoo! Pipes Editor,
help documents, help
examples

Web pages

Information
Feature

Words, links, error
messages, or highlighted
objects that suggest scent
relative to prey

API Key Missing error
message “Error fetching
[url]. Response: Not
found (404)” for bug B1

Finding the right API
key from the website

Cues Proximal links to patches “about this module”
link to the example code
related to specific module

“Key” link to the Flickr
page to collect the API
key

Navigate Navigation by users
through patches

To find bug B2 the user
navigated through Yahoo!
Pipes editor to external
web site

To correct bug B2
participant navigated to
various web sites to find
the required url

Table 1.
IFT Terminologies from the Yahoo! Pipes Perspective [2].

59

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

the WUFIS model for the web [6] and the PFIS model for programmers foraging
in IDEs [19, 20]. Ragavan et al. analyzed the novice programmers’ foraging in the
presence of program variants [22] and built a predictive model [59] inspired by the
PFIS model [23, 60]. Our focus is to understand the end-user foraging behavior
before creating such computational models.

5. Understanding debugging behavior using an information foraging
theory perspective

To understand how end-user programmers forage mashup IDEs (Yahoo! Pipes)
for finding bugs and the web for finding solutions for the bugs, we conducted a
controlled lab study.

5.1 Lab study using Yahoo! Pipes

Our study observed eight university students who had no background in com-
puter science but had experience with one web language. The students were from
diverse fields such as engineering, finance, mathematics, and natural sciences.
The participants completed the background questionnaire, a short tutorial on
Yahoo! Pipes, and a pilot task to practice programming with Yahoo! Pipes. Once the
participants felt comfortable with the Yahoo! Pipes environment, they completed
two tasks using the think-aloud method.

The participants were given Yahoo! Pipes programs that were seeded with
bugs. The first task (Yahoo! Pipes Error) was a pipe program that was seeded with
bugs detected by Yahoo! Pipes and displayed a relevant error message. The second
task (Silent Error) was seeded with bugs that were not detected by Yahoo! Pipes
and therefore did not display an error message. Further, both tasks contained two
classes: top level and nested. Top level contained bugs that were easy to comprehend
while the nested class contained sub-pipes with bugs. These sub-pipes needed to
be opened in a separate IDE to be found. The details of the tasks can be found in
Table 2.

Participants’ verbalization and actions were transcribed and analyzed using IFT
theory. When analyzing the transcripts, we found various cues and strategies used
by our participants.

5.2 Types of cues followed by end-user programmers

In finding the bugs and their fixes, participants followed cues. Based on the
strength of the cues, they can be classified as clear, fuzzy, and elusive. Clear cues

Task Class Bugs Details

Yahoo! Pipes Error Top Level B1 API key missing

B2 Website not found

Nested B3 Website not found

Silent Error Top Level B4 Website contents changed

B5 Parameter missing

Nested B6 Parameter missing

Table 2.
Details on seeded bugs in the tasks [2].

Coding Theory - Recent Advances, New Perspectives and Applications

60

helped the forager the most as they were easy to understand and provided a direct
link to the bugs or their fixes. Hence, they were less costly as they helped partici-
pants to spend less time finding and fixing the bugs. Fuzzy cues did not have com-
plete information that could lead to a bug. Hence, these cues either lead or mislead
to a valuable patch containing prey and were somewhat costly in terms of time
spent. Elusive cues were very difficult to locate due to absence of direct links to the
bugs. These cues were the costliest, as participants often wasted their time foraging
for prey in useless patches.

5.3 Debugging behavior of end-user programmers

Participants foraged Yahoo! Pipes IDE to find the bugs and the web to fix the
bugs. Table 3 shows the number of bugs located and fixed by each participant. The
results show that end user programmers struggled to debug their pipe programs.
The key findings were:

5.3.1 Locating and fixing Yahoo! errors was easier than “silent errors”

The Yahoo! Errors B1 and B2 were easily located by the participants (refer
Table 3). Yahoo! errors supported clear cues as these bugs had detailed error
messages from Yahoo! Pipes. As discussed before, the Yahoo! Pipes environment

Participants Yahoo! Pipes Silent Errors

B1 B2 B3 B4 B5 B6

L F L F L F L F L F L F

P1 1 1 — — — — — — 1 — — —

P2 1 1 1 — — — — — — — — —

P3* 1 1 1 1 — — 1 1 1 1 — —

P4 1 1 1 — — — 1 — 1 1 — —

P5 1 1 1 — 1 — 1 — — — — —

P6 1 1 1 — 1 1 1 — 1 — 1 —

P7 1 1 1 — 1 1 1 — — — — —

P8 1 — 1 — — — 1 — — — — —

Total 8 7 7 1 2 1 6 1 4 2 1 0
*represents a participant with prior knowledge of Yahoo! Pipes.

Table 3.
Bugs Finding and Fixed per Control Group Participant [2].

Cues Description Example

Clear
Cues

Cues that were
clear and easy to
understand

‘API Key Missing’ cue helped participants look for modules that it was
associated with.

Fuzzy
Cues

Cues that were
difficult to
understand

‘org.xml.sax.SAXParseException’ cue was hard for participants to
understand as they didn’t know what it meant.

Elusive
Cues

Cues that were
difficult to find

This cue was shown when a fault was nested.

61

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

provides little support for debugging i.e., just observing the output in the debugger
window, hence silent errors B4 and B5 were harder for participants to locate and
fix. Hence, end-users’ programming IDE should support clear cues i.e., displaying
and visualizing of the error messages for the programmers.

5.3.2 Locating bugs was easier than fixing bugs

Locating bugs was easier, especially in the presence of clear cues as well as when
participants foraged in the restricted single patch of Yahoo! IDE to locate bugs. But
when participants had to fix the bugs, they spent a tremendous amount of time
foraging through different web pages (multiple patches). Participants used an
enrichment strategy of searching on the web to find the valuable patches. But the
quality of their search results depended upon the relevance of keywords. Hence,
explicitly stating or automating support of the diet constraints (keywords related to
bugs) in the search engines can increase the relevance of the results.

5.3.3 Difficult to locate nested bugs, particularly “silent errors”

The nested bugs were the hardest to locate by the participants as they were
elusive. In the case of bug B3, three participants were able to find them as they were
clear cues with error messages that were returned in the pipe output. To detect the
silent errors, participants had to systematically analyze each module of the pipe
program and check the debugging window. As a result, only one participant was
able to locate the B6 bug. Hence, the IDEs should strengthen the cues by making
prey/bugs more visible to the programmers through clear cues.

5.4 Strategies while finding Bugs

Participants foraged for finding the bugs using Hunting, Enrichment, and
Navigation strategies within Yahoo! Pipes IDE.

5.4.1 Hunting strategy

These strategies reflect how the participants hunted for their prey (bugs). The
participants had salient goals and they chose cues based on their prominence. For
example, they looked for cues in the output of the pipe program. Most participants
pursued the first available cue in the output. This explains why most participants
pursued bug B1 and B4 (Table 3). The participants were mostly unsuccessful in
finding the majority of bugs as participants were persistent and pursued a single
bug until they found a fault (depth-first search). The hunting strategies were
prompted by the environment itself. Hence, designing environments that facilitate
problem solving strategies (such as “sleep on the problem”) and make prey more
visible can facilitate effective hunting strategies by end-user programmers.

5.4.2 Enrichment strategy

To make prey (bugs) more visible as well as to understand the patch, the partici-
pants used various enrichment strategies. They realigned/regrouped the modules
so that the connections between them were more visible. For exploring the cues,
they kept two patches side-by-side. For example, participants placed the editor and
documentation side-by-side for better view of each window. This suggests that IDEs
should allow multi-context views allowing end user programmers to view different
dimensions of code and allow easy manipulation of the environment.

Coding Theory - Recent Advances, New Perspectives and Applications

62

5.4.3 Navigational strategy

The participants carved out regions based on the data flow structure of Yahoo!
Pipes and foraged for cues down each path separately. Whenever they found a weak
scent (perceived value), they backtracked and returned to the previous cue or
patch. Participants often needed to backtrack for small changes, and this suggests
supporting fine-grained backtracking that allows non-linear explorations of past
programming history [8, 41].

5.5 Strategies followed when fixing bugs

While fixing the bug, participants used Enrichment, Navigation and Verification
strategies.

5.5.1 Enrichment strategy

Participants searched for all possible cues that led them to fixes for the bugs and
aggregated them. Most participants used Google to find the solution for bug fixes.
They temporarily collected information to reduce cognitive efforts. For example,
participants copied original URLs into the notepad and then started making
changes to the pipe programs. Hence, supporting to-do lists can help end-user
programmers to complete their tasks systematically [61]. Participants also kept the
documents (web document and IDE) open side-by-side like when they searched
for bugs, necessitating support for multi-contextual views for code and relevant
web pages.

5.5.2 Navigational strategy

The participants skimmed through patches for stronger scents. They used
already visited patches as negative evidence in their foraging pursuits. For example,
participants closed the web pages immediately when they realized they had already
visited them. This prompted the participants to backtrack often to previous cues
or patches as they were no longer foraging in the right directions. This suggests the
need of tools that allow backtracking across multiple patches.

5.5.3 Verification strategy

After fixing the bugs, participants verified it by rerunning the pipe programs
and comparing the output to the given solution (oracle). Verification is a very
important step in software engineering and building automated techniques to sup-
port verification for end-user programmers can help them produce better quality
software applications.

6. Conclusions

Our analysis of the debugging behavior of eight end-user participants using
information foraging theory suggests that clear cues were the most cost-effective
method for finding bugs in mashup environments. Clear cues created stronger per-
ceived value and helped more in the debugging process allowing end-user program-
mers to locate bugs more easily when compared to fuzzy or elusive cues. Fuzzy and
elusive cues resulted in a hindered debugging progress as end-users would end up in
useless patches. In addition, the presence of sub-pipes added additional complexity

63

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

Author details

Sandeep Kaur Kuttal*, Abim Sedhain and Benjamin Riethmeier
University of Tulsa, Tulsa, OK, USA

*Address all correspondence to: sandeep-kuttal@utulsa.edu

to the debugging process as participants were unsure where cues were coming from,
even if they were clear. Our study also examined how the participants followed the
cues to find solutions to the present bugs.

The participants used three main strategies to locate bugs: hunting, navigation,
and enrichment. While hunting they used a depth-first strategy resulting in a
persistent pursuit of a single bug. When navigating the participants would use the
dataflow structure of the program to perceive the value of the bug’s location and
would backtrack through relevant program histories to locate the bug. Finally, when
using the enrichment strategy, participants would organize their environment by
placing their IDE side by side with a web browser or by rearranging the code for
easier foraging.

The presence of relevant error messages made these strategies for finding bugs
more effective; however, when fixing the bugs by foraging the web different strate-
gies were needed in the absence of clear cues. The participants made use of enrich-
ment, navigation, and verification strategies for fixing bugs. They enriched their
patches by finding relevant information through Google, storing URLs of useful
websites, and by having these resources open side by side next to the editor. The
participants navigated the web and used negative evidence to avoid already visited
webpages or unhelpful resources. Then by running the program after implementing
fixes, the participants would verify that their solutions fixed the bugs.

Our results suggest mashup programming environments need to facilitate clear
clues and support hunting, enrichment, navigational, and verification strategies to
facilitate the debugging process for end-user programmers.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

64

Coding Theory - Recent Advances, New Perspectives and Applications

[1] Zang N, Rosson MB. What’s in a
mashup? And why? Studying the
perceptions of web-active end users.
In: 2008 IEEE Symposium on Visual
Languages and Human-Centric
Computing 2008 Sep 15
(pp. 31-38). IEEE.

[2] Yahoo! Pipes. [cited 2015May].
Available from: http://pipes.yahoo.
com/pipes/

[3] IBM Mashup Maker. [cited
2015May]. Available from: http://www.
ibm.com/software/info/mashup-center/

[4] WMaker. [cited 2021Apr8]. Available
from: http://www.xfruits.com/

[5] Apatar - Open Source Data
Integration & ETL - Apatar - Open
Source Data Integration and ETL
[Internet]. Apatar Mashup Data
Integration. [cited 2021Apr8]. Available
from: http://apatar.com/

[6] Deri Pipes. [cited 2015May].
Available from: http://pipes.deri.org/

[7] Jackbe. [cited 2021Apr8]. Available
from: https://jackbe.com/

[8] Kuttal SK, Sarma A, Burnett M,
Rothermel G, Koeppe I, Shepherd B.
How end-user programmers debug
visual web-based programs: An
information foraging theory
perspective. Journal of Computer
Languages. 2019 Aug 1; 53y22-37.

[9] Grammel L, Storey MA. A survey of
mashup development environments. In:
The smart internet 2010 (pp. 137-151).
Springer, Berlin, Heidelberg.

[10] Gould JD. Some psychological
evidence on how people debug
computer programs. International
Journal of Man-Machine Studies. 1975
Mar 1;7(2):151-82.

[11] Pirolli P, Card S. Information
foraging in information access
environments. In: Proceedings of the
SIGCHI conference on Human factors in
computing systems 1995 May 1
(pp. 51-58)

[12] Kie JG. Optimal foraging and risk of
predation: effects on behavior and social
structure in ungulates. Journal of
Mammalogy. 1999 Dec 6;80(4):1114-29.

[13] Pirolli P, Card S. Information
foraging. Psychological review. 1999
Oct;106(4):643.

[14] Chi EH, Pirolli P, Chen K, Pitkow J.
Using information scent to model user
information needs and actions and the
Web. In: Proceedings of the SIGCHI
conference on Human factors in
computing systems 2001 Mar 1
(pp. 490-497).

[15] Pirolli P., Fu WT. (2003) SNIF-ACT:
A Model of Information Foraging on the
World Wide Web. In: Brusilovsky P.,
Corbett A., de Rosis F. (eds) User
Modeling 2003. UM 2003. Lecture Notes
in Computer Science, vol 2702. Springer,
Berlin, Heidelberg.

[16] Burnett MM. Information Foraging
Theory in Software Maintenance.
OREGON STATE UNIV CORVALLIS;
2012 Sep 30.

[17] Kwan I, Fleming SD, Piorkowski D.
Information Foraging Theory for
Collaborative Software Development.
Corvallis, OR. 2012.

[18] Spool JM, Perfetti C, Brittan D.
Designing for the Scent of Information:
The Essentials Every Designer Needs to
Know About How Users Navigate
Through Large Web Sites. User Interface
Engineering; 2004.

[19] Lawrance J, Bogart C, Burnett M,
Bellamy R, Rector K, Fleming SD. How

References

65

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

programmers debug, revisited: An
information foraging theory
perspective. IEEE Transactions on
Software Engineering. 2010 Dec
23;39(2):197-215.

[20] Lawrance J, Bellamy R, Burnett M.
Scents in programs: Does information
foraging theory apply to program
maintenance?. In: IEEE Symposium on
Visual Languages and Human-Centric
Computing (VL/HCC 2007) 2007 Sep
23 (pp. 15-22). IEEE.

[21] Jin X, Niu N, Wagner M. Facilitating
end-user developers by estimating time
cost of foraging a webpage. In2017 IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/HCC)
2017 Oct 11 (pp. 31-35). IEEE

[22] Srinivasa Ragavan S, Kuttal SK,
Hill C, Sarma A, Piorkowski D,
Burnett M. Foraging among an
overabundance of similar variants. In:
Proceedings of the 2016 CHI Conference
on Human Factors in Computing
Systems 2016 May 7 (pp. 3509-3521).

[23] Lawrance J, Bellamy R, Burnett M,
Rector K. Using information scent to
model the dynamic foraging behavior of
programmers in maintenance tasks. In:
Proceedings of the SIGCHI Conference
on Human Factors in Computing
Systems 2008 Apr 6 (pp. 1323-1332).

[24] Ennals R, Gay D. User-friendly
functional programming for web
mashups. In: Proceedings of the 12th
ACM SIGPLAN international
conference on Functional programming
2007 Oct 1 (pp. 223-234).

[25] Elson J, Howell J, Douceur JR.
MapCruncher: integrating the world’s
geographic information. ACM SIGOPS
Operating Systems Review. 2007 Apr
1;41(2):50-9.

[26] Wong J, Hong J. Marmite: end-user
programming for the web. InCHI’06
extended abstracts on Human factors in

computing systems 2006 Apr 21
(pp. 1541-1546).

[27] Automator User Guide for Mac
[Internet]. Apple Support. [cited
2021Apr8]. Available from: https://
support.apple.com/guide/automator/
welcome/mac

[28] Faaborg A, Lieberman H. A goal-
oriented web browser. In: Proceedings
of the SIGCHI conference on Human
Factors in computing systems 2006 Apr
22 (pp. 751-760).

[29] LaToza TD, Myers BA. Developers
ask reachability questions. In:
Proceedings of the 32nd ACM/IEEE
International Conference on Software
Engineering-Volume 1 2010 May 1
(pp. 185-194).

[30] Fitzgerald S, McCauley R, Hanks B,
Murphy L, Simon B, Zander C.
Debugging from the student
perspective. IEEE Transactions on
Education. 2009 Sep 15;53(3):390-6.

[31] Ko AJ, Myers BA. Finding causes of
program output with the Java Whyline.
In: Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems 2009 Apr 4
(pp. 1569-1578).

[32] Ko AJ, Myers BA. Designing the
whyline: a debugging interface for
asking questions about program
behavior. In: Proceedings of the SIGCHI
conference on Human factors in
computing systems 2004 Apr 25
(pp. 151-158).

[33] Cao J, Rector K, Park TH,
Fleming SD, Burnett M, Wiedenbeck S.
A debugging perspective on end-user
mashup programming. In2010 IEEE
Symposium on Visual Languages and
Human-Centric Computing 2010 Sep 21
(pp. 149-156). IEEE.

[34] Brandt J, Guo PJ, Lewenstein J,
Dontcheva M, Klemmer SR. Two studies

Coding Theory - Recent Advances, New Perspectives and Applications

66

of opportunistic programming:
interleaving web foraging, learning, and
writing code. In: Proceedings of the
SIGCHI Conference on Human Factors
in Computing Systems 2009 Apr 4
(pp. 1589-1598).

[35] Ko AJ, Myers BA, Coblenz MJ,
Aung HH. An exploratory study of how
developers seek, relate, and collect
relevant information during software
maintenance tasks. IEEE Transactions
on software engineering. 2006 Nov
30;32(12):971-87.

[36] Vessey I. Expertise in debugging
computer programs: A process analysis.
International Journal of Man-Machine
Studies. 1985 Nov 1;23(5):459-94.

[37] Naveed MS, Sarim M. Analyzing the
Effects of Error Messages Presentation
on Debugging and Programming.
Sukkur IBA Journal of Computing and
Mathematical Sciences. 2021 Jan
5;4(2):38-48.

[38] Brandt J, Guo PJ, Lewenstein J,
Dontcheva M, Klemmer SR. Two studies
of opportunistic programming:
interleaving web foraging, learning, and
writing code. In: Proceedings of the
SIGCHI Conference on Human Factors
in Computing Systems 2009 Apr 4
(pp. 1589-1598).

[39] Ruthruff JR, Burnett M. Six
challenges in supporting end-user
debugging. ACM SIGSOFT Software
Engineering Notes. 2005 May
21;30(4):1-6.

[40] Phalgune A, Kissinger C,
Burnett M, Cook C, Beckwith L,
Ruthruff JR. Garbage in, garbage out?
An empirical look at oracle mistakes by
end-user programmers. In: 2005 IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/
HCC’05) 2005 Sep 20 (pp. 45-52). IEEE.

[41] Kuttal SK, Sarma A, Rothermel G.
On the benefits of providing versioning

support for end users: an empirical
study. ACM Transactions on Computer-
Human Interaction (TOCHI). 2014 Feb
1;21(2):1-43.

[42] Servant F. Supporting bug
investigation using history analysis. In:
2013 28th IEEE/ACM International
Conference on Automated Software
Engineering (ASE) 2013 Nov 11
(pp. 754-757). IEEE.

[43] Myers B, Ko A. Studying
development and debugging to help
create a better programming
environment. In: CHI 2003 Workshop
on Perspectives in End User
Development 2003 Apr (pp. 65-68).
FL: Fort Lauderdale.

[44] Jones MC, Churchill EF.
Conversations in developer
communities: a preliminary analysis of
the yahoo! pipes community. In:
Proceedings of the fourth international
conference on Communities and
technologies 2009 Jun 25 (pp. 195-204).

[45] Huang AF, Huang SB, Lee EY,
Yang SJ. Improving end-user
programming with situational mashups
in web 2.0 environment. In2008 IEEE
International Symposium on Service-
Oriented System Engineering 2008 Dec
18 (pp. 62-67). IEEE.

[46] Cappiello C, Matera M, Picozzi M.
A UI-centric approach for the end-user
development of multidevice mashups.
ACM Transactions on the Web (TWEB).
2015 Jun 16;9(3):1-40.

[47] Leonard TA. Tree-sheets and
structured documents (Doctoral
dissertation, University of
Southampton).

[48] Stolee KT, Elbaum S. Refactoring
pipe-like mashups for end-user
programmers. In: Proceedings of the
33rd International Conference on
Software Engineering 2011 May 21
(pp. 81-90).

67

How Do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

[49] Stolee KT, Elbaum S, Sarma A.
Discovering how end-user programmers
and their communities use public
repositories: A study on Yahoo! Pipes.
Information and Software Technology.
2013 Jul 1;55(7):1289-303.

[50] Wang HB, Wang ZH. Building
Mobile News Aggregation Application
with Yahoo Pipes. In: Advanced
Materials Research 2013 (Vol. 756,
pp. 1943-1947). Trans Tech
Publications Ltd.

[51] Card SK, Pirolli P, Van Der Wege M,
Morrison JB, Reeder RW, Schraedley PK,
Boshart J. Information scent as a driver
of web behavior graphs: Results of a
protocol analysis method for web
usability. In: Proceedings of the SIGCHI
conference on Human factors in
computing systems 2001 Mar 1
(pp. 498-505).

[52] Chi EH, Rosien A, Supattanasiri G,
Williams A, Royer C, Chow C, Robles E,
Dalal B, Chen J, Cousins S. The
bloodhound project: automating
discovery of web usability issues using
the InfoScentπ simulator. In:
Proceedings of the SIGCHI conference
on Human factors in computing systems
2003 Apr 5 (pp. 505-512).

[53] Piorkowski D, Penney S, Henley AZ,
Pistoia M, Burnett M, Tripp O,
Ferrara P. Foraging goes mobile:
Foraging while debugging on mobile
devices. In2017 IEEE Symposium on
Visual Languages and Human-Centric
Computing (VL/HCC) 2017 Oct 11
(pp. 9-17). IEEE.

[54] Niu N, Mahmoud A, Bradshaw G.
Information foraging as a foundation for
code navigation (NIER track). In:
Proceedings of the 33rd International
Conference on Software Engineering
2011 May 21 (pp. 816-819).

[55] Bhowmik T, Niu N, Wang W,
Cheng JR, Li L, Cao X. Optimal group
size for software change tasks: A social

information foraging perspective. IEEE
transactions on cybernetics. 2015 Apr
22;46(8):1784-95.

[56] Fu WT, Pirolli P. SNIF-ACT: A
cognitive model of user navigation on
the World Wide Web. Human–
Computer Interaction. 2007 Nov
1;22(4):355-412.

[57] Chi EH, Pirolli P, Pitkow J. The scent
of a site: A system for analyzing and
predicting information scent, usage,
and usability of a web site. In:
Proceedings of the SIGCHI conference
on Human factors in computing systems
2000 Apr 1 (pp. 161-168).

[58] Pirolli P. Information foraging
theory: Adaptive interaction with
information. Oxford University Press;
2007 Apr 12.

[59] Ragavan SS, Pandya B,
Piorkowski D, Hill C, Kuttal SK,
Sarma A, Burnett M. PFIS-V: modeling
foraging behavior in the presence of
variants. In: Proceedings of the 2017
CHI Conference on Human Factors in
Computing Systems 2017 May 2
(pp. 6232-6244).

[60] Lawrance J, Burnett M, Bellamy R,
Bogart C, Swart C. Reactive information
foraging for evolving goals. In:
Proceedings of the SIGCHI Conference
on Human Factors in Computing
Systems 2010 Apr 10 (pp. 25-34).

[61] Grigoreanu VI, Burnett MM,
Robertson GG. A strategy-centric
approach to the design of end-user
debugging tools. In: Proceedings of the
SIGCHI Conference on Human Factors
in Computing Systems 2010 Apr 10
(pp. 713-722).

Chapter 5

A Public Key Cryptosystem Using
Cyclotomic Matrices
Md. Helal Ahmed, Jagmohan Tanti and Sumant Pushp

Abstract

Confidentiality and Integrity are two paramount objectives in the evaluation of
information and communication technology. In this chapter, we propose an arith-
metic approach for designing asymmetric key cryptography. Our method is based
on the formulation of cyclotomic matrices correspond to a diophantine system. The
strategy uses in cyclotomic matrices to design a one-way function. The result of a
one-way function that is efficient to compute, however, is hard to process its
inverse except if privileged information about the hidden entry is known. Also, we
demonstrate that encryption and decryption can be efficiently performed with the
asymptotic complexity of O e2:373ð Þ. Finally, we study the computational complexity
of the cryptosystem.

Keywords: finite fields, discrete logarithm problem, cyclotomic numbers,
cyclotomic matrix, public key, secret key

1. Introduction

Apart from a rich history of Message encryption, the cryptosystem became more
popular in the twentieth century upon the evolution of information technology.
Until the last part of the 1970s, all cryptographic message was sent by the symmet-
ric key. This implies somebody who has sufficient data to encode messages likewise
has enough data to decode messages. Consequently, the clients of the framework
must have to impart the secret key furtively. As a result of an issue stealthily key
sharing, Diffie and Hellman [1] developed a totally new sort of cryptosystem called
public key cryptosystem.

In a Public key cryptosystem, both parties (in a two-party system) have a pair of
public enciphering and secret deciphering keys [2, 3]. Any party can send encrypted
messages to an assigned party using a public enciphering key. However, only the
assigned party can decrypt the message utilizing their corresponding secret
deciphering key [4]. After that various public key cryptosystems were introduced
based on tricky mathematical problems. Among these, RSA is the longest reasonable
use of cryptography. Since its design, in spite of all effort, it has not been broken
yet. The security of the RSA is acknowledged to be established on the issue of the
factorization of an enormous composite number. Be that as it may, there are some
practical issues in RSA execution. The fundamental issue is the key arrangement
time that is absurdly long for computationally restricted processors used in certain
applications. Another issue is the size of the key. It was demonstrated that the time

69

required to factor an n-bit integer by index calculus factorization technique is of
order 2n

1=2þδ
, δ>0 [5]. In 1990’s, J. Pollard [6] demonstrated that it was possible in

time bounded by 2n
1=3þδ

, δ>0. The reduction of the exponent of n has significant
outcomes over the long run. It should likewise be expanded each year as a result of
upgrades in the factorization calculations and computational power. Until 2015, it
was prescribed the base size of the RSA key should be 1024 bits and subsequently
increases to 4096 & 8192 bits by 2015 & 2025 respectively [7]. While trying to
remedy these issues, Discrete logarithm problem (DLP) has been utilized (to reduce
key setup time and size of the key).

Discrete logarithm problem (DLP) is a mathematical problem that occurs in
many settings and it is hard to compute exponent in a known multiplicative group
[8]. Diffie-Hellman [1], ElGamal [9], Digital Signature Algorithm [10], Elliptic
curve cryptosystems [11, 12] are the schemes evolved under the Discrete logarithm
algorithm. The security of Diffie-Hellman relied upon the complexity of solving the
discrete logarithm problem. However, the scheme has some disadvantages. It has
not been demonstrated that breaking the Diffie-Hellman key exchange has relied
upon DLP and also the scheme is vulnerable to a man-in-the-middle attack. For the
security aspect, cryptosystem [9] was proposed, to introduce a digital signature
algorithm (DSA) that’s primarily based on Diffie-Hellman DLP and key distribution
scheme. It was demonstrated that DSA is around multiple times littler than the RSA
signature and later DSA has been supplanted by the elliptic curves digital signature
algorithm (ECDSA). Nonetheless, it has some practical implementation problems
[13–15]. The length of the smallest signature is of 320 bits, which is still being too
long for computationally restricted processors. Another issue emerged is as a corre-
lation with RSA in a field with prime characteristics, which is forty times slower
than RSA [16].

There are some other designs for public-key cryptosystems based on some
extensive features of matrices. However, there were some practical implementa-
tion problems. Thus it had never achieved wide popularity in the cryptographic
community. McElice [17] come up with a public key cryptosystem rooted on the
Goppa codes Hamming metric. The scheme has the advantage that it has two to
three orders of magnitude faster than RSA. Despite its advantage, it has some
drawbacks. It was demonstrated that the length of the public key is 219 bits and the
data expansion is too large. Some other extensions of the scheme can also be found
in [18–20]. Unfortunately, the scheme & its variants has been broken in [21–23].
Later, Gabidulin [24] come up with the rank metric & the Gabidulin codes over a
finite field with q elements, where q ¼ pr i.e. Fq, as an alternative for the Ham-
ming metric. The efficiency of the scheme relied on same set of parameters and
the complexity of the decoding algorithm for random codes in rank metric is tons
higher than the Hamming metric [17, 25–27]. Numerous fruitful attacks were
utilized on the structure of the public code [28–30]. To prevent these attacks,
numerous alterations of the cryptosystems were made, consequently drastically
increases the size of the key [31–33]. Lau and Tan [34] proposed new encryption
with a public key matrix by considering the addition of a random distortion
matrix over Fq of full column rank n. There are also many other design on
matrices, which are not cited here, but none of them gain wide popularity in the
cryptographic community due to lack of efficient implementation problems in one
and another way.

Thinking about these inadequacies, it would be desirable to have a cryptosystem
dependent on other than the presumptions as of now being used. Thus, we propose
a cyclotomy asymmetric cryptosystem (CAC) based on strong assumptions of DLP
that have to reduce the key size and faster the computational process.

70

Coding Theory - Recent Advances, New Perspectives and Applications

1.1 Outline of our scheme

In this chapter, we consider two significant problems in the theory of cyclotomic
numbers over Fp. The first one deals with an efficient algorithm for fast computa-
tion of all the cyclotomic numbers of order 2l2, where l is prime. The subsequent
one deals with designing public key cryptosystem based on cyclotomic matrices of
order 2l2. The strategy employs for designing public-key cryptosystem utilizing
cyclotomic matrices of order 2l2, whose entries are cyclotomic numbers of order 2l2,
l be prime, where cyclotomic numbers are certain pairs of solutions a, bð Þ2l2 of order
2l2 over a finite field Fp with p elements.

In our approach, to designing cyclotomy asymmetric cryptosystem (CAC) based
on trapdoor one-way function (OWF). The public key is obtained by choosing a
non-trivial generator γ ∈F ∗

p . The chosen value of the generator constructs a cyclo-

tomic matrix of order 2l2. It is believed that cyclotomic matrices of order 2l2 is
always non-singular if the value of k> 1. Since there are efficient algorithms for the
construction of cyclotomic matrices. Consequently, the key setup time in our pro-
posed cryptosystem is much shorter than previously designed cryptosystems.

In the scheme, the secret key is given by choosing a different non-trivial gener-
ator, which is accomplished by discrete logarithm problem (DLP) over a finite field
F ∗
p . A key-expansion algorithm is employed to expand the secret keys, which form a

non-singular matrix of order 2l2. Here it is important to note that, if one can change
the generators of F ∗

p , then entries of cyclotomic matrices get interchanged among
themselves, however, the nature of the cyclotomic matrices remain as same. The
decryption algorithm involves efficient algebraic operations of matrices. Hence the
decryption in our proposed CAC is very efficient. In view of the perspective on the
efficient encryption and decryption features, the polynomial time algorithm
ensures that the proposed CAC makes it attractive in computationally restricted
processors.

The chapter is organized as follows: Section 2 presents the definition and nota-
tions, including some well-known properties of cyclotomic numbers of order 2l2.
Section 3 presents the construction of cyclotomic matrices of order 2l2. Section 4
contains encryption and decryption algorithms of CAC along with a numerical
example. In addition, the computational complexity of the proposed CAC is
discussed and in Section 5 presents the encryption & decryption can be efficiently
perform with asymptotic complexity of O e2:373ð Þ. Finally, a brief conclusion is
reflected in Section 6.

2. Cyclotomic numbers

Cyclotomic numbers are one of the most vital objects in Number Theory. These
numbers had been substantially utilized in Cryptography, Coding Theory and other
branches of Information Theory. Thus, calculation of cyclotomic numbers, so called
to as cyclotomic number problems, of various orders is one of the primary problems
in Number Theory. Complete answers for cyclotomic number problem for e = 2� 6,
7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, l, 2l, l2, 2l2 with l an odd prime had been
investigated by many authors see ([35–40] and the references there in). The section
contains the generalized definition of cyclotomic numbers of order e, useful nota-
tions followed by properties of cyclotomic numbers of order 2l2. These properties
play a vital role in determining which cyclotomic numbers of order 2l2 are sufficient

71

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

for the determination of all 4l4 cyclotomic numbers of order 2l2. The section also
examines the cyclotomic matrices of order 2l2.

2.1 Definition and notations

Let e≥ 2 be an integer, and p � 1 modeð Þ an odd prime. One writes p ¼ ekþ 1 for
some positive integer k. Let Fp be the finite field of p elements and let γ be a
generator of the cyclic group F ∗

p . For 0≤ a, b≤ e� 1, the cyclotomic number a, bð Þe
of order e is defined as the number of solutions s, tð Þ of the following:

γesþa þ γetþb þ 1 � 0 mod pð Þ; 0≤ s, t≤ k� 1: (1)

2.2 Properties of cyclotomic numbers of order 2l2

In this subsection, we recalled some elementary properties of cyclotomic num-
bers of order 2l2 [38]. Let p � 1 mod2l2

� �
be a prime for an odd prime l and we

write p ¼ 2l2kþ 1 for some positive integer k. It is clear that a, bð Þ2l2 ¼ a0, b0
� �

2l2

whenever a � a0 mod2l2
� �

and b � b0 mod2l2
� �

as well as a, bð Þ2l2 ¼
2l2 � a, b� a
� �

2l2 . These imply the following:

a, bð Þ2l2 ¼
b, að Þ2l2 if k is even,

bþ l2, aþ l2
� �

2l2 if k is odd:

8<
: (2)

Applying these facts, one can check that

X2l2�1

a¼0

X2l2�1

b¼0

a, bð Þ2l2 ¼ q� 2 (3)

and

X2l2�1

b¼0

a, bð Þ2l2 ¼ k� na, (4)

where na is given by

na ¼ 1 if a ¼ 0, 2∣ k or if a ¼ l2, 2 �∣ k,
0 otherwise:

(

3. Cyclotomic matrices

This section presents the procedure to determine cyclotomic matrices of order
2l2 for prime l. We determine the equality relation of cyclotomic numbers and
discuss how few of the cyclotomic numbers are enough for the construction of
whole cyclotomic matrix. Further generators for a chosen value of p will be deter-
mined followed by the generation of a cyclotomic matrix. At every step, we have
included a numerical example for the convenience to understand the procedure
easily.

72

Coding Theory - Recent Advances, New Perspectives and Applications

Definition:- Cyclotomic matrix of order 2l2, l be a prime, is a square matrix of
order 2l2, whose entries are pair of solutions a, bð Þ2l2 ; 0≤ a, b≤ 2l2 � 1, of the
Eq. (1).

For instance Table 1 depicts a typical cyclotomic matrix of order 8 (assuming
l ¼ 2). Whose construction steps have been given in the next subsection.

3.1 Construction of cyclotomic matrix

Typically construction of a cyclotomic matrix has been subdivided into four
subsequent steps. Below are those ordered steps for the construction of a cyclotomic
matrix;

1.For given l, choose a prime p such that p satisfies p ¼ 2l2kþ 1, k∈Zþ. The
initial entries of the cyclotomic matrix are the arrangement of pair of numbers
a, bð Þ2l2 where a and b usually vary from 0 to 2l2 � 1.

2.Determine the equality relation of pair of a, bð Þ2l2 , which reduces the
complexity of pair of solution a, bð Þ2l2 of Eq. (1), that is discuss in next sub-
section.

3.Determine the generators of chosen p (i.e. generators of F ∗
p). Let γ1, γ2, γ3,… ,

γn be generators of F
∗
p .

4.Choose a generator (say γ1) of F
∗
p and put in Eq. (1). This will give cyclotomic

matrix of order 2l2 w.r.t. chosen generator γ1.

The first step initializes the entries of cyclotomic matrix of order 2l2. Value of p
will be determined for given l. Assuming l ¼ 2, an example of such initialization of
matrix of order 8 has been shown in Table 1.

For the construction of cyclotomic matrix, it does not require to determine all
the cyclotomic numbers of a cyclotomic matrix which is shown in Table 1 [36]. By
well-known properties of cyclotomic numbers of order 2l2, cyclotomic numbers are
divided into various classes, therefore there are a pair of the relation between the
entries of initial table (Table 1) of a cyclotomic matrix. Thus to avoid calculating
the same solutions in multiple times, we determine the equality relation of

(a,b) b

a 0 1 2 3 4 5 6 7

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

1 (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

2 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

3 (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

4 (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

5 (5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

6 (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

7 (7,0) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

Table 1.
Cyclotomic matrix of order 8.

73

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

cyclotomic numbers (i.e. equality of solutions of a, bð Þ2l2). In the next subsection,
we will discuss which cyclotomic numbers are enough for the construction of the
cyclotomic matrix. Thus it helps us to the faster computation of cyclotomic matrix.

3.2 Determination of equality relation of cyclotomic numbers

This subsection presents the procedure to determine the equality relation of
cyclotomic numbers (i.e. the relation of pair of a, bð Þ2l2), which reduces the com-
plexity of solutions of pair of a, bð Þ2l2 (see also [36]). For the determination of
cyclotomic matrices, it is not necessary to obtain all 4l4 cyclotomic numbers of
order 2l2. The minimum number of cyclotomic numbers required to determine all
the cyclotomic numbers (i.e. required for construction of cyclotomic matrix)
depends on the value of positive integer k on expressing prime p ¼ 2l2kþ 1. By (2),
if k is even, then

a, bð Þ2l2 ¼ b, að Þ2l2 ¼ a� b,�bð Þ2l2 ¼ b� a,�að Þ2l2 ¼ �a, b� að Þ2l2 ¼ �b, a� bð Þ2l2
(5)

otherwise

a, bð Þ2l2 ¼ bþ l2, aþ l2
� �

2l2 ¼ l2 þ a� b,�b
� �

2l2 ¼ l2 þ b� a, l2 � a
� �

2l2

¼ �a, b� að Þ2l2 ¼ l2 � b, a� b
� �

2l2 : (6)

Thus by (5) and (6), cyclotomic numbers a, bð Þ2l2 of order 2l2 can be divided into
various classes.

• 2∣k and l 6¼ 3: In this case, (5) gives classes of singleton, three and six elements.
0, 0ð Þ2l2 form singleton class, �a, 0ð Þ2l2 , a, að Þ2l2 , 0,�að Þ2l2 form classes of three
elements where 1≤ a≤ 2l2 � 1 mod2l2

� �
and rest 4l4 � 3� 2l2 þ 2 of the

cyclotomic numbers form classes of six elements.

• 2∣k and l ¼ 3: In this case, (5) divide cyclotomic numbers a, bð Þ18 of order 18
into classes of singleton, second, three and six elements. 0, 0ð Þ18 form singleton
class, �a, 0ð Þ18, a, að Þ18, 0,�að Þ18 form classes of three elements, where
1≤ a≤ 17 mod18ð Þ, 6, 12ð Þ18 ¼ 12, 6ð Þ18 which is grouped into classes of two
elements and rest 4l4 � 3� 2l2 of the cyclotomic numbers form classes of six
elements.

• 2 �∣k and l 6¼ 3: Using (6), once again we get classes of singleton, three and six
elements. 0, l2

� �
2l2 forms singleton class, 0, að Þ2l2 , aþ l2, l2

� �
2l2 , l2 � a,�a
� �

2l2

form classes of three elements, where 0≤ a 6¼ l2 ≤ 2l2 � 1 mod2l2
� �

and rest 4l4 � 3� 2l2 þ 2 of the cyclotomic numbers form classes of six
elements.

• 2 �∣k and l ¼ 3: In this situation, (6) partitions cyclotomic numbers a, bð Þ18 of
order 18 into classes of singleton, two, three and six elements. Here 0, 9ð Þ18
form singleton class, 0, að Þ18, aþ 9, 9ð Þ18, 9� a,�að Þ18 form classes of three
elements, where 0≤ a 6¼ 9≤ 17 mod18ð Þ, 6, 3ð Þ18 ¼ 12, 15ð Þ18 which is grouped
into classes of two elements and rest 4l4 � 3� 2l2 of the cyclotomic numbers
form classes of six elements.

74

Coding Theory - Recent Advances, New Perspectives and Applications

Algorithm 1 Equality relation of cyclotomic numbers.

1: START
2: Declare integer variable e, l, p, k, flag.
3: INPUT l, an odd prime and e ¼ 2l2

4: Declare an array of size e� e, where each element of array is 2 tuple structure
(i.e. ordered pair of a, bð Þ2l2 , where a and b are integers).

5: INPUT p, prime number greater than 2
6: if p� 1ð Þ%e ¼¼ 0 then
7: k ¼ p� 1ð Þ=e
8: if k even then
9: Update table (E)

10: else
11: Update table (O)
12: end if
13: end if

Here Update table (E) means each entry a, bð Þ2l2 of the table will be updated by
applying the relations a, bð Þ2l2 ¼ b, að Þ2l2 ¼ a� b,�bð Þ2l2 ¼ b� a,�að Þ2l2 ¼
�a, b� að Þ2l2 ¼ �b, a� bð Þ2l2 , and Update table (O) means each entry a, bð Þ2l2 of
the table will be updated by applying the relations a, bð Þ2l2 ¼ bþ l2, aþ l2

� �
2l2 ¼

l2 þ a� b,�b
� �

2l2 ¼ l2 þ b� a, l2 � a2l2
� � ¼ �a, b� að Þ2l2 ¼ l2 � b, a� b

� �
2l2 .

Further, if entries of the updated table are non-negative, then each entry should
be replace by mod2l2

� �
, otherwise add 2l2. It is clear from above exploration,

cyclotomic numbers of order 2l2 are divided into different classes depending on the
values of k and l. For l ¼ 2 and let k be even, then 0, 0ð Þ8 give unique solution,
cyclotomic numbers of the form �a, 0ð Þ8, a, að Þ8, 0,�að Þ8 where 1≤ a≤ 7 mod8ð Þ
gives the same solutions and rest of cyclotomic numbers (i.e. 42) which forms
classes of six elements has maximum 7 distinct numbers of solutions. Therefore the
initial table (i.e. Table 1) of cyclotomic matrix reduces to Table 2. Similarly, for
l ¼ 2 and let k be odd, then 0, 4ð Þ8 give unique solution, cyclotomic numbers of the
form 0, að Þ8, aþ 4, 4ð Þ8, 4� a,�að Þ8 where 0≤ a 6¼ 4≤ 7 mod8ð Þ gives the same
solutions and rest of cyclotomic numbers (i.e. 42) which forms classes of six
elements has maximum 7 distinct numbers of solutions. Therefore the initial table

(a,b) b

a 0 1 2 3 4 5 6 7

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

1 (0,1) (0,7) (1,2) (1,3) (1,4) (1,5) (1,6) (1,2)

2 (0,2) (1,2) (0,6) (1,6) (2,4) (2,5) (2,4) (1,3)

3 (0,3) (1,3) (1,6) (0,5) (1,5) (2,5) (2,5) (1,4)

4 (0,4) (1,4) (2,4) (1,5) (0,4) (1,4) (2,4) (1,5)

5 (0,5) (1,5) (2,5) (2,5) (1,4) (0,3) (1,3) (1,6)

6 (0,6) (1,6) (2,4) (2,5) (2,4) (1,3) (0,2) (1,2)

7 (0,7) (1,2) (1,3) (1,4) (1,5) (1,6) (1,2) (0,1)

Table 2.
Cyclotomic matrix of order 8 for even k.

75

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

(i.e. Table 1) of cyclotomic matrix reduces to Table 3. One can observe that 64
pairs of two parameter numbers a, bð Þ8 reduced to 15 distinct pairs (see Tables 2
and 3).

Remark 3.0 By Algorithm 1, to compute 2l2 cyclotomic numbers, it is enough to
compute 2l2 þ 2l2 � 1

� �
2l2 � 2
� �

=6
� �

, if 2l2 � 1
� �

2l2 � 2
� �

∣6, otherwise 2l2 þ
2l2 � 1
� �

2l2 � 2
� �

=6
� �þ 1. Further, when l is the least odd prime i.e. l ¼ 3,
then 2l2 � 1

� �
2l2 � 2
� �

�∣6. Therefore l ¼ 3, it is enough to calculate 64 distinct
cyclotomic numbers of order 2l2 and for l 6¼ 3, it is sufficient to calculate
2l2 þ 2l2 � 1

� �
2l2 � 2
� �

=6 distinct cyclotomic numbers of order 2l2.

3.3 Determination of generators of F∗
p

To determine the solutions of (1), we need the generator of the cyclic group F ∗
p .

Let us choose finite field of order p that satisfy p ¼ 2l2kþ 1; k∈Zþ. Let γ1, γ2, γ3,… ,
γn be generators of F

∗
p . We consider finite field of order 17 (i.e. F17), since the

chosen value of p ¼ 17 with respect to the value of l take previously. Now to
determine the generators of cyclic group F ∗

17. The detail procedure to obtain the
generator of F ∗

17 has been depicted in Algorithm 2. If G17 is a set that contain all the
generator of F ∗

17, we could get elements of G17 as f3, 5, 6, 7, 10, 11, 12, 14g.

Algorithm 2 Determination of generators of F ∗
p .

1: Declare integer variable p, count
2: Declare integer array arrFp p½ �, arrFpflag p½ �
3: for i ¼ 1 to p� 1 do
4: arrFp i½ � ¼ i, arrFpflag i½ � ¼ 0
5: end for
6: Declare integer array arrGp max½ �
7: Declare integer variable flag ¼ 0, r, γ
8: for i ¼ 1 to p� 1 do
9: count = 0

10: for f ¼ 1 to p� 1 do
11: arrFpflag f½ � ¼ 0
12: end for
13: γ ¼ arrFp i½ �

(a,b) b

a 0 1 2 3 4 5 6 7

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

1 (1,0) (1,1) (1,2) (1,3) (0,5) (0,3) (1,3) (1,7)

2 (2,0) (2,1) (2,0) (1,7) (0,6) (1,3) (0,2) (1,2)

3 (1,1) (2,1) (2,1) (1,0) (0,7) (1,7) (1,2) (0,1)

4 (0,0) (1,0) (2,0) (1,1) (0,0) (1,0) (2,0) (1,1)

5 (1,0) (0,7) (1,7) (1,2) (0,1) (1,1) (2,1) (2,1)

6 (2,0) (1,7) (0,6) (1,3) (0,2) (1,2) (2,0) (2,1)

7 (1,1) (1,2) (1,3) (0,5) (0,3) (1,3) (1,7) (1,0)

Table 3.
Cyclotomic matrix of order 8 for odd k.

76

Coding Theory - Recent Advances, New Perspectives and Applications

14: for a ¼ 1 to p� 1 do
15: r ¼ power γ, að Þ modpð Þ
16: for j ¼ 1 to p� 1 do
17: if r is equal to arrFp j½ � then
18: arrFpflag j½ � ¼ 1
19: end if
20: end for
21: end for
22: for k ¼ 1 to p� 1 do
23: if arrFpflag k½ � is equal to 1 then
24: count++
25: end if
26: end for
27: if count is equal to p� 1 then
28: γ is generator
29: end if
30: end for

3.4 Generation of cyclotomic matrices

This subsection, present an algorithm for the generation of cyclotomic matrices
of order 2l2. Note that entries of cyclotomic matrices are solutions of (1). Thus we
need the generator of the cyclic group F ∗

p , which is discussed in the previous
subsection. On substituting the generators of F ∗

p in Algorithm 3, we obtain the

cyclotomic matrices of order 2l2 corresponding to different generators of F ∗
p . The

chosen value of p ¼ 17 implies k ¼ 2 w.r.t. assume value of l ¼ 2. Therefore the
cyclotomic matrix will be obtain from Table 2. Let us choose a generator (say γ1 ¼ 3)
from setG17. On substituting γ1 ¼ 3 in Algorithm 3, it will generate cyclotomic matrix
of order 8 over F17 w.r.t. chosen generator γ1 ¼ 3. Matrix B0 show the corresponding
cyclotomic matrix of order 8 w.r.t. chosen generator 3∈F ∗

17.

B0 ¼

0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 1

1 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0

2
66666666666664

3
77777777777775

:

Algorithm 3 Generation of cyclotomic matrix.

1: INPUT: The value of p, l, γ
2: Declare an array arr ROW½ � COL½ � (where elements are two tuple structure)
3: Declare integer variable p, l, k, γ, x, y, A, s, t, a, b, count ¼ 0, p1, p2
4: for a equal to 0 to number of rows do
5: for b equal to 0 to number of columns do
6: for x is equal to 0 to k do

77

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

7: for y is equal to 0 to k do
8: p1 ¼ 2l2 ∗ sþ arr a½ � b½ �:l
9: p2 ¼ 2l2 ∗ tþ arr a½ � b½ �:m

10: A ¼ power γ, p1
� �þ power γ, p2

� �þ 1
11: if A modpð Þ is equal to 0 then
12: countþþ
13: end if
14: end for
15: end for
16: arr a½ � b½ �:n ¼ count
17: count ¼ 0
18: end for
19: end for

Remark 3.1 It is noted that if we change the generator of F ∗
p , then entries of

cyclotomic matrices get interchanged among themselves but their nature remains
the same.

Remark 3.2 It is obvious that (by (4)) cyclotomic matrices of order 2l2 is always
singular if the value of k ¼ 1.

4. The public-key cryptosystem

In this section, we present the approach for designing a public key cryptosystem
using cyclotomic matrices discussed in Section 3. The scheme employ matrices of
order 2l2, whose entries are cyclotomic numbers of order 2l2. The public key is a
non-trivial generator, say γ0 of a set of generator in F ∗

p along with p and l. The set of
generator is obtain by Algorithm 2. The chosen public keys generate a cyclotomic
matrix as of required order (i.e. order of 2l2) make use of Algorithm 3. Here, we

define a trapdoor one-way function ϕ : F ∗
p ! F ∗

p as ϕ r0ð Þ ¼ log γ0 γ
00ð Þ; r0 ∈N

!
, γ0, γ00

are non-trivial generators of F ∗
p . Thus, the secret key are the values of p, l, γ00 & r0.

To encrypt a message, define composition of matrix as M2l2 A ∗Bð Þ ! M2l2 Cð Þ,
where A is a message block matrix, B is a cyclotomic matrix w.r.t. γ0 ∈F ∗

p and C is
the ciphertext matrix. Other way one can define M2l2 B ∗Að Þ ! M2l2 Cð Þ. Therefore,
the length of the ciphertext in CAC is equal to 2l2.

To decrypt a message, an algorithm is required to expand the secret keys
provided by the secret values. Therefore, the Algorithm 4 is utilized for this
purpose.

Algorithm 4 Secrete key expansion.

1: SECRET INPUT: The values of p, l, r0 and γ00

2: Algorithm 1
3: Algorithm 2

The main purpose, to utilize the above algorithm is to construct a non-singular
cyclotomic matrix of order 2l2 w.r.t. non-trivial generator γ00 (γ00 6¼ γ0) in F ∗

p . Now to
decrypt the message, we define inverse composition relation of matrices, which is
M2l2 C ∗Zð Þ ! M2l2 Að Þ, where matrix Z is obtain by some efficient algebraic

78

Coding Theory - Recent Advances, New Perspectives and Applications

computation of matrix. Other way one can define M2l2 Z ∗Cð Þ ! M2l2 Að Þ
respectively.

4.1 Determination of matrix Z

The following steps have been taken for the determination of matrix Z.

1.Determine the equality of cyclotomic matrix of order 2l2 corresponding to the
secret values of p & l, which is perform by Algorithm 1.

2.Each entry of equality of cyclotomic matrix is multiplied by r0.

3.Compute the inverse of equality of cyclotomic matrix generated in step 2.

4.Finally, on substitution the values of the generated cyclotomic matrix
corresponding to γ00 to an inverse matrix in step 3.

The following two algorithms (i.e. Algorithm 5 & 6) are utilized to encrypt and
decrypt a message in the proposed CAC, respectively.

Algorithm 5 Encryption.

1: Transfer the plain text (message) into its numerical value and store in matrix
of order 2l2

2: PUBLIC INPUT: The values of p, l and γ0

3: Execute Algorithm 3
4: Check: Generated cyclotomic matrix in step 3 is non-singular
5: Cipher matrix: Multiply cyclotomic matrix and the matrix generated in step 1
6: Ciphertext: The corresponding text values of matrix generated in step 5

Algorithm 6 Decryption.

1: Input: The cipher matrix/ciphertext
2: Execute Algorithm 4
3: Each entries of equality of cyclotomic matrix (i.e. output matrix of
Algorithm 1) is multiply by r0. The entries of the generated matrix are pair of
cyclotomic number

4: Compute the inverse of generated matrix in step 3 and substitute the value of
each pair of cyclotomic number from generated matrix in step 2

5: Nowmultiply the cipher text matrix to generated matrix in step 4, we get back
to the original plain text message.

4.2 Computational complexity of the CAC

In this section, we would validate the computational complexity of the
proposed CAC. The computational complexity measures the amount of
computational effort required, by the best as of now known techniques, to break a
system [2]. However, it is exceptionally hard to demonstrate the computational
complexity of public-key cryptosystems [2, 3]. For instance, if the public modulus
of RSA is factored into its prime components, at that point the RSA is broken. Be
that as it may, it is not demonstrated that breaking RSA is identical to factoring its
modulus [41]. Here, we study the computational complexity of the CAC by

79

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

providing arguments related to the inversion of the one-way function in CAC to a
best known computational algorithm. The complexity of anonymous decryption
could be understood as; if we assume that an attacker wants to recover the secret
key by using all the information’s available to them. Then they need to solve the
discrete logarithm problem (DLP) to find the secret key followed by a number of
steps described in Algorithm 6. Since, the one-way function is define analogous to
discrete logarithm problem (DLP). However, although most mathematicians and
computer scientists believe that the DLP is unsolvable [42]. The complexity of the
DLP depends on the cyclic group. It is believed to be a hard problem for the
multiplicative group of a finite field of large cardinality. Therefore even
determining the very first step is nearly unsolvable.

If it is the case that somehow attacker manages to solve the DLP, then they have
to determine Eq. (1) and calculate all the solutions corresponding to different pairs
a, bð Þ2l2 . Further, it is required to determine the relation matrix based on equality
relation among the solutions of Eq. (1). Where entries of the relation matrix are the
two-tuple structure of a, bð Þ2l2 . Finally, entries of inverse of the relation matrix are
required to replace through the implication of DLP.

Here we could observe the computational complexity as it increases with the
value of p and 2l2. Therefore it is nearly impossible to determine the secret key for a
large value of p and 2l2; hence uphold the secure formulation claim of the proposed
work.

4.3 An example of the CAC

In this section, we provide an example for the proposed CAC. The example is
designed according to guidelines described in Section 4. The main purpose of this
example is to show the reliability of our cryptosystem. It is important to note that
this example is non-viable for the proposed CAC, since the values of the parameters
are too small.

Example 1 Let us consider 2l2 ¼ 8 (i.e. l ¼ 2) and p ¼ 17. Suppose we want to
send a message X whose numerical value store in matrix A of order 8.

A ¼

2 3 5 9 8 0 2 1

1 5 9 2 9 3 0 5

2 1 3 2 5 6 8 7

5 3 0 7 8 7 3 1

4 2 3 1 9 8 7 3

0 9 2 3 5 6 8 9

1 0 2 9 6 7 9 8

9 1 3 2 4 4 5 6

2
6666666666666664

3
7777777777777775

We choose two distinct non-trivial generators of a set of generator in F ∗
17 (the set

of generator is obtain by employing Algorithm 2), say γ0 ¼ 11 and γ00 ¼ 3. Now, we
evaluate the complex relation between these chosen generators, which can perform
by DLP. One can write 37 ¼ 11 mod17ð Þ. Consider that r0 ¼ 7. The public key is the
public values l ¼ 2, p ¼ 17 & γ0 ¼ 11 and the private key is the secret values l ¼ 2,
p ¼ 17, r0 ¼ 7 & γ00 ¼ 3. The public values generated cyclotomic matrix of order 8 as
required, which is

80

Coding Theory - Recent Advances, New Perspectives and Applications

B3 ¼

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

1 0 0 0 0 0 0 1

0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 0 0 1 0

0 0 0 0 0 1 1 0

0 0 1 0 1 0 0 0

2
6666666666666666664

3
7777777777777777775

Determinant of B3 is equal to 1, implies non-singular. Now we encrypt the
message A by multiplying matrix B3 and A, which is as follows:

C ¼ B3 �A ¼

2 1 3 2 5 6 8 7

5 12 2 10 13 13 11 10

11 4 8 11 12 4 7 7

5 7 12 3 18 11 7 8

14 4 3 9 12 11 8 7

2 5 11 11 15 10 9 13

1 9 4 12 11 13 17 17

6 3 6 3 14 14 15 10

2
66666666666666666664

3
77777777777777777775

The matrix C is a ciphertext matrix. To transmit the message, entries of the
matrix converted into text. To decrypt the message, first, we expand the secret keys
which are performed by Algorithm 4. It generates a non-singular cyclotomic matrix
of order 8, which is shown by matrix B0. Now each entry of equality of cyclotomic
matrix (i.e. output matrix of Algorithm 1) is multiplied by r0 ¼ 7. We get matrix D
whose entries are pair of cyclotomic numbers.

D ¼

0, 0ð Þ 0, 7ð Þ 0, 6ð Þ 0, 5ð Þ 0, 4ð Þ 0, 3ð Þ 0, 2ð Þ 0, 1ð Þ
0, 7ð Þ 0, 1ð Þ 1, 2ð Þ 1, 6ð Þ 1, 5ð Þ 1, 4ð Þ 1, 3ð Þ 1, 2ð Þ
0, 6ð Þ 1, 2ð Þ 0, 2ð Þ 1, 3ð Þ 2, 4ð Þ 2, 5ð Þ 2, 4ð Þ 1, 6ð Þ
0, 5ð Þ 1, 6ð Þ 1, 3ð Þ 0, 3ð Þ 1, 4ð Þ 2, 5ð Þ 2, 5ð Þ 1, 5ð Þ
0, 4ð Þ 1, 5ð Þ 2, 4ð Þ 1, 4ð Þ 0, 4ð Þ 1, 5ð Þ 2, 4ð Þ 1, 4ð Þ
0, 3ð Þ 1, 4ð Þ 2, 5ð Þ 2, 5ð Þ 1, 5ð Þ 0, 5ð Þ 1, 6ð Þ 1, 3ð Þ
0, 2ð Þ 1, 3ð Þ 2, 4ð Þ 2, 5ð Þ 2, 4ð Þ 1, 6ð Þ 0, 6ð Þ 1, 2ð Þ
0, 1ð Þ 1, 2ð Þ 1, 6ð Þ 1, 5ð Þ 1, 4ð Þ 1, 3ð Þ 1, 2ð Þ 0, 7ð Þ

2
66666666666666666664

3
77777777777777777775

Now compute the inverse of D and substitute the value from B0 to each pair of
cyclotomic numbers. The matrix becomes

81

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

D ∗ ¼

�1 1 1 �1 �1 1 �1 1

1 0 0 1 0 0 0 �1

1 0 0 0 0 0 0 0

�1 1 0 �1 0 1 �1 1

�1 0 0 0 0 0 0 1

1 0 0 1 0 �1 1 �1

�1 0 0 �1 0 1 0 1

1 �1 0 1 1 �1 1 �1

2
666666666666666664

3
777777777777777775

Finally, we obtain D* � C = A.

5. The complexity of CAC

Time and space are usually prominent factors to establish the effectiveness of
security solutions. In the before seen sections, we have established the computa-
tional difficulty to break the proposed work. Further, we would demonstrate the
complexity of the solution in terms of worst-case running time.

The time complexity of Algorithm 1 in worst case is O e2ð Þ. Since formation of
matrix of order e and Update_Table() individually will take O e2ð Þ. In algorithm 2,
for loop in line number 9, 15, and 17 contributes O e3ð Þ in worst case. Since,

e ¼ p� 1
k

) e3 ¼ p� 1
k

� �3

� p3

k3

� �

Since k is a positive integer, therefore when k attains its minimum value i.e. 1,

p3

k3
� p3 � e3:

For any higher value of k, there is guarantee that

p3

k3
< e3:

Hence, we conclude that Algorithm 2 can take O e3ð Þ in worst case.
Similarly, in Algorithm 3, for loop in line number 4, 5, 6, 7 contributes e: e: k: k

or say O e2k2
� �

running time in worst case. Using similar analogy as in case of
Algorithm 2, worst case complexity will be O e2ð Þ.

5.1 Encryption

Encryption as expressed in Algorithm 5 constitutes of three logical divisions and
the complexity of encryption would be the sum of the complexity of its part. The
state divisions within are as follows;

1.Generating cyclotomic matrix

82

Coding Theory - Recent Advances, New Perspectives and Applications

2.Checking the singularity of the cyclotomic matrix.

3.Multiplication of generated cyclotomic matrix and matrix corresponds to plain
text.

Starting from the generation of the cyclotomic matrix, comprises the total com-
plexity O e2ð Þ as stated earlier. Further, checking singularity involves the computa-
tion of determinants of the matrix of order e. In worst case computing determinant
of a matrix of order n by fast algorithm [43] takes O n2:373ð Þ. Hence, singularity of
the cyclotomic matrix of order e could be computed in O e2:373ð Þ time. Finally,
multiplication of cyclotomic matrix of order e and matrix corresponds to plain text
of order e will take O e2:3728639

� �
time. Therefore, Complexity of Encryption would

become O e2ð Þ þO e2:373ð Þ þO e2:3728639
� � � O e2:373ð Þ. Thus a polynomial time com-

plexity seems to be quite worthwhile.

5.2 Decryption

Decryption as expressed in Algorithm 6 that include Algorithm 4 which sums
the complexity of Algorithm 1 and 3, therefore takes O e2ð Þ + O e2ð Þ � O e2ð Þ time.
Further, multiplication of cyclotomic matrix of order e by a constant value r0,
therefore yield O e2ð Þ complexity. Likewise, inverse of a matrix of order n can be
computed by a fast algorithm [43] in O n2:373ð Þ, therefore, inverse of generated
matrix of order e could be computed in O e2:373ð Þ time. Finally multiplication of two
matrix of order e could be computed in O e2:3728639

� �
by best known algorithm [44]

till date. Therefore, Complexity of decryption would beO e2ð Þ +O e2ð Þ +O e2:373ð Þ +
O e2:3728639
� �

, which becomesO e2:373ð Þ.

6. Conclusion

In this chapter, we have introduced a secured asymmetric key cryptography
model applying the principle of cyclotomic numbers over a finite field. Procedure to
generate cyclotomic matrix along with public & private key have been presented,
where the relation between the public & private key has acquired by discrete
logarithm problem (DLP). Finally, a convincing argument to strengthen the claim
has been presented followed by the method of encryption, decryption & a
numerical example.

Acknowledgements

The authors are thankful and acknowledge the Central University of Jharkhand,
Ranchi, Jharkhand for providing the necessary facilities to carry out this research.

Mathematics Subject Classification (2010)

11T22; 11T71; 94A60; 11T24

83

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

Author details

Md. Helal Ahmed1, Jagmohan Tanti1* and Sumant Pushp2

1 Department of Mathematics, Central University of Jharkhand, Ranchi, India

2 Department of Computer Science and Technology, Tezpur University, Assam,
India

*Address all correspondence to: jagmohan.t@gmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

84

Coding Theory - Recent Advances, New Perspectives and Applications

References

[1] Diffie, W., Hellman, M.: New
directions in cryptography. IEEE
transactions on Information Theory 22
(6), 644–654 (1976)

[2] Miller, V.S.: Use of elliptic curves in
cryptography. In: Conference on the
theory and application of cryptographic
techniques, pp. 417–426. Springer
(1985)

[3]Wiener, M.J., Zuccherato, R.J.: Faster
attacks on elliptic curve cryptosystems.
In: International workshop on selected
areas in cryptography, pp. 190–200.
Springer (1998)

[4] Ahmad, J.I., Din, R., Ahmad, M.
Analysis review on public key
cryptography algorithms. International
Journal of Electrical and Computer
Engineering (IJECE) 12(2), 447–454
(2018)

[5] Korzhik, V.I., Turkin, A.I.:
Cryptanalysis of mcelieces public-key
cryptosystem. In: Workshop on the
Theory and Application of of
Cryptographic Techniques, pp. 68–70.
Springer (1991)

[6] Razborov, A.A., Rudich, S.: Natural
proofs. Journal of Computer and System
Sciences 55(1), 24–35 (1997)

[7] Shirolkar, D., Katre, S.: Jacobi
sums and cyclotomic numbers of order
l2. Acta Arithmetica 1(147), 33–49
(2011)

[8] Menezes, A.J., Katz, J., Van
Oorschot, P.C., Vanstone, S.A.:
Handbook of applied cryptography.
CRC press (1996)

[9] ElGamal, T.: A public key
cryptosystem and a signature scheme
based on discrete logarithms. IEEE
transactions on information theory 31
(4), 469–472 (1985)

[10] Bruce, S. Applied cryptography. 2nd
John Wiley and Sons, Inc (1996)

[11] Koblitz, N., Menezes, A.J.: A survey
of public-key cryptosystems. SIAM
review 46(4), 599–634 (2004)

[12] Ourivski, A.V., Johansson, T.: New
technique for decoding codes in the
rank metric and its cryptography
applications. Problems of Information
Transmission 38(3), 237–246 (2002)

[13] Johnson, D., Menezes, A.: The
elliptic curve digital signature algorithm
(ecdsa) (1999) 21. Johnson, D.,
Menezes, A., Vanstone, S.: The elliptic
curve digital signature algorithm
(ecdsa). International journal of
information security 1(1), 36–63 (2001)

[14] Katre, S., Rajwade, A.: Complete
solution of the cyclotomic problem in Fq
for any prime modulus l, q ¼ pa, p �
1 mod1ð Þ. Acta Arithmetica 45(3), 183–
199 (1985)

[15] Zuccherato, R.: Using a pki based
upon elliptic curve cryptography:
Examining the benefits and difficulties.
Entrust-Securing Digital Identities and
Information (2003).

[16] De Win, E., Mister, S., Preneel, B.,
Wiener, M.: On the performance of
signature schemes based on elliptic
curves. In: International Algorithmic
Number Theory Symposium, pp. 252–
266. Springer (1998)

[17] Meier, A.V.: The elgamal
cryptosystem (2005)

[18] Davida, G.I., Walter, G.G.: A public
key analog gyptosystem. In: Advances in
CryptologyEUROCRYPT87

[19] Loidreau, P.: Designing a rank
metric based mceliece cryptosystem. In:
International Workshop on Post-

85

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

Quantum Cryptography, pp. 142–152.
Springer (2010)

[20] Pollard, J.M.: Factoring with cubic
integers. In: The development of the
number field sieve, pp. 4–10. Springer
(1993)

[21] Lau, T.S.C., Tan, C.H.: A new
technique in rank metric code-based
encryption. Cryptography 2(4), 32
(2018)

[22] Sidelnikov, V.M., Shestakov, S.O.:
On insecurity of cryptosystems based on
generalized reed-solomon codes.
Discrete Mathematics and Applications
2(4), 439–444 (1992)

[23] Stinson, D.R., Paterson, M.:
Cryptography: theory and practice.
CRC press (2018)

[24] Gabidulin, E.M.: Theory of codes
with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

[25] Canteaut, A., Chabaud, F.: A new
algorithm for finding minimum-weight
words in a linear code: application to
mceliece's cryptosystem and to narrow-
sense bch codes of length 511. IEEE
Transactions on Information Theory 44
(1), 367–378 (1998)

[26] Chabaud, F., Stern, J.: The
cryptographic security of the syndrome
decoding problem for rank distance
codes. In: International Conference on
the Theory and Application of
Cryptology and Information Security,
pp. 368–381. Springer (1996)

[27] Overbeck, R.: Structural attacks for
public key cryptosystems based on
gabidulin codes. Journal of Cryptology
21(2), 280–301 (2008)

[28] Gibson, J.K.: Severely denting the
gabidulin version of the mceliece public
key cryptosystem. Designs, Codes and
Cryptography 6(1), 37–45 (1995)

[29] Gibson, K.: The security of the
gabidulin public key cryptosystem. In:
International Conference on the Theory
and Applications of Cryptographic
Techniques, pp. 212–223. Springer
(1996)

[30] Park, C.S.: Improving code rate of
mceliece's public-key cryptosystem.
Electronics Letters 25(21), 1466–1467
(1989)

[31] Gabidulin, E., Ourivski, A.:
Modified gpt pkc with right scrambler.
In: International workshop on coding
and cryptography (Paris, 8-12 January
2001), pp. 233–242 (2001)

[32] Gabidulin, E.M., Ourivski, A.V.,
Honary, B., Ammar, B.: Reducible rank
codes and their applications to
cryptography. IEEE Transactions on
Information Theory 49(12), 3289–3293
(2003)

[33] McEliece, R.J.: A public-key
cryptosystem based on algebraic coding
theory. Coding Thv 4244, 114–116 (1978)

[34] Le Gall, F.: Powers of tensors and
fast matrix multiplication. In:
Proceedings of the 39th international
symposium on symbolic and algebraic
computation, pp. 296–303 (2014)

[35] Acharya, V.V., Katre, S. Cyclotomic
numbers of order 2l, l an odd prime.
Acta Arithmetica 69(1), 51–74 (1995)

[36] Ahmed, M.H., Tanti, J.
Computation of jacobi sums and
cyclotomic numbers with reduced
complexity. Bulletin of Pure & Applied
Sciences-Mathematics and Statistics 38
(1), 466–470 (2019)

[37] Ahmed, M.H., Tanti, J. Cyclotomic
numbers and jacobi sums: A survey. In:
Class Groups of Number Fields and
Related Topics, pp. 119–140. Springer
(2020)

86

Coding Theory - Recent Advances, New Perspectives and Applications

[38] Ahmed, M.H., Tanti, J., Hoque, A.
Complete solution to cyclotomy of order
2l2 with prime l. The Ramanujan Journal
53(3), 529–550 (2020)

[39] Koblitz, N.: Elliptic curve
cryptosystems. Mathematics of
computation 48(177), 203 209 (1987)

[40] Sidelnikov, V.M., Shestakov, S.O.:
On encryption based on generalized
reedsolomon codes. Diskretnaya Math
4, 57–63 (1992)

[41] Goldwasser, S., Bellare, M.: Lecture
notes on cryptography. Available: http://
www.cs.ucsd.edu/users/mihir/papers/
gb.html (2008)

[42] Schneier, B.: Applied cryptography:
protocols, algorithms, and source code
in C. john wiley & sons (2007)

[43] Aho, A.V., Hopcroft, J.E. The
design and analysis of computer
algorithms. Pearson Education India
(1974).

[44] Lin, M.C., Chang, T.C., Fu, H.L.:
Information rate of mceliece's public-
key cryptosystem. Electronics Letters 26
(1), 16–18 (1990)

87

A Public Key Cryptosystem Using Cyclotomic Matrices
DOI: http://dx.doi.org/10.5772/intechopen.101105

Chapter 6

Conversational Code Analysis:
The Future of Secure Coding
Fitzroy Nembhard and Marco M. Carvalho

Abstract

The area of software development and secure coding can benefit significantly
from advancements in virtual assistants. Research has shown that many coders
neglect security in favor of meeting deadlines. This shortcoming leaves systems
vulnerable to attackers. While a plethora of tools are available for programmers to
scan their code for vulnerabilities, finding the right tool can be challenging. It is
therefore imperative to adopt measures to get programmers to utilize code analysis
tools that will help them produce more secure code. This chapter looks at the
limitations of existing approaches to secure coding and proposes a methodology that
allows programmers to scan and fix vulnerabilities in program code by communi-
cating with virtual assistants on their smart devices. With the ubiquitous move
towards virtual assistants, it is important to design systems that are more reliant on
voice than on standard point-and-click and keyboard-driven approaches. Conse-
quently, we propose MyCodeAnalyzer, a Google Assistant app and code analysis
framework, which was designed to interactively scan program code for vulnerabil-
ities and flaws using voice commands during development. We describe the
proposed methodology, implement a prototype, test it on a vulnerable project and
present our results.

Keywords: secure coding, virtual assistant, code analysis, static analysis

1. Introduction

Computing systems face serious threats from attackers on a day-to-day basis.
Devices within a network could be targeted or used as launching pads to spawn
malware and other attacks to critical systems and infrastructure. A system is as
secure as its weakest link [1]. Therefore, software engineers must be cognizant of
the cyber-related challenges that plague modern computer systems and engineer
software with credible defenses. One of the first defenses against potential threats
to computer systems is careful analysis of program code during development and
taking necessary steps to minimize/eliminate vulnerabilities.

Program analysis falls into three main categories: static application security
testing (SAST) or static analysis, dynamic application security testing (DAST) or
dynamic analysis, and interactive application security testing (IAST). Static analysis
is a “technique in which code listings, test results, or other documentation are…
examined… to identify errors, violations of development standards, or other prob-
lems” [2]. Dynamic analysis is the “process of evaluating a system or component
based on its behavior during execution” [2]. IAST involves instrumenting a

89

program with sensors to monitor program code in memory during execution in
order to find specific events that could cause vulnerabilities [3]. Two or more of
these approaches may be combined to create hybrid tools and techniques for ana-
lyzing program code. These hybrid systems are designed to achieve more compre-
hensive coverage and to decrease the false positives and false negatives of existing
approaches.

While researchers are interested in designing sound and complete code analysis
tools, achieving soundness and completeness remains an intractable problem [4–6].
Consequently, a lot of research in code analysis is centered on improving the alerts
of static analysis tools [4, 7]. More recently, several researchers have proposed
models based on deep learning and other machine learning approaches to scan and
fix vulnerabilities in program code [8]. Many of these tools are still at an infant
stage and have not yet made it to market. Based on current trends, we believe that
the future of code analysis will involve more refined tools based on artificial intel-
ligence (AI), machine learning, and other hybrid approaches.

In this work, we propose a hybrid code analysis framework that employs the use
of voice assistants (VAs) to allow a programmer to conversationally scan for and fix
potential vulnerabilities in program code. The use of voice assistants have grown
significantly in recent years. This work focuses primarily on the Google Assistant1

as it is the most popular [9] among other virtual assistants.
The rest of the chapter is organized as follows: first, we discuss related work in

the area of hybrid analysis in Section 2 followed by a discussion on challenges
affecting adoption of existing approaches in Section 3. In Section 4, we theorize
about the future of secure coding and propose a new code analysis approach in
Section 5. We then use a case study to evaluate our proposed approach in Section 6
and present our conclusion in Section 7.

2. Related work

This work falls in the area of hybrid analysis. In this section, we summarize
works in this area.

In 2006, Aggarwal and Jalote [10] combined static and dynamic analysis to
detect buffer overflow in C programs. Both static and dynamic approaches have
advantages and disadvantages. One of the disadvantages of dynamic analysis is the
requirement of a large number of test cases, which present an overhead. Some
dynamic analysis tools use a feature know as generate-and-patch or generate-and-
validate in an effort to auto-fix vulnerabilities. In 2015, the authors of [11] analyzed
reported patches for several DAST tools including GenProg, RSRepair, and AE, and
found that the overwhelming majority of reported patches did not produce correct
outputs. The authors attributed the poor performance of these tools to weak proxies
(bad acceptance tests), poor search spaces that do not contain correct patches, and
random genetic search that does not have a smooth gradient for the genetic search
to traverse to find a solution [11].

In 2012, [12] proposed a hybrid approach that uses source code program slicing
to reduce the size of C programs while performing analysis and test generation. The
authors used a minimal slicing-induced cover and alarm dependencies to diminish
the costly calls of dynamic analysis [13].

1 Google, Google Assistant, and Dialogflow are registered trademarks of Google, Inc. The use of these

names or tools and their respective logos are for research purposes and does not connote endorsement of

this research by Google, Inc. or any of its partners.

90

Coding Theory - Recent Advances, New Perspectives and Applications

In 2014, [14] implemented a hybrid architecture as the JSA analysis tool, which
is integrated into the IBM AppScan Standard Edition product. The authors aug-
mented static analysis with (semi-)concrete information by applying partial evalu-
ation to JavaScript functions according to dynamic data recorded by the Web
crawler. The dynamic component rewrites the program per the enclosing HTML
environment, and the static component then explores all possible behaviors of the
partially evaluated program.

In 2015, [15] applied a program slicing technique, similar to [12], to create a tool
called Flinder-SCA. The authors also implemented their program using the Frama-C
platform. The main difference between [12, 15] is that [15] performs abstract
interpretation and taint analysis via a fuzzing technique wheres [12] does not
perform taint analysis or fuzzing.

Also, in 2015, [16] proposed a hybrid malicious code detection scheme that was
designed using an AutoEncoder and Deep Belief Networks (DBN). The
AutoEncoder deep learning method was used to reduce the dimensionality of data.
The DBN was composed of a multilayer Restricted Boltzmann Machines (RBM) and
a layer of BP neural network. The model was tested on the KDDCUP’99 dataset but
not on actual program code.

In 2019, [17] proposed SapFix, a static and dynamic analysis tool which
combines a mutation-based technique, augmented by patterns inferred from
previous human fixes, with a reversion-as-last resort strategy for fixing high-firing
crashes. This tool is built upon Infer [18] and a localization infrastructure that
aids developers in reviewing and fixing errors rapidly. Currently, SapFix is
targeted at null pointer exception (NPE) crashes, but has achieved much success at
Facebook [18].

In a dissertation produced in 2021, [19] proposed a code generation technique
for Synchronous Control Asynchronous Dataflow (SCAD) processors based on a
hybrid control-flow dataflow execution paradigm. The model is inspired by classical
queue machines that completely eliminates the use of registers. The author uses
satisfiability (SAT) solvers to aid in the code generation process [19].

To the best of our knowledge, our work is the first to employ modern virtual
assistants to conversationally scan and fix vulnerabilities in program code. In [20],
the authors established a voice user interface (VUI) for controlling laboratory
devices and reading out specific device data. The results of their experiments
produced benchmarks of established infrastructure and showed a high mean accu-
racy (95% � 3.62) of speech command recognition and reveals high potential for
future applications of a VUI within laboratories. In like manner, we propose the
integration of personal assistants with code analysis systems to encourage
programmers to produce more secure code.

3. Challenges affecting adoption of existing approaches

Several code analysis and vulnerability detection surveys have categorized tools
in the literature [7, 21–23]. While surveys are essential in advancing research, many
of them do not focus on tools found on websites. It must be noted that the average
programmer does not look for tools in research papers. To that end, we conducted a
Google search and found several popular websites that present various tools that
programmers may use to scan their code for vulnerabilities. Figure 1 shows a bar
chart highlighting the number of tools found on these websites. As shown in the
figure, GitHub and Wikipedia list the most tools and are often the top websites
returned in search results due to their popularity. We further grouped the most
popular static analysis tools found on these websites by language as shown in

91

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

Figure 1.
The large number of code analysis tools found on popular websites.

Figure 2.
Static analysis tools categorized by programming language.

92

Coding Theory - Recent Advances, New Perspectives and Applications

Figure 2. As can be seen, this non-exhaustive list could overwhelm many
programmers in determining the best tools for their projects.

In addition, the ability to combine code analysis approaches coupled with the
number of programming languages that exist result in a large number of tools from
which coders can choose to analyze their code. This makes it onerous for a pro-
grammer or organization to decide on a particular code analysis tool. Further, tools
often require special configuration, which may take time to fine tune for best
results. Many tools also suffer from usability issues, lengthy vulnerability reports,
and false positives, making programmers avoid them altogether [24–26].

Another challenge affecting adoption of code analysis tools is monopolization of
the market by certain companies. For-profit companies usually have the resources
to improve tools by adding more state-of-the-art approaches such as cloud-based
scanning, IAST support, and report generation. While these developments often
advance the field of code analysis, they sometimes discourage small organizations
and individuals from investing the effort and resources required to procure state-
of-the-art tools. Thus, a streamlined, modern, cost-effective approach is needed to
help encourage programmers to produce more secure code.

4. The future of code analysis

We believe that the future of code analysis lies in hybrid systems that combine
several approaches to achieve useful analyses and actionable reports that will
encourage programmers to produce more secure software. Based on current trends
in machine learning, especially in deep learning, and natural language processing
(NLP) (e.g., virtual assistants), it is safe to say that future code analysis will rely
heavily on AI, ontologies, NLP, and machine learning. For example, when
discussing the trends and challenges of machine learning, the authors in [27] “envi-
sion a fruitful marriage between classic logical approaches (ontologies) with statis-
tical approaches which may lead to context-adaptive systems (stochastic
ontologies) that might work similar to the human brain” [27].

Our projection is that code analysis frameworks will facilitate plug-and-play
(PnP) models. Figure 3 illustrates a generalized PnP model that uses virtual assis-
tants to manage the analysis process. Using this plug-and-play model, programmers
may select the code analyzer that best fits their project based on factors such as
project type, project size, speed, efficiency, security, etc. This is similar to the

Figure 3.
A suggested model showing code analysis as part of a plug-and-play paradigm that facilitates the inclusion of
any analysis tool and the use of a virtual assistant to manage the analysis process.

93

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

current landscape with virtual assistants and recommender systems. Currently, a
person may use a virtual assistant like the Google Assistant to navigate a list of
restaurants based on price, location, menu, reviews, etc. The virtual assistant may
update the users preferences based on selections over time. This concept can also
apply in code analysis where the chosen scanner used in the PnP model could be
based on past scans or popularity.

The code analyzer featured in the model in Figure 3may use any combination of
approaches including SAST, DAST, and IAST, which could be cloud-based or local-
ized to the user’s computer. These approaches could be backed by any algorithm

Figure 4.
A mockup of an analytical dashboard for code analysis on a curved display.

94

Coding Theory - Recent Advances, New Perspectives and Applications

that results in significant performance gains. It has been shown in the literature that
deep learning and other ensemble methods perform very well in a large number of
contexts including infected host detection [28], intrusion detection systems
[29, 30], and malware analysis [31, 32], to name a few. Interestingly, many of these
approaches can be used to create or improve code analyzers in an effort to help
programmers produce more secure software.

Another feature of code analyzers of the future is a deep reliance on data
analytics, visualizations and state-of-the-art interfaces. As discussed in the litera-
ture [8, 33], the interface of a code analyzer can have a negative or positive impact
on its use and adoption. Therefore, for a system to be adopted in any project or
organization, users must be able to gain insights from the way it presents its results.
Figure 4 shows a mockup of what we believe the interface of future code analyzers
will look like. These interfaces will be in the form of dashboards instead of the
customary lengthy bug reports displayed in a console.

5. Proposed approach

The proposed approach is to integrate a virtual assistant with a code analysis
framework that allows users to scan, analyze, refactor and fix their code of incon-
sistencies and vulnerabilities. In this section, we describe the proposed approach
using the system architecture.

5.1 System architecture

The system architecture for MyCodeAnalyzer is shown in Figure 5. The system
consists of three main components: the virtual assistant, the webhook API and the

Figure 5.
MyCodeAnalyzer system architecture.

95

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

code scanning environment. The code scanning environment consists of a web app,
an integrated development environment (IDE) plugin, code analyzers and
refactoring tools. Google Assistant was chosen as the virtual assistant because of its
popularity and easy-to-use App Engine and Dialogflow frameworks. The process
flow is as follows: a user invokes a Google Assistant app (aka, Google Actions app)
using a set of phrases understood by the system. This app is specially designed to
understand trigger phrases associated with code analysis. Trigger phrases are training
phrases that are entered into Dialogflow using an intent management system.
Dialogflow is a natural language understanding platform that allows users to design
and integrate a conversational user interface into a mobile app, web application,
device, bot, interactive voice response system, etc. [34]. Figure 6 captures the cur-
rent intents incorporated into MyCodeAnalyzer. Each intent is backed by machine
learning and NLP technology that uses named entity recognition (NER) and other
approaches to extract entities from speech, determine context, and carry out tasks.

Figure 6.
Current Dialogflow intents used by MyCodeAnalyzer.

96

Coding Theory - Recent Advances, New Perspectives and Applications

The intents in MyCodeAnalyzer are organized into 6 main categories: Default
Welcome Intent, vulnerability-scanning, clone-detection, Cancel, Bye, and Default Fall-
back Intent. The Default Welcome Intent is used to welcome the user to the system and
provide a description of potential requests that the application can fulfill. The
vulnerability-scanning intent is the most complex of the intents and uses a tree-like
structure to allow the user to conversationally scan a project for vulnerabilities, email
a scan report or auto-fix errors based on the capabilities of the code analyzer. The
clone-detection intent is used to scan a project for duplicated code and to provide a
visualization showing a side-by-side comparison of similar code. While clones may
not be vulnerable, they could become bloat in a project and could potentially lead to
vulnerabilities. The Cancel intent is used to exit a task currently underway. Bye is used
to exit the system and the Default Fallback Intent, as the name suggests, is used to ask
the user to repeat a phrase for clarification or serve as a graceful fail mechanism.

Once invoked, the Google Assistant app communicates with the Google Conver-
sation API to determine the user’s intent. After intent has been determined, the
Google Actions app then uses webhooks to communicate with a web service running
on the user’s computer. Using a tunneling service, the web service interacts with the
user’s IDE by way of a plugin. This plugin invokes a code analyzer or refactoring tool,
takes actions based on the user’s request, and places a message in a message queue.
The web service then reads the queue and returns the message to the Google Assistant
app, which then reads the message back to the user. The webhooks were set up in
Dialogflow and run as servlets on Google App Engine. A servlet accepts valid
Dialogflow POST requests and responds with data that is processed by the Google
Assistant app and returned as output messages to the user. Figure 7 further shows the
internals of the system during a conversation between the user and the assistant.
While only the static analysis portion of the system is demonstrated in this work, the
system is modular enough for dynamic and hybrid analysis tools to be incorporated

Figure 7.
Internals of MyCodeAnalyzer showing the flow of information throughout the system.

97

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

using the PnP approach discussed in Section 4. This approach provides a more
complete code analysis depending on the user’s preferences.

5.2 Accessing information about the coding environment

Two types of code-related information are accessed on the user’s computer: code
within the IDE and code from a Git repository (e.g., GitHub) currently opened in a
web browser. The first type of information is important because it helps us to scan
code being actively developed, while the second type is used in the case where the
user would like to ensure that a repository is safe before forking it.
MyCodeAnalyzer can detect GitHub pages that are open in a browser. On systems
running MacOS, Applescript is used to communicate with the web browser. Other
approaches will be employed in the future to reproduce this functionality on
machines running other operating systems.

In order to access the user’s computer to scan the code being worked on in the
IDE or referenced in the browser, a methodology must be established to access this
information in a minimally invasive manner. To do so, we created a plugin for a
given IDE. Currently, we have plugins for IntelliJ IDEA and Eclipse. The plugin
becomes a part of the IDE, monitors the code being developed, and updates a
message queue (data file) with information about the code files and projects
manipulated by the programmer. Also, special system calls are used to access any
browser tabs that point to GitHub projects. A local web app in the form of a Spring
MVC REST API [35] runs on the user’ s computer. The job of the local web app is to
communicate with MyCodeAnalyzer by way of a tunnel in order to scan local code
or GitHub projects displayed in the user’ s web browser.

5.2.1 Accessing code within the IDE

Listing 1 shows the Applescript code that is used to check for gui-based applica-
tions that are currently open on the user’ s computer. Following this is a snapshot of
the corresponding output, which includes the Intellij IDEA IDE in the list. This
Applescript code is added to the REST app where it is run on localhost and invoked
by MyCodeAnalyzer to determine if the user is actively using an IDE. To further
contextualize the process of determining which code the user would like to scan, it
is also of interest to find out the frontmost or most active application on the user’s
computer. To do so, the code shown in Listing 2 was used. This code is expected to
return a single application, which in turn allows MyCodeAnalyzer to return a more
direct response to the user. For example, a response might be, “Say IDE, if you would
like me to scan the code that you are currently working on in IntelliJ” instead of using
indirect phrases such as “…may be working on.”

set text item delimeters to ", "
tell application "System Events" to
(name of every process where background only is false) as text end tell

Listing 1. Applescript code used to list all gui-based applications that are cur-
rently running on the user’ s computer.

The following is a sample output generated using the code in Listing 1:
"Google Chrome, Sublime Text, Terminal, idea, pycharm,Teams, Mail, teXShop,
Notes, Spotify, Finder, Microsoft PowerPoint, X11.bin, AdobeReader, iTunes,
Microsoft Excel,Script Editor, Activity Monitor, System Preferences, Safari,
Preview"

98

Coding Theory - Recent Advances, New Perspectives and Applications

Since most IDEs are standalone applications, we believe the best way to have
access to the user’ s code in a minimally invasive manner is to be an “insider” (That
is, to use a plugin that becomes part of the IDE). Consequently, the goal of the
plugins was to monitor the code being developed by taking note of the coding
project and the coding files being manipulated by the user. To accomplish this,
listeners were added to the IDE to detect when the text editor portion of the IDE is
active, when tabs are activated or switched, and when code files are edited. The
message queue is updated with the following pieces of information when the afore-
mentioned actions are performed: ProjectName, ProjectLocation, CurrentFile,
DateAdded, CurrentlyActive. This queue is then queried for active files and projects
when POST requests are made by the Google Assistant app to the local REST service
running on the user’s computer.

tell application "System Events"
name of application processes whose frontmost is true end tell

Listing 2. Applescript code used to determine the most active application on a
computer.

5.2.2 Accessing code referenced by tabs opened in the web browser

Like IDEs, web browsers provide little to no way for outside tools to access their
core areas. However, the Applescript-based techniques used previously for
accessing the System Events utility can be used to access the tabs that are currently
open in the web browser on the user’ s device. Listing 3 is used to retrieve tabs
currently open in Google Chrome. This script can be modified to get tabs in other
browsers such as FireFox or Safari. MyCodeAnalyzer then checks if any of the URLs
point to valid public GitHub accounts, which are then searched for coding projects
if the user requests that a scan of a Git project be performed.

set text item delimeters to ","
tell application "Google Chrome" to URL of tabs of every window
as text
end tell

Listing 3. Applescript code used to retrieve tabs currently open in Google Chrome.

6. Case study

In this section, we present a case study that demonstrates an implementation of
our proposed methodology. The main goal of this case study is to demonstrate the
applicability of integrating a virtual assistant into a code analysis framework to
allow the user to conversationally scan their code for vulnerabilities. The system is
currently in a prototypical stage. Here we perform a scan of a coding project using
the Google Assistant app via an Apple iPhone.

The following was done based on the proposed approach discussed in Section 5:

1.Create a Google Assistant app

A Google Assistant app was created based on the intents depicted in Figure 7.
Dialogflow, Google App Engine, and Google Actions Console are key

99

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

components in the design of the app. Once designed, the app was tested using
the Google Actions API Simulator as well as released in alpha mode and tested
on a smart phone running the Google Assistant.

Figure 8.
A conversation between MyCodeAnalyzer and a human tester while scanning the OWASP WebGoat project.

100

Coding Theory - Recent Advances, New Perspectives and Applications

2.Create a local web app to interface with the Google Assistant app and the
coding environment

The local web app was created using Spring Boot [35] and was launched on the
computer via Apache Tomcat [36].

3.Create an IDE plugin for IntelliJ IDEA

Our IntelliJ IDEA plugin was created and installed in IntelliJ version 2020.3.2.
The plugin was installed using the IntelliJ plugin installer, which installs a local
plugin from a JAR (Java ARchive) file.

4.Choose and integrate a code analyzer

PMD [37] static code analyzer (version 6.31.0) was chosen for this study.
PMD uses a rule-based system to find common programming flaws in code
written in 8 programming languages, offering the most support for Java and
Apex. The rules used by PMD are divided into categories such as best
practices, error prone, and security. For this case study, a set of rules was
selected from the error prone and security categories.

5.Chose a vulnerable project

The OWASPWebGoat [38] project was used to evaluate the system.WebGoat
is an insecure application that allows researchers and developers to test
vulnerabilities commonly found in Java-based applications that use common
and popular open source components [38].

6.Test the system and report results

To integrate the Google Actions app with the local web app, Ngrok [39] was
chosen as the tunneling tool. Ngrok is a tool that exposes local servers behind
NATs and firewalls to the public Internet over secure tunnels [39].

6.1 Results and discussion

In this section, we capture a conversation between the Google Assistant app
during the analysis of the WebGoat Project, present the report generated by the
assistant, and discuss the results. It must be noted that the errors found by the
Assistant during the code analysis are the same as those that would be produced by
the standalone PMD project.

At this early stage of the project, the main benefit of the system is the ability to
use a virtual assistant to perform code analysis while multitasking, thus improving
productivity. After the system is setup, the programmer can configure and engage
with the VA by voice without having to manually configure the code analyzer or
browse and try to understand lengthy bug reports. The assistant can be used to
perform actions based on the severity of the vulnerabilities found in the project. In
the current version of MyCodeAnalyzer, Google Assistant can email the user a well-
formatted report or read out the most important action items after analyzing the
code. Figure 8 captures a conversation between a human tester and the Google
Assistant. Figure 9 shows a formatted vulnerability report generated by the assis-
tant and emailed to the user after scanning the WebGoat project. The WebGoat
project has more severe vulnerabilities, but only those in the figure were captured
by PMD based on the rulesets used by the analyzer. As can be seen from the report,
MyCodeAnalyzer was able to process the lengthy XML reported returned by PMD

101

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

into a more easily understood report that captures only pertinent information.
These results demonstrate the applicability of using a framework backed by virtual
assistants to scan code for vulnerabilities and generate meaningful reports.

6.2 Challenges

It is important to outline some challenges with the use of VAs for code analysis
and mitigation of vulnerabilities. The main challenge with this new approach to
code analysis is adoption. A recent study involving a small sample of participants
shows that currently the primary use of VAs are for music procurement (40% of
users), for information (17%), and automation (9%) [40]. Since this is a new
avenue of research, there may be initial challenges with adoption in the code
analysis arena. However, we believe that as the market grows and coders get
exposed to this technology, the adoption rates will increase. Researchers predict a
growing use for digital voice assistants over the next few years [41, 42].

Another challenge with using the PnP model discussed in this research is han-
dling the differences between output reports from different code analyzers. To
mitigate this issue, the code analysis community may require standardization of
vulnerability reports in popular formats such as XML, JSON, and HTML. Currently,
most tools include information such as files, classes, and line numbers where errors
are found. While the output formats may be different, NLP techniques such as NER
can also be used to mine these reports for key pieces of information to achieve a

Figure 9.
The report generated by MyCodeAnalyzer and emailed to the user after scanning the OWASPWebGoat project.

102

Coding Theory - Recent Advances, New Perspectives and Applications

standard format that can be handled by the virtual assistant and the proposed
analysis framework.

7. Conclusion

Getting programmers to write secure code remains a challenge. Security is often
sacrificed in an effort to add a feature to a software product or to meet a deadline.
When security is sacrificed for other gains, the end result is a product riddled with
bugs or vulnerabilities. Steps must be taken to encourage programmers to produce
more secure software. In this research, we discussed the limitations of existing code
analysis approaches and propose a framework that allows programmers to use
virtual assistants to conversationally scan and fix potential vulnerabilities in their
code. Virtual assistants are becoming popular in everyday activities such as procur-
ing and listening to music, finding places of interest, managing a smart home,
shopping, etc. We posit that as they become more mainstream, they can be used to
manage code analysis while keeping programmers productive. We implement our
proposed methodology using the Google Assistant and demonstrate its utility in an
effort to find new, creative ways to help programmers produce more secure soft-
ware. Future work will involve extending the model to use any applicable code
analyzer based on a plug-and-play paradigm, adding data analytics and visualiza-
tions to help programmers draw insights from their code, implementing the
refactoring and auto-fixing modules, and conducting a user study to evaluate the
framework.

Abbreviations

DAST Dynamic application security testing
IAST Interactive application security testing
NLP Natural language processing
PnP Plug-and-play
SAST Static application security testing
SCAD Synchronous control asynchronous dataflow

Author details

Fitzroy Nembhard* and Marco M. Carvalho
Florida Institute of Technology, Melbourne, Florida, USA

*Address all correspondence to: fitzroy@ieee.org

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

103

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

References

[1] Bruce Schneier. Secrets & lies: Digital
security in a networked world new york:
Wiley computer publishing. 2000. Ch,
16:245–246.

[2] Iso/iec/ieee international standard -
systems and software engineering–
vocabulary. ISO/IEC/IEEE 24765:2017
(E), pages 1–541, 2017. doi: 10.1109/
IEEESTD.2017.8016712.

[3] F. Nembhard, M. Carvalho, and T.
Eskridge. A hybrid approach to
improving program security. In 2017
IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8, 2017. doi:
10.1109/SSCI.2017.8285247.

[4] Sarah Heckman and Laurie Williams.
A systematic literature review of
actionable alert identification
techniques for automated static code
analysis. Information and Software
Technology, 53(4):363 – 387, 2011.
Special section: Software Engineering
track of the 24th Annual Symposium on
Applied Computing.

[5] B. Chess and G. McGraw. Static
analysis for security. IEEE Security
Privacy, 2(6):76–79, Nov 2004.

[6] Brian Chess and Jacob West. Secure
programming with static analysis. Pearson
Education, 2007.

[7] T. Muske and A. Serebrenik. Survey
of approaches for handling static
analysis alarms. In 2016 IEEE 16th
International Working Conference on
Source Code Analysis and Manipulation
(SCAM), pages 157–166, Oct 2016.

[8] Fitzroy D. Nembhard, Marco M.
Carvalho, and Thomas C. Eskridge.
Towards the application of
recommender systems to secure coding.
EURASIP Journal on Information
Security, 2019(1):9, 2019. doi: 10.1186/
s13635-019-0092-4. URL https://doi.
org/10.1186/s13635-019-0092-4.

[9] Andreas M Klein, Andreas Hinderks,
Maria Rauschenberger, and Jörg
Thomaschewski. Exploring voice
assistant risks and potential with
technology-based users. In Proceedings of
16th International Conference on Web
Information Systems and technology
(WEBIST), pages 1–8, 2020.

[10] A. Aggarwal and P. Jalote.
Integrating static and dynamic analysis
for detecting vulnerabilities. In 30th
Annual International Computer Software
and Applications Conference
(COMPSAC’06), volume 1, pages 343–
350, Sept 2006.

[11] Zichao Qi, Fan Long, Sara Achour,
and Martin Rinard. An analysis of patch
plausibility and correctness for
generate-and-validate patch generation
systems. In Proceedings of the 2015
International Symposium on Software
Testing and Analysis, pages 24–36. ACM,
2015.

[12] Omar Chebaro, Nikolai Kosmatov,
Alain Giorgetti, and Jacques Julliand.
Program slicing enhances a verification
technique combining static and dynamic
analysis. In Proceedings of the 27th
Annual ACM Symposium on Applied
Computing, SAC ’12, pages 1284–1291,
New York, NY, USA, 2012. ACM.

[13] Fitzroy Nembhard. A Recommender
System for Improving Program Security
Through Source Code Mining and
Knowledge Extraction. PhD thesis,
Florida Institute of Technology, 2018.

[14] Omer Tripp, Pietro Ferrara, and
Marco Pistoia. Hybrid security analysis
of web javascript code via dynamic
partial evaluation. In Proceedings of the
2014 International Symposium on
Software Testing and Analysis, pages 49–
59, 2014.

[15] Nir Piterman, editor. Hardware and
Software: Verification and Testing: 11th

104

Coding Theory - Recent Advances, New Perspectives and Applications

International Haifa Verification
Conference, HVC 2015, Haifa, Israel,
November 17-19, 2015, Proceedings.
Springer International Publishing,
Cham, 2015.

[16] Yuancheng Li, Rong Ma, and
Runhai Jiao. A hybrid malicious code
detection method based on deep
learning. International Journal of Security
and Its Applications, 9(5):205–216, 2015.

[17] A. Marginean, J. Bader, S. Chandra,
M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott. Sapfix: Automated end-to-end
repair at scale. In 2019 IEEE/ACM 41st
International Conference on Software
Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 269–278,
2019. doi: 10.1109/ICSE-
SEIP.2019.00039.

[18] Cristiano Calcagno, Dino Distefano,
Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter
O’Hearn, Irene Papakonstantinou, Jim
Purbrick, and Dulma Rodriguez.
Moving fast with software verification.
In Klaus Havelund, Gerard Holzmann,
and Rajeev Joshi, editors, NASA Formal
Methods, pages 3–11, Cham, 2015.
Springer International Publishing.

[19] Anoop Bhagyanath. Code Generation
for Synchronous Control Asynchronous
Dataflow Architectures. PhD thesis,
Technical University of Kaiserslautern,
2021.

[20] Jonas Austerjost, Marc Porr, Noah
Riedel, Dominik Geier, Thomas Becker,
Thomas Scheper, Daniel Marquard,
Patrick Lindner, and Sascha Beutel.
Introducing a virtual assistant to the lab:
A voice user interface for the intuitive
control of laboratory instruments. SLAS
TECHNOLOGY: Translating Life Sciences
Innovation, 23(5):476–482, 2018.

[21] T. Muske and A. Serebrenik. Survey
of approaches for handling static
analysis alarms. In 2016 IEEE 16th
International Working Conference on

Source Code Analysis and Manipulation
(SCAM), pages 157–166, 2016. doi:
10.1109/SCAM.2016.25.

[22] Anjana Gosain and Ganga Sharma.
Static analysis: A survey of techniques
and tools. In Durbadal Mandal, Rajib
Kar, Swagatam Das, and Bijaya Ketan
Panigrahi, editors, Intelligent Computing
and Applications, pages 581–591, New
Delhi, 2015. Springer India.

[23] G. Lin, S. Wen, Q. L. Han, J. Zhang,
and Y. Xiang. Software vulnerability
detection using deep neural networks: A
survey. Proceedings of the IEEE, 108(10):
1825–1848, 2020. doi: 10.1109/
JPROC.2020.2993293.

[24] F. Nembhard and M. Carvalho. The
impact of interface design on the
usability of code analyzers. In 2019
SoutheastCon, pages 1–6, 2019. doi:
10.1109/SoutheastCon42311.
2019.9020339.

[25] Brittany Johnson, Yoonki Song,
Emerson Murphy-Hill, and Robert
Bowdidge. Why don’t software
developers use static analysis tools to
find bugs? In Proceedings of the 2013
International Conference on Software
Engineering, ICSE ’13, pages 672–681,
Piscataway, NJ, USA, 2013. IEEE Press.
ISBN 978-1-4673-3076-3.

[26] Ted Kremenek, Ken Ashcraft,
Junfeng Yang, and Dawson Engler.
Correlation exploitation in error
ranking. In ACM SIGSOFT Software
Engineering Notes, SIGSOFT ’04/FSE-12,
pages 83–93, New York, NY, USA,
2004. ACM. doi: 10.1145/
1029894.1029909.

[27] Andreas Holzinger, Peter Kieseberg,
Edgar Weippl, and A. Min Tjoa. Current
advances, trends and challenges of
machine learning and knowledge
extraction: From machine learning to
explainable ai. In Andreas Holzinger,
Peter Kieseberg, A Min Tjoa, and Edgar
Weippl, editors, Machine Learning and

105

Conversational Code Analysis: The Future of Secure Coding
DOI: http://dx.doi.org/10.5772/intechopen.98362

Knowledge Extraction, pages 1–8, Cham,
2018. Springer International Publishing.

[28] Paula Venosa, Sebastian Garcia, and
Francisco Javier Diaz. A better infected
hosts detection combining ensemble
learning and threat intelligence. In
Patricia Pesado and Marcelo Arroyo,
editors, Computer Science – CACIC 2019,
pages 354–365, Cham, 2020. Springer
International Publishing.

[29] Ngoc Tu Pham, Ernest Foo, Suriadi
Suriadi, Helen Jeffrey, and Hassan
Fareed M Lahza. Improving
performance of intrusion detection
system using ensemble methods and
feature selection. In Proceedings of the
Australasian Computer Science Week
Multiconference, ACSW ’18, New York,
NY, USA, 2018. Association for
Computing Machinery. ISBN
9781450354363. doi: 10.1145/
3167918.3167951. URL https://doi.org/
10.1145/3167918.3167951.

[30] S. A. Ludwig. Intrusion detection of
multiple attack classes using a deep
neural net ensemble. In 2017 IEEE
Symposium Series on Computational
Intelligence (SSCI), pages 1–7, 2017. doi:
10.1109/SSCI.2017.8280825.

[31] Bojan Kolosnjaji, Apostolis Zarras,
GeorgeWebster, and Claudia Eckert.
Deep learning for classification of
malware system call sequences. In
Australasian Joint Conference on Artificial
Intelligence, pages 137–149. Springer, 2016.

[32] DanielGibert, CarlesMateu, and Jordi
Planes. The rise of machine learning for
detection and classification ofmalware:
Research developments, trends and
challenges. Journal of Network and
Computer Applications, 153:102526, 2020.
ISSN 1084-8045. doi: https://doi.org/
10.1016/j.jnca.2019.102526. URL https://
www.sciencedirect.com/science/article/
pii/S1084804519303868.

[33] F. Nembhard andM. Carvalho. The
impact of interface design on the usability

of code analyzers. In 2019 SoutheastCon,
pages 1–6, 2019. doi: 10.1109/
SoutheastCon42311.2019.9020339.

[34] Dialogflow, 2021. URL https://
cloud.google.com/dialogflow/docs.
Accessed: 2021-02-19.

[35] Spring boot, 2021. URL https://
spring.io/projects/spring-boot.
Accessed: 2021-02-19.

[36] Apache tomcat, 2021. URL http://
tomcat.apache.org/. Accessed: 2021-02-19.

[37] PMD. Pmd source code analyzer
project, 2021. URL https://pmd.github.
io/. Accessed: 2021-02-18.

[38] Owasp webgoat, 2021. URL https://
owasp.org/www-project-webgoat/.
Accessed: 2021-02-19.

[39] ngrok. Ngrok, 2021. URL https://
ngrok.com/. Accessed: 2021-02-19.

[40] Frank Bentley, Chris Luvogt, Max
Silverman, Rushani Wirasinghe, Brooke
White, and Danielle Lottridge.
Understanding the long-term use of
smart speaker assistants. Proceedings of
the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2
(3):1–24, 2018.

[41] Sven Tuzovic and Stefanie Paluch.
Conversational commerce–a new era for
service business development? In Service
business development, pages 81–100.
Springer, 2018.

[42] Andreas M Klein, Andreas
Hinderks, Maria Rauschenberger, and
Jörg Thomaschewski. Exploring voice
assistant risks and potential with
technology-based users. In Proceedings of
16th International Conference on Web
Information Systems and technology
(WEBIST), pages 1–8, 2020.

106

Coding Theory - Recent Advances, New Perspectives and Applications

Chapter 7

Non Classical Structures
and Linear Codes
Surdive Atamewoue Tsafack

Abstract

This chapter present some new perspectives in the field of coding theory. In fact
notions of fuzzy sets and hyperstructures which are consider here as non classical
structures are use in the construction of linear codes as it is doing for fields and
rings. We study the properties of these classes of codes using well known notions
like the orthogonal of a code, generating matrix, parity check matrix and polyno-
mials. In some cases particularly for linear codes construct on a Krasner hyperfield
we compare them with those construct on finite field called here classical struc-
tures, and we obtain that linear codes construct on a Krasner hyperfield have more
codes words with the same parameters.

Keywords: Linear codes, Fuzzy set, Krasner hyperstructures, Fuzzy logic,
Algebraic hyperstructures

1. Introduction

In mathematics, non classical structures as fuzzy sets and algebraic
hyperstructures approach better many well known real life situation, and represent
natural extension of classical algebraic structures.

Regarding fuzzy sets theory (fuzzy logic), this was introduced in the middle of
1960 by Lotfi Zadeh [1]. This concept is considered today as one of the most
important of the second half of twentieth century, this in view of its applications in
technological sciences and the impressive quantities of paper and book related to it.

As for algebraic hyperstructures, they were introduced by a french mathemati-
cian F. Marty [2] in 1934. Since then, more than a thousand papers and several book
have been written on this topic. A well known type of algebraic hyperstructures is
due to Krasner [3], who used as a technical tool in a study of his on the approxima-
tion of valued fields. In the literature they are called Krasner hyperrings and
Krasner hyperfields.

Transmission on coding theory always suppose to encode its information and
decode the received information, this is what the classical coding theory introduced
in 1948 by C. Shannon [4] deals with. It should ne noted that the handling infor-
mation are certains. So how can we do if the informations are uncertain? Thus as a
new perspective for the algebraic coding, we present below a connection between
fuzzy sets, Krasner hyperstructures and linear codes, and we find out how they can
bring more in classical coding theory.

107

2. Fuzzy linear codes over pk

2.1 Preliminaries

The theory of fuzzy code as we present here were introduce by Shum and Chen
De Gang [5], although they have authors such as Hall Diall and Von Kaenel [6, 7]
who also worked on it. In this section, we shall formulate the preliminary defini-
tions and results that are required for a good understanding of the sequel (we can
see it in [8–10]).

Definition 2.1. Let X be a non-empty set, let I and J be two fuzzy subsets in X,
then:

• I ∩ Jð Þ xð Þ ¼ min I xð Þ, J xð Þf g, I ∪ Jð Þ xð Þ ¼ max I xð Þ, J xð Þf g,

• I ¼ J if and only if I xð Þ ¼ J xð Þ, I⊆ J if and only if I xð Þ≤ J xð Þ,

• I þ Jð Þ xð Þ ¼ max I yð Þ∧ J zð Þjx ¼ yþ zf g, IJð Þ xð Þ ¼ max I yð Þ∧ J zð Þjx ¼ yzf g.

These for all x, y, z∈X.
Let denoted by M the pk-module n

pk , where p is a prime integer and
n, k∈n 0f g.

The following definitions on the fuzzy linear space derive from [11, 12].
Definition 2.2. We called a fuzzy submodule of M, a fuzzy subset F⊓ of a pk-

module M such that for all x, y∈M and r∈pk , we have:

• F xþ yð Þ≥ min F⊓ xð Þ,F⊓ yð Þf g.

• F rxð Þ≥F⊓ xð Þ.

Definition 2.3. Let F⊓ be a fuzzy subset of a nonempty set M. For t∈ 0, 1½ �, we
called the the upper t-level cut and lower t-level cut of F⊓, the sets F⊓t ¼
x∈MjF⊓ xð Þ≥ tf g and F⊓t ¼ x∈MjF⊓ xð Þ≤ tf g respectively.
Proposition 2.4. F⊓ is a fuzzy submodule of an pk-module M if and only if for all

α, β∈pk ; x, y∈M, we have F⊓ αxþ βyð Þ≥ min F⊓ xð Þ,F⊓ yð Þf g.
The following difinition recalled the notion on fuzzy ideal of a ring.
Definition 2.5.We called a fuzzy ideal of pk, a fuzzy subset I of a ring pk such that

for each x, y∈pk ;

• I x� yð Þ≥ min I xð Þ, I yð Þf g.

• I xyð Þ≥ max I xð Þ, I yð Þf g.

Definition 2.6. Let G be a group and R a ring. We denote by RG the set of all
formal linear combinations of the form α ¼Pg∈Gagg (where ag ∈R and ag ¼ 0
almost everywhere, that is only a finite number of coefficients are different from
zero in each of these sums).

Definition 2.7. Let RG a ring group which is the group algebra of < x> on the
ring pk (where x is an invertible element of pk). A fuzzy subset I of RG is called a
fuzzy ideal of RG, if for all α, β∈ RG,

• I αβð Þ≥ max I αð Þ, I βð Þf g.

108

Coding Theory - Recent Advances, New Perspectives and Applications

• I α� βð Þ≥ min I αð Þ, I βð Þf g.

When we use the transfer principle in [13], we easily get the next Proposition.
Proposition 2.8. A is a fuzzy ideal of RG if and only if for all t∈ 0, 1½ �, if At 6¼ ∅,

then At is an ideal of RG.
The following is very important, the give the meaning of the linear code over the

ring pk .
Definition 2.9. A submodule of n

pk , is called a linear code of length n over pk .
(with n a positive integer).

Contrary to the vector spaces, the module do not admit in general a basis.
However it possesses a generating family and therefore a generating matrix, but the
decomposition of the elements on this family is not necessarily unique.

Definition 2.10. We called generating matrix of a linear code over pk all matrix

of M pk

� �
, where the lines are the minimal generating family of code.

The equivalence of two codes is define by the following definition.
Definition 2.11. Let Cpk and C0

pk two linear codes over pk of generating matrix G
and G0 respectively. The codes Cpk and C0

pk are equivalences if there exists a

permutation matrix P, such that G0 ¼ GP.
To define a dual of a code which is helpful when we fine some properties of the

codes, we need to know the inner product.
Definition 2.12. Let Cpk be a linear code of length n over pk, the dual of the code

Cpk that we note C⊥
pk is the submodule of n

pk define by; C
⊥
pk ¼ fa∣ for all

b∈Cpk , a:b ¼ 0g. where “�” is the natural inner product on the submodule n
pk .

In a linear code Cpk of length n over pk , if for all a0,⋯, an�1ð Þ∈Cpk , then
s a0,⋯, an�1ð Þð Þ∈Cpk (where s is the shift map), then the code is said to cyclic.

2.2 On fuzzy linear codes over pk

Now we bring fuzzy logic in linear codes and introduce the notion of fuzzy
linear code over the ring pk .

Definition 2.13. Let M ¼ n
pk be a pk-module. The fuzzy submodule F⊓ of M is

called fuzzy linear code of length n over pk .
Using the transfer principle of Kondo [13], we have what is follow.
Proposition 2.14. Let A be a fuzzy set on n

pk .
A is a fuzzy linear code of length n over pk if and only if for any t∈ 0, 1½ �, if

At 6¼ ∅, then At is a linear code of length n over pk .
Corollary 2.15. Let A be a fuzzy set on n

pk .
A is a fuzzy linear code of length n over pk if and only if the characteristic

function of any upper t-level cut At 6¼ ∅ for t∈ 0, 1½ � is a fuzzy linear code of length
n over pk .

Example 2.16. Consider a fuzzy subset F⊓ on 4 as follows:

F⊓ : 4 ! 0, 1½ �, x↦

1 if x ¼ 0;
1
3

if x ¼ 1;

1
3

if x ¼ 2;

1
3

if x ¼ 3:

8>>>>>>>><
>>>>>>>>:

.

109

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Then F⊓ is a fuzzy submodule on 4-module 4, hence F⊓ is a fuzzy linear code
over 4.

Remark 2.17. Let F⊓ be a fuzzy linear code of length n over pk , since 
n
pk is a

finite set, then Im F⊓ð Þ ¼ F⊓ xð Þjx∈n
pk

n o
is finite. Let Im F⊓ð Þ is set as:

t1 > t2 >⋯> tm (where ti ∈ 0, 1½ �) that is Im F⊓ð Þ have m elements.
Since F⊓ti is a linear code over pk , let Gti his generator matrix, F⊓ can be

determined by m matrixes Gt1 , Gt2 , ⋯, Gtm as in the below Theorem 2.31.
There are some know notions of the orthogonality in fuzzy space, but no one of

them does not hold here because these definitions does not meet the transfer
principle in the sense of the orthogonality for the t-level cut sets. So we have to
introduce an new notion of orthogonality on fuzzy submodules.

Definition 2.18. Let F⊓1 and Fu2 be two fuzzy submodules on module n
pk over

the ring pk . We said that F⊓1 and F⊓2 are orthogonal if Im F⊓2ð Þ ¼
1� αj α∈ Im F⊓1ð Þf g and for all t∈ 0, 1½ �, F⊓2ð Þ1�t ¼ F⊓1ð Þt

� �⊥ ¼
fy∈n

pk ∣< x, y> ¼ 0, for all x∈ F⊓1ð Þtg. Where < , > is the standard inner prod-
uct on n

pk .
Noted that F⊓1 ⊥F⊓2 means F⊓1 and F⊓2 are orthogonal. We what is follow as

an example.
Example 2.19. Consider the two fuzzy submodules F⊓1 and F⊓2 on 4 defined as

follows:

F⊓1 : 4 ! 0, 1½ �, x↦

1
2

if x ¼ 0;

1
4

if x ¼ 1;

1
3

if x ¼ 2;

1
4

if x ¼ 3:

8>>>>>>>>>><
>>>>>>>>>>:

and F⊓2 : 4 ! 0, 1½ �,

x↦

3
4

if x ¼ 0;

1
2

if x ¼ 1;

2
3

if x ¼ 2;

1
2

if x ¼ 3:

8>>>>>>>>>><
>>>>>>>>>>:

.

We easily observe that:
F⊓1ð Þ1

2
¼ 0f g and F⊓2ð Þ1

2
¼ 4,

F⊓1ð Þ1
4
¼ 4 and F⊓1ð Þ3

4
¼ 0f g,

F⊓1ð Þ1
3
¼ 0, 2f g and F⊓1ð Þ2

3
¼ 0, 2f g.

Thus F⊓1⊥F⊓2.
Remark 2.20. Let F⊓1 be a fuzzy submodule on module n

pk such that ∀x∈n
pk ,

F⊓1 xð Þ ¼ γ (with γ ∈ 0, 1½ �), then it does not exists a fuzzy set F⊓ on n
pk such that

F⊓1⊥F⊓.
The previous Remark 2.20 show that the orthogonal of some fuzzy submodule in

our sense does not always exists, so it is important to see under which condition the
orthogonal of fuzzy submodule exists. The following theorem show the existence of
the orthogonal of some fuzzy submodule.

110

Coding Theory - Recent Advances, New Perspectives and Applications

Theorem 2.21. Let F⊓1 be a fuzzy submodule on a finite module n
pk . If Im F⊓1ð Þ

have more that one element and for all ς∈ Im F⊓1ð Þ there exist ϵ∈ Im F⊓1ð Þ such that
Aς ¼ Aϵð Þ⊥, then there always exists a fuzzy submodule F⊓2 on n

pk such that F⊓1⊥F⊓2.
Proof. Let F⊓1 be a fuzzy submodule on n

pk . Assume that ∣Im F⊓1ð Þ∣ ¼ m> 1

and for any ς∈ Im Að Þ there exist ϵ∈ Im F⊓1ð Þ such that F⊓1ð Þς ¼ F⊓1ð Þϵ
� �⊥.

Assume that Im F⊓1ð Þ ¼ t1 > t2 >⋯> tmf g. Let the sets Mi ¼
x∈n

pk jF⊓1 xð Þ ¼ ti
n o

, i ¼ 1,⋯,m. These sets form a partition of n
pk .

Let us define a fuzzy set F⊓ as follow:
F⊓ : n

pk ! 0, 1½ �, x↦ 1� tm�iþ1, if x∈Mi.
Since Im F⊓1ð Þ ¼ t1 > t2 >⋯> tmf g, we have F⊓1ð Þt1 ⊆ F1ð Þt2 ⊆⋯⊆ F⊓1ð Þtm . As

for any ς∈ Im F⊓1ð Þ there exist ϵ∈ Im Að Þ such that Aς ¼ Aϵð Þ⊥, then Ati ¼ Atm�iþ1

� �⊥.
Thus F⊓1�tm�iþ1 ¼ x∈n

pk jF⊓ xð Þ≥ 1� tm�iþ1

n o
¼ Mi ∪Mi�1 ∪⋯∪M1 ¼

F⊓1ð Þti ¼ F⊓1ð Þtm�iþ1

� �⊥
.

Then by taken F⊓2 ¼ F⊓ we obtain the need fuzzy submodule. □
When the orthogonality exist, there is unique. We have the following theorem to

show it.
Theorem 2.22. Let F⊓1, F⊓2 and F⊓3 be three fuzzy submodules on module n

pk ,
such that F⊓1⊥F⊓2 and F⊓1⊥F⊓3, then F⊓2 ¼ F⊓3.

Proof. Consider that F⊓1⊥F⊓2 and F⊓1⊥F⊓13.
Let t∈ 0, 1½ �, and b∈ F⊓2ð Þ1�t, then < a, b> ¼ 0, for all a∈ F⊓1ð Þt. Thus

b∈ F⊓3ð Þ1�t and F⊓2ð Þ1�t ⊆ F⊓3ð Þ1�t. Therefore F⊓3ð Þt ⊆ F⊓3ð Þt.
In the same way, we show that F⊓2ð Þt ⊆ F⊓3ð Þt. Therefore F⊓2 ¼ F⊓3. □
Corollary 2.23. The orthogonal of a fuzzy set on n

pk is a fuzzy submodule on n
pk .

The orthogonality is an indempotent operator, in fact if F⊓ be a fuzzy
submodule on n

pk then F⊓⊥ð Þ⊥ ¼ F⊓1.
The notion of equivalence on fuzzy linear code can be define as follow.
Definition 2.24. Let F⊓1 and F⊓2 be two fuzzy linear codes over pk . F⊓1 and

F⊓2 are said to be equivalent if for all t∈ 0, 1½ �, the linear codes F⊓1ð Þt and F⊓2ð Þt
are equivalent.

Example 2.25. Let CG1 and CG2 be two equivalent linear codes of length n over pk .
We define the equivalent fuzzy linear codes as follow:

F⊓1 : n
pk ! 0, 1½ �, x↦

1 if x∈ CG1 ;

0 otherwise:

(
and.

F⊓2 : n
pk ! 0, 1½ �, x↦

1 if x∈ CG2 ;

0 otherwise:

(
.

Thus the 1 and 0 -level cut of the both fuzzy linear codes give F⊓1ð Þ1 ¼ CG1 and
F⊓2ð Þ1 ¼ CG2 ,

F⊓1ð Þ0 ¼ n
pk and F⊓2ð Þ0 ¼ n

pk .
Remark 2.26. Two equivalent fuzzy linear codes over pk have the same image.

2.3 Fuzzy linear codes in a practical way

As we have said in the introduction, how fuzzy linear code can deal with
uncertain information in a practical way? This subsection allow us to use directly
fuzzyness in the information theory.

111

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Let us draw the communication channel as follows:

Fk �������!Encoding
Fn �������!Channel

n �������!Decoding
Fk

Assume that Rk ¼ 2
2 and Rn ¼ 3

2, that means that k ¼ 2 and n ¼ 3. Let C⊆R3 be
a linear code over R, in the classical case, when we send a codeword a ¼ 101ð Þ∈ C
through a communication channel, the signal receive can be read as a0 ¼
0:98, 0:03, 0:49ð Þ and modulate to a00 ¼ 100ð Þ. Thus to know if a00 belong to the code
C, we use syndrome calculation [14]. Since the modulation have gave a wrong word,
we can consider that a0 have more information than a00, in the sense that we can
estimate a level to which a word 0 is modulate to 1, and a word 1 is modulate to 0.
Therefore it is possible to use the idea of fuzzy logic to recover the transmit codeword.

Let C be a linear code over 3
2. To each a∈ C, we find t∈ 0, 1½ � such that t estimate

the degree of which the element of 3, obtain from a through the transmission
channel belong to the code C. Thus in 3

2 the information that we handle are certain,
whereas in 3 there are uncertain. When we associate to all elements of 3

2 the
degree of which its correspond element obtain through the transmission channel
belong to 3

2, then we obtain a fuzzy code. If the fuzzy code are fuzzy linear code,
then we can recover the code C just by using the upper t-level cut. Thus we deal
directly with the uncertain information to obtain the code C.

The following example illustrate this reconstruction of the code by using uncer-
tain information in the case of fuzzy linear code.

Example 2.27. Let 3
2 ¼ 000, 001, 010, 100, 110, 101, 011, 111f g and C ¼

000, 001, 110, 111f g be a linear code over 2.
Assume that after the transmission we obtain respectively

000; 0:01, 01; 1:01, 10; 1:001, 1, 0:999f g. Let F⊓ : 3
2 ! 0, 1½ � such that

x↦

1f g if x ¼ 000;

0:99f g if x ¼ 001;

0:9f g if x ¼ 010;

0:9f g if x ¼ 100;

0:99f g if x ¼ 110;

0:9f g if x ¼ 101;

0:9f g if x ¼ 011;

0:99f g if x ¼ 111:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

.

Then by finding a t∈ 0, 1½ � such that F⊓t ¼ x∈3
2j F⊓ xð Þ≥ t

� � ¼ C, we obtain
t>0:9. Thus, for t ¼ 0:99, we are sure that the receive codeword is in C.

It should be better to investigate in deep this approach.

2.4 Fuzzy cyclic code over pk

Let the module n
pk , in this subsection we will consider the case where the

integers n and p are coprime.
Definition 2.28. A fuzzy module F⊓ on the module n

pk is called a fuzzy cyclic
code of length n over pk if for all a0, a1,⋯, an�1ð Þ∈n

pk , then
F⊓ an�1, a0,⋯, an�2ð Þð Þ≥F⊓ a0, a1,⋯, an�1ð Þð Þ.

The following proposition give a caracterization of the fuzzy cyclic codes.
Proposition 2.29. [15] A fuzzy submodule F⊓ on on n

pk is a fuzzy cyclic code if and
only if for all.

112

Coding Theory - Recent Advances, New Perspectives and Applications

a0, a1,⋯, an�1ð Þ∈n
pk , we have F⊓ a0, a1,⋯, an�1ð Þð Þ ¼

F⊓ an�1, a0,⋯, an�2ð Þð Þ ¼ ⋯ ¼

F⊓ a1, a2,⋯, an�1, a0ð Þð Þ:

Proposition 2.30. F⊓ is a fuzzy cyclic code of length n over pk if and only if for all

t∈ 0, 1½ �, if F⊓ð Þt 6¼ ∅, then F⊓ð Þt is a ideal of the factor ring
pk X½ �
Xn�1ð Þ.

Proof. Assume that F⊓ is a fuzzy cyclic code over pk and t∈ 0, 1½ � such that
F⊓ð Þt 6¼ ∅. Then F⊓ð Þt is a cyclic code over pk .

Let ψ : n
pk !

pk X½ �
Xn�1ð Þ, c ¼ c0,⋯, cn�1ð Þ↦ψ cð Þ ¼Pn�1

i¼0 ciX
i.

It is prove by easy way that ψ is a isomorphism of pk-module, which send a

cyclic codes over pk onto the ideals of the factor ring
pk X½ �
Xn�1ð Þ. Therefore, ∀t∈ 0, 1½ �,

F⊓t is a ideal of
pk X½ �
Xn�1ð Þ.

Conversely, assume that, ∀t∈ 0, 1½ � such that F⊓t 6¼ ∅, F⊓t is a ideal of factor

ring
pk X½ �
Xn�1ð Þ. Since F⊓t is a ideal of factor ring

pk X½ �
Xn�1ð Þ, then F⊓t is a submodule of pk-

module n
pk . Hence F⊓t 6¼ ∅, is a linear code over pk , then F⊓ is a fuzzy linear

code. Due to ψ , ∀t∈ 0, 1½ �, F⊓t is a cyclic code over pk , then F⊓ is a fuzzy cyclic
code over pk . □

Since pk is a finite ring, then Im F⊓ð Þ ¼ F⊓ xð Þ∈ 0, 1½ �jx∈n
pk

n o
is also finite.

Assume that Im F⊓ð Þ ¼ t1 > t2 >⋯> tmf g, then F⊓t1 ⊆F⊓t2 ⊆⋯⊆F⊓tm�1 ⊆Atm ¼
n
pk .

Let g kð Þ
i Xð Þ∈pk X½ � the generator polynomial of F⊓ti , note that g

kð Þ
i Xð Þ is the

Hensel lifting of order k of some polynomial gi Xð Þ∈p X½ � which divide Xn � 1, the

cyclic code < g kð Þ
i Xð Þ> ⊂

pk X½ �
Xn�1ð Þ is called the lifted code of the cyclic code

< gi Xð Þ> ⊂ p X½ �
Xn�1ð Þ [8].

Since F⊓t1 ⊆F⊓t2 ⊆⋯⊆F⊓tm�1 ⊆F⊓tm ¼ n
pk , then g kð Þ

iþ1 Xð Þ∣g kð Þ
i Xð Þ, i ¼

1,⋯,m� 1. So we define the polynomial h kð Þ
i Xð Þ ¼ Xn � 1ð Þ=g kð Þ

i Xð Þ which is called

the check polynomial of the cyclic code F⊓ti ¼ < g kð Þ
i Xð Þ> , i ¼ 1,⋯,m.

Theorem 2.31. Let G ¼ g kð Þ
1 Xð Þ, g kð Þ

2 Xð Þ,⋯, g kð Þ
m Xð Þ

n o
be a set of polynomial in

pk X½ �, such that gi Xð Þ divide Xn � 1, i ¼ 1,⋯,m. If g kð Þ
iþ1 Xð Þ∣g kð Þ

i Xð Þ for i ¼
1, 2,⋯,m� 1 and < g kð Þ

m Xð Þ> ¼ n
pk , then the set G can determined a fuzzy cyclic code

F⊓ and < g kð Þ
i Xð Þ> ji ¼ 1,⋯,m

n o
is the family of upper level cut cyclic subcodes of F⊓.

The proof is leave for the reader but he can check it in [15].

3. Fuzzy pk-linear code

In the previous section, we study define and fuzzy linear codes over the ring pk

in the previous section. Now define the notion on fuzzy Gray map, we are going to
use it in the construction of the fuzzy pk-linear codes which is different from the
fuzzy linear codes over the ring pk .

113

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

3.1 Fuzzy Gray map

When we order and enumerate a binary sequences of a fixed length we obtain
the code of Gray in it original form. For the length two which interest us directly we
have the following Gray code:

0↦00

1↦01

2↦ 11

3↦ 10:

Let ϕ : 22 ! 2
2 the Gray map.

Using the extension principle [16], we will define the fuzzy Gray map between
two fuzzy spaces by what is follow.

Definition 3.1. Consider the Gray map ϕ : 22 ! 2
2. Let F 22ð Þ, F 2

2

� �
the set

of all the fuzzy subset on 22 and 2
2 respectively. The fuzzy Gray map is the map

ϕ̂ : F 22ð Þ ! F 2
2

� �
, such that for all F⊓∈F 22ð Þ, ϕ̂ F⊓ð Þ yð Þ ¼ sup A xð Þjy ¼ ϕ xð Þf g.

The next Theorem is straightforward.
Theorem 3.2. The fuzzy Gray map ψ̂ is a bijection.
Proof: It is due to the fact that ψ is one to one function. □
As in crisp case, we have the following Proposition which is very important.
Proposition 3.3. If F⊓ is a fuzzy linear code over 22 and ϕ the Gray map, then

ϕ̂ F⊓ð Þ is no always a fuzzy linear code over the field 2.
The Gray map give a way to construct the nonlinear codes as binary image of the

linear codes, we have for example the case of Kerdock, Preparata, and Goethals
codes which have very good properties and also useful (We refer reader for it on
[17, 18]). Moreover if C is a linear code of length n over 4, then C ¼ ψ Cð Þ is a
nonlinear code of length 2n over 2 in generally [18]. In that way we construct a
fuzzy Kerdock code in the following example.

Example 3.4. Let G ¼

1 0 0 0 2 1 1 1

0 1 0 0 1 2 1 3

0 0 1 0 1 3 2 1

0 0 0 1 1 1 3 2

0
BBBBBBB@

1
CCCCCCCA

be a generating matrix for a

linear code C of length 8 over 4. Then his image under the Gray map ϕ give a Kerdock
code C.

Let F⊓ : 8
4 ! 0, 1½ �, x↦

1, if x∈ C;
0, otherwise:

(
ThusF⊓ is a fuzzy linear code over 4.

Since ϕ is a bijection, we construct ϕ̂ F⊓ð Þ : 16
2 ! 0, 1½ �, y↦ 1, y∈ E;

0, otherwise:

�
,

where E ¼ fy∈16
2 ∣y ¼ ϕ xð Þ and x∈Cg.

Noted that as E is not a linear code over 2, then ϕ̂ Fuð Þ is a fuzzy 2-linear code
but not a fuzzy linear code over 2.

ϕ̂ F⊓ð Þ is a fuzzy Kerdock code of length 16.
By the Example, we remark that a fuzzy 4-linear code is not in generally a

fuzzy linear code over 2.

114

Coding Theory - Recent Advances, New Perspectives and Applications

If we define the fuzzy binary relation Rϕ on 22 � 2
2 by Rϕ x, yð Þ ¼

1, if y ¼ ψ xð Þ;
0, otherwise:

�
It is easy to see [19] that ϕ̂ F⊓ð Þ yð Þ ¼ sup F⊓ xð Þjy ¼ ϕ xð Þf g can

be represented by ϕ̂ F⊓ð Þ yð Þ ¼ sup min F⊓ xð Þ,Rϕ x, yð Þ� �jx∈2
2

� �
.

We now define fuzzy generalized gray map. First we consider the generalized
Gray map as in [8] Φ : pk ! pk�1

p .

Definition 3.5. Themap Φ̂ : F pk

� �
! F pk�1

p

� �
, such that for anyF⊓∈F pk

� �
,

Φ̂ F⊓ð Þ yð Þ ¼ sup F⊓ xð Þjy ¼ Φ xð Þf g, if a such x exists;

0, otherwise:

�

Is called a fuzzy generalized gray map.
Remark 3.6.

1.The Definition 3.5 can be simply write Φ̂ Að Þ yð Þ ¼ F⊓ xð Þ, if y ¼ Φ xð Þ;
0, otherwise:

�

This because Φ : pk ! pk�1

p cannot give more than one image for one element.

2.Let F⊓1 ∈F pk�1

p

� �
such that F⊓1 yð Þ ¼ t 6¼ 0 for any y∈pk�1

p . There does not

exist a fuzzy subset F⊓∈F pk

� �
such that Φ̂ F⊓ð Þ ¼ F⊓1.

Thus Φ̂ is not a bijection map.

3.2 Fuzzy pk-linear code

In the following, we will note Φ̂ the map on F n
pk

� �
onto F n:pk�1

p

� �
which

spreads the fuzzy generalized Gray map.
Let define fuzzy pk-linear code.
Definition 3.7. A fuzzy code Fu over p is a fuzzy pk-linear code if it is an image

under the fuzzy generalized Gray map of a fuzzy linear code over the ring pk .
For a fuzzy pk-linear code, if it is the image under the generalized Gray map of a

cyclic code over the ring pk. Then the fuzzy code Fu is called a fuzzy pk-cyclic code.
Remark 3.8. A fuzzy pk-linear code is a fuzzy code over the fields p.
Example 3.9.

Let F⊓ : 6
2 ! 0, 1½ �,w ¼ a, b, c, d, e, fð Þ↦ 1, if e ¼ f ¼ 0;

0, otherwise:

�

F⊓ is a fuzzy linear code of length 6 over 2.

Let F⊓0 : 3
4 ! 0, 1½ �, v ¼ x, y, zð Þ↦ 1, if z ¼ 0;

0, otherwise:

�

F⊓0 is a fuzzy linear code of length 3 over 4.
Since F⊓ ¼ ϕ̂ F⊓0ð Þ. Then F⊓0 is a fuzzy 4-linear code.
Using crisp case technic we prove he following Proposition.

115

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Proposition 3.10. Let Fu be a fuzzy pk-linear code, then Fu is no always a fuzzy
linear code over the field p.

Proof. The need here is to construct an counter-example, which is done in the
Example 3.9. □

The following diagram give a construct the fuzzy pk-linear code. This holds
because the fuzzy generalized Gray map image of fuzzy linear code can be a fuzzy
linear code over the field p:

We construct some codes using the both methods.
Example 3.11.

1. Let F⊓ : n
pk ! 0, 1½ � be a linear code such that F⊓ have three upper t-level cut

F⊓t3 ⊆F⊓t2 ⊆F⊓t1 . Let F⊓0
t3 ¼ Φ F⊓t3ð Þ, F⊓0

t2 ¼ Φ F⊓t2ð Þ and F⊓0
t1 ¼

Φ F⊓t1ð Þ, we have F⊓0
t3 ¼ Φ F⊓t3ð Þ⊆F⊓0

t2 ¼ Φ F⊓t2ð Þ⊆F⊓0
t1 ¼ Φ F⊓t1ð Þ. We

construct F⊓0 ¼ Φ̂ F⊓ð Þ as follow:

F⊓0 : n:pk�1

p ! 0, 1½ �, y↦

t3, if y∈ F⊓0
t3 ;

t2, if y∈ F⊓0
t2 ;

t1, if y∈ F⊓0
t1 ;

0, otherwise:

8>>><
>>>:

2. Let F⊓ : 4 ! 0, 1½ �, x↦

1
2

if x ¼ 0;

1
3

if x ¼ 2;

1
4

if x ¼ 1, 3:

8>>>>><
>>>>>:

be a fuzzy linear code over 4. Then F⊓1
2 ¼ 0f g, F⊓1

3 ¼ 0, 2f g and F⊓1
4 ¼ 4.

We construct F⊓01
2 ¼ 00f g, F⊓01

3 ¼ 00, 11f g and F⊓01
4 ¼ 2

2, the Gray map
image of F⊓1

2
, F⊓1

3 and F⊓1
4 respectively, we define

F⊓0 : 2
2 ! 0, 1½ �, y↦

1
2

if x∈ F⊓1
2, y ¼ ϕ xð Þ ;

1
3

if x∈ F⊓1
3 n F⊓1

2, y ¼ ϕ xð Þ;
1
4

if x∈ F⊓1
4 n F⊓1

3, y ¼ ϕ xð Þ:

8>>>>><
>>>>>:

We obtain the same code F⊓0 and ϕ̂ F⊓ð Þ.

116

Coding Theory - Recent Advances, New Perspectives and Applications

Proposition 3.12. [15] If for all t∈ 0, 1½ �, F⊓0
t ¼ Φ F⊓tð Þ (when F⊓t 6¼ ∅) is a

linear code over p, then this two constructions of the fuzzy p-linear code above are give
the same fuzzy code.

Proof. This follows directly from the definition of the fuzzy generalized Gray
map and the fact that the image under the generalized Gray map of a linear code is
not a linear code in general. □

4. Linear codes over Krasner hyperfields

4.1 Preliminaries

This section recall notions and results that are required in the sequel. All of this
can also be check on [3, 20–22].

Let H be a non-empty set and P ∗ Hð Þ be the set of all non-empty subsets of H.
Then, a map ⊛ : H�H ! P ∗ Hð Þ, where h1, h2ð Þ↦ h1 ⊛ h2 ⊆H is called a
hyperoperation and the couple H, ,⊛,ð Þ is called a hypergroupoid.

For all non-empty subsets A and B of H and h∈H, we define A⊛ B ¼
⋃a∈A,b∈Ba⊛ b, A⊛ h ¼ A⊛ hf g and h⊛ B ¼ hf g⊛ B.

Definition 4.1. A canonical hypergroup R, ⊕ð Þ is an algebraic structure in
which the following axioms hold:

1.For any x, y, z∈R, x⊕ y⊕ zð Þ ¼ x⊕ yð Þ⊕ z,

2.For any x, y∈R, x⊕ y ¼ y⊕ x,

3.There exists an additive identity 0∈R such that 0⊕ x ¼ xf g for every x∈R.

4.For every x∈R there exists a unique element x0 (an opposite of x with respect
to hyperoperation “⊕ ”) in R such that 0∈ x⊕ x0,

5.For any x, y, z∈R, z∈ x⊕ y implies y∈ x0 ⊕ z and x∈ z⊕ y0.

Remark 4.2. Note that, in the classical group R,þð Þ, the concept of opposite of
x∈R is the same as inverse.

A canonical hypergroup with a multiplicative operation which satisfies the fol-
lowing conditions is called a Krasner hyperring.

Definition 4.3. An algebraic hyperstructure R, ⊕ , �ð Þ, where “�” is usual multi-
plication on R, is called a Krasner hyperring when the following axioms hold:

1. R, ⊕ð Þ is a canonical hypergroup with 0 as additive identity,

2. R, �ð Þ is a semigroup having 0 as a bilaterally absorbing element,

3.The multiplication “�” is both left and right distributive over the
hyperoperation “⊕ ”.

A Krasner hyperring is called commutative (with unit element) if R, �ð Þ is a
commutative semigroup (with unit element) and such is denoted R, ⊕ , �, 0, 1ð Þ.

Definition 4.4. Let R, ⊕ , �, 0, 1ð Þ be a commutative Krasner hyperring with unit
such that Rn 0f g, � , 1ð Þ is a group. Then, R, ⊕ , �, 0, 1ð Þ is called a Krasner hyperfield.

This Example is from Krasner.

117

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Example 4.5. [?] Consider a field F, þ , �ð Þ and a subgroup G of Fn 0f g, �ð Þ. Take
H ¼ F=G ¼ aGj a∈Ff g with the hyperoperation and the multiplication given by:

aG⊕ bG ¼ c ¼ cGj c∈ aGþ bGf g
aG � bG ¼ abG

�

Then H, ⊕ , �ð Þ is a Krasner hyperfield.
We now give an example of a finite hyperfield with two elements 0 and 1, that

we name F 2 and which will be used it in the sequel.
Example 4.6. Let F 2 ¼ 0, 1f g be the finite set with two elements. Then F 2 becomes a

Krasner hyperfield with the following hyperoperation “⊕ ” and binary operation “�”.

⊕ 0 1

0 0f g 1f g
1 1f g 0, 1f g

and

� 0 1

0 0 0

1 0 1

Let R, ⊕ , �ð Þ be a hyperring, A and B be a non-empty subset of R. Then, A is
said to be a subhyperring ofR if (A, ⊕ , �) is itself a hyperring. A subhyperring A of
a hyperring R is a left (right) hyperideal of R if r � a∈A (a � r∈A) for all r∈R,
a∈A. Also, A is called a hyperideal if A is both a left and a right hyperideal. We
define A⊕B by A⊕B ¼ fx∣ x∈ a⊕ b for some a∈A, b∈Bg and the product A � B is
defined by A � B ¼ fx∣ x∈Pn

i¼1ai � bi, with ai ∈A, bi ∈B, n∈ ∗ g. If A and B are
hyperideals of R, then A⊕B and A � B are also hyperideals of R.

Definition 4.7. An algebraic structure R, ⊕ , �ð Þ (where ⊕ and � are both
hyperoperations) is called additive-multiplicative hyperring if the satisfies the
following axioms:

1. R, ⊕ð Þ is a canonical hypergroup with 0 as additive identity,

2. R, �ð Þ is a semihypergroup having 0 as a bilaterally absorbing element, i.e., x �
0 ¼ 0 � x ¼ 0,

3.the hypermultiplication “�” is distributive with respect to the hyperoperation
“þ”,

4.for all x, y∈R, we have x � y0ð Þ ¼ x0ð Þ � y ¼ x � yð Þ0.

An additive-multiplicative hyperring R, ⊕ , �ð Þ is said to be commutative if
R, �ð Þ is a commutative semihypergroup. and R, ⊕ , �ð Þ is called a hyperring with
multiplicative identity if there exists e∈R such that x � e ¼ x ¼ e � x for every x∈R.

We close this section with the following definition of the ideal in a additive-
multiplicative hyperring.

118

Coding Theory - Recent Advances, New Perspectives and Applications

Definition 4.8 A non-empty subset A of an additive-multiplicative hyperring R
is a left (right) hyperideal if,

1.for all a, b∈A, then a⊕ b0 ⊆A,

2. for all a∈A, r∈R, then r � a⊆A (a � r⊆A).

4.2 Hypervector spaces over hyperfields

We give some properties related to the hypervector space as it is done by Sanjay
Roy and Samanta [23] and all these will allow us to characterize linear codes over a
Krasner hyperfield.

From now on, and for the rest of this section, by F we mean a Krasner
hyperfield.

Definition 4.9. [23] Let F be a Krasner hyperfield. A commutative hypergroup
V, ⊕ Vð Þ together with a map � : F � V Ð ! V Ð , is called a hypervector space over F
if for any a, b∈F and x, y∈V Ð , the following conditions hold:

1.a � x⊕ V
Ð y

� �
¼ a � x⊕ V

Ð a � y (right distributive law),

2. a⊕ V
Ð b

� �
� x ¼ a � x⊕ V

Ð b � x (left distributive law),

3.a � b � xð Þ ¼ abð Þ � x (associative law),

4.a � x0ð Þ ¼ a0ð Þ � x ¼ a � xð Þ0,

5.x ¼ 1 � x.

Let us give that trivial example of a hypervector space.
Example 4.10. Let n∈, F n is a hypervector space over F where the composition of

elements are as follows:
x⊕ y ¼ z∈F n; zi ∈ xi ⊕ yi, i ¼ 1… n

� �
and a � x ¼ a � x1, a � x2, … , a � xnð Þ for any

x, y∈F n and a∈F .
Definition 4.11. [23] Let V Ð , ⊕ , � , 1� �

be a hypervector space over F . A subset
A⊆V Ð is called a subhypervector space of V Ð if:

1.A 6¼ 0,

2.for all x, y∈A, then x⊕ y0 ⊆A,

3. for all a∈F , for all x∈A, then a � x∈A.

Definition 4.12. [23] Let S be a subset of a hypervector space V Ð over F . S is
said to be linearly independent if for every x1, x2, … , xn in S and for every
a1, a2, … , an in F , (n∈n 0, 1f g) such that 0∈ a1 � x1 þ a2 � x2 þ⋯þ an � xn implies
that a1 ¼ a2 ¼ ⋯ ¼ an ¼ 0.

If S is not linearly independent, then we said that S is linearly dependent.
If S is a nonempty subset of V Ð , then the smallest subhypervector space of V

containing S is the set define by

Sh i ¼ ∪
Pn
i¼1

ai � xij xi ∈S, ai ∈F , n∈n 0, 1f g
� �

∪ l Sð Þ, (where l Sð Þ ¼
a � xj a∈F , x∈Sf g).

119

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Definition 4.13. [23] Let V Ð be a hypervector space over F . A vector x∈V Ð is
said to be a linear combination of the vectors x1, x2, … , xn ∈V Ð if there exist
a1, a2, … , an ∈F such that x∈ a1 � x1 þ a2 � x2 þ⋯þ an � xn in the hypervector
spaces, the notion of basis exists and he have the following definition.

Definition 4.14. [23] Let V Ð be a hypervector space over F and B be a subset of V Ð .
The set B is said to be a basis for V Ð if,

1.S is linearly independent,

2.every element of V Ð can be expressed as a finite linear combination of
elements from S.

4.3 Polynomial hyperring

We assume that F is such that for all a, b∈F , a � b0
� � ¼ a0ð Þ � b ¼ a � bð Þ0.

Let denote by F x½ � the set of all polynomials in the variable x over F . Let the
polynomials f xð Þ ¼Pn

i¼0aix
i and g xð Þ ¼Pm

i¼0bix
i in F x½ �.

Let us define the set P ∗ Fð Þ x½ � ¼ fPn
k¼0Akxk; where Ak ∈P ∗ Fð Þ, n∈g, the

hypersum and hypermultiplication of f xð Þ and g xð Þ are defined as follows:

⊕ : F x½ � � F x½ � ! P ∗ Fð Þ x½ � (1)

f xð Þ, g xð Þð Þ↦ f ⊕ gð Þ xð Þ ¼ a0 ⊕ b0ð Þ þ a1 ⊕ b1ð Þxþ⋯þ aM ⊕ bMð ÞxM, (2)

where M ¼ max n,mf g: (3)

� : F x½ � � F x½ � ! P ∗ Fð Þ x½ � (4)

f xð Þ, g xð Þð Þ↦ f �gð Þ xð Þ ¼
Xmþn

k¼0

X
lþj¼k

al � b j

0
@

1
Axk, if deg fð Þ≥ 1 and deg gð Þ≥ 1 (5)

The following remark is from Jančic-Rašović [24].
Remark 4.15. The algebraic hyperstructure F x½ �, ⊕ , �ð Þ is an additive-

multiplication hyperring.

4.4 Linear codes and cyclic codes over finite hyperfields

In this section we shall define and discuss about the concept of linear and cyclic
codes over the finite Krasner hyperfield F 2 from the Example 4.6. Let us recall
some basics from code theory. Let C be a linear code, the Hamming distance dH x, yð Þ
between two vectors x, y∈ C is defined to be the number of coordinates in which x
differs from y. The minimum distance of a code C, denoted by d Cð Þ, is d Cð Þ ¼
min fdH x, yð Þ∣ x, y∈ C and x 6¼ yg. In this case we can also compute for a code word
x∈ C, the integer wH xð Þ which is the number of nonzero coordinates in x also called
Hamming weight of x.

We denoted by k ¼dim Cð Þ the dimension of C and the code C is called an n, k, dð Þ
-code which can be represented by his generator matrix [25].

Let us define linear code over F 2.
Definition 4.16. A subhypervector space of the hypervector space F n

2 is called a
linear code C of length n over F 2.

The concept of dual code is a very useful in the coding theory. Let us define it on
the Krasner hyperfield F 2.

120

Coding Theory - Recent Advances, New Perspectives and Applications

Definition 4.17. Let C be a linear code of length n (n≥ 2) over F 2. The dual of C
is also a linear code defined by C⊥≔ y∈F n

2 j 0∈ x � yt,∀x∈ C� �
.

The code C is self-dual if C ¼ C⊥.
Here is an basic example of a linear code and his dual.
Example 4.18. Let C ¼ 000, 101, 011, 110, 111f g be a linear code of length 3 over F2.

It’s easy to check that the dual of C is defined by C⊥ ¼ 000, 111f g.
As in the classical case, the notion of cyclic code on hyperstructures still works

with polynomials. So i that way the polynomial f xð Þ ¼ a0 þ a1x1 þ a2x2 þ⋯þ
an�1xn�1 of degree at most n� 1 over F 2 may be considered as the sequence a ¼
a0, a1, a2, … , an�1ð Þ of length n in Fn

2 . In fact, there is a correspondence between F n
2

and the residue class hyperring F 2 x½ �
xn�1ð Þ [25].

ξ : F n
2 !

F 2 x½ �
xn � 1ð Þ

c ¼ c0, c1, c2, … , cn�1ð Þ↦ c0 þ c1x1 þ c2x2 þ⋯þ cn�1xn�1:

Using Theorem 3.7 in [26], the multiplication of x by any element of F 2 x½ �
xn�1ð Þ is

equivalent to applying the shift map s of the Definition?? to the corresponding
element of F n

2 , so we use the polynomial to define cyclic code.
We are now going to define a distance relation on linear codes over the finite

hyperfield F 2, which will allow us to detect if there is an error in a received word.
Proposition 4.19. The mapping define by

dH : F n
2 �F n

2 ! 

x, yð Þ↦ dH x, yð Þ ¼ card i∈j xi 6¼ yi
� �

is a distance on F n
2, called the Hamming distance.

Proof. The proof is similar to the classical case. □
The following remark will be helpful to define Hamming weight.
Remark 4.20. For an x∈F n

2 , we write x ¼ x1f g, … , xnf gð Þ such that x belongs
now to the cartesian product P ∗ F 2ð Þð Þn. Hence we can compute wH xð Þ ¼
card i∈j 0 ∉ xif g ¼ dH 0, xð Þ.

The following map denoted by wH on the cartesian product P ∗ F 2ð Þð Þn:

wH : P ∗ F 2ð Þð Þn ! 

a ¼ a1, … , anð Þ↦ card i∈j 0 ∉ aif g:

is the Hamming weight on F n
2. So for all x, y∈F n

2, we have dH x, yð Þ ¼ wH x⊕ y0ð Þ.
If C is a linear code over F 2, the integer number d ¼ min wH xð Þjx∈ Cf g is called

the minimal distance of the code C.
To characterized a linear code of length n over F 2 as a subhypervector space of

F n
2 , it is sufficient to have a basis of that linear code. This basis can often be

represented by a k� n-matrix over F 2 (where k is the dimension of the code).
We denoted by M F 2ð Þ be the set of all matrices over F 2.
Definition 4.21. Let C be a linear code over F 2. We called a generator matrix of

C any matrix from M F 2ð Þ where the rows form a basis of the code C.
Proposition 4.22. Let B˩ ∈Mk�n F 2ð Þ be a generating matrix of the linear code C

over F 2, then C ¼ c∈ a � B˩j a∈F k
2

� �
.

121

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Proof. Let C be a n, k½ �-linear code over F 2 and B˩ a generating matrix of C. Then
the rows of B˩ ∈Mk�n F 2ð Þ form a basis of C. So C consists of all linear combinations
of the rows of B˩, therefore C ¼ c∈ a � B˩ j a∈F k

2

� �
. □.

It is know that the dual code C⊥ of the linear code C over F 2 is also linear, so C⊥
has a generating matrix called a parity check matrix.

Here and until the end of this paper, we will denoted by B˩ the generating matrix
and by H˩ the parity check matrix of the linear code C over F 2.

Example 4.23. Let B˩ ¼
1 0 1

0 1 1

� �
be a generating matrix of the linear code C

from Example 4.18. Then the parity check matrix of C is H˩ ¼ 1 1 1ð Þ.
Theorem 4.24. Let C be a linear code of length n (n≥ 2) and dimension k over F 2.

Then H˩ ∈M n�kð Þ�n F 2ð Þ and 0∈B˩ � H˩
t. (It should be noted that H˩

t means the
transpose of H˩).

Proof. Let the generating matrix and the parity check matrix be denoted

respectively by B˩ ¼
g1
⋮

gk

0
B@

1
CA and H˩ ¼

h1
⋮

hn�k

0
B@

1
CA, where gi ∈F n

2 and h j ∈F n
2 (for

i ¼ 1⋯k and j ¼ 1⋯n� k).

Then, B˩ � H˩
t ¼

g1 � ht1 g1 � ht2 ⋯ g1 � htn�k

g2 � ht1 g2 � ht2 ⋯ g2 � htn�k

⋮ ⋮ ⋮ ⋮

gk � ht1 gk � ht2 ⋯ gk � htn�k

0
BBBBBB@

1
CCCCCCA
. Thus, by the definition of C⊥,

0∈B˩ � H˩
t. □

We now give some examples of linear codes over F 2 and we make some
comparison between the linear codes over the finite field with two elements 2 and
the linear code over the Krasner hyperfield F 2.

Example 4.25. Let F 3
2 be a hypervector space over F 2 and C be a subhypervector

space of F 3
2, with dimensional k ¼ 2. Then C is a linear code of length n ¼ 3 and

dimension k ¼ 2 over F 2.

1.Let B1 ¼
0 1 0

1 0 1

� �
be a generating matrix of the linear code C1 ¼

000, 010, 101, 111f g over F 2. B1 is also a generating matrix of a linear code C2 ¼
000, 010, 101, 111f g of length 3 and dimension 2 over the finite field 2. These two
codes C1 and C2 have the same parameters and card C1ð Þ ¼ card C2ð Þ.

2.Let B2 ¼
1 1 0

1 0 1

� �
be another generating matrix of the linear code C over F 2.

B2 is also a generating matrix of a linear code C02 of length 3 and dimension 2 over
the finite field 2.

Here we have that C1 ¼ 000, 110, 101, 011, 111f g, C02 ¼ 000, 110, 101, 011f g, so
these two codes have the same parameters but card C1ð Þ> card C02

� �
.

3.Let Bmin ¼
Idk Idn�k

� 0

� �
(where Idk is the k� k-identity matrix).

122

Coding Theory - Recent Advances, New Perspectives and Applications

Bmin is a generating matrix of a linear code Cmin of length n and dimension k over
F 2 (with n� k≤ k). The linear code Cmin over F 2 generated by Bmin has the
minimal number of code words, card Cminð Þ ¼ 2k.

4.Let Bmax ¼ Idk 1n�kð Þ (where Idk is the identity matrix and 1n�k is the matrix
such that every element is equal to 1).

Bmax is a generating matrix of a hyperlinear code Cmax of length n and dimension
k> 2 over F 2. The linear code Cmax over F 2 generated by Gmax has the maximal

number of code words, card Cmaxð Þ ¼ 2n�k þPk�1
i¼2

k
i

� �
þ kþ 1.

This remark is deduce from the previous example.
Remark 4.26. There exists a finite hyperfield such that for any other finite field

of the same cardinality, the linear codes over the hyperfield are always better than
the classical linear code over the finite field. (i.e., they have more code words).

In classical coding theory, one of the most important problems mentioned by
MacWilliams and Sloane in their book The Theory of Error-Correcting Codes [27] is to
find a code with a large number of words knowing the parameters (length, dimen-
sion and minimal distance). So the hyperstructure theory may help to increase the
number of code words. That is the subject of the next theorem.

Theorem 4.27. Let C be a linear code of length n and dimension k over F 2. If M is the

cardinality of C, then 2k ≤M≤

2n�k þ kþ 1, if k≤ 2;

2n�k þP
k�1

i¼2

k

i

 !
þ kþ 1, if k> 2:

8><
>:

.

Proof. Since a generating matrix contains a basis of the linear code C as rows, it
is sufficient to give a way how to construct a generator matrix for the code where
the cardinality is maximal.

If k≤ 2, this is trivial.
If k> 2, then we choose a generator matrix such that:

1. in the first k columns no 1 is repeated. (this forces that every code word
belongs to only one linear combination).

2. not any sum of elements in one column is equal to zero.

3. all the elements of the n� k last columns are equal to 1. (because we need
every combination has the maximal number of code words)

Therefore, the maximal number of code words is 2n�k þPk�1
i¼2

k
i

� �
þ kþ 1. □

We deduce from the Theorem 4.27 what is follow, which mean that a linear code
over the hyperfield F2 satisfies the Singleton bound.

Corollary 4.28. Let C be a linear code of length n and dimension k over F 2, and C0 be
a linear code of length n and dimension k over the finite field 2. Then d≤ d0 ≤ n� kþ 1
(where d is the minimal distance of C and d0 is the minimal distance of C0).

The following next propositions give some characterization of the linear codes
over F 2 using their generating matrix and their parity check matrix.

Proposition 4.29. Let C be a linear code of length n and dimension k over F 2, then
c∈ C if and only if 0∈ c � H˩

t.

123

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Proof.)): Let c∈ C andH˩ ¼
h1
⋮

hn�k

0
B@

1
CA be the parity check matrix of the code C.

Then c � H˩
t ¼ c � ht1, c � ht2,⋯, c � htn�k

� �
, thus by definition of C⊥, 0∈ c � H˩

t.
() Assume that 0∈ c � H˩

t, then c belongs either to B˩, or to a linear combination
of rows of B˩. Therefore c∈ C. □

Proposition 4.30. Let C be a linear code of length n over F 2, then the double dual of

C is equals to C, that is C⊥� �⊥ ¼ C.
Proof. Using Proposition 4.3 in [26], C⊥� �⊥

is a linear code of length n over F 2,

so it is sufficient to show that C ¼ C⊥� �⊥
. By definition we have C⊥� �⊥ ¼

fa∈F 2∣ 0∈ y � at; for all y∈ C⊥g, so it is straightforward that C⊆ C⊥� �⊥
. Now, let

a∈ C⊥� �⊥
. Let H˩ ¼

h1
⋮

hn�k

0
B@

1
CA be the parity check matrix of the code C, then

a � H˩
t ¼ Pn

i¼1
ai � h1,i,⋯,

Pn
i¼1

ai � hn�k,i

� �

¼
Xn
i¼1

h1,i � ai,⋯,
Xn
i¼1

hn�k,i � ai
 !

¼
Xn
i¼1

h1,i � at,⋯,
Xn
i¼1

hn�k,i � at
 !

:

Thus 0∈ a � H˩
t by definition of C⊥� �⊥

, therefore a∈ C. We conclude the proof
by using Proposition 4.29. □

It is known from [26] that cyclic code in F n
2 has only one generating polynomial,

so it is clear that this polynomial divides the polynomial xn � 1.
Proposition 4.31. If g xð Þ ¼ a0 þ a1xþ⋯þ akxk ∈F 2 x½ �, is the generating polyno-

mial for a cyclic code C over F 2, then B˩ ¼

a0 ⋯ ak 0 0 ⋯ 0

0 a0 ⋯ ak 0 ⋯ 0

0 0 a0 ak ⋯ ⋮
⋮ ⋮ ⋱ ⋱ ⋯ ⋱ 0

0 0 ⋯ 0 a0 ⋯ ak

0
BBBBBB@

1
CCCCCCA

is the

generator matrix of the cyclic code C.
Proof. Let g1 ¼ a0, … , ak, 0, … , 0ð Þ∈F n

2, then B˩ can also be write as

B˩ ¼

g1
s g1
� � ¼ g2

s2 g1
� � ¼ g3

⋮
sk�1 g1

� � ¼ gk

0
BBBBBB@

1
CCCCCCA

(where s is the shift function and sk ¼ s∘s∘⋯∘s, k-successive

shifts).
Since the polynomial g generates C, we have C ¼ < g xð Þ> . Let c∈ C, then

cið Þi¼1⋯n ¼ c∈ g xð Þ � p xð Þ (where b0 þ b1xþ⋯þ bn�1xn�1 ¼ p xð Þ∈ F 2 x½ �
xn�1ð Þ) implies

that ci ∈
P

lþjal � b j if i≤ k and ci ¼ 0 else if (i> k).
Focus on g xð Þ and p xð Þ, the element c belongs to the sum b0 � g xð Þ þ b1x � g xð Þ þ

⋯þ bn�1 � xn�1 � g xð Þ because this sum can also be written as e1 � g1 þ e2 � g2 þ⋯þ
ek � gk (e ¼ e1, … , ekð Þ∈F n

2), and C is a cyclic code generated by g xð Þ. □
The following Proposition use same notations as in Proposition 4.31.

124

Coding Theory - Recent Advances, New Perspectives and Applications

Proposition 4.32. [28] Let h xð Þ∈ F 2 x½ �
xn�1ð Þ be a polynomial such that xn � 1∈ h xð Þ �

g xð Þ, then

1.The linear code C over F 2 can be represented as

C ¼ p xð Þ∈ F 2 x½ �
xn�1ð Þj 0∈ p xð Þ � h xð Þ

n o
.

2.h xð Þ is the generating polynomial for the linear code C⊥.

To illustrate what is doing for cyclic codes and polynomials, we have this
example.

Example 4.33. Let C be a linear code over F 2 generate by the polynomial g xð Þ ¼

1þ x2 ∈ F 2 x½ �
x3�1ð Þ. Then the generator matrix of the code C is given by B˩ ¼

1 0 1

1 1 0

� �
.

Since x3 � 1∈ 1þ x2ð Þ _⊙} 1þ xþ x2ð Þ, then the polynomial h xð Þ ¼ 1þ xþ x2 is
the parity check polynomial of the code C, and the parity check matrix is given by
H˩ ¼ 1 1 1ð Þ.

Thus C ¼ p xð Þ∈ F2 x½ �
x3�1ð Þj x3 � 1∈ p xð Þ _⊙} 1þ xþ x2ð Þ

n o
¼

0, 1þ x2, 1þ x, 1þ xþ x2, xþ x2
� �

.

5. Conclusions

This Chapter divides in three sections Fuzzy linear codes over pk , Fuzzy pk-
linear codes and Linear codes over Krasner hyperfields just introduce some new
perspectives in the field of coding theory. In the first and second section, we define
and give some related properties of these on codes. We show in some example that
fuzzy linear code can deal with uncertain information directly. The third section,
which joint the previous sections in the sense that fuzzy fields/rings and Krasner
hyperfields are non classical structures which approxim very well many real life
situation, study linear codes over Krasner hyperfields as linear codes over finite
fields. Many of their properties are given and the important thing that arise here is
that with almost the same parameters linear codes construct on Krasner hyperfields
have much code words than one construct on fields.

Author details

Surdive Atamewoue Tsafack
University of Yaounde I, Yaounde, Cameroon

*Address all correspondence to: surdive@yahoo.fr

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

125

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

References

[1] L.A. Zadeh, Fuzzy sets, Information
and Control 8 338-353 (1965).

[2] F. Marty, Sur une generalization de la
notion de groupe, 8iem congres Math.
Scandinaves,Stockholm, 45-49 (1934).

[3] M. Krasner, A Class of Hyperrings
and Hyperfields, Internat. J. Math. and
Math. Sci. 6, 307-312 (1983).

[4] C.E. Shannon, Communication in
presence of noise, IEEE, 37, 10-21
(1949).

[5] K. P. Shum, Chen De Gang, Some
note on the theory of fuzzy code,
Electronic BUSEFAL-81, Polytech.univ-
savoie, France 132-136 (2000).

[6] L. O. Hall and G. Diall, On fuzzy
code for asymmetric and unidirectional
errors, Fuzzy sets and systems 36, 365-373
(1990).

[7] P.A. Von Kaenel, Fuzzy codes and
distance properties, Fuzzy sets and
systems 8, 199-204 (1982).

[8] F. Galand, Construction de codes pk

-linéaires de bonne distance minimale et
schémas de dissimulation fondés sur les
codes de recouvrement, Ph.D Thesis,
Université de Caen, (2004).

[9] M. Maschinchi and M.M. Zahedi, On
L-fuzzy primary submodules, Fuzzy Sets
and Systems 49, 231-236 (1992).

[10] C.V. Negoita and D.A. Ralescu,
Applications of Fuzzy Sets and System
Analysis, (Birkhous, Basel) (1975).

[11] R. Biswas, Fuzzy fields and fuzzy
linear space redefined, Fuzzy Sets and
Systems 33, 257-259 (1989).

[12] S. Nanda, Fuzzy fields and fuzzy
linear space, Fuzzy Sets and Systems 19,
89-94 (1986).

[13] M. Kondo, Wieslaw A. Dubek, On
transfer principle in fuzzy Theory,
Mathware and soft computing 12, 41-55
(2005).

[14] C. Carlet, 2k-linear codes, IEEE
Transactions on Informations Theory 44,
1543-1547 (1998).

[15] S. Atamewoue Tsafack , S. Ndjeya ,
L. Strüngmann and C. Lele, Fuzzy
Linear Codes, Fuzzy Information and
Engineering, https://doi.org/10.1080/
16168658.2019.1706959 (2020).

[16] L.A. Zadeh, The concept of a
linguistic variable and its application to
approximate reasoning I, II, III,
Information Sciences 8-9, 199-257,
301-357, 43-80 (1975).

[17] A.M. Kerdock, A class of low-rate
nonlinear codes, Information and Control
20 (1972).

[18] R. Hammons, P.V. Kumar, A.R.
Calderbank, N.J.A. Sloane et P. Solé,
Kerdock, Preparata, Goethals and other
codes are linear over 4, IEEE
Transactions on Information Theory 40,
301-319 (1994).

[19] I. Perfilieva, Fuzzy function:
Theoretical and practical point of view.
Atlantis Press 480-486 (2011).

[20] R. Ameri and O.R. Dehghan, On
Dimension of Hypervector Spaces,
European Journal of Pure and Applied
Mathematics 1, 32-50 (2008).

[21] P. Corsini and V. Leoreanu,
Applications of Hyperstructure Theory,
Kluwer Academical Publications,
Dordrecht, (2003).

[22] B. Davvaz and V. Leoreanu-Fotea,
Hyperring Theory and applications,
International Academic Press, USA,
(2007).

126

Coding Theory - Recent Advances, New Perspectives and Applications

[23] Sanjay Roy and T.K. Samanta, A
Note on Hypervector Spaces,
Discussiones MathematicaeGeneral
Algebra and Applications 31, 75-99
(2011).

[24] S. Jančic-Rašović, About the
hyperring of polynomial, Ital. J. Pure
Appl. Math. 21, 223-234 (2007).

[25] F. Galand, Construction de codes
pk-linéaires de bonne distance
minimale et schémas de dissimulation
fondés sur les codes de recouvrement,
Ph.D Thesis, Université de Caen,
(2004).

[26] B. Davvaz and T. Musavi, Codes
Over Hyperrings, Matematički Vesnik
68, 26-38 (2016).

[27] F.J. MacWilliams and N.J.A. Sloane,
The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, (1977).

[28] S. Atamewoue Tsafack, S. Ndjeya, L.
Strüngmann and C. Lele, Codes over
Hyperfields, Discussioness
Mathematicae Genenal Algerbra and
Applcations 37, 147-160 (2017).

127

Non Classical Structures and Linear Codes
DOI: http://dx.doi.org/10.5772/intechopen.97471

Coding Theory
Recent Advances, New Perspectives

and Applications

Edited by Sudhakar Radhakrishnan
and Sudev Naduvath

Edited by Sudhakar Radhakrishnan
and Sudev Naduvath

This book explores the latest developments, methods, approaches, and applications
of coding theory in a wide variety of fields and endeavors. It consists of seven

chapters that address such topics as applications of coding theory in networking and
cryptography, wireless sensor nodes in wireless body area networks, the construction

of linear codes, and more.

Published in London, UK

© 2022 IntechOpen
© spainter_vfx / iStock

ISBN 978-1-83969-409-7

C
oding Th

eory - Recent A
dvances, N

ew
 Perspectives and A

pplications

ISBN 978-1-83969-411-0

	Coding Theory - Recent Advances, New Perspectives and Applications
	Contents
	Preface
	Chapter1
Abel and Euler Summation Formulas for SBV() Functions
	Chapter2
Algebraic Approximations to Partial Group Structures
	Chapter3
Dynamic HUB Selection Process inWireless Body Area Network (WBAN)
	Chapter4
How DoWeb-Active End-User Programmers Forage?
	Chapter5
A Public Key Cryptosystem Using Cyclotomic Matrices
	Chapter6
Conversational Code Analysis: The Future of Secure Coding
	Chapter7
Non Classical Structures and Linear Codes

