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Preface

The purpose of this book is to present some uses of the Kalman filter (KF) in engineering 
activities that can produce a robust and technically acceptable result while keeping as 
close as possible to the optimal (most accurate) solution. KF sub-optimization is often 
required, due to the realities of implementation and real-life operational conditions. 
The book brings together the experiences of specialists from different engineering areas 
using the KF in their practice.

Chapter 1 discusses the use of the sub-optimal KF (filter with bounded growth of 
memory, FBGM) for the analytical design of a navigation accelerometer with an electric 
spring. Two approaches are compared: empirical and analytic (using sub-optimal KF). 
The comparison demonstrates that conscious use of the analytical design approach can 
enable even the experienced beginner engineer to achieve an appropriate and close to 
an optimal result.

Chapter 2 examines the application of the extended Kalman filter (EKF) to 
predict the movement of the upper top center of a guyed tower of a power line, 
based on its dynamic model and considering the indirect measurement of the 
force in the stay cables through accelerometers. The proposed methodology is 
validated through experiments carried out in the mockup tower of a dynamic 
testing laboratory.

Chapter 3 discusses an intelligent integrated KF approach, which combines the 
model-based approach (MBA) and the model-free approach (MFA) for the diagnostic 
of a pipeline failure. The proposed scheme ensures a fast and accurate diagnosis and 
was successfully used on a two-tank model in a laboratory.

Chapter 4 describes a computationally efficient approach to using smoothing spline 
models for filtering and analyzing complex signals from noisy data. Estimation algo-
rithms based on the Kalman filter are implemented within an innovative smoothing 
spline analysis of variance (SS-ANOVA) model. This approach can be used in different 
engineering areas, where experimental data are interpolated by a spline for further 
development of a system model.

Chapter 5 presents a sequential mini-batch noise estimator to estimate the covari-
ance of measured signal noise. This problem is typical of using the KF in various 
applications. The proposed method, which allows for estimation that is both suf-
ficient and computationally economical, is demonstrated by several  engineering 
problems.

I am thankful to all the authors for their contributions and to IntechOpen for its 
decision to publish this book and for help with my editorial work. I would also like 



IV

to express my gratitude to the Canadian Space Agency for its friendly attitude and 
the moral support that has encouraged me to present this book to the international 
engineering and scientific community.

Yuri V. Kim
David Florida Laboratory,

Canadian Space Agency,
Ottawa, Canada

Chapter 1

Review of Kalman Filter
Developments in Analytical
Engineering Design
Yuri V. Kim

Abstract

This chapter discusses using the Kalman Filter (KF) for the analytical design in
such engineering applications, as a closed loop control system, which often can be
considered as time-invariant and linear (LTI). The chapter discuses designing a navi-
gation accelerometer with the electric spring. This is a typical example of the closed
loop, negative feedback control. Two approaches are used: A-conventional, empirical
and B-analytical with KF. The consideration of both of them opens a comprehensive
understanding of the system dynamics and its potentials. The discussion is based on
the suboptimal form of the KF-Filter with Bounded Growth of Memory (FBGM),
proposed by the author.

Keywords: dynamic system, Kalman Filter, covariance, standard deviation, Riccati
equation, stochastic process, white noise, optimal estimation and control, analytical
design, accelerometer

1. Introduction

Appearance the Kalman Filter in 60-th [1, 2] led in the control system engineering
to a trend that continues even today; implementing this powerful a scientific tool
directly into a real system. This tendency is based on the “doctrine” of considering the
KF, as a “magic box”, which is capable to achieve a superior performance sometimes
even with attempt for estimation not observable system state variables. However,
directly implementing KF in the “real word system”, a developer may often face many
unexpected issues, resulted in the negative conclusion about its practical applicability.

Both situations are extreme. A conscious application of KF with premature engi-
neer analysis and sub-optimization, following by sacrificing the theoretically achiev-
able maximal accuracy for the expense of the filter robustness and the simplicity can
lead to the applicable results, similar to the conventional solution. More fine tuning
the control gains in this case allows for getting better performance. This approach can
be presented as a “rule of thumb” – meeting performance requirements, rather than
achieving theoretical excellence was presented in many works of the author: [3–11]. In
particular, some simple KF sub-optimization form – Kalman-Bucy filter (KBF), with
bounded grows of memory (FBGM) was proposed in [8, 9].

1XII
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directly into a real system. This tendency is based on the “doctrine” of considering the
KF, as a “magic box”, which is capable to achieve a superior performance sometimes
even with attempt for estimation not observable system state variables. However,
directly implementing KF in the “real word system”, a developer may often face many
unexpected issues, resulted in the negative conclusion about its practical applicability.

Both situations are extreme. A conscious application of KF with premature engi-
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able maximal accuracy for the expense of the filter robustness and the simplicity can
lead to the applicable results, similar to the conventional solution. More fine tuning
the control gains in this case allows for getting better performance. This approach can
be presented as a “rule of thumb” – meeting performance requirements, rather than
achieving theoretical excellence was presented in many works of the author: [3–11]. In
particular, some simple KF sub-optimization form – Kalman-Bucy filter (KBF), with
bounded grows of memory (FBGM) was proposed in [8, 9].
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FBGM guarantees accurate system performance, maintaining the continuity of the
conventional solutions. Specifically, following by this approach is an appropriate in
the case of the Linear Time Invariant (LTI) systems. Often, for the LTI system fast
estimation and insertion of the initial conditions are not required and the KF can be
used in its stationary (LTI) form with constant coefficients that can be found solving
KF Ricatti equation in the steady state, when it degenerates in the algebraic form. If
the main single criterion of system design quality can be formulated as the minimum
of system error standard deviations (STD), then the KF can be used as the filter and
the feedback closed loop controller simultaneously. Namely, this case is discussed in
the example, presented in the chapter below.

For many similar examples the empirical engineer solutions are well-known for
years and have become conventional, demonstrating a good performance and robust-
ness in a wide range of possible operational conditions. However, using the KF and the
analytical design is always useful to check available potentials and is specifically
necessary, when there is a lack of experience in similar design. In the real life many
factors usually play essential role for the system (devise) design. Indeed, some of them
can hardly be mathematically formalized and put restrictions for a “freedom” of the
analytical solution. However, often a single criterion for the considered system can be
taking as a dominant –minimum steady state errors covariance matrix, which is the
optimization criterion the optimal KF. That is why if at the first stage of system design
developers are advised to use this criterion and the KF as a helpful tool for the
analytical design.

The basic information about the KF can be found in [1, 2, 12–16], about the
Analytical Design (AD) – in [9, 17–20]. This AD approach is well compatible with
System Engineering Model Based Design, providing with Matlab/Simulink Tools by
the MathWorks American Company [21, 22].

It must be said, in addition, that due to essential progress in computerization,
achieved up to date and implementing of the KF in a broad spectrum of new applica-
tions such as system identification, failure detection, image and data processing
applied research in physics and mathematics (some of them are presented in this
book), direct implementing of the KF algorithm and its further modifications has
become common and justifiable remedy for many developers. MathWorks Company
provides powerful and universal Simulink KF algorithms [23] that can be used on
different stages of the research and implementation.

2. Kalman filter

As it has been mentioned in the introduction, the KF was proposed by Rudolf
Kalman in 1960 [1]. From the physical point of view it was just a filter that can
separate deterministic- stochastic signal from the measurement stochastic noise.
However, the mathematical form of the presentation as a vector-matrix space state
differential equation (many available inputs and outputs) and provided optimal cri-
terion –minimum of the estimation covariance matrix errors made this filter be used
as a powerful tool for a scientific research and engineering development in many
areas. A big advantage of the filter is that it was presented as a discrete algorithm
allowing for the recursive computation. It allows estimating variable at the current
step, using its predicted estimation, based on the system model prediction (without
the measurements). This estimation is taken with the control gain (weight coefficient)
proportional to the estimation errors covariance matrix and in inverse proportion to
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the matrix of the measured noise. This coefficient is multiplied by the difference
between the measured vector and its estimation. The discrete covariance matrix was
provided allowing for the recursive solution of the non-linear matrix Riccati equation.
Thus these equations of the filter, presented by Kalman for the discrete stochastic
process [1], opened direct way to compute estimates and implement the filter in the
form of the computation algorithm. Further many authors (for example, [12, 14])
presented these the discrete KF equations with detail explanation of the filter and the
computation process. Pseudo-code of the filter provided by MathWorks (Simulink)
for a broad pool of international users is presented in [23]. Following [12], generic
pseudo-code of KF can be also presented as below.

Let us given the stochastic model of a linear dynamic system

_xiþ1 ¼ Φixi þGiwi, i ¼ 0,1,… ,N � 1 (1)

where xi is system state vector, i is computation step number, Φi is system pulse
transfer function, Gi is system input impact function, wi is system input impact
stochastic process

Every step system state vector is measured as follows

zi ¼ Hixi þ vi (2)

where zi is measurement vector, Hi is measurement matrix, vi is stochastic
measurement error. The processes wi and vi are centered mutually non-correlated
white Gaussian noises, having the covariance matrixes Qi and Ri respectively.
The KF at each step will provide the optimal estimate x̂i of the system state vector
xi with the minimum of the estimation errors ~xi ¼ x̂i � xi covariance matrix
Pi ¼ E ~xi � ~xT

i

� �
Then for the system (1), (2) KF pseudo-code is as follows
It has been mentioned in the introduction that in many occurrences direct imple-

mentation of the algorithm above may lead to the optimal filter instability and, at
least, to essential requirements for the computational resources. However, sub-
optimal form of the filter may solve the problem within required accuracy, but with
warranted stability, robustness and very modest requirements for the computation
(often even analogue devices). One of such sub-optimization, developed by the
author, is presented below (Figure 1).

3. Kalman-Busy filter sub-optimization

Let us consider the analog Kalman filter form that was presented by Kalman and
Busy in [2]. Given is linear, fully observable and controllable stochastic system

_x ¼ FxþGw,

z ¼ Hxþ v,
(3)

where: x is an n – vector of the system state, F is n� n system dynamics matrix, w
is an n – vector of external disturbances, G is an n� nð Þ disturbances matrix, z is a
m≤ n is vector of measurements, v is a m is vector of measurement noise, H is a
m� nð Þ measurements matrix.

3
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Let us the following information about (3) is given: F,G,H are known matrices of
time, these in the stationary case are matrix constants and

E x t0ð Þ½ � ¼ 0, E w tð Þ½ � ¼ 0, E v tð Þ½ � ¼ 0,

E x t0ð ÞxT t0ð Þ� � ¼ P0,

E w tð ÞvT τð Þ� � ¼ E v tð ÞwT τð Þ� � ¼ E w tð ÞxT t0ð Þ� � ¼ 0,

E w tð ÞwT τð Þ� � ¼ Q tð Þδ t� τð Þ,
E v tð ÞvT τð Þ� � ¼ R tð Þδ t� τð Þ,

(4)

where: P0 is the initial state covariance matrix, R tð Þ is the covariance matrix of
measurement noise, Q tð Þ is the covariance matrix of disturbance noise, δ t� τð Þ is the
Dirac delta function. Hence, w tð Þ and v tð Þ are Gauss white noise processes. Usually,
matrixes Q and R are diagonal and in the stationary case, these matrices are constants.
They have meaning of the band bounded spectral densities of practically correlated,

Figure 1.
Discrete Kalman Filter algorithm pseudo-code.
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“colour” noises w tð Þ and v tð Þ, correspondingly, that within their band bounds can be
approximately taken as white

Q ¼ Sw ¼ diag σ2wiΔtw
� �

, i¼1,2,::n

R ¼ Sv ¼ diag σ2vjΔtv
h i

, j¼1,2,::m

(5)

where σwi,Δtw and σvj,Δtv are the standard deviations (STD) and the sampling
times (Δt) of these stochastic processes w and v correspondently. In KBF theory are
idealistically presents like white noises with zero Δt and infinite covariance functions.

This system state (state vector x) at any time instant t can be estimated (found the
optimal estimate x̂ for ) by providing the minimum of system state estimation error
(~x ¼ x̂� x) for the covariance matrix P ¼ E ~x tð Þ � ~xT tð Þ� �

diagonal J ¼ diagP. In other
words, KBF filter merit criterion is as follows

Jmin ¼ min diagPð Þ (6)

This criterion is provided when the KBF is used for estimation of the state vector of
the system (3). The KBF is usually presented by the following matrix equations

_̂x ¼ Fx̂þ K z�Hx̂ð Þ, x̂0,

K ¼ PHTR�1,

_P ¼ FPþ PFT � PHTR�1HPþGQGT,P0

(7)

where: K ¼ K tð Þ is the KBF weigh matrix gain, P ¼ P tð Þ is the KBF estimate
errors covariance matrix that can be found from the solution of the third matrix
equation in (7) (Riccati type equation). Eq. (7) presumes that measurement vector z is
continuously available, and then (7) presents KBF in the, so called, “filtering mode”.
However, if at some time instance tp the measurement process is ended or temporarily
interrupted and the vector measurements z since then is not available, then the KBF
can be transitioned in the “prediction”mode. This mode is obtained from the filtering
mode by setting in (7) KBF matrix gain to zero K tð Þ � 0, when t≥ tp

_̂x ¼ Fx̂, x̂0 ¼ x̂p,

K � 0,

_P ¼ FPþ PFT,P0 ¼ Pp

(8)

To implement KBF in practice, especially in real time on-board computer (OBC)
with limited computational capabilities, it is always useful to sub-optimize the filter,
sacrificing potentially achievable maximal accuracy, for simplicity and robustness (quid
pro quo), being satisfied by some tolerate level of (6) instead of exact minimum at any
considered time instance. As author presented in his past publications [3, 4, 8, 9] KBF in
the time domain can be equivalently decomposed into two filters, working in parallel;
non-stationary KBF with time variant matrix coefficient ~K tð Þ and stationary KBF with
time invariant (constant) coefficient K∗ . Both can be determined pre-calculated in
advance, before using KBF in real time. As it was showed in author’s works these
parallel filters can be approximately represented as the consecutive – Filter With
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Bounded Grows of Memory (KFBGM) . The results of application of optimal KBF and
sub-optimal filter (FBGM), represented below are close.

Both coefficients ~K and K∗ can be determined by the solving of modified KBF
Riccati matrix equations for covariance matrixes P� tð Þ and P∗ . This KBF modification
is as follows

_̂x
� ¼ F∗ x̂� þ ~K z�Hx̂�ð Þ, x̂�

0,

~K ¼ ~PHTR�1,

~_P ¼ F∗ ~Pþ ~PF∗ � ~PHTR�1H~P, ~P0 ¼ P0 � P∗ ,

F∗ ¼ F� K∗H,

_̂x
∗ ¼ Fx̂∗ þK∗ z�Hx̂∗ð Þ, x̂∗

0 ,

K∗ ¼ P∗HTR�1,

FP∗ þ P∗FT � P∗HTR�1HP∗ þGQGT ¼ 0

x̂ ¼ x̂� þ x̂∗ , x̂� t ! ∞ð Þ ! 0, x̂ t ! ∞ð Þ ! x∗

P ¼ ~Pþ P∗ , ~P t ! ∞ð Þ ! 0, P t ! ∞ð Þ ! P∗

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(9)

Original Riccati equation for the matrix P is split here into two equivalent equa-
tions: the differential equation for the transfer state ~P (3-d of (9)) and the algebraic
one (7-th of (9)) for the steady state P∗ . For many practical applications takes place
the following inequality

diagP0 > > diagP∗ (10)

In this case, as it was shown in [3], two parallel KBF filters (9) can be approxi-
mately substituted by the single suboptimal filter, working consequently in time in
two modes: at the beginning in “initial filtering” (IF) mode for the “quasi- determin-
istic” system (assuming that in (3) w ¼ 0 and Q ¼ 0) with time-variant (variable)
gain ~K tð Þ gate and after is automatically switched to “steady filtering” (SF) for
the substantially stochastic system model with time-invariant (constant) gain
K∗ (assuming that after some IF period t ∗ , t≥ t ∗ , the transfer process practically
entirely completed and SF can start). Unlike the KBF, that is a filter with unbounded
grooving memory (assuming continuous solving of KBF Riccati equation to determine
KBF gate taking into account for it all process prehistory), this suboptimal modifica-
tion was named the “Filter with Bounded Growing Memory” (FBGM). The filter
equations are presented by (11) and (12) below

_̂x ¼ Fx̂þ K z�Hx̂ð Þ,

K ¼
~K, t0 ≤ t≤ t ∗ ,

K∗ , t> t ∗ ,

0, if z � 0

8>><
>>:

(11)

where: t ∗ is the time, required for unbiased estimation of all n components of
vector x, when covariance matrix ~P decaying to a small matrix ~P t ∗ð Þ≈0. The gains ~K
and K∗ are found with the following formulas

6

Kalman Filter - Engineering Applications



~K ¼ ~PHTR�1,
~_P ¼ F~Pþ ~PFT � ~PHTR�1H~P, ~P0 ¼ P0,

K∗ ¼ P∗HTR�1,

FP∗ þ P∗FT � P∗HTR�1HP∗ þGQGT ¼ 0:

8>>>><
>>>>:

(12)

In other words, ~K is computed for system (1), considered as a “quasi- determinis-
tic”

(w ¼ 0,Q ¼ 0, only transfer process, caused by x0 takes place), and K∗ - consid-
ering (1) as a “substantially- stochastic” system, where only steady state motion,
caused by the random disturbance w takes place, however the transfer process has
been approximately decayed.

Three modes can be considered for the FBGM: IF- when K ¼ ~K, SF- when K ¼ K∗ ,
and the “prediction mode” P-when measurement vector z is not available and K ¼ 0.

This filter can be easily periodically restarted after any interruption (outage) in
measuring process. In the work [4] was introduced the “observability index” χi (power
of signal to power of noise ratio) for certain i� th component of the signal measured
from the estimated system (1), considered as a quasi-deterministic. At the transition
time t ∗ when KBF is switched from the IF mode to the SF mode all the observability
indexes χi become bigger than one (χi > > 1, i ¼ 1,2,… n). This index is helpful to use
it for FBGM analysis in the IF mode.

For filter analysis in the SF mode also can be introduced special “filterability index”
ξi ¼

qj
ri
,j ¼ 1,2,::m; i ¼ 1,2,::n – ratio of spectral density of signal exciting noise (Q) to

spectral density of measured error noise (R) for each pair of these noise components
(wj and vi correspondingly). That index is similar to the observability index χi and is
helpful for the FBGM analysis in SF mode.

Further developing the idea of FBGM (11), (12) is a new, simple KBF suboptimal
modification FBGM-Initial/Steady (FBGM-I/S) can be considered. This idea is very
simple, to change the time variable FBGM coefficient ~K tð Þ, acting only during the
transient period of the estimation process, by a permanent coefficient K∗

IF that would
accelerate it (comparatively to if the steady state coefficient K∗ had been applied
without ~K from the very beginning).

The assumption is that during this time the potentially available with KBF accuracy
can be sacrificed for making this period shorter.

This modification is as follows

_̂x ¼ Fx̂þ K z�Hx̂ð Þ,

K ¼
K∗

IF, t0 > t> t ∗ ,

K∗
SF, t> t ∗ ,

0, if z � 0,

8>><
>>:

(13)

where K∗
IF and K∗

SF both are constant filter matrix gates chosen for IF and for SF
modes correspondingly. (1.11) assumes that K∗

IF is used only during filter transitional
process that can be terminated as soon as possible (for a short time) and then the
steady filtering process can start and last as long as measurements vector z is available.
This idea just reflects conventional engineering approach for linear control system
design to extend system bandwidth at the transfer process period and to narrow it at
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the steady state work period. However, if it is clear that the steady state matrix-gate
K∗

SF in (11) can be calculated using KBF formulas for K∗ (12) (3-rd and 4-th). The
question about how to determine the gate K∗

IF can be discussed additionally, but this
gate should provide to the filter wider passband and bigger speed than K∗

SF. Indeed,
this matrix gate can be just designated using conventional engineering criteria such as
stability margin, overshooting, and decaying time, considering filter characteristic
polynomial

Δ sð Þ ¼ sI‐ Fþ kHð Þ ¼ sn þ a1sn‐1 þ ::… þ an‐1sþ a0 (14)

and arranging its coefficients ai to provide to (14) desired roots. For example,
standard coefficients for the multiple roots λ

Δ sð Þ ¼ sþ λð Þn (15)

where λ determines system cut frequency (bandwidth) that is approximately
inverse to its response time and is usually limited by the stability margin and static
error under action of constant perturbations. Then matrix K∗

SF can be determined
considering desired coefficients ai (14) or the bandwidth λ and standard
coefficients (15).

However, it is important to note that the reliable information about matrixes Q
and R is usually not available almost at any stage of system development and
operation. Especially, this is related to the matrix Q . Hence, the question about the
reliability of optimal filter gain K∗

SF also appears and can be discussed. In this case,
when matrix Q is not available, it can be accepted as zero Q ¼ 0 and P∗ is not
optimal, but at some satisfactory level P∗ ¼ D. Then K∗

SF can be found from the
equation

F∗Dþ P∗DþK∗
SFHR�1HTK∗T

SF ¼ 0 (16)

where F∗ ¼ F� K∗
SFH,

This equation is covariance equation for the filter estimation errors caused by the
measuring noise v tð Þ

_~x ¼ F∗ ~x�K∗
SFHv (17)

In fact, in practice the real physical processes w tð Þ and v tð Þ have more complex
than Gaussian stationary white noise structure and hardly can be expressed by the
matrixes Q and R, assumed in KBF theory. However, this abstraction could be helpful
for practical needs if some “appropriate” levels of Q and R that would be resulted in
the solution, which is compatible with conventional engineering practice are taken to
tune FBGM.

Practically, often there is no need to take care about the transfer mode of the KF
and it can work permanently with the constant coefficients, determined by the
formula below for the steady state [16]

K∗ ¼ P∗HTR�1 (18)

The steady state covariance matrix P∗ as the solution of non-liner algebraic matrix
Riccati equation below should be prematurely found

8
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FP∗ þ P∗FT � P∗HTR�1HP∗ þGQGT ¼ 0 (19)

This filter can be used simultaneously as LTI negative feedback closed loop con-
troller. Mathematically it can be derived by subtracting (7) from (3) and presented by
the following equation

_~x ¼ F� K∗Hð Þ~xþ KHVþGw (20)

These Eqs. (18)–(20) are used with example below to illustrate the KF analytical
design approach with a simple LTI dynamical system of the second order.

3.1 Example

Let’s consider a stable LTI, 2-nd order dynamic system

J€αþ b _αþ cα ¼ M (21)

where J is system moment of inertia, b is system damping coefficient, c is system
rigidity coefficient, α is system angular position, _α is system angular velocity, M is
external torque, applied to the system rotation part, having inertia J.

This simple dynamic Eq. (21) can approximately present many various real tech-
nical systems.

In particular, it can present the sensitive element of the navigation accelerometer
(floating pendulum) with the electrical spring [16]. They were commonly used in
electro-mechanic Inertial Navigation Systems (INS) in (70–80) – th. This device
(system model (21)) will be considered further in this example.

The accelerometer measures external torque, applied to its pendulum by the iner-
tia force (Fi ¼ �m0a) Mi ¼ �m0la, caused by its motion with acceleration a. In the
steady state this torque is balanced by the accelerometer’s spring Ms ¼ cα ∗. Hence,
pendulum deviation α ∗ allows determining the acceleration a

α ∗ ¼ �m0l
c

a (22)

To make the pendulum sensitive we need to eliminate the dry friction torque in its
bearings Mfr . With this purpose the pendulum is usually put in the filled by the inert
gas soldered chamber, floating in a viscous fluid in the accelerometer case. Then, the
following inequalityMfr ≪Mimin takes place. The fluid also creates the viscous torque,
damping the pendulum oscillations.

The following ratios describe the pendulum parameters: J ¼ m0l
2 (m0 is

pendulum mass, l is its length), b is pendulum floating chamber viscous friction
coefficient, c ¼ m0gl is pendulum rigidity coefficient, creating by the pendulum
weight. Substituting these parameters in (21) and dividing it by J ¼ m0l

2, we can
represent it as follows

€αþ 2d0ω0 _αþ ω2
0α ¼ �m (23)

where 2dω0 ¼ b
J ¼ b

m0l2
, ω2

0 ¼ c
J ¼ g

l, m ¼ M
J ¼ m0l

m0l2
a ¼ 1

l a. Hence,
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ω0 ¼
ffiffi
g
l

q
is system natural frequency, d0 ¼ b

2m0l
2
ffiffig
l

p ¼ b
2m0

ffiffiffiffi
gl3

p is system specific

damping coefficient.
If measured acceleration a is constant (a ¼ const), then in the steady state (t ! ∞)

from (23) follows that

α ∞ð Þ ¼ α ∗ ¼ � 1
g
a (24)

In further consideration we will assume that the devise angle α is measured by a
kind of the electric sensor, providing the electric output constant voltage as follows

Ua ¼ �kaα ¼ a (25)

where ka ¼ �g is the pendulum scale coefficient.
In our case (23) in the canonical form of the 2-nd order differential equation

dynamic unit presents uncontrolled system (a plant).
The purpose of further design is to find required for the pendulum (23) control

that would provide to it (accelerometer) better dynamics. Usually the viscous fluid
provides for the floating pendulum a big damping coefficient d0, however the “gravity
spring” has not enough rigidity to have for the device required natural frequency
(ω0 ≤ω). Therefore, we will develop for the pendulum additional (to the gravity
torque) negative feedback electric positional torque (“electric spring”) that will
increase original pendulum natural frequency ω0 to the desired value of ω.
Schematically such an accelerometer is presented in Figure 2.

Two approaches are considered below: A-Empirical design (based on engineer
experience and the continuity with the conventional design) and B-Analytical design
(based on the suboptimal KF (FBGM) used as a linear controller).

3.2 Empiric approach

Eq. (22) can be presented in Laplas transformation form as follows

s2 þ 2d0ω0sþ ω2
0

� �
α sð Þ ¼ � 1

l
a sð Þ (26)

where s is Laplas operator, α sð Þ and a sð Þ are the Laplas transformations of the
output pendulum angle and its input acceleration correspondingly.

Let us apply in inverse to this pendulum deviation direction the control torque Mc
that physically would provided by a special electric motor (in the” braking mode”),
installed on the pendulum rotation shaft and controlled by the voltage from the sensor
of pendulum deviation angle α through the electronic amplifier. This negative feed-
back is the accelerometer “electric spring” (see Figure 2)

Mathematically, this specific control torque in (22) can be presented as follows

mc ¼ Mc

J
¼ �ks αþ Δαð Þ � ε _αþ Δ _αð Þ (27)

where mc is specific control torque applied by the “electric spring” (27), ks ¼
kαkamkMc

J is the electric spring rigidity coefficient, kα is angle α scale coefficient, kam is
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amplifier scale coefficient, kMc is control motor scale coefficient, Δα is angular sensor
α measured error.

Substituting (27), in (26), we can rewrite it as follows

s2 þ 2dωþ δð Þsþ ω2� �
α sð Þ ¼ �ω2

0n sð Þ þ δsþ ksð ÞΔα sð Þ (28)

where ω2 ¼ ω2
0 þ ks ¼ ks 1þ ω2

0
ks

� �
, d ¼ b

2Jω ¼ d0 ω0
ω , n ¼ a

g is measured input

overload, δ is a small additional damping coefficient, created by the counter
electromotive force in the winding of the motor-torque in the electric spring. It is
neglected in further consideration δ≈0

The output voltage can be determined as in (25), measuring the angle α asU ¼ �kaα.
The scale coefficient of the accelerometer is determining by the following formula

ka ¼ �lω2 ¼ �l ω2
0 þ ks

� �
(29)

Usually, the ratio ε ¼
ffiffiffi
ks

p
ω0

, is much bigger than one ε≫ 1 or 1
ε2 ≪ 1 , then for the

accelerometer dynamic parameters takes place following approximate formulas

ω≈
ffiffiffiffi
ks

p
¼ εω0 (30)

d≈
d0
ε

(31)

The coefficient ε ¼ ω
ω0

is accelerometer bandwidth increasing coefficient. We can
see from (30) to (31) that the electric spring will increase the accelerometer natural
frequency and in the same ratio decrease its damping coefficient. That is why original
damping coefficient for the devise has to be chosen much bigger then is usually
required for the 2-nd order dynamic unit d≫0:707.

Generalizing presented above results of the empirical design approach to the electric
spring accelerometer, we can conclude as a rule of thumb that using negative positional
feedback increases dynamic system bandwidth, however decreases its damping coefficient.

Numerical data and simulation results for the approach A are presented below

Figure 2.
Scheme of the accelerometer with the electric spring.
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3.3 Free pendulum

Pendulum parameters

m0 ¼ 5 � 10�3Kg, l ¼ 0:02m, J ¼ m0l
2 ¼ 2 � 10�6kgm2, b ¼ 6:295 � 10‐4Nm=rad=s,

c ¼ m0gl ¼ 9:8 � 10�4Nm=rad, ka0 ¼ �9:8Vs2=m

Pendulum standard dynamics coefficients can be calculated as following

ω0 ¼ 22:136 s‐1 f 0 ¼ 3:523 Hz, T0 ¼ 0:0452s
� �

, d ¼ 7:1

Simulink simulation scheme is presented in Figure 3
Step-response of this pendulum is presented in Figure 4.
This pendulum with electric spring was simulated with similar Simulink scheme

and methodology. Simulation results are presented below.

Figure 4.
Step-response of the pendulum to its input acceleration a ¼ 1 m=s.

Figure 3.
Simulink block-diagram of the floating pendulum-system model.
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3.4 Pendulum with the electric spring-accelerometer

3.4.1 Desired coefficients

Let us assume that we want to increase the device natural frequency that
characterizes its bandwidth in ten times to have the ratio λ ¼ f

f 0
¼ 10. Then the

accelerometer will have the following dynamics parameters: ω ¼
221:36 rad=s, f ¼ 35:24Hzð Þ d ¼ 0:71. The electric spring specific rigidity coefficient
is ks ¼ ω2 � ω2

0 ¼ 4:851 � 104rad=s2 (ks ¼ Ks
J ) and the scale coefficient is

ka ¼ �980 Vs2=m.
The accelerometer Simulink simulation scheme is presented in Figure 5.
There were introduced measurement random errors Δα (electronic noise) as a

Band-limited Gaussian White Noise with σΔα ¼ 0:010 and Δt ¼ 0:001s; f m ¼ 1
Δt ¼

1kHz (see White Noise generator block in pink in Figure 5). This measured noise is
presented in Figure 6.

Step-response of the accelerometer deviation angle α is presented in Figure 7.
The filtering capability of this device we can evaluate by finding the STD of its

output angle σα, caused by the electronic noise N ¼ σ2ΔαΔt of the electric spring. This
STD can be calculated with formula, following from [24]. Using this equation for the
steady state, we can found that

Figure 6.
Measurement random electronic Noise: σΔα ¼ 0:010, Δt ¼ 0:001 s.

Figure 5.
Simulink block-diagram of the Electric Spring Accelerometer.
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σα ¼
ffiffiffiffiffiffiffiffi
πf
dfN

s
σΔα (32)

where f is accelerometer natural frequency in Hz, d is accelerometer specific
damping coefficient, f N ¼ 1

Δt is the range of the frequency inHz, where the noise can be
practically considered as a “white”, Δt is the noise sampling time. Using (32) we can
calculate that in our example the ratio r ¼ σα

σΔα
= 0.395. That is, the filtering capability of

the accelerometer cuts its random electronic noise approximately in 2.5 times.
As we can see from the above results, the empiric approach A allowed us for

getting a quite satisfactory accelerometer dynamics.

3.4.2 Analytical design approach

Let us introduce a simplest 2-nd order unit, to use it as the system (future
accelerometer sensor) model

_x1 ¼ w
_x2 ¼ x1

�
(33)

where w is system disturbance, x1 and x2 are system state vector variables.
Let us assume that the state vector variable x2 is measured

z ¼ x2 þ v (34)

where v is an additive measured error.
Let us also assume that w and v are Gauss white noises, having spectral densities q

and r, respectively and find the optimal KF, minimizing the STD of estimated system
state vector random errors [14].

Then KF for (33) and (34) can be written as follows

_̂x1 ¼ k12 z2 � x̂2ð Þ
_̂x2 ¼ x̂1 þ k22 z2 � x̂2ð Þ

(
(35)

The control gaits in (35) can be calculated with formulas

Figure 7.
Step-response α tð Þ of the accelerometer to its input acceleration a ¼ 1 m=s, α ∗ t ! ∞ð Þ ¼ �0:0580, σα ≈ 0:005∘.
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k12 ¼ P ∗
12

r

k22 ¼ P ∗
22

r

8>><
>>:

(36)

where P ∗
ij are elements of the steady state covariance matrix P ∗ that can be found

solving the algebraic equation Riccati [18] for (33)–(35).
Considered above case allows for the analytical solution of [18] that is as follows [9]

P ∗
12 ¼ ffiffiffiffiffiffiffiq1r

p ¼ r
ffiffiffiffiffi
ξ,

p

P ∗
22 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2rP ∗

12

p ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
ξ,

pp

P ∗
11 ¼

1
r
P ∗
12P

∗
22 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffi
2ξ

ffiffiffi
ξ

pq
,

8>>><
>>>:

(37)

where ξ ¼ q
r is ratio of system exiting noise to measured error noise spectral

densities and has meaning of “filterability”. Substituting P ∗
12 and P ∗

22 from (37) in (36)
we can determine the filter coefficients with formulas

k12 ¼
ffiffiffi
ξ

p
,

k22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ

ffiffiffiffiffi
ξ,

pp
(

(38)

The KF (35) can be used as the closed loop negative feedback controller [9]. This
closed loop system can be presented if we subtract (35) from (33). It will be presented
by the following equations

_~x1 ¼ �k12~x2 þ k12vþw
_~x2 ¼ ~x1 � k22~x2 þ k22v

(
(39)

where ~x1 ¼ x̂1 � x1, ~x2 ¼ x̂2 � x2 are errors of control of the closed loop system (39).
This system can be converted to the following form

€αþ k22 _αþ k12α ¼ wþ k22 _vþ k12v (40)

Let us introduce the following designations k22 ¼ 2dω, k12 ¼ ω2, then (40) can be
rewritten in the following Laplas transformation form

s2 þ 2dωsþ ω2� �
α ¼ w sð Þ þ 2dωsþ ω2� �

v sð Þ (41)

Where ω ¼ ffiffiffiffiffiffi
k12

p ¼ ffiffiffi
ξ4

p
is filter natural frequency, d ¼ k22

2
ffiffiffiffiffi
k12

p ¼
ffiffi
2

p
2 ¼ 0:707 is filter

specific damping coefficient.
Let us put in (40) that w ¼ � 1

l a ¼ �ω2
0n, where n ¼ a

g is overload, ω
2
0 ¼ g

l, than
(41) can be rewritten as following

s2 þ 2dωsþ ω2� �
α ¼ �ω2

0n sð Þ þ 2dωsþ ω2� �
v sð Þ (42)

Now this equation (42) may represent the accelerometer with the electric spring,
like (28). But, unlikely (28) and (41) presumes that all system damping is created
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electrically (by the negative feedback compensation torque-spring). However, the
similarity of the transfer functions (output/input) of (28) and (42) allows us to note
some generic futures of the optimal 2-nd order LTI unit. It was already found that
optimal specific damping coefficient must be 0.707 (d ¼ 0:707) and this fact doesn’t
depend on w and v statistic characteristics. Let us determine the ratio ξ for (41)

ξ ¼ q
r
¼ ω4

0σ
2
nΔta

σ2ΔαΔtΔα
(43)

Then the natural frequency for (42) will be determined by the formula

ω ¼
ffiffiffi
ξ4

p
¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σn
σΔα

ffiffiffiffiffiffiffiffiffiffi
Δta
ΔtΔα

rs
(44)

Using analytical design approach B, we hardly can count on the availability of
reliable statistic characteristics of w and v. Rather, we can set them empirically from
the standpoint of common sense. For example, let’s we want to get the same system as
using approach A. In another words we want to have the same ratio λ ¼ ω

ω0
¼ 10, as in

the example A, then we must assume that takes place the following ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σn
σΔα

ffiffiffiffiffiffiffi
Δta
ΔtΔα

qr
¼ 10 or σn

ffiffiffiffiffi
Δta

p
σΔα

ffiffiffiffiffiffiffi
ΔtΔα

p ¼ 102. Then this ratio can be rewritten as follows

σn
σΔα

¼ 102

ffiffiffiffiffiffiffi
fΔα
f a

s
(45)

Let’s assume, as using approach A, that fΔα ¼ 103Hz and accept that
f a ≥ f f ¼ 35:24Hzð Þ, f a ¼ 100Hz. Then, as follows from (47), for the equivalency of
both approaches, namely A and B, should take place the following equality σn ¼
316σΔα (where σΔα ¼ 0:01∘ ¼ 0:017rad). Hence, σn ¼ 5:5 σa ¼ 5:5g ¼ 54m=s2ð Þ.

Simulation result of extracting by the KF filter (39) (accelerometer) a noise-like
signal from the white noise is presented in Figure 8.

We can see that synthesized by using KF accelerometer is quite efficient to mea-
sure not only step-like input accelerations (as it was showed by the approach A), but
the white noise-like accelerations as well. If considered above numerical data are
accepted, then both approaches led to the same system (accelerometer) dynamics.

Figure 8.
Extracting by the synthesized KF accelerometer the noise-like signal from the measured white noise. a) Input noise:
σa ¼ 54 m=s2,Δta ¼ 0:01s b) Estimates â c) Measured noise: σΔα ¼ 0:010,ΔtΔα ¼ 0:001s.
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Presented above KF results are rather qualitative, assuming a dry accelerometer
(without damping by the viscous fill fluid), where the damping was created electri-
cally (in the negative positional feedback). Basically, they can be appropriately
converted and applied to the practical design. However, more accurate KF synthesis
for the accelerometer (23) can be performed, considering the following model

_x1 ¼ �2d0ω0x1 � ω2
0x2 � ω2

0w
_x2 ¼ x1
z ¼ x2 þ v

(46)

where x1 ¼ _α,x2 ¼ α,v ¼ Δα,w ¼ a
g.

_̂x1 ¼ �2d0ω0x̂1 � ω2
0x̂2 þ k12 z� x̂2ð Þ

_̂x2 ¼ x̂1 þ k22 z� x̂2ð Þ
(47)

where k12 ¼ P ∗
12
r , k22 ¼ P ∗

22
r

Using this model, the readers can analyze presented example more precisely. The
author leaves this option for readers’ independent exercise

4. Conclusion

In the example above the KF was used for the analytical design to find optimal
dynamic characteristics for the navigation accelerometer. Optimal tuning for the
devise coefficients were found, which can be easily implemented in the accelerometer
hardware, using analogue elements (floating pendulum, precision bearings, electric
angle sensor, electronic amplifier and torque motor). Comparing the results with the
conventional design we can conclude that the design is a stable and robust, as well as
for the conventionally designed accelerometer. Generalizing, we can conclude that
using the KF for the analytical design in engineer applications leads to quite realistic
results that can be verified with conventional solutions. It can also be noted, that even
using the analytical design, the choice of the appropriate values for the KF matrixes
Q and R is rather based on the developer experience and intuition than on real
statistic characteristics of the processesW tð Þ and V tð Þ, which are unlikely be available
to use them.
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Chapter 2

Extended Kalman Filter for a
Monitoring System of the Guyed
Towers
Alexandre Schalch Mendes, Pablo Siqueira Meirelles,
Janito Vaqueiro Ferreira and Eduardo Rodrigues de Lima

Abstract

The Kalman filter is used in a wide range of systems. Due to its efficiency
to estimate the state variables in structures and mechanisms, its usage is already
well known in Control Systems and in addition to smooth measured and
unmeasured signals, it allows the sensor fusion technique to consider the best
characteristics of each type of sensor. In this Chapter, we will present the
application of the Extended Kalman Filter (EKF) to predict the movement of the
upper top center of a guyed tower of a power line, based on its dynamic model
and considering the indirect measurement of the force in the stay cables
through accelerometers. In a mockup tower, built in Dynamic Testing Laboratory
(LabEDin) at University of Campinas (UNICAMP), it is possible to apply
external loads and simulate failures, such as degradation of the stay cable
foundation. Variations in the cable forces are used as inputs in the EKF algorithm
and as estimate, we obtain the amplitudes and directions of the tower’s top move-
ments, which will be considered to predict the health of its structure, indicating the
need for maintenance intervention. All the theories considered in this proposed
methodology are validated with the experiments carried out on the mockup tower in
the laboratory.

Keywords: extended Kalman filter, sensor fusion, IoT, guyed towers, transmission
power lines

1. Introduction

The objective of this Chapter is to present a practical application of the Kalman
filter considering a dynamic model of a steel tower structure, which is not usual for a
Bayesian filtering utilization. Usually this filtering technique is considered to estimate
time-dependent physical quantities, such as in Global Positioning Systems (GPS),
target tracking, satellite control, etc.
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The origin of Bayesian analysis belongs to the field of optimal linear filtering and
the concept of building mathematically optimal recursive estimators, was first
presented for linear systems due to their mathematical simplicity [1]. The success of
the Bayesian filtering applied to engineering problems, started with an article
presented in 1960 by the Hungarian-American mathematician and engineer, Rudolf
Emil Kálmán. He developed a mathematical method for linear filtering which does not
requires powerful computing machinery and several applications of his method led to
further application of the named Kalman filter in Apollo program, NASA Space
Shuttle, Navy submarines, in Unmanned Aerospace Vehicles (UAV) and also in
weapons, such as cruise missiles.

In our studied case, the guyed towers of a transmission power line need to be
inspected along the year, to check the inclination and the forces at the stay cables to
assure its structural integrity. In order to reduce the preventive maintenance costs,
there is a proposal for a remote monitoring system to estimate the position of the
upper part of the tower based on the indirect measurements of stay cable forces. The
natural frequencies of the cables can be determined from time-domain accelerations,
obtained from accelerometers connected to the stay cables. Based on an existing
relation between the cable force and its natural frequency, it is possible to calculate the
instantaneous force at every acceleration measurement. As redundancy, the signal
from an inclinometer will be fused into the algorithm to provide the direction of the
tower movement. Another important characteristic of the Kalman filter to be
highlighted, is that in addition to fuse different types of sensors, it is possible to
estimate variables which are not being measured directly.

The proposed monitoring system will transfer (via RF) the accelerations measured
in time-domain from the leaf nodes positioned in each stay cables, to a central router
in the tower. These signals will be transferred to a border router responsible to
organize the acquisitions of several towers to a main server, where the post processing
will be carried out. The EKF algorithm and all calculations are performed in a
MATLAB® (Mathworks, EUA) code developed at the University of Campinas
(UNICAMP).

2. Kalman filter concepts

When any signal is collected through a sensor, generally it presents some level of
noise which can directly affect the evaluation of the measured quantity. The usage of
the Kalman filter, in addition to smooth the measured signal, allows to estimate
quantities which are not being measured directly. And as also mentioned before,
Kalman filtering presents the possibility to fuse signals from different sensor types to
achieve the desired objectives [2]. Let us consider an instant k of the measured signal.
At that time, the prediction of the estimated signal x̂k can be calculated considering
the Eq. (1), as follow:

x̂k ¼ Ax̂k�1 (1)

And the error covariance for the predicted instant k will be calculated as shown in
Eq. (2).

Pk ¼ APk�1AT þ Q (2)
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Where A is the state transition matrix that contains the characteristics of the
physical model with dimensions (n x n) and Q is the noise covariance matrix of the
state transition (n x n). The next step within the algorithm will be the determination
of Kalman gain, which will be recursively calculated within the code for the entire
signal length. The Kalman gain can be obtained via Eq. (3).

Kk ¼ PkH
T HPkH

T þ R
� ��1

(3)

Where R is the covariance matrix of the measurement noise (m x m) and H is
the state matrix for the measurement (m x n). With these data, the estimated values
and the covariance of the signal error will be finally calculated. The estimate signal x̂
(n x 1) can be determined by Eq. (4) from the measured signal z (m x 1).

x̂k ¼ x̂k þ Kk zk �Hx̂k
� �

(4)

And the error covariance, through Eq. (5):

Pk ¼ Pk � KkHPk (5)

Behind this formulation, there are sophisticated statistical concepts that allow the
Kalman filter not only to smooth the signals, but also to estimate the values of
different quantities in regions of the structure where we do not have access for
instrumentation. It is important to highlight that the matrix H is the responsible
to correlate measurements and estimations of different quantities within the
algorithm.

So far, the application of the Kalman filter in linear systems has been presented.
This methodology cannot be applied when there are time-dependent variations in the
state transition matrix A and/or in the state matrix for the measurement H, i.e.
nonlinear systems. In these cases, the Extended Kalman filter is used to estimate the
system outputs. In a simple manner, the next equations present the difference
between the conventional (or linear) Kalman filter and the Extended Kalman filter
that shall be considered for nonlinear systems.

Thus, the algorithm for the application of the Extended Kalman filter, shall be able
to introduce the non-linearities presented by Eqs. (6) and (7). Figure 1 illustrates the
diagram used to develop the computational code considering the Extended Kalman
filter for the tower model. It is possible to consider a linearization technique through
the Jacobian matrix, as follow:

Axk ) f xkð Þ;A � ∂f
∂x

∣x̂k (6)

Hxk ) h xkð Þ;H � ∂h
∂x

∣x̂k (7)

The objective of this Chapter is to give a brief explanation about Kalman filter
theory and focus on the application of the algorithm in an engineering problem. There
are several good references for a deeper explanation about linear and nonlinear
Kalman filtering methodology, such as presented in [3, 4].
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3. Determination of the natural frequencies of the stay cables

Based on the proposed methodology to estimate the displacement of the tower
using EKF, it is first necessary to define a relation between the actual stay cable force
and the natural frequencies of this component. This mathematical relation is based on
the equation of the uni-dimensional wave propagation in a cable fixed in both
extremities. In [5], Steidel proposed an equation for cables with different lengths and
cross sections. The steel cables used in the mockup tower have a core fiber, which
presents a nonlinear behavior and different dynamic responses when compared to the
all-metal cable of the theory presented in [5]. Thus, a verification of these cables was
proposed in the Dynamic Testing Laboratory (LabEDin) at UNICAMP, to determine
the actual relationship between cable force and natural frequencies.

Figure 2 shows the devices used in LabEDin to apply the forces and determine the
natural frequencies of the cable with the same equivalent length of the stay cables of
the mockup tower. The load was applied in the cable through a hydraulic cylinder and
the acceleration signals were measured from both sensors at the positions of Le=2 and
Le=4 of the cable equivalent length Le ¼ 4:3m. It was observed that there are no
significant differences to determine the natural frequencies from the PSDs, with or
without impacts on the cable.

The experiment consists of applying constant loads from 1000 to 2600 N with an
increment of 100 N and determine the first three natural frequencies of the cable from
the measured signals. The variation of the cable length was also taken into account, as
presented in [6], to define the equation that relates the natural frequency as a function
of the cable force. The Eq. (8) shows this relationship for the 1=400 diameter steel wire
ropes used to clamp the tower.

Figure 1.
Representation of the extended Kalman filter algorithm.
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ωn ¼
0:3027n

ffiffi
F
μ

q

Le
0:718 (8)

where:

ωn Natural frequency of the cable [Hz]

n Mode of vibration [�]

F Tensile force on the cable [N]

μ Linear mass density [kg/m]

Le Equivalent cable length [m]

Figure 3 presents the measured natural frequencies of the first three vibration
modes of the cable, compared with the values calculated using Eq. (8) as a function of
the applied force. It is possible to notice that an accurate approximation of the calcu-
lated values was achieved using the equation, which allows considering this procedure
to determine the cable forces via accelerometers as input to the EKF algorithm.

4. Dynamic model of the guyed tower

A successful application of the Extended Kalman filter, depends on a well defined
system model and the reliability of the outputs is directly related to the ability of the
model to reproduce the physics of the actual mechanical structure. The dynamic

Figure 2.
Device for testing the stay cable of the mockup tower.
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model of the guyed tower was developed to provide fast responses as function of the
force variation on the stay cables.

Figure 4 shows the picture of the tower assembled in LabEDin, indicating the
position of the inclinometer, accelerometers and load cells. There is one accelerometer
(triaxial) and one load cell (S-type) per stay cable. The load cells are used just to
validate the calculation of the cable force using Eq. (8). The structure of the mockup
tower was designed based on a 1:5 scale of a power line tower with 22.5 meters height.

The dynamic equations of the tower model were defined considering the Lagrange
function [7], as presented in Eq. (9). The angles θx,θy,θz at the bottom point of the
tower are considered as generalized coordinates, with i ¼ 3, defining the number of
degrees of freedom (DOF) of the model:

d
dt

∂L
∂ _qi

� �
� ∂L
∂qi

¼ Qi (9)

with:

L ¼ T � U ¼ Tv þ Tω � Ug þ UK þUKt

� �
(10)

Figure 5 shows the proposed model of the guyed tower. In this figure are presented
the main dimensions of the mockup tower and the global system of coordinates. The
structure can rotates freely in the three direction at the pivot point represented by the
green circle.

The kinetic energy shown in Eq. (10) is determined as follows:

Tv þ Tω ¼ 1
2
m v2cg þ

1
2

Ixx _θ
2
x þ Iyy _θ

2
y þ Izz _θ

2
z

� �
(11)

Figure 3.
Comparison between the measured and calculated natural frequencies of the first three modes, as a function of the
cable load.
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Considering small oscillations of the tower, it is possible to define the partial
derivatives of the kinetic energy of Eq. (11).

d
dt

∂T
∂ _θx

� �
¼ mzcg þ Ixx
� �

€θx (12)

d
dt

∂T
∂ _θy

 !
¼ mzcg þ Iyy
� �

€θy (13)

d
dt

∂T
∂ _θz

� �
¼ Izz€θz (14)

With the moments of inertia referring to the center of gravity of the model, the
total potential energy can be defined according to the Eq. (15).

Figure 4.
Structure of the mockup tower assembled in LabEDin, with the indication of the sensor positioning.
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Ug þUK þUKt ¼ m g zcg cos θx cos θy þ
X4
j¼1

1
2
kj Lc � Lcnð Þ2j þ⋯

⋯þ 1
2
ktxθ

2
x þ

1
2
ktyθ

2
y þ

1
2
ktzθ

2
z

(15)

In our case, it is possible to consider only small oscillations of the tower and
disregard the torsional stiffness around the base pivot point, without loss of accuracy
in the results. Thus, the total potential energy is equivalent to the elastic potential
energy and its partial derivatives are shown in Eq. (16):

∂U
∂θx,y,z

¼ ∂UK

∂θx,y,z
¼
X4
j¼1

kj Lc � Lcnð Þj
∂Lcj

∂θx,y,z
(16)

Finally, based on the definition of Eq. (9), it is possible to determine the system of
second order differential equations for the tower motion according to Eqs. (17)-(19):

m zcg þ Ixx
� �

€θx �
X4
j¼1

kj Lc � Lcnð Þj
∂Lcj

∂θx
¼ Qθx (17)

m zcg þ Iyy
� �

€θy �
X4
j¼1

kj Lc � Lcnð Þj
∂Lcj

∂θy
¼ Qθy (18)

Izz€θz �
X4
j¼1

kj Lc � Lcnð Þj
∂Lcj

∂θz
¼ Qθz (19)

Figure 5.
Simplified structure considered to build the dynamic model of the tower for the EKF application.
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The numerical values of the tower properties are: m ¼ 90:7kg, Ixx ¼ 269:53kgm2,
Iyy ¼ 194:95kgm2, Izz ¼ 76:53kgm2. Considering the free vibrations of the tower, the
dynamic equations of the movement can be written as shown in Eq. (20):

Mx€θx ¼ �Cx _θx � Kx f θx, θy, θz
� �

My€θy ¼ �Cy _θy � Ky f θx, θy, θz
� �

Mz€θz ¼ �Cz _θz � Kz f θx, θy, θz
� �

8>>>>>><
>>>>>>:

(20)

It is important to highlight that the values in M, K and C are dependent on the
variations in all DOF of the corresponding axes (θx,θy,θz). The Eq. (21) expresses the
dynamic behavior of tower, through the first order differential state equations for free
vibrations.

_x tð Þ ¼ Ax tð Þ (21)

With:

x tð Þ ¼ θx θy θz _θx _θy _θz
� �T

(22)

The time-variant state transition matrix A has the following aspect:

A ¼ 0 I
�M�1K �M�1C

� �
¼ A 1, 1ð Þ A 1, 2ð Þ

A 2, 1ð Þ A 2, 2ð Þ

" #
(23)

And the sub-matrices A 2, 1ð Þ and A 2, 2ð Þ can be defined respectively according to
Eqs. (24) and (25).

A 2, 1ð Þ ¼

�K1,1

Mx
�K1,2

Mx
�K1,3

Mx

�K2,1

My
�K2,2

My
�K2,3

My

�K3,1

Mz
�K3,2

Mz
�K3,3

Mz

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(24)

Where Ki,j depends on the cable characteristics and disposition.

A 2, 2ð Þ ¼

� Cx

Mx
0 0

0 � Cy

My
0

0 0 � Cz

Mz

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(25)
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5. Tower movements estimate based on EKF algorithm

During 1 year, several tests were carried out in the UNICAMP’s laboratory to
simulate the foundation failures of the guyed tower. Systematic relaxation of the stay
cables was introduced by unscrewing the tensioners close to each base. Figure 6
presents the cable assembly and the position of the devices. The measurements of
the accelerometers, load cells and inclinometer are made in time-domain every
15 minutes. Table 1 shows the specification of the sensors used in the tower
monitoring.

The signal acquisition of all sensors was performed using LMS SCADAS Mobile
SCR05®manufactured by Siemens, which has a total of 40 ADC channels. The system
was configured with a frequency sampling rate of 256 Hz and an acquisition time of
64 seconds for each measurement. Every sensor generates signals with 16,384 points
per channel and Figure 7 presents the picture of the data acquisition system.

Figure 6.
Devices for the force measurements and load application at the stay cable.
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5.1 Definition of the extended Kalman filter parameters

The variation of the stay cable force promote strain variations, which are
converted into displacements projected on plane X, Yð Þ at the connecting points of
two cables to the tower, i.e. Points 5 and 50 presented in Figures 5 and 8. The Eqs. (26)
and (27) present the formula to calculate the displacements based on the cable force
determined by the measured natural frequency.

δ5 ¼ F2

k2
þ Lcn2

� �
� Lf 2 �

F1

k1
þ Lcn1

� �
þ Lf 1

� �
÷2 (26)

δ50 ¼
F3

k3
þ Lcn3

� �
� Lf 3 �

F4

k4
þ Lcn4

� �
þ Lf 4

� �
÷2 (27)

Where: Fj = Force at cable j.
The stiffness of the cable presented in Eqs. (26) and (27) can be calculated

according to Eq. (28) and considering the characteristics of the steel wire rope used in
the mockup tower (Φ=14″, class 6�7, fiber core), the equivalent elasticity modulus
and the cross section area are respectively 88,200 MPa and 16.1792 mm2. This infor-
mation can be verified in [8].

kj ¼ EcAc

Lf j

(28)

Sensor Model/Characteristics

Accelerometera PCB Piezotronics® 356A15, ICP®, Triaxial

Load cellb Alfa Instruments®, S-type, Stainless Steel, Capacity of 500 kg

Inclinometera Fredericks Company®, 0729-1760-04, Interface RS485 USB, Dual-axis
aEKF estimations consider the sensor fusion from the signals of the accelerometers and inclinometer.bLoad cells are used
only to validate the forces calculated indirectly by the accelerometers.

Table 1.
Specification of the sensors used for the measurements.

Figure 7.
Simens LMS SCADAS® used for the signal acquisition of the mockup tower.
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With the displacements of these points it is possible to define the rotation angles of
the structure in respect to X,Y axes. The displacements not related to variations in the
average cable force, e.g. moderate wind condition, can be quantified according to
Eqs. (29)-(31). These angles correspond to the indirect measured elements of vector
zδ, considering δ5 as the average displacement of Points 5 and 50.

zδx ¼ arcsin
δ5 cos 90� γð Þ cos 180� αð Þ

h

� �
(29)

zδy ¼ arcsin
δ5 cos 90� γð Þ sin 180� αð Þ

h

� �
(30)

zδz ¼ arcsin
δ5 cos 90� γð Þ sin 180� αð Þ

a

� �
(31)

On the other hand, the stay cable relaxation promotes a decrease in average force F
and this reduction is also responsible to generate proportional rotations of the tower in
respect to X,Y axes. From the mathematical model of the tower we can define the
Eqs. (32) and (33), which present these relations. It is possible to observe, that the
equations indicate zero inclinations when the average force is approximately 2600 N,
which is the assembly preload of the cables.

zFx ¼ 4:32 � 10�3 � 1:659 � 10�6 F (32)

zFy ¼ 4:91 � 10�3 � 1:883 � 10�6 F (33)

The sensor fusion technique is shown in Figure 9. It presents the input measure-
ments consisted by the inclinometer angles zθx ,zθy and the stay cable forces F, which

are calculated from the natural frequencies ωn determined by the accelerometer
measurements.

A question that often comes up is why not just measure angles using the inclinom-
eter to monitor the structural health of the tower. The reason is that there may be a
situation where two symmetrically opposite guyed cables exhibit approximately the

Figure 8.
Dynamic model of the tower. Top view details.
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same amount of relaxation. In this case, the position of the top center of the tower
presents practically no angles measured by the inclinometer in X,Y directions, but the
average stay cable force will decrease. This situation can lead to an unstable structural
condition with high-intensity winds affecting the tower. Thus, only inclination angles
of the guyed tower cannot inform the actual integrity of its structure.

According to the presented methodology, the extended Kalman filter can only
estimate the absolute value of the displacement. Fusing this information with the
inclinometer data, it is possible to define the direction of this displacement and it also
helps to indicate the cable that presented the failure. The tower inclinations due to the
thermal expansion of the structure can be verified by the consideration of the incli-
nometer measurements.

The state transition matrix changes with rotation angles θx, θy and θz, which are
estimated for each interaction of the algorithm after the calculation of the cable forces
from the measured natural frequencies. In our case, the estimate vector is defined
according to:

x̂k ¼ θ̂x θ̂y θ̂z _̂θx _̂θy _̂θz

h iT
(34)

In the sequence, the matrices considered in the EKF algorithm will be presented.
These matrices are determined from known analytical results of the tower dynamic
model, i.e., by applying forces at the tower structure and considering its responses as
targets for EKF estimates. The state matrix for the measurements:

H ¼
0:50 0 0 0 0 0

0 0:47 0 0 0 0

0 0 1 0 0 0

2
64

3
75 (35)

The noise covariance matrix of the state transition:

Q ¼ 10�3 �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

(36)

The covariance matrix of the measurement noise:

Figure 9.
Sensor fusion considered to estimate the tower movements.
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R ¼ 5 �
1 0 0

0 1 0

0 0 1

2
64

3
75 (37)

Note: Null values were adopted as initial conditions for EKF estimate and error
covariance.

The Eq. (38) shows the measurement vector at instant k considered as an input to
the EKF, considering the weighting factors Ψδ,ΨF,Ψθ for each sensor quantity.

zk ¼ Ψδ

zδx
zδy
zδz

2
64

3
75þ ΨF

zFx

zFy

0

2
64

3
75þΨθ

zθx
zθy
0

2
64

3
75 (38)

In our case, the given weights to the cable force data are Ψδ ¼ 0:48; ΨF ¼ 0:10 and
the weight for the inclinometer measurements is Ψθ ¼ 0:42.

5.2 Experimental procedure

Now will be presented some simulation of failures, which can occur in the real
tower due to the degradation of the foundation, caused as an example, by the erosion
of the soil. The tensioners of two symmetrically opposite cables were unscrewed,
promoting the relaxation of the stays. Each turn of the tensioner generates a displace-
ment of 4.20 mm along the direction of the cable.

Initially, the stay cables are fixed with an average force of 2600 N with the
inclinometer indicating zero degree with respect to X and Y axes. Figure 10 presents

Figure 10.
Locations of the interventions to simulate the failures.
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Figure 11.
Comparison between average cable forces: measured with the load cells and calculated with Eq. (8).

Figure 12.
Tower top view showing the stay cable numbering and the considered coordinate system. In the central region there
are the estimate displacements.

35

Extended Kalman Filter for a Monitoring System of the Guyed Towers
DOI: http://dx.doi.org/10.5772/intechopen.107077



the sequence of events to estimate the position of the top center of the tower. It
consists of 96 measurements performed during every 24 h, when some manual inter-
vention was made on the cable tensioners.

In this case, after the relaxation of Cable 1, the EKF estimates the position of the
top center of the tower. Subsequently, the tensioner was re-tightened to its initial
position and then, the tensioner of Cable 3 was released for new estimates of the tower
position. In a real situation, this test represents two failures separated by one tower
maintenance intervention.

After 4 days, the test was completed and Figure 11 compares the average force on
the stay cables measured with the load cells, with the average force calculated from
the natural frequencies obtained from the accelerometer measurements.

A top view of the tower showing the numbering of the support cables, the consid-
ered coordinate system and the estimated displacements in the central region based on
Extended Kalman filter can be seen in the Figure 12.

A detailed view of the estimated displacements for each different condition
imposed to the mockup tower can be seen in Figure 13. It is possible to observe three
groups of points. The central group of points (in a red ellipse) shows the top position
for the stay cables in normal conditions, i.e. immediately after assembly with an
average force of approx. 2600 N. On the left, it is possible to see a group of points
inside of a dashed green ellipse, which presents the positions after the release of the

Figure 13.
Detail of the estimate displacements of the tower top center based on the extended Kalman filter algorithm.
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Cable 1 tensioner by one turn. As expected for this case, the top center moves slightly
to the location symmetrically opposite of the foundation of Cable 1.

Starting from the second normal condition of the tower (after re-tightening the
tensioner of Cable 1), there was a release of two turns in the tensioner of Cable 3, that
moves slightly the top center position to the symmetrically opposite location of the
Cable 3 foundation and these points are shown within a dashed cyan ellipse on the
right side of the figure.

Continuing the analysis of Figure 13, it is also possible to observe the variations of
the top position within each group of points, mainly along X-axis direction. These
variations are due to the fluctuations in lab temperature during the 24 hours of each
test. Basically, when the temperature increases the tower bends in the +X direction,
while at night with the decrease in temperature the tower bends in the -X direction.
The non-perfect symmetry of the mockup tower and the oblique incidence of sun rays
during the day, contribute to the lateral movements in the Y-axis direction.

Figure 14 summarizes the adopted procedure, which starts by considering the
accelerometer measurements in time-domain and ends with the EKF estimate for the
tower top position. It is important to note that the code is able to evaluate the
structural health of the guyed tower, not only for large movements of the top, but also
for low average force on the stay cables.

Figure 14.
Procedure to estimate of the tower top center position starting from cable acceleration measurements.

37

Extended Kalman Filter for a Monitoring System of the Guyed Towers
DOI: http://dx.doi.org/10.5772/intechopen.107077



6. Conclusions

The EKF was considered to estimate the displacements of the upper part of a
mockup of a guyed tower in the laboratory. A MATLAB code was developed to execute
the algorithm that indicates the behavior of the structure with a very good accuracy.

Stay cable relaxation is the type of failure that is judged to be more usual in the
field. This situation was simulated extensively with good approximation between real
and estimate values. The equation defined to establish the relation between the natural
frequency and the cable force has indicated to be a reliable procedure, as an alterna-
tive substituting load cells to evaluate variations of the cable force over the time. The
load cell is recommended only for initial measurements of the stay cable preload, for
the adjustment of the cable equivalent length. After this step, the cable force can be
monitored only by the accelerometers.

The influence of the transmission line conductors in the dynamic responses of the
structure of the tower is considered negligible and due to this fact, the mockup tower
in the laboratory does not have elements that simulate the influence of the conductors.
According to [9], the electrical insulators promote some decoupling of the eolian
vibrations that excite the transmission lines.

Sensor fusion considering the accelerometers and inclinometer, proved to be the
best option to indicate the structural integrity of the mockup tower considering the
stay cable relaxation, responses to external loads and tower thermal expansion. The
individual consideration of those sensors cannot provide a reliable report about the
guyed tower health. As explained previously, the inclinometer alone cannot indicate
the inclination of the structure if two symmetrically opposite cables are losing preload.
From the obtained results, the behavior of the real guyed towers is expected to be very
similar to those simulated in the laboratory.
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Nomenclature

x̂k estimated value at instant k
Pk error covariance at instant k
A state transition matrix
Q noise covariance matrix of the state transition
Kk Kalman gain at instant k
R covariance matrix of the measurement noise
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H state matrix for the measurement
zk measured signal at instant k
zδ rotation signals from the cable strain
zF rotation signals from average the cable force
zθ rotation signals from the inclinometer
ωn natural frequency
n mode of vibration
Le equivalent cable length
F cable tensile force
μ cable linear mass density
Tv translational kinetic energy
Tω rotational kinetic energy
Ug gravitational potential energy
UK linear elastic potential energy
UKt torsional elastic potential energy
Q external load
vcg velocity of the tower’s center of gravity
zcg height of the tower’s center of gravity
m mass of the tower structure
g gravitational acceleration
Ixx,yy,zz moments of inertia referred to the center of gravity
θ tower angles (in x,y,z axes)
M mass matrix
C damping matrix
K stiffness matrix
k stay cable stiffness
kt tower torsional stiffness at pivot base point
h height of the tower
a half length of the tower upper structure
Lc stay cable instantaneous length
Lcn stay cable assembly length with preload
Lf stay cable free length
Ec equivalent Young modulus of the cable
Ac equivalent cross sectional area of the cable
Ψδ,F,θ weighting factors for the measured quantities

Abbreviations

DOF degrees of freedom
EKF extended Kalman filter
IoT Internet of Things
LabEDin dynamic testing laboratory
PSD power spectrum density
RF radio frequency
UNICAMP University of Campinas
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Chapter 3

Detection and Localization of a
Failure in a Pipeline Using a
Kalman Filter: An Intelligent
Integrated Approach Powered by
Bayesian Classification
Rajamani Doraiswami and Lahouari Cheded

Abstract

An integrated approach, based on the fusion of Model-Based Approach (MBA) and
Model-Free Approaches (MFA) and powered by Bayesian classification, is proposed
to ensure high probability of correct estimation of leakage detection and localization
with low false alarm probability to prevent disastrous consequences to the economy
and environment. To ensure mathematical tractability, the nonlinear model is better
approximated using linear parameter-varying (LPV) model at various operating
points indicated by scheduling variables. Flows at various pipeline sections are mea-
sured and transmitted wirelessly to a monitoring station. If there is a difference in the
flows across a section, it indicates a leakage, and a drone is then sent to determine the
exact location of the leakage. The pipeline trajectory is accurately estimated by a
human operator. Using the input and the trajectory output, termed signal, an Auton-
omous Kalman filter (AKF) is designed to ensure accurate tracking of the desired
trajectory. The emulator-generated data are used to identify the system, complement
historical data to MFA, and develop the classifier fusion. The leakage is sequentially
diagnosed by judiciously selecting the most appropriate approach (MFA or MBA) to
ensure a fast and accurate diagnosis. The proposed scheme was evaluated on a
physical system.

Keywords: leakage diagnosis, emulators, emulator generated data, Kalman filter,
sequential diagnosis, Bayes’ classifier fusion, trajectory tracking, nonlinear two-tank
model, linear parameter-varying model, signal model, disturbance model,
measurement noise, model-based approach, model-free approach

1. Introduction

The pipelines are widely used for transporting fluids such as water or petroleum
products such as fossil fuels, gases, chemicals, and other essential hydrocarbon fluids.
The pipeline network covers thousands of kilometers. The effect of leak manifests as a
sudden decrease in the pressure in the flow rate of fluid being transferred. Leakage in
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pipes and storage tanks occurs due to factors such as faulty joints, excessive stress,
aging, and holes caused by corrosions [1–10]. The leakage detection methods consist
of manual inspection by trained linesmen, satellite imaging, and in recent years by
autonomously guided drones flying over the pipeline route. The drone performs
pipeline condition assessment and mechanical damage and cracking on above ground
structures. It can be designed to detect fatigue cracking, corrosion, or other defects
that cannot be observed from ground.

Classifier fusion: A Model-Based Approach (MBA) and different Model-Free
schemes, lumped under the heading of Model-Free Approach (MFA) are used here.
The MBA includes a Kalman filter (KF), an extended Kalman filter (EKF), an
observer, and a system identification stage. For a process with an unknown model, the
model-free approaches are used. In practical situations, a fusion of model-based and
model-free approach; combination of the analytical and knowledge-based methods
may be the most appropriate solution.

Physical system: A wider class of physical dynamic systems is nonlinear containing
nonlinearities such as saturations, rate limiters, dead-zones, backlash, and turbulence.
The analysis, design, estimation, identification, and control of nonlinear system are
not mathematical intractable. As there is a wealth of tools for the analysis and design
of linear systems, in the recent years, the Linear Parameter-Varying (LPV) systems
have received a lot of attention [11, 12]. The piecewise-linear model approach helps
develop computationally simple, efficient, and robust schemes for identification,
design of Kalman filter, fault detection, and isolation. The LPV paradigm has become
a standard formalism in systems and control, for analysis, synthesis of controllers, and
even system identification.

The output of the system is a sum of signal, disturbance, and measurement
noise. A signal is the desired waveform while the disturbance and the measurement
noise are termed as “noise.” Wind gusts, pressure variations, and fluctuations in the
flow affect the system output and are all treated as system disturbances whose
effects are to be mitigated at least [2–8]. It is assumed that the stochastic
disturbance and measurement noise are zero mean Gaussian processes, and that
the signal, disturbance, and measurement noise are mutually uncorrelated with
each other.

The principle states output will track desired trajectory if and only if the structure
of a controller contains a) an internal model of the desired trajectory driven by the
tracking error between the output and desired trajectory, and b) the closed loop
system formed of the plant and the internal model is asymptotically stable.

The internal model principle governs the structure of the Kalman filter, which
state that the residual is a zero mean white noise process if and only if the Kalman filter
is a copy of the system model and driven by the residual, which the error between the
output and its KF estimate. The optimality and robustness of the KF estimates are two
important features of our proposed integrated approach which are both discussed in
detail in [13].

1.1 Kalman filter and its properties

The KF forms the backbone of the proposed detection and localization scheme in
view of its key properties [12–18].

Internal model structure: The principle states output will track desired trajectory if
and only if the structure of a controller contains a) an internal model of the desired
trajectory driven by the tracking error between the output and desired trajectory, and

44

Kalman Filter - Engineering Applications



b) the closed loop system formed of the plant and the internal model is asymptotically
stable.

The internal model principle governs the structure of the Kalman filter, which
states that the residual is a zero mean white noise process if and only if the Kalman
filter is a copy of the system model and driven by the residual, which the error
between the output and its KF estimate. The optimality and robustness of the KF
estimates are two important features of our proposed integrated approach, which are
both discussed in detail in [13].

1.2 Identification using the residual of the KF

The fundamental requirement of identification is that the leftover from identifica-
tion, namely the residual, is a zero-mean white noise process that contains no infor-
mation. To meet this requirement, the following model-matching property of the
Kalman filter

• The identified model is accurate if and only if the KF residual is a zero mean white
noise process

Hence, the residual of model of the KF associated with the system is identified. The
order of the identified model is determined from the minimal order that ensures that
the identification error is a zero mean white noise process. Further there is no need for
an a priori knowledge of the variance of the disturbance and measurement noise
avoiding thereby solution of Riccati equation.

In model-based, model-free, and classifier fusion approach, it is crucial to provide
representative and sufficient data covering the normal, perturbed, and fault-bearing
operating scenarios resulting from the variations of the subsystems. As the parame-
ters’ subsystems are generally inaccessible, the data are generated indirectly by
performing several off-line experiments to mimic likely operating scenarios. In
model-based scheme, the emulator-generated data are used in identification of the
system and the associated Kalman filter to ensure that identified models are robust to
model perturbation and are significantly more accurate compared with that obtained
using the classical approach of using merely the input and the output without includ-
ing the perturbed models [13, 14].

The model-free approaches include Limit Checking, Visual, and Plausibility (LVP)
analysis, Artificial Neural Network (ANN), Fuzzy Logic (FL), and Adaptive
Neuro-Fuzzy Inference System. (ANFIS) [13–15]. The model-based approach using
Kalman filtering is widely used for fault diagnosis [4, 6, 10, 12–18]. The model-free
approach can readily learn the distinguishing features that help classify the system as
either normal or abnormal and then isolate the faulty subsystem. However, these
model-free approaches suffer from some disadvantages. For ANN, there is a lack of
transparency, a need for a long-, and rich-enough training data covering most, if not
all, operational scenarios, and a possibly lengthy training time. Although more
transparent than ANNs, FL techniques face the problem of expressing the knowledge
in the form of “if-and then” rules from the vast amount of data and from the
experts’ knowledge and experience. For more accuracy, the number of these rules can
increase to an unacceptably large number. To overcome this problem, a combination
of ANN and FL, termed ANFIS, has been proposed in recent years. However, the
problem of detecting incipient faults, their fault size, and predicting the occurrence
of a fault using these model-free approaches remains an unsolved and important
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challenge. On the other hand, the model-based method could detect and isolate
incipient faults as the model captures the complete behavior of the static and the
dynamic behaviors of the system. The model predicts the behavior of the system as
well as unforeseen operating scenarios, including total failure, with good accuracy.
However, the behavior of a physical system at all operating points, especially the
nonlinear ones, cannot be captured accurately in the form of a mathematical
model [13].

In model-based, model-free, and classifier fusion approach, it is crucial to provide
representative and sufficient data covering the normal, perturbed, and fault-bearing
operating scenarios resulting from the variations of the subsystems. As the parame-
ters’ subsystems are generally inaccessible, the data are generated indirectly by
performing several off-line experiments to mimic likely operating scenarios. In
model-based scheme, the emulator-generated data are used in identification of the
system and the associated Kalman filter to ensure that identified models are robust to
model-perturbation and are significantly more accurate compared with that obtained
using the classical approach of using merely the input and the output without includ-
ing the perturbed models.

The model-free approaches include limit checking, visual, and plausibility analysis
(LVP), artificial neural network (ANN), fuzzy logic (FL), and adaptive neuro-fuzzy
inference system (ANFIS) [14, 15].

Practical systems are notoriously known to be complex and nonlinear in nature and
hence do not lend themselves to mathematically tractable identification, analysis, and
design techniques that span the entire operating region. This difficulty is further
exacerbated for highly nonlinear systems. This therefore renders the use of the MBA
schemes to capture both the static and dynamic behaviors of the system, difficult to use
directly on the original system. On the other hand, the MFA schemes, by virtue of their
independence of, and hence non-reliance on, a system model, can be readily used to
learn the distinguishing features that help classify the system as either normal or
abnormal and then isolate the faulty subsystem. However, these model-free
approaches suffer from some disadvantages. For ANN, there is a lack of transparency,
a need for a long- and rich-enough training data covering most, if not all, operational
scenarios, and a possibly lengthy training time. Althoughmore transparent than ANNs,

Fuzzy Logic (FL) techniques face the problem of expressing the knowledge in the
form of “if-and then” rules from the vast amount of data and from the experts’
knowledge and experience. For more accuracy, the number of these rules can increase
to an unacceptably large number. To overcome this problem, a combination of ANN
and FL, termed ANFIS, has been proposed in recent years.

However, the problem of detecting incipient faults, their fault size, and predicting
the occurrence of a fault using these model-free approaches remains an unsolved and
important challenge. On the other hand, the model-based method could detect and
isolate incipient faults as the model captures the complete behavior of the static and the
dynamic behaviors of the system. The model predicts the behavior of the system as well
as unforeseen operating scenarios, including total failure, with good accuracy [10–13].
However, the behavior of a physical system at all operating points, especially the
nonlinear ones, cannot be captured accurately in the form of a mathematical model.

The decision of the hypotheses from different classifiers is fused with a view to
improving the probability of correct decision with low false alarm probability com-
pared with that obtained by using any one of the classifiers [14]. In the proposed
combined approach, the critical information about the presence or absence of a fault is
gained in the shortest possible time via the faster model-free schemes such as the LVP.
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A more accurate and detailed status of the subsystems is unfolded sequentially by the
slower model-based scheme. The combined classifier scheme then fuses the decisions
from both approaches, using a Bayes' weighted fusion method [19].

Autonomous Kalman filter: The pipeline is generally laid underground to transmit
fluid flow from the source to destination over a very long distance. A trained human
operator tracks the trajectory of the pipeline. It is difficult and time-consuming job to
track the pipeline trajectory. A Kalman filter is designed using the input and output of
the human operator. It is autonomous and replaces human operator and drives the
drone accurately, efficiently, and quickly. When a leak is detected in a pipeline section,
the drone is sent to the section to detect and locate the exact location from pipeline
condition assessment, mechanical damage, and cracking. It can be designed to detect
fatigue cracking, corrosion, or other defects that cannot be observed from ground [2].

1.3 Major contributions

The proposed scheme extends the conventional fault diagnosis approach to a wider
class of MIMO Box-Jenkins model [13]. As this model is more general than conven-
tional ones, such as AR, MA, and ARMA, it then has wider applications that may
include models of systems such as transient flow in pressurized pipes and boiler-steam
water flow. The emulator-generated data cover both normal and abnormal operating
scenarios including various types of faults.

The emulator-generated data are employed in: (a) the identification of the system,
the Kalman filter design, and fault isolation method in the model-based scheme, (b) in
training the model-free schemes, and (c) in classifier fusion to ensure that the decisions
made by both approaches are based on the same set of sufficient and representative
data ensuring that all the diagnosis schemes are provided with a level playing field. In
our proposed symbiotic approach, the performance of classifier fusion is significantly
superior to that of using only a model-based or a model-free scheme, especially when
the system such as a process control system is nonlinear. When the system is operating
in the linear region, the performance of the model-based scheme is better while the
model-free scheme such as ANN and ANFIS. However, the latter scheme outperforms
the former one in the nonlinear operating region. The classifier fusion scheme ensures
high probability of correct decision with low false alarm probability. The model-based
scheme can detect incipient faults so that a proactive action such as a condition-based
maintenance can be taken. Thanks to the availability of a reliable and accurate model,
the emulators help predict likely operating fault scenarios.

When a leak is detected in pipeline section, the drone is driven autonomously to
that section mimicking the human operator as it were ensuring timely leakage diag-
nosis, process safety, and environmental protection.

The paper is organized as follows: Section I gives an overview of the proposed
scheme covering model-free and model-based schemes. In section 2, the two-tank
nonlinear process control system is developed. The system is shown to be governed by
a Box-Jenkins model and the identication of associated Kalman filter is developed.
Section 3 presents the Kalman filter and its key properties. Section 4 gives details of
the sequential fault diagnosis and discusses both the model-free schemes and the
classifier fusion. Section 5 gives further details of the model-free schemes. Section 6
discusses only some important details of the model-based schemes as these have been
amply discussed in some of referenced previous works. This section also evaluates the
successful performance of the proposed scheme on a benchmark laboratory-scale
process control system. Finally, section 7 gives the conclusion.
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2. System model

The nonlinear model of the two-tank process control system exhibiting turbulence
is approximated by piecewise linear dynamic model at each operating point using LPV
approach [20]. Figure 1 shows a two-tank process control system formed of two
tanks, namely process, consumer tank denoted tank 1 and tank 2, respectively, a
controller, and a pump. The controller is designed to maintain fluid level h2(t) at
specified reference level r(t) and is driven by the tracking error, er(t)=r(t) -h2(t). The
control input u(t) drives a pump to supply the fluid to the tank 1 and q1is the inflow.
The fluid level of the tank 1 is h1(t). A long pipeline connects the two tanks and is r(t)
subjected to a leak ql at some section of the pipe. The outflow q12 of the tank 1 and q12l
is the inflow to the tank 2.

The tanks are cylindrical, and the height of the process tank h1 is higher than that
of the consumer tank h2, that is h1 ≥ h2. The two tanks are connected by a long
pipeline. The pressures exerted by the tank 1 and 2 at their end of the pipe are
respectively ρgh1 and ρgh2, where ρ is the density of the fluid and g is the acceleration
due to gravity. Since the flow is proportional to the pressure difference, fluid flows
from tank 1 to tank 2. In the absence of a leak in the pipeline, the outflowq12 is:

q12 ¼ ρg h1 tð Þ � h2 tð Þð Þ (1)

In the presence of a leak, we get:

q12ℓ ¼ ρg h1 tð Þ � h2 tð Þð Þ � qℓ (2)

Invoking the principle of conservation of mass, the rate of change in the volume of
the tank is the difference between the inflow and outflow. Rate of change in the
volume V1 of the tank 1 is the difference between the inflow and outflow:

dV1

dt
¼ A1

dh1
dt

¼ q1 � q12 � qℓ (3)

Hence, we get:

A1
dh1
dt

¼ q1 � q12 � qℓ (4)

Where A1 is the cross-sectional area of tank 1.

R12 h1 � h2ð Þ ¼ q12 (5)

Figure 1.
Two tank process control system.
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Where R12 is the resistance to flow between tank 1 and tank 2;
Using (4) and (5) yields:

A1
dh1
dt

¼ q1 � R12 h1 � h2ð Þ � qℓ (6)

Similarly, the rate of change in the volume V2 of the tank 2 becomes:

dV2

dt
¼ A2

dh2
dt

¼ q12 � qℓ � q2 (7)

A2
dh2
dt

¼ q12 � qℓ � q2 (8)

WhereA2 is the cross-sectional area of tank 2, and q2 is the outflow; As the flow is
proportional to the pressure difference, we get:

R2h2 ¼ q2 (9)

Where R2 is the resistance to outflow.
Remarks: In the laminar flow all the resistances, namely R12 ¼ d h1�h2ð Þ

dq12
in (5) and

R2 ¼ dh2
dq2

in (9) are constant as the flow is laminar. For turbulent flow, these resistances

are not constant and are a nonlinear function of the height:
R12 ¼ d h1�h2ð Þ

dq12
¼ ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � h2

p
; R2 ¼ dh2

dq2
¼ ξ

ffiffiffiffiffi
h2

p
;ξ is a constant

Eliminating q12 and q2 from the above Eqs. (7) and (8) yields:

A2
dh2
dt

¼ R12 h1 � h2ð Þ � R2h2 � qℓ (10)

The continuous-time state space model is derived from (6) and (10), yields:

dh1
dt
dh2
dt

2
664

3
775 ¼

�R12

A1

R12

A1

R12

A2
�R2 þ R12

A2

2
664

3
775

h1
h2

� �
þ

1
A1

0

2
4

3
5q1 �

1
A1

1
A2

2
664

3
775qℓ (11)

All the equations thus far including (11) are continuous. A linear discrete-time
model is obtained by sampling the inputs and the outputs and the signals at uniformly
spaced times as it is mathematically tractable, provided the time step is small-based,
and there is a wealth of readily available and powerful analysis and design tools to use
for such linearized models [21]. For example, the state-feedback controller based on
the internal model principle, key properties of Kalman-filter-based system identifica-
tion using residual model of KF, which for a linear system gives necessary and suffi-
cient, whereas a nonlinear controller such as adaptive one provides only sufficient
condition. Conventional approach based on observer, nonlinear filters, other
nonlinear device cannot handle stochastic disturbance and measurement noise or
gives only sufficient condition.

Closed-loop configuration: The MIMO system operates in a closed-loop configura-
tion so the desired outputs to be regulated, denoted by yr kð Þ, such as the height, track
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the reference yr kð Þ as shown in Figure 2. The controller Gc zð Þ is driven by the error
between the reference and the output to be regulated r zð Þ � yr zð Þ

u zð Þ ¼ Gc zð Þ r zð Þ � yr zð Þ� �
(12)

The signal model Gs zð Þ is a cascade, parallel, and feedback combination of sub-
systems such as the actuators, sensors, and plant.

2.1 Box-Jenkins model

Background: The Box-Jenkins method was proposed by George Box and Gwilym
Jenkins in their seminal 1970 textbook Time Series Analysis: Forecasting and Control.
The approach starts with the assumption that the process that generated the time
series can be approximated using an ARMA model if it is stationary or an ARIMA
model if it is nonstationary and comprises the following:

• Model identification and model selection

• Parameter estimation that best fit the selected ARIMA model. The most common
methods use maximum likelihood estimation or nonlinear least-squares
estimation.

• Statistical model checking by testing whether the estimated model conforms to the
specifications of a stationary process

2.2 Box-Jenkins model of the proposed system

The augmented state-space representation of the system model, termed Box-
Jenkins model A,B,Cð Þ formed of the signal model As,Bs,Csð Þ and disturbance
model Aw,Bw,Cwð Þ representing a p-input, q-output system [13] is given by:

x kþ 1ð Þ ¼ Ax kð Þ þ Br kð Þ þ Ewuw kð Þ
s kð Þ ¼ Csx kð Þ
y kð Þ ¼ Cx kð Þ þ v kð Þ

(13)

A ¼ As 0
0 Aw

� �
;B ¼ Bs

0

� �
;Ew ¼ 0

Bw

� �
;C ¼ Cs Cw½ �;A∈nxn is an augmented

state-transition matrix formed of As ∈nsxns and Aw ∈nwxnw ; B∈nxp ; C∈qxn;

Figure 2.
Box-Jenkins model of the system relating inputs and the outputs.
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Ew ∈nxp is a disturbance entry matrix; As,Bs,Csð Þ and Aw,Bw,Cwð Þ are both
controllable and observable. However, the signal s zð Þ and the disturbance w zð Þ
may have spectral overlap. The Box-Jenkins model describes the system formed of the
signal model, the disturbance model, their inputs, and the corrupted output.

Figure 2 shows the Box-Jenkins model representing the closed-loop system
relating the reference r zð Þ, the system output y zð Þ, the output to be regulated yr zð Þ,
the controller Gc zð Þ, the signal model Gs zð Þ, input u zð Þ to the signal model and
disturbance model Gw zð Þ, disturbance w zð Þ and the measurement noise v zð Þ.

3. Kalman filter: key properties

The KF, its residual model, and key properties are restated here for the sake of
completeness and convenience of the readers [12–18]. The KF associated with the
fault-free unperturbed Box-Jenkins model A0,B0,C0ð Þ given in (13) be:

x̂ kþ 1ð Þ ¼ A0 � K0C0ð Þx̂ kð Þ þ B0 r kð Þ þ K0y kð Þ
ŷ kð Þ ¼ C0x̂ kð Þ
ekf kð Þ ¼ y kð Þ � ŷ kð Þ

(14)

Where x̂ kð Þ∈Rn and ŷ kð Þ are respectively the best estimate of the state x kð Þ, and of
the output y kð Þ of the system model (13), ekf kð Þ is the residual; the optimal Kalman
gain K0 ∈6n ensures the asymptotic stability of the KF, i.e. (A0 � K0C0);
A0,B0,C0ð Þ is the identified system model embodied in the KF. The residual model of
the KF relates the residual ekf zð Þ to the system, the desired target input r zð Þ, and
output y zð Þ.

3.1 Key properties of the KF

The following Lemmas are developed here by invoking the key properties of the KF
for Fault Detection and Isolation (FDI) [14]

Lemma 1:
(a) Model-matching property
The KF residual ekf kð Þ is a zero-mean white noise process if and only if the

identified model of the system A,B,Cð Þ and the true model A0,B0,C0ð Þ embodied in
the KF are identical. This yields to:

ekf kð Þ ¼ e0 kð Þ (15)

Where e0 kð Þis a zero-mean white noise process
(b) Model-mismatch property
If the identified model of the system A,B,Cð Þ and the true model embodied in the

KF A0,B0,C0ð Þ are not identical, then the KF residual ekf will not be a zero mean
white noise process. The residual will then contain an additive term ekf kð Þ termed
fault indicator term, i.e.:

ekf kð Þ ¼ e0 kð Þ þ efi kð Þ (16)
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The structure of the residual model of the KF, and not that of the linear regression
model of the system, is such that its equation error becomes is a colored noise process.
The residual model is a function not only of the parameters of the system model, but
also of the Kalman gain. The identification objective of ensuring that the KF residual is
a zero-mean white noise process will ensure not only that the system model is accu-
rately identified but also that the Kalman gain is optimal, thereby avoiding the need to
specify the covariances of the disturbance and the measurement noise and to use the
Riccati equation to solve for the optimal Kalman gain. The system model A,B,Cð Þ and
its associated KF A� KC,B,Cð Þ, are both identified without the need for the a priori
knowledge of the covariances of the disturbance and the measurement noise, by
minimizing the residual of the KF [12–18]:

The identified transfer functions D zð Þ
F zð Þ , and

Ni zð Þ
Fi zð Þ are used to obtain the signal model,

estimates of the signal s, disturbance w zð Þ and their associated models As,Bs,Csð Þ are
Aw,Bw,Cwð Þ are then derived.

Lemma 2: Signal model
The state space model of the signal model Gs zð Þ or its state space representation

As,Bs,Csð Þ relating and the signal s zð Þ, and desired target input r kð Þ are:

xs kþ 1ð Þ ¼ Asx kð Þ þ Bs r kð Þ
s kð Þ ¼ Csx kð Þ
y kð Þ ¼ Cx kð Þ � v kð Þ
ŝ zð Þ ¼ Ĝs zð Þu zð Þ (17)

Where r kð Þ is the desired target.
Lemma 3: Disturbance model
The disturbance model Gw zð Þ or its state-space representation Aw,Bw,Cwð Þ is

derived; the KF whitens the output error ϑ zð Þ ¼ y zð Þ � s zð Þ:

xw kþ 1ð Þ ¼ Awx kð Þ þ Bw uw kð Þ
d kð Þ ¼ Csxw kð Þ

(18)

3.2 Proposed KF-based scheme

• Lemma 1: The fault indicator term indicates the presence or absence of fault in the
system model, signal model, disturbance model, or both.

• Lemma 2: The presence or absence of fault in the signal model is indicated.

• Lemma 3: The presence or absence of fault in the signal model is indicated.

3.3 Identification: emulator generated data

In view of the key properties of the KF, it is the residual model of the KF, and not
the system model, that is identified in our work, thus lending our work a novelty that
sets it apart from other conventional approaches. The identification objective of
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ensuring that the residual is a zero-mean white noise process will ensure not only that
the system model is accurately identified but also that the Kalman gain is optimal,
thereby avoiding the need to specify the covariance of the disturbance and the
measurement noise and to use the Riccati equation to solve for the Kalman gain.

The systemmodel, the signal model as well as the disturbance models are subject to
perturbations. To account for these perturbations, emulators are connected in cascade
to the output, the input, or both during the identification phase to mimic likely
perturbations. It is shown in [13, 14] that the proposed identification scheme based on
emulator parameter-perturbed experiments to generate likely model perturbations is
superior to the conventional approach based on using either a conservative or an
optimistic or no bound at all, instead of the true bound of the perturbed plant models.

In model-based, model-free, and classifier fusion approach, it is crucial to provide
representative and sufficient data covering the normal, perturbed, and fault-bearing
operating scenarios resulting from the variations of the subsystems. As the parameters
subsystems are generally inaccessible, the data are generated indirectly by performing
several off-line emulator-perturbed experiments to mimic likely operating scenarios.

In the model-based approach, the emulator-generated data are used in identifica-
tion of the system and its associated Kalman filter to ensure that the identified models
are robust to model-perturbation and are significantly more accurate compared with
those obtained based on the classical approach of using merely the input and the
output without including the perturbed models [13, 14]. System and the signal model
and their associated KFs for the system and the signal models, estimation of the signal,
disturbance are identified from the emulator-perturbed data.

The key properties of the KF are used to obtain the signal, the disturbance, and
their models [14–18]. The fault-free Box-Jenkins system model (13) and the associated
KF are identified the using the emulator-generated data by minimizing the residual
ekf zð Þ to ensure the identified models are accurate, consistent, and reliable. Further,
the emulator-generated data are used to provide data needed for the identification of
the system, for the MFA, and the classifier fusion.

The identified transfer functions D zð Þ
F zð Þ , and

Ni zð Þ
Fi zð Þ are used to obtain the signal model,

estimates of the signal s , disturbance w zð Þ, and their associated models As,Bs,Csð Þ are
Aw,Bw,Cwð Þ are derived.

3.4 State-feedback and feedforward controller

A block diagram of the feedforward-feedback controller implemented using the
Kalman filter and internal model Aim,Bin,Cimð Þ is shown in Figure 3 [20]. The
system and signal models; Kalman filters associated with the system and signal
models; feedback-feedforward controller; the signal s, the disturbance d , and the
measurement noise v; residual e, estimates of the signal ŝ and the output error ϑ̂ of the
Kalman filter. The controller is driven by the tracking error etr kð Þ ¼ r kð Þ � ŝ kð Þ.

The signal s zð Þinstead of the noisy output y zð Þis employed for implementing the
state feedback controller of the signal, desired trajectory, and output error

Feedforward controller: Even in the presence of model perturbations, the
feedforward controller can mitigate the effect of the output error on the performance
of the combined controller. The feedforward controller quickly rejects the output
error without waiting for the deviation in the output to occur, hence its anticipatory
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action. The feedforward controller of the reference, denoted by the steady-state
gain Hr, is the inverse signal model evaluated at the poles of the reference model.
Thus:

Hr ¼ G�1
s zð Þ

uffr ¼ Hrr zð Þ (19)

3.5 Proposed Kalman filter-based scheme

The KF estimates the signal component from the output formed of an additive sum
of the signal, stochastic disturbance, and measurement noise as shown.

The status of the system is asserted from the whiteness of the Kalman filter
residual. A fault is detected if the residual is not a zero-mean white noise process. The
faulty subsystem is isolated by estimating the perturbed emulator parameter.

When the residual is not a zero-mean white noise process signifies that either
the model of the system has become faulty, i.e., a fault had occurred in the
system, or the disturbance model has been perturbed, due to the purely random
nature of the various disturbances affecting the system during its operation or
possibly both.

3.6 Autonomous Kalman filter

Let the human operator input, uop and the output yop during pipeline trajectory
estimation. The autonomous Kalman filter that replaces the human operator is
given by:

x̂op kþ 1ð Þ ¼ Aop � KopCop
� �

x̂ kð Þ þ Bop uop kð Þ þ Kopyop kð Þ
ŷop kð Þ ¼ Copx̂ kð Þ
eop kð Þ ¼ yop kð Þ � ŷop kð Þ

(20)

The autonomous KF drives the drone such the residual eop kð Þ is zero during entire
trajectory. This will ensure that the trajectories of the human operator and KF are
identical.

Figure 3.
Block diagram of the feedforward-feedback controller.
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4. Sequential fault diagnosis

The model-free approach, namely Limit Checking and Plausibility Analysis
(LCPA) and limit check, can quickly detect large faults using the limit checking,
estimation of the step input responses of overshoot, rise time, and settling time.
Artificial Neural Network (ANN) can capture the model of the system over both
linear and nonlinear operating regimes. However, its ability to detect incipient fault
critically depends upon the training data, which covers the given operating point upon
the operating point, the input, and the disturbances affecting the system, the noise,
and the nonlinearity effects. The same Fault Detection and Isolation (FDI) scheme
may outperform other FDI schemes in some operating scenario while being
outperformed by them in other scenarios. Hence, the integration of different FDI
schemes will overcome this problem, in that what is missed. Relationship between
these different FDI schemes will enable their collective performance to surpass that of
any one of them used alone [14].

5. Model-free approaches (MFAs)

The Model-Free Approach (MFAs) are employed in monitoring the health of the
system, including performance monitoring and fault detection, as it provides a
macroscopic picture of the status of the system [14, 15].

5.1 Fault detection powered by the Bayesian classification for the MFA schemes

A fault in the system is asserted using Limit Checking and Plausibility (LVP)
analysis from computing the step response measures of settling time, time delay, and
overshoot, and using some measures based on spectral analysis, such as the frequency
response and the coherence spectrum [15].

The coherence between the fault-free and actual outputs is:

c y0 ωð Þ, y ωð Þ� � ¼ y0 ωð Þy ωð Þ�� ��2
y0 ωð Þj j2 y ωð Þj j2 (21)

Where ω is the frequency in rad/sec, and c y0 ωð Þy ωð Þð Þ are the coherence spectrum
and the output of the ANN will be the fault type, i.e., either a fault in a subsystem or in
a sensor. If there is no fault, then, in the ideal noise-free case, c y0 ωð Þy ωð Þð Þ ¼ 1. Let

Ĝ
0
ωð Þ and Ĝ ωð Þ be the estimates of the frequency response of the system under

normal fault-free and faulty operating regimes, respectively.
The Bayes decision strategy: The test statistic is chosen to be the median value of the

coherence spectrum [14, 19]:

ts ¼ median c Ĝ
0
ωð Þ, Ĝ ωð Þ

� �n o
(22)

The Bayes decision strategy used here is given by:

ts
≤ th forallω∈Ω no fault
> th forallω∈Ω fault

�
(23)
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Where th is a threshold value, Ω is the relevant spectral region, e.g., the system
bandwidth?

6. Evaluation on a physical system

The proposed sequential fault diagnosis, based on the model-based and model-free
schemes, was successfully evaluated on a laboratory-scale physical process control
system [7–9, 14, 15]. The controller is implemented on a two-tank process control
system [22], is shown below in Figure 4.

6.1 Physical two-tank fluid system

The four subsystems of the two-tank system, namely the flow rate sensor γs1, the
height sensor γs2, the actuator G1 ¼ G0

1 γa where G0
1 is fault-free, and γℓ the leakage

fault indicator from the from tank 1, can be affected by either a single fault or multiple
ones. As shown in Figure 3, when either of these fault types occurs, they are detected
and isolated with the integrated approach, which intelligently processes the acquired
data from the various sensors, by using the most appropriate scheme (MFA or MBA)
and the Bayesian classification stage to carry out the accurate and reliable fault detec-
tion and isolation. The fault-free values are γsi ¼ 1 : i ¼ 0, 1, 2, γa ¼ 1 and γℓ ¼ 1. The
net amount of outflow is 1� γℓ. On the testbed used, the Lab View is used for
detection and isolation of faults.

Figure 5 shows the step responses of the subsystems subject to no faults, leakage
faults, actuator faults, and height sensor faults. The fault magnitudes are 0.25, 0.5, and
0.75 of the fault-free cases [14, 15]. The height, flow rate, and control input profiles
under various types of faults are all shown in Figure 5.

Subfigures A, B, and C show respectively when there is a leakage fault, an actuator
fault, and a height sensor fault. Subfigures D, E, and F show respectively the effect on
the flow rate of the leakage fault, actuator fault, and sensor fault, and subfigures G, H,
and I show, in the same order, the effect of these same 3 faults on the control input.

The MFA approach used here includes four essential blocks, namely a limit checks,
visual and plausibility block (LVP), an adaptive neuro-fuzzy inference system block
(ANFIS), a fuzzy logic block (FL), and an artificial neural network block (ANN).
Figure 5 shows the effect of disturbance, measurement noise, nonlinearity, including
dead-band effect, and saturation on the actuator and on the flow rate. The unwanted
effect of dead-band causes delay in the system and saturation in the actuator and flow

Figure 4.
Process control system, with different sensors, driven by lab-view-based controller.
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rate. The flow rate saturates at 4.5 ml/sec. Because of the presence of the feedback in
the process system, the PI controller may reduce the effect of the nonlinearity and
noise if the controller is tuned accurately. However, the PI may also dissimulate the
fault by rejecting it, through its loop action, as though it were a mere disturbance. This
will therefore call for a careful use of the integral action in the PI controller.

6.2 Limit checking, visual, and plausibility analysis

The LPV, though limited in the size of the faults it can detect, is nevertheless the
fastest of the four MFA blocks, It uses heuristics, operator experience, and the domain
knowledge. It can only detect gross faults (or macro faults) but is computationally fast
and monitors limit checks, flow rate, and input to the actuator for accurately deter-
mining fault status, provided the sensors are properly functioning as explained next.
Some faults, such as overflow of the tanks, may not be detected or may be incorrectly
reported. By way of an example, assume that the flow sensor is working properly, and
the height of the tank is 250 cm, and the flow rate in the range 0 to 4 ml/sec, both of
which are actual accurate values, then if the height sensor is faulty, it may then
indicate an incorrect height of more than 250 cm, indicating that there is an overflow
when there is none. Similarly, a faulty height sensor could report an incorrect value of
250 cm, thus indicating that the tank has reached its maximum capacity and that the
sensor flow needs to be regulated to avoid an overflow, when the tank has not yet
reached its full capacity. This demonstrates the weakness of the qualitative measure-
ment of the LPV block, which, the proposed intelligent integrated approach compen-
sates for by resorting to more accurate means of assessing the true status of the
system, either through more powerful MFA blocks or through the powerful KF-based
MBA block.

6.3 Artificial neural network (ANN)

ANN is a universal approximator. The height, flow rate, and control input data
under leakage, actuator, and sensor faults are presented to the ANN. Figure 4 shows

Figure 5.
Effect of leakage, actuator, and sensor faults on height, flow rate, and control: Nonlinear case.
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the training data formed of the height, flow rate, and control input under leakage,
actuator, and sensor faults, as well as the classification of the fault types.

Remarks: Except for a very few misclassifications probably due to an insufficient
amount of data processed by the ANN, the estimated classes were accurate. The FDI
performance of the ANN depends crucially upon the set of input-output data
employed during the training phase. The training data should be sufficient in quantity
and representative enough to cover all fault-free and faulty operating regimes. In
practice, it is very difficult to cover all fault scenarios, especially the extreme cases
involving disasters, for which data are either scarce or unavailable. The ANN
approach suffers from the lack of transparency as the decision-making process is
deeply embedded in the inner workings of the ANN, thus making the rationale behind
the decisions taken rather unclear to the user. Nevertheless, the ANN is computation-
ally fast and provides timely FDI [14, 15].

6.4 Fuzzy logic approach (ANFIS)

In the case of ANN and the model-based FDI scheme, the dynamic response
(covering both transient and steady-state regions) of the system is presented. How-
ever, in the fuzzy logic-based approach, only the steady-state response under various
operating regimes captures the benefits of both in a single framework. As such, it is
regarded as a universal approximator, where the required set of fuzzy IF–THEN rules
is developed automatically from the data presented to it [14, 15].

6.5 Model-based approach

The physical two-tank fluid system is nonlinear with dead-band nonlinearity. The
system was identified using the emulator-based accurate and reliable scheme pro-
posed in [13–17] wherein several offline experiments on the physical system are
performed by varying the emulator parameters to reliably capture their influence on
the input-output behavior. The process control system is a closed-loop single-input
and multiple-output (SIMO) system relating the input r kð Þ to the outputs, namely the
control input u kð Þ, the flow rate f kð Þ, and the height h kð Þ. The system and the
associated Kalman filter are identified using the prediction error method [18]. Since
multiple outputs are measured, multiple Kalman filters are employed to detect and
isolate the height sensor, the flow sensor, the actuator, and the leakage faults. The
multiple Kalman filters included here are associated with (a) overall closed-loop
system relating the input r kð Þ, to all the outputs u kð Þ, f kð Þ and h kð Þ, (b) u kð Þ and f kð Þ,
and (c) f kð Þ and h kð Þ.

6.6 Bayesian hypothesis testing

Fault detection is posed as a binary composite hypothesis-testing problem
[7–13, 19]. The criterion to choose between the two hypotheses, namely the presence
or absence of a fault, is based on minimizing the Bayes risk, which quantifies the costs
associated with correct and incorrect decisions. The Nx1 Kalman filter residual data
e kð Þ are employed for this purpose. The decision between the two hypotheses is based
on comparing the likelihood ratio, which is the ratio of the conditional probabilities
under the two hypotheses, to a user-defined threshold value:
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ts eð Þ ≤ ηth no fault
> ηth fault

�
(24)

Where ts eð Þ a test statistic is computed using the residual e kð Þ. The test statistics
ts eð Þ depends upon the class of reference input and ηth is some threshold value chosen
to meet the stringent and conflicting requirements of a high probability of correct
fault detection and isolation with low false alarm probability.

Figure 6 shows the residuals and their test statistics, and Figure 7 shows the
autocorrelations of the residuals when the system is subject to leakage, actuator, and
sensor faults of various degrees such a small, medium, and large fault sizes. Subfigures
A, B, and C; D, E, and F; and G, H, and I of Figure 7 shows the residuals and their
statistics when there is a leakage, actuator, and sensor faults, respectively. The test
statistic is a constant bias of the residual, which is non-zero mean random process, and
serves as an additive fault indicator term. The three sets of three subfigures each
shown in Figure 7 namely (A, B, and C), (D, E, and F) and (G, H, and I) show the
corresponding autocorrelations for different fault types.

Remarks: The test statistics indicates the fault size associated with small, medium,
and large faults.

Figure 6.
The residuals and test statistics.

Figure 7.
Autocorrelations of the residuals.
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The Bayes decision strategy was employed to assert the fault type, i.e., to decide
whether it is either leakage or actuator or sensor fault, respectively, using the fault
isolation scheme proposed in [13–17]. The variance of the residual, which is the
maximum value of the autocorrelation function evaluated at the origin (zero delay),
indicates the fault size.

7. Illustrative example

Equivalent mathematical simulation scheme with the KF and residual (purely
noise) analysis should be presented, as well as numerical data (for KF tuning,
including Q and R matrices). The covariances Q and R were Q=0.1 and R=1.

The estimation of the signal, the output corrupted by disturbance and measure-
ment noise, the spectra of the signal and the disturbance is illustrated in the following
simulated example [20]. The state-space model is:

As ¼

0 �0:7 0 0

1 1:5 0 0

0 0 0 �0:8

0 0 1:7 0

2
666664

3
777775
; Aw ¼

0:3960 �0:8025 0 0

1 0 0 0

0 0 1:1326 �0:49

0 0 1 0

2
666664

3
777775
;

Bs ¼

0:5 1

1 0

1 �0:3

0 1

2
666664

3
777775
; Bw ¼

1 0

0 0

0 1

0 0

2
666664

3
777775
;

C ¼
0 1 0 0 1:4160 0 0 0

0 0 0 1 0 0 2:9290 0

" #

(25)

Where the order n ¼ 8; y kð Þ is 2x1 output, w kð Þ and v kð Þ are 2x1 disturbance input,
and measurement noise of unity covariance zero-mean white noise processes.

Subfigures A and B at the top of Figure 8 compare the output and the signal.
Subfigures C and D show the overlapping spectra of the signal and the disturbance.

Table 1 compares the true and estimated poles of the signal and disturbances
models. The estimated poles are obtained from the model reduction techniques
employed in the second stage of the two-stage identification scheme

From Table 1, it can be deduced that identified signal and disturbance model are
accurate.

Remarks: These subfigures confirm the accuracy of the estimates of the signal and
the output error established in Lemmas 1, 2, and 3 in Section 3.

8. Kalman filter: key properties

Subfigures A and B, of Figure 9, compare the true step response of the signal
and its Kalman filter estimate; subfigures C and D show the output error and its
estimate.
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Moreover, these subfigures clearly confirm that the equation error is a colored
noise, which is whitened by the KF, thus confirming key properties of Lemmas 1, 2,
and 3. Stated in the Section 3.

Subfigures A and B, of Figure 10 shows the autocorrelation of the equation error,
whereas subfigures C and D show the autocorrelations of the residual of the Kalman
filter.

Remarks: These subfigures confirm the accuracy of the estimates of the signal and
the output error established in Lemmas 1, 2, and 3. Confirming that the equation error

Figure 8.
Signal and its estimate; output error and its estimate.

True poles Identified poles

signal Ĝs zð Þ 0:7500� j0:3708
0:8500� j0:2784

0:7510� j0:3715
0:8483� j0:2769

disturbance Ĝw zð Þ 0:1980 � j0:8737
0:5663� j0:4114

0:2031� j0:8752
Identified

Table 1.
Poles of the signal and disturbance models.

Figure 9.
Signal and output error and their estimates.
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is a colored noise that is whitened by the KF, making the KF residual a zero-mean
white noise process.

The Kalman filter-based identification of the signal and disturbance models are
accurately identified the estimated poles are close to the true ones, especially those of
the signal. The identification objective of ensuring the Kalman filter residual is a zero-
mean white noise process will ensure not only that the system model is accurately
identified but also that the Kalman gain is optimal, thereby avoiding the need to
specify the covariance of the disturbance and the measurement noise and to use the
Riccati equation to solve for the Kalman gain.

9. Conclusion

The novel sequential fault diagnosis approach, proposed here, is based on a judi-
cious fusion of model-free and model-based schemes. This scheme is shown here to be
superior to using (a) only the model-based scheme, (b) only the model-free scheme,
or (c) the conventional combination of both schemes, in ensuring the critical require-
ment of a timely diagnosis and prognosis of faults with a high probability of correct
decisions with a low false alarm probability. Based on extensive simulations and an
evaluation on a physical system, the proposed classifier fusion scheme was shown to
be reliable and efficient compared with the above-stated three conventional alterna-
tive schemes. It must be emphasized here that the novel concept of emulators and the
weighted classifier scheme used here are at the core of the success of our new sequen-
tial fault diagnosis approach.

Through an integration of LPV, ANN, and FL, the model-free approach was shown
to detect the presence of a possible fault quickly and reliably from the profiles of the
sensor outputs. The ANN is driven by the emulator-generated data, whereas the FL is
fed with steady-state values of the data. The model-free approach is also capable of
providing a quick visual detection of the onset of any fault from the changes in the
fault signatures such as settling time, steady-state sensor output values, and the
coherence spectrum of the residuals. The fault indications obtained by the model-free
approach are subsequently confirmed by the model-based approach, which, aided
with a Kalman filter, provides a further necessary stage for capturing any faults,
especially incipient ones, which may have escaped capture by the ANN-FL

Figure 10.
Autocorrelations of KF residual and the equation error.
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combination due either to insufficient training data or to an incomplete set of fuzzy
rules. Based on extensive simulations and an evaluation on a physical system, the
proposed classifier fusion scheme was shown to be reliable and efficient compared
with using only a model-based or a model-free approach alone. Thanks to the
emulator-based identification, the Kalman filter was shown to be accurate, reliable,
and robust to modeling uncertainties including nonlinearities and neglected fast
dynamics, while retaining its sensitivity to incipient faults. Further, it can perform
both diagnosis and prognosis of a fault. The model-based scheme outperforms the
model-free scheme in both detection and fault isolation when the system is operating
in a linear region. The ANN, if presented with sufficiently representative data, is
reliable in the highly nonlinear operating region. An extension of the proposed scheme
to a class of nonlinear multivariable model-based scheme is currently undergoing
further analysis.
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Chapter 4

Computationally Efficient Kalman
Filter Approaches for Fitting
Smoothing Splines
Joel Parker, Yifan Zhang, Bonnie J. Lafleur and Xiaoxiao Sun

Abstract

Smoothing spline models have shown to be effective in various fields (e.g.,
engineering and biomedical sciences) for understanding complex signals from noisy
data. As nonparametric models, smoothing spline ANOVA (Analysis Of variance)
models do not fix the structure of the regression function, leading to more flexible
model estimates (e.g., linear or nonlinear estimates). The functional ANOVA decom-
position of the regression function estimates offers interpretable results that describe
the relationship between the outcome variable, and the main and interaction effects of
different covariates/predictors. However, smoothing spline ANOVA (SS-ANOVA)
models suffer from high computational costs, with a computational complexity of
O N3� �

for N observations. Various numerical approaches can address this problem.
In this chapter, we focus on the introduction to a state space representation of
SS-ANOVA models. The estimation algorithms based on the Kalman filter are
implemented within the SS-ANOVA framework using the state space representation,
reducing the computational costs significantly.

Keywords: Kalman filter, smoothing spline, functional ANOVA, state space
representation, Markov structure

1. Introduction

Smoothing spline ANOVA (SS-ANOVA) has been widely used in various applica-
tions [1–3]. The representer theorem enables an exact solution of regression function
in SS-ANOVA models by minimizing a regularized function in a finite-dimensional
space, even though the problem resides in a infinite-dimensional space. While SS-
ANOVA models have strong theoretical properties, the estimation algorithms used to
fit these models are computational intensive, with a computational complexity of
O N3� �

for datasets with N observations. Numerous approaches have been developed
to reduce the heavy computational costs of SS-ANOVA [4–7]. For example, Kim and
Gu (2004) proposed to select a q≪N basis functions from N ones and reduced the
computational complexity to O Nq2

� �
. Sun et al. (2021) synergistically combined

asymptotic results with the smoothing parameter estimates based on randomly
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selected samples with sizes of ~N≪N to reduce the computational complexity of

selecting smoothing parameters to O ~N
3

� �
.

In this book chapter, we focus on the estimation approaches based on the Kalman
filter. The Kalman filter was originally created to solve linear filtering and prediction
problems used to generate simulations for the Apollo 11 project [8]. More recently, it
has been implemented in a variety of engineering and biomedical fields [9, 10]. The
Kalman filter is naturally used to fit state space models, methods that use recursive
calculations on each observation entered one at a time and resulting in calculations on
more accurate unknown variables after each iteration. The Kalman filter updates the
state of the dynamic system given a new observation based on the state after the
previous observation and the information gained from the new observation. This
memory-less property and its simple recursive formulas make Kalman filter
approaches computationally efficient, making them a useful tool for big data analytics.
SS-ANOVA models can be reformulated to a state space representation, allowing
computationally efficient Kalman filter-based model fitting and reducing computa-
tional costs to O Nð Þ for estimating univariate smoothing spline models [11]. An
extension to the bivariate setting also significantly reduces the computational costs of
SS-ANOVA models [12, 13].

Section 2 of this chapter will provide the theoretical background of SS-ANOVA
models. Section 3 provides a brief background on state space models. The state space
representation of SS-ANOVA models can be found in Section 4, along with a simula-
tion study under the univariate setting in Section 5. Section 6 concludes this chapter.

2. Smoothing spline ANOVA models

We assume the data yi, xi
� �

and i ¼ 1,2,…N are independent and identically
distributed where yi ∈Y ∈ is the outcome/response variable and xi ∈X ∈d repre-
sents the covariates/predictors. A nonparametric model can then be written by

yi ¼ f xið Þ þ ei, (1)

where f is a function of covariates and ei � N 0, σ2ð Þ represents the random errors.
For this nonparametric model, the structure of f is not fixed and can be estimated by
minimizing a penalized least squares score,

1
N

XN
i¼1

yi � f xið Þ� �2 þ λJ fð Þ, (2)

where the first term measures the goodness of fit of f , and the smoothing param-
eter λ controls the trade-off between the goodness of fit and the roughness of f
measured by J fð Þ [2, 3, 14]. SS-ANOVA models can also handle responses from
exponential families and/or correlated responses. For readers who are interested in
these topics, more examples of the model estimation and implementation exist (e.g.,
[2, 14]). The nonparametric estimation allows f to vary in a high-dimensional (possi-
bly infinite) space leading to more flexible results that can balance the bias-variance
trade-off [2, 15]. The functional analysis of variance (ANOVA) is applied to the
regression function f to improve the interpretability of model estimates by

68

Kalman Filter - Engineering Applications



decomposing the function into main and interaction effects of covariates. These main
and interaction effects can be estimated in the corresponding subspaces of the
reproducing kernel Hilbert space (RKHS), which is introduced in the next section.

2.1 ANOVA

2.1.1 Classical ANOVA

Classical ANOVA can be used to help to understand the decomposition of regres-
sion function in (1). We use a one-way classical ANOVA model as an example. The
outcome yi can be modeled by yij ¼ μi þ eij, where μi is the mean treatment levels with
i ¼ 1,2,⋯,K1 and j ¼ 1,2,⋯,K2. The terms in this model can be rewritten as

yij ¼ μþ δi þ eij, (3)

where μ is the overall mean effect and δi is the treatment effect. Side conditions are
added to ensure the uniqueness of this decomposition. Now consider the univariate
nonparametric function in (1). The regression function can be written as

f xð Þ ¼ Af þ I � Að Þf ¼ f 0 þ f 1 (4)

where A is an averaging operator that averages the effect of x and I is the identity
operator. We also need to add some side conditions for this decomposition to ensure
the uniqueness of the decomposition of the regression function.

2.1.2 Functional ANOVA

The multivariate function f x 1h i, x 2h i, … , x dh i
� �

on a d-dimensional product domain

X ¼ Qd
j¼1X j ∈Rd can be decomposed similarly to the classical ANOVA in the RKHS.

The construction of the RKHS on Πd
j¼1X j is by taking the tensor product over the

marginal domains X j. We need the following theorem to construct the tensor-product
space.

Theorem 1.1 If R1 x 1h i, ~x 1h i
� �

is nonnegative definite on X 1 and R2 x 2h i, ~x 2h i
� �

is
nonnegative definite on X 2, then R x 1h i, x 2h i

� � ¼ R1 x 1h i, ~x 1h i
� �

R2 x 2h i, ~x 2h i
� �

is nonnega-
tive definite on X ¼ X 1 � X 2.

Theorem 1.1 implies that the RKHS H on Πd
j¼1X j has the reproducing kernel R ¼

Πd
j¼1R jh i, where R jh i is the reproducing kernel forH γh i on X γh i. Additionally, the Hilbert

spaceH jh i can be decomposed into H jh i ¼ H jh i 0ð Þ⊕H jh i 1ð Þ, where H jh i 0ð Þ is the null space
and H jh i 1ð Þ is the orthogonal complement to H jh i 0ð Þ. Then H ¼ ⊗ d

j¼1H jh i can be
decomposed as

H ¼ ⊗ d
j¼1 H jh i 0ð Þ⊕H jh i 1ð Þ
� �

¼ ⊕S ⊗ j∈SH jh i 1ð Þ
� �

⊗ ⊗ j �∈SH jh i 0ð Þ
� �� �

¼ ⊕SHS

(5)

where S denotes all of the subsets of 1, … , df g. The term HS has the reproducing
kernel RS∝Πj∈SR jh i 1ð Þ.
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In general, the inner product in H can be specified as

J f , gð Þ ¼
XB
j¼1

θ�1
j f j, gj
D E

j
(6)

where θj ≥0 are tuning parameters and B is the number of smoothing parameters.
The roughness penalty in (2) can be written in the form of (6). Then the reproducing
kernel associated with (6) can be written as

R ¼
XB
j¼1

θjRj, (7)

where Rj is the reproducing kernel for the corresponding tensor product RKHS
in (5).

2.2 An example of RKHS on 0, 1½ �2

We will use one example of an RKHS on 0, 1½ �2 to demonstrate the decomposition
of RKHS. More examples of discrete and/or continuous domains can be found in Gu
(2013) [2]. We consider the following tensor sum decomposition on 0, 1½ �,

H 1h i ¼ f :
ð1
0

f 2ð Þ xð Þ
� �2

dx<∞
� �

¼ f : f∝1f g⊕ f : f∝k1 xð Þf g

⊕ f :
ð1
0
fdx ¼

ð1
0
f 1ð Þdx ¼

ð1
0
f 2ð Þdx ¼ 0, f 2ð Þ ∈ℒ2 0, 1½ �

� �

¼ H 1h i 00ð Þ⊕H 1h i 01ð Þ⊕H 1h i 1ð Þ,

(8)

whereH 1h i01⊕H 1h i1 forms the contrast in the one-way ANOVA decomposition, and
the function kr is a scaled Bernoulli polynomial function with kr xð Þ ¼ Br xð Þ=r! [2, 16].
The RKHS has three reproducing kernels R 1h i00 x, ~xð Þ ¼ 1, R 1h i01 x, ~xð Þ ¼ k1 xð Þk1 ~xð Þ,
and R 1h i1 x, ~xð Þ ¼ k2 xð Þk2 ~xð Þ � k4 jx� ~xjð Þ.

Now consider the RKHS H on 0, 1½ � � 0, 1½ �. Here H can be the tensor product
spaces of H 1h i on 0, 1½ � and H 2h i on 0, 1½ �. Based on the tensor sum decomposition in
(8), we have

H ¼ H 1h i ⊗H 2h i
¼ H 1h i 00ð Þ⊕H 1h i 01ð Þ⊕H 1h i 1ð Þ
� �

⊗ H 2h i 00ð Þ⊕H 2h i 01ð Þ⊕H 2h i 1ð Þ
� �

¼ H 1h i 00ð Þ ⊗H 2h i 00ð Þ
� �

⊕ H 1h i 00ð Þ ⊗H 2h i 01ð Þ
� �

⊕ H 1h i 01ð Þ ⊗H 2h i 00ð Þ
� �

⊕ H 1h i 01ð Þ ⊗H 2h i 01ð Þ
� �

⊕ H 1h i 00ð Þ ⊗H 2h i 1ð Þ
� �

⊕ H 1h i 1ð Þ ⊗H 2h i 00ð Þ
� �

⊕ H 1h i 01ð Þ ⊗H 2h i 1ð Þ
� �

⊕ H 1h i 1ð Þ ⊗H 2h i 01ð Þ
� �

⊕ H 1h i 1ð Þ ⊗H 2h i 1ð Þ
� �

,

(9)

where the first four terms in (9) are in the null space H 0ð Þ and the remaining five
terms are in the orthogonal complement (i.e., H 1ð Þ). The reproducing kernel for the
cubic spline (m=2) for each subspace can be found in Table 1.
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2.3 Estimation

The estimation algorithm of SS-ANOVA models relies on the following representer
theorem.

Theorem 1.2 (Representer Theorem) There exist coefficient vectors ξ ¼
ξ1, … , ξMð Þ0 ∈RM and c ¼ c1, … , cNð Þ0 ∈RN such that the minimizer of (2) in H ¼
H0⊕H1 has the following representation:

f xð Þ ¼
XM
m¼1

ξmϕm xð Þ þ
XN
i¼1

ciR xi, xð Þ, (10)

where ϕm, m ¼ 1, … , Mf g are the basis functions of the null spaceH0 and R �, �ð Þ is
the reproducing kernel of H1.

Taking into consideration model (1), the function f can be estimated by minimiz-
ing (2). Using the representer theorem, the function f can be written as

f ¼ Sξ þQc (11)

where f ¼ f x1ð Þ, … , f xNð Þð Þ0, S is a N �M matrix (e.g., M ¼ 2 for cubic spline)
where the i, jð Þth entry is ϕj xið Þ and Q is a N �N matrix where the i, jð Þth entry is
R xi, xj
� �

of the form (7). Plugging (11) into (2), the penalized least squares can be
written as

1
N

y� Sξ �Qc
� �0 y� Sξ �Qc

� �þ λc0Qc : (12)

We differentiate (12) with respect to ξ and c to obtain the linear system

Q þNλIð Þcþ Sξ ¼ y,

S0c ¼ 0:
(13)

For given smoothing parameters, solving for c and ξ provides the estimation
for f . The selection of smoothing parameters for SS-ANOVA models is introduced
below.

Subspace Reproducing Kernel

ℋ 1h i 00ð Þ ⊗ℋ 2h i 00ð Þ 1

ℋ 1h i 01ð Þ ⊗ℋ 2h i 00ð Þ k1 x 1h i
� �

k1 ~x 1h i
� �

ℋ 1h i 01ð Þ ⊗ℋ 2h i 01ð Þ k1 x 1h i
� �

k1 ~x 1h i
� �

k1 x 2h i
� �

k1 ~x 2h i
� �

ℋ 1h i 1ð Þ ⊗ℋ 2h i 00ð Þ k2 x 1h i
� �

k2 ~x 1h i
� �� k4 jx 1h i � ~x 1h ij

� �

ℋ 1h i 1ð Þ ⊗ℋ 2h i 01ð Þ k2 x 1h i
� �

k2 ~x 1h i
� �� k4 jx 1h i � ~x 1h ij

� �� �
k1 x 2h i
� �

k1 ~x 2h i
� �

ℋ 1h i 1ð Þ ⊗ℋ 2h i 1ð Þ k2 x 1h i
� �

k2 ~x 1h i
� �� k4 jx 1h i � ~x 1h i

� �� �
k2 x 2h i
� �

k2 ~x 2h i
� �� k4 jx 2h i � ~x 2h ij

� �� �

Table 1.
Subspaces and their corresponding reproducing kernels for the RKHS, ℋ, on 0, 1½ � � 0, 1½ �.
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2.4 Selection of smoothing parameters

The smoothing parameters λ=θ balance the trade-off between the goodness of fit
for f and the roughness of f in (2). Choosing the optimal smoothing parameters is data
specific and should be performed prior to nonparametric regression analysis. Several
smoothing parameter selection methods have been developed for the SS-ANOVA
models [17]. Generalized cross-validation (GCV) is one of the most popular methods
for selecting the optimal smoothing parameters λ=θ [18, 19].

To avoid overparameterization, let λ ¼ λ=θ1, … λ=θBð Þ0. The GCV score is
defined as

V λð Þ ¼ N�1y0 I � A λð Þð Þ2y
N�1tr I � αA λð Þð Þ� �2 (14)

where A λð Þ is symmetric matrix similar to the hat matrix in linear regression, and
tr �ð Þ represents trace. The parameter α≥ 1 is a fudge factor [4]. When α ¼ 1 it is the
original GCV score. Larger α’s yield smoother estimates. By default, we set α ¼ 1:4.
Then optimal smoothing parameters λ can be chosen by minimizing the GCV score
(14) using Newton-Raphson methods.

2.5 Computational complexity

In this section, we will discuss the computation complexity for calculating c and ξ
from (12). One requires N3=3þO N2� �

operations to obtain estimates of c and ξ for
the fixed smoothing parameters. In practice, the optimization of the smoothing
parameter is also needed, which requires operations of 4BN3=3þO N2� �

, where B is
the number of smoothing parameters. Therefore, to minimize (12), the estimation
algorithms have a computational complexity of O N3� �

. The following sections will
discuss how the Kalman filter can be used to fit SS-ANOVAmodels, which reduces the
computation complexity to O Nð Þ.

3. State space models

State space methodology was traditionally used to study dynamic problems (e.g.,
space tracking settings) because the procedure allows for “real-time” updating as data
are collected [20]. In this chapter, we use the linear Gaussian state space model as an
example to introduce concepts of state space models using the Kalman filter approach.
More applications of state space models can be found in a study by Douc, Moulines
and Stoffer (2014) and Durbin and Koopman (2001) [21, 22]. A state space model
consists of two equations: state equation and measurement equation. The state equa-
tion describes the dynamics of the state variables:

ztþ1 ¼ Gtzt þΨtηt, ηt �iid N 0, Δtð Þ, (15)

where zt is the h� 1 state vector, ηt is the g � 1 disturbance vector with zero mean
and a covariance matrix Δt, and Gt and Ψt are fixed design matrices of dimensions
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h� h and h� g, respectively. The measurement equation shows the relationship
between the observed variable and the unobserved state variable:

ot ¼ Φtzt þ εt, εt �iid N 0, Vtð Þ, (16)

where ot is a n� 1 vector with n observations, εt is a n� 1 disturbance vector with
zero mean and a covariance matrix Vt, and Φt is a fixed design matrix of dimension
n� h. The initial state vector z0 is assumed to be normally distributed with mean μ0
and covariance matrix P. The two vectors ηt and εt are assumed to be mutually
uncorrelated, that is,

ηt
εt

� �
�iid N 0,

Δt 0
0 Vt

� �� �
: (17)

These two vectors are also uncorrelated to the initial state vector z0.
The Kalman filter utilizes a set of recursive equations to estimate zt, given

the observations Ot ¼ o1, … , otf g at time t and its error variance matrix Pt [13].
Define

ẑt ¼  zt Otj �,½
Pt ¼  zt � ẑtð Þ zt � ẑtð Þ0∣Ot

� �
,

� (18)

where ẑt is the Kalman filter estimation of zt, with z0 ¼  z0½ � ¼ μ0, and P0 ¼ P.
From the state and measurement Eqs. (15) and (16), the estimated zt∣t�1 and the
covariance matrix given zt�1, and Pt�1 become

ẑt∣t�1 ¼  zt Ot�1j � ¼ Gtzt�1,½
Pt∣t�1 ¼  zt � ẑt∣t�1

� �
zt � ẑt∣t�1
� �0∣Ot�1

� i
¼ GtPt�1G0

t þΨtΔtΨ0
t,

h (19)

and

ot∣t�1 ¼ Φt ẑt∣t�1: (20)

Then the prediction error vector vt is

vt ¼ ot � ot∣t�1 ¼ ot �Φt ẑt∣t�1 ¼ Φt zt � ẑt∣t�1
� �þ εt, (21)

with the covariance matrix

 vtv0
t

� � ¼ Λt ¼ ΦtPt∣t�1Φ0
t þVt: (22)

Using the facts of the joint distribution of zt and vt, the Kalman filter estimator
ẑt ¼  ztjOtð Þ at time t and its covariance matrix can be updated using

ẑt ¼ ẑt∣t�1 þ Pt∣t�1Φ0
tΛ

�1
t ot �Φtẑt∣t�1
� �

¼ Gtzt�1 þ Pt∣t�1Φ0
tΛ

�1
t vt,

Pt ¼ Pt∣t�1 � Pt∣t�1Φ0
tΛ

�1
t ΦtPt∣t�1:

(23)
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We further define Kalman gain as

Kt ¼ Pt∣t�1Φ0
tΛ

�1
t : (24)

Then the filtered estimate of zt and its covariance matrix Pt is

ẑt ¼ ẑt∣t�1 þKtvt,

Pt ¼ I� KtΦtð ÞPt∣t�1:
(25)

4. State space representation of SS-ANOVA models

Due to the Markov structure of SS-ANOVA models after reparameterization, the
SS-ANOVA models can be represented by the state space models, allowing for effi-
cient estimation by algorithms based on the Kalman filter. Wecker and Ansley (1983)
showed the state space representation for univariate smoothing spline models [11].
Such an approach reduces the computational complexity of smoothing splines from
O N3� �

to O Nð Þ. Based on the fast algorithm for the multivariate Kalman filter, Qin
and Guo (2006) extended the univariate case to multivariate SS-ANOVA models [12].
The two-dimensional procedure was implemented, with computational complexity of
O n1n32
� �

for data of size N ¼ n1n2. The extension to higher dimensions was also
discussed. In this chapter, we focus on the univariate setting to demonstrate the
procedure to derive the state space representation of smoothing splines.

4.1 Univariate setting

We can use the state space formulation to represent model (1) (d ¼ 1) and apply
the Kalman filter algorithm to estimate the model parameters of smoothing spline
models efficiently. Based on the pioneered work in Wahba (1978) [23], the univariate
function f xð Þ can be written in the following form

f xð Þ ¼
Xm�1

ν¼0

αν
x� xlð Þν

ν!
þ

ffiffiffi
λ

p
σ

ðx
xl

x� hð Þm�1

m� 1ð Þ! dW hð Þ, (26)

where the covariate x∈ xl, xu½ � and W hð Þ is a Wiener process with the unit
dispersion parameter. When all α’s have the diffuse prior distribution, the conditional
expectation of f xð Þ given all data is the function minimizing (2) with the smoothing
parameter 1=λ. The model (26) can be rewritten as

yi ¼ 10U xið Þ þ ei, i ¼ 1,⋯,N, (27)

where 10 ¼ 1, 0, ⋯, 0½ � and U xð Þ ¼ U mð Þ xð Þ, ⋯, U 1ð Þ xð Þ� �0
is the m-dimensional

stochastic process. In particular, we define

U jð Þ xð Þ ¼
Xj�1

ν¼0

U m�νð Þ xlð Þ x� xlð Þν
ν!

þ
ffiffiffi
λ

p
σ

ðx
xl

x� hð Þm�1

m� 1ð Þ! dW hð Þ, j ¼ m,⋯,1: (28)

The vector U contains U mð Þ xð Þ and its first m� 1ð Þ derivatives. Let αν ¼ U m�νð Þ xlð Þ,
and we can easily verify the model (27).
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The state space formulation relies on the Markov structure of U xð Þ, which is
demonstrated below. We define a m�m matrix, Γm xb, xað Þ, for any xb and xa within
the interval xl, xu½ � as

Γm xb, xað Þ ¼

1 xb � xað Þ …
xb � xað Þm�1

m� 1ð Þ!

1 …
xb � xað Þm�2

m� 2ð Þ!
:

:

1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: (29)

We can easily verify

Γm xc, xað Þ ¼ Γm xc, xbð ÞΓm xb, xað Þ: (30)

To show the Markov structure of U xð Þ, we also define a m� 1 random vector
ω xb, xað Þ ¼ ω 1ð Þ xb, xað Þ, ⋯, ω mð Þ xb, xað Þ� �0

, where

ω νð Þ xb, xað Þ ¼
ffiffiffi
λ

p
σ

ðxb
xa

xb � hð Þν�1

ν� 1ð Þ! dW hð Þ, ν ¼ 1,⋯,m: (31)

For any ν ¼ 1,⋯,m, we have

ω νð Þ xc, xað Þ ¼ ω νð Þ xc, xbð Þ þ
Xν�1

j¼0

xc � xbð Þj
j!

ω ν�jð Þ xb, xað Þ: (32)

Thus we have

ω xb, xað Þ ¼ Γm xc, xbð Þω xb, xað Þ þ ω xc, xbð Þ: (33)

We now apply (30) and (33) to obtain the Markov structure of U

U xbð Þ ¼ Γm xb, xlð ÞU xlð Þ þ ω xb, xlð Þ
¼ Γm xb, xað ÞΓm xa, xlð ÞU xlð Þ þ Γm xb, xað Þω xa, xlð Þ þ ω xb, xað Þ
¼ Γm xb, xað ÞU xað Þ þ ω xb, xað Þ:

(34)

The Markov structure is the key to the state space representation of SS-ANOVA
models. For xl ¼ x1 ≤⋯≤ xn ¼ xu, we have

yi ¼
Xm�1

ν¼0

αν
xi � xlð Þν

ν!
þ 10Ω xið Þ þ ei, (35)

as the measurement equation, where Ω xið Þ ¼ Ω mð Þ xið Þ, ⋯, Ω 1ð Þ xið Þ� �0
and

Ω νð Þ xið Þ ¼ ω νð Þ xi, xlð Þ for ν ¼ 1,⋯,m and i ¼ 1,⋯,N. From (33), we have the state
equation

Ω xið Þ ¼ Γm xi, xi�1ð ÞΩ xi�1ð Þ þ ω xi, xi�1ð Þ, (36)
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for i ¼ 1,⋯,N. Given the parameters λ and σ, the Kalman filtering and smoothing
algorithms can be implemented to perform estimation for this state space
representation.

5. Simulation studies

We used simulated data to compare the estimates of smoothing splines with those
based on state space representation under the univariate setting. The following model
was used to simulate N ¼ 1,000 observations.

yi ¼ 7 sin π ∗ xið Þ þ ei, (37)

where xi ¼ ti=100, ti ¼ 1,⋯,1,000, and ei � N 0, 1ð Þ. To apply the univariate SS-
ANOVA model to the simulated data, we used the ssanova function in the gss package
(version 2.2-3) [24]. The GCV algorithm was used to select the smoothing parameter
of SS-ANOVA models. To implement the Kalman filtering algorithm to fit the
smoothing splines, we used Eq. (35) as the measurement equation and Eq. (36) as the
state equation. The parameters λ and σ were set to 0:01 and 1, respectively. We fitted
the cubic spline (i.e., m ¼ 2) in the simulation studies. In the state Eq. (36), we have

Γ2 xi, xi�1ð Þ ¼ 1 xi � xi�1ð Þ
0 1

� �
, (38)

for i ¼ 2,⋯,1,000. The νν0th element of the variance matrix of ω xi, xi�1ð Þ is

λσ2
xi � xi�1ð Þνþν0�1

νþ ν0 � 1ð Þ ν� 1ð Þ! ν0 � 1ð Þ! , (39)

where ν,ν0 ¼ 1,⋯,m. Given the above information, we utilized the fkf function in
the FKF package (version 0.2.3) to implement the Kalman filtering and smoothing

Figure 1.
Comparison between the SS-ANOVA model fit and the model fit with the Kalman filter given λ ¼ 0:01 on
simulated data.
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algorithms for the SS-ANOVA model. The details of iteration procedures are available
in the help document of fkf, which is similar to the procedures described in Section 3.
Figure 1 shows the similarity between the SS-ANOVA model fit with the generic
algorithm from the gss package and the model fit based on the state space representa-
tions in (35) and (36).

6. Conclusions

In this chapter, we have introduced the theoretical foundation (e.g., representer
theorem) and estimation algorithms of SS-ANOVA models. Given tensor product
operations, the SS-ANOVA models can handle the multivariate data and study the
main and interaction effects in the corresponding subspaces via functional ANOVA.
The estimation algorithms of SS-ANOVAmodels need O N3� �

operations, which might
be prohibitive computationally for analyzing super large data. Utilizing the Markov
structure of SS-ANOVA models, the Kalman filter can be used to fit SS-ANOVA
models when reparameterized into a state space formulation [11]. This state space
representation reduces the computational complexity from O N3� �

to O Nð Þ for the
univariate case, allowing SS-ANOVA models to be applicable to big data applications.
Additional research has been done to extend this representation to the
multidimensional setting [12]. For the two-dimensional data with the dimensions of n1
and n2, the SS-ANOVA models can be fitted with the computational complexity of
O n1n32
� �

, where N ¼ n1n2. Furthermore, we provided a simulated example to compare
estimates from the state space representation and the estimates from the SS-ANOVA
model for the univariate case.
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Chapter 5

Sequential Mini-Batch Noise
Covariance Estimator
Hee-Seung Kim, Lingyi Zhang, Adam Bienkowski,
Krishna R. Pattipati, David Sidoti, Yaakov Bar-Shalom
and David L. Kleinman

Abstract

Noise covariance estimation in an adaptive Kalman filter is a problem of significant
practical interest in a wide array of industrial applications. Reliable algorithms for
their estimation are scarce, and the necessary and sufficient conditions for
identifiability of the covariances were in dispute until very recently. This chapter
presents the necessary and sufficient conditions for the identifiability of noise covari-
ances, and then develops sequential mini-batch stochastic optimization algorithms for
estimating them. The optimization criterion involves the minimization of the sum of
the normalized temporal cross-correlations of the innovations; this is based on the
property that the innovations of an optimal Kalman filter are uncorrelated over time.
Our approach enforces the structural constraints on noise covariances and ensures the
symmetry and positive definiteness of the estimated covariance matrices. Our
approach is applicable to non-stationary and multiple model systems, where the noise
covariances can occasionally jump up or down by an unknown level. The validation of
the proposed method on several test cases demonstrates its computational efficiency
and accuracy.

Keywords: Adaptive Kalman filtering, Minimal polynomial, Noise covariance
estimation, Stochastic gradient descent (SGD), Mini-batch SGD

1. Introduction

This chapter addresses the following learning problem: Given a vector time series
and a library of models for the time evolution of the data (e.g., a Wiener process, a
white noise acceleration model, also called nearly constant velocity model, or a white
noise jerk model, also called nearly constant acceleration model), find suitable
process and measurement noise covariances and select the best dynamic model for
the time series. This problem is of considerable interest in a number of applications,
such as fault diagnosis, robotics, signal processing, navigation, and target tracking,
to name a few [1, 2].

The Kalman filter (KF) [3] is the optimal minimum mean square error (MMSE)
state estimator for linear systems with mutually uncorrelated Gaussian white process
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and measurement noises, and is the best linear state estimator when the noises are
non-Gaussian with known covariances. However, the noise covariances are unknown
or only partially known in many practical applications.

We derived the necessary and sufficient conditions for the identifiability of
unknown noise covariances, and presented a batch optimization algorithm for their
estimation using the sum of the normalized temporal cross-correlations of the inno-
vation sequence as the optimization criterion [4]. The motivation for this optimiza-
tion metric stems from the fact that the innovations of an optimal Kalman filter are
white, meaning that they are uncorrelated over time [2]. In [5], we proposed a
sequential mini-batch stochastic gradient descent (SGD) algorithm that required
multiple passes through the measurements for estimating noise covariances. We also
presented its applicability to non-stationary systems by detecting changes in noise
covariances. In this chapter, we present a practical single-pass stochastic gradient
descent algorithm for noise covariance estimation in non-stationary systems. Exten-
sions to multiple models where the system behavior can stem from a member of a
known subset of models are discussed in [6].

1.1 Prior work

The key to noise covariance estimation is an expression for the covariance of the
state estimation error and of the innovations of any stable, but not necessarily
optimal, filter as a function of noise covariances. This expression serves as a
foundational building block for the correlation-based methods for noise covariance
estimation. Pioneering contributions using this approach were made by [7–9].
Sarkka and Nummenmaa [10] proposed a recursive noise-adaptive Kalman filter
for linear state space models using variational Bayesian approximations. However,
the variational methods generally require tuning hyper-parameters to converge to
the correct covariance parameters and these algorithms often converge to local
minima.

In [5], we presented a computationally efficient and accurate sequential estimation
algorithm that is a major improvement over the batch estimation algorithm in [4]. The
novelties of this algorithm stem from its sequential nature and the use of mini-
batches, adaptive step size rules and dynamic thresholds for convergence in the
stochastic gradient descent (SGD) algorithm. The innovation cross-correlations are
obtained by a sequential fading memory filter. We applied a change-point detection
algorithm described in [11] to extract the change points in noise covariances for non-
stationary systems.

This chapter seeks to develop a streaming algorithm that reads measurements
exactly once, thus making it real-time and practical. The only caveat is that the
changes in noise covariances are assumed to occasionally jump up or down by an
unknown magnitude. Extensions of this algorithm to a multiple model setting may be
found in [6].

1.2 Organization of the chapter

The organisation of the chapter is as follows. Section 2 presents the mathematical
formulation of the sequential mini-batch gradient descent algorithm for estimating
the unknown noise covariances. In this section, we also present an overview of our
approach based on a fading memory filter-based innovation correlation estimation,
and an accelerated SGD update of the Kalman gain. In Section 3, we show that our
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single-pass method can track unknown noise covariances in non-stationary
systems. Lastly, we conclude the chapter with a brief summary of the contributions
in Section 4.

2. Sequential mini-batch SGD method for estimating process and
measurement noise covariances

Consider a discrete-time linear dynamic system

x kþ 1ð Þ ¼ Fx kð Þ þ Γv kð Þ (1)

z kð Þ ¼ Hx kð Þ þ w kð Þ (2)

where x kð Þ is the nx-dimensional state vector, v kð Þ is the sequence of zero-mean
white Gaussian process noise with unknown process noise covariance Q kð Þ in the
plant equation. The measurement equation, z kð Þ with nz-dimensional vector, is given
in (2). Here, w kð Þ is the sequence of zero-mean white Gaussian measurement noise
with unknown measurement noise covariance R kð Þ. In the system, F and Γ are the
nx � nx state transition matrix and the noise gain matrix, respectively, and H is the
nz � nx measurement matrix. Here, the two noise sequences and the initial state error
are assumed to be mutually uncorrelated. We assume that noise covariances Q kð Þ and
R kð Þ are piecewise constant such that the filter reaches a steady-state between any two
jumps of unknown magnitude.

Given Q kð Þ and R kð Þ, the Kalman filter involves the consecutive processes of
prediction and update given by [2, 3].

x̂ kþ 1jkð Þ ¼ Fx̂ kjkð Þ (3)

ν kþ 1ð Þ ¼ z kþ 1ð Þ �Hx̂ kþ 1jkð Þ (4)

x̂ kþ 1jkþ 1ð Þ ¼ x̂ kþ 1jkð Þ þW kþ 1ð Þν kþ 1ð Þ (5)

P kþ 1jkð Þ ¼ FP kjkð ÞF0 þ ΓQ kð ÞΓ0 (6)

S kþ 1ð Þ ¼ HP K þ 1jkð ÞH0 þ R kð Þ (7)

W kþ 1ð Þ ¼ P kþ 1jkð ÞH0S kþ 1ð Þ�1 (8)

P kþ 1jkþ 1ð Þ ¼ Inx �W kþ 1ð ÞHð ÞP kþ 1jkð Þ Inx �W kþ 1ð ÞHð Þ0

þW kþ 1ð ÞR kð ÞW kþ 1ð Þ0 (9)

The Kalman filter predicts the next state estimate at time index kþ 1ð Þ, given the
observations up to time index k in (3) and the concomitant predicted state estimation
error covariance in (6), using system dynamics, the updated state error covariance
P kjkð Þ at time index k and the process noise covariance, Q kð Þ. The updated state
estimate at time kþ 1ð Þ in (5) incorporates the measurement at time kþ 1ð Þ via the
Kalman gain matrix in (8), which depends on the innovation covariance S kþ 1ð Þ
(which in turn depends on the measurement noise covariance R kð Þ, and the predicted
state error covariance P kþ 1jkð Þ). The updated state error covariance P kþ 1jkþ 1ð Þ is
computed via (9); this is the Joseph form, which is less sensitive to round-off error
because it guarantees that the updated state covariance matrix will remain positive
definite.
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2.1 Identifiability conditions for estimating Q and R

The necessary and sufficient conditions for identifiability of the covariances in
adaptive Kalman filters were in dispute until very recently [4, 7–9, 12]. When Q and R
are unknown, consider the innovations corresponding to a stable, suboptimal closed-
loop filter matrix F ¼ F Inx �WHð Þ given by [4, 13].

ν kð Þ ¼ HFm x k�mð Þ � x̂ k�mjk�m� 1ð Þ½ �

þ H
Xm�1

j¼0

F
m�1�j Γv k�mþ jð Þ � FWw k�mþ jð Þ½ �

( )
þw kð Þ (10)

Given the innovation sequence (10), a weighted sum of innovations, ξ kð Þ, can be
computed as

ξ kð Þ ¼
Xm
i¼0

aiν k� ið Þ (11)

where the weights are the coefficients of the minimal polynomial of the closed-

loop filter matrix F,
Pm

i¼0aiF
m�i ¼ 0,a0 ¼ 1: It is easy to see that ξ kð Þ is the sum of two

moving average processes driven by the process noise and measurement noise,
respectively, given by [4].

ξ kð Þ ¼
Xm

l¼1

Blv k� lð Þ þ
Xm

l¼0

Glw k� lð Þ (12)

Here, Bl and Gl are given by

Bl ¼ H
Xl�1

i¼0

aiF
l�i�1

 !
Γ (13)

Gl ¼ alInz �H
Xl�1

i¼0

aiF
l�i�1

 !
FW

" #
;G0 ¼ Inz (14)

Then, the cross-covariance between ξ kð Þ and ξ k� jð Þ, Lj, can be obtained as

Lj ¼ E ξ kð Þξ k� jð Þ0� � ¼
Xm
i¼jþ1

BiQBi�j
0 þ
Xm
i¼j

GiRGi�j
0 (15)

The noise covariance matrices Q ¼ qij
h i

of dimension nv � nv and R ¼ rij
� �

of

dimension nz � nz are positive definite and symmetric. By converting the noise
covariance matrices and the Lj matrices to vectors, Zhang et al. [4] show that they are
related by the noise covariance identifiability matrix I given by

I
vec Qð Þ
vec Rð Þ

� �
¼

L0

L1

⋮
Lm

2
6664

3
7775 (16)
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As shown in [4], if the matrix I has full rank, then the unknown noise covariance
matrices, Q and R, are identifiable. Direct solution of linear equations in (16) for Q
and R is highly ill-conditioned and is prone to numerical errors.

2.2 Recursive fading memory-based innovation correlation estimation

We compute the sample correlation matrix Ĉ
k
seq ið Þ at sample k for time lag i as a

weighted combination of the correlation matrix Ĉ
k�1
seq ið Þ at the previous sample (k� 1)

and time lag i, and the samples of innovations ν k� ið Þ and ν kð Þ. The tuning parameter
λ, a positive constant between 0 and 1, is the weight associated with the previous
sample correlation matrix. The current M sample correlation matrices at time k are
used as the initial values for the next pairs of samples for the recursive computation.
Let us define the number of measurement samples as N. Then,

Ĉ
k
seq ið Þ ¼ 1� λð Þν k� ið Þν kð Þ0 þ λĈ

k�1
seq ið Þ, (17)

Ĉ
0
seq ið Þ ¼ 0,i ¼ 0,1,2,⋯,M� 1; k ¼ M,⋯,N (18)

2.3 Objective function and the gradient

The ensemble cross-correlation of a steady-state suboptimal Kalman filter is
related to the closed-loop filter matrix F ¼ F Inx �WHð Þ, the matrix F, the measure-
ment matrix H, the steady-state predicted covariance matrix P, steady-state filter gain
W and the steady-state innovation covariance, C 0ð Þ via [8, 9].

C ið Þ ¼ E ν kð Þν k� ið Þ0� � ¼ HF
i�1

F PH0 �WC 0ð Þ� �
(19)

To avoid the scaling effects of measurements, the objective function Ψ formulated
in [4] involves a minimization of the sum of normalized C ið Þ with respect to the
corresponding diagonal elements of C 0ð Þ for i>0. Formally, we can define the objec-
tive function Ψ to be minimized with respect to W as

Ψ ¼ 1
2
tr
XM�1

i¼1

diag C 0ð Þð Þ½ ��1
2C ið Þ0 diag C 0ð Þð Þ½ ��1C ið Þ diag C 0ð Þð Þ½ ��1

2

( )
(20)

where diag Cð Þ denotes the diagonal matrix of C. We can rewrite the objective
function by substituting (20) into (19) as

Ψ ¼ 1
2
tr
XM�1

i¼1

ϕ ið ÞXφX0
( )

(21)

where

ϕ ið Þ ¼ HF
i�1

F
h i0

φ HF
i�1

F
h i

(22)

X ¼ PH0 �WC 0ð Þ (23)
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φ ¼ diag C 0ð Þð Þ½ ��1 (24)

The gradient of objective function, ∇WΨ, can be computed as [4].

∇WΨ ¼ �
XM�1

i¼1

HFi�1F
h i0

φC ið ÞφC 0ð Þ � F0ZFX �
Xi�2

l¼0

C lþ 1ð ÞφC ið Þ0φHFi�l�2
h i0

(25)

where

Z ¼ F0ZF þ 1
2

XM�1

i¼1

HFi�1F
� �0

φC ið ÞφH þ HFi�1F
� �0

φC ið ÞφH
� �0

(26)

The Z term in (26) is computed by a Lyapunov equation; it is often small and can
be neglected in (25) for computational efficiency.

In computing the objective function and the gradient, we replace C ið Þ by their
sample estimates, Ĉseq ið Þ. With this replacement, the noise covariance estimation
becomes a data-dependent stochastic optimization/learning problem.

2.4 Estimation of Q and R

2.4.1 Estimation of R

We define μ kð Þ as the post-fit residual sequence of the Kalman filter, which is
related to the innovations ν kð Þ via

μ kð Þ ¼ z kð Þ �Hx̂ kjkð Þ ¼ Inz �HWð Þν kð Þ; k ¼ 1,2,⋯,N (27)

From the joint covariance of the innovation sequence ν kð Þ and the post-fit residual
sequence μ kð Þ, and the Schur determinant identity [14, 15], one can show that [4].

G ¼ E μ kð Þμ kð Þ0� � ¼ RS�1R (28)

where S is the innovation covariance. Knowing the sampled estimates of G and
S=Ĉseq 0ð Þ, the measurement noise covariance R is estimated. Because (28) can be
interpreted as a continuous-time algebraic Riccati equation or as a simultaneous diag-
onalization problem in linear algebra [15], the measurement noise covariance R can be
estimated by solving a continuous-time Riccati equation as in [4, 16] or by solving the
simultaneous diagonalization problem via Cholesky decomposition and eigen decom-
position.

2.4.2 Estimation of Q

Since the process noise covariance Q and the steady-state updated covariance P are
generally coupled, Q and P can be obtained via a Gauss–Seidel type iterative compu-
tation given the estimated R. Wiener process is an exception where an explicit non-
iterative solution Q ¼ WSW 0 is possible [4]. Let t and l denote the indices of iteration
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starting with t = 0 and l = 0. The initial steady-state updated covariance, P0, can be
computed as the solution of the Lyapunov equation given by

P 0ð Þ ¼ ~FP 0ð Þ~F
0 þWRW 0 þ Inx �WHð ÞΓQ tð ÞΓ0 Inx �WHð Þ0;Q 0ð Þ ¼ WSW 0 (29)

where ~F ¼ Inx �WHð ÞF. We iteratively update P as in (30) until convergence

P lþ1ð Þ ¼ FP lð ÞF0 þ ΓQ tð ÞΓ0
� ��1

þH0R�1H
� ��1

(30)

Given the converged P, Q will be updated in the t-loop until the estimate of Q
converges.

Q tþ1ð Þ ¼ Γ† PþWSW 0 � FPF0ð Þ tþ1ð Þ þ λQInx
h i

Γ0ð Þ† (31)

where λQ is a regularization parameter used for ill-conditioned estimation
problems.

2.5 Updating the gain W sequentially

The estimation algorithm sequentially computes theM sample covariance matrices
at every measurement sample k as in (17). Let B be the mini-batch size for updating
the Kalman filter gainW in the SGD. Our proposed method updates the gainW when
the sample index k is divisible by the mini-batch size B. When compared to the batch
estimation algorithm, the sequential mini-batch SGD algorithm allows more opportu-
nities to converge to a better local minimum of (20) by frequently updating the filter
the gain [5]. The generic form of the gain update is given by

W rþ1ð Þ ¼ W rð Þ � α rð Þ∇W rð ÞΨ (32)

where r is the updating index starting with r ¼ 0. In our previous research [5], we
explored the performance of accelerated SGD methods (e.g., bold driver [17], con-
stant, subgradient [18], RMSProp [19], Adam [20], Adadelta [21]) for updating
adaptive step size α rð Þ in (32). The root mean square propagation (RMSProp) method
is applied for the estimation procedure in this chapter. The RMSProp keeps track of
the moving average of the squared incremental gradients for each gain element by
adapting the step size element-wise as in the following.

τr,ij ¼ γτr�1,ij þ 1� γð Þ ∇W rð ÞΨ
� �

ij

h i2
; τ0 ¼ 0 (33)

α rð Þ
ij ¼ α 0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr,ij þ ε

p (34)

Here, γ ¼ 0:9 is the default value and ε ¼ 10�8 to prevent division by zero.
The pseudocode for the sequential mini-batch SGD estimation algorithm for a non-

stationary system is included as Algorithm 1.
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Algorithm 1 Pseudocode of sequential mini-batch SGD algorithm.

1: input: W0, Q0, R0, α0, B ⊳ W0: initial gain, Q0: initial Q, R0: initial R, α0: initial
step size, B: batch size.

2: r = 0 {⊳ Initialize the updating index r}.
3: for k = 1 to N do {⊳ N: Number of samples}.
4: compute innovation correlations ν kð Þ.
5: if k>Nb þM then {⊳ Nb: Number of burn-in samples}.

6: compute Ĉ
k
seq ið Þ, i = 0,1,2,...M-1.

7: if Mod k, Bð Þ ¼ 0 then.
8: compute the objective function Ψ.
9: compute the gradient ∇WΨ.
10: update the step size α rð Þ.
11: update the gain W rþ1ð Þ

ij ¼ W rð Þ
ij � α rð Þ

ij ∇W rð ÞΨ
� ��ij.

12: update R rþ1ð Þ and Q rþ1ð Þ.
13: r = r + 1.
14: end if.
15: end if.
16: end for.

3. Numerical examples

In [5], we provided the evidence that the multi-pass sequential mini-batch sto-
chastic gradient descent (SGD) algorithms improve the computational efficiency of
the batch estimation algorithm via a number of test cases used in [2, 7–9, 12], and also
showed their applicability to non-stationary systems when coupled with a change-
point detection algorithm [11]. In [22], we proposed a single-pass sequential mini-
batch SGD estimation algorithm by accessing measurements exactly once for non-
stationary systems by modifying the example used in [12] to periodically change the
process and measurement noise covariances.

In this section, we illustrate the utility of our proposed single-pass sequential mini-
batch SGD estimation algorithm by applying it to general diverse examples involving
detectable (but not completely observable) systems, non-stationary systems and a
bearings-only tracking problem.

For the non-stationary systems, we assumed the process and measurement noise
covariances occasionally change by an unknown level. Here “occasionally” implies the
jumps are infrequent enough that the Kalman filter is in the steady-state prior to a jump
in the noise covariance. We define the number of subgroups in which the noise covari-
ances are not changing as Nsg. Given the number of observation samples, N, each
subgroup has constant noise covariances withN=Nsg samples. In this section, we consider
two non-stationary scenarios for tracking time-varying Q and R withNsg ¼ 5 subgroups.
We also consider the bearings-only tracking problem where Q changes continuously.

Note that the number of “burn-in” samples and the number of lags are Nb ¼ 50
and M ¼ 5, respectively in the estimation procedure. The root mean square
propagation (RMSProp) method is applied to update the filter gain. All Monte Carlo
simulations were run using a computer with an Intel Core i7-8665U processor and
16 GB of RAM.
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We used the averaged normalized innovation squared (NIS) metric [2] to measure
the consistency of the proposed algorithm.

εν kð Þ ¼ 1
Nmc

XNmc

i¼1

ν kð Þ0S�1ν kð Þ (35)

whereNmc is the number of Monte Carlo runs. The root mean square error (RMSE)
in resultant position and velocity is computed using

RMSE kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmc

XNmc

i¼1

x kð Þtrue � x̂ kð Þ� �2
vuut (36)

3.1 Case 1: A detectable (but not completely observable) system that satisfies the
identifiability conditions

Mehra [8] stated, without proof, that a necessary and sufficient condition for noise
covariance estimation is that the system satisfies the observability property. This
example, due to Odelson et al. [7], demonstrates that this condition is not necessary.
The example does satisfy the full column rank condition for the identifiability
matrix in (16).

Odelson et al. [7] proposed a noise covariance estimation method based on the
autocovariance least-squares formulation by using the Kronecker operator δ. This
method computes the covariances from the residuals of the state estimation. Note that
the incompletely observable (but detectable 1) system used in [7] is described by

F ¼ 0:1 0

0 0:2

� �
, H ¼ 1 0½ �, Γ ¼ 1

2

� �
(37)

where F is the non-singular transition matrix, H is the constant output matrix, and
Γ is the constant input matrix in (1) and (2). Note that this system is a hypothetical
numerical example. The process noise v kð Þ and the measurement noise w kð Þ are
supposed to be uncorrelated Gaussian white noise sequences with zero-mean and
covariances as in the following

E v kð Þv jð Þ0� � ¼ Qδkj (38)

E w kð Þw jð Þ0� � ¼ Rδkj (39)

In this scenario, the true R values for the five subgroups are [0.30, 0.81, 0.49, 0.72,
0.42], and the true Q values for the five subgroups are [0.16, 0.49, 0.25, 0.36, 0.20].
The values are changed every 10,000 samples. Table 1 shows the results of 100 Monte
Carlo simulations based on the single-pass SGD algorithm in estimating Q and R. As
can be seen, the estimated Q and R are close to their corresponding true values. In this

1 The pair (F, H) in the system should be detectable in order for the continuous-time algebraic Riccati

equation to have at least one positive semidefinite solution and in this case at least one solution results in a

marginally stable steady-state KF [23, 24].
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scenario, the single-pass SGD estimation method has a speedup factor of 31 over the
batch and multiple-pass SGD estimation methods (not shown).

Figure 1 demonstrates that the sequential mini-batch gradient descent algorithm
can track Q and R correctly. Here, the trajectories of Q and R estimates are smoothed
by a simple first order fading memory filter with a smoothing weight of 0.7. Figure 1e
shows the averaged NIS of SGD (RMSProp; batch size of 64) method with the 95%
probability region [0.74, 1.30], and shows that the SGD-based Kalman filter is consis-
tent. The only place at which the NIS values are large are immediately after the jump
in the noise variances. This is because adaptation requires a few samples.

3.2 Case 2: a five-state inertial navigation system with diagonal Q and R

For estimating the unknown noise covariance parameters and the optimal Kalman
filter gain for part of an inertial navigation system (INS), Mehra [8] proposed an
iterative innovation correlations-based method starting from an arbitrary initial sta-
bilizing gain. Inertial navigation [25] involves tracking the position and orientation of
an object relative to a known starting orientation and velocity and it uses measure-
ments provided by accelerometers and gyroscopes. These systems have found univer-
sal use in military and commercial applications [26].

Since the earth is not flat, the inertial navigation systems need to keep tilting the
platform (with respect to inertial space) to keep the axes of the accelerometers
horizontal. Here, small error sources that drive the Schuler-loop cause the navigation
errors, and these errors are” damped” by making use of external velocity
measurements, such as are furnished by a Doppler radar [27, 28].

Figure 1.
Trajectories of Q and R estimates without signal smoothing and with a smoothing weight of 0.7 for Case 1.
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In this problem, Mehra [8] used a system based on the damped Schuler-loop error
propagation forced by exponentially correlated as well as white noise input. The
system matrices for this navigation system are given by

F ¼

0:75 �1:74 �0:3 0 �0:15

0:09 0:91 �0:0015 0 �0:008

0 0 0:95 0 0

0 0 0 0:55 0

0 0 0 0 0:905

2
66666666664

3
77777777775

;H ¼
1 0 0 0 1

0 1 0 1 0

" #
;

Γ ¼

0 0 0

0 0 0

24:64 0 0

0 0:835 0

0 0 1:83

2
66666666664

3
77777777775

(40)

where the system is discretized using a time step of 0.1 seconds. In this five-state
system, the first two states represent the a velocity damping term and velocity error,
respectively, and the other three states model the correlated noise processes. The noise
corresponding to states 3 and 5 impacts both the velocity error and the velocity
damping term; the fourth state impacts the sensor error in state 2 only.

In this problem, the true values corresponding to each subgroup with Nsg ¼ 5
subgroups and N ¼ 100,000 samples are as in (41). Each parameter of Q and R
changes every 20,000 samples.

R11

R22

" #
¼

0:25, 0:56, 0:64, 0:42, 0:36½ �
0:25, 0:25, 0:49, 0:16, 0:04½ �

" #
;

Q11

Q22

Q33

2
664

3
775 ¼

0:25, 0:64, 0:49, 0:25, 0:49½ �
0:25, 0:36, 0:56, 0:16, 0:04½ �
0:36, 0:49, 0:64, 0:25, 0:09½ �

2
664

3
775

(41)

Table 2 shows the results of 100 Monte Carlo simulations for estimating the noise
parameters using RMSProp update. The estimated parameters are close to the
corresponding true values. Given 100,000 samples, the proposed method with a batch-
size of 64 requires 1,891 seconds for 100 Monte Carlo simulations, i.e., 18.91 seconds per
run. The batch andmulti-pass SGD estimationmethods needmore than 3,000 seconds for
a single MC run (not shown); the single-pass SGD algorithm has a speedup factor of 158.6.

Figure 2 shows the trajectories of the estimated Q and R with a signal smoothing
with a smoothing weight of 0.7. For this example, it is known that accurate estimation
of R11 is hard as shown in Figure 2d. The reason is that R11 is dominated by the state
uncertainty, i.e., the measurement noise is “buried” in a much larger innovation [4].
In spite of the difficulty in estimating R11, the filter is consistent as measured by NIS as
shown in Figure 2f.
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3.3 Case 3: Bearings-only tracking problem

In many practical situations, it is generally hard to get a closed-form solution
for state estimation because the noise covariances are often unknown and the dynamics
are nonlinear. Arasaratnam et al. [29] proposed a nonlinear filter using bearings-only
measurements for estimating the position and velocity of a target in a high-dimensional
state. This method is based on the measurements from a passive sensor that measures
only the direction of arrival of a signal emitted by the target [2]. This so-called bearings-
only tracking problem arises in a variety of practical applications, such as air traffic
control, underwater sonar tracking and aircraft surveillance [2, 30, 31].

In this example, we consider a two-dimensional bearings-only tracking problem of
a nearly-constant velocity target from a single moving observer used in [32]. The
dynamics of the target (relative to the observer) are described by

x kþ 1ð Þ ¼ Fx kð Þ þ Γv kð Þ � U kð Þ (42)

z kð Þ ¼ h x kð Þð Þ þw kð Þ (43)

Formally, if the state vector of the target is xt kð Þ ¼ ζt, ηt, _ζ
t
, _ηt

h i0
, and the state

vector of the observer is xo kð Þ ¼ ζo, ηo, _ζ
o
, _ηo

h i0
for position and velocity along the ζ

and η axes, x kð Þ ¼ xt kð Þ � xo kð Þ represents the relative state vector of the target with
respect to the observer and the input vector U kð Þ ¼ xo kð Þ � Fxo k� 1ð Þ; w kð Þ is a zero-
mean white Gaussian noise with variance σ2θ. The nonlinear measurement involves the
bearing of the target from the observer’s platform, given by h x kð Þð Þ ¼ tan �1 ζ=ηð Þ.
Here, Γ is the identity matrix with ones on the diagonal and zeros elsewhere.

Figure 2.
Trajectories of Q and R estimates with a signal smoothing at smoothing weight = 0.7 for Case 2.
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The system matrices for this problem are given by

F ¼

1 0 T 0

0 1 0 T
0 0 1 0

0 0 0 1

2
6664

3
7775,Γ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775,Q ¼

T3=3 0 T2=2 0

0 T3=3 0 T2=2

T2=2 0 T 0

0 T2=2 0 T

2
6664

3
7775~q kð Þ

(44)

where the sampling interval, T is 1 second. The zero-mean white process noise
intensity ~q kð Þ is ~q0 ¼ 9 � 10�12 km2=s3, except for the interval where it starts to increase
rapidly to 1.5 �~q0 around the sample index k = 480 and then decreases again rapidly
around k = 960 as below:

~q kð Þ ¼ ~q0 þ 0:25~q0 1þ tanh 0:015 k� 480ð Þð Þð Þ, k≤ 720
~q0 þ 0:25~q0 1þ tanh 0:015 960� kð Þð Þð Þ, otherwise

�
(45)

The linearized measurement matrix, H kð Þ, is the Jacobian of the measurement
function given by

Hk ¼ ∂h x kð Þð Þ
∂x kð Þ ¼ η kð Þ

ζ2 kð Þ þ η2 kð Þ
�ζ kð Þ

ζ2 kð Þ þ η2 kð Þ 0 0
� �

(46)

A total of 1920 measurement samples were generated for this scenario. The
observer moves straight with a speed of 5 knots, except for 480 seconds (between k =
480 and k = 960), where it turns with 2:4∘=s as shown in Figure 3 (these times are
marked by cross sign).

For a fair comparison of the estimation algorithms, we initialized all filters with
the same mean and covariance using the prior knowledge of the initial target range

Figure 3.
Observer and target trajectory (100 MC runs).
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and the initial bearing measurement [33, 34]. Here, the initial target range and the
initial bearing measurement are generated as r � N r, σ2r

� �
and θ0 � N θ, σ2θ

� �
,

respectively, where r is the true initial target range and θ is the true initial bearing
measurement. The initial target speed is initialized as s � N s, σ2s

� �
, where s is the true

initial target speed. Let σ < �> denotes the standard deviation of the parameter.
Assuming that the target is moving towards the observer, the initial course estimate
can be obtained as c ¼ θ0 þ π. The initial state vector and the initial covariance are
given by

x̂0 ¼

ζ̂

η̂

_̂ζ

_̂η

2
66664

3
77775
¼

r cos θ0
� �

r sin θ0
� �

s sin cð Þ � _ζ
o
0

s cos cð Þ � _ηo0

2
66664

3
77775
;P0 ¼

Pζζ Pζη 0 0

Pηζ Pηη 0 0

0 0 P _ζ _ζ P _ζ _η

0 0 P _η _ζ P _η _η

2
6664

3
7775 (47)

where

Pζζ ¼ r2σ2θ cos
2 θ0
� �þ σ2r sin

2 θ0
� �

;Pηη ¼ r2σ2θ sin
2 θ0
� �þ σ2r cos

2 θ0
� �

(48)

Pζη ¼ Pηζ ¼ σ2r � r2σ2θ
� �

sin θ0
� �

cos θ0
� �

;P _ζ _ζ ¼ s2σ2c cos
2 cð Þ þ σ2s sin

2 cð Þ (49)

P _η _η ¼ s2σ2c sin
2 cð Þ þ σ2s cos

2 cð Þ;P _ζ _η ¼ P _η _ζ ¼ σ2s � s2σ2c
� �

sin cð Þ cos cð Þ (50)

Figure 4.
Comparison of estimation algorithms for the bearings-only tracking problem (100 MC runs).
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where r and s are 5 km and 4 knots, respectively, and the target course is �140∘.
Here, σr is 2 km, σθ is 1.5 ∘, σs is 2 knots and σc ¼ π=

ffiffiffiffiffi
12

p
for this problem.

Figure 4 shows a comparison of algorithms for the bearings-only tracking prob-
lem. The cubature Kalman filter (CKF) uses a third-degree spherical-radial cubature
rule that provides the set of cubature points scaling linearly with the state-vector
dimension [29]. The cubature Kalman filter and our single-pass SGD extended KF
(EKF) method can track the target well, but our proposed method shows better
computational efficiency compared to CKF by a factor of 2.5 (not shown). Root mean
square error (RMSE) in position and velocity over 100 Monte Carlo runs are shown in
Figure 4c and Figure 4d. During the whole maneuver, the RMSE of the proposed
single-pass SGD-EKF algorithm was slightly lower than that with the CKF method.

4. Conclusions

In this chapter, we derived a single-pass sequential mini-batch SGD algorithm for
estimating the noise covariances in an adaptive Kalman filter. We demonstrated the
utility of the method using diverse examples involving a detectable (but not
completely observable) system, a non-stationary system, and a nonlinear bearings-
only tracking problem. The evaluation showed that the proposed method has accept-
able state estimation root mean square error (RMSE) and exhibits filter consistency as
measured by the normalized innovation squared (NIS) criterion.
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