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Preface

The content of this book brings together the research results on state-of-the-art Kalman fil‐
tering theory for advanced applications to real-world problems. In Chapter 1, the philoso‐
phy and the historical development of Kalman filter from ancient times to the present are
followed by the connection between randomness, probability, statistics, random process, es‐
timation theory, and the Kalman filter. A reference recursive recipe (RRR) methodology is
proposed, and the efficacy is demonstrated by its application to a simulated spring, mass
and damper system, and a real airplane flight data having a larger number of unknown pa‐
rameters and statistics. In Chapter 2, a new structure of the forecast error covariance matrix
is proposed to mitigate the problems with limited ensemble size and model error in an en‐
semble Kalman filter (EnKF). An adaptive procedure equipped with a second-order least
squares method is applied to estimate the inflation factors of forecast and observational er‐
ror covariance matrices. The proposed method is tested on the well-known atmosphere like
Lorenz-96 model with spatially correlated observational systems. In Chapter 3, state and pa‐
rameter estimation in vehicle dynamics utilizing the unscented Kalman filter is presented.
The estimation runs in real time based on a detailed vehicle model and standard measure‐
ments taken within the car. The results are validated using a Volkswagen Golf GTE Plug-In
Hybrid for various dynamic test maneuvers and a Genesys ADMA measurement unit for
high precision measurements of the vehicle’s states. In Chapter 4, a sensitivity-based adap‐
tive square-root unscented Kalman filter (SRUKF) is presented. This algorithm combines an
unscented Kalman filter (UKF) and the Recursive Prediction Error Method to estimate sys‐
tem states, parameters, and covariances online. In Chapter 5, an adaptive Taylor Kalman
filter with PSO tuning for tracking nonstationary signal parameters in a noisy environment
with primary focus on time-varying power signals is presented. The proposed PSO-tuned
Taylor Kalman filter exhibits robust tracking capabilities even under changing signal dy‐
namics, is immune to critical noise conditions and harmonic contaminations, and reveals ex‐
cellent convergence properties. In Chapter 6, the estimation of heart strain from noninvasive
measurements, heart rate (HR), and chest skin temperature (ST), obtained “online” via
wearable body sensors via Kalman filter, is investigated. The experiments are performed us‐
ing data from laboratory and outfield-based heart strain profiling studies in which subjects
performed a high-intensity military foot march. In Chapter 7, a method of predicting finan‐
cial distress based on Kalman filtering is improved dynamically. Based on the state-space
method, two models that are used to describe the dynamic process and discriminant rules of
financial distress are established, respectively: a process model and a discriminant model.
An empirical study for China’s manufacturing industry is also conducted. In Chapter 8, an
application of the Kalman filter to the navigation of mobile robots, specifically the time-to-
contact problem, is presented. A monocular vision-based approach to detect potential obsta‐
cles and to follow them over time through their apparent size change is used. The approach
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collects information about obstacle data and models the behavior while the robot is ap‐
proaching the obstacle, in order to predict collisions. In Chapter 9, the efficient and practical
matrix-free implementations of the ensemble Kalman filter (EnKF) in order to account for
localization during the assimilation of observations are discussed. Experimental tests are
performed making use of the Lorenz 96 model. In Chapter 10, the design and implementa‐
tion of a three-phase shunt active power filter (APF) employing Kalman filter estimator are
presented. Details on investigation between conventional and proposed methods under sim‐
ulation based on MATLAB/SIMULINK platform and experiment are made for two types of
load, namely, three-phase rectifier with RC-load and three-phase induction motor. In Chap‐
ter 11, various applications of Kalman filtering for coherent optical communication systems
are reviewed. The numerical analysis concludes that the Kalman filter-based approaches
outperform the conventional methods with better tracking capability and faster convergence
besides offering more feasibility for real-time implementations. In Chapter 12, Kalman fil‐
ters for tracking moving objects and their efficient design strategy based on steady-state per‐
formance analysis are presented. Numerical simulations show the validity of the theoretical
analysis and effectiveness of the proposed strategy in realistic situations. In Chapter 13, the
challenges in distributed tracking are explained. Possible solutions are derived, which in‐
clude the distributed Kalman filter (DKF) and a more recent methodology based on “accu‐
mulated state densities” (ASD), which augment the states from multiple time instances to
overcome spatial cross correlation ASD approach. In Chapter 14, Kalman filtering in its dis‐
tributed information form is reviewed and applied to a network of receivers tracking Global
Navigation Satellite Systems (GNSS). The consensus-based Kalman filter (CKF) of individu‐
al receivers is applied to deliver GNSS parameter solutions with comparable precision per‐
formance as their network-derived, fusion center-dependent counterparts. This is relevant
as in the near future the proliferation of low-cost receivers will give rise to a significant in‐
crease in the number of GNSS users.

This book Kalman Filters - Theory for Advanced Applications presents the following aspects of
interest: provide the state of the art on advanced theoretical and practical research and facili‐
tate the proposal of new techniques and implementations and educational importance as
handbook to help students and researchers on Kalman filtering technologies.

The editor would like to thank all authors who were valuable sources of information on the
state-of-the-art Kalman filter technology. Thanks are still due to Ms. Iva Simcic, Publishing
Process Manager (InTech), for her patience and accuracy in all steps in the project of this
book. The editor is very grateful to the professors with the Department of Electro-Electronics
(DEE/IFMA), for their motivations, their stimulations, and providing a pleasant environ‐
ment of scientific study and research and MSc/PhD Electricity Engineering Program
(PPGEE/UFMA) for its encouragement, during the project of this book. Finally, the editor
would like to dedicate this book to his family (especially for his father Walber Serra, mother
Raidalva Serra, and daughter Ester Luiza) for their valuable presence in his life.

Prof. Dr. Ginalber Luiz de Oliveira Serra
Federal Institute of Education, Sciences and Technology

Department of Electro-Electronics
São Luis, MA, Brazil
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Abstract

The philosophy and the historical development of Kalman filter from ancient times to
the present is followed by the connection between randomness, probability, statistics,
random process, estimation theory, and the Kalman filter. A brief derivation of the filter
is followed by its appreciation, aesthetics, beauty, truth, perspectives, competence, and
variants. The menacing and notorious problem of specifying the filter initial state,
measurement, and process noise covariances and the unknown parameters remains in
the filter even after more than five decades of enormous applications in science and
technology. Manual approaches are not general and the adaptive ones are difficult. The
proposed reference recursive recipe (RRR) is simple and general. The initial state covari-
ance is the probability matching prior between the Frequentist approach via optimiza-
tion and the Bayesian filtering. The filter updates the above statistics after every pass
through the data to reach statistical equilibrium within a few passes without any opti-
mization. Further many proposed cost functions help to compare the present and earlier
approaches. The efficacy of the present RRR is demonstrated by its application to a
simulated spring, mass, and damper system and a real airplane flight data having a
larger number of unknown parameters and statistics.

Keywords: adaptive EKF, expectation maximisation, maximum likelihood, Cramer Rao
bound, probability matching prior

1. Brief introduction to the historical development of Kalman filter (KF)

1.1. Conceptual beginning of KF in ancient Indian astronomy

As is well known if there is one thing that does not change in nature it is the change. Such a
change has to be captured by some means. In general, neither the change nor the capture is
exact. Hence based on some suitable criteria a combination can be derived to correct. Such an
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update process has to be repeated at suitable intervals. The above philosophy of ‘change,
capture, and correct’ is the one that is followed in the Kalman filter. The ancient Indian
astronomers had understood the above philosophy.

The ancient Indian astronomers, at least since AD 500, used the above concept to update the
parameters for predicting the position of celestial objects for timing their Vedic rituals based on
measurements carried out at various time intervals which can be stated as

Updated parameter ¼ Earlier parameterþ Some quantity
� �

� Measured� Predictedð Þ Position of the celestial object
(1)

The ‘some quantity’ as we will see later on is the Kalman gain. Further, note the measured
longitude of the celestial object is different from the state that is updated, which is the number
of revolutions in a yuga just as state and measurements are in general different in many
Kalman filter applications!

They needed to calculate the position of the celestial objects like Sun, Moon, and other planets
to carry out the Vedic rituals. But their predicted positions changed over many centuries due to
unmodeled or unmodelable causes. The French historian Billard [1] noted that measurements
were carried out (in fact extending over many years or even decades!) at various times starting
from around AD 500 by Aryabhata to AD 1600 and the parameters were corrected to make the
predicted position of the objects consistent with new observations. Table 1 shows such revi-
sions over a period of time from Sarma [2].

During the above period, Nilakantha (around AD 1443) had stated that the eclipses cited in
Siddhantas can be computed and the details verified. Similarly, other known eclipses, as well
as those currently observable, are to be studied. In the light of such experience, future ones can
be computed and predicted (extrapolation!). Or eclipses occurring at other places can be
studied taking into account the latitude and longitude of the places and on this basis the
method for the true Sun, Moon… can be perfected (data fusion!). Based on these, the past
and future eclipses of one’s own place can be studied and verified with appropriate refinement
of the technique. This is just the idea of ‘smoothing’! Billard had a problem for later Indian

Table 1. Corrections of planetary parameters in ancient India. From Sarma [2] (Sun 43,20,000; Number of days per
yuga = 1,57,79,17,000+).

Kalman Filters - Theory for Advanced Applications2

astronomers as ‘If the elements of Aryabhata are now wrong, they must have been accurate
when he was living. Thus, we ought to establish the astronomical elements upon both on his
own at his time and the new observations of the present time’. He noted that based on the
above reasoning, some Indian canons were evolved and one such canon around AD 898 shows
a very high accuracy valid over a larger number of centuries [1].

1.2. Development of the concepts in KF during the medieval period

On January 1, 1801, Piazzi, while searching for a wrong entry in a star catalogue, discovered the
largest and the first of the asteroids Ceres. He tracked its position for the next 41 days, before it
was lost in space. He wrote to Bode who felt it to be the missing planet in his formula. Its orbital
elements could not be determined by the then available methods. Newton had stated it as the
most difficult nonlinear problem then in astronomy. Piazzi’s discovery was published in 1801.
Gauss tackled the problem and estimated its orbit and sent it to Piazzi who found it again on the
last day of 1801! Gauss published his orbit determination methods only in 1809 [3] describing his
1795 method of least squares (LS) used in his estimates of the Ceres orbit. Gauss had an ideal
situation with a good system model and only the measurement noise, and thus with his least
squares approach he could get an estimate and a qualitative measure for the uncertainty.
Independently, the method of LS had been discovered and published by Legendre of France
and Robert Adrian of the United States. In fact, even before Gauss was born, the physicist
Lambert had used it! Gauss has provided almost all the essentials of present day estimation
theory. He postulated that a system model should be available, minimum number of measure-
ments for observability, the redundant data helping to reduce the influence of measurement
errors, a cost function based on the difference between the measurement and that predicted by
the model should be minimised. There should be some a priori knowledge concerning the
unknowns to be estimated. Further, since the errors could be unknown or unknowable, he had
given hints about probabilistic approach, normal distribution, and method of maximum likeli-
hood estimation, linearization, and the Gaussian elimination procedure. Gauss did not balance
the governing differential equation, but tried to fit the measurement with the prediction. If he
had tried the former, he would have been led to a biased solution! Fortune favours the brave!
This is where a proper mathematical framework helps to understand if an algorithm converges
to the correct value with more and more measurements. The post Gaussian contributions in ET
consists of the method of moments, method of maximum likelihood estimation, the Kalman
filter and its variants, frequency domain approach, and handling time varying dynamical state
and parameters. Further, the use of matrix theory, sequential instead of batch processing, and
real-time processing by computers exist. We are dealing with more difficult situations, but the
conceptual framework to solve these problems had been fully laid out by Gauss!

1.3. Mature KF during the twentieth century and beyond

Almost every concept in present day science and technology seem to have its root in ancient
times as mentioned earlier. It must be understood that the classic papers by Kalman [4] and
Kalman Bucy [5] was conceptually preceded earlier by Thiele as mentioned by Lauritzen [6],
Swerling [7], Stratonovich [8] and some other researchers. The development of the Kalman filter
is one of the most interesting and useful innovations of the twentieth century, and it owes its
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� �
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(1)
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origin to the least squares solution proposed by Gauss. For Gauss, the state equations were the
exact Newton’s laws ofmotion and onlymeasurement noise existed. The sequential least squares
were rediscovered by Plackett [9] and Kalman [4]. Thus, in fact, Sprott [10] has questioned if the
Kalman Filter is really a significant contribution when Gauss was far ahead! The point is that the
frequency domain approach of the Wiener filter [11] has been improved to the natural time
domain approach. Further the shift from batch to the sequential approach is very convenient to
handle continuous measurement data flow. It is to the credit of Kalman apart from unifying
earlier results that he introduced the concept of controllability and observability, which means
the system to be identified has to be properly excited and observed thus making the estimation
problem systematic and consistent. The only slight difference, but very momentous between the
Recursive Least Squares (RLS) and the Kalman filter is the time propagation of the state and
covariance estimates between measurements (see for example [12]). Presently, the scale and
magnitude of many difficult and interesting problems that estimation theory (ET) is handling
could not have been comprehended by Gauss or Kalman. Examples are airplane flight test data
analysis [13, 14], target tracking [15], evolution of the space debris scenario [16], fusion of GPS
and INS data [17], study of the tectonic plate movements [18], high energy physics [19], agricul-
ture, biology, and medicine [20], dendroclimatology [21], finance [22], source separation problem
in telecommunications biomedicine, audio, speech and in particular astrophysics [23], and atmo-
spheric data assimilation for weather prediction [24].

2. Randomness, probability, statistics, random process, estimation theory,
and Kalman filter

The connection among probability, statistics, random process, and estimation theory by
Ananthasayanam [12] as shown in Figure 1, are ubiquitous in science, technology, and life.

RANDOMNESS IS COMMON TO P, S, R AND ET

SEQUENTIAL ET IS KALMAN FILTERING

PROBABILITY (P)STATISTICS (S)

RANDOM                        
PROCESS (R)

ESTIMATION 
THEORY (ET)

INVERSE, DIFFUSE DIRECT, SHARP

TIME INDEPENDENT

TIME DEPENDENT

Figure 1. Relationship between probability, statistics, random process, and estimation theory.
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The randomness is common to all and sequential time-dependent statistical analysis can be
called as Kalman Filtering.

2.1. Randomness

We have moved unambiguously from determinism to randomness ever since ancient times to
the present. We are compelled to understand, model, estimate and control nature which is
random in a probabilistic way. Randomness occurs inevitably in all walks of life. The ontology
(the true nature) is one thing and the epistemology (our understanding) is another thing. A
computer generating a sequence of random numbers is deterministic ontology, but for the user
who does not know how they are generated it is probabilistic epistemology. Randomness is
patternless but not propertyless. Randomness could be our ignorance. Chance is no longer
something to worry about or an expression of ignorance. On the contrary, it is the most logical
way to present our knowledge. We are able to come to terms with uncertainty, to recognise its
existence, to measure it and to show that advancement of knowledge and suitable action in the
face of uncertainty are possible and rational. Random chance may be the antithesis of all law.
We look for the alternatives and provide the probabilities of their happening as measures of
their uncertainties. Knowing the consequences of each event and the probability of its happen-
ing, decision making under uncertainty can be reduced to an exercise in deductive logic. It is
no longer a hit and miss affair. But, the way out is to discover the laws of chance and convert
chance to choice in life. The aim of life is to make the earth a happy place to live.

Randomness could occur due to the uncertainty, variability, complexity, or enormity. A classic
example is the deterministic coin tossing. There is enormity in dealing with a large number of
air molecules, the complex interaction of air among themselves and with the coin, variability of
the initial condition, and the uncertainty due to air currents. Of course, many deterministic
mathematical problems could be handled using probabilistic approaches called Monte Carlo
techniques. Quantum Mechanics seems to possess true randomness. One feels that random-
ness is a nuisance, and should be avoided. However we have to live with it and compulsively
need it in many situations. In a multiple choice question paper, no examiner would dare to put
all the correct answers at the same place! As another example the density, pressure, and
temperature, or even many trace constituents in air can be measured with a confidence only
due to the random mixing that invariably takes place over a suitable space and time scale. As
we will see later, the introduction of random process noise into the kinematic or dynamical
equations of motion of aircraft, missiles, launch vehicles, and satellite system helps to inhibit
the onset of Kalman filter instability and thus track these vehicles. The well-known statistician
Rao [25] states that statistics, as a method of learning from experience and decision making
under uncertainty, must have been practiced from the beginning of mankind. The inductive
reasoning in these processes has never been codified due to the uncertain nature of the
conclusions drawn from any data. The break through occurred only at the beginning of the
twentieth century with the realisation that inductive reasoning can be made precise by speci-
fying additionally just the amount of uncertainty in the conclusions. This helped to work out
an optimum course of action involving minimum risk in uncertain situations in the deductive
process. This is what Rao [25] has stated as a new paradigm of thinking to handle uncertain
situations as
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Uncertain knowledge þ Knowledge of the amount of uncertainty in it
¼ Usable knowledge

(2)

The Kalman filter dealing with only the estimates and their uncertainties thus has minimal
additional information to handle.

2.2. General remarks on P, S, R, and ET

Though randomness exists in all the above, due to the undercurrent of some determinism
wrapped by uncertainty the processes are not completely haphazard. The P and S are time
independent, whereas R and ET are their time-dependent analogues. The P and R are direct
using deductive logic; whereas S and ET are inverse problems using inductive logic, thus more
difficult than the former. The S and ETdeal with data that are insentient and do not speak. The
analyst gives life to the data to find out the underlying model mechanism based on intuitive
and subjective analysis to obtain results and conclusions which are meaningful and useful.

In an inverse problem with a limited sample size from the population with or without noise,
the problem is considered, as well posed if (i) there exists a solution to the problem (existence),
(ii) there is at least one solution to the problem (uniqueness), and (iii) the solution depends
continuously on the data (stability). Generally, an acceptable and reasonable solution can be
worked out by specifying some subjective criterion cast in terms of a quantitative cost function
to match (in some reasonable way) the model and the measurements made on the system.
Further, no matter whatever technique one adopts unless and until the model structure of the
system is appropriate and the parameters in it are identified along with the noise sequence,
one can never obtain the true value but only be around it all the time. When a system model
characterises many effects, then the model structure should reflect each one appropriately and
the parameters in them estimated for apportioning the different effects.

2.3. Probability (P)

The probabilistic approach subsumes in general the deterministic laws of physics (but one can
include them also) or others postulated for any system. It utilises the axiomatic rules governing
probability leading to outcomes regarding the behaviour of the ensemble. The probability itself
can be broadly specified based on Classical, Bayesian, and the Frequentist approaches [26].
These are, respectively, based on the ‘principle of indifference thus equiprobable’, ‘degree of
belief’, and ‘limiting frequency’ of the occurrence of the events. The law of large numbers and
the central limit theorem under very general conditions (leading to a Gaussian distribution)
assist in reaching practical conclusions.

2.4. Statistics (S)

In order to define statistics, it seems best to follow Feller [27] which in our language is to
analyse the measurement data to develop a mathematical model with the intuitive mind
providing the methodologies. The mind is nebulous, measurement is spotty, and model is
smooth if one may say so. Then, the simplest definition of statistics seems to be a good
translation of measurements into a model by the mind. Of course, the three are randomly
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used for progress in science, technology, and life. An intuitive subjective idea is cast in an
objective form to help the analyst decide if the difference between measurement and model
can be attributed to statistical fluctuation or deterministic change. Such a decision is always
based on extra statistical (!) implications. All the concepts and problems of statistics go over to
estimation theory, and in turn to Kalman filter which is to sequentially process the time-
dependent data. Generally, in statistics, linear relationship among the variables is prolific since
it is the simplest and anything else would have to be justified a priori.

The philosophical discussions about the Classical, Bayesian, and Frequentist approaches to
probability and statistics can go on endlessly. The most prevalent view is Frequentists deal
with data only, but Bayesians try to incorporate well established ‘a priori’ information as well
into the problem. But no matter whichever approach is followed, eventually one has to take a
practical view and ensure the final results are credible and useful.

2.5. Random process (R)

Here, in R, the simplest characterisation of time-dependent noise is white in time following a
Gaussian distribution, thus containing the least amount of information! However, due to the
undercurrent of some amount of determinism wrapped by uncertainty, the processes are not
completely haphazard. If the atmosphere and earth quakes behave like white noise then meteo-
rologists, geologists would have no work! The underlying deterministic processes are wrapped
in noise providing some underlying correlations. The white noise is the worst data that will fail
any algorithm for prediction, but used most prolifically in ET since it is mathematically tractable!

2.6. Estimation theory (ET)

The basic framework of ET in analysing a given measurement data consists of qualitatively
modelling the system, measurement and all the noise characteristics, a criterion to match or
mix the model output with the measurements in some optimal sense, a numerical algorithm
for the above task and consequently estimate the unknown parameters and the noise statistics
together with their uncertainties and lastly an internal consistency check to ensure that the
assumptions regarding model and measurement noise above are consistent and if not the
above steps have to be modified and repeated.

There is a general feeling that ET solutions have to be objective with little scope for subjectivity.
However, it is interesting to note that subjectivity cannot be avoided, but it is the one that helps
all the way from the formulation of the problem to obtaining the final solutions. Deterministic
approaches of the early period have given way to probabilistic approach that is neither a
fashion nor the truth (!) The probabilistic rules aid in modelling the scenario and the statistical
approach of analysing the data with all its subjectivity provides acceptable quantitative esti-
mates together with their uncertainties.

3. Overview of Kalman filter

The simplest formulation of a Kalman filter is when the state and measurement equations are
linear, a well-known fact as mentioned by Brown and Hwang [28]. For linear systems during
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evolution and update the form of the normal distribution is maintained, but with changed
mean and covariance. However, the Kalman filter has found its greatest application for
nonlinear systems. Particularly in many aerospace applications, the unknown parameters
multiply the state variables to provide force or moments acting on the vehicles. If the unknown
parameters are treated as additional states then the system of equations become nonlinear.
Thus, the Extended Kalman filter (EKF) formalism can be used. The EKF formulation provides
the simplest scenario to present the proposed Recurrence Recursive Recipe (RRR). Other filter
formulations contain the effect of further approximations, discretizations and other features. A
typical continuous state with discrete measurements in time forms a nonlinear filtering prob-
lem and can be written as

x kð Þ ¼ f x k� 1ð Þ;Θ;u k� 1ð Þð Þ þw kð Þ (3)

Z kð Þ ¼ h x kð Þ;Θð Þ þ v kð Þ, k ¼ 1, 2, 3,…::N (4)

where ‘x’ is the state vector of size (n � 1), ‘u’ is the control input, Θ is the parameter vector of
size (p � 1) and ‘Z’ is the measurement vector of size (m � 1). The ‘f’ and ‘h’ are nonlinear
functions of state and measurement equations, respectively. The process and measurement
noise are assumed to be zero mean with covariance Q and R, respectively, and their sequences
are uncorrelated with each other. The states are generally not directly observable, but the
measurements are related to the states.

In EKF formulation, the parameter vector Θ is augmented as additional states. Thus,
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Θ kð Þ
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¼ f x k� 1ð Þ; Θ k� 1ð Þ; u k� 1ð Þð Þ
Θ k� 1ð Þ

� �
þ w kð Þ

0

� �
(5)

The nonlinear filtering problem is now redefined as

X kð Þ ¼ f X k� 1ð Þð Þ þw kð Þ (6)

Z kð Þ ¼ h X kð Þð Þ þ v kð Þ, k ¼ 1, 2,…::N (7)

where ‘X’ and ‘w’ are, respectively, the augmented state and process noise vector of size
((n + p) � 1). The control symbol ‘u’ is not shown for brevity. The solution for the above
filtering problem can be summarised as

Initial State Estimate X 0j0ð Þ ¼ X0 ¼ E X t0ð Þ½ �, (8)

Initial State Covariance Matrix P 0j0ð Þ ¼ P0 ¼ E X0–X t0ð Þð Þ X0–X t0ð Þð ÞT
h i

(9)

Prediction Step : X kjk� 1ð Þ ¼ f X k� 1jk� 1ð Þð Þ, (10)

P kjk� 1ð Þ ¼ F k� 1ð ÞP k� 1jk� 1ð ÞF k� 1ð ÞT þQk (11)

We presume that X kjk� 1ð Þ and P kjk� 1ð Þ represent the estimates of the state and its covari-
ance matrix at time index k, based on all information available up to and including time index
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k�1. Then, we update the state value from X kjk� 1ð Þ to X kjkð Þ using the measurement Z kð Þ
with uncertainty denoted by R kð Þ based on the value of K kð Þ called the Kalman gain such that
the updated covariance P kjkð Þ has the individual terms along its major diagonal is a minimum
leading to

Update Step : K kð Þ ¼ P kjk� 1ð Þ H kð ÞT H kð Þ P kjk� 1ð Þ H kð ÞT þ R kð Þ½ ��1 (12)

X kjkð Þ ¼ X kjk� 1ð Þ þ K kð Þ Z kð Þ � h X kjk� 1ð Þð Þ½ � ¼ K kð Þνk (13)

P kjkð Þ ¼ I�K kð ÞH kð Þ½ �P kjk� 1ð Þ (14)

where P denotes the uncertainty, F k� 1ð Þ is the state Jacobian matrix (∂f/∂X) evaluated at X ¼
X k� 1jk� 1ð Þ and the measurement Jacobian H kð Þ evaluated at X ¼ X kð Þ. The X kjk� 1ð Þ
denotes the value at t(k) based on the process dynamics between t(k-1) and t(k), but before
using the measurement information. The observation (measurement) of the process is at
discrete time points in accordance with the local linearised relationship H = (∂h/∂X) evaluated
at X ¼ X kð Þ at the measurement time point. The quantity which is the difference between the
actual measurement and the predicted model output

νk ¼ Z kð Þ � h X kjk� 1ð Þð Þ½ � (15)

is called the innovation. Further when the measurement is compared with the updated state
X kjkð Þ, then the quantity

νf ¼ Z kð Þ � h X kjkð Þð Þ½ � (16)

is called the filter residue. As the filter passes through the measurement data, the last measure-
ment provides the best estimate using all the data points. In order to obtain similar estimates at all
the intermediate time points using all themeasurements, the filter can be operated backwards and
with a proper blending provides the smoothed estimates such as by Rauch et al. [29]. The quantity

νs ¼ Z kð Þ � h X kjNð Þð Þ½ � (17)

is called as the smoothed residue where X kjNð Þ is the smoothed state at time t(k) based on all
the measurements N.

It may be noted that when the innovation is white it means all the information has been
extracted from the data and no further information is left, with both the models and the
algorithm have done their best job!

Note that we have combined the local state estimate and the measurement both at time t(k) to
obtain an updated state. Further, the use of only the estimate and covariance all over the filter
tacitly implies the state and measurement variables are all distributed or approximated as
quasi Gaussian. Thus, if initially the state is assumed to be distributed normally with mean
X0 and covariance P0 then the KF involves iterative operation of two steps: prediction and
after an update (also called correction) step there is a subtle reset as a Gaussian. Thus, with all
such subjective features, the final answer can only be an answer rather than a unique answer.
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There are five steps in the Kalman filter, namely state and covariance propagation with time,
Kalman gain calculation and the state and covariance updates by incorporating the measure-
ment. The state propagation and update refer to the sample while the covariance propagation,
update and the Kalman gain refer to the ensemble characteristics. It is possible that at times
based on the measurements the updates may move locally away from the true values, but with
increasing data it will move towards the true value. But this should be noted as the behaviour
of the sample. What the filter gain denotes is that in an overall probabilistic ensemble sense
the Kalman filter will outperform many other estimators. This is analogous in life to some
righteous persons who appear to loose but that in the long run they will win! These steps that
statistically combine two estimates at any given time point, one from state and the other from
measurement equation, are formal if only their uncertainties denoted by their covariances are
available. Thus, the states can be estimated given the initial X0 and P0 as well Q and R over
time. Over a time span in order to match and minimise the difference called the innovation, in
some best possible sense, a well-known criterion is the method of maximum likelihood esti-
mation (MMLE). The innovation follows a white Gaussian distribution which is operationally
equivalent to minimising the cost function.

J ¼ 1=Nð ÞΣ νk H kð ÞP kjk� 1ð ÞH kð ÞT þ R kð Þ½ ��1 νT
k ¼ J X0;P0;Q;R;Θð Þ (18)

based on summation over all the N measurements and has to be solved for X0, P0, Q, R, Θ. The
importance of the innovation followingwhite Gaussian for filter performance was brought out by
Kailath [30]. Generally, mathematical treatment is terse (as the original paper of Kalman deriving
the filter from the orthogonal projection principle) and refers to large data. But the sensitivity of
the final results to the intermediate statistical quantities for filter consistency (at what confidence
level?) is not apparent and sometimes lead to physically unacceptable results as noted in Shyam
et al. [31]. Hence, for engineering applications, it is desirable to look for other statistics from the
filter. When Q � 0, the MMLE is called as the output error method with the Kalman gain matrix
being zero. When Q > 0, the method is called as filter error method. In the usual Kalman filter
implementation generally one does not solve for the statistics P0, Q and R but they are adjusted
manually to obtain acceptable results. The numerical effort of minimising J has to appear in the
estimation of the filter statistics. The Kalman filter is not a panacea to obtain better results when
compared to simpler techniques of data analysis. The accuracy of the results using Kalman filter
depends on its design based on the choice of X0, P0, Θ, R and Q. If the above values are not
chosen properly then the filter results can be inferior to those from simpler techniques.

Other cost functions can and have been used in Kalman filter work such as the Integral of Time
multiplied by Absolute Error with time as a scaling factor. This is meaningful since it is
important to ensure a zero error after the filter has converged. This is given by

JITAE ¼ 1=Tð Þ
ð

1=Nð Þ
X

aiνi dt (19)

where the ai is suitable weight related to the innovation covariance. Another cost function
useful to study the effects of inadequate modelling in state estimation problem that is very
common in Kalman filter studies has been proposed and used in rendezvous and docking
problem by Philip and Ananthasayanam [32] as
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JMODEL ¼ 1=Nð Þ
X

x ið Þ–xref ið Þ� �
P�1 x ið Þ � xref
� �T (20)

with the summation is over all the N time points and the suffix ‘ref’ refers to a desired
reference trajectory to be followed and the argument in x (.) denotes the time step or point.
The P is the covariance matrix obtained with nominal values for the unknown disturbances. If
the variations or a deficiency in the modelling is beyond the statistical fluctuations as denoted
by the covariance, then the above cost function changes substantially and indicates a degrada-
tion of the filter performance. Further cost functions are introduced here to obtain confidence
in the results from the proposed RRR for tuning the filter statistics.

3.1. An appreciation of the Kalman filter

Science and technology has progressed through theories and experiments. It is only in
Kalman filter that both theory and experiment are handled simultaneously almost all the
time. Due to the seemingly unpretentious fact of splitting the state and measurement equa-
tions and switching between the state propagation and its update using the measurements,
very interesting outcomes have been shown to be possible. This is similar to any amount of
deep study and understanding of the state or the measurement equations (theory and
experiment) separately may not be able to comprehend the exciting possibilities and abilities
when both are combined together. This is similar to the components of a watch, or the cells in
an organism leading, respectively, to the time keeping ability or life, which do not exist in the
individual components. The GPS is another brilliant example of such a synergism. The
competence of the Kalman filter is similar to the saying ‘wholes are more than the sum of
their parts’ as stated by Minsky [33]. It is the above feature that can be called as synergistic,
parallel, operator splitting that is the remarkable and profound aspect of the Kalman filter
rather than describing it as a sequential least square estimator, or capable of handling time
varying states and measurements.

3.2. Aesthetics, beauty, and truth of the Kalman filter

The aesthetics of the Kalman filter is to consider only the estimate and the covariance
representing the uncertainty. Just only one additional quantity to move from a deterministic
case to probabilistic scenario for describing the results is economical.

In Kalman Filter, at the initial time, the probability density function is assumed to be Gaussian.
This need not be true if the state is not a measured quantity whence it could be true or an
assumption is made. If the state equations are nonlinear then after the state propagation the
probability density function becomes non-Gaussian. Next, in general, the combination of the
propagated states and measurements (with any one being non-Gaussian) need not lead to an
updated Gaussian. However, at a measurement update, only the estimate and the covariance
of the density functions which could be non-Gaussian is used. Thus, even in nonlinear prob-
lems after an update when the distribution need not be Gaussian is subtly reset to be a
Gaussian with the updated estimate and covariance.

These above are in some ways similar to many other problems in science and engineering
wherein only the first and second derivatives or moments alone are considered. This is just the
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reason and fortuitously as well for using velocity and pressure or temperature in equilibrium
thermodynamics, which depend on the first and second moments, respectively, of the distri-
bution function governing the random velocity of the gas molecules. This leads to the consid-
eration of fewer moments or states to describe the dynamics of the gas flow. What would
happen if higher order moments had been relevant! Even in classical dynamics in the equa-
tions of motion, the linear and angular accelerations are only the second derivatives! As
another example, take a rectangular distribution and with increase in sample size the lower
order moments converge faster than the higher order moments. This is because away from the
middle, the tail controls the higher order moments. For a very similar reason, the Boltzmann
equation in kinetic theory deals only with single particle distribution as against multi particle
distribution function.

The beauty in the Kalman filter is whether it is true or otherwise many random variables are
assumed to follow a multivariate Gaussian distribution, and thus the derived joint and marginal
density functions are all Gaussian. The Gaussian distribution provides an enormous amount of
mathematical tractability exactly for linear systems and approximately for nonlinear systems.

The truth in the Kalman filter equations is that once it is derived in one way, it is possible to derive
it in a variety ofwayswith slightly different assumptions, butmostly leading to similar set of basic
equations as for linear problems. The author of each book has his own derivation! It is interesting
to note that the simplest formulation of the Kalman filter is based on minimum amount of a priori
knowledge or information in probability, statistics, and random process providing, respectively,
the Gaussian distribution, linear relationship among the variables, and white noise [12]. Other-
wise one has to justify themwhich may not be simple or easy. If necessary other suitable distribu-
tions, nonlinearity, and coloured noise can be introduced later into the filter framework.

3.3. Different perspectives and competence of Kalman filter

The Kalman filter can be viewed as an inverse problem, deterministic or probabilistic approach,
reversing an ‘irreversible’ process. Also it can be considered as qualitative modelling and quan-
titative estimation, stochastic corrective process by Narasimha [34], data fusion and statistical
estimation by probabilistic mixing, optimization in the time (or frequency) domain. The compe-
tence of the filter consists of estimating unknown or inaccurately known parameters (including
deterministic errors) in the state and measurements, estimation of process and measurement
noise, improved states and measurements by smoothed filter estimates, estimation of
unmodelable inputs by modelling them in a probabilistic way, unobservables from observables,
expansion of the scenario, handling computational errors by noise addition, consistency check of
the whole process of modelling, convergence of the numerical algorithm, and the extraction of
the complete information from the data by checking the correlation of the innovation sequence.
All of the above are achieved based on the measurements and suitable modelling of the state and
measurement equations. The above aspects are discussed in [12, 31].

3.4. Kalman filter and some of its variants

For nonlinear systems, even if the initial distribution is assumed normal, it gets distorted after
propagation and so a suitable local approximation or quasi linearization has to be made. In the
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EKF the nonlinear systems and/or measurements equations are approximated by appropriate
first order Taylor series expansion. The probability density is approximated by a Gaussian,
which may distort the true structure and at times could lead to the divergence between the
filter prediction and the measurements. In the Unscented Kalman filter (UKF) by Julier et al.
[35] approach, instead of linearizing the functions, a set of chosen points are propagated
through the nonlinear transformation. These points are so chosen such that the mean, covari-
ance, and possibly also higher order moments match better with the propagated distribution.
At an update, only the estimate and covariance matters.

The particle filtering by Gordon et al. [36] is a Monte Carlo technique for state estimation that can
handle nonlinear models together with non-Gaussian noise. Here, the state probability density is
approximated by using point particles having positive weights. Based on the initial distribution,
the weights are chosen and then the particles are propagated following the system dynamics
together with the state noise. Then using the measurement, their weights are adjusted and
normalised among all the particles. The particles that can track the measurements gain weight
and the ones far away lose their weights. However, after a while, all but one weight will become
zero leading to degeneracy. A resampling scheme is introduced to solve the degeneracy problem
that discard the particles with small weights and focus on the particles with more significant
weights. Then, the procedure continues sequentially over the measurements.

For large size systems, such as those occurring in geophysical studies maintaining the covariance
matrix computationally being difficult, in the ensemble KF (EnKF) for large problems Evensen
[24], the estimate and the covariance matrix are replaced by the sample covariance from a large
number of ensemble members similar to a particle in the particle filter. Each member of the
ensemble is propagated including the process noise and later updated using a so-called virtual
observation. Again, the procedure continues sequentially over the measurements.

One may note the evolution of the variants of the Kalman filter possesses some similarities as it
progressed to handle simple, complex, to massive problems as in many other fields such as
fluid dynamics or structural mechanics. In these cases, commencing from simple geometries
one obtains closed form analytical solutions as in the linear KF, wherein the gains can be pre
computed to process the data as and when they arrive. Then for involved nonlinear state and
measurements one uses local linearization and numerical calculations as in EKF. When the
geometry is complex and the boundary conditions are involved, it becomes necessary to
discretise and form cells over appropriate space and time as in particle filtering to obtain the
solution. Further when massively complex geometries and boundary conditions occur other
innovative approaches like Ensemble Kalman Filter have been developed. An extensive bibli-
ography of the nonlinear estimation is provided by Georgios [37] and an excellent review of
nonlinear filters is given by Daum [38].

4. Tuning of the Kalman filter statistics

The solution for the linear filtering problem in discrete time was proposed in the famous 1960
paper by Kalman [4]. This was followed for continuous time in 1961 by Kalman and Bucy [5].
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mathematical tractability exactly for linear systems and approximately for nonlinear systems.

The truth in the Kalman filter equations is that once it is derived in one way, it is possible to derive
it in a variety ofwayswith slightly different assumptions, butmostly leading to similar set of basic
equations as for linear problems. The author of each book has his own derivation! It is interesting
to note that the simplest formulation of the Kalman filter is based on minimum amount of a priori
knowledge or information in probability, statistics, and random process providing, respectively,
the Gaussian distribution, linear relationship among the variables, and white noise [12]. Other-
wise one has to justify themwhich may not be simple or easy. If necessary other suitable distribu-
tions, nonlinearity, and coloured noise can be introduced later into the filter framework.

3.3. Different perspectives and competence of Kalman filter

The Kalman filter can be viewed as an inverse problem, deterministic or probabilistic approach,
reversing an ‘irreversible’ process. Also it can be considered as qualitative modelling and quan-
titative estimation, stochastic corrective process by Narasimha [34], data fusion and statistical
estimation by probabilistic mixing, optimization in the time (or frequency) domain. The compe-
tence of the filter consists of estimating unknown or inaccurately known parameters (including
deterministic errors) in the state and measurements, estimation of process and measurement
noise, improved states and measurements by smoothed filter estimates, estimation of
unmodelable inputs by modelling them in a probabilistic way, unobservables from observables,
expansion of the scenario, handling computational errors by noise addition, consistency check of
the whole process of modelling, convergence of the numerical algorithm, and the extraction of
the complete information from the data by checking the correlation of the innovation sequence.
All of the above are achieved based on the measurements and suitable modelling of the state and
measurement equations. The above aspects are discussed in [12, 31].

3.4. Kalman filter and some of its variants

For nonlinear systems, even if the initial distribution is assumed normal, it gets distorted after
propagation and so a suitable local approximation or quasi linearization has to be made. In the
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EKF the nonlinear systems and/or measurements equations are approximated by appropriate
first order Taylor series expansion. The probability density is approximated by a Gaussian,
which may distort the true structure and at times could lead to the divergence between the
filter prediction and the measurements. In the Unscented Kalman filter (UKF) by Julier et al.
[35] approach, instead of linearizing the functions, a set of chosen points are propagated
through the nonlinear transformation. These points are so chosen such that the mean, covari-
ance, and possibly also higher order moments match better with the propagated distribution.
At an update, only the estimate and covariance matters.

The particle filtering by Gordon et al. [36] is a Monte Carlo technique for state estimation that can
handle nonlinear models together with non-Gaussian noise. Here, the state probability density is
approximated by using point particles having positive weights. Based on the initial distribution,
the weights are chosen and then the particles are propagated following the system dynamics
together with the state noise. Then using the measurement, their weights are adjusted and
normalised among all the particles. The particles that can track the measurements gain weight
and the ones far away lose their weights. However, after a while, all but one weight will become
zero leading to degeneracy. A resampling scheme is introduced to solve the degeneracy problem
that discard the particles with small weights and focus on the particles with more significant
weights. Then, the procedure continues sequentially over the measurements.

For large size systems, such as those occurring in geophysical studies maintaining the covariance
matrix computationally being difficult, in the ensemble KF (EnKF) for large problems Evensen
[24], the estimate and the covariance matrix are replaced by the sample covariance from a large
number of ensemble members similar to a particle in the particle filter. Each member of the
ensemble is propagated including the process noise and later updated using a so-called virtual
observation. Again, the procedure continues sequentially over the measurements.

One may note the evolution of the variants of the Kalman filter possesses some similarities as it
progressed to handle simple, complex, to massive problems as in many other fields such as
fluid dynamics or structural mechanics. In these cases, commencing from simple geometries
one obtains closed form analytical solutions as in the linear KF, wherein the gains can be pre
computed to process the data as and when they arrive. Then for involved nonlinear state and
measurements one uses local linearization and numerical calculations as in EKF. When the
geometry is complex and the boundary conditions are involved, it becomes necessary to
discretise and form cells over appropriate space and time as in particle filtering to obtain the
solution. Further when massively complex geometries and boundary conditions occur other
innovative approaches like Ensemble Kalman Filter have been developed. An extensive bibli-
ography of the nonlinear estimation is provided by Georgios [37] and an excellent review of
nonlinear filters is given by Daum [38].

4. Tuning of the Kalman filter statistics

The solution for the linear filtering problem in discrete time was proposed in the famous 1960
paper by Kalman [4]. This was followed for continuous time in 1961 by Kalman and Bucy [5].
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Not many know that the enthusiasm that followed soon after Kalman introduced his filter was
damped, the solution was only formal and the statistics of the process Q and measurement
noise R had to be specified to design and implement the filter. After the 1960 paper of Kalman
by the time of Gelb’s book [39] in 1974 most filter approaches, applications and numerical
procedures except the tuning of the filter statistics were in place. Kalman when he proposed
the filter dealt with only state estimation. In many present day applications, one does not even
know the structure of the state and measurement equations as well as the parameters in them
and the statistical characteristics of the state and measurement noise. One can also add the
unknown initial state conditions X0. All the unknowns have to be estimated using the mea-
surements only. The estimation of the system parameters Θ, X0, P0, together with Q and R is
called filter design or filter tuning.

An interesting feature of KF is that one can use it to start with at least, without understanding
the derivation can tune the filter by trial and error procedures for the statistics without
carrying out an optimization as mentioned by Sorenson [40]. Even though the estimator
performance may be satisfactory for some ‘a priori’ reasonable choice of P0, Q and R, it could
lead to unacceptable results in many cases. Rarely, sensitivity studies on R and Q like by
Subbaraju et al. [41] while estimating the drag in the presence of thrust of Satellite Launch
Vehicles are reported. Most reports and publications write out detailed filter equations but the
tuning procedures are not spelt out. In fact, the ghost of filter tuning chases without exception
every variant or formulation of the Kalman filter. If not tuned properly, it is difficult to infer if
the performance of the filter is due to its formulation or filter tuning! It is surprising that most
text books on Kalman filtering provide a scanty treatment of the problem of filter tuning that is
at the heart of KF design.

One has to tune the statistics P0, Q and R for a satisfactory filter operation and even now this is
generally done manually! Usually, the filter statistics are tuned off line using simulated data
and subsequently used for on line and real time applications with some modifications. In spite
of its immense applications for more than five decades in many problems of science and
technology, the filter tuning has not matured to an easily implementable approach even to
handle a constant signal with measurement noise! Generally the tuning is manual or with ad
hoc quick fix solutions such as limiting P from going to zero, or adding Q to increase P before
calculating the gain and multiplying P by a factor to limit K, all have obviously limitations in
handling involved problems or scenarios. All the above introduce additional parameters to be
adjusted that varies for every problem. The present work provides a generalised heuristic
approach together with consistency check.

4.1. Qualitative features of P0, Q, and R the filter statistics

Should the P0 � Q � 0 then the filter will not learn anything from the measurements at all
which will be ignored. The P0 is tricky and generally the off-diagonal elements are set to zero
and the diagonal elements are set to large values. However their relative values are crucial for
an optimum filter operation. The R can be determined from the measured data. In fact if one is
satisfied with the measurement accuracy then no filter is needed. The main activity of the filter
is to follow the measurements and further reduce or suppress the effect of noise. In spite of
being labelled as ‘notorious’ it is only the Q that an analyst can estimate, account or offset for
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some deficiency, inaccuracy, or error in the following namely in the initial conditions, the
unmodelled or unmodelable errors in the system and measurement equations, control or
external input, measurement noise statistics, the errors in the numerical state and covariance
propagation, a small increase in Q to offset modest errors in Taylor series approximations in
EKF(!), or in the update operations of the Kalman filter. The Q helps to inject uncertainty into
the state equations to assist the filter to learn from the measurements and also controls the
steady state filter response. Too large a value of Q will lead to a short transient with large
steady state uncertainty of the estimates and a small Q vice versa.

The Q is helpful to track systems whose dynamical equations are unknown. Some classic
examples are the GPS receiver clocks, satellite, trajectory of aircraft, missiles, and re-entry
objects. These are handled by using the kinematic relations as state equations among the
position, velocity, acceleration and even jerk [42] driven by white Gaussian noise Q to enable
the filter to track these systems. In general one can simulate any real world dynamical systems.
Apart from simulating the dynamical system the process noise inhibits the onset of instability
of the filter operation. Though Q is considered notorious it is the life line of the Kalman filter.

4.2. Choice of X0 and P0 for states and parameters

Since some of the states are generally measured either the first or the average of the first few
measurements can be taken as the initial value X0 for the state. The initial parameters values
can be guessed if experimental or computational results are available. The P0 is one of the
important tuning parameters as stressed by very few like Maybeck [43], Candy [44], Gemson
[45], Gemson and Ananthasayanam [46], and Sarkar et al. [47]. Generally a guess P0 tends to
become very low after some data points. In order to make the filter learn from the subsequent
measurements an additional Q is introduced into the state equations even when there is no
model uncertainty. In the present RRR a proper P0 without any Q is shown to be possible for
the above. The choice of P0 can affect the final covariance from the filter operation, which can
be crucial in certain state estimation problems such as impact point estimation and its uncer-
tainty for target tracking. Even in parameter estimation problems the estimates and their
uncertainties can be important in the design of control systems.

4.3. Tuning filter statistics with both R and Q

When the data contains the effect of both R andQ it becomes notorious for analysis. With no R
andQ the system dynamics is exact. The process noise input at various times makes the system
to wander randomly. When measurements are made on this wandering dynamical state it is
blurred. The smoothing filter provides the best possible state estimate at all time points by
suppressing the effect of measurement noise. Hence it is best to consider the smoothed state in
order to estimate the process noise.

State dynamics with R � Q � 0
� �þ Cumulative Effect of Q ¼ Smoothed State (21)

Smoothed Stateþ R ¼Measured Signal or in other words (22)

Measured Signalþ Forward and Smoothing filter ¼ Smoothed State with R � 0 (23)
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called filter design or filter tuning.
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text books on Kalman filtering provide a scanty treatment of the problem of filter tuning that is
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of its immense applications for more than five decades in many problems of science and
technology, the filter tuning has not matured to an easily implementable approach even to
handle a constant signal with measurement noise! Generally the tuning is manual or with ad
hoc quick fix solutions such as limiting P from going to zero, or adding Q to increase P before
calculating the gain and multiplying P by a factor to limit K, all have obviously limitations in
handling involved problems or scenarios. All the above introduce additional parameters to be
adjusted that varies for every problem. The present work provides a generalised heuristic
approach together with consistency check.

4.1. Qualitative features of P0, Q, and R the filter statistics

Should the P0 � Q � 0 then the filter will not learn anything from the measurements at all
which will be ignored. The P0 is tricky and generally the off-diagonal elements are set to zero
and the diagonal elements are set to large values. However their relative values are crucial for
an optimum filter operation. The R can be determined from the measured data. In fact if one is
satisfied with the measurement accuracy then no filter is needed. The main activity of the filter
is to follow the measurements and further reduce or suppress the effect of noise. In spite of
being labelled as ‘notorious’ it is only the Q that an analyst can estimate, account or offset for
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some deficiency, inaccuracy, or error in the following namely in the initial conditions, the
unmodelled or unmodelable errors in the system and measurement equations, control or
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propagation, a small increase in Q to offset modest errors in Taylor series approximations in
EKF(!), or in the update operations of the Kalman filter. The Q helps to inject uncertainty into
the state equations to assist the filter to learn from the measurements and also controls the
steady state filter response. Too large a value of Q will lead to a short transient with large
steady state uncertainty of the estimates and a small Q vice versa.

The Q is helpful to track systems whose dynamical equations are unknown. Some classic
examples are the GPS receiver clocks, satellite, trajectory of aircraft, missiles, and re-entry
objects. These are handled by using the kinematic relations as state equations among the
position, velocity, acceleration and even jerk [42] driven by white Gaussian noise Q to enable
the filter to track these systems. In general one can simulate any real world dynamical systems.
Apart from simulating the dynamical system the process noise inhibits the onset of instability
of the filter operation. Though Q is considered notorious it is the life line of the Kalman filter.

4.2. Choice of X0 and P0 for states and parameters

Since some of the states are generally measured either the first or the average of the first few
measurements can be taken as the initial value X0 for the state. The initial parameters values
can be guessed if experimental or computational results are available. The P0 is one of the
important tuning parameters as stressed by very few like Maybeck [43], Candy [44], Gemson
[45], Gemson and Ananthasayanam [46], and Sarkar et al. [47]. Generally a guess P0 tends to
become very low after some data points. In order to make the filter learn from the subsequent
measurements an additional Q is introduced into the state equations even when there is no
model uncertainty. In the present RRR a proper P0 without any Q is shown to be possible for
the above. The choice of P0 can affect the final covariance from the filter operation, which can
be crucial in certain state estimation problems such as impact point estimation and its uncer-
tainty for target tracking. Even in parameter estimation problems the estimates and their
uncertainties can be important in the design of control systems.

4.3. Tuning filter statistics with both R and Q

When the data contains the effect of both R andQ it becomes notorious for analysis. With no R
andQ the system dynamics is exact. The process noise input at various times makes the system
to wander randomly. When measurements are made on this wandering dynamical state it is
blurred. The smoothing filter provides the best possible state estimate at all time points by
suppressing the effect of measurement noise. Hence it is best to consider the smoothed state in
order to estimate the process noise.

State dynamics with R � Q � 0
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Shumway and Stoffer [48] did just this using the Estimation Maximisation (EM) approach. The
book by McLachlan and Krishan [49] is well known on EM. Shyam et al. [31] introduced
another approach to estimate Q based on the difference between the stochastic and dynamical
trajectory called DSDTwhich provided statistically similar results to EM.

The interesting point is the filter by tracking the drifted dynamical behaviour withQ, it estimates
the parameters controlling the original dynamics of the system without the effect of R and Q.
Since R and Q occur, respectively, in the measurement and state equations their effects on the
filter are negatively correlated as stated by Bohlin [50]. Thus during simultaneous recursive
estimation if the statistics for estimating them are not properly chosen then R is overestimated
andQ is underestimated and vice versa. This is just the reason in Gemson [45] and Gemson and
Ananthasayanam [46] one has to update R and Q alternately. The filter operating on the data
generates prior, posterior, and smoothed state estimates and their covariances thus helping to
generate candidate ‘statistic’ to estimate R and Q. In EKF if the unknown noise covariances are
incorrectly specified biased estimates can arise. Even when the Θ are known, with an inaccurate
R andQ the filter may give poor estimates, or even diverge [51].

4.4. Adaptive Kalman filtering approaches

There are broadly four approaches for adaptive filtering namely Bayesian, Maximum Likeli-
hood, Covariance Matching and Correlation Techniques (Mehra [52]) apart from other tech-
niques. The present RRR falls in the category of covariance matching. Why there are so many
formulations for solving an optimization problem? The reason is the unknowns do not occur in
a simple way in the cost function, and there are many transformed variables with which one
tries to solve for the basic unknowns, further the size and the required compatibility conditions
among the transformed variables lead to the many difficulties not generally found in the
classical optimization problems. Also many attempts have been made using probabilistic
methods. However when the dimension, nonlinearity and the range of search space become
large these could become computationally prohibitive and could lead to local minimum. One
can summarise that either deterministic or probabilistic optimization approaches do not
appear to be easy and general for solving the filter tuning problem. A simple recursive filtering
approach was tried and fortuitously it did as will be shown subsequently.

Exact filtering solutions are very hard, approximate choice can lead to inappropriate results
but heuristic approaches provide the middle path in designing the Kalman filter like the RRR.
An adaptive heuristic approach in general updates the X0, P0, Θ, R and Q at a point, over a
window, after a pass or after multiple passes by applying some corrections to them based on
changes, iterations or sample statistics such that the numerical solution does not diverge but
converges to the best possible estimates. Examples of heuristic approach is by Myers and
Tapley (MT) in [53] for R and Q and in [45, 46] for P0, Q, and R.

5. Cost functions along with RRR for checking Kalman filter tuning

The present RRR contains no direct optimization of any cost function. We have purely iterated
the filter on the measured data; but after each iteration, the unknowns X0, P0,Q, R andΘ have
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been updated. Such an iterative procedure leads to a converged solution for the estimate as
well as the CRB that is very close to that obtained using any optimization method that
minimises any suitable cost function. The estimates for the parameter, the covariance for
uncertainty, and the noise statistics reach very near their final values in about five to ten
iterations that can be extended for higher accuracy. Also, we introduce many cost functions as
below to provide an indication about the filter performance and consistency.

Fundamentally, the estimation theory (ET) is an optimization problem. Hence a suitable cost
function J is generally chosen. Essentially, there are two elements in ET: (i) defining a cost
function and (ii) adopting a suitable algorithm to minimise the cost function. The general log
likelihood cost L for normally distributed error ‘ek’ summed over N time points is given by
Gemson [45]

L Θð Þ ¼ 1=Nð Þ
X

ek Ak
�1 ekT þ log det Akð Þð Þ (24)

where Ak is the error covariance matrix and det(A) represents determinant of matrix A. It may
be noted the parameters Θ occur implicitly in the cost function L. From the ekof the first term,
one can see the principle of weighted least squares, and L for N-1 and N terms the sequential
least squares with the constraint of the state equation as mentioned by Sorenson [40].

Further based on many available statistics from the filter operation it is possible to define many
more cost functions (not written here for brevity but available in Shyam et al. [31]), but only
describe them. The cost J0 is based on squaring X0–X t0ð Þð �½ and scaled with respect to P0 shows
howwell the initial conditions are balanced. Similarly the set of costs (J1, J2, J3) and (J6, J7, J8) are
respectively derived from the sets (νk,νf,νs) and (w1 kjNð Þ,w2 kjNð Þ,w3 kjNð ÞÞ which are differ-
ent estimates for local measurement and process noise samples. These indicate how well the
measurement and state equations are balanced and should tend to the number of measurement
and state equations for a good solution. When Q � 0, the cost J4 is the difference between
measurement and state dynamics based on the estimated parameter and is expected to tend
towards the trace of R. The cost J5 equals J1 + log (det(cov(νk)) is the negative of the log
likelihood based on the innovation. All such costs indicate how well the state and measurement
equations are balanced, and further the estimates and the covariances both given by the filter are
consistent as well. One can formulate any number of cost functions to estimate the parameters
and the filter statistics. But it is not possible to estimate the true value of the unknowns but be
only around them due to statistical fluctuations percolating all over the unknowns.

5.1. Probability matching prior interpretation for P0

This interpretation was given earlier in the paper by Ananthasayanam et al. [54], and used by
Shyam et al. [55]. As mentioned earlier the importance of P0 has not been much appreciated
in the literature on ET and more so in Kalman Filtering though statisticians have been
discussing the philosophical and practical differences between Frequentist and Bayesian
approach. The deterministic Newton-Raphson (NR) optimization of a cost function approach
in Ananthasayanam et al. [56] provides Frequentist results and the Kalman filtering approach
is the Bayesian route. Consider the simple case of a constant signal with measurement noise. In
the Frequentist approach the calculation of the mean and standard deviation and the noise is

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

17



Shumway and Stoffer [48] did just this using the Estimation Maximisation (EM) approach. The
book by McLachlan and Krishan [49] is well known on EM. Shyam et al. [31] introduced
another approach to estimate Q based on the difference between the stochastic and dynamical
trajectory called DSDTwhich provided statistically similar results to EM.

The interesting point is the filter by tracking the drifted dynamical behaviour withQ, it estimates
the parameters controlling the original dynamics of the system without the effect of R and Q.
Since R and Q occur, respectively, in the measurement and state equations their effects on the
filter are negatively correlated as stated by Bohlin [50]. Thus during simultaneous recursive
estimation if the statistics for estimating them are not properly chosen then R is overestimated
andQ is underestimated and vice versa. This is just the reason in Gemson [45] and Gemson and
Ananthasayanam [46] one has to update R and Q alternately. The filter operating on the data
generates prior, posterior, and smoothed state estimates and their covariances thus helping to
generate candidate ‘statistic’ to estimate R and Q. In EKF if the unknown noise covariances are
incorrectly specified biased estimates can arise. Even when the Θ are known, with an inaccurate
R andQ the filter may give poor estimates, or even diverge [51].

4.4. Adaptive Kalman filtering approaches

There are broadly four approaches for adaptive filtering namely Bayesian, Maximum Likeli-
hood, Covariance Matching and Correlation Techniques (Mehra [52]) apart from other tech-
niques. The present RRR falls in the category of covariance matching. Why there are so many
formulations for solving an optimization problem? The reason is the unknowns do not occur in
a simple way in the cost function, and there are many transformed variables with which one
tries to solve for the basic unknowns, further the size and the required compatibility conditions
among the transformed variables lead to the many difficulties not generally found in the
classical optimization problems. Also many attempts have been made using probabilistic
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been updated. Such an iterative procedure leads to a converged solution for the estimate as
well as the CRB that is very close to that obtained using any optimization method that
minimises any suitable cost function. The estimates for the parameter, the covariance for
uncertainty, and the noise statistics reach very near their final values in about five to ten
iterations that can be extended for higher accuracy. Also, we introduce many cost functions as
below to provide an indication about the filter performance and consistency.

Fundamentally, the estimation theory (ET) is an optimization problem. Hence a suitable cost
function J is generally chosen. Essentially, there are two elements in ET: (i) defining a cost
function and (ii) adopting a suitable algorithm to minimise the cost function. The general log
likelihood cost L for normally distributed error ‘ek’ summed over N time points is given by
Gemson [45]
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where Ak is the error covariance matrix and det(A) represents determinant of matrix A. It may
be noted the parameters Θ occur implicitly in the cost function L. From the ekof the first term,
one can see the principle of weighted least squares, and L for N-1 and N terms the sequential
least squares with the constraint of the state equation as mentioned by Sorenson [40].

Further based on many available statistics from the filter operation it is possible to define many
more cost functions (not written here for brevity but available in Shyam et al. [31]), but only
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measurement and state equations are balanced and should tend to the number of measurement
and state equations for a good solution. When Q � 0, the cost J4 is the difference between
measurement and state dynamics based on the estimated parameter and is expected to tend
towards the trace of R. The cost J5 equals J1 + log (det(cov(νk)) is the negative of the log
likelihood based on the innovation. All such costs indicate how well the state and measurement
equations are balanced, and further the estimates and the covariances both given by the filter are
consistent as well. One can formulate any number of cost functions to estimate the parameters
and the filter statistics. But it is not possible to estimate the true value of the unknowns but be
only around them due to statistical fluctuations percolating all over the unknowns.

5.1. Probability matching prior interpretation for P0

This interpretation was given earlier in the paper by Ananthasayanam et al. [54], and used by
Shyam et al. [55]. As mentioned earlier the importance of P0 has not been much appreciated
in the literature on ET and more so in Kalman Filtering though statisticians have been
discussing the philosophical and practical differences between Frequentist and Bayesian
approach. The deterministic Newton-Raphson (NR) optimization of a cost function approach
in Ananthasayanam et al. [56] provides Frequentist results and the Kalman filtering approach
is the Bayesian route. Consider the simple case of a constant signal with measurement noise. In
the Frequentist approach the calculation of the mean and standard deviation and the noise is

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

17



simple. However in the Bayesian approach the above result is not reachable unless a proper P0
is also chosen. The choice of appropriate P0 is the probability matching prior (PMP) providing
a bridge between the above approaches. With a large amount of data the differences in the
results from the above approaches vanish. Since PMP is not unique its choice depends on the
purpose. Presently P0 is chosen to obtain proper estimates and CRBs for the unknown param-
eters as well as the noise statistics R and Q. The success of RRR has been due to the choice of
P0 by scaling and further trimming it. Further in addition the simultaneous choice of appro-
priate statistics for R andQ has been made using the many filter statistics available after every
filter pass using the EM approach. When Q � 0 the choice for R is easy but when Q > 0 since
the Kalman filter is compulsory in both approaches we look for consistency based on simu-
lated studies by comparing the statistical characteristics of the injected and estimated R and Q
noise sample sequences. Further the various cost functions introduced earlier in RRR help to
obtain confidence in the results and more so while analysing real flight test data. Since the
present RRR is believed to provide near optimum but not an exact solution it is called as a
‘reference’ and not a ‘standard’.

5.2. Choice of X0 and P0 in RRR

Commencing from an assumed reasonable initial choice for X0, P0, Θ, R and Q the first filter
pass through the data is made. Then a backward smoothing is carried out using the Rauch
et al. [29] smoother. The smoothing leads to the best possible state and parameter estimates
and their covariances based on all the data. After smoothing the state estimates and their
covariances change but not those of the parameters. If one uses the smoothed initial state
covariance P(0|N) and use it as the P0 for the next pass then the final covariance will keep on
decreasing with further filter passes and eventually tend towards zero. In order to overcome
this, the final covariance at the end of the pass was scaled up by Shyam et al. [31] by N to
provide P0 at the beginning of the next pass:

P0 ¼ N� P NjNð Þ (25)

A heuristic reasoning from statistics is that the mean from a sample has an uncertainty P that
keeps decreasing with sample size as P/N where P is the population variance. Since, in the
filter steps, the estimates and their update refer to the sample and the other covariance
propagation and their update and the calculation of the Kalman gain refers to the ensemble
characteristics before every filter pass, we carry out the above scale up to obtain the P0 (after
further trimming as well) for the next filter pass.

5.3. Estimation of R and Q using the EM/DSDT, MS and MT methods

We now provide some estimates for the measurement noise covariance R. Bavdekar et al. [57]
use the extended EM given by:

R ¼ 1=Nð Þ
XN
1

νk νT
k þH kjNð ÞP kjNð ÞH kjNð ÞT (26)
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The choice of Mohamed and Schwarz (MS) in [58] based on filter residue is

R ¼ 1=Nð Þ
XN
1

νf νT
f þH kjkð ÞP kjkð ÞH kjkð ÞT (27)

The choice of Myers and Tapley (MT) in [50] based on innovation is

R ¼ 1=Nð Þ
XN
1

νs νT
s �H kjk� 1ð ÞP kjk� 1ð ÞH kjk� 1ð ÞT (28)

Bavdekar et al. [57] use the smoothed statistic w1 kjNð Þ ¼ X kjNð Þ–f X k� 1jNð Þð Þ in EM esti-
mate as

Q ¼ 1=Nð Þ
XN
1

w1 kjNð Þ w1 kjNð ÞT þ P kjNð Þ þ F k� 1jNð ÞP k� 1jNð Þ F k� 1jNð ÞT
n

�P k, k� 1jNð ÞF k� 1jNð ÞT � P k, k� 1jNð ÞTF k� 1jNð Þ
o (29)

The DSDT statistic for Q is given in Shyam et al. [31]

Q ¼ 1
N

� � XN
1

w2 kjNð Þ w2 kjNð ÞT þ P kjNð Þ þ Fd k� 1jNð ÞP k� 1jNð ÞFd k� 1jNð ÞT
n

�P k, k� 1jNð ÞFd k� 1jNð ÞT � P k, k� 1jNð ÞTFd k� 1jNð Þ
o (30)

where w2 kjNð Þ ¼ X kjNð Þ–Xd kjNð Þ–Fd k� 1jNð Þ X k� 1jNð Þ–Xd k� 1jNð Þð Þ and with Xd 0jNð Þ
¼ X 0jNð Þ is the predicted state trajectory without measurement and process noise using the
estimated parameter Θ NjNð Þ. The P kjNð Þ is the smoothed covariance and P k,k� 1jNð Þ is the
lag-one covariance for k = N-1, N-2, …1.

The Mohamed and Schwarz [58] estimated Q in terms of the innovation and the smoothed
gain K kjNð Þ based on [29] by

Q ¼ K kjNð Þ
XN
1

νs νs
T

( )
K kjNð ÞT (31)

The choice of Myers and Tapley [53] for Q with w3 kjNð Þ = X(k|k) - X(k|k-1) is

Q ¼ 1
N

� � XN
1

w3 kjkð Þ w3 kjkð ÞT � F k� 1jk� 1ð ÞP kjk� 1ð ÞF k� 1jk� 1ð ÞT � P kjkð Þ
� on

(32)

All the process noise samples, w1 kjkð Þ, w2 kjkð Þ, and w3 kjkð Þ, are assumed to be of zero mean.
It turns out that the smoothed statistics w1 kjkð Þ and w2 kjkð Þ based on EM and DSDT, respec-
tively, are very close and either can be used for Q estimation.

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

19



simple. However in the Bayesian approach the above result is not reachable unless a proper P0
is also chosen. The choice of appropriate P0 is the probability matching prior (PMP) providing
a bridge between the above approaches. With a large amount of data the differences in the
results from the above approaches vanish. Since PMP is not unique its choice depends on the
purpose. Presently P0 is chosen to obtain proper estimates and CRBs for the unknown param-
eters as well as the noise statistics R and Q. The success of RRR has been due to the choice of
P0 by scaling and further trimming it. Further in addition the simultaneous choice of appro-
priate statistics for R andQ has been made using the many filter statistics available after every
filter pass using the EM approach. When Q � 0 the choice for R is easy but when Q > 0 since
the Kalman filter is compulsory in both approaches we look for consistency based on simu-
lated studies by comparing the statistical characteristics of the injected and estimated R and Q
noise sample sequences. Further the various cost functions introduced earlier in RRR help to
obtain confidence in the results and more so while analysing real flight test data. Since the
present RRR is believed to provide near optimum but not an exact solution it is called as a
‘reference’ and not a ‘standard’.

5.2. Choice of X0 and P0 in RRR

Commencing from an assumed reasonable initial choice for X0, P0, Θ, R and Q the first filter
pass through the data is made. Then a backward smoothing is carried out using the Rauch
et al. [29] smoother. The smoothing leads to the best possible state and parameter estimates
and their covariances based on all the data. After smoothing the state estimates and their
covariances change but not those of the parameters. If one uses the smoothed initial state
covariance P(0|N) and use it as the P0 for the next pass then the final covariance will keep on
decreasing with further filter passes and eventually tend towards zero. In order to overcome
this, the final covariance at the end of the pass was scaled up by Shyam et al. [31] by N to
provide P0 at the beginning of the next pass:

P0 ¼ N� P NjNð Þ (25)

A heuristic reasoning from statistics is that the mean from a sample has an uncertainty P that
keeps decreasing with sample size as P/N where P is the population variance. Since, in the
filter steps, the estimates and their update refer to the sample and the other covariance
propagation and their update and the calculation of the Kalman gain refers to the ensemble
characteristics before every filter pass, we carry out the above scale up to obtain the P0 (after
further trimming as well) for the next filter pass.

5.3. Estimation of R and Q using the EM/DSDT, MS and MT methods

We now provide some estimates for the measurement noise covariance R. Bavdekar et al. [57]
use the extended EM given by:

R ¼ 1=Nð Þ
XN
1

νk νT
k þH kjNð ÞP kjNð ÞH kjNð ÞT (26)

Kalman Filters - Theory for Advanced Applications18

The choice of Mohamed and Schwarz (MS) in [58] based on filter residue is

R ¼ 1=Nð Þ
XN
1

νf νT
f þH kjkð ÞP kjkð ÞH kjkð ÞT (27)

The choice of Myers and Tapley (MT) in [50] based on innovation is

R ¼ 1=Nð Þ
XN
1

νs νT
s �H kjk� 1ð ÞP kjk� 1ð ÞH kjk� 1ð ÞT (28)

Bavdekar et al. [57] use the smoothed statistic w1 kjNð Þ ¼ X kjNð Þ–f X k� 1jNð Þð Þ in EM esti-
mate as

Q ¼ 1=Nð Þ
XN
1

w1 kjNð Þ w1 kjNð ÞT þ P kjNð Þ þ F k� 1jNð ÞP k� 1jNð Þ F k� 1jNð ÞT
n

�P k, k� 1jNð ÞF k� 1jNð ÞT � P k, k� 1jNð ÞTF k� 1jNð Þ
o (29)

The DSDT statistic for Q is given in Shyam et al. [31]

Q ¼ 1
N

� � XN
1

w2 kjNð Þ w2 kjNð ÞT þ P kjNð Þ þ Fd k� 1jNð ÞP k� 1jNð ÞFd k� 1jNð ÞT
n

�P k, k� 1jNð ÞFd k� 1jNð ÞT � P k, k� 1jNð ÞTFd k� 1jNð Þ
o (30)

where w2 kjNð Þ ¼ X kjNð Þ–Xd kjNð Þ–Fd k� 1jNð Þ X k� 1jNð Þ–Xd k� 1jNð Þð Þ and with Xd 0jNð Þ
¼ X 0jNð Þ is the predicted state trajectory without measurement and process noise using the
estimated parameter Θ NjNð Þ. The P kjNð Þ is the smoothed covariance and P k,k� 1jNð Þ is the
lag-one covariance for k = N-1, N-2, …1.

The Mohamed and Schwarz [58] estimated Q in terms of the innovation and the smoothed
gain K kjNð Þ based on [29] by

Q ¼ K kjNð Þ
XN
1

νs νs
T

( )
K kjNð ÞT (31)

The choice of Myers and Tapley [53] for Q with w3 kjNð Þ = X(k|k) - X(k|k-1) is

Q ¼ 1
N

� � XN
1

w3 kjkð Þ w3 kjkð ÞT � F k� 1jk� 1ð ÞP kjk� 1ð ÞF k� 1jk� 1ð ÞT � P kjkð Þ
� on

(32)

All the process noise samples, w1 kjkð Þ, w2 kjkð Þ, and w3 kjkð Þ, are assumed to be of zero mean.
It turns out that the smoothed statistics w1 kjkð Þ and w2 kjkð Þ based on EM and DSDT, respec-
tively, are very close and either can be used for Q estimation.

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

19



5.4. The RRR method for the EKF

The following steps explain the recursive or iterative RRR algorithm for the EKF:

1. Given the system model and the measurements, the first filter pass through the data of
EKF is carried out using guess values of X0, P0, Θ, R and Q.

2. The RTS smoother is used backwards to get smoothed state and covariance estimates.

3. If X0 is unknown, then the smoothed state values can be used as the initial state values.

4. The estimated smoothed P0 is scaled up by the number of time points N and further all
elements except the diagonal terms corresponding to the parameters are set to zero. Due
to the effect of statistical percolation effect, the estimated R and Q will in general be full.
But, only the diagonal terms in Q need to be used in the basic state equations and not in
the parameter states. Only the diagonal terms in R need to be used in the measurement
equations. These are summarised as below. The quadrant on the upper left denotes the
state, the bottom right the parameter states, and the others the cross terms. The 0ð Þ below
shows the null and D the diagonal matrices. This is followed for all iterations.

P0 ¼ 0 0
0 D

� �
; Q ¼ D 0

0 0

� �
; R ¼ D½ � (33)

5. Then, the filter is run again using the above updates of X0, P0, Θ, Q and R till statistical
equilibrium is reached.

6. Different cost functions (J1–J8) are checked for convergence.

The convergences of the following quantities after all the iterations are analysed:

1. The parameter estimates Θ and their covariances P(Θ).

2. The sample noise sequences νk, νf, νs and of w1, w2, and w3 with �1 sigma bounds, their
autocorrelations and Q and R.

3. The state dynamics Xd (with R � Q � 0) based on the estimatedΘ, smoothed X(k|N) and
the measurement Z(k).

4. The various cost functions J1–J8 after the final convergence.

5.5. Some remarks on running the RRR

If the value of Q for any state is known to be zero, then the value of Q is set at 10�10 or lower
for all iterations to help the filter, which would otherwise generate a pseudo-Q, and then
slowly grind it to zero in thousands of iterations. For Q � 0 case, one can estimate R even by
ignoring the second order covariance terms. It is of interest to note that forQ > 0 case unless the
second order covariance terms are also included in the estimate for both R andQ the RRR does
not converge.
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6. Simulation study of a spring, mass, and damper (SMD) system

The RRR is first applied to a very simple spring, mass, and damper system with R � Q � 0.
For such a situation, the Newton Raphson optimization of the innovation cost [56] served as a
bench mark for tuning the filter statistics in RRR (with no cost optimization!) to get the closest
possible estimates and the CRB. Later, when Q is included, we looked for the consistency
between the injected R and Q noise sequences and their statistics. The SMD system with weak
nonlinear spring constant in time (t) is given by

_x1 tð Þ ¼ x2 tð Þ; _x2 tð Þ ¼ � Θ1 x1 tð Þ � Θ2 x2 tð Þ �Θ3 x31 tð Þ (34)

where x1 and x2 are the displacement and velocity state with initial conditions 1 and 0,
respectively. The ‘dot’ represents differentiation with respect to time (t). The unknown param-

eter vector is Θ ¼ Θ1;Θ2;Θ3½ �T with true values θtrue ¼ 4:0; 0:4; 0:6½ �T. Θ3 is a weak parameter
and does not affect the system dynamics much. The complete state vector X ¼
x1; x2;Θ1;Θ2;Θ3½ �T is of size (5 x 1). The measurement equation is given by

Z kð Þ ¼ H X kð Þ (35)

where H =
1 0
0 1

0 0 0

0 0 0

" #
is the measurement matrix. The noise covariances are R = diag

(0.001, 0.004) andQ = diag (0.001, 0.002), thus keeping the noise levels of same order to test the
robustness of the RRR. The initial guess value of P0, Q, were chosen, respectively, as diagonal
with all values as 10�1, and R = 2�1 for all measurement channels. The initial Θ was chosen
within �20% error of the true values. A total of N = 100 measurement data are simulated with
the time varying from 0 to 10 s in very small steps of dt = 0.1 s. For zero process noise case, the
maximum number of iterations is set to 20 over 50 simulations, and for nonzero process noise
case, it is set to 100 over 50 simulations for obtaining generally four digits accuracy (though not
necessary). The brief results as presented in Figures 2 and 3. In the present RRR, it was noticed
that generally even if the initial P0,Q, and Rwere varied over a wide range of powers from �3
to +3 (or even more) together with all the initial Θ parameter set to zero leads to the same
estimation results for a given data showing its robustness. Further, it may be noted that for all
simulated and real data analysed and reported in [31] even if all the initial state and parame-
ters were set to zero the solutions converged to the appropriate values!

6.1. Analysis of simulated SMD data

The RRR, when compared to [53, 57, 58] has hardly any instability when processing the simu-
lated data, reaching statistical equilibrium in around 20 iterations. This can be seen from Figure 2
forϴ, their CRBs (= P0/N),R,Q, J1–J8. The cost functions J1–J8 provides confidence in the results
and to compareRRRwith other approaches. Figure 3 shows themeasurements wrap around the
smoothed estimates. More details are available in Shyam et al. [31]. For further insight, the
filter results with 500 iterations shown in Figures 4 and 5 indicate three phases. Firstly, from a
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nonequilibrium state the filter statistics reach statistical equilibrium in 10–20 iterations enough
for use in practice. The next phase shows the second moments R and Q converge earliest
followed by ϴ and finally their CRBs. This is at variance with the fact mentioned in Section 3.2,
namely lower order moments converge faster than higher order moments for samples from a
distribution. But the statistics derived here from the Kalman filter are not simple. Finally, there is
equilibrium with numerical fluctuations depending on computer accuracy.
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Figure 3. Xd, X(k|N), and Z(k) by (o) for displacement and velocity versus time (s).

0 20 40 60 80 100
10-4
10-2
100

0 20 40 60 80 100
10-5
100
105

0 20 40 60 80 100
10-5
100
105

Figure 2. (i) Variation of Q and R, (ii) initial parameters Θ, and P0, and (iii) costs J1–J8 with iterations.
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Figure 4. Difference of the diagonal elements of R and Q from their values after 500 iterations.
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Figure 5. Difference of parameters Θ and their CRBs from their values after 500 iterations.
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6.2. Analysis of real airplane flight test data

The real airplane flight tests cannot always be conducted in an ideal situation of Q and R being
white Gaussian. The measurements may not be at the center of gravity, possess bias and scale
factors, which have to be modelled and estimated. The coupling between the longitudinal and
lateral motion brings in difficulty but makes the problem interesting. At times, the noisy mea-
surements from the lateral motion are fed into the longitudinal states, and thus are input as
process noise. This is an example of introducing subjectivity in estimation theory. The real data
set is obtained along with notations from [59]. There is a peculiar manoeuvre, where the elevator
angle (δe in deg) shown in Figure 6 is imparted when the aircraft (T 37B) is rolling through a full
rotation during aileron roll. The coupling between the longitudinal and lateral motion is
replaced by their measured values, namely the roll angle (φm), sideslip (βm), velocity (Vm), roll
rate (pm), yaw rate (rm) and the angle of attack (αm) as shown in Figures 6–8. The state equations
(n = 3) for the angle of attack (α), pitch rate (q), and the pitch angle (θ), respectively, are

_α ¼ � q S
mVm Cos βm

� � CLα αþ CLδe δe þ CL0

� �þ qþ g
Vm Cos βm

� � cos ϕm

� �
cos αmð Þ cos θð Þð�

þ sin αmð Þ sin θð ÞÞ � tan βm
� �

pm cos αmð Þ þ rm sinαm
� ��

(36)

_q ¼ qSc
Iyy

Cmααþ Cmq

c
2V

qþ Cm _α
c
2V

_α þ Cmδe
δe þ Cm0

� �
þ Izz � Ixx

Iyy
rm pm (37)

_θ ¼ q cos ϕm

� �� rm sin ϕm

� �þ θ0 (38)
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The measurement equations (m = 4) for angle of attack, pitch rate, pitch, and normal accelera-
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6.2. Analysis of real airplane flight test data
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The unknown parameters (p = 10) are CLα ;CLδe ;CL0 ;Cmα ;Cmq ;Cm _α ;Cmδe
;Cm0 ;θ0;CN0

� �T
with

the approximation CNα ¼ CLα and CNδe
¼ CLδe . The suffix δe denotes control derivatives, and

suffix zero refers to biases and all others are aerodynamic derivatives. The initial states are
taken as the initial measurements and the initial parameter values are taken as (4, 0.15, 0.2,
�0.5, �11.5, �5, �1.38, �0.06, �0.01, 0.2)T. The other constant values used are S = 184, m = 196,
Ixx = 6892.7, Iyy = 3952.3, Izz = 10416.4, g = 32.2, c = 5.58, Kαxα = �0.0279, xan = 0.101, and Kα = 1.

6.2.1. Remarks on the real data case results

All the real data studies were run for 100 iterations using the RRR with Q > 0, since the off-
diagonal elements of the correlation coefficient matrix C for parameter estimates reduced
substantially than for Q � 0. Figures 6–9 show the various input and output quantities from
the RRR, and Table 2 provides a comparison of the parameter estimates along with their CRBs
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Figure 9. (i) Q and R, (ii) initial Θ, and P0, and (iii) the costs J1–J8 with iterations.

Θ RRR NASA(Q�0) Gemson MT MS

CN0 0.2538 (0.0014) 0.2541 (0.008935) 0.2503 (0.0014) 0.2540 (0.0016) 0.2635 (0.0026)

CL0 0.2409 (0.0021) 0.2448 (0.009215) 0.2529 (0.0018) 0.2408 (0.0023) 0.2517 (0.0027)

CLα 4.9235 (0.0164) 5.1068 (0.1322) 4.9028 (0.0168) 4.9260 (0.0184) 5.0620 (0.0323)

CLδe 0.1554 (0.0271) 0.1909 (0.1602) 0.0879 (0.0267) 0.1587 (0.0302) 0.3594 (0.0508)

Cm0 �0.0425 (0.0009) �.0505 (0.002655) �0.0507 (0.0024) �0.0424 (0.0009) �0.0447 (0.0006)

Cmα �0.5293 (0.0079) �0.6474 (0.02339) �0.6174 (0.0211) �0.5285 (0.0082) �0.5590 (0.0055)

Cmq �11.8596 (0.2402) �14.2600 (0.6528) �18.8339 (0.8379) �11.8255 (.2483) �12.5965 (0.1400)

Cm _α �6.8959 (0.4891) �8.2700 (1.296) �7.1290 (1.544) �6.8798 (0.5062) �6.6713 (0.3021)

Cmδe
�0.9731 (0.0177) �1.1614 (0.05371) �1.1841 (0.471) �0.9711 (0.0184) �1.0247 (0.0129)

θ0 0.0003 (0.0021) �0.01177 (0.02528) �0.0037 (0.001) 0.0002 (0.0011) �0.0006 (0.0007)

Table 2. Real flight test data results (Θ, CRB Θð )).
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(in parenthesis) for the real data from different approaches. Since MT and MS do not specify
P0, the one in RRR is used. It turns out that even the parameters CLδe and Cmq strongly
affecting the airplane dynamics is estimated vary widely among the various approaches. Also,
even if Θ are good the CRBs differ among the approaches such as for CN0 and Cm _α .

We noted earlier about the negatively correlated behaviour of R and Q. From Table 3, it may
be noted that the RRR relative to other methods generally provides a largerQ and a smaller R.
This implies that the larger Q assists in a better tracking of the wandering state. The smaller R
tightly wraps around the smoothed state and thus providing generally smaller CRBs. Figure 8
shows the close match of the measurements with the dynamics in this real case is due to the
small R and Q than in the SMD case. The convergence remarks for ϴ, their CRBs (= P0/N), R,
Q, J1–J8 as in SMD is valid here as well. The cost functions from RRR are generally closer to
the number of states and measurements as expected.

The rounded 100(Correlation coefficient) matrix Cij ¼ Pij=sqrt PiiPjj
� �

with P denoting the
covariance of parameter estimates is.

Method Measurement noise covariance R � 10�6 Process noise covariance Q � 10�6

RRR 1.241 0.051 0.460 5.668 0.180 2.954 2.646

MT 1.614 0.240 2.316 2.929 0.203 3.153 0.667

MS 3.160 37.242 9.341 841.55 0.00005 0.0003 0.2386

Cost functions J1–J8

RRR 3.934 4.223 3.616 0.0008 �44.1347 2.975 2.976 2.907

MT 3.766 4.519 3.838 0.0008 �43.7340 4.2266 4.228 2.949

MS 3.162 3.151 2.590 0.0007 �38.0517 8.477 8.466 3.022

Table 3. Real flight test data results (R, Q, J).

Θ CN0 CL0 CLα CLδe
Cm0 Cmα Cmq Cm _α Cmδe

θ0

CN0 100 65 62 98 �13 �10 1 2 �12 0

CL0 65 100 41 64 �7 �4 �2 5 �5 0

CLα 62 41 100 67 �8 �19 1 1 �8 0

CLδe 98 64 67 100 �13 �11 2 1 �12 0

Cm0 �13 �7 �8 �13 100 88 9 84 99 0

Cmα �10 �4 �19 �11 88 100 25 70 91 0

Cmq 1 �2 1 2 9 25 100 �27 21 1

Cm _α 2 5 1 1 84 70 �27 100 80 �1
Cmδe

�12 �5 �8 �12 99 91 21 80 100 0

θ0 0 0 0 0 0 0 1 �1 0 100
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Based on the C from RRR, the weakest parameter can be inferred as θ0, which is uncorrelated
with all other parameters and its estimates and uncertainty can vary widely among the
approaches. Next, it is possible to group the parameters as (CN0 , CL0 , CLα , CLδe ) and
(Cm0 , Cmα , Cmq , Cm _α , Cmδe

). If a certain state is excited relatively more than others, then the esti-
mated parameter that multiplies it will have lower correlation with other parameters in the set.

The downloadable MATLAB program available in Shyam et al. [31], which has many simu-
lated and real flight test data analysis can be used all the way from teaching, learning to carry
out research using Kalman filter.

7. Conclusions

A new approach called RRR has been proposed to handle the important problem of tuning the
Kalman filter statistics. The importance of P0 in EKF as the PMP is stressed. This along with
suitably chosen R and Q after every filter pass through the data based on various filter
statistics converges after few iterations without any optimization. Further, the many cost
functions indicate the balance of the state and measurement equations and the consistency of
the various filter statistics. These help the user to assess the results and compare RRR with
other approaches. The efficacy of the RRR is demonstrated by application to a simple SMD
system and a real airplane flight test data with a large number of unknown aerodynamic
parameters.

Acknowledgements

Parts of this chapter are reproduced from the authors’ previously published report [31]. There
are three approaches to learn a subject namely based on intuitive concepts, practical calcula-
tions, and rigorous mathematics. This work has been written utilising the first two to help the
readers and in particular learners so that they are not put off by the Kalman filter. The author
sincerely thanks INTECH for providing such an opportunity. The present work is the outcome
of the author’s interaction with many colleagues and associates over many decades. It is
difficult to list all their names but the ones in the references can be kindly taken as an
acknowledgement. However, the author conveys his sincere apologies for any omissions
relevant to the theme of the present work.

Author details

Mudambi R Ananthasayanam

Address all correspondence to: sayanam2005@yahoo.co.in

Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

Kalman Filters - Theory for Advanced Applications28

References

[1] Billard R. Aryabhata and Indian astronomy. Indian Journal of History of Science. 1977;12(2):
207-224. Also R. Billard, “L’astronomie Indienne,” Publications De Ecole Francaise D’-
Extreme-Orient, Paris, 1971

[2] Sarma KV. Tradition of Aryabhatiya in Kerala: Revision of planetary parameters. Indian
Journal of History of Science. 1977;12(2):194-199

[3] Gauss KF. TheoriaMotus CorporumCoelestium in Sectionibus Conicis Solem Ambientium
(Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections
[Translation]). New York: Dover; 1809. p. 1963

[4] Kalman RE. A new approach to linear filtering and prediction problems. Transactions of
the ASME -Journal of Basic Engineering. 1960;82(Series D):35-45

[5] Kalman RE, Bucy RS. New results in linear filtering and prediction theory. Journal of
Basic Engineering. 1961;83(1):95-108

[6] Lauritzen S. Thiele Pioneer in Statistics. Oxford University Press; 2002

[7] Swerling P. A Proposed Stagewise Differential Correction Procedure for Satellite Track-
ing and Prediction. Tech. Rep. P-1292. Rand Corporation; 1958

[8] Stratonovich RL. Application of the theory of Markov process in optimal signal discrim-
ination. Radio Engineering and Electronic Physics. 1960;1:1-19

[9] Plackett RL. Some theorems in least squares. Biometrika. 1950;37:149157

[10] Sprott DA. Gauss’s contributions to statistics. Historia Mathematica. 1978;5:183-203

[11] Wiener N. The Extrapolation, Interpolation and Smoothing of Stationary Time Series:
With Engineering Applications. Cambridge, Massachusetts: MIT Press:; New York: Wiley
and Sons; London: Chapman & Hall; 1949

[12] Ananthasayanam MR. A relook at the concepts and competence of the Kalman Filter. In:
Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit; 5–8 January
2004; Reno, Nevada. AIAA 2004-571

[13] Klein V, Morelli EA. Aircraft System Identification: Theory and Practice. AIAA Edn.
Series; 2006

[14] Jategaonkar RV. Flight Vehicle System Identification: A Time Domain Methodology. Vol.
216. AIAA; 2006

[15] Bar-Shalom Y, Rong Li X, Kirubarajan T. Estimation with Applications to Tracking and
Navigation, Theory, Algorithm and Software. John Wiley and Sons; 2000

[16] Ananthasayanam MR, Anilkumar AK, Subba Rao PV. New approach for the evolution
and expansion of space debris scenario. Journal of Spacecraft and Rockets. 2006;43(6):
1271-1282

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

29



Based on the C from RRR, the weakest parameter can be inferred as θ0, which is uncorrelated
with all other parameters and its estimates and uncertainty can vary widely among the
approaches. Next, it is possible to group the parameters as (CN0 , CL0 , CLα , CLδe ) and
(Cm0 , Cmα , Cmq , Cm _α , Cmδe

). If a certain state is excited relatively more than others, then the esti-
mated parameter that multiplies it will have lower correlation with other parameters in the set.

The downloadable MATLAB program available in Shyam et al. [31], which has many simu-
lated and real flight test data analysis can be used all the way from teaching, learning to carry
out research using Kalman filter.

7. Conclusions

A new approach called RRR has been proposed to handle the important problem of tuning the
Kalman filter statistics. The importance of P0 in EKF as the PMP is stressed. This along with
suitably chosen R and Q after every filter pass through the data based on various filter
statistics converges after few iterations without any optimization. Further, the many cost
functions indicate the balance of the state and measurement equations and the consistency of
the various filter statistics. These help the user to assess the results and compare RRR with
other approaches. The efficacy of the RRR is demonstrated by application to a simple SMD
system and a real airplane flight test data with a large number of unknown aerodynamic
parameters.

Acknowledgements

Parts of this chapter are reproduced from the authors’ previously published report [31]. There
are three approaches to learn a subject namely based on intuitive concepts, practical calcula-
tions, and rigorous mathematics. This work has been written utilising the first two to help the
readers and in particular learners so that they are not put off by the Kalman filter. The author
sincerely thanks INTECH for providing such an opportunity. The present work is the outcome
of the author’s interaction with many colleagues and associates over many decades. It is
difficult to list all their names but the ones in the references can be kindly taken as an
acknowledgement. However, the author conveys his sincere apologies for any omissions
relevant to the theme of the present work.

Author details

Mudambi R Ananthasayanam

Address all correspondence to: sayanam2005@yahoo.co.in

Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

Kalman Filters - Theory for Advanced Applications28

References

[1] Billard R. Aryabhata and Indian astronomy. Indian Journal of History of Science. 1977;12(2):
207-224. Also R. Billard, “L’astronomie Indienne,” Publications De Ecole Francaise D’-
Extreme-Orient, Paris, 1971

[2] Sarma KV. Tradition of Aryabhatiya in Kerala: Revision of planetary parameters. Indian
Journal of History of Science. 1977;12(2):194-199

[3] Gauss KF. TheoriaMotus CorporumCoelestium in Sectionibus Conicis Solem Ambientium
(Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections
[Translation]). New York: Dover; 1809. p. 1963

[4] Kalman RE. A new approach to linear filtering and prediction problems. Transactions of
the ASME -Journal of Basic Engineering. 1960;82(Series D):35-45

[5] Kalman RE, Bucy RS. New results in linear filtering and prediction theory. Journal of
Basic Engineering. 1961;83(1):95-108

[6] Lauritzen S. Thiele Pioneer in Statistics. Oxford University Press; 2002

[7] Swerling P. A Proposed Stagewise Differential Correction Procedure for Satellite Track-
ing and Prediction. Tech. Rep. P-1292. Rand Corporation; 1958

[8] Stratonovich RL. Application of the theory of Markov process in optimal signal discrim-
ination. Radio Engineering and Electronic Physics. 1960;1:1-19

[9] Plackett RL. Some theorems in least squares. Biometrika. 1950;37:149157

[10] Sprott DA. Gauss’s contributions to statistics. Historia Mathematica. 1978;5:183-203

[11] Wiener N. The Extrapolation, Interpolation and Smoothing of Stationary Time Series:
With Engineering Applications. Cambridge, Massachusetts: MIT Press:; New York: Wiley
and Sons; London: Chapman & Hall; 1949

[12] Ananthasayanam MR. A relook at the concepts and competence of the Kalman Filter. In:
Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit; 5–8 January
2004; Reno, Nevada. AIAA 2004-571

[13] Klein V, Morelli EA. Aircraft System Identification: Theory and Practice. AIAA Edn.
Series; 2006

[14] Jategaonkar RV. Flight Vehicle System Identification: A Time Domain Methodology. Vol.
216. AIAA; 2006

[15] Bar-Shalom Y, Rong Li X, Kirubarajan T. Estimation with Applications to Tracking and
Navigation, Theory, Algorithm and Software. John Wiley and Sons; 2000

[16] Ananthasayanam MR, Anilkumar AK, Subba Rao PV. New approach for the evolution
and expansion of space debris scenario. Journal of Spacecraft and Rockets. 2006;43(6):
1271-1282

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

29



[17] Grewal MS, Lawrence RW, Andrews AP. Global Positioning Systems, Inertial Naviga-
tion, and Integration. 2nd ed. John Wiley & Sons Inc; 2007

[18] Kleusberg A, Teunissen PJG. GPS for Geodesy. 1st ed. Springer; 1996

[19] Fruhwirth R, Regier M, Bock RK, Grote H, Notz D. Data analysis techniques for high-
energy physics. In: Cambridge Monographs on Particle Physics, Nuclear Physics and
Cosmology; 2000

[20] Federer WT, Murthy BR. Kalman Filter Bibliography: Agriculture, Biology, and Medicine.
Technical Report BU-1436-M. Department of Biometrics, Cornell University; 1998

[21] Visser H, Molenaar J. Kalman filter analysis in dendroclimatology. Biometrics. 1988;44:
929-940

[22] Wells C. The Kalman Filter in Finance. Springer-Science. Business Media, BV; 1996

[23] Costagli M, Kuruoglu EE. Image separation using particle filters. Digital Signal Processing.
2007;17:935-946

[24] Evensen G. Data Assimilation: The Ensemble Kalman Filter. Springer Verlag; 2009

[25] Rao CR. Statistics and Truth: Putting Chance to Work - Ramanujan Memorial Lectures.
New Delhi, India: Council of Scientific and Industrial Research; 1987

[26] Samaniego FJ. A Comparison of the Bayesian and Frequentist Approaches to Estimation.
Springer Science; Business Media, LLC; 2011

[27] Feller W. An Introduction to Probability Theory and its Applications. 3rd ed. Vol. 1. John
Wiley and Sons; 1967

[28] Brown R, Hwang P. Introduction to Random Signals and Applied Kalman Filtering, with
MATLAB Exercises. 4th ed. John Wiley and Sons; 2012

[29] Rauch HE, Tung F, Striebel CT. Maximum likelihood estimates of linear dynamic sys-
tems. AIAA Journal. 1965;3(8):1445-1450

[30] Kailath T. An innovations approach to least-squares estimation part I: Linear filtering in
additive white noise. IEEE Transactions on Automatic Control. 2016;AC-13(6):646-655

[31] Shyam MM, Naik N, RMO G, Ananthasayanam MR. Introduction to the Kalman Filter
and Tuning its Statistics for near Optimal Estimates and Cramer Rao Bound. TR/EE2015/
401. Kanpur: IIT; 2015 http://arxiv.org/abs/1503.04313

[32] Philip NK, Ananthasayanam MR. Relative position and attitude estimation and control
schemes for the final phase of an autonomous docking mission. Acta Astronautica. 2003;
52(7):511-522

[33] Minsky M. The Society of the Mind. Picador Edition; 1988

[34] Narasimha R. Performance reliability of high maintenance systems. Journal of the Franklin
Institute. 1975;303:15-29

Kalman Filters - Theory for Advanced Applications30

[35] Julier SJ, Uhlmann JK, Durrant-Whyte HF. A new approach for filtering nonlinear sys-
tems. In: Proceedings of the 1995 American Control Conference. Vol. 1995. IEEE Press;

[36] Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayes-
ian state estimation. IEE Proceedings. 1993;140(2):107-113

[37] Georgios BG, Erchin S. bibliography on nonlinear system identification. Signal Processing.
2001;8:533-580

[38] Daum F. Nonlinear filters: Beyond the Kalman filter. IEEE A&E Systems Magazine. 2005;
20:8, Part 2: Tutorials-Daum

[39] Gelb A, editor. Applied Optimal Estimation. Cambridge: Massachusetts: MIT Press; 1974

[40] Sorenson HW. Least squares estimation from gauss to Kalman. IEEE Spectrum. 1970;7:
63-68

[41] Subbaraju PV, AnanthasayanamMR, Deshpande SM. Estimation of the Drag of a Satellite
Launch Vehicle from Flight Data Using Extended Kalman Filter. Report 88 FM 3, Dept. of
Aerospace Engineering. Indian Institute of Science, Bangalore; 1988. Accepted for presen-
tation at the 8th IFAC/IFORS Symposium on Identification and System Parameter Esti-
mation, August 27–31, 1988 at Beijing, China

[42] Mehrotra K, Mahapatra PR. A jerk model for tracking highly maneuvering targets. IEEE
Transactions on Aerospace and Electronic Systems. 1997;33(4):1094-1105

[43] Maybeck PS. Stochastic Models, Estimation, and Control. Vol. 1. New York: Academic
Press; 1979

[44] Candy JV. Signal Processing the Model Based Approach. McGraw Hill; 1986

[45] Gemson RMO. Estimation of aircraft aerodynamic derivatives accounting for measure-
ment and process noise By EKF through adaptive filter tuning. [PhD thesis]. Department
of Aerospace Engineering, Indian Institute of Science, Bangalore; 1991

[46] Gemson RMO, Ananthasayanam MR. Importance of initial state covariance matrix for
the parameter estimation using adaptive extended Kalman filter. In: Proceedings of
AIAA Atmospheric Flight Mechanics; 1998. AIAA-98-4153. pp. 94-104

[47] Sarkar AK, Ananthasayanam MR, Vathsal S. Sensitivity of initial state error covariance
matrix in a practical adaptive EKF. In: Proceedings of AIAA Atmospheric Flight Mechan-
ics Conference and Exhibit; 6–9 August 2001; Montreal, Canada. AIAA-2001-4202

[48] Shumway RH, Stoffer DS. Time Series Analysis and its Applications. New York: Springer
Verlag; 2000

[49] McLachlan GJ, Krishan. The EM Algorithm and Extensions. 2nd ed. John Wiley and Sons;
2008

[50] Bohlin T. Four cases of identification of changing systems. In: System Identification:
Advances and Case Studies. 1st ed. Academic Press; 1976

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

31



[17] Grewal MS, Lawrence RW, Andrews AP. Global Positioning Systems, Inertial Naviga-
tion, and Integration. 2nd ed. John Wiley & Sons Inc; 2007

[18] Kleusberg A, Teunissen PJG. GPS for Geodesy. 1st ed. Springer; 1996

[19] Fruhwirth R, Regier M, Bock RK, Grote H, Notz D. Data analysis techniques for high-
energy physics. In: Cambridge Monographs on Particle Physics, Nuclear Physics and
Cosmology; 2000

[20] Federer WT, Murthy BR. Kalman Filter Bibliography: Agriculture, Biology, and Medicine.
Technical Report BU-1436-M. Department of Biometrics, Cornell University; 1998

[21] Visser H, Molenaar J. Kalman filter analysis in dendroclimatology. Biometrics. 1988;44:
929-940

[22] Wells C. The Kalman Filter in Finance. Springer-Science. Business Media, BV; 1996

[23] Costagli M, Kuruoglu EE. Image separation using particle filters. Digital Signal Processing.
2007;17:935-946

[24] Evensen G. Data Assimilation: The Ensemble Kalman Filter. Springer Verlag; 2009

[25] Rao CR. Statistics and Truth: Putting Chance to Work - Ramanujan Memorial Lectures.
New Delhi, India: Council of Scientific and Industrial Research; 1987

[26] Samaniego FJ. A Comparison of the Bayesian and Frequentist Approaches to Estimation.
Springer Science; Business Media, LLC; 2011

[27] Feller W. An Introduction to Probability Theory and its Applications. 3rd ed. Vol. 1. John
Wiley and Sons; 1967

[28] Brown R, Hwang P. Introduction to Random Signals and Applied Kalman Filtering, with
MATLAB Exercises. 4th ed. John Wiley and Sons; 2012

[29] Rauch HE, Tung F, Striebel CT. Maximum likelihood estimates of linear dynamic sys-
tems. AIAA Journal. 1965;3(8):1445-1450

[30] Kailath T. An innovations approach to least-squares estimation part I: Linear filtering in
additive white noise. IEEE Transactions on Automatic Control. 2016;AC-13(6):646-655

[31] Shyam MM, Naik N, RMO G, Ananthasayanam MR. Introduction to the Kalman Filter
and Tuning its Statistics for near Optimal Estimates and Cramer Rao Bound. TR/EE2015/
401. Kanpur: IIT; 2015 http://arxiv.org/abs/1503.04313

[32] Philip NK, Ananthasayanam MR. Relative position and attitude estimation and control
schemes for the final phase of an autonomous docking mission. Acta Astronautica. 2003;
52(7):511-522

[33] Minsky M. The Society of the Mind. Picador Edition; 1988

[34] Narasimha R. Performance reliability of high maintenance systems. Journal of the Franklin
Institute. 1975;303:15-29

Kalman Filters - Theory for Advanced Applications30

[35] Julier SJ, Uhlmann JK, Durrant-Whyte HF. A new approach for filtering nonlinear sys-
tems. In: Proceedings of the 1995 American Control Conference. Vol. 1995. IEEE Press;

[36] Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayes-
ian state estimation. IEE Proceedings. 1993;140(2):107-113

[37] Georgios BG, Erchin S. bibliography on nonlinear system identification. Signal Processing.
2001;8:533-580

[38] Daum F. Nonlinear filters: Beyond the Kalman filter. IEEE A&E Systems Magazine. 2005;
20:8, Part 2: Tutorials-Daum

[39] Gelb A, editor. Applied Optimal Estimation. Cambridge: Massachusetts: MIT Press; 1974

[40] Sorenson HW. Least squares estimation from gauss to Kalman. IEEE Spectrum. 1970;7:
63-68

[41] Subbaraju PV, AnanthasayanamMR, Deshpande SM. Estimation of the Drag of a Satellite
Launch Vehicle from Flight Data Using Extended Kalman Filter. Report 88 FM 3, Dept. of
Aerospace Engineering. Indian Institute of Science, Bangalore; 1988. Accepted for presen-
tation at the 8th IFAC/IFORS Symposium on Identification and System Parameter Esti-
mation, August 27–31, 1988 at Beijing, China

[42] Mehrotra K, Mahapatra PR. A jerk model for tracking highly maneuvering targets. IEEE
Transactions on Aerospace and Electronic Systems. 1997;33(4):1094-1105

[43] Maybeck PS. Stochastic Models, Estimation, and Control. Vol. 1. New York: Academic
Press; 1979

[44] Candy JV. Signal Processing the Model Based Approach. McGraw Hill; 1986

[45] Gemson RMO. Estimation of aircraft aerodynamic derivatives accounting for measure-
ment and process noise By EKF through adaptive filter tuning. [PhD thesis]. Department
of Aerospace Engineering, Indian Institute of Science, Bangalore; 1991

[46] Gemson RMO, Ananthasayanam MR. Importance of initial state covariance matrix for
the parameter estimation using adaptive extended Kalman filter. In: Proceedings of
AIAA Atmospheric Flight Mechanics; 1998. AIAA-98-4153. pp. 94-104

[47] Sarkar AK, Ananthasayanam MR, Vathsal S. Sensitivity of initial state error covariance
matrix in a practical adaptive EKF. In: Proceedings of AIAA Atmospheric Flight Mechan-
ics Conference and Exhibit; 6–9 August 2001; Montreal, Canada. AIAA-2001-4202

[48] Shumway RH, Stoffer DS. Time Series Analysis and its Applications. New York: Springer
Verlag; 2000

[49] McLachlan GJ, Krishan. The EM Algorithm and Extensions. 2nd ed. John Wiley and Sons;
2008

[50] Bohlin T. Four cases of identification of changing systems. In: System Identification:
Advances and Case Studies. 1st ed. Academic Press; 1976

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

31



[51] Ljung L. Asymptotic behaviour of the EKF as a parameter estimator for linear systems.
IEEE Transactions on Automatic Control. 1979;24:36-50

[52] Mehra R. Approaches to adaptive filtering. IEEE Transactions on Automatic Control.
1972;17:903-908

[53] Myers KA, Tapley BD. Adaptive sequential estimation with unknown noise statistics.
IEEE Transactions on Automatic Control. 1976;21:520-525

[54] Ananthasayanam MR, Shyam MM, Naik N, Gemson RMO. A heuristic reference recur-
sive recipe for adaptively tuning the Kalman filter statistics part-1: Formulation and
simulation studies. Sadhana. 2016;41(12):1473-1490

[55] Shyam MM, Naik N, Gemson RMO, Ananthasayanam MR. A heuristic reference recur-
sive recipe for adaptively tuning the Kalman filter statistics part-2: Real data studies.
Sadhana. 2016;41(12):1491-1507

[56] Ananthasayanam MR, Suresh HS, Muralidharan MR. GUI Based Software for Teaching
Parameter Estimation Technique Using MMLE. Report 2001 FM 1, Dept. of Aerospace
Engineering. Bangalore: Indian Institute of Science; 2001

[57] Bavdekar VA, Deshpande AP, Patwardhan SC. Identification of process and measure-
ment noise covariance for state and parameter estimation using extended Kalman filter.
Journal of Process Control. 2011;21:585-601

[58] Mohamed AH, Schwarz KP. Adaptive Kalman filtering for INS/GPS. Journal of Geodesy.
1999;73(4):193-203

[59] Maine RE and Iliff KW. Programmer’s Manual for MMLE3, A General Fortran Program
for Maximum Likelihood Parameter Estimation. NASA TP-1690; 1981

Kalman Filters - Theory for Advanced Applications32

Chapter 2

The Error Covariance Matrix Inflation in Ensemble

Kalman Filter

Guocan Wu and Xiaogu Zheng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71960

Provisional chapter

The Error Covariance Matrix Inflation in Ensemble
Kalman Filter

Guocan Wu and Xiaogu Zheng

Additional information is available at the end of the chapter

Abstract

The estimation accuracy of ensemble forecast errors is crucial to the assimilation results
for all ensemble-based schemes. The ensemble Kalman filter (EnKF) is a widely used
scheme in land surface data assimilation, without using the adjoint of a dynamical
model. In EnKF, the forecast error covariance matrix is estimated as the sampling
covariance matrix of the ensemble forecast states. However, past researches on EnKF
have found that it can generally lead to an underestimate of the forecast error covariance
matrix, due to the limited ensemble size, as well as the poor initial perturbations and
model error. This can eventually result in filter divergence. Therefore, using inflation to
further adjust the forecast error covariance matrix becomes increasingly important. In
this chapter, a new structure of the forecast error covariance matrix is proposed to
mitigate the problems with limited ensemble size and model error. An adaptive proce-
dure equipped with a second-order least squares method is applied to estimate the
inflation factors of forecast and observational error covariance matrices. The proposed
method is tested on the well-known atmosphere-like Lorenz-96 model with spatially
correlated observational systems. The experiment results show that the new structure of
the forecast error covariance matrix and the adaptive estimation procedure lead to
improvement of the analysis states.

Keywords: data assimilation, ensemble Kalman filter, error covariance inflation,
observation-minus-forecast residual, least squares

1. Introduction

For state variables in geophysical research fields, a common assumption is that systems have
“true” underlying states. Data assimilation is a powerful mechanism for estimating the true
trajectory based on the effective combination of a dynamic forecast system (such as a numerical
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model) and observations [1]. It can produce an optimal combination of model outputs and
observations [2]. The combined result is called analysis state, which should be closer to the true
state than either the model forecast or the observation is. In fact, the analysis state can gener-
ally be treated as the weighted average of the model forecasts and observations, while the
weights are approximately proportional to the inverse of the corresponding covariance matri-
ces [3]. Therefore, the results of any data assimilation depend crucially on the estimation
accuracy of the forecast and observational error covariance matrices [4]. If these matrices are
estimated correctly, then the analysis states can be generated by minimizing an objective
function which is technically straightforward and can be accomplished using existing engi-
neering solutions [5], although finding the appropriate analysis state is still a quite difficult
problem when the models are nonlinear [6, 7].

The ensemble Kalman filter (EnKF) is a widely used sequential data assimilation approach,
which has been studied and applied since it is proposed by Evensen [8]. It is a practical
ensemble-based assimilation scheme that estimates the forecast error covariance matrix using a
Monte Carlo method with the short-term ensemble forecast states [9]. In EnKF, the forecast error
covariance matrix is estimated as the sampling covariance matrix of the ensemble forecast
states, which is usually underestimated due to the limited ensemble size and model error [10].
This finding indicates that the filter is over reliant on the model forecasts and excludes the
observations. It may eventually lead to the divergence of the EnKF assimilation scheme [11, 12].

Therefore, the forecast error covariance inflation technique to address this problem becomes
increasingly important. One of the error covariance matrix inflation techniques is additive
inflation, in which a noise is added to the ensemble forecast states that sample the probability
distribution of model error [13, 14]. Another widely used error covariance matrix inflation
technique is multiplicative inflation, that is, to multiply the matrix by an appropriate factor. It
can be used to mitigate filter divergence by inflating the empirical covariance and increasing
the robustness of the filter [15].

In early studies of multiplicative inflation, researchers determine the inflation factor by
repeated experimentation and choose a value according to their prior knowledge [11]. Hence,
such experimental tuning is rather empirical and subjective. It is not appropriate to use the
same inflation factor during all the assimilation procedure. Too small or too large an inflation
factor will cause the analysis state to over rely on the model forecasts or observations and can
seriously undermine the accuracy and stability of the filter. In later studies, the inflation factor is
estimated online based on the observation-minus-forecast residual (innovation statistic) [16, 17]
with different conditions.

Past work shows that moment estimation can facilitate the calculation by solving an equation
of the observation-minus-forecast residual and its realization [18–20]. Maximum likelihood
approach can obtain a better estimate of the inflation factor than moment approach, although
it must calculate a high-dimensional matrix determinant [21–24]. Bayesian approach assumes a
prior distribution for the inflation factor but is limited by spatially independent observational
errors [25, 26]. Second-order least square estimation focus on minimizing the second-order
least squares (SLS) [27] statistic of the squared observation-minus-forecast residual, which is
not very expensive [28–30]. Generalized Cross Validation (GCV) [31, 32] can select a regularization
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parameter by minimizing the predictive data errors with rotation invariant in a least squares
solution [33].

In practice, the observational error covariance matrix may also need to be adjusted, and an
approach can be used to simultaneously optimize inflation factors of both forecast and obser-
vational error covariance matrices [21]. This approach is based on the optimization of the
likelihood function of observation-minus-forecast residual. However, the likelihood function
of observation-minus-forecast residual is nonlinear and involves the computationally expen-
sive determinant and inverse of the residual covariance matrix. As compensation, the second-
order least squares statistic of the squared observation-minus-forecast residual can be used as
the cost function instead. The main advantage of the SLS cost function is that it is a quadratic
function of the inflation factors, and therefore, the analytic forms of the estimators of the
inflation factors can be easily obtained. Compared with the method based on maximum
likelihood estimation method, the computational cost is significantly reduced.

Furthermore, unlike the sampling covariance matrix of the ensemble forecast states used in the
conventional EnKF, a new structure of the forecast error covariance matrix is proposed in this
chapter. In ideal situation, an ensemble forecast state is assumed as a random vector with the
true state as its ensemble mean. Hence, it is should be defined that the ensemble forecast error
is the ensemble forecast states minus true state rather than minus their ensemble mean [34].
This is because in a forecast model with large error and limited ensemble size, the ensemble
mean of the forecast states can be very far from the true state. Therefore, the sampling covari-
ance matrix of the ensemble forecast states can be very different from the true forecast error
covariance matrix. As a result, the estimated analysis state can be substantially inaccurate.
However, in reality, the true state is unknown, but the analysis state is a better estimate of the
true state than the forecast state. Therefore, the information feedback from the analysis state
can be used to revise the forecast error covariance matrix. In fact, the proposed forecast error
covariance matrix is a combination of multiplicative and additive inflation. Bai and Li [14] also
used the feedback from the analysis state to improve assimilation but in a different way.

This chapter consists of four sections. The EnKF scheme with a new structure of the forecast
error covariance matrix and the adaptive estimation procedure is proposed in Section 2. The
assimilation results on Lorenz model with a correlated observational system are presented in
Section 3. Conclusions and discussion are given in Section 4.

2. Methodology

2.1. EnKF with SLS inflation scheme

Using the uniform notations for consistency, a nonlinear discrete-time forecast and linear obser-
vational system is written as [35]

xti ¼Mi�1 xai�1
� �þ ηi, (1)

yoi ¼ Hixti þ εi, (2)
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vational system is written as [35]

xti ¼Mi�1 xai�1
� �þ ηi, (1)

yoi ¼ Hixti þ εi, (2)
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where i is the time index; xti ¼ xti 1ð Þ; xti 2ð Þ;…; xti nð Þ
� �T is the n-dimensional true state vector at

time step i; xai�1 ¼ xai�1 1ð Þ; xai�1 2ð Þ;…; xai�1 nð Þ� �T is the n-dimensional analysis state vector which
is an estimate of xti�1,Mi�1 is a nonlinear forecast operator such as a weather forecast model; yoi is
an observational vector with dimension pi;Hi is an observational matrix of dimension pi � n that
maps model states to the observational space; ηi and εi are the forecast error vector and the
observational error vector respectively, which are assumed to be statistically independent of each
other, time-uncorrelated, and have mean zero and covariance matrices Pi and Ri , respectively.
The goal of the EnKF assimilation is to find a series of analysis states xai that are sufficiently close
to the corresponding true states xti , using the information provided byMi and yoi .

It is well-known that any EnKF assimilation scheme should include a forecast error inflation
scheme. Otherwise, the EnKF may diverge [11]. A procedure for estimating multiplicative
inflation factor of Pi and adjustment factor of Ri can be carried out based on the SLS principle.
The basic filter algorithm uses perturbed observations [9], but without localization [36]. The
estimation steps of this algorithm equipped with SLS inflation are as follows.

Step 1. Calculate the perturbed forecast states

xfi, j ¼Mi�1 xai�1, j
� �

, (3)

where xai�1, j is the perturbed analysis states derived from the previous time step (1 ≤ j ≤m andm

is the ensemble size).

Step 2. Estimate the improved forecast and observational error covariance matrices.

The forecast state xfi is defined as the ensemble mean of xfi, j and the initial forecast error

covariance matrix is expressed as

bP i ¼ 1
m� 1

Xm

j¼1
xfi, j � xfi
� �

� xfi, j � xfi
� �T

, (4)

and the initial observational error covariance matrix is Ri. Then, the adjusted forms of forecast

and observational error covariance matrices are λibPi and μiRi, respectively.

There are several approaches for estimating the inflation factors λi and μi. Wang and Bishop
[19], Li et al. [18], and Miyoshi [20] use the first-order least square of the squared observation-
minus-forecast residual di � yoi �Hixfi to estimate λi; Liang et al. [21] maximizes the likelihood
of di to estimate λi and μi. Here, the SLS approach is applied for estimating λi and μi. That is,
λi and μi are estimated by minimizing the objective function

Li λ;μ
� � ¼ Tr didT

i � λHibP iH
T
i � μRi

� �
didT

i � λHibP iH
T
i � μRi

� �T� �
: (5)

This leads to
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bλi ¼
Tr dT
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i

� �� Tr dT
i Ridi

� �
Tr HibP iHT

i Ri

� �

Tr HibPiHT
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i Ri

� �2 , (6)

bμi ¼
Tr HibPiHT

i HibPiHT
i

� �
Tr dT

i Ridi
� �� Tr dT

i HiPiHT
i di

� �
Tr HibP iHT

i Ri

� �

Tr HibP iHT
i HibP iHT

i

� �
Tr R2

i

� �� Tr HibPiHT
i Ri

� �2 : (7)

(See Appendix A for detailed derivation). Similar to Wang and Bishop [19] and Li et al. [18],
this procedure does not use Bayesian approach [20, 25, 26].

Step 3. Compute the perturbed analysis states.

xai, j ¼ xfi, j þ bλ ibP iHT
i Hibλi

bPiHT
i þ bμiRi

� ��1
yoi þ ε0i, j �Hixfi
� �

, (8)

where ε0i, j is a normal random variable with mean zero and covariance matrix bμ iRi [9]. Here

Hibλi
bPiHT

i þ bμiRi

� ��1
can be effectively computed using the Sherman-Morrison-Woodbury

formula [21, 37, 38]. Furthermore, the analysis state xai is estimated as the ensemble mean of
xai, j. Finally, set i ¼ iþ 1 and return to Step 1 for the assimilation at next time step.

2.2. EnKF with SLS inflation and new structure of forecast error covariance matrix

By Eqs. (1) and (3), the ensemble forecast error is defined as xfi, j � xti . On the other hand, xfi is an

estimate of xti without knowing observations. The ensemble forecast error is initially estimated

as xfi, j � xfi , which is used to construct the forecast error covariance matrix in Section 2.1.

However, due to limited sample size and model error, xfi can be far from xti . Therefore,

xfi, j � xfi can be a biased estimate of xfi, j � xti .

Here, the observations can be used for improving the estimation accuracy of ensemble forecast
error. The basic sense is as follows: After the analysis state xai is derived, it should be a better

estimate of xti than the forecast state xfi . Therefore, xfi in Eq. (4) is substituted by xai for
generating a revised forecast error covariance matrix. This procedure can be repeated itera-
tively until the corresponding objective function (Eq. (5)) converges. For the computational
details, Step 2 in Section 2.1 is modified to the following adaptive procedure:

Step 2a. Use Step 2 in Section 2.1 to inflate the initial forecast error covariance matrix to 0
bλi 0

bPi

and adjust initial observational error covariance matrix to 0bμiRi. Then use Step 3 in Section 2.1
to estimate the initial analysis state 0x

a
i and set k = 1.

Step 2b. Update the forecast error covariance matrix as
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There are several approaches for estimating the inflation factors λi and μi. Wang and Bishop
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of di to estimate λi and μi. Here, the SLS approach is applied for estimating λi and μi. That is,
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formula [21, 37, 38]. Furthermore, the analysis state xai is estimated as the ensemble mean of
xai, j. Finally, set i ¼ iþ 1 and return to Step 1 for the assimilation at next time step.

2.2. EnKF with SLS inflation and new structure of forecast error covariance matrix

By Eqs. (1) and (3), the ensemble forecast error is defined as xfi, j � xti . On the other hand, xfi is an

estimate of xti without knowing observations. The ensemble forecast error is initially estimated

as xfi, j � xfi , which is used to construct the forecast error covariance matrix in Section 2.1.

However, due to limited sample size and model error, xfi can be far from xti . Therefore,

xfi, j � xfi can be a biased estimate of xfi, j � xti .

Here, the observations can be used for improving the estimation accuracy of ensemble forecast
error. The basic sense is as follows: After the analysis state xai is derived, it should be a better

estimate of xti than the forecast state xfi . Therefore, xfi in Eq. (4) is substituted by xai for
generating a revised forecast error covariance matrix. This procedure can be repeated itera-
tively until the corresponding objective function (Eq. (5)) converges. For the computational
details, Step 2 in Section 2.1 is modified to the following adaptive procedure:

Step 2a. Use Step 2 in Section 2.1 to inflate the initial forecast error covariance matrix to 0
bλi 0

bPi

and adjust initial observational error covariance matrix to 0bμiRi. Then use Step 3 in Section 2.1
to estimate the initial analysis state 0x
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i and set k = 1.
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k
bP i ¼ 1

m� 1

Xm

j¼1
xfi, j � k�1x

a
i

� �
� xfi, j � k�1x

a
i

� �T
: (9)

Then, adjust the forecast and observational error covariance matrices to k
bλik
bPi and kbμ iRi,

where

k
bλi ¼

Tr dT
i Hik

bP iH
T
i di

� �
Tr R2

i

� �� Tr dT
i Ridi

� �
Tr Hik

bP iH
T
i Ri

� �

Tr Hik
bPiH

T
i Hik

bPiHT
i

� �
Tr R2

i

� �� Tr Hik
bPiH

T
i Ri

� �2 , (10)

and

kbμi ¼
Tr Hik

bP iH
T
i Hik

bP iHT
i

� �
Tr dT

i Ridi
� �� Tr dT

i Hik
bPiH

T
i di

� �
Tr Hik

bP iH
T
i Ri

� �

Tr Hik
bPiH

T
i Hik

bPiHT
i

� �
Tr R2

i

� �� Tr Hik
bPiH

T
i Ri

� �2 , (11)

are estimated by minimizing the objective function.

kLi λ;μ
� � ¼ Tr didT

i � λHik
bPiH

T
i � μRi

� �
didT

i � λHik
bP iH

T
i � μRi

� �T� �
: (12)

If kLi k
bλi; kbμ i

� �
< k�1Li k�1bλi; k�1bμi

� �
� δ, where δ is a pre-determined threshold to control the

convergence of Eq. (12) and then estimate the k-th updated analysis state as

kx
a
i ¼ xfi þ k

bλik
bPiHT

i Hik
bλik
bP iHT

i þ kbμikRi

� ��1
yoi �Hixfi
� �

, (13)

set k = k + 1 and return back to Eq. (9); otherwise, take k�1bλik�1bPi and k�1bμiRi as the estimated
forecast and observational error covariance matrices at i-th time step and go to Step 3 in
Section 2.1.

A general flowchart of the proposed assimilation scheme is shown in Figure 1. Moreover, the
proposed forecast error covariance matrix (Eq. (9)) can be expressed as.

kλik
bPi ¼ kλi

m� 1

Xm

j¼1
xfi, j � xfi
� �

xfi, j � xfi
� �T

þ kλim
m� 1

xfi � k�1x
a
i

� �
xfi � k�1x

a
i

� �T
, (14)

which is a multiplicatively inflated sampling error covariance matrix plus an additive inflation
matrix (see Appendix B for the proof).

2.3. Notes

2.3.1. Correctly specified observational error covariance matrix

If the observational error covariance matrix Ri is correctly known, then its adjustment is no

longer required. In this case, the inflation factor k
bλi can be estimated by minimizing the

following objective function
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Li λð Þ ¼ Tr didT
i � λHik

bPiH
T
i � Ri

� �
didT

i � λHik
bP iH

T
i � Ri

� �T� �
: (15)

This leads to a simpler estimate

k
bλi ¼

Tr Hik
bPiH

T
i didT

i � Ri
� �h i

Tr Hik
bPiH

T
i Hik

bPiHT
i

h i : (16)

2.3.2. Validation statistics

In any toy model, the “true” state xti is known by experimental design. In this case, the root-
mean-square error (RMSE) of the analysis state can be used to evaluate the accuracy of the
assimilation results. The RMSE at i-th step is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼1
xaik � xtik
� �2

s
: (17)

where xaik and xtik are the k-th components of the analysis state and true state at the i-th time
step. In principle, a smaller RMSE indicates a better performance of the assimilation scheme.

Figure 1. Flowchart of EnKF with SLS inflation scheme.
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set k = k + 1 and return back to Eq. (9); otherwise, take k�1bλik�1bPi and k�1bμiRi as the estimated
forecast and observational error covariance matrices at i-th time step and go to Step 3 in
Section 2.1.

A general flowchart of the proposed assimilation scheme is shown in Figure 1. Moreover, the
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which is a multiplicatively inflated sampling error covariance matrix plus an additive inflation
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If the observational error covariance matrix Ri is correctly known, then its adjustment is no

longer required. In this case, the inflation factor k
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2.3.2. Validation statistics

In any toy model, the “true” state xti is known by experimental design. In this case, the root-
mean-square error (RMSE) of the analysis state can be used to evaluate the accuracy of the
assimilation results. The RMSE at i-th step is defined as
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Figure 1. Flowchart of EnKF with SLS inflation scheme.
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3. Experiment on Lorenz 96 model

In this section, the EnKF with SLS inflation assimilation scheme is applied to a nonlinear
dynamical system, which has properties relevant to realistic forecast problems: the Lorenz-96
model [39] with model error and a linear observational system. The performances of the
assimilation schemes in Section 2 are evaluated through the following experiments.

3.1. Description of forecast and observational systems

The Lorenz-96 model [39] is a strongly nonlinear dynamical system with quadratic nonlinearity,
which is governed by the equation.

dXk

dt
¼ Xkþ1 � Xk�2ð ÞXk�1 � Xk þ F (18)

where k ¼ 1, 2,⋯, K (K ¼ 40; hence, there are 40 variables). For Eq. (18) to be well-defined for
all values of k, it is defined that X�1 ¼ XK�1,X0 ¼ XK,XKþ1 ¼ X1. The dynamics of Eq. (18) are
“atmosphere-like” in that the three terms on the right-hand side consist of a nonlinear
advection-like term, a damping term, and an external forcing term respectively. These three
terms can be thought of as some atmospheric quantity (e.g., zonal wind speed) distributed on a
latitude circle. Therefore, the Lorenz-96 model has been widely used as a test bed to evaluate
the performance of assimilation schemes in many studies [30].

The true state is derived by a fourth-order Runge–Kutta time integration scheme [40]. The time
step for generating the numerical solution was set at 0.05 nondimensional units, which is
roughly equivalent to 6 hours in real time, assuming that the characteristic time-scale of the
dissipation in the atmosphere is 5 days [39]. The forcing term was set as F = 8, so that the
leading Lyapunov exponent implies an error-doubling time of approximately 8 time steps, and
the fractal dimension of the attractor was 27.1 [41]. The initial value was chosen to be Xk ¼ F
when k 6¼ 20 and X20 ¼ 1:001F.

In this study, the synthetic observations were assumed to be generated by adding random
noises that were multivariate-normally distributed with mean zero and covariance matrix Ri to
the true states. The frequency was four time steps, which can be used to mimic daily observa-
tions in practical problems, such as satellite data. The observation errors were assumed to be
spatially correlated, which is common in applications involving remote sensing and radiance
data. The variance of the observation at each grid point was set to σ2o ¼ 1, and the covariance of
the observations between the j-th and k-th grid points was as follows:

Ri j; kð Þ ¼ σ2o � 0:5min j�kj j;40� j�kj jf g: (19)

Since it can deal with spatially correlated observational errors, the scheme may potentially be
applied for assimilating remote sensing observations and radiances data.
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The model errors by changing the forcing term are added in the forecast model because it is
inevitable in real dynamic systems. Thus, different values of F are chose in the assimilation
schemes while retaining F = 8 when generating the “true” state. The observations are simulated
every four time steps analogizing 1 day in realistic problem for 2000 steps to ensure robust
results. The ensemble size is used as 30. The pre-determined threshold δ to control the conver-
gence of Eq. (12) is set to be 1, because the values of objective functions are in the order of 105.
In most cases of the following experiment, the objective functions converge after 3–4 iterations,
and the estimated analysis states also converge.

3.2. Comparison of assimilation schemes

In Section 2.1, the EnKF assimilation scheme with SLS error covariance matrix inflation is
outlined. In Section 2.2, the improved EnKF assimilation scheme with the SLS error covariance
matrix inflation and the new structure of the forecast error covariance matrix are summarized.
In the following, the influences of these estimation methods on EnKF data assimilation
schemes are assessed using Lorenz-96 model.

Lorenz-96 model is a forced dissipative model with a parameter F that controls the strength of
the forcing (Eq. (18)). The model behaviors are quite different with different values of F, and
chaotic systems are produced with integer values of F larger than 3. Therefore, several values
of F are used to simulate a wide range of model errors. In all cases, the true states were
generated by a model with F = 8. These observations were then assimilated into models with
F = 4, 5, …, 12.

3.2.1. Correctly specified observational error covariance matrix

Suppose the observational error covariance matrix Ri is correctly specified, the inflation adjust-

ment on bPi is taken in each assimilation cycle and estimate the inflation factors λi by the
methods described in Section 2.1. Then, the adaptive assimilation schemes with the new
structure of the forecast error covariance matrix proposed in Section 2.2 are conducted.

Figure 2 shows the time-mean analysis RMSE of the two assimilation schemes averaged over
2000 time steps, as a function of F. Overall, the analysis RMSE of the two assimilation schemes
gradually grows as increasing model error. When F is near the true value 8, the two assimila-
tion schemes have almost indistinguishable values of the analysis RMSE. However, when F
becomes increasingly distant from 8, the analysis RMSE of the assimilation scheme with the
new structure of the forecast error covariance matrix becomes progressively smaller than that
of the assimilation scheme with the forecast error covariance matrix inflation only.

For the Lorenz-96 model with large error (such as, the case with F = 12), the time-mean analysis
RMSE of the two assimilation schemes is listed in Table 1, as well as the time-mean values of
the objective functions. The conventional EnKF assimilation scheme is also included for com-
parison. These results show clearly that our two schemes have significantly smaller RMSE than
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assimilation schemes in Section 2 are evaluated through the following experiments.
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“atmosphere-like” in that the three terms on the right-hand side consist of a nonlinear
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terms can be thought of as some atmospheric quantity (e.g., zonal wind speed) distributed on a
latitude circle. Therefore, the Lorenz-96 model has been widely used as a test bed to evaluate
the performance of assimilation schemes in many studies [30].

The true state is derived by a fourth-order Runge–Kutta time integration scheme [40]. The time
step for generating the numerical solution was set at 0.05 nondimensional units, which is
roughly equivalent to 6 hours in real time, assuming that the characteristic time-scale of the
dissipation in the atmosphere is 5 days [39]. The forcing term was set as F = 8, so that the
leading Lyapunov exponent implies an error-doubling time of approximately 8 time steps, and
the fractal dimension of the attractor was 27.1 [41]. The initial value was chosen to be Xk ¼ F
when k 6¼ 20 and X20 ¼ 1:001F.

In this study, the synthetic observations were assumed to be generated by adding random
noises that were multivariate-normally distributed with mean zero and covariance matrix Ri to
the true states. The frequency was four time steps, which can be used to mimic daily observa-
tions in practical problems, such as satellite data. The observation errors were assumed to be
spatially correlated, which is common in applications involving remote sensing and radiance
data. The variance of the observation at each grid point was set to σ2o ¼ 1, and the covariance of
the observations between the j-th and k-th grid points was as follows:

Ri j; kð Þ ¼ σ2o � 0:5min j�kj j;40� j�kj jf g: (19)

Since it can deal with spatially correlated observational errors, the scheme may potentially be
applied for assimilating remote sensing observations and radiances data.

Kalman Filters - Theory for Advanced Applications40

The model errors by changing the forcing term are added in the forecast model because it is
inevitable in real dynamic systems. Thus, different values of F are chose in the assimilation
schemes while retaining F = 8 when generating the “true” state. The observations are simulated
every four time steps analogizing 1 day in realistic problem for 2000 steps to ensure robust
results. The ensemble size is used as 30. The pre-determined threshold δ to control the conver-
gence of Eq. (12) is set to be 1, because the values of objective functions are in the order of 105.
In most cases of the following experiment, the objective functions converge after 3–4 iterations,
and the estimated analysis states also converge.

3.2. Comparison of assimilation schemes

In Section 2.1, the EnKF assimilation scheme with SLS error covariance matrix inflation is
outlined. In Section 2.2, the improved EnKF assimilation scheme with the SLS error covariance
matrix inflation and the new structure of the forecast error covariance matrix are summarized.
In the following, the influences of these estimation methods on EnKF data assimilation
schemes are assessed using Lorenz-96 model.

Lorenz-96 model is a forced dissipative model with a parameter F that controls the strength of
the forcing (Eq. (18)). The model behaviors are quite different with different values of F, and
chaotic systems are produced with integer values of F larger than 3. Therefore, several values
of F are used to simulate a wide range of model errors. In all cases, the true states were
generated by a model with F = 8. These observations were then assimilated into models with
F = 4, 5, …, 12.

3.2.1. Correctly specified observational error covariance matrix

Suppose the observational error covariance matrix Ri is correctly specified, the inflation adjust-

ment on bPi is taken in each assimilation cycle and estimate the inflation factors λi by the
methods described in Section 2.1. Then, the adaptive assimilation schemes with the new
structure of the forecast error covariance matrix proposed in Section 2.2 are conducted.

Figure 2 shows the time-mean analysis RMSE of the two assimilation schemes averaged over
2000 time steps, as a function of F. Overall, the analysis RMSE of the two assimilation schemes
gradually grows as increasing model error. When F is near the true value 8, the two assimila-
tion schemes have almost indistinguishable values of the analysis RMSE. However, when F
becomes increasingly distant from 8, the analysis RMSE of the assimilation scheme with the
new structure of the forecast error covariance matrix becomes progressively smaller than that
of the assimilation scheme with the forecast error covariance matrix inflation only.

For the Lorenz-96 model with large error (such as, the case with F = 12), the time-mean analysis
RMSE of the two assimilation schemes is listed in Table 1, as well as the time-mean values of
the objective functions. The conventional EnKF assimilation scheme is also included for com-
parison. These results show clearly that our two schemes have significantly smaller RMSE than
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the EnKF assimilation scheme. Moreover, the assimilation scheme with the new structure of
the forecast error covariance matrix performs much better than assimilation scheme with
forecast error covariance matrix inflation only.

3.2.2. Incorrectly specified observational error covariance matrix

In this section, the observational error covariance matrix is supposed to be correct only up to a
constant factor. The factor is estimated using different estimation methods, and the corresponding
assimilation results are evaluated.

Figure 2. Time-mean values of the analysis RMSE as a function of forcing F when observational errors are spatially
correlated and their covariance matrix is correctly specified, by using 3 EnKF schemes. 1) SLS only (solid line, described in
Section 2.1); 2) SLS and new structure (dashed line, described in Section 2.2); and 3) SLS and true ensemble forecast error
(dotted line, described in Section 5).

EnKF schemes Time-mean RMSE Time-mean L

Non-inflation 5.65 2,298,754

SLS 1.89 148,468

SLS and new structure 1.22 38,125

SLS and true ensemble forecast error 0.48 19,652

Table 1. The time-mean analysis RMSE and the time-mean objective function values in 4 EnKF schemes for Lorenz-96
model when observational errors are spatially correlated and their covariance matrix is correctly specified: (1) EnKF (non-
inflation); (2) the SLS scheme in Section 2.1 (SLS); (3) the SLS scheme in Section 2.2 (SLS and new structure); (4) the SLS
scheme in the discussion (SLS and true ensemble forecast error). The forcing term F = 12.
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The observational error covariance matrix Ri is set as four times of the true matrix and
introduces another factor μi to adjust Ri. The assimilation schemes are conducted in two cases:
(1) inflate the forecast and observational error covariance matrices only (Section 2.1); (2) inflate
the forecast and observational error covariance matrices and use the new structure of the
forecast error covariance matrix (Section 2.2). Again, the forcing term F takes values 4, 5, …,
12 when assimilating observations, but F = 8 is used when generating the true states in
all cases.

Figure 3 shows the time-mean analysis RMSE of the two cases averaged over 2000 time steps, as
a function of forcing term. Generally speaking, the analysis RMSE of the two cases gradually

Figure 3. Time-mean values of the analysis RMSE as a function of forcing F when observational errors are spatially
correlated and their covariance matrix is incorrectly specified, by using 3 EnKF schemes. 1) SLS only (solid line); 2) SLS
and new structure (dashed line); and 3) SLS and true ensemble forecast error (dotted line).

EnKF schemes Ensemble size 30 Ensemble size 20

Time-mean RMSE Time-mean L Time-mean RMSE Time-mean L

SLS 2.43 1,426,541 3.51 1,492,685

SLS and new structure 1.35 41,326 1.45 95,685

SLS and true ensemble forecast error 0.58 21,585 0.60 21,355

Table 2. The time-mean analysis RMSE and the time-mean objective function values in EnKF schemes for Lorenz-96
model when observational errors are spatially correlated and their covariance matrix is incorrectly specified: (1) SLS; (2)
SLS and new structure; (4) SLS and true ensemble forecast error. The forcing term F = 12.
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grows as the increasing the model error. However, the analysis RMSE generated by using new
structure of the forecast error covariance matrix (cases 2) is smaller than those by using the error
covariance matrices inflation technique only (cases 1).

For the Lorenz-96 model with forcing term F = 12, the time-mean analysis RMSE of the two
cases is listed in Table 2, along with the time-mean values of the objective functions. These

Figure 4. The times series of estimated bμ i when observational error covariance matrix is incorrectly specified.

Figure 5. Similar to Figure 3, but ensemble size is 20.
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results clearly show that when the observational error covariance matrix is incorrectly speci-
fied, the assimilation result is much better if the new structure of the forecast error covariance
matrix is used (cases 2).

The estimated bμ i over 2000 time steps in the two cases of using the new structure of the forecast
error covariance matrix (cases 2) are plotted in Figure 4. It can be seen that the time-mean value
of estimated bμi is 0.45, which is very close to the reciprocal of the constant that is multiplied to
the observational error covariance matrix (0.25).

To further investigate the effect of ensemble size on the assimilation result, Figure 3 is
reproduced with the ensemble size 20. The results are shown in Figure 5, as well as in Table 2.
Generally speaking, Figures 5 is quite similar to Figure 3 but with larger analysis error. This
indicates that the smaller ensemble size can lead to the larger forecast error and analysis error.
The analysis is also repeated with the ensemble size 10. However in this case, both the inflation
and new structure are not effective. This could be due to that the ensemble size 10 is too small
to generate robust covariance estimation.

4. Discussion and conclusions

It is well-known that accurately estimating the error covariance matrix is one of the most key
steps in any ensemble-based data assimilation. In EnKF assimilation scheme, the forecast error
covariance matrix is initially estimated as the sampling covariance matrix of the ensemble
forecast states. But due to limited ensemble size and model error, the forecast error covariance
matrix is usually an underestimation, which may lead to the divergence of the filter. Therefore,
the initially estimated forecast error covariance matrix is multiplied by an inflation factor λi,
and the SLS estimation is proposed to estimate this factor.

In fact, the true forecast error should be represented as the ensemble forecast states minus the
true state. However, since in real problems, the true state is not available, the ensemble mean of
the forecast states is used instead. Consequently, the forecast error covariance matrix is initially
represented as the sampling covariance matrix of the ensemble forecast states. However, for
the model with large error, the ensemble mean of the forecast states may be far from the true
state. In this case, the estimated forecast error covariance matrix will also remain far from the
truth, no matter which inflation technique is used.

To verify this point, a number of EnKF assimilation schemes with necessary error covariance
matrix inflation are applied to the Lorenz-96 model but with the forecast state xfi in the forecast
error covariance matrix (Eq. (4)) substituted by the true state xti . The corresponding RMSE are
shown in Figures 2–5 and Tables 1 and 2. All the figures and tables show that the analysis
RMSE is significantly reduced.

However, since the true state xti is unknown, the analysis state xai is used to replace the forecast

state xfi , because xai is closer to xti than xfi . To achieve this goal, a new structure of the forecast
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results clearly show that when the observational error covariance matrix is incorrectly speci-
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matrix is used (cases 2).
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error covariance matrix (cases 2) are plotted in Figure 4. It can be seen that the time-mean value
of estimated bμi is 0.45, which is very close to the reciprocal of the constant that is multiplied to
the observational error covariance matrix (0.25).

To further investigate the effect of ensemble size on the assimilation result, Figure 3 is
reproduced with the ensemble size 20. The results are shown in Figure 5, as well as in Table 2.
Generally speaking, Figures 5 is quite similar to Figure 3 but with larger analysis error. This
indicates that the smaller ensemble size can lead to the larger forecast error and analysis error.
The analysis is also repeated with the ensemble size 10. However in this case, both the inflation
and new structure are not effective. This could be due to that the ensemble size 10 is too small
to generate robust covariance estimation.

4. Discussion and conclusions

It is well-known that accurately estimating the error covariance matrix is one of the most key
steps in any ensemble-based data assimilation. In EnKF assimilation scheme, the forecast error
covariance matrix is initially estimated as the sampling covariance matrix of the ensemble
forecast states. But due to limited ensemble size and model error, the forecast error covariance
matrix is usually an underestimation, which may lead to the divergence of the filter. Therefore,
the initially estimated forecast error covariance matrix is multiplied by an inflation factor λi,
and the SLS estimation is proposed to estimate this factor.

In fact, the true forecast error should be represented as the ensemble forecast states minus the
true state. However, since in real problems, the true state is not available, the ensemble mean of
the forecast states is used instead. Consequently, the forecast error covariance matrix is initially
represented as the sampling covariance matrix of the ensemble forecast states. However, for
the model with large error, the ensemble mean of the forecast states may be far from the true
state. In this case, the estimated forecast error covariance matrix will also remain far from the
truth, no matter which inflation technique is used.

To verify this point, a number of EnKF assimilation schemes with necessary error covariance
matrix inflation are applied to the Lorenz-96 model but with the forecast state xfi in the forecast
error covariance matrix (Eq. (4)) substituted by the true state xti . The corresponding RMSE are
shown in Figures 2–5 and Tables 1 and 2. All the figures and tables show that the analysis
RMSE is significantly reduced.

However, since the true state xti is unknown, the analysis state xai is used to replace the forecast
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error covariance matrix and an adaptive procedure for estimating the new structure are
proposed here to iteratively improve the estimation. As shown in this chapter, the RMSE of
the corresponding analysis states are indeed smaller than those of the EnKF assimilation
scheme with the error covariance matrix inflation only. For instance, in the experiment in
Section 3.1, when the error covariance matrix inflation technique is applied, the RMSE is 1.89
which is much smaller than that for the original EnKF. When the new structure of the forecast
error covariance matrix is used in addition to the inflation, the RMSE is reduced to 1.22 (see
Table 1).

In the realistic problems, the observational error covariance matrix is not always correctly
known, and hence it also needs to be adjusted too. Another factor μi is introduced to adjust
the observational error covariance matrix in this chapter, which can be estimated simulta-
neously with λi by minimizing the second-order least squares function of the squared
observation-minus-forecast residual.

The second-order least squares function of the squared observation-minus-forecast residual
can be a good objective function to quantify the goodness of fit of the error covariance
matrix. The SLS method proposed in this chapter can be used to estimate the factors for
adjusting both the forecast and observational error covariance matrices, while the first order
method can only estimate the inflation factor of the forecast error covariance matrix. The SLS
can also provide a criterion for stopping the iteration in the adaptive estimation procedure
when the new structure of the forecast error covariance matrix is used. This is important for
preventing the proposed forecast error covariance matrix to depart from the truth in the
iteration. In most cases in this study, the minimization algorithms converge after several
iterations, and the objective function decreases sharply. On the other hand, the improved
forecast error covariance matrix indeed leads to the improvement of analysis state. In fact, as
shown in Tables 1-2, a small objective function value always corresponds to a small RMSE of
the analysis state.

The difference of the EnKF assimilation scheme with SLS inflation is compared to that with
maximum likelihood estimation (MLE) inflation [21]. Generally speaking, the RMSE of the
analysis state derived using the MLE inflation scheme is a little smaller than that derived using
the SLS inflation scheme only but is larger than that derived using the SLS inflation with the
new structure of forecast error covariance matrix. For instance, for Lorenz-96 model with
forcing term F = 12, the RMSE is 1.69 for MLE inflation, 1.89 for SLS inflation only, and 1.22
for SLS inflation and new structure (Table 1). Whether this is a general rule or not is still
unclear and is subject to further investigation. However, in MLE inflation scheme, the objective
function is nonlinear and especially involves the determinant of the observation-minus-fore-
cast residual’s covariance matrix, which is quite computationally expensive. The SLS objective
function proposed in this chapter is quadratic, so its minimizer is analytic and can be easily
calculated.

On the other hand, similar to other inflation schemes with single factor, this study also
assumes the inflation factor to be constant in space. Apparently, this is not the case in many
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practical applications, especially for the cases that the observations are unevenly distributed.
Persistently applying the same inflation values that are reasonably large to address problems
in densely observed areas to all state variables can systematically overinflate the ensemble
variances in sparsely observed areas [13, 26, 42]. Even when the adaptive procedure for
estimating the error covariance matrix is applied, the problem may still exist in some extent.
In the two case studies conducted here, the observational systems are relatively evenly
distributed.

In the future study, we will investigate how to modify the adaptive procedure to suit the
system with unevenly distributed observations. We also plan to apply our methodology to
error covariance localization [43, 44] and to validate the proposed methodologies using more
sophisticated dynamic and observational systems.
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Appendix A

The forecast error covariance matrix bPi is inflated to λbP i. The estimation of the inflation factors
λ is based on the observation-minus-forecast residual

di ¼ yoi �Hixfi
¼ yoi �Hixti
� �þHi xti � xfi

� � (A1)

The covariance matrix of the random vector di can be expressed as a second-order regression
equation [27]:

E yoi �Hixti
� �þHi xti � xfi

� �� �
yoi �Hixti
� �þHi xti � xfi

� �� �Th i
¼ didT

i þ Ξ (A2)

where E is the expectation operator and Ξ is the error matrix. The left-hand side of (A2) can be
decomposed as
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E yoi �Hixti
� �þHi xti � xfi

� �� �
yoi �Hixti
� �þHi xti � xfi

� �� �Th i

¼ E yoi �Hixti
� �

yoi �Hixti
� �Th i

þ E Hi xti � xfi
� �� �

Hi xti � xfi
� �� �Th i

þE yoi �Hixti
� �

Hi xti � xfi
� �� �Th i

þ E Hi xti � xfi
� �� �

yoi �Hixti
� �Th i

(A3)

Since the forecast and observational errors are statistically independent, we have

E Hi xti � xfi
� �� �

yoi �Hixti
� �Th i

¼ HiE xti � xfi
� �

yoi �Hixti
� �Th i

¼ 0, (A4)

E yoi �Hixti
� �

Hi xti � xfi
� �� �Th i

¼ E yoi �Hixti
� �

xti � xfi
� �Th i

HT
i ¼ 0: (A5)

From Eq. (2), yoi �Hixti is the observational error at i-th time step, and hence

E yoi �Hixti
� �

yoi �Hixti
� �Th i

¼ Ri (A6)

Further, since the forecast state xfi, j is treated as a random vector with the true state xti as its

population mean,

E Hi xti � xfi
� �� �

Hi xti � xfi
� �� �Th i

¼ HiE xti � xfi
� �

xti � xfi
� �Th i

HT
i

≈Hi
λ

m� 1

Xn

j¼1
xfi, j � xfi
� �

xfi, j � xfi
� �T

HT
i

¼ λHibPiHT
i

(A7)

Substituting Eqs (A3)–(A7) into Eq. (A2), we have

Ri þ λHibPiHT
i ≈didT

i þ Ξ (A8)

It follows that the second-order moment statistic of error Ξ can be expressed as

Tr ΞΞT� �
≈Tr didT

i � Ri � λHibPiH
T
i

� �
didT

i � Ri � λHibP iH
T
i

� �T� �

� Li λð Þ
(A9)

Therefore, λ can be estimated by minimizing objective function Li λð Þ. Since Li λð Þ is a quadratic
function of λwith positive quadratic coefficients, the inflation factor can be easily expressed as
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Similarly, if the amplitude of the observational error covariance matrix is not correct, we can
adjust Ri to μiRi as well [21, 22]. Then, the objective function becomes
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As a bivariate function of λ and μ, the first partial derivative with respect to the two parame-
ters respectively are
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Setting Eqs (A12)–(A13) to zero and solving them lead to

bλi ¼
Tr didT

i HibP iHT
i

� �
Tr R2

i

� �� Tr didT
i Ri

� �
Tr HibP iHT

i Ri

� �

Tr HibPiHT
i HibPiHT

i

� �
Tr R2

i

� �� Tr HibP iHT
i Ri

� �2

¼
Tr dT

i HibPiHT
i di

� �
Tr R2

i

� �� Tr dT
i Ridi

� �
Tr HiPiHT

i Ri
� �

Tr HibP iHT
i HibPiHT

i

� �
Tr R2

i

� �� Tr HibPiHT
i Ri

� �2

(A14)

bμi ¼
Tr HibPiHT

i HibPiHT
i

� �
Tr didT

i Ri
� �� Tr didT

i HibP iHT
i

� �
Tr HibP iHT

i Ri

� �

Tr HibPiHT
i HibPiHT

i

� �
Tr R2

i

� �� Tr HibP iHT
i Ri

� �2

¼
Tr HibPiHT

i HibPiHT
i

� �
Tr dT

i Ridi
� �� Tr dT

i HibPiHT
i di

� �
Tr HibP iHT

i Ri

� �

Tr HibPiHT
i HibPiHT

i

� �
Tr R2

i

� �� Tr HibP iHT
i Ri

� �2

(A15)

The Error Covariance Matrix Inflation in Ensemble Kalman Filter
http://dx.doi.org/10.5772/intechopen.71960

49



E yoi �Hixti
� �þHi xti � xfi

� �� �
yoi �Hixti
� �þHi xti � xfi

� �� �Th i

¼ E yoi �Hixti
� �

yoi �Hixti
� �Th i

þ E Hi xti � xfi
� �� �

Hi xti � xfi
� �� �Th i

þE yoi �Hixti
� �

Hi xti � xfi
� �� �Th i

þ E Hi xti � xfi
� �� �

yoi �Hixti
� �Th i

(A3)

Since the forecast and observational errors are statistically independent, we have
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From Eq. (2), yoi �Hixti is the observational error at i-th time step, and hence
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Substituting Eqs (A3)–(A7) into Eq. (A2), we have
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Appendix B

In fact,
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Since xfi is the ensemble mean forecast, we have
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(B2)

and similarly.
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a
i

� �
xfi, j � xfi
� �T

¼ 0 (B3)

That is, the last two terms of Eq. (B1) vanish. Therefore, the proposed forecast error covariance
matrix can be expressed as
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Abstract

Automotive research anddevelopmentpassed throughavast evolutionduringpast decades.
Many passive and active driver assistance systems were developed, increasing the passen-
gers’ safety and comfort. This ongoing process is a main focus in current research and offers
great potential for further systems, especially focusing on the task of autonomous and
cooperative driving in the future. For that reason, information about the current stability in
termsof dynamic behavior andvehicle environment are necessary for the systems toperform
properly. Thus, model-based online state and parameter estimation have become important
throughout the last years using a detailed vehiclemodel and standard sensors, gathering this
information. In this chapter, state and parameter estimation in vehicle dynamics utilizing the
unscented Kalman filter is presented. The estimation runs in real time based on a detailed
vehicle model and standard measurements taken within the car. The results are validated
using a Volkswagen Golf GTE Plug-In Hybrid for various dynamic test maneuvers and
a Genesys Automotive Dynamic Motion Analyzer (ADMA) measurement unit for high-
precision measurements of the vehicle’s states. Online parameter estimation is shown for
friction coefficient estimation performingmaneuvers on different road surfaces.

Keywords: vehicle dynamics, state estimation, parameter estimation, unscented
Kalman filter, dead-time compensation

1. Introduction

In the past decades, enormous developments in automotive research were achieved. Since the
beginning of the twentieth century, a consistent search for solutions increasing vehicle’s safety
and comfort took place. Starting with passive safety systems in the early twentieth century, e.g.,
airbag, safety belt, and deformable zone, a vast improvement of the passenger’s safety was
accomplished. These systems reduce passenger injuries and or even death due to accidents.
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Later, starting in the 1960th and 1970th active safety systems or advanced driver assistance
systems (ADAS), preventing the vehicle from accidents by actively influencing the vehicle was
developed. First implementations were traction control (TCS) and antilock braking systems
(ABS), stabilizing the vehicle during longitudinal dynamic maneuvers. In 1995, the superordi-
nate electronic stability control (ESC) was developed, combining stabilization during longitudi-
nal and lateral dynamic maneuvers. Because of its success, ESC is mandatory in modern vehicles
in Europe since the end of 2014. Other ADAS, e.g., adaptive cruise control (ACC), autonomous
emergency braking (AEB), or lane detection system, have been developed in the meantime,
further increasing safety and comfort. Future trends show an enormous potential for advanced
systems, finally leading to the objective of autonomous and cooperative driving.

Many of these ADAS rely on parametric models, describing and predicting the vehicle’s (future)
behavior. Especially information about the vehicle’s stability, characterized by dynamic states, is
necessary. Furthermore, information about the vehicle’s environment, e.g., by changing weather
conditions and therefore changing friction conditions may influence the systems’ performance
drastically. Thus, online estimation of the vehicle’s stability in terms of its dynamic behavior and
online estimation of influential parameters, such as the friction coefficient, are challenging fields
in modern automotive research.

Many methods for state estimation use simple models of vehicle dynamics to reduce the
computational effort, e.g., considering a linear bicycle model [1–3] or a linear planar two-
track model [4]. A further detailed description of the forces acting on the vehicle’s tire is
developed in Ref. [5] and utilized in Ref. [6]. A more detailed model, considering roll dynamics
(cf. Figure 1), is utilized in [7, 8].

Figure 1. Two-track model including roll dynamics of a vehicle performing a left turn.
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Similarly, various methods considering the estimation algorithm are utilized. For linear
models, the Kalman filter serves as an optimal filter. Considering nonlinear models, Kalman
filter derivatives, such as extended and unscented Kalman filters (EKF/UKF), are used. The
EKF is used for tire road force and sideslip angle estimation in Ref. [9] and for sideslip angle
estimation of low friction roads in Ref. [6]. The UKF for vehicle state estimation is presented
in [7, 8].

Simultaneous state and parameter estimation with dual extended Kalman filter is presented in
Ref. [10], estimating the vehicle mass and moment of inertia around the vertical axis. The same
parameters are estimated in Ref. [11] using a joint UKF. Friction coefficient estimation using a
joint UKF is realized in [12–14].

In this chapter, state estimation in vehicle dynamics utilizing an UKF is presented. The
estimation is based on measurements taken with standard sensors, which are implemented
in modern vehicles. Therefore, a nonlinear process and measurement model are introduced.
Furthermore, dead times, due to CAN communication, are considered and compensated
using model-based methods. Additionally, simultaneous state and parameter estimation
considering the friction coefficient between tires and road is presented. All methods are
validated online using a Volkswagen Golf GTE Plug-In Hybrid as the test vehicle, equipped
with a Genesys ADMA inertial platform for precise reference measurements. The friction
coefficient estimation is validated on a test track with two different surfaces.

The chapter is organized as follows: in Section 2, the nonlinear process and measurement
models of the vehicle’s longitudinal and lateral dynamics are introduced. Based on this,
Section 3 addresses the state and parameter estimation utilizing the unscented Kalman filter.
Furthermore, dead-time compensation and bounded parameter estimation are introduced. In
Section 4, the estimation results, using this method, are presented. Thus, measurements taken
on a test vehicle using a precise initial measurement unit are presented and discussed. The
chapter is recapped with a Conclusion in Section 5.

2. Modeling

In this section, a detailed parametric model of the vehicle’s dynamics is presented. Deriving
this model for online application, a trade-off between accuracy and computational effort has to
be faced. Starting from the contact patch of tires and road as a predominant source of forces
acting on the vehicle, the full dynamics of the vehicle will be derived. Furthermore, a measure-
ment model describing certain measurements, representing the vehicle’s dynamics taken with
standard sensors is presented. The resulting models form the basis for the later state and
parameter estimation algorithm using the UKF.

2.1. Tire model

First, the vehicle’s tires are considered, representing the contact patch between vehicle and
road, consequently providing forces substantially influencing the vehicle’s dynamics. These
forces arise due to differences in relative motion between tire and road and therefore lead to a
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parameters are estimated in Ref. [11] using a joint UKF. Friction coefficient estimation using a
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in modern vehicles. Therefore, a nonlinear process and measurement model are introduced.
Furthermore, dead times, due to CAN communication, are considered and compensated
using model-based methods. Additionally, simultaneous state and parameter estimation
considering the friction coefficient between tires and road is presented. All methods are
validated online using a Volkswagen Golf GTE Plug-In Hybrid as the test vehicle, equipped
with a Genesys ADMA inertial platform for precise reference measurements. The friction
coefficient estimation is validated on a test track with two different surfaces.

The chapter is organized as follows: in Section 2, the nonlinear process and measurement
models of the vehicle’s longitudinal and lateral dynamics are introduced. Based on this,
Section 3 addresses the state and parameter estimation utilizing the unscented Kalman filter.
Furthermore, dead-time compensation and bounded parameter estimation are introduced. In
Section 4, the estimation results, using this method, are presented. Thus, measurements taken
on a test vehicle using a precise initial measurement unit are presented and discussed. The
chapter is recapped with a Conclusion in Section 5.

2. Modeling

In this section, a detailed parametric model of the vehicle’s dynamics is presented. Deriving
this model for online application, a trade-off between accuracy and computational effort has to
be faced. Starting from the contact patch of tires and road as a predominant source of forces
acting on the vehicle, the full dynamics of the vehicle will be derived. Furthermore, a measure-
ment model describing certain measurements, representing the vehicle’s dynamics taken with
standard sensors is presented. The resulting models form the basis for the later state and
parameter estimation algorithm using the UKF.

2.1. Tire model

First, the vehicle’s tires are considered, representing the contact patch between vehicle and
road, consequently providing forces substantially influencing the vehicle’s dynamics. These
forces arise due to differences in relative motion between tire and road and therefore lead to a
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deformation of the tire due to friction, described by the friction coefficient μ. These differences
in velocity can be expressed as tire slip

λ ¼ ωtrt � vt, x
max ωtrt; vt, xð Þ , (1)

for longitudinal and tire sideslip angle

α ¼ δt � arctan
vt, y
vt, x

� �
, (2)

for lateral motion, respectively, where ωt represents the rotational velocity of the tire, δt is the
tire steering angle, vt, x, y is the components of the wheel’s velocity vt, and rt is the effective tire
radius, which is considered a constant. The tire steering angle results from the steering wheel
angle δ as δ ¼ istδt, with the assumption of constant steering transition ist. Coming from the
well-known Coulomb friction Ffric ¼ μFz, with normal force Fz, the associated stationary tire

forces in longitudinal and lateral direction, FSx and FSy, are functions of the tire slip and sideslip

angle, respectively, given as

FSx ¼ f x λ;μmax; Fz
� �

h Fy
� �

, (3)

FSy ¼ f y α;μmax; Fz
� �

h Fxð Þ, (4)

assuming identical maximum friction coefficient for longitudinal and lateral forces. The
nonlinear functions f x,y represent the (side)slip dependency of the tire forces by the magic

formula tire model described by

f x, y χ;μmax; Fz
� � ¼ D sin Carctan B

χ
μmax

� E B
χ

μmax
� arctan B

χ
μmax

� �� �� �� �
, (5)

with individual parameters for longitudinal and lateral dynamicsD ¼ μmaxFz, B ¼ CF=CD, and
CF ¼ c1 sin 2arctan Fz=c2ð Þð Þ, while χ represents the slip λ or sideslip α [5]. Using this represen-
tation, the function maximum varies linearly over the (side)slip with changing maximum
friction coefficient (cf. dashed black line in Figure 2). The function f y λ;μmax; Fz

� �
for one set of

parameters C, E, c1, and c2, constant wheel load Fz and changing maximum friction coefficient
μmax, representing dry, wet, and icy conditions can be seen in Figure 2.

The function h Fx,y
� � ¼ cos arctan BxyFy,x

� �� �
accounts for the reduced forces in the presence of

both lateral and longitudinal forces, with scaling factor Bxy [15]. Furthermore, the lateral forces
Fy are modeled as PT1-element as

Fy þ lt
vt, x

_Fy ¼ f y α;μmax; Fz
� �

h Fxð Þ, (6)

with tire-delay constant lt [16].
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The inputs to the system are the drive and break torques Md and Mb, and the steering angle δ
(cf. Figure 3). This leads to the equation of motion for the rotational velocity of one tire ωt

Jt _ωt ¼Md �Mb �Mres � Fxrt, (7)

with the tire’s moment of inertia Jt, and a moment due to rolling resistance

Mres ¼ Fz cres,1 þ cres,2ωtð Þ, (8)

with constant and velocity dependent part, represented by cres,1 and cres,2, respectively.

2.2. Vehicle body dynamics

Considering a two-track model with additional roll dynamics as displayed in Figures 1 and 4,
the vehicle’s dynamics under disregard of vertical dynamics can be described by the vehicle’s
yaw-rate _ψ, its sideslip angle β, the roll angle and rate κ and _κ, and its center of gravity (c.o.g.)

Figure 2. Schematic visualization of the used vehicle dynamics model.

Figure 3. Torques and forces acting on the tire.
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velocity v. These quantities represent the angular velocity of rotation around the vertical axis,
the angle between the vehicle’s longitudinal axis and its velocity vector, the angle and rate
between the vehicle’s vertical axis and the stationary vertical axis, and the velocity of the center
of gravity, respectively. This leads to the following equations of motion

Jz €ψ ¼ lf Fy1 þ Fy2
� �

cos δtð Þ � lr Fy3 þ Fy4
� ��

X4

i¼1 Mz, i, (9)

mv _β þ _ψ
� � ¼ Fy1 þ Fy2

� �
cos β� δt
� �þ Fy3 þ Fy4

� �
cos β
� �

, (10)

m _v ¼ Fx1 þ Fx2ð Þ cos β� δt
� �þ Fx3 þ Fx4ð Þ cos β

� �� Fair, (11)

mahray ¼ Jκ €κ þ dκ _κð Þ � cκ κð Þ �maghr sin κ, (12)

with lf , lr being the distance between front and rear axes to the c.o.g., respectively, mass m
being moment of inertia with respect to the vertical axis Jz, velocity and acceleration of the c.o.
g. v, _v, forces due to air resistance Fair, and self-aligning torques Mz, i.

Roll dynamics are represented in analogy to a spring-damper system with gravitational influ-
ence with chassis mass ma, distance between roll axis and c.o.g. hr, moment of inertia with
respect to the roll axis Jκ, gravitational acceleration g, and nonlinear spring and damper
coefficients cκ κð Þ and d _κ _κð Þ, respectively. These characteristics are represented by

cκ κð Þ ¼ cκ,1κþ cκ,2κ3, (13)

d _κ _κð Þ ¼ d _κ,1 _κ þ d _κ,2tanh _κð Þ: (14)

These constants result from combinations of suspension and stabilization constants cf, r, df, r,
and cst, f, r, respectively (cf. Figure 1). In conclusion, the resulting system state vector can be
expressed as

x ¼ _ψ; β;κ; _κ; Fy, i;ωi; v
� �T

: (15)

Figure 4. Top view of a two-track model including geometrical parameters.
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2.3. Measurement model

Inside the vehicle, standard sensors are implemented to obtain information about the current
driving state. These sensors measure the yaw-rate _ψ, longitudinal and lateral acceleration ax,s
and ay, s, and the four rotational velocities of the vehicle’s tires ωi. This leads to the measure-
ment vector

y ¼ _ψ; ax,s; ay, s;ωt, i
� �T

: (16)

A measurement model representing these sensors is needed for the later implementation of KF
derivatives. Since the measured yaw-rate and wheel velocities are states within the model, they
are obtained directly and no further model is needed. The longitudinal and lateral accelera-
tions in the sensor position ax,s and ay, s, respectively, can be described by

ax, s ¼ _v cos β� v _β þ _ψ
� �

sin β� ly €ψ þ _ψ lz _κ � lx _ψ
� �

, (17)

ay, s ¼ _v sin βþ v _β þ _ψ
� �

cos β� lz €κ þ lx €ψ � ly _κ2 � ly _ψ2, (18)

with lx, ly, and lz being the components of the distances from the c.o.g. to the sensor position.

Due to the sensors’ sampling rate of 100Hz, all later implementations on the control unit will be
running at this frequency. Therefore, the continuous time differential Eqs. (1)–(18) are discretized
using first-order Euler discretization.

Within the model, numerous parameters are utilized. These parameters can either be mea-
sured directly, e.g., geometrical parameters, or need to be identified using an offline identifica-
tion algorithm. Since the model is strongly nonlinear, a particle swarm algorithm (PSO) is
used. Therefore, measurements representing longitudinal and lateral dynamics, driven by a
test vehicle, have to be performed. Hence, a sequential identification can be realized, first
considering longitudinal excitation, neglecting lateral dynamics and subsequently lateral exci-
tation. Further details can be found in Ref. [15].

In summary, the vehicle’s dynamics can be expressedby the discrete time state space representation

xkþ1 ¼ f xk; uk; pð Þ, (19)

ykþ1 ¼ g xkþ1; ukþ1; pð Þ, (20)

at discrete time step k with all parameters included in p. Thereby, x∈R13�1 represents the
system state and y∈R7�1 represents the measurement vector.

3. State and parameter estimation

In this section, a brief overview over the used Kalman filter derivative will be given. At first,
the algorithm for state estimation will be presented. Furthermore, a model-based dead-time
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Roll dynamics are represented in analogy to a spring-damper system with gravitational influ-
ence with chassis mass ma, distance between roll axis and c.o.g. hr, moment of inertia with
respect to the roll axis Jκ, gravitational acceleration g, and nonlinear spring and damper
coefficients cκ κð Þ and d _κ _κð Þ, respectively. These characteristics are represented by

cκ κð Þ ¼ cκ,1κþ cκ,2κ3, (13)

d _κ _κð Þ ¼ d _κ,1 _κ þ d _κ,2tanh _κð Þ: (14)

These constants result from combinations of suspension and stabilization constants cf, r, df, r,
and cst, f, r, respectively (cf. Figure 1). In conclusion, the resulting system state vector can be
expressed as

x ¼ _ψ; β;κ; _κ; Fy, i;ωi; v
� �T

: (15)

Figure 4. Top view of a two-track model including geometrical parameters.
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2.3. Measurement model

Inside the vehicle, standard sensors are implemented to obtain information about the current
driving state. These sensors measure the yaw-rate _ψ, longitudinal and lateral acceleration ax,s
and ay, s, and the four rotational velocities of the vehicle’s tires ωi. This leads to the measure-
ment vector

y ¼ _ψ; ax,s; ay, s;ωt, i
� �T

: (16)

A measurement model representing these sensors is needed for the later implementation of KF
derivatives. Since the measured yaw-rate and wheel velocities are states within the model, they
are obtained directly and no further model is needed. The longitudinal and lateral accelera-
tions in the sensor position ax,s and ay, s, respectively, can be described by

ax, s ¼ _v cos β� v _β þ _ψ
� �

sin β� ly €ψ þ _ψ lz _κ � lx _ψ
� �

, (17)

ay, s ¼ _v sin βþ v _β þ _ψ
� �

cos β� lz €κ þ lx €ψ � ly _κ2 � ly _ψ2, (18)

with lx, ly, and lz being the components of the distances from the c.o.g. to the sensor position.

Due to the sensors’ sampling rate of 100Hz, all later implementations on the control unit will be
running at this frequency. Therefore, the continuous time differential Eqs. (1)–(18) are discretized
using first-order Euler discretization.

Within the model, numerous parameters are utilized. These parameters can either be mea-
sured directly, e.g., geometrical parameters, or need to be identified using an offline identifica-
tion algorithm. Since the model is strongly nonlinear, a particle swarm algorithm (PSO) is
used. Therefore, measurements representing longitudinal and lateral dynamics, driven by a
test vehicle, have to be performed. Hence, a sequential identification can be realized, first
considering longitudinal excitation, neglecting lateral dynamics and subsequently lateral exci-
tation. Further details can be found in Ref. [15].

In summary, the vehicle’s dynamics can be expressedby the discrete time state space representation

xkþ1 ¼ f xk; uk; pð Þ, (19)

ykþ1 ¼ g xkþ1; ukþ1; pð Þ, (20)

at discrete time step k with all parameters included in p. Thereby, x∈R13�1 represents the
system state and y∈R7�1 represents the measurement vector.

3. State and parameter estimation

In this section, a brief overview over the used Kalman filter derivative will be given. At first,
the algorithm for state estimation will be presented. Furthermore, a model-based dead-time
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compensation will be introduced. Secondly, the joint UKF for state and parameter estimation will
be presented. Subsequently, an extension for the estimation of bounded parameters is introduced.

3.1. The unscented Kalman filter for state estimation

The process and measurement model presented in Section 2 are strongly nonlinear, espe-
cially considering the forces acting on the vehicle’s tires (cf. Eq. (5)). Therefore, a Kalman
filter derivative, capable of estimating nonlinear systems, the UKF is utilized. Since no
information about the covariance is available, the additive form of the process and measure-
ment equations

xkþ1 ¼ f xk; uk; pð Þ þwk, (21)

ykþ1 ¼ g xkþ1; ukþ1; pð Þ þ vkþ1, (22)

with wk ∝N 0;Qð Þ, Q∈Rnx�nx and vk ∝N 0;Rð Þ, R∈Rny�ny representing the process and mea-
surement uncertainties by uncorrelated Gaussian random numbers, is assumed. The system
state and measurement are described by the state and measurement vectors xk ∈Rnx and
yk ∈Rny with state dimension nx and measurement dimension ny. To initialize the filter, initial

values for the state and covariance estimation, bx0 ∈Rnx and bP0 ∈Rnx�nx , respectively, have to be
set. Following this, the recursive estimation divided in two steps, i.e., the process and mea-
surement update can be realized. Within the process update, an a priori state and covariance
estimation utilizing the process model is executed. Using the unscented transformation [17], a
carefully chosen set of 2nx þ 1 sigma points for time step k∈ 0;…;∞f g

xk,0 ¼ bxk, (23)

xk, i ¼ bxk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q
k

� �

i
for i ¼ 1,…, nx, (24)

xk, i ¼ bx k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q
k

� �

i�nx
for i ¼ iþ 1,…, 2nx, (25)

with bxk and bPk representing the current state and covariance estimation, respectively, are calcu-
lated. Thereby, λukf ¼ αukfnx þ κukf � nx, with scaling parameters αukf and κukf. Furthermore,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ λukfð ÞbP
q

k

� �

i
is the ith column of the matrix square root, e.g., using Cholesky decomposi-

tion. These sigma points characterize the current probability density function and undergo the
real nonlinear transformation utilizing Eq. (21) to calculate the a priori estimation as

x�kþ1, i ¼ f xk, i; uk; pð Þ, (26)

x�kþ1 ¼
X2nx

i¼0 W
m
i x
�
kþ1, i, (27)

P�k � ¼
X2nx

i¼0 W
c
i x�kþ1, i � x�kþ1
� �

x�kþ1, i � x�kþ1
� �T

, (28)
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y�kþ1, i ¼ h xkþ1, i; ukþ1; pð Þ, (29)

y�kþ1 ¼
X2nx

i¼0 W
m
i y
�
kþ1, i: (30)

Following this, a measurement ykþ1 is received and the measurement update

Pxy,kþ1 ¼
X2nx

i¼0 W
c
i x�kþ1, i � x�kþ1
� �

y�kþ1, i � y�kþ1
� �T

, (31)

Pyy,kþ1 ¼
X2nx

i¼0 W
c
i x�kþ1, i � x�kþ1
� �

y�kþ1, i � y�kþ1
� �T

, (32)

Kkþ1 ¼ Pxy,kþ1P�1yy, kþ1, (33)

bxkþ1 ¼ x�kþ1 þ Kkþ1 ykþ1 � y�kþ1
� �

, (34)

bPkþ1 ¼ P�kþ1 � Kkþ1Pyy,kþ1KT
kþ1, (35)

with weighting factors Wm,c
i can be executed. This leads to the a posteriori estimations of the

state and covariance, bxkþ1 and bPkþ1, respectively [18].

3.2. Dead-time compensation

When designing online methods for real-time applications, dead times are frequently to face.
Especially, considering vehicular applications, the communication is realized via CAN-Bus,
leading to dead times. In the following, a method to compensate for dead times within state
estimation is presented.

Since the measurement update (Eqs. (31)–(35)) can only be processed, as soon as a measurement
yk is received, dead times td corrupt the UKF severely. Ignoring this dead time may lead to poor
filter performance or even divergence. One solution is to accept the dead time and delay the
estimation by exact this time. Alternatively, the system’s state and covariance can be estimated
by performing the process update (Eqs. (26)–(28)) during the dead time without doing the
measurement update, based on the delayed filter estimation up to time step k, so that the state
estimation at discrete time step kþ ntd , where ntd is the number of discrete time steps due to the
dead time is

for j = 1 to ntd do

xkþj�1,0 ¼ bxkþj�1 (36)

xkþj�1, i ¼ bx kþj�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q
kþj�1

� �

i
for i ¼ 1,…, nx (37)

xkþj�1, i ¼ bx kþj�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q
kþj�1

� �

i�nx
for i ¼ iþ 1,…, 2nx (38)

x�kþj, i ¼ f xkþj�1; uk�1; p
� �

(39)
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compensation will be introduced. Secondly, the joint UKF for state and parameter estimation will
be presented. Subsequently, an extension for the estimation of bounded parameters is introduced.

3.1. The unscented Kalman filter for state estimation

The process and measurement model presented in Section 2 are strongly nonlinear, espe-
cially considering the forces acting on the vehicle’s tires (cf. Eq. (5)). Therefore, a Kalman
filter derivative, capable of estimating nonlinear systems, the UKF is utilized. Since no
information about the covariance is available, the additive form of the process and measure-
ment equations

xkþ1 ¼ f xk; uk; pð Þ þwk, (21)

ykþ1 ¼ g xkþ1; ukþ1; pð Þ þ vkþ1, (22)

with wk ∝N 0;Qð Þ, Q∈Rnx�nx and vk ∝N 0;Rð Þ, R∈Rny�ny representing the process and mea-
surement uncertainties by uncorrelated Gaussian random numbers, is assumed. The system
state and measurement are described by the state and measurement vectors xk ∈Rnx and
yk ∈Rny with state dimension nx and measurement dimension ny. To initialize the filter, initial

values for the state and covariance estimation, bx0 ∈Rnx and bP0 ∈Rnx�nx , respectively, have to be
set. Following this, the recursive estimation divided in two steps, i.e., the process and mea-
surement update can be realized. Within the process update, an a priori state and covariance
estimation utilizing the process model is executed. Using the unscented transformation [17], a
carefully chosen set of 2nx þ 1 sigma points for time step k∈ 0;…;∞f g

xk,0 ¼ bxk, (23)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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for i ¼ iþ 1,…, 2nx, (25)

with bxk and bPk representing the current state and covariance estimation, respectively, are calcu-
lated. Thereby, λukf ¼ αukfnx þ κukf � nx, with scaling parameters αukf and κukf. Furthermore,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ λukfð ÞbP
q

k

� �

i
is the ith column of the matrix square root, e.g., using Cholesky decomposi-

tion. These sigma points characterize the current probability density function and undergo the
real nonlinear transformation utilizing Eq. (21) to calculate the a priori estimation as

x�kþ1, i ¼ f xk, i; uk; pð Þ, (26)

x�kþ1 ¼
X2nx

i¼0 W
m
i x
�
kþ1, i, (27)

P�k � ¼
X2nx

i¼0 W
c
i x�kþ1, i � x�kþ1
� �

x�kþ1, i � x�kþ1
� �T

, (28)
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y�kþ1, i ¼ h xkþ1, i; ukþ1; pð Þ, (29)

y�kþ1 ¼
X2nx

i¼0 W
m
i y
�
kþ1, i: (30)

Following this, a measurement ykþ1 is received and the measurement update

Pxy,kþ1 ¼
X2nx

i¼0 W
c
i x�kþ1, i � x�kþ1
� �

y�kþ1, i � y�kþ1
� �T

, (31)

Pyy,kþ1 ¼
X2nx

i¼0 W
c
i x�kþ1, i � x�kþ1
� �

y�kþ1, i � y�kþ1
� �T

, (32)

Kkþ1 ¼ Pxy,kþ1P�1yy, kþ1, (33)

bxkþ1 ¼ x�kþ1 þ Kkþ1 ykþ1 � y�kþ1
� �

, (34)

bPkþ1 ¼ P�kþ1 � Kkþ1Pyy,kþ1KT
kþ1, (35)

with weighting factors Wm,c
i can be executed. This leads to the a posteriori estimations of the

state and covariance, bxkþ1 and bPkþ1, respectively [18].

3.2. Dead-time compensation

When designing online methods for real-time applications, dead times are frequently to face.
Especially, considering vehicular applications, the communication is realized via CAN-Bus,
leading to dead times. In the following, a method to compensate for dead times within state
estimation is presented.

Since the measurement update (Eqs. (31)–(35)) can only be processed, as soon as a measurement
yk is received, dead times td corrupt the UKF severely. Ignoring this dead time may lead to poor
filter performance or even divergence. One solution is to accept the dead time and delay the
estimation by exact this time. Alternatively, the system’s state and covariance can be estimated
by performing the process update (Eqs. (26)–(28)) during the dead time without doing the
measurement update, based on the delayed filter estimation up to time step k, so that the state
estimation at discrete time step kþ ntd , where ntd is the number of discrete time steps due to the
dead time is

for j = 1 to ntd do

xkþj�1,0 ¼ bxkþj�1 (36)

xkþj�1, i ¼ bx kþj�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q
kþj�1

� �

i
for i ¼ 1,…, nx (37)

xkþj�1, i ¼ bx kþj�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q
kþj�1

� �

i�nx
for i ¼ iþ 1,…, 2nx (38)

x�kþj, i ¼ f xkþj�1; uk�1; p
� �

(39)
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bxkþj ¼
X2nx

i¼0 W
m
i x
�
kþþj, i (40)

bPkþj ¼
X2nx

i¼0 W
c
i x�kþj, i � bxkþj
� �

x�kþj, i � bxkþj
� �T

(41)

end

To reduce computational cost, the update steps can be reduced, so that only the mean is
transformed and therefore no further sigma point needs to be calculated and transformed as

for j=1 to ntd do

bxkþj ¼ f bxkþj�1; uk�1; p
� �

(42)

end

This may lead to reduced performance, depending on the length of the dead time, the process
model complexity, and the uncertainties within the process.

3.3. Parameter estimation

Since parameters may vary within dynamic systems, simultaneous state and parameter esti-
mation is considered. Various methods to solve this task have been developed in the past
decades. In the following, the approach of joint state and parameter estimation is presented.
Therefore, states and parameters are concentrated into one joint state vector as

xk ¼
xk
pest, k

" #
, (43)

with primary state xk ∈Rnx and parameters to be estimated pest, k ∈Rnp . The model within the
process update assumes constant parameters, i.e., pest, kþ1 ¼ pest, k. The remaining UKF algo-

rithm stays the same, with only the dimension of the estimated state b~xk ∈Rnxþnp changing.

If some parameters are bounded as ai ≤ pest, i ≤ bi, these are not estimated directly, but using a
substitute parameter psub, i as

pest, i ¼
bi � ai

2
tanh psub, i

� �
þ ai þ bi

2
: (44)

Using this substitution, the estimated parameter psub, i is not bounded and leads to the real
parameters for pest, i in the intended range.

4. Estimation results

In this section, the results of the vehicle’s states and parameter estimation using an
unscented Kalman filter and the two-track model described Section 2 are presented. At
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first, the test vehicle and the measurement equipment that is necessary for the validation
are introduced. Secondly, the results of the vehicle state estimation and the results by
considering dead time within the estimation are shown. Furthermore, a simultaneous state
and friction estimation are presented that exhibit improved estimation results for varying
road conditions.

4.1. Measurement setup

The estimation results are verified by using a Volkswagen Golf GTE Plug-In Hybrid (Figure 5(a))
equipped with a Genesys ADMA-G-Eco + (Figure 5(b)). This system is developed especially for
vehicle dynamics testing in the automotive sector. This inertial measurement unit (IMU)
corrected by global positioning system (GPS) enables precise measurement of acceleration,
speed, and position of the moving test vehicle in all three-dimensional axes. Furthermore, the
pitch, roll and yaw angles, angular velocities as well as sideslip angle can be obtained. The GPS
antenna is mounted on the roof of the test vehicle, whereas the IMU is placed in the footwell of
the passenger seat. Ideally, the two sensors are placed in the center of gravity; unfortunately, in
praxis, this requirement usually either cannot or can only be fulfilled with very high effort.
Furthermore, it is hardly possible to exactly align the ADMA’s measurement axes with the
vehicle’s axes. The errors caused by the distance between the installation position and the c.o.g
as well as by misalignment angle can be mathematically compensated considering the lever arms
and the angle offsets, respectively. The IMU’s measurements are exclusively provided for the
validation of the Kalman filter application. Additional measurements of the wheel speeds,
accelerations and yaw rate as well as system inputs, i.e., steering angle, engine, and breaking
torque, are taken from the vehicle’s bus system. The onboard measurements are provided for the
measurement update of the real-time Kalman filter application. Furthermore, an ES910
prototyping and interface module provides the connection to the vehicle bus and the computa-
tion of the filter application with system-level behavior.

4.2. Unscented Kalman filter setup

The UKF utilizes a two-track model including roll dynamics as described in Section 2. The
estimator’s state and measurement vector were therefore

Figure 5. Test vehicle and measurement equipment.
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X2nx
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m
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�
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(41)

end
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first, the test vehicle and the measurement equipment that is necessary for the validation
are introduced. Secondly, the results of the vehicle state estimation and the results by
considering dead time within the estimation are shown. Furthermore, a simultaneous state
and friction estimation are presented that exhibit improved estimation results for varying
road conditions.

4.1. Measurement setup

The estimation results are verified by using a Volkswagen Golf GTE Plug-In Hybrid (Figure 5(a))
equipped with a Genesys ADMA-G-Eco + (Figure 5(b)). This system is developed especially for
vehicle dynamics testing in the automotive sector. This inertial measurement unit (IMU)
corrected by global positioning system (GPS) enables precise measurement of acceleration,
speed, and position of the moving test vehicle in all three-dimensional axes. Furthermore, the
pitch, roll and yaw angles, angular velocities as well as sideslip angle can be obtained. The GPS
antenna is mounted on the roof of the test vehicle, whereas the IMU is placed in the footwell of
the passenger seat. Ideally, the two sensors are placed in the center of gravity; unfortunately, in
praxis, this requirement usually either cannot or can only be fulfilled with very high effort.
Furthermore, it is hardly possible to exactly align the ADMA’s measurement axes with the
vehicle’s axes. The errors caused by the distance between the installation position and the c.o.g
as well as by misalignment angle can be mathematically compensated considering the lever arms
and the angle offsets, respectively. The IMU’s measurements are exclusively provided for the
validation of the Kalman filter application. Additional measurements of the wheel speeds,
accelerations and yaw rate as well as system inputs, i.e., steering angle, engine, and breaking
torque, are taken from the vehicle’s bus system. The onboard measurements are provided for the
measurement update of the real-time Kalman filter application. Furthermore, an ES910
prototyping and interface module provides the connection to the vehicle bus and the computa-
tion of the filter application with system-level behavior.

4.2. Unscented Kalman filter setup

The UKF utilizes a two-track model including roll dynamics as described in Section 2. The
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x ¼ _ψ; β;κ; _κ; Fyi ;ωi; vcog
� �T

, (45)

y ¼ _ψ; ay,s; ax,s;ωi
� �T

: (46)

αUKF determines the spread of the sigma points around the mean bx and is set to 1, the scaling
parameter κUKF is usually set to 0, and βUKF ¼ 2 is an optimal value to approximate distribu-
tion of x as Gaussian distribution. The process and measurement covariances are empirically
determined and set up to

Q ¼ diag 104; 1; 1; 1; 1; 1; 1; 1; 1010; 1010; 1010; 1010; 1
� �

10�15 (47)

R ¼ diag 10�6; 10�3; 10�2; 10�3; 10�3; 10�3; 10�3
� �

: (48)

The initial covariance matrix of the state distribution is initialized with P0 ¼ Q.

4.3. State estimation

In this section, the results of vehicle state estimation are shown. The UKF estimation
results are displayed in light grey, while the reference measurements of the ADMA-G-Eco
+are displayed in black and the vehicle`s onboard measurements are displayed in grey. Each
displayed maneuver is subdivided into eight diagrams. The top line shows yaw-rate and
sideslip angle representing lateral dynamics, and the second line shows roll angle and roll
rate representing roll dynamics. Furthermore, the velocity in the c.o.g. and the wheel
speeds representing longitudinal dynamics are displayed in the third line and at last longi-
tudinal and lateral acceleration in the bottom line. The accelerations in the c.o.g are
displayed with continuous lines and the accelerations measured with onboard acceleration
sensor that is not mounted in the c.o.g. in the dashed lines. The distances of the sensor
position from the c.o.g. are identified with lx ¼ 1:07 m, ly ¼ �0:39 m, and lz ¼ 0:55 m. In
order to demonstrate the estimation quality, Figure 6 shows a steering sweep maneuver
with periodical steering angle input at nearly constant amplitude and increasing fre-
quency and at a constant velocity of 37 km/h Despite the varying frequency, an accurate
estimation of all dynamic states is evident, accompanied by improved estimation of the
vehicles velocity compared to the onboard measurement of the vehicles’ velocity. Only for
the roll angle, a higher deviation can be recognized. This results from varying lateral
inclination of the test road.

A steering sweep maneuver is optimal to validate the filter application and the integrated
vehicle dynamic models, but it is not a practical example, whereas, for example, lane change
maneuvers often occur. In addition, lane change maneuvers enable high lateral acceleration
and high values of tire sideslip angles, which may lead, under certain conditions, to loss of
stability due to nonlinear tire characteristics. Therefore, lane change maneuvers are suitable as
practical driving situation.
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A double-lane change maneuver with moderate lateral acceleration represents a typical
maneuver on highways or freeways occurring by overtaking another slower moving vehicle.
However, a double-lane change maneuver with high lateral acceleration represents obstacle
avoidance maneuver. This kind of maneuver is displayed with a high lateral acceleration up to
ay ¼ 7 m=s2 and with nearly constant velocity of v ¼ 37km=h in Figure 7. It can be stated that
also an accurate estimation of all relevant states can be seen over the whole maneuver, and
again particularly an improved velocity estimation compared to onboard measurement can be
emphasized. The higher estimation performance of the velocity can be advantageous for some
control applications, such as collision avoidance.

Figure 6. Vehicle state estimation during steering sweep maneuver.
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tion of x as Gaussian distribution. The process and measurement covariances are empirically
determined and set up to

Q ¼ diag 104; 1; 1; 1; 1; 1; 1; 1; 1010; 1010; 1010; 1010; 1
� �

10�15 (47)

R ¼ diag 10�6; 10�3; 10�2; 10�3; 10�3; 10�3; 10�3
� �

: (48)

The initial covariance matrix of the state distribution is initialized with P0 ¼ Q.

4.3. State estimation

In this section, the results of vehicle state estimation are shown. The UKF estimation
results are displayed in light grey, while the reference measurements of the ADMA-G-Eco
+are displayed in black and the vehicle`s onboard measurements are displayed in grey. Each
displayed maneuver is subdivided into eight diagrams. The top line shows yaw-rate and
sideslip angle representing lateral dynamics, and the second line shows roll angle and roll
rate representing roll dynamics. Furthermore, the velocity in the c.o.g. and the wheel
speeds representing longitudinal dynamics are displayed in the third line and at last longi-
tudinal and lateral acceleration in the bottom line. The accelerations in the c.o.g are
displayed with continuous lines and the accelerations measured with onboard acceleration
sensor that is not mounted in the c.o.g. in the dashed lines. The distances of the sensor
position from the c.o.g. are identified with lx ¼ 1:07 m, ly ¼ �0:39 m, and lz ¼ 0:55 m. In
order to demonstrate the estimation quality, Figure 6 shows a steering sweep maneuver
with periodical steering angle input at nearly constant amplitude and increasing fre-
quency and at a constant velocity of 37 km/h Despite the varying frequency, an accurate
estimation of all dynamic states is evident, accompanied by improved estimation of the
vehicles velocity compared to the onboard measurement of the vehicles’ velocity. Only for
the roll angle, a higher deviation can be recognized. This results from varying lateral
inclination of the test road.

A steering sweep maneuver is optimal to validate the filter application and the integrated
vehicle dynamic models, but it is not a practical example, whereas, for example, lane change
maneuvers often occur. In addition, lane change maneuvers enable high lateral acceleration
and high values of tire sideslip angles, which may lead, under certain conditions, to loss of
stability due to nonlinear tire characteristics. Therefore, lane change maneuvers are suitable as
practical driving situation.
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A double-lane change maneuver with moderate lateral acceleration represents a typical
maneuver on highways or freeways occurring by overtaking another slower moving vehicle.
However, a double-lane change maneuver with high lateral acceleration represents obstacle
avoidance maneuver. This kind of maneuver is displayed with a high lateral acceleration up to
ay ¼ 7 m=s2 and with nearly constant velocity of v ¼ 37km=h in Figure 7. It can be stated that
also an accurate estimation of all relevant states can be seen over the whole maneuver, and
again particularly an improved velocity estimation compared to onboard measurement can be
emphasized. The higher estimation performance of the velocity can be advantageous for some
control applications, such as collision avoidance.

Figure 6. Vehicle state estimation during steering sweep maneuver.
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4.4. Dead-time compensation

A major problem in control systems is dead time. Dead time may lead either to poor
control results or to unstable control. In case of stability control systems and therefore for
robust car steering, the real-time information of sideslip angle and yaw rate is very
important. As pointed previously, an accurate estimation of this vehicle states can be
realized using UKF with nonlinear two-track model even if vehicles move at its stability
limits. However, the estimated states are not the true vehicle states at this particular time.
They are delayed due to the dead-time-shifted measurement update, which occurs partic-
ularly of the communication on the CAN network. In dependence on the length of dead
time, different arrangements exist for dead-time compensation. In addition, to consider

Figure 7. Vehicle state estimation during double-lane change maneuver.
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the dead time in the controller designing, a further possibility is model-based dead-time
compensation within state estimation. A simple method to predict the system’s state and
covariance during the dead time is to execute only the filter process update without doing
the measurement update as defined in Section 3.2. Alternatively, to reduce computational
cost, the prediction can be executed only considering the mean of the system states by
neglecting further sigma points. During the prediction from time step k to kþ ntd , there are
no further information of the system input. Therefore, the last known system input is used
for the prediction. From this follows a prediction error that decreases with less dynamics
of the system input. A comparison of both possibilities and the quality of the dead-time
compensation within the vehicle state estimation is shown in Figure 8. A step steering
maneuver on dry asphalt at a velocity of approximately 50 km/h with maximum lateral
acceleration of almost ay ¼ 7m=s2 is considered. The top diagram shows the yaw rate and
the next diagram the sideslip angle, while measurements are displayed in black, the
UKF’s state estimation without dead-time compensation in grey, the dead-time compen-
sated state estimation by using all sigma points in dashed light grey, and the dead-time
compensated state estimation by using only the mean in dash-dotted grey. In the present
case, the predominant dead time amounts about 30 ms that corresponds to ntd ¼ 3. The
dead time is determined by comparing redundant measurements that are obtained from
the IMU of the ADMA and the vehicle’s onboard CAN bus.

It is quite obvious that both methods for dead-time compensation do not really differ in the
application of vehicle dynamics; thus, it is at an advantage due to reduced computational costs
only to consider the mean of the state. Furthermore, the UKF results with dead-time-compensated

Figure 8. Dead-time-compensated vehicle state estimation during step steering maneuver.

Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics
http://dx.doi.org/10.5772/intechopen.71900

69



4.4. Dead-time compensation

A major problem in control systems is dead time. Dead time may lead either to poor
control results or to unstable control. In case of stability control systems and therefore for
robust car steering, the real-time information of sideslip angle and yaw rate is very
important. As pointed previously, an accurate estimation of this vehicle states can be
realized using UKF with nonlinear two-track model even if vehicles move at its stability
limits. However, the estimated states are not the true vehicle states at this particular time.
They are delayed due to the dead-time-shifted measurement update, which occurs partic-
ularly of the communication on the CAN network. In dependence on the length of dead
time, different arrangements exist for dead-time compensation. In addition, to consider

Figure 7. Vehicle state estimation during double-lane change maneuver.

Kalman Filters - Theory for Advanced Applications68

the dead time in the controller designing, a further possibility is model-based dead-time
compensation within state estimation. A simple method to predict the system’s state and
covariance during the dead time is to execute only the filter process update without doing
the measurement update as defined in Section 3.2. Alternatively, to reduce computational
cost, the prediction can be executed only considering the mean of the system states by
neglecting further sigma points. During the prediction from time step k to kþ ntd , there are
no further information of the system input. Therefore, the last known system input is used
for the prediction. From this follows a prediction error that decreases with less dynamics
of the system input. A comparison of both possibilities and the quality of the dead-time
compensation within the vehicle state estimation is shown in Figure 8. A step steering
maneuver on dry asphalt at a velocity of approximately 50 km/h with maximum lateral
acceleration of almost ay ¼ 7m=s2 is considered. The top diagram shows the yaw rate and
the next diagram the sideslip angle, while measurements are displayed in black, the
UKF’s state estimation without dead-time compensation in grey, the dead-time compen-
sated state estimation by using all sigma points in dashed light grey, and the dead-time
compensated state estimation by using only the mean in dash-dotted grey. In the present
case, the predominant dead time amounts about 30 ms that corresponds to ntd ¼ 3. The
dead time is determined by comparing redundant measurements that are obtained from
the IMU of the ADMA and the vehicle’s onboard CAN bus.

It is quite obvious that both methods for dead-time compensation do not really differ in the
application of vehicle dynamics; thus, it is at an advantage due to reduced computational costs
only to consider the mean of the state. Furthermore, the UKF results with dead-time-compensated

Figure 8. Dead-time-compensated vehicle state estimation during step steering maneuver.

Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics
http://dx.doi.org/10.5772/intechopen.71900

69



states also do not differ from the time-shifted UKF prediction without dead time displayed in
light grey. Therefore, it is possible to include dead-time compensation in the state estimation in a
simple manner and to obtain precise estimation results. However, this method for dead-time
compensation has the restriction that the system does not contain varying dead time and the dead
time is well known.

All previously presented test maneuvers are executed on dry asphalt. Thus, the maximum
friction coefficient between road and tire is well known. Under different road conditions, for
example, wet, snow, and ice and without adaption of the friction coefficient, the accuracy of the
state estimation decreases highly. Hence, for precise state estimation, it is essential to estimate
the maximum friction coefficient as well.

4.5. Maximum friction coefficient estimation

However, not only for improved vehicle state estimation a simultaneous estimation of the
maximum friction coefficient between road and tire is of paricular importance. To ensure a
proper functionality of safety functions not only the knowledge of the driving situation but
also of the driving environment, in particular the road condition, is required. This section
focuses on the road condition classification using a joint unscented Kalman filter approach as
described in Section 3.3. The extended process, covariance matrixQp , for the maximum friction

coefficient estimation is empirically determined and set up to

Qp ¼ diag diag Qð Þ; 10�8� �
: (49)

Furthermore, the maximum friction coefficient is bounded according to Eq. (37) with a upper
bound of 1.1 and a lower bound of 0.1. The upper bound corresponds to the best traction
potential that may occur when the roads are dry and the tires are in good condition. The lower
bound corresponds to the lowest traction potential that may occur when the roads are icy and
the tires have a low tire profile.

In Figure 9, again a double-lane change maneuver on dry asphalt at a velocity of approx-
imately 43km=h with maximum lateral acceleration of almost ay ¼ 9 m=s2 is considered.
The top diagram shows the measured system input namely the steering angle. The fol-
lowing diagrams show the yaw rate, the lateral acceleration, and the sideslip angle, while
the IMU’s measurements are displayed in black and the onboard measurements in grey,
and the UKF’s estimations in light grey. The bottom diagram shows the estimated maxi-
mum friction coefficient, while the initial value is wrongly set to μmax ¼ 0:4. By using
offline identification algorithms, the reference value for the maximum friction coefficient
was determined at approximately 1. The light red lines show the state estimation without
adaptation of friction coefficient. Obviously, an accurate sideslip and yaw-rate estimation
can only be guaranteed with adaptation of the friction coefficient. However, an adaption
of the friction coefficient is only possible during phases of sufficient excitation. At the
beginning and at the end of the maneuver without steering, no adaption may take place.
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When sufficient excitation exists, the maximum friction coefficient can be estimated within
few seconds.

In Figure 10, the estimation of the maximum friction coefficient on different roads is displayed.
Beginning on dry asphalt, the test vehicle drives a sine steering maneuver and changes over to
wet steel. Wet steel exhibits similar properties regarding traction potential as an icy road.
Because it is much easier to build up a road composed of wet steel than of ice to carry out a
test, in this test, the wet steel represents a road with low traction potential. Over the entire
period of the sine maneuver, a sufficient excitation is existent. Hence, the unscented Kalman

Figure 9. Vehicle state and maximum friction coefficient estimation during double-lane change maneuver on dry asphalt.
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filter estimates while driving over the dry asphalt a maximum friction coefficient of approxi-
mately 1. After changing to wet steel, clearly, a lower friction level with a maximum friction
coefficient of approximately 0.3 is detected. It can be spotted that while sufficient excitation is
existent, different friction levels according to different road conditions can also be clearly
recognized. The last 5 s of the maneuver is without steering and acceleration, and the esti-
mated maximum friction coefficient remains constant. Therefore, due to missing excitation, it
would not be possible to distinguish between dry asphalt and wet steel. Nonsufficient excita-
tion is a major disadvantage of Kalman filter-based approaches for parameter estimation in
general and thus also for friction estimation.

Figure 10. Vehicle state and maximum friction coefficient estimation during sine steering maneuver on dry asphalt and
wet steel.
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Apromising approach to solving this problem is to use further source of information, for example,
optical sensors and to do an information fusion, so that disadvantages of one information can be
compensatedbyadvantages of other information. Information fusion is thenext step for improved
friction estimation and current research.

5. Conclusion

In this chapter, state and parameter estimation in vehicle dynamics using the unscented
Kalman filter is presented. Therefore, a detailed nonlinear process and measurement model of
the vehicle are introduced, representing the vehicle’s stability and the measurements taken
with standard sensors. Dead times, due to CAN communication, are faced and compensated
using model-based prediction. The validation of the introduced methods is realized by using a
Volkswagen Golf GTE Plug-In Hybrid for high dynamic test maneuvers, e.g., double-lane
change. The estimation results are compared with high-precision measurements using a
Genesys ADMA inertial measurement unit. Accurate estimation even in situations with lateral
acceleration above 7 m=s2 can be achieved. Furthermore, real-time estimation, compensated
for dead times can be realized using model-based prediction.

The parameter estimation is presented using the example of friction coefficient estimation
utilizing the joint unscented Kalman filter. Thus, maneuvers with different excitation on
different road surfaces are executed. Again, precise estimation in the presence of sufficient
excitation can be shown.
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Abstract

Since the initial developments in the state-space theory in the 1950s and 1960s, the state
estimation has become an extensively researched and applied discipline. All systems
that can be modelled mathematically are candidates for state estimators. The state
estimators reconstruct the states that represent internal conditions and status of a system
at a specific instant of time using a mathematical model and the information received
from the system sensors. Moreover, the estimator can be extended for system parameter
estimation. The resulting Kalman filter (KF) derivatives for state and parameter estimation
also require knowledge about the noise statistics of measurements and the uncertainties of
the system model. These are often unknown, and an inaccurate parameterization may
lead to decreased filter performance or even divergence. Additionally, insufficient system
excitation can cause parameter estimation drifts. In this chapter, a sensitivity-based adap-
tive square-root unscented KF (SRUKF) is presented. This filter combines a SRUKF and
the recursive prediction-error method to estimate system states, parameters and covari-
ances online. Moreover, local sensitivity analysis is performed to prevent parameter estima-
tion drifts, while the system is not sufficiently excited. The filter is evaluated on two testbeds
based on an axis serial mechanism and compared with the joint state and parameter UKF.
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monitoring the system states that are not measureable with sensors, or the sensors are too
expensive or too difficult to install. The system states can be defined as variables, which provide
a representation of internal conditions and status of a system at a specific instant of time. Applica-
tions that include a mathematical model of any system are candidates for state estimation. The
estimations can be useful, for example, car assistance systems [1], predictive maintenance [2],
structure health estimation [3], and many other applications (see [4] and references therein).

Different algorithms were proposed for online state estimation. A historical survey of the
filtering algorithms can be found in [5]. The Kalman filter (KF) was presented in [6] and
nowadays is the most widely applied algorithm for state estimation on linear systems. The KF
is a linear optimal estimator [7]. This means that the KF is the best filter that uses a linear
combination of the system measurements and states in order to estimate the last ones. The
main operation of the KF is the propagation of the mean and covariance of the (Gaussian)
random variables (RVs) through time. The KF assumes that the model and the noise statistics
affecting the system are known. Otherwise, the estimates can degrade.

Different derivatives of the KF have been developed for nonlinear systems during the last
decades. The extended Kalman filter (EKF) presented in [8] is the most commonly used
estimator for nonlinear system. This filter linearizes the system and measurement equations
at the current estimate. This may lead to poor performances for highly nonlinear or highly
noisy systems [9]. To address the linearization errors of the EKF, the unscented Kalman filter
(UKF) was presented in [10]. This filter uses the unscented transformation (UT) to pick a
minimal set of points around the mean of the GRV. These points capture the true mean and
covariance of the GRV, and they are then propagated through the true nonlinear function
capturing the a posteriori mean and covariance more accurately.

The mathematical models usually describe the behaviour of the systems, and generally the
structure and the parameters need to be determined. Once the structure is defined, system
inputs and measurements can be used to identify the model parameters. This can be
performed offline [11, 12]. However, the parameters usually may vary during operations. In
order to monitor these variations online, the nonlinear extensions of the KF can be extended for
parameter estimation [9].

The KF derivatives can only achieve good performances under a priori assumptions, for exam-
ple, accurate systemmodels, noise statistics knowledge, and proper initial conditions [7, 9, 13]. If
one of these assumptions is not guaranteed, the KF derivative can potentially become unstable
and the estimations can be diverged [14–16]. Moreover, tuning the performance of these filters
implies primarily adjusting the process and measurement noise covariances to match the
(unknown) real-system noise statistics. In the last decades, numerous methods were presented
to estimate these unknown covariances. The autocovariance least-square method was presented
in [17, 18], and it was extended (and simplified) in [19], and diagonal process and noise covari-
ances were considered in [20]. This method estimates the noise covariances using least squares
and it can only be used with KF. The method was extended for nonlinear or time-varying
systems using an EKF in [21]. Online covariance estimation for EKF and square-root cubature
Kalman filter (SRCuKF) was presented in [22]. These methods implement a combination of a KF
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derivative and a recursive prediction-error method (RPEM) to estimate covariances online. In
[23], an adaptive UKF was presented to estimate only covariances online.

In this chapter, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKF)
is presented. This filter estimates system states, parameters and covariances online. Using local
state sensitivity models (SMs), this filter prevents parameter and covariance estimation drifts,
while the system is not sufficiently excited. Sensitivity analysis (SA) for the UKF is also
presented. The performance of this filter is validated in simulations on two testbeds and
compared with the joint UKF for parameter and state estimation.

Section 2 covers some algorithms for recursive estimation of states, parameters, and covari-
ances. The SB-aSRUKF is the main topic of this chapter. This filter uses a KF derivative for state
estimation. In Section 2.1, the KF for state estimation in linear dynamic systems is presented.
The UKF, a nonlinear extension of the KF, is described in Section 2.2 and also extended for
estimating system parameters. Section 2.3 covers parameter estimation using the RPEM. The
UKF and the RPEM are combined in Section 2.4 to obtain the aSRUKF. In order to identify
unknown parameters, the system inputs should be persistently exciting. Sensitivity models
(SMs) are presented in this section and are used to evaluate the system excitation and prevent
parameter estimation drifts while the system is not sufficiently excited.

Section 3 covers the testbed used for the filter evaluations. A planar one-link robot system is
described in Section 3.1, and a pendulum robot (pedubot) is mathematically modelled in
Section 3.2. The first testbed is used for the SM analysis, and the chaotic system is used to
compare the filter performance with the joint SRUKF. The evaluation results of the SB-aSRUKF
are presented in Section 4. The SMs are analysed with different system inputs on the first
testbed in Section 4.1, and the filter performance for state and parameter estimation is com-
pared with the joint SRUKF in Section 4.2. Section 5 completes the chapter with conclusions.

2. Recursive estimation

This section discusses some recursive approaches to estimate states, parameters and covari-
ances of a general system. The KF as the optimal linear estimator for linear dynamic systems is
presented. Nonlinear extensions of the KF are discussed, as well as an extension for parameter
estimation. A recursive Gauss-Newton method for parameter estimation is also presented in
this section. Finally, the last subsection discusses the SB-aSRUKF, which is the main topic of
this chapter, and the SMs that are used for excitation monitoring.

2.1. Kalman filter (KF)

The KF is the most widely applied algorithm for state estimation on linear dynamic systems
that are corrupted by stochastic noises (e.g. Gaussian noise). It uses a parametric mathematical
model of the system and a series of (noisy) measurements from, for example, sensors to
estimate the system states online [4]. In general, the state distribution of a system can be
approximated by random variables (RVs). The main operation of the KF is the propagation of
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derivative and a recursive prediction-error method (RPEM) to estimate covariances online. In
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the mean and covariance of these (Gaussian) RVs through time. The KF is an optimal linear
filter for these types of systems [7, 9]. It is a recursive algorithm, which enables new measure-
ments to be processed as they arrive to correct and update the state and measurement esti-
mates.

In general, a linear discrete-time system corrupted by additive noises can be written as follows:

xk ¼ Axk�1 þ Buk�1 þwk,
yk ¼ Cxk þDuk þ vk,

(1)

where xk ∈Rnx is the system state vector at discrete time k, and uk ∈Rnu and yk ∈Rny corre-
spond to the system input and measurement vectors, respectively. The matrices A∈Rnx�nx ,
B∈Rnx�nu , C∈Rny�nx and D∈Rny�nu are often called system, input, output and feedforward
matrices, respectively, and describe the system behaviour. The random variable vectorswk and
vk represent the process and measurement noises. These are considered white Gaussian, zero
mean, and uncorrelated and have covariance matrices Qk and Rk, respectively, as

wk ∽N 0;Qkð Þ,
vk ∽N 0;Rkð Þ: (2)

The KF iterative nature can be separated in twomain steps: the process update and the correction
step. In the process update, based on the knowledge of the system dynamics, the state estimate
(bxþk�1)1 from the previous time step (k� 1) is used to calculate a new estimate at the current time
(k). This step does not include any information of the system measurements and the resulting
state estimate is called a priori estimate (bx�k ). In the correction step, the a priori estimate is
combined with the current systemmeasurement (yk) to improve the state estimate. This estimate
is called the a posteriori state estimate (bxþk ). The vectors bx�k and bxþk estimate both the same
quantity, but the difference between them is that the last one takes the measurement (yk) into
account. A Kalman gainmatrix (KkÞ is calculated at every discrete step andweights the influence
of the model and the measurements on the current state estimate. This gain is calculated using
the system matrices and the process (Qk) and measurement (Rk) covariances. More information
about the KF equations and generalizations can be found in [4, 7, 9].

The KF is a linear optimal estimator, but it assumes that the system model and noise statistics
are known. Otherwise, the filter estimates can degrade. Tuning the performance of the filter
implies primarily adjusting the process and measurement covariance matrices to match the
(unknown) real-system noise statistics. In practical implementations of the KF, the filter tuning
is performed online, and empirical values are normally used. Extensive research has been done
in this field to estimate the noise covariances from data (see [17–20] and references therein).

As mentioned before, the KF is the optimal linear estimator, which estimates states of a linear
dynamic system using the inputs, measurements and a parametric mathematical model of the
system. Even though many systems are close enough to linear and linear estimators give

1
The hatbover a vector represents the estimate of the vector, for example, bx describes the estimate of the state vector x.
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acceptable results, all systems are ultimately nonlinear. Extensions of the KF have been
presented in the last decades to deal with nonlinear systems. Some examples are the EKF and
the sigma-point Kalman filters (SPKFs).

2.2. Nonlinear filtering

The EKF and the UKF (a SPKF type) are derivatives of the KF for nonlinear systems. The EKFwas
originally proposed in [8] and is themost commonlyapplied state estimator for nonlinear systems.
However, if the system nonlinearities are severe or the noises affecting the system are high, the
EKF can be difficult to tune, often gives wrong estimates and can lead to filter divergence easily.
This is because the EKF uses linearized system and measurement models at the current estimate
and propagates the mean and covariance of the GRVs through these linearizations. The UKF was
presented in [10] and addresses the deficiencies of the EKF linearization providing a direct and
explicit mechanism for approximating and transforming themean and covariance of the GRVs.

In general, a discrete-time state-space model of a nonlinear system can be described by

xk ¼ f xk�1;θk�1; uk�1ð Þ þwk�1,
yk ¼ h xk;θk; ukð Þ þ vk,

(3)

where θk ∈Rnp is the (unknown) parameter vector and f and h are arbitrary vector-valued
functions usually called system and measurement functions. As a KF derivative, the UKF aim
is to minimize the covariance of the state estimation error to find an optimal estimation of the
state true dynamic probability density function (pdf). The main component of this filter is the
UT. This transformation uses a set of appropriately selected weighted points to parameterize
the mean and covariance of the pdf. Two steps characterize also the UKF. In the process
update, the sigma points are calculated and then propagated through the nonlinear system
functions to recover the mean and covariance of the new a priori estimates. The estimated
measurement (byk) is calculated in the correction step and together with the actual measure-
ment are used to correct the a priori estimate. This results in the a posteriori state estimate.
While the UKF matches the true mean of xk correctly up to the third order, the EKF only
matches up to the first order. Both filters approximate the true covariance of xk up to the third
order. However, the UKF correctly approximates the signed of the terms to the fourth power
and higher meaning that the resulting error should be smaller [7, 9].

The nonlinear extensions of the KF can also estimate the unknown parameters of a system. The
UKF was extended for joint state and parameter estimation in [24]. In this case, the system state
vector xk was extended by including the unknown parameters θk to obtain a joint state and
parameter vector as

~xk ¼
xk
θk

� �
, (4)

remaining θk ¼ θk�1 during the process update.

Square-root (SR) filtering increases mathematically the precision of the KF when hardware
precision is not available. In [25], an SR version of the UKF was presented, which uses linear
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algebra techniques such as the QR decomposition and the Cholesky factor [26] to calculate the
SR of the estimation error covariance. The SR form improves the numerical stability of the filter
and guarantees positive semi-definiteness of this covariance. Additionally, the computational
complexity for state and parameter estimation is reduced [25].

2.3. Recursive prediction-error method

In this section, the recursive prediction-error method (RPEM) is briefly discussed. This method
is extensively analysed in [11, 12] and uses a parameterized predictor that estimates the system
outputs at the current time step. The resulting predicted system output is then compared to the
actual system measurement, and the predictor parameters are corrected such as that the
prediction error is minimized.

The quadratic criterion function defined as

Vk θkð Þ ¼ 1
2
eTk θkð ÞΛ�1ek θkð Þ, (5)

is minimized using the stochastic Gauss-Newton method in order to obtain the predictor
parameters. The prediction error ek θkð Þ at the discrete time k is described as

ek θkð Þ ¼ yk � byk θkð Þ, (6)

where yk corresponds to the actual system measurement, byk θkð Þ refers to the parameterized
predictor output using parameter set θk and Λ is a user-defined weight factor.

The recursive solution that minimizes the quadratic criterion function in Eq. (5) is given by the
following scheme:

Δk ¼ Δk�1 þ 1� λð Þ ekeTk � Δk�1
� �

,

Sk ¼ λΔk þ dbyk

dbθk�1
Θk�1

dbyT
k

dbθk�1
,

Lk ¼ Θk�1
dbyT

k

dbθk�1
S�1k ,

Θk ¼ Inθ � Lk
dbyk

dbθk�1

 !
Θk�1 Inθ � Lk

dbyT
k

dbθk�1

 !
=λþ LkΔkLT

k ,

bθk ¼ bθk�1 þ Lkek:

(7)

The user-defined parameter 0 < λ ≤ 1 is often called the forgetting factor. The matrix Δk is
calculated using the prediction error. This matrix is used to calculate Sk, where the derivative

of the output w.r.t. to the unknown parameter vector
dbyk

dbθk�1

� �
appears. The gain vector Lk is

multiplied by the innovation error to update then the parameter estimation. It should be noted

that besides the matrix byk ¼
dbyk

dbθk�1
, all parameters, vectors, and matrices are defined after an

initialization. The matrix byk can be calculated modifying a KF derivative.
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The selection of the forgetting factor essentially defines the measurements that are relevant for
the current estimation of the parameter predictor. The most common choice is to take a
constant forgetting factor for systems that change gradually. Other criterions for selection of
this factor and the convergence of the RPEM are discussed extensively in [11, 12].

2.4. Sensitivity-based adaptive square-root Kalman filter

This is the main section of this chapter. The earlier sections were written to provide the needed
methods for this section, and the later sections are written to analyse and test the performance
of the filter described in this section.

The aSRUKF is discussed in this section. This filter combines the SRUKF and the RPEM. While
the KF derivative estimates the system states and measurements, the RPEM calculates the
unknown parameters and covariances.

In this filter, the innovation error in Eq. (6) is calculated and minimized using the recursive
scheme presented in Eq. (7) in order to estimate the unknown system parameters and covari-
ances. Besides the matrix byk, all parameters, vectors, and matrices of the recursive scheme are

defined. The derivative of the estimated measurement (bykÞ w.r.t. the vector (bθk�1Þ containing
the unknown values of parameters and covariances needs to be calculated. This matrix is also
called the output sensitivity and describes the influence of a variation of a parameter on the
system output. The output sensitivity can be obtained using a KF derivative.

The equations of a SRUKF are then extended in order to calculate the output sensitivity. To
simplify the reading flow, the following definitions are presented:

wm
i ¼ wc

i ¼
1

2 nx þ λf
� � , i ¼ 1,…, m ¼ 2nx, λf ¼ α2 nx þ κð Þ,

wm
0 ¼

λf

2 nx þ λf
� � , wc

0 ¼ wm
0 þ 1� α2 þ β

� �
, η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nx þ λf
p

,

m1 ¼ 11,nx , m2 ¼ 11, l, l ¼ 2nx þ 1,
wc ¼ wc

0;…;wc
m

� �
, wm ¼ wm

0 ;…;wm
m

� �
, Wc

kr ¼ wc ⨂ mT
1 ,

(8)

where wm,c
i are a set of scalar weights, α determines the spread of sigma points around the

estimated state bxk, β incorporates information about the noise distribution (e.g. β ¼ 2 assumes
that the system is affected by Gaussian noise), and κ is a scaling factor, which can be used to
reduce the higher-order errors of the mean and covariance approximations [9]. The Kronecker
product [27] is described by ⨂ .

The process update step of the aSRUKF is presented in Table 1. After the filter initialization,
the sigma points (Xk�1) that describe the pdf of the state estimate are calculated using the UT.
At the same time, the sigma-point derivatives (Φk�1) are also obtained. The sigma points and
its derivatives are propagated through the system function and the system derivative function,
respectively, to obtain the a priori state estimate (bx�k ) and the a priori state estimate sensitivity

( bX �k ). Considering additive process noises, the SR factor of the estimation error covariance
(S�xx, k) is calculated using the QR decomposition (qrðÞ) and the rank-one update to Cholesky
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algebra techniques such as the QR decomposition and the Cholesky factor [26] to calculate the
SR of the estimation error covariance. The SR form improves the numerical stability of the filter
and guarantees positive semi-definiteness of this covariance. Additionally, the computational
complexity for state and parameter estimation is reduced [25].

2.3. Recursive prediction-error method

In this section, the recursive prediction-error method (RPEM) is briefly discussed. This method
is extensively analysed in [11, 12] and uses a parameterized predictor that estimates the system
outputs at the current time step. The resulting predicted system output is then compared to the
actual system measurement, and the predictor parameters are corrected such as that the
prediction error is minimized.

The quadratic criterion function defined as

Vk θkð Þ ¼ 1
2
eTk θkð ÞΛ�1ek θkð Þ, (5)

is minimized using the stochastic Gauss-Newton method in order to obtain the predictor
parameters. The prediction error ek θkð Þ at the discrete time k is described as

ek θkð Þ ¼ yk � byk θkð Þ, (6)

where yk corresponds to the actual system measurement, byk θkð Þ refers to the parameterized
predictor output using parameter set θk and Λ is a user-defined weight factor.

The recursive solution that minimizes the quadratic criterion function in Eq. (5) is given by the
following scheme:

Δk ¼ Δk�1 þ 1� λð Þ ekeTk � Δk�1
� �

,

Sk ¼ λΔk þ dbyk

dbθk�1
Θk�1

dbyT
k

dbθk�1
,

Lk ¼ Θk�1
dbyT

k

dbθk�1
S�1k ,

Θk ¼ Inθ � Lk
dbyk

dbθk�1

 !
Θk�1 Inθ � Lk

dbyT
k

dbθk�1

 !
=λþ LkΔkLT

k ,

bθk ¼ bθk�1 þ Lkek:

(7)

The user-defined parameter 0 < λ ≤ 1 is often called the forgetting factor. The matrix Δk is
calculated using the prediction error. This matrix is used to calculate Sk, where the derivative

of the output w.r.t. to the unknown parameter vector
dbyk

dbθk�1

� �
appears. The gain vector Lk is

multiplied by the innovation error to update then the parameter estimation. It should be noted

that besides the matrix byk ¼
dbyk

dbθk�1
, all parameters, vectors, and matrices are defined after an

initialization. The matrix byk can be calculated modifying a KF derivative.
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The selection of the forgetting factor essentially defines the measurements that are relevant for
the current estimation of the parameter predictor. The most common choice is to take a
constant forgetting factor for systems that change gradually. Other criterions for selection of
this factor and the convergence of the RPEM are discussed extensively in [11, 12].

2.4. Sensitivity-based adaptive square-root Kalman filter

This is the main section of this chapter. The earlier sections were written to provide the needed
methods for this section, and the later sections are written to analyse and test the performance
of the filter described in this section.

The aSRUKF is discussed in this section. This filter combines the SRUKF and the RPEM. While
the KF derivative estimates the system states and measurements, the RPEM calculates the
unknown parameters and covariances.

In this filter, the innovation error in Eq. (6) is calculated and minimized using the recursive
scheme presented in Eq. (7) in order to estimate the unknown system parameters and covari-
ances. Besides the matrix byk, all parameters, vectors, and matrices of the recursive scheme are

defined. The derivative of the estimated measurement (bykÞ w.r.t. the vector (bθk�1Þ containing
the unknown values of parameters and covariances needs to be calculated. This matrix is also
called the output sensitivity and describes the influence of a variation of a parameter on the
system output. The output sensitivity can be obtained using a KF derivative.

The equations of a SRUKF are then extended in order to calculate the output sensitivity. To
simplify the reading flow, the following definitions are presented:

wm
i ¼ wc

i ¼
1

2 nx þ λf
� � , i ¼ 1,…, m ¼ 2nx, λf ¼ α2 nx þ κð Þ,

wm
0 ¼

λf

2 nx þ λf
� � , wc

0 ¼ wm
0 þ 1� α2 þ β

� �
, η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nx þ λf
p

,

m1 ¼ 11,nx , m2 ¼ 11, l, l ¼ 2nx þ 1,
wc ¼ wc

0;…;wc
m

� �
, wm ¼ wm

0 ;…;wm
m

� �
, Wc

kr ¼ wc ⨂ mT
1 ,

(8)

where wm,c
i are a set of scalar weights, α determines the spread of sigma points around the

estimated state bxk, β incorporates information about the noise distribution (e.g. β ¼ 2 assumes
that the system is affected by Gaussian noise), and κ is a scaling factor, which can be used to
reduce the higher-order errors of the mean and covariance approximations [9]. The Kronecker
product [27] is described by ⨂ .

The process update step of the aSRUKF is presented in Table 1. After the filter initialization,
the sigma points (Xk�1) that describe the pdf of the state estimate are calculated using the UT.
At the same time, the sigma-point derivatives (Φk�1) are also obtained. The sigma points and
its derivatives are propagated through the system function and the system derivative function,
respectively, to obtain the a priori state estimate (bx�k ) and the a priori state estimate sensitivity

( bX �k ). Considering additive process noises, the SR factor of the estimation error covariance
(S�xx, k) is calculated using the QR decomposition (qrðÞ) and the rank-one update to Cholesky
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factorization (cholupdateðÞ 2) in which the signum function (signðÞ) is used to determine the
sign of the first calculated weight factor. If the weight factor results negative, a Cholesky
downdate takes place; otherwise, a Cholesky update occurs. The next step calculates the
derivative of the SR factor of the estimation error covariance (S�xx, k). In this step, the function
treshapeMðÞ is used. This function converts a vector of dimension nx nx þ 1ð Þ=2ð Þnθ � 1ð Þ into a
nx � nxnθð Þmatrix with nθ lower triangular blocks of size (nx � nxÞ. Additionally, the operator
ðÞs is utilized to stack the matrix columns to form a column vector. Further information about
this step can be found in [28].

aSRUKF Initialization bx0 ¼ xinit ∈Rnx , bθ0 ¼ θinit ∈Rnθ , Syy:k ¼
dSyy, k
dθk

, Θk ¼ Θinit ∈Rnθ�nθ

Pxx, k ¼ dPxx, k

dθk
, Pyy, k ¼

dPyy, k

dθk
, Sxx:k ¼ dSxx, k

dθk
, Δk ¼ 0∈Rny�ny ,

Pxx,0 ¼ Sxx,0STxx,0 ¼ Pxx, init ∈Rnx�nx ,
Pxx,0 ¼ Sxx,0 ¼ 0∈Rnx�nxnθ , Pyy,0 ¼ Syy,0 ¼ 0∈Rny�nynθ

SRUKF Sigma points Xk�1 ¼ Xk�1,1 ;…;Xk�1, lð Þ ¼ bx k�1bxk�1 ⨂ m1 þ ηSxx, k�1bx k�1 ⨂ m1 � ηSxx, k�1
� �

Sigma-points
propagation

X∗
k ¼ f Xk�1 ; bθ k�1 ; uk�1

� �

SM Sigma-point
derivatives

Φk�1, j ¼ Φk�1,1, j ;…;Φk�1, l, j
� � ¼ dXk,1

dbθ k, j
;…;

dXk,m

dbθ k, j

� �
¼ bX k�1, j

bX k�1, j ⨂ m1 þ ηSxx, k�1, j bX k�1, j ⨂ m1 � ηSxx, k�1, j
� �

with
bX k�1 ¼ dx̂ k�1

dθ̂ k�1

Sensitivity
propagation

Φ∗
k, j, i ¼ ∂f

∂xk

���
Xk�1 , θ̂ k�1

Φk�1, j, i þ ∂f
∂θk, j

���
Xk�1 , θ̂ k�1

SRUKF A priori state
estimate

bx�k ¼ X∗
k wmð ÞT

SR estimation
error covariance

S�xx, k ¼ qr
ffiffiffiffiffiffi
wc

1

p
X∗

1:2nx , k � bx�k
� �

SQ, k

� �� �
,

S�xx, k ¼ cholupdate S�xx, k ;
ffiffiffiffiffiffiffiffiffi
wc

0

�� ��q
X∗

0, k � bx�k
� �

; sign wc
0

� �� �

SM A priori
state sensitivity

cX �
k ¼Φ∗

k Inθ ⨂ wmð ÞT
� �

Derivative of
estimation error
covariance

S�xx, k ¼ treshapeM Inθ ⨂ A†
ls,S�xx, k

� �
P�xx, k
� �

s

� �
,

with

Als,S�xx,k ¼ S�xx, k ⨂ Inx þ Inx ⨂ S�xx, k
� �

N nxð Þ
� �

ÞE nxð Þ and

P�xx, k ¼ Φ∗
k �cX

�
k ⨂ m2

� �
Inθ ⨂ Wc

kr

� �T⨀ X∗
k � bx�k ⨂ m2

� �T� �� �

þWc
kr⨀ X∗

k � bx�k ⨂ m2
� �

T lð ÞI
nθ ⨂ Φ∗

k �cX
�
k ⨂ m2

� �T� �
þ dQk

dθk

����bθ k�1

in which T lð Þ ¼ I0 ;T1;…;Tnθ

� �
, and T ¼ 0l�l1 ;…; 0l�lnθ ; I

l
� �

.

Further details of the construction of the matrix N nxð Þ and the elimination matrix E nxð Þ can be found in [28]

Table 1. aSRUKF: filter initialization, sigma-points calculation and filter process update step. The Kronecker product is
described by ⨂ and ⨀ defines the element-wise multiplication. The ð Þs operator stacks the matrix columns to form a
column vector.

2
Matlab does not allow the use of cholupdateðÞ in real-time applications; using coder:extrinsic 0cholupdate0

� �
, it is possible

to use the function in Simulink but the application does not run in real time. The cholupdateðÞ line can be replaced with

chol S�xx, k
� �T

S�xx, k þ wc
0 X∗

0, k � bx�k
� �� �

.
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The correction step is shown in Table 2. A new set of sigma points (X�k ) and its derivatives
(Φk) can be generated using steps (a) and (b) from Table 2. If the nonlinearity is not severe,
these steps can be skipped. This saves computational effort but sacrifices filter performance.
The (new) sigma points and its derivatives are then propagated through the measurement
function and its derivative, respectively. The resulting points are used to calculate the esti-
mated measurements (Yk) as well as the output sensitivities (byk). These are used within the
RPEM to estimate the system parameters and covariances.

The SR factor of the innovation error covariance (Syy, k), the cross-covariance (Pxy, k) together with
its derivatives matrices (Syy, k, Pxy, k) are calculated in order to obtain the Kalman gain matrix
(Kk) and its sensitivity (Kk). The aSRUKF treats also the measurement noises as additive. The a

posteriori state estimation (bxþk ), the a posteriori state sensitivity ( bX þk ) together with the SR factor
of the estimation error covariance (Sxx, k) and its sensitivity (Sxx, k) close the loop of the aSRUKF.

Local sensitivity analysis can be utilized to determine if a system input or a system modifica-
tion can excite the system parameters in order to identify them. The a posteriori state sensitiv-
ity from Table 2 (d) can be used to determine the influence of parameters to the system states.

This sensitivity results from the correction step of the aSRUKF. As long as the sensitivity bX þk
remains below a user-defined threshold, the parameter update from Table 2 (e) can be skipped
to prevent parameter estimation drifts. A time window Nwð Þ can be used to calculate

max bX þk�Nw

���
���
2
;…; bX þk

���
���
2

� �
to normalize the sensitivity values. A threshold vector tv is then

defined with values between 0 and 1. The update procedure can be described as

for p ¼ 1 to nθ do
sa ¼ 0
for n ¼ 1 to nx do

sa ¼ saþ dxk, n
dθk, p

if sa > tv pð Þ then
update_values ¼ True

(9)

The variable sa represents the sensitivity sum w.r.t. a system parameter θk, p over all system
states (xk,1,…, xk,nxÞ. The threshold vector tv should be selected with caution. Too high values
prevent parameter estimation drifts but can increase the convergence time of the filter. More-
over, the parameter excitation can be significantly reduced and the resulting estimation can be
biased. The performance of the SB-aSRUKF is evaluated in Section 4.

The local state sensitivity can be also calculated as follows (cf. [29]):

dxk
dθk, j

¼ ∂f
∂xk

����bxk�1 ,bθk�1

dxk�1
dθk, j

þ ∂f
∂θk, j

����bxk�1,bθk�1

(10)

This sensitivity computation is compared in Section 4 with a posterior state sensitivity obtained
using the SB-aSRUKF.
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factorization (cholupdateðÞ 2) in which the signum function (signðÞ) is used to determine the
sign of the first calculated weight factor. If the weight factor results negative, a Cholesky
downdate takes place; otherwise, a Cholesky update occurs. The next step calculates the
derivative of the SR factor of the estimation error covariance (S�xx, k). In this step, the function
treshapeMðÞ is used. This function converts a vector of dimension nx nx þ 1ð Þ=2ð Þnθ � 1ð Þ into a
nx � nxnθð Þmatrix with nθ lower triangular blocks of size (nx � nxÞ. Additionally, the operator
ðÞs is utilized to stack the matrix columns to form a column vector. Further information about
this step can be found in [28].

aSRUKF Initialization bx0 ¼ xinit ∈Rnx , bθ0 ¼ θinit ∈Rnθ , Syy:k ¼
dSyy, k
dθk

, Θk ¼ Θinit ∈Rnθ�nθ

Pxx, k ¼ dPxx, k

dθk
, Pyy, k ¼

dPyy, k

dθk
, Sxx:k ¼ dSxx, k

dθk
, Δk ¼ 0∈Rny�ny ,

Pxx,0 ¼ Sxx,0STxx,0 ¼ Pxx, init ∈Rnx�nx ,
Pxx,0 ¼ Sxx,0 ¼ 0∈Rnx�nxnθ , Pyy,0 ¼ Syy,0 ¼ 0∈Rny�nynθ

SRUKF Sigma points Xk�1 ¼ Xk�1,1 ;…;Xk�1, lð Þ ¼ bx k�1bxk�1 ⨂ m1 þ ηSxx, k�1bx k�1 ⨂ m1 � ηSxx, k�1
� �

Sigma-points
propagation

X∗
k ¼ f Xk�1 ; bθ k�1 ; uk�1

� �

SM Sigma-point
derivatives

Φk�1, j ¼ Φk�1,1, j ;…;Φk�1, l, j
� � ¼ dXk,1

dbθ k, j
;…;

dXk,m

dbθ k, j

� �
¼ bX k�1, j

bX k�1, j ⨂ m1 þ ηSxx, k�1, j bX k�1, j ⨂ m1 � ηSxx, k�1, j
� �

with
bX k�1 ¼ dx̂ k�1

dθ̂ k�1

Sensitivity
propagation

Φ∗
k, j, i ¼ ∂f

∂xk

���
Xk�1 , θ̂ k�1

Φk�1, j, i þ ∂f
∂θk, j

���
Xk�1 , θ̂ k�1

SRUKF A priori state
estimate

bx�k ¼ X∗
k wmð ÞT

SR estimation
error covariance

S�xx, k ¼ qr
ffiffiffiffiffiffi
wc

1

p
X∗

1:2nx , k � bx�k
� �

SQ, k

� �� �
,

S�xx, k ¼ cholupdate S�xx, k ;
ffiffiffiffiffiffiffiffiffi
wc

0

�� ��q
X∗

0, k � bx�k
� �

; sign wc
0

� �� �

SM A priori
state sensitivity

cX �
k ¼Φ∗

k Inθ ⨂ wmð ÞT
� �

Derivative of
estimation error
covariance

S�xx, k ¼ treshapeM Inθ ⨂ A†
ls,S�xx, k

� �
P�xx, k
� �

s

� �
,

with

Als,S�xx,k ¼ S�xx, k ⨂ Inx þ Inx ⨂ S�xx, k
� �

N nxð Þ
� �

ÞE nxð Þ and

P�xx, k ¼ Φ∗
k �cX

�
k ⨂ m2

� �
Inθ ⨂ Wc

kr

� �T⨀ X∗
k � bx�k ⨂ m2

� �T� �� �

þWc
kr⨀ X∗

k � bx�k ⨂ m2
� �

T lð ÞI
nθ ⨂ Φ∗

k �cX
�
k ⨂ m2

� �T� �
þ dQk

dθk

����bθ k�1

in which T lð Þ ¼ I0 ;T1;…;Tnθ

� �
, and T ¼ 0l�l1 ;…; 0l�lnθ ; I

l
� �

.

Further details of the construction of the matrix N nxð Þ and the elimination matrix E nxð Þ can be found in [28]

Table 1. aSRUKF: filter initialization, sigma-points calculation and filter process update step. The Kronecker product is
described by ⨂ and ⨀ defines the element-wise multiplication. The ð Þs operator stacks the matrix columns to form a
column vector.

2
Matlab does not allow the use of cholupdateðÞ in real-time applications; using coder:extrinsic 0cholupdate0

� �
, it is possible

to use the function in Simulink but the application does not run in real time. The cholupdateðÞ line can be replaced with

chol S�xx, k
� �T

S�xx, k þ wc
0 X∗

0, k � bx�k
� �� �

.
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The correction step is shown in Table 2. A new set of sigma points (X�k ) and its derivatives
(Φk) can be generated using steps (a) and (b) from Table 2. If the nonlinearity is not severe,
these steps can be skipped. This saves computational effort but sacrifices filter performance.
The (new) sigma points and its derivatives are then propagated through the measurement
function and its derivative, respectively. The resulting points are used to calculate the esti-
mated measurements (Yk) as well as the output sensitivities (byk). These are used within the
RPEM to estimate the system parameters and covariances.

The SR factor of the innovation error covariance (Syy, k), the cross-covariance (Pxy, k) together with
its derivatives matrices (Syy, k, Pxy, k) are calculated in order to obtain the Kalman gain matrix
(Kk) and its sensitivity (Kk). The aSRUKF treats also the measurement noises as additive. The a

posteriori state estimation (bxþk ), the a posteriori state sensitivity ( bX þk ) together with the SR factor
of the estimation error covariance (Sxx, k) and its sensitivity (Sxx, k) close the loop of the aSRUKF.

Local sensitivity analysis can be utilized to determine if a system input or a system modifica-
tion can excite the system parameters in order to identify them. The a posteriori state sensitiv-
ity from Table 2 (d) can be used to determine the influence of parameters to the system states.

This sensitivity results from the correction step of the aSRUKF. As long as the sensitivity bX þk
remains below a user-defined threshold, the parameter update from Table 2 (e) can be skipped
to prevent parameter estimation drifts. A time window Nwð Þ can be used to calculate

max bX þk�Nw

���
���
2
;…; bX þk

���
���
2

� �
to normalize the sensitivity values. A threshold vector tv is then

defined with values between 0 and 1. The update procedure can be described as

for p ¼ 1 to nθ do
sa ¼ 0
for n ¼ 1 to nx do

sa ¼ saþ dxk, n
dθk, p

if sa > tv pð Þ then
update_values ¼ True

(9)

The variable sa represents the sensitivity sum w.r.t. a system parameter θk, p over all system
states (xk,1,…, xk,nxÞ. The threshold vector tv should be selected with caution. Too high values
prevent parameter estimation drifts but can increase the convergence time of the filter. More-
over, the parameter excitation can be significantly reduced and the resulting estimation can be
biased. The performance of the SB-aSRUKF is evaluated in Section 4.

The local state sensitivity can be also calculated as follows (cf. [29]):

dxk
dθk, j

¼ ∂f
∂xk

����bxk�1 ,bθk�1

dxk�1
dθk, j

þ ∂f
∂θk, j

����bxk�1,bθk�1

(10)

This sensitivity computation is compared in Section 4 with a posterior state sensitivity obtained
using the SB-aSRUKF.
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SRUKF Sigma points X�k ¼ Xk,1;…;Xk, lð Þ ¼ bx �k bx�k ⨂ m1 þ ηS�xx, kbx�k ⨂ m1 � ηS�xx, k�1
� �

(a)

Output sigma points Yk ¼ h X�k ; bθk�1; uk
� �

Estimated measurement byk ¼ Yk wmð ÞT

SM Sigma-points derivative Φk, j ¼ Φk,1, j;…;Φk, l, j
� � ¼¼ bX k, j

bX k, j ⨂ m1 þ ηS�xx, k, j bX k, j ⨂ m1 � ηS�xx, k, j
� �

(b)

Output
sigma-points derivative

Ψk, j, i ¼ ∂h
∂xk

���
X�k ,
bθ k�1

Φk, j, i þ ∂h
∂θk, j

���
X�k ,
bθ k�1

Output sensitivity byk ¼Ψk Inθ ⨂ wmð ÞT
� �

with

Ψk ¼ Ψk,1;…;Ψk,nθð Þ
(c)

SRUKF SR innovation error
covariance

Syy, k ¼ qr
ffiffiffiffiffiffi
wc

1

p
Y1:2nx, k � byk

� �
SR, k

� �� �
,

Syy, k ¼ cholupdate Syy, k;
ffiffiffiffiffiffiffiffiffi
wc

0

�� ��q
Y0, k � byk

� �
; sign wc

0

� �� �

Cross-covariance matrix Pxy, k ¼Wc
kr⨀ Yk � byk ⨂ m2

� �
Xk � bx�k ⨂ m2
� �T� �

SM Derivative of innovation
error covariance

Syy, k ¼ treshapeM Inθ ⨂ A†
ls,Syy, k

� �
Pyy, k
� �

s

� �
, with

Als,Syy, k ¼ Syy, k ⨂ Iny þ Iny ⨂ Syy, k
� �

N nyð Þ
� �

ÞE nyð Þ and
Pyy, k ¼ Ψk � byk ⨂ m2

� �
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Table 2. aSRUKF: filter correction step and the RPEM for parameter and covariance estimation.
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The RPEM can be combined with different KF derivatives to estimate system parameters and
covariances. An EKF and a SRCuKF were used to calculate the output sensitivity in [22], which
is then used to estimate the unknown values. More information about the aSRUKF can be
found in [28, 30].

3. Testbeds

In this section, two testbeds are presented and modelled. These modelled systems are used in
Section 4 to test the performance of the SB-aSRUKF. The planar one-link robot system is
presented and extended with a second arm to form a pendulum robot (pendubot). The
pendubot is a chaotic and inherently unstable system.

3.1. Planar one-link robot system

This section describes the planar one-link robot system shown in Figure 1. It consists of a long
rectangular aluminium link driven by a DC motor via a shaft and a one-state toothed gear.

The angular position is measured with an incremental rotary encoder and the motor torque is
determined by measuring the motor current. To simplify the motor model, it is assumed that
the motor current is directly proportional to the armature current and that the motor torque is
proportional to this current by a constant factor. Additionally, the link acceleration is measured
using a micro-electro-mechanical sensor (MEMS) accelerometer attached to the link. The motor
position is controlled by a classical cascade structure with P- and P-feedback controllers for
position and speed.

The corresponding continuous state-space representation of the planar one-link robot system,
where the link angular position and acceleration are measured, can be written as follows:

Figure 1. Planar one-link robot system: structure and functionality.
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Table 2. aSRUKF: filter correction step and the RPEM for parameter and covariance estimation.
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The RPEM can be combined with different KF derivatives to estimate system parameters and
covariances. An EKF and a SRCuKF were used to calculate the output sensitivity in [22], which
is then used to estimate the unknown values. More information about the aSRUKF can be
found in [28, 30].

3. Testbeds

In this section, two testbeds are presented and modelled. These modelled systems are used in
Section 4 to test the performance of the SB-aSRUKF. The planar one-link robot system is
presented and extended with a second arm to form a pendulum robot (pendubot). The
pendubot is a chaotic and inherently unstable system.

3.1. Planar one-link robot system

This section describes the planar one-link robot system shown in Figure 1. It consists of a long
rectangular aluminium link driven by a DC motor via a shaft and a one-state toothed gear.

The angular position is measured with an incremental rotary encoder and the motor torque is
determined by measuring the motor current. To simplify the motor model, it is assumed that
the motor current is directly proportional to the armature current and that the motor torque is
proportional to this current by a constant factor. Additionally, the link acceleration is measured
using a micro-electro-mechanical sensor (MEMS) accelerometer attached to the link. The motor
position is controlled by a classical cascade structure with P- and P-feedback controllers for
position and speed.

The corresponding continuous state-space representation of the planar one-link robot system,
where the link angular position and acceleration are measured, can be written as follows:

Figure 1. Planar one-link robot system: structure and functionality.
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_x ¼ Axþ b x; uð Þ,
y ¼ c x; uð Þ:

The system states are the link angular position (x1 ¼ q1) and the link speed (x2 ¼ _q1Þ. The input
u corresponds to the motor torque (u ¼ τm). The measurements are the link angular position
(y1 ¼ q1) and acceleration (y2 ¼ €q1). The matrix A and the vector-valued functions b and c are
then described as

A ¼
0 1

0 � μv

Jtot

0
@

1
A,

b x; uð Þ ¼
0

� μd

Jtot
arctan k x2ð Þ � mal2

2 Jtot
sin x1ð Þ þ τm

Jtot

0
B@

1
CA,

c x; uð Þ ¼
x1

� μv

Jtot
x2 �

μd

Jtot
arctan k x2ð Þ �mal2 g

2 Jtot
sin x1ð Þ þ τm

Jtot

0
B@

1
CA,

where Jtot represents the total inertia including motor, shaft and link inertias. The link friction
is modelled as a dry Coulomb (μd and k) and viscous friction (μvÞ. The parameters ma, l2, and g
are the link mass, length, and the gravity of Earth coefficient, respectively.

3.2. Pendubot

This section describes the pendulum robot (pendubot) that is presented in Figure 2. The
pendubot is built adding an under-actuated link to the planar one-link robot system described
in Section 3.1. The actuated joint (q1) is located at the shoulder of the first link (arm) and the
elbow joint (q2) allows the second link (forearm) to swing free. This joint contains only a second
incremental rotatory encoder that measures the angle between the two links.

The system states result as x1 ¼ q1, x2 ¼ _q1, x3 ¼ q2, and x4 ¼ _q2, where qi and _qi are the
corresponding position and speed of the i–joint, respectively. The state-space representation
of the pendubot can be written as

_x ¼ Axþ b x; uð Þ,
y ¼ x1; x3; _x2ð ÞT,

in which

A ¼

0 1 0 0

0 0 0 0

0

0

0

0

0

0

1

0

0
BBBBB@

1
CCCCCA
,

b x; uð Þ ¼ 0 _x2 0 _x4ð ÞT,
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where

_x2
_x4

� �
¼ €q ¼ €q1

€q2

� �
¼ D qð Þ�1 τm � μv1

_q1 � d _q1
� �

μv2
_q2

 !
�D qð Þ�1C q; _qð Þ _q �D qð Þ�1g qð Þ.

The viscous and Coulomb frictions are described with the parameters μv1
and μv2

and the

function d _q1
� � ¼ μdarctan k _q1

� �
. The matrices D qð Þ and C q; _qð Þ and the vector g qð Þ are the

inertial and the Coriolis matrices and the gravity vector, respectively. They are defined as
follows

D qð Þ ¼
ϑ1 þ ϑ2 þ 2ϑ3 cos q2

� �

ϑ2 þ ϑ3 cos q2
� �

ϑ2 þ ϑ3 cos q2
� �

ϑ2

0
B@

1
CA,
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_q1 0

0
@

1
A,

g qð Þ ¼
ϑ4 g cos q1

� �þ ϑ5 g cos q1 þ q2
� �

ϑ5 g cos q1 þ q2
� �

0
@

1
A,

where the ϑi parameters are defined as

ϑ1 ¼ m1l21 þ m2 þm3 þm4ð Þl22 þ J1,

ϑ2 ¼ m2l23 þm4l24 þ J2,

ϑ3 ¼ m2l3 þm4l4ð Þ l2,

Figure 2. Pendubot: structure and functionality.
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where Jtot represents the total inertia including motor, shaft and link inertias. The link friction
is modelled as a dry Coulomb (μd and k) and viscous friction (μvÞ. The parameters ma, l2, and g
are the link mass, length, and the gravity of Earth coefficient, respectively.

3.2. Pendubot

This section describes the pendulum robot (pendubot) that is presented in Figure 2. The
pendubot is built adding an under-actuated link to the planar one-link robot system described
in Section 3.1. The actuated joint (q1) is located at the shoulder of the first link (arm) and the
elbow joint (q2) allows the second link (forearm) to swing free. This joint contains only a second
incremental rotatory encoder that measures the angle between the two links.

The system states result as x1 ¼ q1, x2 ¼ _q1, x3 ¼ q2, and x4 ¼ _q2, where qi and _qi are the
corresponding position and speed of the i–joint, respectively. The state-space representation
of the pendubot can be written as
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where the ϑi parameters are defined as

ϑ1 ¼ m1l21 þ m2 þm3 þm4ð Þl22 þ J1,
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Figure 2. Pendubot: structure and functionality.
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ϑ4 ¼ m1l1 þ m2 þm3 þm4ð Þl2,
ϑ5 ¼ m2l3 þm4l4:

The parameters J1 and J2 correspond to the moments of inertia of link 1 and link 2 about their
centroids. J1 includesmotor, gear and shaft inertias. Themi and li parameters are defined in Figure 2.

4. Experiments

In this section, the SB-aSRUKF is tested on the planar one-link robot system and on the
pendubot. Both testbed models were discretized using first-order explicit Euler with a sample
time of 0:2 ms. System states, parameters and covariances were estimated online. The SB-
aSRUKF is also compared with the joint state and parameter SRUKF in this section. Sensitivity
analysis is also discussed.

4.1. State sensitivity analysis and parameter and covariance estimation

Sensitivity analysis (SA) was performed on simulation using the planar one-link robot system.
The system parameters were identified offline on the real testbed using Prediction-Error
Method. The parameters defined as

bθtrue¼ bJ tot
bμv bμd bma

bl2 bk
� �T

¼ 5:59∙10�2kg m2 0:05 N m s
rad 0:27 N m 0:11 kg m 10 s

rad

� �T
,

were used for the simulation. Noise distributions with the following covariance matrices

Q ¼ diag 10�11 5∙10�5
� �� �3,

R ¼ diag 5∙10�7 5
� �� �

,

were added to the simulation to incorporate model and measurement uncertainties. An s-
curve profile was considered as a desired link angular position.

The following system states, parameters and covariances were estimated:

x1 ¼ q1 ! link position,
x2 ¼ _q1 ! link speed,
θa ¼ q11 ! process covariance value related to the link ang:pos:

� �
,

θ1 ¼ μv ! viscous friction coefficient,
θ2 ¼ μd ! Coulomb friction coefficient,

θ3 ¼ J�1tot ! inverse inertia:

3
The function diag vð Þ transforms the v∈Rn vector into a n� nð Þ square matrix with the elements of v on the diagonal of
the matrix.
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The remaining tuning factors for SB-aSRUKF were set as

Q ¼ q22 ¼ 5∙10�5, R ¼ diag 5∙10�7 2∙101
� �� �

,

α ¼ 0:08 β ¼ 2 κ ¼ 3� nx λ ¼ 0:999,

Pxx, init ¼ I2, Θinit ¼ diag 5∙10�13 10�1 10�6 10�4 10�8
� �� �

:

The values of Θinit tune the parameter and covariance estimation, and the index order is the
same as the above-defined θi values. This means that the first value tunes the estimation of θa

(process covariance value), the second value tunes θ1 (viscous friction coefficient) and so on.

The filter initial system states were set to zero and the initial system parameters were set as the
true values multiply by a random factor between 0 < θfactor, i ≤ 10 as

xinit ¼ 0,

θinit ¼ 2∙10�8rad2 1:5 1=bJ tot
� �

3bμv 8bμd 0:25 bma
bl2

� �� �T
:

In order to test the sensitivity-based section of the filter, the link angular position was held at
q1 ¼ π=2 after ca. 11 s for about 4:5 s. At the same time, the system parameters bμv, bμd, and bma

were quadrupled.

Figure 3 compares the a posteriori state sensitivity calculated using the SB-aSRUKF and the
state sensitivity using Eq. (10). The first diagram shows the estimated and true link angular
position of the planar one-link robot system. The following diagrams present the normalized

SA related to the link angular speed (b_q 1Þ and corresponding to the inverse inertia, viscous and
Coulomb friction coefficients, and the link mass and length parameter. While the state sensi-
tivity calculated using Eq. (10) was affected directly by input noises, the a posteriori state
sensitivity provided an almost noise-free estimation. While the SAJ�1tot maxima were related
with the acceleration (speed-up and brake phases), the SAμv maxima coincided with the link
maximal speed. The SAmal2 was only zero while the arm was crossing the 0 rad position and
the SAμd was the sensitivity value more affected by the system noise. This is caused because
the maximal change rate of arctanðÞ occurs when the argument is near zero. When the link
speed is zero, the added noise varies near this value and its effect is amplified by arctanðÞ.
Figure 4 shows the state, parameter and covariance estimation of the planar one-link robot
system. The aSRUKF was used in two configurations: SB-aSRUKF utilized SA to monitor the
system excitation while aSRUKF did not. After the initialization, the two estimators needed
almost the same time to converge to the offline identified values. The parameters estimated
using the SB-aSRUKF did not diverge while the link position was held. Because two of the
estimated parameters using the aSRUKF diverged, this filter needed more time to converge
after the stop phase. The two filters were able to estimate the link mass and length parameter
during the stop phase. While the viscous and the Coulomb friction coefficients and the inverse
inertia estimated with the SB-aSRUKF remained constant during the stop phase, the aSRUKF
was able to estimate the Coulomb friction with bias (before μv diverged). Because of the added
noise, the parameter was excited and could be identified. This can be seen in the fourth

Sensitivity-Based Adaptive SRUKF for State, Parameter, and Covariance Estimation on Mechatronic Systems
http://dx.doi.org/10.5772/intechopen.72470

91



ϑ4 ¼ m1l1 þ m2 þm3 þm4ð Þl2,
ϑ5 ¼ m2l3 þm4l4:

The parameters J1 and J2 correspond to the moments of inertia of link 1 and link 2 about their
centroids. J1 includesmotor, gear and shaft inertias. Themi and li parameters are defined in Figure 2.
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The values of Θinit tune the parameter and covariance estimation, and the index order is the
same as the above-defined θi values. This means that the first value tunes the estimation of θa

(process covariance value), the second value tunes θ1 (viscous friction coefficient) and so on.

The filter initial system states were set to zero and the initial system parameters were set as the
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In order to test the sensitivity-based section of the filter, the link angular position was held at
q1 ¼ π=2 after ca. 11 s for about 4:5 s. At the same time, the system parameters bμv, bμd, and bma

were quadrupled.

Figure 3 compares the a posteriori state sensitivity calculated using the SB-aSRUKF and the
state sensitivity using Eq. (10). The first diagram shows the estimated and true link angular
position of the planar one-link robot system. The following diagrams present the normalized

SA related to the link angular speed (b_q 1Þ and corresponding to the inverse inertia, viscous and
Coulomb friction coefficients, and the link mass and length parameter. While the state sensi-
tivity calculated using Eq. (10) was affected directly by input noises, the a posteriori state
sensitivity provided an almost noise-free estimation. While the SAJ�1tot maxima were related
with the acceleration (speed-up and brake phases), the SAμv maxima coincided with the link
maximal speed. The SAmal2 was only zero while the arm was crossing the 0 rad position and
the SAμd was the sensitivity value more affected by the system noise. This is caused because
the maximal change rate of arctanðÞ occurs when the argument is near zero. When the link
speed is zero, the added noise varies near this value and its effect is amplified by arctanðÞ.
Figure 4 shows the state, parameter and covariance estimation of the planar one-link robot
system. The aSRUKF was used in two configurations: SB-aSRUKF utilized SA to monitor the
system excitation while aSRUKF did not. After the initialization, the two estimators needed
almost the same time to converge to the offline identified values. The parameters estimated
using the SB-aSRUKF did not diverge while the link position was held. Because two of the
estimated parameters using the aSRUKF diverged, this filter needed more time to converge
after the stop phase. The two filters were able to estimate the link mass and length parameter
during the stop phase. While the viscous and the Coulomb friction coefficients and the inverse
inertia estimated with the SB-aSRUKF remained constant during the stop phase, the aSRUKF
was able to estimate the Coulomb friction with bias (before μv diverged). Because of the added
noise, the parameter was excited and could be identified. This can be seen in the fourth
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diagram of Figure 3. These SA values remained under the threshold used on the SB-aSRUKF
and were filtered. The parameter estimation stayed then constant. It should be noted that the
diagram corresponding to the viscous friction coefficient is zoomed to present the parameter
change, and the oscillations of the aSRUKF are cut. These reached up more than 50 times the
parameter true value.

The SB-aSRUKF was able to estimate the parameters and covariance of the proposed testbed.
The online estimations converged to the offline identified values without bias. The sensitivity-
based approach used as a system excitation monitor prevented parameter estimation drifts
and did not modify the convergence time of the filter.

4.2. Comparison between SB-aSRUKF and joint state and parameter SRUKF

The SB-aSRUKF and the joint SRUKF were compared on the pendubot for state and parameter
estimation. The SB-aSRUKF identified also covariances.

The system parameters were identified offline and used for the simulation as

bθtrue ¼ bϑ1
bϑ2 bϑ3 bϑ4 bϑ5

� �T
¼ 0:339 kg m2 0:0667 kg m2 0:0812 kg m2 0:717 kg m 0:146 kg m
� �T,

bμv1 bμd bμv2
bk

� �
¼ 0:09 Nm

s
rad

0:226 Nm 0:003 Nm
s

rad
10

s
rad

� �
:

Figure 3. Sensitivity analysis (SA): comparison between the a posteriori state sensitivity obtained using the SB-aSRUKF
and the resulting using Eq. (10). The desired link position was set as an s-curve between �π=2 and π=2. The link position

was held at π=2 after ca. 11 s for about 4:5 s. The parameter sensitivities are related to the link angular speed (bx2 ¼ b_q 1Þ.
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An s-curve profile was selected as the desired position of the first link. The following states and
parameters were estimated online:

x1 ¼ q1 ! link 1 position,
x2 ¼ _q1 ! link 1 speed,
x3 ¼ q2 ! link 2 position,
x4 ¼ _q2 ! link 2 speed,
θa ¼ q11 ! process covariance related to the link 1 ang:pos:

� �
,

θb ¼ q33 ! process covariance related to the link 2 ang:pos:
� �

,
ϑ1,…,ϑ5 ! pedubot minimal set of parameters:

The values θa and θb, which correspond to the process covariance values, were only estimated
using the SB-aSRUKF. The viscous and Coulomb friction coefficients were identified offline
and remained constant for both filters.

To simulate model and measurement uncertainties, noise distributions with the following
covariance matrices were added to the system for the simulation:

Q ¼ diag 2∙10�10 1:5∙10�7 2∙10�10 1:5∙10�7
� �� �

,
R ¼ diag 5∙10�7 5∙10�7 1

� �� �
:

Figure 4. Planar one-link robot system: parameter and covariance estimation. The SB-aSRUKF uses SA to monitor the
system excitation. The initial parameter θinit was randomly selected. The link position was held after ca. 11 s for about
4:5 s, and simultaneously the system parameters bμv , bμd, and bma were quadrupled.

Sensitivity-Based Adaptive SRUKF for State, Parameter, and Covariance Estimation on Mechatronic Systems
http://dx.doi.org/10.5772/intechopen.72470

93



diagram of Figure 3. These SA values remained under the threshold used on the SB-aSRUKF
and were filtered. The parameter estimation stayed then constant. It should be noted that the
diagram corresponding to the viscous friction coefficient is zoomed to present the parameter
change, and the oscillations of the aSRUKF are cut. These reached up more than 50 times the
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ϑ1,…,ϑ5 ! pedubot minimal set of parameters:

The values θa and θb, which correspond to the process covariance values, were only estimated
using the SB-aSRUKF. The viscous and Coulomb friction coefficients were identified offline
and remained constant for both filters.

To simulate model and measurement uncertainties, noise distributions with the following
covariance matrices were added to the system for the simulation:
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Figure 4. Planar one-link robot system: parameter and covariance estimation. The SB-aSRUKF uses SA to monitor the
system excitation. The initial parameter θinit was randomly selected. The link position was held after ca. 11 s for about
4:5 s, and simultaneously the system parameters bμv , bμd, and bma were quadrupled.
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The tuning parameters for the joint SRUKF were chosen as

Q01 ¼ diag 2∙10�10 1:5∙10�7 2∙10�10 1:5∙10�7
��

10�7 10�7 10�7 5∙10�10 10�10 ÞÞ,

R01 ¼ diag 5∙10�7 5∙10�7 10
� �� �

,

α ¼ 0:85, β ¼ 2, κ ¼ 3� nx � np,

P01 ¼ diag 1 1 1 1 10�3 10�5 10�5 5 1
� �� �

,

and the parameters for the SB-aSRUKF were set as

Q02 ¼ diag 1:5∙10�7 1:5∙10�7
� �� �

, Pxx,02 ¼ I4,

R02 ¼ diag 5∙10�7 5∙10�7 10
� �� �

,

α ¼ 0:85, β ¼ 2, κ ¼ 3� nx, λ ¼ 0:999,

Θinit ¼ diag 10�25 10�25 10�7 10�7 10�7 5∙10�10 10�10
� �� �

:

Figure 5. Pendubot: state estimation using the SB-aSRUKF and joint SRUKF. Both filters followed the dynamic of the true
system states without any significant bias.
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The filter initial system states were set to zero and the initial system parameters were set as the
true values multiply by a random factor between 0 < θfactor, i ≤ 5 as

xinit ¼ 0,

θinit1 ¼ 1:5 bϑ 1 1:3
bϑ2 1:5 bϑ3 2 bϑ4 2 bϑ5

� �T
,

θinit2 ¼ 2∙10�10rad2 2∙10�10rad2 θinit1ð ÞT
� �T

:

The first four values of P01 tune the initial state estimation, while the last ones the parameter
estimation. The first two values of Θinit tune the estimation of the covariance values θa and θb

while the last values follow the index order of ϑi defined in Section 3. It should be noted that
the settings related to the state and parameters estimation were equally tuned for both filters.

The state estimation of the pendubot is presented in Figure 5. The SB-aSRUKF was slightly
faster to reach the true system states (cf. diagrams 1 and 4) and after ca. 5 s both filters followed
the dynamic of the true system states without any significant bias.

Figure 6. Pendubot: parameter and covariance estimation using the SB-aSRUKF and joint SRUKF. The SB-aSRUKF was
configured to estimate the system parameters ϑ1 to ϑ5 and the process covariances corresponding to the link positions.
The joint SRUKF estimates only the system parameters. It should be noted that the diagram scales for parameters ϑ4 and
ϑ5 are different between the filters.
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Figure 6 shows the parameter estimation of the pendubot for both filters. Using the same
tuning parameter set, while the SB-aSRUKF estimated the ϑ1 to ϑ5 parameters without bias,
the joint SRUKF estimated ϑ1 to ϑ3 with slight bias, and it was not able to estimate ϑ4 and ϑ5.
These two parameters did not converge to the true system values. It should be noted that the
diagram scales corresponding to parameters ϑ4 and ϑ5 are different between the filters. The
parameter initialization and the tuning settings for the two filters were the same. The SB-
aSRUKF outperforms the joint SRUKF for the parameter estimation of the pendubot.

5. Conclusions

In this chapter, some approaches for state, parameter and covariance estimation were discussed.
Moreover, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKF) was
discussed and its performance was analysed. This filter estimates system states, parameters and
covariances online. Additionally, sensitivity models were presented and used as system excita-
tion monitor to prevent parameter and covariance estimation drifts while the system excitation
was not sufficient.

Two testbeds based on an axis serial mechanism were modelled and used for testing the
performance of the filter. Two experiments were performed in simulation on these two
testbeds: a state sensitivity analysis and a comparison between the joint state and parameter
square-root unscented Kalman filter (SRUKF) and the SB-aSRUKF. Simulation results show
that the SB-aSRUKF outperforms the joint SRUKF with the same tuning configuration. While
the joint SRUKF did not estimate two of the five parameters correctly, the SB-aSRUKF identi-
fied all the parameters. Moreover, the estimation of covariances reduces the parameter estima-
tion bias. Configuring the right excitation thresholds for the system excitation monitor in
Eq. (9) prevented parameter estimation drifts, while the input was not persistently exciting
and did not only increased but also in some cases reduced the convergence time of the filter.
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Figure 6 shows the parameter estimation of the pendubot for both filters. Using the same
tuning parameter set, while the SB-aSRUKF estimated the ϑ1 to ϑ5 parameters without bias,
the joint SRUKF estimated ϑ1 to ϑ3 with slight bias, and it was not able to estimate ϑ4 and ϑ5.
These two parameters did not converge to the true system values. It should be noted that the
diagram scales corresponding to parameters ϑ4 and ϑ5 are different between the filters. The
parameter initialization and the tuning settings for the two filters were the same. The SB-
aSRUKF outperforms the joint SRUKF for the parameter estimation of the pendubot.

5. Conclusions

In this chapter, some approaches for state, parameter and covariance estimation were discussed.
Moreover, a sensitivity-based adaptive square-root unscented Kalman filter (SB-aSRUKF) was
discussed and its performance was analysed. This filter estimates system states, parameters and
covariances online. Additionally, sensitivity models were presented and used as system excita-
tion monitor to prevent parameter and covariance estimation drifts while the system excitation
was not sufficient.

Two testbeds based on an axis serial mechanism were modelled and used for testing the
performance of the filter. Two experiments were performed in simulation on these two
testbeds: a state sensitivity analysis and a comparison between the joint state and parameter
square-root unscented Kalman filter (SRUKF) and the SB-aSRUKF. Simulation results show
that the SB-aSRUKF outperforms the joint SRUKF with the same tuning configuration. While
the joint SRUKF did not estimate two of the five parameters correctly, the SB-aSRUKF identi-
fied all the parameters. Moreover, the estimation of covariances reduces the parameter estima-
tion bias. Configuring the right excitation thresholds for the system excitation monitor in
Eq. (9) prevented parameter estimation drifts, while the input was not persistently exciting
and did not only increased but also in some cases reduced the convergence time of the filter.

Author details

Mauro Hernán Riva*, Mark Wielitzka and Tobias Ortmaier

*Address all correspondence to: mauro.riva@imes.uni-hannover.de

Institute of Mechatronic Systems, Leibniz Universität Hanover, Hanover, Germany

References

[1] Wielitzka M, Dagen M, Ortmaier T. State estimation of vehicle‘s lateral dynamics using
unscented Kalman filter. 53rd IEEE Conference on Decision and Control (CDC); Los
Angeles, USA. 2014:5015-5020. DOI: 10.1109/CDC.2014.7040172

Kalman Filters - Theory for Advanced Applications96

[2] Ding SX. Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and
Tools. 1st ed. Berlin, Germany: Springer; 2008. p. 493

[3] Simon D, Simon DL. Kalman filtering with inequality constraints for turbofan engine
health estimation. IEE Proceedings - Control Theory and Applications. 2006;153(3):371-
378. DOI: 10.1049/ip-cta:20050074

[4] Grewal MS, Andrews AP. Kalman Filtering: Theory and Practice with MATLAB. 4th ed.
Hoboken, New Jersey, USA: Wiley-IEEE Press; 2014. p. 640

[5] Sorenson HW. Least-squares estimation: from Gauss to Kalman. IEEE Spectrum. 1970;7
(7):63-68. DOI: 10.1109/MSPEC.1970.5213471

[6] Kalman RE. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering. 1960;82(1):35-45. DOI: 10.1115/1.3662552

[7] Anderson BDO, Moore JB. Optimal Filtering. 1st ed. Mineola, NY, USA: Dover Publica-
tions; 2006. p. 368

[8] Schmidt SF. Applications of state space methods to navigation problems. C. T. Leondes
(Ed.) Advanced in Control Systems. 1966;3:293-340

[9] Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. 1st
ed. Hoboken, New Jersey, USA: Wiley-Interscience; 2006. p. 526

[10] Julier SJ, Uhlmann JK. New extension of the Kalman filter to nonlinear systems. In: Signal
Processing, Sensor Fusion, and Target Recognition VI. Orlando, FL, USA: International
Society for Optics and Photonics; 1997. pp. 182-194. DOI: 10.1117/12.280797

[11] Ljung L, Soderstrom T. Theory and Practice of Recursive Identification. 1st ed. Cam-
bridge, Massachusetts, USA: The MIT Press; 1983. p. 551

[12] Ljung L. System Identification: Theory for the User. 2nd ed. Prentice Hall: Upper Saddle
River, NJ, USA; 1999. p. 672

[13] Saab SS, Nasr GE. Sensitivity of discrete-time Kalman filter to statistical modeling errors.
Optimal Control Applications and Methods. 1999;20(5):249-259. DOI: 10.1002/(SICI)1099-
1514(199909/10)20:5<249::AID-OCA659>3.0.CO;2-2

[14] Fitzgerald R. Divergence of the Kalman filter. IEEE Transactions on Automatic Control.
1971;16(6):736-747. DOI: 10.1109/TAC.1971.1099836

[15] Price C. An analysis of the divergence problem in the Kalman filter. IEEE Transactions on
Automatic Control. 1968;13(6):699-702. DOI: 10.1109/TAC.1968.1099031

[16] Ljung L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for
linear systems. IEEE Transactions on Automatic Control. 1979;24(1):36-50. DOI: 10.1109/
TAC.1979.1101943

[17] Odelson B. Estimating Disturbance Covariances From Data For Improved Control Perfor-
mance [dissertation]. Madison, WI, USA: University of Wisconsin-Madison; 2003. p. 309

Sensitivity-Based Adaptive SRUKF for State, Parameter, and Covariance Estimation on Mechatronic Systems
http://dx.doi.org/10.5772/intechopen.72470

97



[18] Odelson BJ, Rajamani MR, Rawlings JB. A new autocovariance least-squares method for
estimating noise covariances. Automatica. 2006;42(6):303-308. DOI: 10.1016/j.automatica.
2005.09.006

[19] Rajamani MR, Rawlings JB. Estimation of the disturbance structure from data using
semidefinite programming and optimal weighting. Automatica. 2009;45(1):142-148. DOI: 10.
1016/j.automatica.2008.05.032

[20] Riva MH, Díaz Díaz J, Dagen M, Ortmaier T. Estimation of covariances for Kalman filter
tuning using autocovariance method with Landweber iteration. In: IASTED International
Symposium on Intelligent Systems and Control; Marina del Rey, CA, USA. 2013. DOI:
10.2316/P.2013.807-009

[21] Rajamani MR. Data-based Techniques to Improve State Estimation in Model Predictive
Control [dissertation]. Madison, WI, USA: University of Wisconsin-Madison; 2007. p. 262

[22] Riva MH, Beckmann D, Dagen M, Ortmaier T. Online parameter and process covariance
estimation using adaptive EKF and SRCuKF approaches. In: 2015 IEEE Conference on Control
Applications (CCA); Sydney, Australia. 2015. p. 1203-1210. DOI: 10.1109/CCA.2015.7320776

[23] Han J, Song Q, He Y. Adaptive unscented Kalman filter and its applications in nonlinear
control. In: Moreno VM, Pigazo A, editors. Kalman Filter Recent Advances and Applica-
tions. Croatia: InTech; 2009. pp. 1-24. DOI: 10.5772/6799

[24] Wan EA, Van der Merwe R. The unscented Kalman filter for nonlinear estimation. In:
IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Sym-
posium; Lake Louise, Canada. 2000. p. 153-158. DOI: 10.1109/ASSPCC.2000.882463

[25] Van der Merwe R, Wan EA. The square-root unscented Kalman filter for state and
parameter-estimation. In: IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP 01); Salt Lake City, USA. 2001. p. 3461-3464. DOI: 10.1109/
ICASSP.2001.940586

[26] Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes in C: The Art of
Scientific Computing. 2nd ed. Cambridge, New York, USA: Cambridge University Press;
1992. p. 994

[27] Henderson HV, Searle SR. The vec-permutation matrix, the vec operator and Kronecker
products: A review. Linear and Multilinear Algebra. 1981;9(4):271-288. DOI: 10.1080/
03081088108817379

[28] Riva MH, Dagen M, Ortmaier T. Adaptive Unscented Kalman Filter for online state,
parameter, and process covariance estimation. In: 2016 American Control Conference
(ACC); Boston, MA, USA. 2016. p. 4513-4519. DOI: 10.1109/ACC.2016.7526063

[29] Eykhoff P. System Identification Parameter and State Estimation. 1st ed. Hoboken, New
Jersey, USA: Wiley-Interscience; 1974. p. 555

[30] Riva MH, Dagen M, Ortmaier T. Comparison of covariance estimation using autoco-
variance LS method and adaptive SRUKF. In: 2017 American Control Conference
(ACC); Seattle, WA, USA. 2017. p. 5780-5786. DOI: 10.23919/ACC.2017.7963856

Kalman Filters - Theory for Advanced Applications98

Chapter 5

Kalman Filters for Parameter Estimation of
Nonstationary Signals

Sarita Nanda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71874

Provisional chapter

Kalman Filters for Parameter Estimation of
Nonstationary Signals

Sarita Nanda

Additional information is available at the end of the chapter

Abstract

An adaptive Taylor-Kalman filter with PSO tuning for tracking nonstationary signal
parameters in a noisy environment with primary focus on time-varying power signals
has been presented in this piece of work. In order to deal with the dynamic envelope of
the power signal, second-order Taylor expansion has been used such that the Taylor
coefficients are updated with the PSO-tuned Taylor-Kalman Filter algorithm. In addition
to this, for fast convergence, a self-adaptive particle swarm optimization technique has
been used for obtaining the optimal values of model and measurement error covariances
of the Kalman filter. The proposed algorithm is linear and therefore has less computa-
tional burden, which is easier to be implemented on a hardware platform like DSP
processor or FPGA. The proposed PSO-tuned Taylor-Kalman filter exhibits robust track-
ing capabilities even under changing signal dynamics, immune to critical noise condi-
tions, harmonic contaminations, and also reveals excellent convergence properties.
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1. Introduction

Signal parameter estimation, which dates back to the late 19th century, describes the various
methods employed to track amplitude, phase, and frequency-like parameters of a signal. Among
all the signal parameters, frequency is the primary concern, as it is a nonlinear function in the
received data sequence, and once that is measured accurately, tracking of other parameters like
phase, amplitude, and damping factor of a signal can be relatively easier. Most real-world signals
are nonstationary in nature, i.e., they have a time-varying frequency behavior. Some of the
popular sources of nonstationary signals include speech, audio, sounds of mammals, machine
vibrations, electrical power networks, and a variety of biomedical signals like electromyogram
(EMG), electroencephalogram (EEG), phonocardiogram (PCG), and vibroarthrogram (VAG)).
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Signal parameter estimation, which dates back to the late 19th century, describes the various
methods employed to track amplitude, phase, and frequency-like parameters of a signal. Among
all the signal parameters, frequency is the primary concern, as it is a nonlinear function in the
received data sequence, and once that is measured accurately, tracking of other parameters like
phase, amplitude, and damping factor of a signal can be relatively easier. Most real-world signals
are nonstationary in nature, i.e., they have a time-varying frequency behavior. Some of the
popular sources of nonstationary signals include speech, audio, sounds of mammals, machine
vibrations, electrical power networks, and a variety of biomedical signals like electromyogram
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These signals are rich in information and when analyzed properly provides with information
that could be used to improve many aspects of our lives. Hence, the information of interest of the
signal can be extracted, which includes the estimation of parameters like amplitude, phase,
frequency, and damping factor directly from the discrete measurement in the presence of noise
both in stationary and nonstationary environments. Precise and smooth operation of the power
generation and distribution system is very much required in the present day scenario. With the
increasing demand for power, the number and type of load are having deteriorating effects on
the power quality. Power quality is defined as the ability of the electrical grid to deliver clean and
stable power to the consumer. Between generation and supply, the power being delivered
encounters large number of transformers and several lengths of overhead lines and under-
ground cables. Phenomena like lightning strikes, system faults, load switching, and other such
intentional or unintentional events are the main cause of electromagnetic disturbances, which
results in voltage or current waveform distortions to propagate in the entire power system.
Recently, the increase in the number of power electronic loads in the system causes nonlinear
loading effect on the power system signal, leading to degradation of power quality.

Recently, harmonic estimation has become a challenging and critical issue for electrical engi-
neers. Estimating harmonics and other faults is important for maintaining power quality.
Research works carried out recently sheds light on various techniques for estimating har-
monics. FFT [1]-based techniques are the conventional ones, and they suffer from some pitfalls
such as aliasing and picket fence effects, which lead to inaccurate estimation results. There are
some other methods suffering from these three problems, and this is because of existing high
frequency components measured in the signal; however, truncation of the sequence of sampled
data, when only a fraction of the sequence of a cycle exists in the analyzed waveform, can
boost leakage problem of the DFT method. So, the need of new algorithms that process the
data, sample-by-sample and not in a window as in FFT and DFT, is of paramount importance.
Another very robust algorithm for the purpose of estimating sinusoidal signals with unknown
noise content is the Kalman filter (KF) [2, 3].

However, when cases related to system dynamics, like sudden changes in frequency, ampli-
tude and phase of a signal, arise, KF exhibits serious drawbacks. Study of several literature
shows that single methods employed for the purpose of signal estimation are not efficient on
their own, so hybrid methods based on the combination of different need to be formulated.
The major contribution of this chapter is the accurate tracking of nonstationary power signal
parameters, i.e., phasor, frequency, and harmonics. The power signal is modeled using Taylor
series, and the coefficients of the Taylor series are updated using the Kalman Filter [4, 5], which
are again utilized to estimate the time varying amplitude, phase, and frequency of the test
signal. Moreover, a self-adaptive particle swarm optimization approach is deployed to choose
the optimum values of the Kalman filter parameters like model and measurement error
covariances, which in turn enables the filter to attain convergence in a faster rate.

2. Literature review

Work on harmonic and parameter estimation has been going since the introduction of AC
power generation. Over the course of time, several methods have been proposed to fulfill this
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particular requirement, but so far, the existing methodologies have exhibited significant draw-
backs. Here are some of the research works that have been performed in the last 5 years.

For the estimation of harmonics and interharmonics, a technique using simple techniques like
least mean square [4] and a two-stage ADALINE network has been studied [5]. The method
utilized here provided a better accuracy even when power frequency deviation and interhar-
monic components are present in the measured signal. As the conventional ADALINE is
unable to detect interharmonics, a two-stage ADALINE is used. The architecture is classified
in two parts—the front stage that extracts the frequency value and the back stage that com-
putes amplitude and phase. Here, the adaptive algorithm used in the filter is the RLS algo-
rithm. The method yielded more accurate results in protection and monitoring applications.

Sliding window tracking (SWT) [6] accurately tracks the frequency and amplitude of a signal
by processing only three (or more) recent data points. It works for a signal with any nonzero
moving average and noise. Teager-Kaiser algorithm (TKA) is a well-known four-point method
for online tracking of frequency and amplitude. TKA takes into assumption that the signal is
purely harmonic, so any moving average in the signal can totally destroy the accuracy of TKA,
whereas SWT uses a pair of windowed regular harmonics to estimate the frequency and
amplitude thus eliminating the effect of moving average. In order to start the online tracking
of frequency, SWT requires TKA to provide the first estimate of the frequency. The accuracies
of SWT and TKA are compared using Hilbert-Huang transform, which is used to extract
accurate time-varying frequencies and amplitudes by processing the whole data set without
assuming the signal to be harmonic. Tracking accuracy increases when window length is equal
to or greater than one quarter of the signal period. If the chosen window length is too long,
then the estimated frequency is an average over the window length. The method requires
constant frequency and amplitude to accurately track the parameters, and this shows that the
dynamic response of the method is very poor and the accuracy deteriorates, if there is no
change in the parameter values.

A real-time approach for the estimation of power system frequency based on Newton-type
algorithm and least squares method has been used in this paper [7]. The adopted optimization
technique has been based on a two-stage mathematical model. A Newton type algorithm has
been used to model the first stage for estimating the line to neutral voltage-phase angle and its
variation. The second stage has been modeled using LS minimization technique that extracts
the power system frequency by processing the information in the phase angles estimated using
NTA. The method also studies the modulating effect of time-varying frequency on the online
estimation of the phase angle.

Taylor series expansion and Fourier algorithm have been used for frequency estimation [8]. To
model the changing envelope of a power signal within an observation, a second-order Taylor
series has been used, and the parameters of the model have been estimated using Fourier
algorithm. Comparing with the traditional Fourier algorithm, this method introduces more
computational load.

A modified ADALINE structure has been used in the paper [9] for online tracking of har-
monics. Self-synchronized ADALINE network for power system harmonics estimation relies
on the Levenberg Gradient Descent method for updating the system parameters. A faster
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purely harmonic, so any moving average in the signal can totally destroy the accuracy of TKA,
whereas SWT uses a pair of windowed regular harmonics to estimate the frequency and
amplitude thus eliminating the effect of moving average. In order to start the online tracking
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constant frequency and amplitude to accurately track the parameters, and this shows that the
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response and better noise immunity are provided by conventional methods. A high computa-
tional load is the only drawback that exists in the proposed approach.

Ensemble Kalman Filter has been used in the proposed method [10] for filtering and estimating
signal harmonics and interharmonics. To avoid the problem of singularity and for the compu-
tational feasibility of state covariance P, the state covariance P is replaced by a sample covari-
ance C for the computation of Kalman gain.

The proposed method [11] is adopted for real-time estimation of phasor and harmonics. The
technique reduces the turnaround time on two different off-the-shelf research and develop-
ment DSP platforms. The proposed method has been found to be superior to that of ADALINE
and RDFT techniques under the presence of noise sub-harmonics and frequency variations.
The proposed technique has a computational efficiency that is higher than that of ADALINE
and RDFT techniques.

The proposed algorithm in [12] is simple, computational efficient and makes the correction of
the signal that enables to reach the mean square error. It provides a new kind of step adapta-
tion for LMS algorithm. Two LMS algorithms have been utilized by this method. The first one
has a fixed-step size, and the weight coefficient generated from the first algorithm is used to
update the step size of the second algorithm, which has initial step size of 0.001.

An adaptive linear network (ADALINE) [13–15] for harmonic and interharmonic estimation
(Martin) allows the computing of root mean square voltage and total harmonic distortion
indices. Classification and detection of sags, swells, outages, and harmonics-interharmonics
have been done using the indices computed before. Classification of spikes, notching, flicker,
and oscillatory transients has been achieved by using a feed forward neural network through
pattern recognition using horizontal and vertical histograms of a specific voltage waveform.
The method used in [16] uses noneven item interpolation FFT based on triangular self-
convolution window. Variances of frequency estimation are proportional to the energy of the
adopted window. By choosing suitable values of length of FFT, sampling frequency, and the
shape of the adopted window, the variances of frequency estimation have been determined.

3. PSO-tuned Taylor-Kalman filter

To improve the performance of Kalman Filter in this aspect, a hybrid adaptive filter has been
proposed in this thesis work that consists of the combination of Taylor series, Kalman Filter,
and self-adaptive PSO. Taylor series is used to model the changing envelope of the sinusoidal
signal. The sinusoidal signal is expressed in its trigonometric components, which in turn are
expanded by using Taylor series. The Taylor coefficients are stored in the state vector that is
further used to estimate the signal and its amplitude, frequency, and phase. In each iteration,
the state vector is updated in order to get a better estimate than the previous, and the process
continues until convergence is reached. There are two parameters on which the performance of
the KF depends—the model and measurement error covariances. In the traditional approach,
the values for these parameters are chosen by trial and error that makes the algorithm time
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consuming and prone to errors. Self-adaptive PSO is used here to select the optimal values of
the error covariances in order to achieve fast convergence.

3.1. Signal modeling using Taylor expansion

Let the discrete signal be represented as:

v ið Þ ¼ A ið Þ: cos iω ið Þ þ ϕ ið Þ� �þ κ ið Þ (1)

where A ið Þ,ω ið Þ, and ϕ ið Þ are “the amplitude”, “angular frequency,” and “phase” of the sinu-
soid, respectively. ω ið Þ ¼ 2πf ið Þ and f ið Þ is the fundamental frequency of the signal, while κ ið Þ
is an additive white noise with unknown variance σg2 Now let us represent θ ið Þ ¼ 2πfidt þ
ϕ ið Þ: The rate of change of phase angle is equal to frequency. So the signal frequency can be
represented as [3]:

f ¼ 1
2π

d
dt

θ ið Þð Þ ¼ f 0 þ
1
2π

d
dt

ϕ ið Þ� �
(2)

Eq. (1) can be expressed according to trigonometric function as:

v ið Þ ¼ Q ið Þ cos 2πf ið Þð Þ � R ið Þ sin 2πf ið Þð Þ (3)

where Q ið Þ ¼ A ið Þ cosϕ ið ÞandR ið Þ ¼ A ið Þ sinϕ ið Þ.
The coefficient functions Q ið ÞandR ið Þ express the envelope of the time varying sinusoid and
can be expanded using Taylor series [17, 18] as shown:

Q ið Þ ffi m0 þm1iþm2i2 þ… and R ið Þ ffi n0 þ n1iþ n2i2 þ… (4)

where

m0 ¼ Q 0ð Þ, m1 ¼ dQ ið Þ
dt at k = 0; m2 ¼ d2Q ið Þ

dt2
and m3 ¼ d3Q ið Þ

dt3
at k = 0.

n0 ¼ R 0ð Þ, n1 ¼ dR ið Þ
dt at k = 0, n2 ¼ d2R ið Þ

dt2
and n3 ¼ d3R ið Þ

dt3
at k = 0.

Now we can obtain the amplitude and phase angle of the described given sinusoid using
Eq. (3) and (4) as follows at k = 0:

ba ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ n20
q

(5)

and

bϕ ¼ arctan n0=m0ð Þ (6)

where m0 ¼ A 0ð Þ: cosϕ 0ð Þ
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ϕ ið Þ: The rate of change of phase angle is equal to frequency. So the signal frequency can be
represented as [3]:

f ¼ 1
2π

d
dt

θ ið Þð Þ ¼ f 0 þ
1
2π

d
dt

ϕ ið Þ� �
(2)

Eq. (1) can be expressed according to trigonometric function as:

v ið Þ ¼ Q ið Þ cos 2πf ið Þð Þ � R ið Þ sin 2πf ið Þð Þ (3)

where Q ið Þ ¼ A ið Þ cosϕ ið ÞandR ið Þ ¼ A ið Þ sinϕ ið Þ.
The coefficient functions Q ið ÞandR ið Þ express the envelope of the time varying sinusoid and
can be expanded using Taylor series [17, 18] as shown:

Q ið Þ ffi m0 þm1iþm2i2 þ… and R ið Þ ffi n0 þ n1iþ n2i2 þ… (4)

where

m0 ¼ Q 0ð Þ, m1 ¼ dQ ið Þ
dt at k = 0; m2 ¼ d2Q ið Þ

dt2
and m3 ¼ d3Q ið Þ

dt3
at k = 0.

n0 ¼ R 0ð Þ, n1 ¼ dR ið Þ
dt at k = 0, n2 ¼ d2R ið Þ

dt2
and n3 ¼ d3R ið Þ

dt3
at k = 0.

Now we can obtain the amplitude and phase angle of the described given sinusoid using
Eq. (3) and (4) as follows at k = 0:

ba ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ n20
q

(5)

and

bϕ ¼ arctan n0=m0ð Þ (6)

where m0 ¼ A 0ð Þ: cosϕ 0ð Þ
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n0 ¼ A 0ð Þ: sinϕ 0ð Þ (7)

Similarly for estimating the frequency of the given sinusoid, consider Eq.(4) at k = 0, the first
derivative will be:

m1 ¼ d
dt

A 0ð Þ: cosϕ 0ð Þ� �
(8)

n1 ¼ d
dt

A 0ð Þ: sinϕ 0ð Þ� �
(9)

By substituting Eq. (7) in Eq. (8) and (9) and by neglecting

d
dt

A 0ð Þð Þ : d
dt

ϕ 0ð Þ� � ¼ m0n1 � n0m1

m0
2 þ n02

(10)

Now from Eq. (2) and Eq. (10), we get the formula for computing the frequency:

bf ¼ f 0:þ
1
2π

m0n1 � n0m1

m0
2 þ n02

� �
(11)

3.2. Updation of Taylor coefficients using the PSO-tuned Kalman filtering algorithm

Let us consider the following discrete signal:

Yi ¼ a: sin iωTS þ ϕ
� �þ nk (12)

where a, Ts,ω, andϕ are the amplitude, sampling time, angular frequency, and phase of the
signal, respectively, and nk represents measurement noise with a covariance R.

We can represent the state space Eq. (10) of the discrete signal as:

χ^
�
ið Þ ¼ f iχi þ ηi (13)

χi 1ð Þ ¼ m0; χi 2ð Þ ¼ m1; χi 3ð Þ ¼ m2;χi 4ð Þ ¼ n0; χi 5ð Þ ¼ n1; χi 6ð Þ ¼ m2 (14)

And the state transition matrix is given by:

f i ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666666664

3
777777777775

(15)
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The stochastic model of the signal is obtained as

χ 1 ið Þ
χ 2 ið Þ
χ 3 ið Þ
χ 4 ið Þ
χ 5 ið Þ
χ 6 ið Þ

2
666666666664

3
777777777775

¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666666664

3
777777777775

χ 1 ið Þ
χ 2 ið Þ
χ 3 ið Þ
χ 4 ið Þ
χ 5 ið Þ
χ 6 ið Þ

2
666666666664

3
777777777775

(16)

The measurement model of the signal expressed in Eq. (12) can be calculated as:

Si ¼ hiχi þ vi (17)

where the observation matrix can be calculated as:

Hi ¼
sin 2πf 0idt
� �

idt sin 2πf 0idt
� �

cos 2πf 0idt
� �

idt cos 2πf 0idt
� �

" #
(18)

The error signal can be obtained as

Ei ¼ S�Hibχ ið Þ (19)

Using Eq. (19) the updated state estimate can be obtained from the following equation

χ^ ið Þ ¼ χ^
�
i� 1ð Þ þ K ið Þ Si �Hχ^ ið Þ

� �
(20)

where the Kalman gain K(i) is given as:

K ið Þ ¼ bP i� 1ð ÞHi
T HbP i� 1ð ÞiHT

i þ r
� ��1

(21)

where bP ið Þ is the covariance matrix given by

bP ið Þ ¼ bP i� 1ð Þ � KiHibP i� 1ð Þ (22)

and

bP iþ 1ð Þ ¼ bP ið Þ þ q (23)

where q is the model noise covariance matrix given by
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The measurement model of the signal expressed in Eq. (12) can be calculated as:
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where the observation matrix can be calculated as:
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The error signal can be obtained as

Ei ¼ S�Hibχ ið Þ (19)

Using Eq. (19) the updated state estimate can be obtained from the following equation

χ^ ið Þ ¼ χ^
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� �
(20)

where the Kalman gain K(i) is given as:

K ið Þ ¼ bP i� 1ð ÞHi
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(21)

where bP ið Þ is the covariance matrix given by

bP ið Þ ¼ bP i� 1ð Þ � KiHibP i� 1ð Þ (22)

and

bP iþ 1ð Þ ¼ bP ið Þ þ q (23)

where q is the model noise covariance matrix given by
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q ¼

qa 0 0 0 0 0

0 qb 0 0 0 0

0 0 qc 0 0 0

0 0 0 qd 0 0

0 0 0 0 qe 0

0 0 0 0 0 qf

2
66666666664

3
77777777775

(24)

r is the measurement noise covariance which is fine tuned by using the error between the
desired and estimated signals for

r ið Þ ¼ λg rþ E ið Þð Þ^2ð Þ (25)

where λg is the forgetting factor in the range (0.9–1). Finally using the EKF time updated
equations the X ið Þ matrix is computed which determines the values of the Taylor series
coefficients m0, m1, n0, and n1.

3.3. Particle swarm optimization-based tuning of the Kalman filter

For fast convergence, optimum values of q and r are selected by applying a self-adaptive PSO
[19]. For this purpose, a cost function is formulated, which passed in the PSO algorithm to get
the optimum value for q and r. Here, the cost function is:

F ¼ 1
L

XL

i¼1

E2
i (26)

Particle swarm optimization is used to minimize the value of Eq. (26). Each particle is charac-
terized by two attributes:

i. pbest or Personal best: it holds the best value of position with respect to the previous
positions of the particular particle.

ii. gbest or Global best: it holds the best value of position in the entire search space.

The PSO algorithm either minimizes or maximizes the value of gbest. Let xij and Vij be the

position and velocity of the ith particle in the jth dimension at kth instance of time. The personal
best value can be determined from Eq. (27).

pbesti kþ 1ð Þ ¼ pbesti kð Þ, if F xi kþ 1ð Þð Þ > F pbesti kð Þ� �

xi kþ 1ð Þ, if F xi kþ 1ð Þð Þ < F pbesti kð Þ� �
(

(27)

where F indicates the cost function. The value of global best is obtained as:

gbest kð Þ ¼ min C::F pbest0 kð Þ� �
;C::F pbest1 kð Þ� �

;C::F pbest2 kð Þ� �
; :…;C::F pbests kð Þ� �

;
� �

(28)

For each particle, the updated velocity and position at time kþ 1ð Þ are given by
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Vi kþ 1ð Þ ¼ K αvi kð Þ þ b1rnd1 pbesti kð Þ � xi kð Þ� �þ b2rnd2 gbesti kð Þ � xi kð Þ� �� �
(29)

xi kþ 1ð Þ ¼ xi kð Þ þ Vi kþ 1ð Þ (30)

where α is the inertia weight factor, b1 and b2 are the acceleration constants, rnd1 and rnd2 are
random numbers in the range [0, 1], K is a constriction factor given by:

K ¼ 2

∣2� b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4b∣

p , and b ¼ b1 þ b2; b > 4 (31)

The performance of the PSO algorithm is significantly affected by the three factors w, c1, and c2.
In this approach, a detection function defined as: φ kð Þ ¼ ∣ gbesti � xi kð Þ� �

= pbesti � xi kð Þ� �
∣. The

values of the three factors are adjusted dynamically using the following equations

α kð Þ ¼ αinitial � αfinal

1þ eφ kð Þ k� 1þln φ kð Þð Þð ÞLmaxð Þ=μð Þ þ αfinal (32)

c1 kð Þ ¼ c1φ�1 kð Þ (33)

c2 kð Þ ¼ c2φ kð Þ (34)

where winitial and wfinal lie in the range 0 < w < 2ð Þ, Lmax is the final evolutionary generation,
and k is the current evolutionary generation.

3.4. PSO-based Taylor-Kalman filter structure

The adaptive filter structure with the proposed adaptive algorithm is shown in the Figure 1.
This particular structure is modeled for only the fundamental component of the signal to be
estimated. For a signal with Nth order harmonics, the same structure can be extended to meet
the requirements. The signal is modeled using Taylor series up to the second order, so the filter

Figure 1. Filter structure of the proposed approach.
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where F indicates the cost function. The value of global best is obtained as:
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For each particle, the updated velocity and position at time kþ 1ð Þ are given by

Kalman Filters - Theory for Advanced Applications106

Vi kþ 1ð Þ ¼ K αvi kð Þ þ b1rnd1 pbesti kð Þ � xi kð Þ� �þ b2rnd2 gbesti kð Þ � xi kð Þ� �� �
(29)

xi kþ 1ð Þ ¼ xi kð Þ þ Vi kþ 1ð Þ (30)

where α is the inertia weight factor, b1 and b2 are the acceleration constants, rnd1 and rnd2 are
random numbers in the range [0, 1], K is a constriction factor given by:

K ¼ 2

∣2� b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4b∣

p , and b ¼ b1 þ b2; b > 4 (31)

The performance of the PSO algorithm is significantly affected by the three factors w, c1, and c2.
In this approach, a detection function defined as: φ kð Þ ¼ ∣ gbesti � xi kð Þ� �

= pbesti � xi kð Þ� �
∣. The

values of the three factors are adjusted dynamically using the following equations

α kð Þ ¼ αinitial � αfinal

1þ eφ kð Þ k� 1þln φ kð Þð Þð ÞLmaxð Þ=μð Þ þ αfinal (32)

c1 kð Þ ¼ c1φ�1 kð Þ (33)

c2 kð Þ ¼ c2φ kð Þ (34)

where winitial and wfinal lie in the range 0 < w < 2ð Þ, Lmax is the final evolutionary generation,
and k is the current evolutionary generation.

3.4. PSO-based Taylor-Kalman filter structure

The adaptive filter structure with the proposed adaptive algorithm is shown in the Figure 1.
This particular structure is modeled for only the fundamental component of the signal to be
estimated. For a signal with Nth order harmonics, the same structure can be extended to meet
the requirements. The signal is modeled using Taylor series up to the second order, so the filter

Figure 1. Filter structure of the proposed approach.

Kalman Filters for Parameter Estimation of Nonstationary Signals
http://dx.doi.org/10.5772/intechopen.71874

107



has six weights for the six inputs that are used for the purpose of estimation. The performance
of the algorithm is judged on the basis of speed of convergence, which is verified from the
simulation results in Section 4.

4. Simulation and results

The performance of the proposed algorithm for power system signals has been shown with the
help of three computer simulated examples.

4.1. Tracking of a nonstationary signal with simultaneous change in amplitude, phase,
and frequency

A nonstationary test signal as shown in Eq. (35) is generated in MATLAB. The simulation
is done over 1000 samples of the signal. To make the signal nonstationary, a double step is
introduced in the signal by changing the value of amplitude from 500 to 700 samples. This
is done to simulate voltage surge occurrences in real time, where the amplitude increases from
that of its desired value for some period of time. Similar disturbances also change the values of
frequency and phase which is also simulated to test the tracking accuracy of the proposed
algorithm. The results in Figures 2–5 reveal that the accuracy of the proposed algorithm is very
high and tracking is achieved within one cycle of the signal.
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y ið Þ ¼ a ið Þ sin iω tð Þdtþ ϕ ið Þ� �þ n ið Þ (35)

where,

a ið Þ ¼
0:8 p:u, i < 500 samples
1 p:u, 500 < i < 700 samples
0:8 p:u, i > 700 samples

8><
>:

is the signal amplitude.

f ið Þ ¼ 50 Hz, i < 500 samples
51 Hz, i > 500 samples

�

The sampling frequency f s ¼ 2kHz ϕ ið Þ ¼ 0:5rad
0:45rad

� �

n ið Þ is the noise sequence with power level 30 dB. This signal fed into the algorithm and
simulated in MATLAB 2013a environment.
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has six weights for the six inputs that are used for the purpose of estimation. The performance
of the algorithm is judged on the basis of speed of convergence, which is verified from the
simulation results in Section 4.

4. Simulation and results

The performance of the proposed algorithm for power system signals has been shown with the
help of three computer simulated examples.
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is done over 1000 samples of the signal. To make the signal nonstationary, a double step is
introduced in the signal by changing the value of amplitude from 500 to 700 samples. This
is done to simulate voltage surge occurrences in real time, where the amplitude increases from
that of its desired value for some period of time. Similar disturbances also change the values of
frequency and phase which is also simulated to test the tracking accuracy of the proposed
algorithm. The results in Figures 2–5 reveal that the accuracy of the proposed algorithm is very
high and tracking is achieved within one cycle of the signal.
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Table 1 contains the estimated values of the amplitude, frequency, and phase of the signal
under different noise conditions. In this simulation, three different noise conditions have been
considered. The simulation is carried out in a dynamic noise range from high noise (20 dB) to
low noise (40 dB) conditions to test the performance of the proposed algorithm under noise.
The analysis of the performance under noisy conditions shows that the proposed algorithm is
able to track the desired signal very closely even under heavy noise conditions.

4.2. Performance of the proposed algorithm in harmonic estimation

In this case, the ability of the proposed algorithm is tested with respect to the tracking of
harmonics. The number of harmonic components present in the system is not constant, and it
can vary from few to a large number. It is not possible for any method to track infinite number
of harmonics but can handle a substantial quantity. In the real-time scenario, harmonics occur
as odd multiples of the fundamental frequency, so the simulation is carried out with a system
generated signal containing harmonics up to the 19th order.

y ið Þ ¼ a1 ið Þ sin iω ið Þdtþ ϕ1 ið Þ� �þ 0:8 ið Þ sin i3ω ið Þdtþ 0:4ð Þ
þ0:6 ið Þ sin i5ω ið Þdtþ 0:3ð Þ þ 0:5 ið Þ sin i7ω ið Þdtþ 0:25ð Þ
þ0:4 ið Þ sin i11ω ið Þdtþ 0:2ð Þ þ 0:2 ið Þ sin i19ω ið Þdtþ 0:1ð Þ

(36)

The signal parameters are taken as:

a ið Þ ¼ 0:1 sin 2πidtð Þ þ 0:05 sin 10πidtð Þ
a1 ið Þ ¼ 1þ a ið Þ
f ið Þ ¼ 50Hz

f s ið Þ ¼ 4kHz

ϕ1 ¼ 0:5� 0:2 sin 2π 5 idtdþ 0:3ð Þ

The amplitude, frequency, and phase are estimated, and results are shown in Figures 6–11.

Parameter Samples Actual value Estimated value

LMS EKF Proposed method

20 dB 30 dB 40 dB 20 dB 30 dB 40 dB 20 dB 30 dB 40 dB

Amplitude 0–500 0.8 0.7 0.772 0.727 0.76 0.76 0.777 0.795 0.798 0.799

500–700 1 0.885 0.946 0.919 0.89 0.88 0.93 0.896 0.942 0.997

700–1000 0.8 0.7 0.772 0.727 0.78 0.79 0.787 0.789 0.794 0.797

Frequency 0–500 50 50.05 50.02 50.02 50.03 50.02 50.03 50.00 50.01 50.00

500–1000 51 50.38 50.55 50.63 50.43 50.76 51.02 50.94 50.99 51

Phase 0–500 0.5 0.53 0.513 0.521 0.53 0.53 0.53 0.511 0.513 0.533

500–1000 0.45 0.465 0.445 0.47 0.43 0.48 0.47 0.44 0.45 0.45

Table 1. Estimated values of amplitude, frequency, and phase under different noise conditions.
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Table 2 shows the comparison of the absolute errors in amplitude, frequency, and phase
estimation for different harmonic components for EKF, LMS, RLS, and the proposed method.
The values show that the higher order (>5th order) components exhibit higher error values for
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Figure 6. Estimated fundamental amplitude for case 4.2.
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Table 1 contains the estimated values of the amplitude, frequency, and phase of the signal
under different noise conditions. In this simulation, three different noise conditions have been
considered. The simulation is carried out in a dynamic noise range from high noise (20 dB) to
low noise (40 dB) conditions to test the performance of the proposed algorithm under noise.
The analysis of the performance under noisy conditions shows that the proposed algorithm is
able to track the desired signal very closely even under heavy noise conditions.

4.2. Performance of the proposed algorithm in harmonic estimation

In this case, the ability of the proposed algorithm is tested with respect to the tracking of
harmonics. The number of harmonic components present in the system is not constant, and it
can vary from few to a large number. It is not possible for any method to track infinite number
of harmonics but can handle a substantial quantity. In the real-time scenario, harmonics occur
as odd multiples of the fundamental frequency, so the simulation is carried out with a system
generated signal containing harmonics up to the 19th order.

y ið Þ ¼ a1 ið Þ sin iω ið Þdtþ ϕ1 ið Þ� �þ 0:8 ið Þ sin i3ω ið Þdtþ 0:4ð Þ
þ0:6 ið Þ sin i5ω ið Þdtþ 0:3ð Þ þ 0:5 ið Þ sin i7ω ið Þdtþ 0:25ð Þ
þ0:4 ið Þ sin i11ω ið Þdtþ 0:2ð Þ þ 0:2 ið Þ sin i19ω ið Þdtþ 0:1ð Þ

(36)

The signal parameters are taken as:

a ið Þ ¼ 0:1 sin 2πidtð Þ þ 0:05 sin 10πidtð Þ
a1 ið Þ ¼ 1þ a ið Þ
f ið Þ ¼ 50Hz

f s ið Þ ¼ 4kHz

ϕ1 ¼ 0:5� 0:2 sin 2π 5 idtdþ 0:3ð Þ

The amplitude, frequency, and phase are estimated, and results are shown in Figures 6–11.

Parameter Samples Actual value Estimated value

LMS EKF Proposed method

20 dB 30 dB 40 dB 20 dB 30 dB 40 dB 20 dB 30 dB 40 dB

Amplitude 0–500 0.8 0.7 0.772 0.727 0.76 0.76 0.777 0.795 0.798 0.799

500–700 1 0.885 0.946 0.919 0.89 0.88 0.93 0.896 0.942 0.997

700–1000 0.8 0.7 0.772 0.727 0.78 0.79 0.787 0.789 0.794 0.797

Frequency 0–500 50 50.05 50.02 50.02 50.03 50.02 50.03 50.00 50.01 50.00

500–1000 51 50.38 50.55 50.63 50.43 50.76 51.02 50.94 50.99 51

Phase 0–500 0.5 0.53 0.513 0.521 0.53 0.53 0.53 0.511 0.513 0.533

500–1000 0.45 0.465 0.445 0.47 0.43 0.48 0.47 0.44 0.45 0.45

Table 1. Estimated values of amplitude, frequency, and phase under different noise conditions.
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Table 2 shows the comparison of the absolute errors in amplitude, frequency, and phase
estimation for different harmonic components for EKF, LMS, RLS, and the proposed method.
The values show that the higher order (>5th order) components exhibit higher error values for
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all the methods, but the comparison shows that among all the methods compared, the pro-
posed method has the least values of error. This comparison sheds light on the superiority of
the proposed method over the other methods.
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Figure 11. Estimated signal for case 4.2.

Parameter Component Absolute error

EKF LMS RLS Proposed

Amplitude (harmonic order) A1 0.01 0.03 0.023 0.007

A3 0.013 0.032 0.04 0.003

A5 0.02 0.047 0.056 0.009

A7 0.04 0.058 0.0856 0.017

A11 0.025 0.0623 0.021 0.017

A19 0.03 0.0875 0.075 0.025

Frequency Fundamental 0.065 0.045 0.0201 0.058

Phase Φ1 0.0029 0.0087 0.0047 0.0023

Φ3 0.006 0.04 0.032 0.0005

Φ5 0.024 0.045 0.054 0.007

Φ7 0.005 0.076 0.072 0.002

Φ11 0.03 0.085 0.088 0.0019

Φ19 0.067 0.083 0.0765 0.04

Table 2. Comparison of absolute errors.
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4.3. Estimation of a power signal in the presence of DC component

When a fault occurs it not only distorts the signal by changing the voltage and current waveforms
but some DC component that decays over time also gets added to the signal. DC components are
nonperiodic in nature and this simulation shows that the proposed algorithm efficiently tracks
nonperiodic components in the signal which is clearly evident from Figures 12–15. A nonsta-
tionary test signal with a decaying DC component as shown in Eq.(37) is considered:

y ið Þ ¼ a ið Þ sin iω tð Þdtþ ϕ ið Þ� �þ n ið Þ (37)

where,

a ið Þ ¼ A exp �i=300ð Þ p:u:
A ¼ 1p:u:

is the signal amplitude. f ið Þ ¼ 50Hz

The sampling frequency f s ¼ 2kHz and ϕ ið Þ ¼ 0:52 rad n ið Þ is the 30 dB noise.
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Figure 12. Estimated amplitude for signal with decaying DC component.
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5. Conclusion

The traditional Kalman filter has been extended to Taylor-Kalman filter which resulted in
filters that are able to have flat magnitude and phase responses. These filters exhibit excellent
tracking abilities and accurately estimate the amplitude, frequency and phase of a time varying
power signal without any distortion. The further combination of the Taylor-Kalman filter with
self-adaptive PSO makes the performance of the proposed method superior to the traditional
approach. The methods can be individually used for the purpose of signal and parameter
estimation, but individually, they suffer from some drawbacks. By combining the three
methods into one hybrid method, the pitfalls of each are compensated by the other and hence
much better results are obtained.

Further, the hardware implementation of the proposed method can be attempted for real-time
applications [20–23]. The hardware implementation of the proposed method can be embedded
within an integrated circuit that will result in a system on chip that can be installed at power
distribution centers, from where power gets distributed to the consumers, thus equipping
them with a tool for detecting anomalies in power quality before power is dispatched to the
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utility network. The objective of developing such a technology is to create a compact and
versatile tool. It is a small contribution toward the development of smart grid technology.
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utility network. The objective of developing such a technology is to create a compact and
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Abstract

It is important to monitor and assess the physiological strain of individuals working in hot
environments to avoid heat illness and performance degradation. The body core tempera-
ture (Tc) is a reliable indicator of thermal work strain. However, measuring Tc is invasive and
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1. Introduction

Physically demanding tasks, environmental heat and humidity and various clothing require-
ments combine to create heat stress for workers. The associated physiological responses to that
stress, e.g. increased body core temperature (Tc), heart rate (HR) and sweating, are collectively
known as physiological strain. Physiological strain rises with the heat stress, and if not con-
trolled, may diminish the quality and productivity of job performance. Left unchecked, high
levels of heat strain may also result in increased accident rates and an increased risk of heat-
related disorders including unconsciousness and cardiac arrest. Heat casualties are a concern
to the military, first responders and industrial workers [1–3].

High Tc is one of the most reliable predictor of heat-related disorders and the ability to
accurately monitor this variable could help mitigate the risk of heat injuries [4]. However, the
measurement of Tc in an ambulatory setting is not straightforward. Traditional methods of
Tc measurement typically require probes (e.g. rectal and oesophageal) but these are impracti-
cal for an ambulatory setting. While ingestible thermometer capsules (e.g. Philips Respironics,
Murrysville, PA) have been used with success in laboratory and field settings, these instru-
ments are relatively expensive, are unsuitable for individuals with food and drug administra-
tion contraindications, and while still in the stomach or upper intestine can suffer acute
inaccuracies when cold fluids are ingested. This means that in many situations, the continuous
ambulatory monitoring of Tc is still impractical. Alternative Tc surrogate methods, which
seek some non-invasive core temperature correlate (e.g. surface heat flux), can be difficult
to use consistently across different environments and lose precision when predicting for
individuals [5].

Wearable activity trackers have emerged as an increasingly popular method for individuals to
assess their daily physical activity and energy expenditure through sensing of physiological
data, e.g. HR and surface skin temperature (ST) [6]. One means of overcoming Tc measure-
ment problem is to estimate Tc based on other more readily available data obtained from such
body worn sensors. From physiology, both HR and ST are closely related to work and heat
stress. Serial HR measurements contain information about heat production [7] and heat trans-
fer since HR is related to skin perfusion [8]. Similarly, because heat can be conducted from
deep tissues to skin, an increase in Tc can lead to an elevation of ST over time [9]. Previous
studies have also shown the promise of using HR and ST to estimate heat strain [10, 11].

Tapping on the wide availability of physiological measurements from increasingly ubiquitous
wearable activity trackers and the physiological basis of associations between Tc with HR and
ST, we applied the Kalman filter (KF) technique to track individual-specific Tc over time using
time series observations of HR and ST. KF-based methods utilise a prediction-correction
scheme to dynamically track and adjust both the system states (Tc for our application) and its
uncertainty to agree with measurements (HR and ST) as they are made [12]. The system model
expressed as a function of the state variable is used to iterate the distribution of Tc forward in
time to produce a prediction, which is then corrected to both adjust the prediction and collapse
its uncertainty.

The pursuit of reliable KF models to predict Tc is a subject of active investigation. Buller and
co-authors have used the KF technique to estimate Tc by capturing the linear or quadratic
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relationship between time-varying HR and Tc [13–15]. Their results have indicated that 95%
of all predictions fell within �0.48–0.63�C for different study cohorts. However, the develop-
mental datasets contained only a limited amount of data at high Tc (≥39�C) and thus most of
these statistics are based on the lower Tc values, which may limit the model’s ability to reliably
predict hyperthermic body temperatures. Further, the validity of the Tc estimates in human
subjects with differing demographics and working in a predominantly hot and humid climate
was unclear. We implemented an extended Kalman filter (EKF) model using a non-linear
(cubic) state space model (ST versus Tc) with a stage-wise, autoregressive exogenous model
(incorporating HR) as the time update model [11]. We showed that the EKFmodel predicted Tc
more precisely [root mean square error (RMSE) was 0.29�C] compared to KF models that relied
only on HR as an explanatory variable (RMSD = 0.33�C). However, our model was developed
using only laboratory data as developmental data and thus lacked assessment against data
measured in the field settings.

While practical, the aforementioned KF models require previous estimates of Tc for continuous
prediction of this latent variable. One major inherent limitation of such models is that when the
forecast horizon increases, errors in the prediction would accumulate, which would progres-
sively increase the prediction uncertainty even with the Kalman gains. This may give rise to
grave clinical consequences since large prediction errors at high core temperature zones (for an
individual who works continuously) could delay the application of cooling measures on heat
casualties.

The main aim of this paper was to develop and investigate the potential of using online
Kalman filter (OKF) models to improve the estimation of Tc over long time horizons as
encountered during extended duration high intensity physical tasks, e.g. foot march. The
OKF models comprised a time update equation that depends on the initial value of Tc and
time-current value of the measurable exogenous variables such that the value of Tc at any time
point is directly predicted. The second aim was to assess the comparative accuracy of Tc
predictions by the EFK and OFK models vis-à-vis-observed Tc.

2. Methods

2.1. Data

Data for model development were derived from laboratory- and field-based heat strain profil-
ing studies that involved different participants. The study protocols used in all studies were
approved by the Institutional Review Board. All volunteers were briefed on the purpose, risks
and benefits of the study and each gave their written informed consent prior to participation.

2.1.1. Study 1 (laboratory study)

A total of 29 male volunteers [mean (range); age = 30 (26–33years), bodyweight = 68.4 (48.9–
87.6 kg), height = 1.71 (1.61–1.81 m), body mass index (BMI) = 23.7 (17.3–28.0 kg/m2), body
surface area (BSA) = 1.80 (1.52–2.07m2)] performed a military 16 km foot march in a climatic
chamber. During the trials, all participants donned a standard infantry full battle order (FBO),
comprising camouflage uniform, combat boots, body armour, load bearing vest with standard
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accessories, Kevlar helmet, rifle replica and a backpack filled with additional accessories, for
the foot march. All back packs used in the study were packed in the same configuration. The
foot march was composed of three rounds of 4 km followed by one round each of 3 km and
1 km marches on the treadmill at 5.3 km/h and 0% gradient, with each exercise bout separated
by 15 min seated rest. Water was provided ad libitum to all participants. Environmental condi-
tions in the climatic chamber represented those present in hot-humid environments, with a
mean dry bulb temperature of 32�C, relative humidity of 70%, solar radiation of 250 W/m2 and
wind speed of 1.5 m/s. The mean completion time of the full 16 km route march was 255 min.

2.1.2. Study 2 (field study)

A total of 43 male volunteers [age = 24 (18–33 years), bodyweight = 66.4 (49.9–89.3 kg),
height = 1.72 (1.58–1.92 m), BMI = 22.4 (17.7–27.6 kg/m2), BSA = 1.79 (1.54–2.09 m2)], outfitted
in FBO, performed a military 16 km foot march together as a group in the field. The foot march
was conducted in the morning with cloudy skies (mean dry bulb temperature, relative humid-
ity and wind speed during the trials were 27�C, 86% and 1.1 m/s, respectively). The foot march
was composed of three rounds of 4 km followed by one round each of 3 km and 1 km marches
on paved terrain, with each exercise bout separated by 15 min seated rest. All participants had
ad libitum access to fluid from their water containers, which were refilled during each recess
period. The total duration of the trials was approximately 285 min.

2.1.3. Physiological measures

For all heat profiling studies, Tc, HR and ST were recorded every 15 s using a chest belt
physiological monitoring system (Equivital EQ02 LifeMonitor®, Hidalgo Ltd., Cambridge,
UK) with an associated ingestible thermometer capsule (Philips Respironics, Murrysville,
PA). Participants ingested one thermometer capsule at least 8 h prior to the foot march in order
to ensure that the capsule had travelled far enough in the intestinal tract to avoid errors from
ingested fluids. Each participant’s real-time data were checked for accurate reporting of Tc, HR
and ST prior to the trials. Tc data were not used if there were evident signs of fluid signatures
(rapid decrease in Tc to below 32�C and slow recovery to normal body temperature).

For data modelling in the present study, Tc, HR and ST measured using the physiological
monitoring system were reduced to 1 min intervals by taking the median of four 15 s samples
for each 1 min epoch.

2.2. Assessment of model performance

Predictive performance of each model against data from study 1 and study 2 was assessed
separately using in-sample and out-of-sample analyses. Conducting an in-sample analysis
entailed using the model to estimate all observed Tc that formed the database for model
training. Out-of-sample analysis: estimating observed Tc time series that was not part of the
database for model training: was implemented using a four-fold cross-validation.

For cross-validation, the full dataset from study 1 and study 2 was randomly divided into four
groups, each containing 25% of the participants (Tc measurements belonging to the same
participant were kept in the same group). Four different subsets of three groups (i.e. 3 � 25%
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of the studied profiles) were constituted to form four different index groups. Each remaining
25% of the studied profiles constituted a separate test group, generating four independent test
groups. Then, a final model was separately identified using the four different index groups.
To assess the predictive performance of the final model, the parameter estimates from each of
the four subsets (i.e. index group) were used to predict the individual Tc time series in the
respective test group.

Various evaluation criteria were used to assess the model performance. These were RMSE,
Bland-Altman limits of agreement (LoA) [16] and percentage of prediction-data deviation (i.e.
error) that were within �0.1, 0.3 and 0.5�C [percentage of target attainment (PTA)].

The prediction error is computed using:

et, i ¼cTct, i � Tct, i (1)

,where cTct, i denotes the predicted value of Tc at time t for the ith participant and Tct,i is the
measured (based on the thermometer capsule) value of Tc.

RMSE, a measure of the precision in the predicted Tc, is computed using:

RMSE ¼ 1
N

1
T

XN
i

XT
t

e2t, i

 !1=2

(2)

where N and T denote the total number of participants in the relevant dataset and the total
number of Tc measurements per participant, respectively.

LoA, which indicates the limits within which 95% of all prediction errors should fall assuming
that the errors are normally distributed, is computed using:

LoA ¼ biasþ 1:96� SD of et, ið Þ (3)

where bias mean errorð Þ ¼ 1
N

1
T

PN
i
PT

t et, i and SD is the standard deviation of the difference
between the predicted and observed Tc.

3. Kalman filter models

In this section, we describe the KF approaches proposed by Buller and his co-authors [13–15],
as well as the EKF [11] and the OKF models developed by our group. In the state-space
models, Tc is not directly observed but considered as a latent state variable, while the other
measurable physiological variables (e.g. HR, ST) are used as observable exogenous variables.

3.1. Kalman filter

The KF algorithm uses observed exogenous variables to estimate the latent or unobservable
variable. The algorithm recursively operates on streams of noisy input variables to produce
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statistically optimal estimate of the state variable in a hypothesised state system. Without loss
of generality, the system can be represented by a state-space model:

Observation : Xt ¼ h Ytð Þ þ vt,vt � N 0;Rð Þ, (4)

Time update : Yt ¼ ϕ0 þ ϕ1Yt�1 þ θ1Xt�1 þ θ2Ut�1 þ et, et � N 0;σ2� �
, (5)

Transition : Yt ¼ g Yt�1;Ut�1ð Þ þ ωt,ωt � N 0;Qð Þ, (6)

where the functions h(�) and g(�) are differentiable for each state. The transition function is
derived from the observation function and the time update equations. The innovations vt, et
and ωt are assumed to follow a Gaussian distribution with mean zero and constant variance.
The partial derivatives of the Jacobian matrix can be derived as:

Gt ¼ ∂g
∂Y

����byt�1,ut�1

(7)

Ht ¼ ∂h
∂Y

����by∗
t

: (8)

The KF algorithm consists of two steps: predict and update. At any forecast origin t, we have.

Predict:

by∗
t ¼ g byt�1;ut�1

� �
(9)

P∗
t ¼ GtPt�1GT

t þQ (10)

Update:

byt ¼ by∗
t þ Kt xt � h by∗

t

� �� �
(11)

Pt ¼ 1� KtHtð ÞP∗
t (12)

where the Kalman Gain Kt ¼ P∗
t H

T
t HtP∗

t H
T
t þ R

� ��1
.

Buller et al. [13] proposed a KF model to predict Tc by tracking the observed exogenous HR
time series. The KF model is represented as:

Tct ¼ φ0 þ φ1Tct�1 þ et, et � N 0;σ2
1

� �
(13)

HRt ¼ α1 þ α2Tct þ vt,var vtð Þ ¼ R: (14)

To incorporate the nonlinear dependence between Tc and HR, Buller et al. [14, 15] further pro-
posed a quadratic state space model, which was found to provide better fit in real data analysis:

Tct ¼ φ0 þ φ1Tct�1 þ et, et � N 0;σ2
1

� �
(15)

HRt ¼ α1 þ α2Tct þ α3Tc2t þ vt,var vtð Þ ¼ R: (16)
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3.2. Extended Kalman filter

Our group extended the aforementioned work by proposing an EKF model in which both HR
and ST are considered in the time update function and the nonlinear dependence is used in the
time update function [11]. Moreover, work-rest regime-switching models were proposed to
describe the different Tc dependency on HR and ST during the march (work) and the recess
(rest) states. By permitting different formulations for the march and the rest time periods, we
were able to harness the a priori knowledge of the work-rest cycles in the developmental data
to enhance Tc estimates. Our EFK model is formulated as follows:

EKF:

March workð Þ : Tct ¼ φ0 þ φ1Tct�1 þ φ2HRt�1 þ φ3STt�1 þ et, et � N 0;σ2
1

� �

HRt ¼ α1 þ α2Tct þ α3Tc2t þ α4Tc3t þ vt,var vtð Þ ¼ R1
(17)

Recess restð Þ : Tct ¼ ϕ0 þ ϕ1Tct�1 þ ϕ2HRt�1 þ ϕ3STt�1 þ et, et � N 0;σ2
2

� �

HRt ¼ β1 þ β2Tct þ β3Tc
2
t þ β4Tc

3
t þ vt,var vtð Þ ¼ R2

(18)

3.3. Online Kalman filter

The classical KF-type models depend on the previous forecasts of Tc, which may introduce
significant uncertainty in the estimates when the forecast horizon increases and the prediction
errors accumulate. To avoid concatenating forecast errors, we propose using a direct predic-
tive model that relies on the dependence of Tc on its initial value and the latest information of
the observed exogenous variables. We name this direct predictive model the online KF (OKF)
model. Similar to the EFKmodel, the OKFmodel incorporated a regime-switching framework
to better account for the varying dependence of Tc on the observed exogenous variables
during work and rest periods. At each stage, the latest values of Tc, HR and ST are used to
predict Tc:

OKF:

March workð Þ : Tct ¼ φ0t þ φ1tTc0 þ φ2tHRt�1 þ φ3tSTt�1 þ e1t, e1t � N 0;σ2
1t

� �
(19)

Recess restð Þ : Tct ¼ ϕ0t þ ϕ1tTc0 þ ϕ2tHRt�1 þ ϕ3tSTt�1 þ e2t, e2t � N 0;σ2
2t

� �
(20)

The EKF and the OKF models were seeded with the actual starting Tc as measured by the
ingestible thermometer capsule, with the assumption that initial Tc during real-life events
could be either estimated or measured prior to the start of a physical activity.

4. Results

A total of 17,646 Tc-HR-ST data points were available for model development. The mean and
range of Tc were 38.2 and [32.0, 40.1] oC, respectively. Approximately 5% of all Tc measure-
ments were greater than or equal to 39.0�C.
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statistically optimal estimate of the state variable in a hypothesised state system. Without loss
of generality, the system can be represented by a state-space model:

Observation : Xt ¼ h Ytð Þ þ vt,vt � N 0;Rð Þ, (4)

Time update : Yt ¼ ϕ0 þ ϕ1Yt�1 þ θ1Xt�1 þ θ2Ut�1 þ et, et � N 0;σ2� �
, (5)

Transition : Yt ¼ g Yt�1;Ut�1ð Þ þ ωt,ωt � N 0;Qð Þ, (6)
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∂Y
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(7)
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∂Y

����by∗
t

: (8)
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� �
(9)
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t þQ (10)
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t

� �� �
(11)

Pt ¼ 1� KtHtð ÞP∗
t (12)
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T
t HtP∗

t H
T
t þ R

� ��1
.

Buller et al. [13] proposed a KF model to predict Tc by tracking the observed exogenous HR
time series. The KF model is represented as:

Tct ¼ φ0 þ φ1Tct�1 þ et, et � N 0;σ2
1

� �
(13)

HRt ¼ α1 þ α2Tct þ vt,var vtð Þ ¼ R: (14)

To incorporate the nonlinear dependence between Tc and HR, Buller et al. [14, 15] further pro-
posed a quadratic state space model, which was found to provide better fit in real data analysis:

Tct ¼ φ0 þ φ1Tct�1 þ et, et � N 0;σ2
1
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(15)

HRt ¼ α1 þ α2Tct þ α3Tc2t þ vt,var vtð Þ ¼ R: (16)
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3.2. Extended Kalman filter

Our group extended the aforementioned work by proposing an EKF model in which both HR
and ST are considered in the time update function and the nonlinear dependence is used in the
time update function [11]. Moreover, work-rest regime-switching models were proposed to
describe the different Tc dependency on HR and ST during the march (work) and the recess
(rest) states. By permitting different formulations for the march and the rest time periods, we
were able to harness the a priori knowledge of the work-rest cycles in the developmental data
to enhance Tc estimates. Our EFK model is formulated as follows:

EKF:

March workð Þ : Tct ¼ φ0 þ φ1Tct�1 þ φ2HRt�1 þ φ3STt�1 þ et, et � N 0;σ2
1
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2

� �
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3.3. Online Kalman filter

The classical KF-type models depend on the previous forecasts of Tc, which may introduce
significant uncertainty in the estimates when the forecast horizon increases and the prediction
errors accumulate. To avoid concatenating forecast errors, we propose using a direct predic-
tive model that relies on the dependence of Tc on its initial value and the latest information of
the observed exogenous variables. We name this direct predictive model the online KF (OKF)
model. Similar to the EFKmodel, the OKFmodel incorporated a regime-switching framework
to better account for the varying dependence of Tc on the observed exogenous variables
during work and rest periods. At each stage, the latest values of Tc, HR and ST are used to
predict Tc:
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March workð Þ : Tct ¼ φ0t þ φ1tTc0 þ φ2tHRt�1 þ φ3tSTt�1 þ e1t, e1t � N 0;σ2
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� �
(19)

Recess restð Þ : Tct ¼ ϕ0t þ ϕ1tTc0 þ ϕ2tHRt�1 þ ϕ3tSTt�1 þ e2t, e2t � N 0;σ2
2t

� �
(20)

The EKF and the OKF models were seeded with the actual starting Tc as measured by the
ingestible thermometer capsule, with the assumption that initial Tc during real-life events
could be either estimated or measured prior to the start of a physical activity.

4. Results

A total of 17,646 Tc-HR-ST data points were available for model development. The mean and
range of Tc were 38.2 and [32.0, 40.1] oC, respectively. Approximately 5% of all Tc measure-
ments were greater than or equal to 39.0�C.

Kalman Filter Models for the Prediction of Individualised Thermal Work Strain
http://dx.doi.org/10.5772/intechopen.71205

125



4.1. Final model

For the sake of illustration, parameter estimates for the final EKF and OKF models trained
using data from Study 1 (Laboratory Study) are reproduced in this paper. The EKF model is
described in the equations below.

March workð Þ : Tct ¼ 0:36630þ 0:98368Tct�1 þ 0:00038HRt�1

þ 0:00586STt�1 þ et, et � N 0; 0:00051ð Þ
HRt ¼ 6793:30385� 673:08458Tct þ 21:01836Tc2t � 0:20822Tc3t þ vt, var vtð Þ ¼ 280:36443

(21)

Recess restð Þ : Tct ¼ 0:32403þ 0:98296Tct�1 þ 0:00060HRt�1

þ 0:00604STt�1 þ et, et � N 0; 0:00126ð Þ
HRt ¼ 380042:09964� 29325:80131Tct þ 753:95823Tc2t � 6:45618Tc3t þ vt,var vtð Þ ¼ 292:55107:

(22)

The transition functions are:

March workð Þ : Tct ¼ 2:96438þ 0:72626Tct�1 þ 0:00804Tc2t�1 � 0:00008Tc3t�1

þ 0:00586STt�1 þ et, et � N 0; 0:00055ð Þ, (23)

Recess restð Þ : Tct ¼ 228:97647� 16:66092Tct�1 þ 0:45362Tc2t�1

� 0:00388Tc3t�1 þ 0:00604STt�1 þ et, et � N 0; 0:00136ð Þ: (24)

The equations for the final OKF model are provided below, with different values for the four
model parameters [φ0t,φ1t,φ2t,φ3t] at different time points. The corresponding author may be
contacted for values of these parameters.

March workð Þ : Tct ¼ φ0t þ φ1tTc0 þ φ2tHRt�1 þ φ3tSTt�1 þ e1t, e1t � N 0;σ2
1t

� �
(25)

Recess restð Þ : Tct ¼ ϕ0t þ ϕ1tTc0 þ ϕ2tHRt�1 þ ϕ3tSTt�1 þ e2t, e2t � N 0;σ2
2t

� �
: (26)

4.2. In-sample analysis

Figure 1 and Table 1 summarise the performance of the final EKF model and the final OKF
model on the study 1 data. Figure 2 and Table 2 summarise the performance of the final EKF
model and the final OKF model on the study 2 data.

For both study 1 and study 2, the agreement between the observed and predicted Tc across the
range of Tc was greater in the OKF model compared to the EKF model. For instance, under
study 1, the LoA attained with the OKF model was [�0.49, 0.49]�C while that derived from the
EKF model was [�0.70, 0.74]�C. For Study 2, the scatter plot of the observed versus predicted
Tc departed from the line of identity markedly (observed Tc = 0.42 � predicted Tc + 22.15;
units =

�
C) under the EKF model. By contrast, the scatter plot of the observed Tc versus the

OKF model-predicted Tc for the same set of data was randomly distributed along the line of
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identity. Combined across study 1 and study 2, the OKF model reduced the RMSE by 0.18�C.
In addition, for both study 1 and study 2, the proportions of prediction errors within �0.1, 0.3
and 0.5�C under the OKF model were also higher compared to those under the EKF model. In
particular, the PTA �0.3�C under the OKF model was 75%, which was about 25% higher
compared to the PTA �0.3�C under the EKF model. Collectively, the results indicated that the
overall performance of the OKF model was superior to that of the EKF model based on the
developmental data.

Figure 1. Diagnostic plots for assessment of the EKF (A) and OKF (B) models trained using study 1 data. For each model,
the left side subplot shows the scatter plot of observed Tc versus predicted Tc together with the line of identity (black line)
and the loess smooth plot (gray dashed line); the middle subplot shows the Bland-Altman plot showing bias (solid line)
and �1.96 � SD (dashed line); and the right side subplot shows the histogram of prediction error.

Model RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

EKF 0.37 0.02 � 0.72 24 60 82

OKF 0.25 0.00 � 0.49 40 78 95

Table 1. RMSE, LoA and PTA for the final EKF and OKF models trained using study 1 data.
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4.1. Final model

For the sake of illustration, parameter estimates for the final EKF and OKF models trained
using data from Study 1 (Laboratory Study) are reproduced in this paper. The EKF model is
described in the equations below.

March workð Þ : Tct ¼ 0:36630þ 0:98368Tct�1 þ 0:00038HRt�1

þ 0:00586STt�1 þ et, et � N 0; 0:00051ð Þ
HRt ¼ 6793:30385� 673:08458Tct þ 21:01836Tc2t � 0:20822Tc3t þ vt, var vtð Þ ¼ 280:36443

(21)

Recess restð Þ : Tct ¼ 0:32403þ 0:98296Tct�1 þ 0:00060HRt�1

þ 0:00604STt�1 þ et, et � N 0; 0:00126ð Þ
HRt ¼ 380042:09964� 29325:80131Tct þ 753:95823Tc2t � 6:45618Tc3t þ vt,var vtð Þ ¼ 292:55107:

(22)

The transition functions are:

March workð Þ : Tct ¼ 2:96438þ 0:72626Tct�1 þ 0:00804Tc2t�1 � 0:00008Tc3t�1

þ 0:00586STt�1 þ et, et � N 0; 0:00055ð Þ, (23)

Recess restð Þ : Tct ¼ 228:97647� 16:66092Tct�1 þ 0:45362Tc2t�1

� 0:00388Tc3t�1 þ 0:00604STt�1 þ et, et � N 0; 0:00136ð Þ: (24)

The equations for the final OKF model are provided below, with different values for the four
model parameters [φ0t,φ1t,φ2t,φ3t] at different time points. The corresponding author may be
contacted for values of these parameters.

March workð Þ : Tct ¼ φ0t þ φ1tTc0 þ φ2tHRt�1 þ φ3tSTt�1 þ e1t, e1t � N 0;σ2
1t

� �
(25)

Recess restð Þ : Tct ¼ ϕ0t þ ϕ1tTc0 þ ϕ2tHRt�1 þ ϕ3tSTt�1 þ e2t, e2t � N 0;σ2
2t
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: (26)

4.2. In-sample analysis

Figure 1 and Table 1 summarise the performance of the final EKF model and the final OKF
model on the study 1 data. Figure 2 and Table 2 summarise the performance of the final EKF
model and the final OKF model on the study 2 data.

For both study 1 and study 2, the agreement between the observed and predicted Tc across the
range of Tc was greater in the OKF model compared to the EKF model. For instance, under
study 1, the LoA attained with the OKF model was [�0.49, 0.49]�C while that derived from the
EKF model was [�0.70, 0.74]�C. For Study 2, the scatter plot of the observed versus predicted
Tc departed from the line of identity markedly (observed Tc = 0.42 � predicted Tc + 22.15;
units =

�
C) under the EKF model. By contrast, the scatter plot of the observed Tc versus the

OKF model-predicted Tc for the same set of data was randomly distributed along the line of
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identity. Combined across study 1 and study 2, the OKF model reduced the RMSE by 0.18�C.
In addition, for both study 1 and study 2, the proportions of prediction errors within �0.1, 0.3
and 0.5�C under the OKF model were also higher compared to those under the EKF model. In
particular, the PTA �0.3�C under the OKF model was 75%, which was about 25% higher
compared to the PTA �0.3�C under the EKF model. Collectively, the results indicated that the
overall performance of the OKF model was superior to that of the EKF model based on the
developmental data.

Figure 1. Diagnostic plots for assessment of the EKF (A) and OKF (B) models trained using study 1 data. For each model,
the left side subplot shows the scatter plot of observed Tc versus predicted Tc together with the line of identity (black line)
and the loess smooth plot (gray dashed line); the middle subplot shows the Bland-Altman plot showing bias (solid line)
and �1.96 � SD (dashed line); and the right side subplot shows the histogram of prediction error.

Model RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

EKF 0.37 0.02 � 0.72 24 60 82

OKF 0.25 0.00 � 0.49 40 78 95

Table 1. RMSE, LoA and PTA for the final EKF and OKF models trained using study 1 data.
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4.3. Out-of-sample analysis

Tables 3–6 report the RMSE, LoA and PTA �0.1, 0.3 and 0.5�C obtained in each of the four
index sets under study 1 and study 2 based on the EKF and OKF approaches. Similar to the in-
sample analysis, the comparison between the observed and predicted Tc showed a smaller
RMSE and a greater agreement under the OKF model compared to the EKF model.

When averaged across all the index sets and both study 1 and study 2, the RMSE fell by 0.03�C
and the PTA increased by 13% under the OKF model vis-a-vis the EKF model. In addition, the
overall agreement between the observed and predicted Tc was closer under the OKF model.

Figure 2. Diagnostic plots for assessment of the EKF (A) and OKF (B) models trained using study 2 data. For each model,
the left side subplot shows the scatter plot of observed Tc versus predicted Tc together with the line of identity (black line)
and the loess smooth plot (gray dashed line); the middle subplot shows the Bland–Altman plot showing bias (solid line)
and �1.96 � SD (dashed line); and the right side subplot shows the histogram of prediction error.

Model RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

EKF 0.51 0.07 � 0.99 18 49 70

OKF 0.27 0.00 � 0.54 33 75 92

Table 2. RMSE, LoA and PTA for the final EKF and OKF models trained using study 2 data.
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These trends were also evident at the index set level. Using index set 1 of study 1 dataset as an
example, the RMSE under the EKF model was 0.41�C, which was larger compared to the OKF
model’s RMSE (0.23�C). As a further indication of the superior performance of the OKF model,

Index Set RMSE (�C) LoA (�C) PTA � 0.1 �C (%) PTA � 0.3 �C (%) PTA � 0.5 �C (%)

1 0.53 0.00 � 1.04 27 70 87

2 0.45 0.18 � 0.81 26 61 83

3 0.39 �0.06 � 0.75 31 68 87

4 0.56 �0.06 � 1.09 24 65 84

Overall 0.48 0.01 � 0.92 27 66 85

Table 6. RMSE, LoA and PTA for the four different study 2 index sets derived using the OKF model.

Index Set RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

1 0.23 �0.06 � 0.43 40 80 98

2 0.45 0.08 � 0.87 23 57 75

3 0.31 �0.08 � 0.58 32 69 89

4 0.34 0.05 � 0.65 29 74 91

Overall 0.33 0.00 � 0.63 31 70 88

Table 4. RMSE, LoA and PTA for the four different Study 1 index sets derived using the OKF model.

Index Set RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

1 0.47 �0.02 � 0.92 21 55 76

2 0.47 0.25 � 0.78 17 48 70

3 0.43 �0.08 � 0.83 23 57 80

4 0.58 0.07 � 1.12 12 36 59

Overall 0.49 0.06 � 0.91 18 49 71

Table 5. RMSE, LoA and PTA for the four different study 2 index sets derived using the EKF model.

Index Set RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

1 0.41 0.19 � 0.71 33 62 72

2 0.42 0.04 � 0.82 18 57 78

3 0.30 0.06 � 0.58 34 69 87

4 0.37 �0.13 � 0.68 20 53 87

Overall 0.38 0.04 � 0.70 27 60 81

Table 3. RMSE, LoA and PTA for the four different study 1 index sets derived using the EKF model.
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RMSE and a greater agreement under the OKF model compared to the EKF model.

When averaged across all the index sets and both study 1 and study 2, the RMSE fell by 0.03�C
and the PTA increased by 13% under the OKF model vis-a-vis the EKF model. In addition, the
overall agreement between the observed and predicted Tc was closer under the OKF model.
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the LoA under the OKF model was narrower compared to that under the EKF model [(�0.49,
0.37)

�
C versus (�0.52, 0.9)

�
C].

Figure 3 shows a comparison between the mean observed and EKF/OKF-predicted Tc time
series for study 1 and study 2. The results showed that the mean Tc versus time profile
generated by the OKF model largely matched that of the observed mean Tc time series. By
contrast, mean Tc predictions produced from the EKF model were observed to deviate from
the observed mean Tc and lie outside of the 95% confidence interval of the Tc measurements at
various time periods during the foot march.

Figure 4 compares the mean error time series from the EKF and OKF models in study 1 and
study 2. While the mean errors (prediction bias) were observed to be generally stable and
contained to under approximately �0.1�C across all time instances for the OKF model, those of
the EKF model were comparatively larger in magnitude. In addition, the mean error from the
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EKF model was also observed to expand in magnitude with increasing time for both the
laboratory and field datasets.

5. Discussion

In this study, the EKF and OKF models were validated against Tc measurements obtained from
volunteers who participated in a high intensity foot march typically performed in the military.
When pooled across study 1 and study 2, approximately 5% of all Tc measurements were equal
to or greater than 39�C. This represented a respectable data volume for model assessment at the
high thermal work zone. Using only measures of HR and ST, our results showed that the
models estimated Tc with a small overall bias of 0.03�C, which was within the individual
physiological variation of �0.25�C [17]. In addition, the overall RMSE of the EKF and OKF
models (0.31 and 0.45�C) were also comparable to those found in other comparisons of differ-
ent measures of human core temperature (rectal probe versus oesophageal probe, rectal probe
versus thermometer capsule and oesophageal probe versus thermometer capsule) [18].

The aforementioned observations notwithstanding, our results clearly indicated differences in
the accuracy of the EKF and OKF approaches in Tc time series prediction during the studied
high intensity foot march in both laboratory and outfield conditions. Classical Kalman filter
strategies fundamentally rely on known model and noise information. Consequently, as
depicted by results from the EKF approach, they cannot compensate for the effect of model-
process mismatch and concatenating noise uncertainty. Our results showed that the OKF
approach can estimate Tc continuously across time with less error than EKF model. Moreover,
prediction bias arising from the OKF model appeared to be more stable in magnitude over
time compared to that of the EKF model. This is significant in the practical settings because a
progressively larger prediction error under a longer forecast horizon may lead to more false
positives or false negatives for high thermal work strain. If the EKF model is deployed for
tracking individualised heat strain, healthy workers with no imminent heat injury risk may be
withdrawn from the physical activity prematurely (reducing work efficiency and processes) or
actual heat casualties may not be identified, with the second scenario (false negatives) a more
problematic one compared to the first (false positives). This makes the OKF method a more
promising approach than the EKF method for predicting Tc based on real-time wearable
sensor data in a continuous manner.

Technologies that reliably assess Tc in a non-invasive manner are expected to play a crucial role
in supporting the development of tools, methods and techniques to enhance productivity,
safety and well-being of military, first responders and industrial workers. During military
training and operations, real-time monitoring of Tc can allow each soldier’s thermo-
physiological state to be assessed, which permits commanders to take effective measures to
intervene and mitigate heat injuries. Monitoring of Tc of every firefighter in the fireground can
provide objective information to either empower the trooper to stay in longer to finish a job or
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to or greater than 39�C. This represented a respectable data volume for model assessment at the
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physiological variation of �0.25�C [17]. In addition, the overall RMSE of the EKF and OKF
models (0.31 and 0.45�C) were also comparable to those found in other comparisons of differ-
ent measures of human core temperature (rectal probe versus oesophageal probe, rectal probe
versus thermometer capsule and oesophageal probe versus thermometer capsule) [18].

The aforementioned observations notwithstanding, our results clearly indicated differences in
the accuracy of the EKF and OKF approaches in Tc time series prediction during the studied
high intensity foot march in both laboratory and outfield conditions. Classical Kalman filter
strategies fundamentally rely on known model and noise information. Consequently, as
depicted by results from the EKF approach, they cannot compensate for the effect of model-
process mismatch and concatenating noise uncertainty. Our results showed that the OKF
approach can estimate Tc continuously across time with less error than EKF model. Moreover,
prediction bias arising from the OKF model appeared to be more stable in magnitude over
time compared to that of the EKF model. This is significant in the practical settings because a
progressively larger prediction error under a longer forecast horizon may lead to more false
positives or false negatives for high thermal work strain. If the EKF model is deployed for
tracking individualised heat strain, healthy workers with no imminent heat injury risk may be
withdrawn from the physical activity prematurely (reducing work efficiency and processes) or
actual heat casualties may not be identified, with the second scenario (false negatives) a more
problematic one compared to the first (false positives). This makes the OKF method a more
promising approach than the EKF method for predicting Tc based on real-time wearable
sensor data in a continuous manner.

Technologies that reliably assess Tc in a non-invasive manner are expected to play a crucial role
in supporting the development of tools, methods and techniques to enhance productivity,
safety and well-being of military, first responders and industrial workers. During military
training and operations, real-time monitoring of Tc can allow each soldier’s thermo-
physiological state to be assessed, which permits commanders to take effective measures to
intervene and mitigate heat injuries. Monitoring of Tc of every firefighter in the fireground can
provide objective information to either empower the trooper to stay in longer to finish a job or
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warn the trooper to exit the fireground sooner. In addition, the use of physiological monitor-
ing, coupled with work physiology and ergonomics concepts, can foster the creation of inno-
vative workforce management procedures allowing enhancements not only in productivity,
but also in civilian workers’ well-being and safety.

The main limitation of the present study is the usage of only Tc measurements from the
military foot march for modelling. Such developmental data may limit the model’s ability to
reliably calculate Tc of human subjects in non-military tasks, e.g. first responders operating in
uncompensable heat stress environments, civilian construction workers and professional
sports athletes geared with light clothing. In the future, the strong influence of ST on Tc in our
mathematical model will be verified in human subjects operating in clothing systems that
either severely limit heat dissipation or facilitate sweat evaporation under less humid condi-
tions. The current study did not assess the reliability of the model on repeated Tc measures
derived on different trial occasions. Future work will include testing our Kalman filter model’s
reliability and precision on different test occasions based on repeated measures data from the
same subjects. Last, while we showed that the OKF approach can estimate Tc with less error
than the EKF model, appreciable variability in the Tc still remains unexplained by HR and ST.
Future work will include the evaluation of breathing rate to improve Tc estimations since
hyperthermia has been shown to increase ventilation [19].

6. Conclusions

In this paper, we have reported two different Kalman filter approaches for predicting real-time
Tc trajectories of subjects engaged in a high intensity physical activity. In particular, we
introduced the OKF model where the time update equation depends only on the initial value
of Tc and time-current values of the exogenous variables. Both models leverage time-varying
values of ST and HR to predict subject-specific Tc. Overall, Tc predictions from the OKF model
matched the observed Tc better compared to those from the EFK models. Future work includes
testing and qualification of our model against additional heat strain datasets including those
derived from non-foot march tasks, and investigation of the influence of further exogenous
observations, such as body acceleration, on Tc. While this approach may not be a complete
replacement for direct Tc measurement, it offers a simple and promising new method to
estimate subject-specific Tc in a non-invasive manner, and is accurate and practical enough
for real-time monitoring of thermal work strain.
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Abstract

This chapter aims to dynamically improve the method of predicting financial distress
based on Kalman filtering. Financial distress prediction (FDP) is an important study area
of corporate finance. The widely used discriminant models currently for financial dis-
tress prediction have deficiencies in dynamics. Based on the state-space method, we
establish two models that are used to describe the dynamic process and discriminant
rules of financial distress, respectively, that is, a process model and a discriminant
model. These two models collectively are called dynamic prediction models for financial
distress. The operation of the dynamic prediction is achieved by Kalman filtering algo-
rithm, and further, a general n-step-ahead prediction algorithm based on Kalman filter-
ing is derived for prospective prediction. We also conduct an empirical study for China’s
manufacturing industry, and the results have proved the accuracy and advance of
predicting financial distress in such case.

Keywords: financial distress prediction, pattern recognition, state space model,
stochastic process, optimal estimation

1. Introduction

Research on financial distress prediction (FDP) is an important area of corporate finance. Early
prediction methods are univariate analysis (UA), multiple discriminant analysis (MDA), logis-
tic model, probit model, and so on [1–5]. With the development of computer technology, some
new methods based on artificial intelligence technology with distributed computing capabili-
ties that can deal with problems of nonlinear systems are widely introduced into the field of
financial distress prediction. These methods include neural network (NN), genetic algorithm
(GA), rough set theory (RST), case-based reasoning (CBR) and support vector machine (SVM),
and so on [6–14]. Each model established for financial distress prediction, whether based on
statistical methods or artificial intelligence methods, has advantages and disadvantages under
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1. Introduction

Research on financial distress prediction (FDP) is an important area of corporate finance. Early
prediction methods are univariate analysis (UA), multiple discriminant analysis (MDA), logis-
tic model, probit model, and so on [1–5]. With the development of computer technology, some
new methods based on artificial intelligence technology with distributed computing capabili-
ties that can deal with problems of nonlinear systems are widely introduced into the field of
financial distress prediction. These methods include neural network (NN), genetic algorithm
(GA), rough set theory (RST), case-based reasoning (CBR) and support vector machine (SVM),
and so on [6–14]. Each model established for financial distress prediction, whether based on
statistical methods or artificial intelligence methods, has advantages and disadvantages under
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different conditions. Let us take the most widely used multiple discriminant analysis (MDA)
and back-propagation neural network (BPNN) for example. MDA has the advantage of sim-
plicity and good interpretation, but the deficiency in its application is limited by strict assump-
tions that sometimes cannot be satisfied. Besides, MDA is a static discriminant model [2, 3, 6,
15, 20]. For the application of BPNN, it does not need any probability distribution assumption.
BPNN is considered as an effective tool of pattern recognition for nonlinear systems. There-
fore, many researchers have tried to apply triple BPNN in financial distress prediction, using
the nonlinear pattern recognition capability of BPNN for classification of different financial
state [7, 8, 15].

The prediction often achieved through a cross-sectional analysis at different time points. That is,
the sample data of period t�1, t�2, … before financial distress are studied by BPNN, respec-
tively, and the features are extracted, based on what the judgment for the financial state of next
new period is made [16, 17, 20]. This treatment is a relatively complete cross-sectional analysis.
But the conclusions on discrimination among different time points are lack of logistic links.
Therefore, this prediction is not completely dynamic. Furthermore, BPNN is a static neural
network even when directly used in time-series prediction (Neural networks can be divided into
static or dynamic neural networks based on whether they contain feedback loops or delay.
BPNN is a backpropagation network without feedback and belongs to static neural networks.).
There are some inherent problems such as overfitting, for example, the fitting error of training
data has reduced, but the prediction error has increased at the same time. Even if the data are
normalized, the effect is not satisfactory when the testing data are not sufficient [13, 18–20].

Actually, corporate financial distress is a gradual and cumulative process, which is developed
from a healthy state. The mutation is often the result at which the gradual change and
cumulation have reached the critical condition. It is neither reasonable nor logical if only the
cross-sectional data at the time point prior to the occurrence of financial distress are used to
make a determination for the corporate future state. It should take into account two aspects at
least when conducting the research on financial distress prediction: firstly, the alternative data
for prediction should contain all the historical information; secondly, the prediction method is
dynamic designed for financial distress characterized by cumulative variation [21–23]. How-
ever, the current discriminant models have some deficiencies in dynamic prediction. Also,
there is a problem of massive data processing. This chapter attempts to make a dynamic
improvement on prediction methods for financial distress based on Kalman filtering algorithm
in order to solve the above problems.

The main contribution of the paper is that it constructs a state-space model of corporate
financial distress from the perspective of the cumulative effect of historical information on
current state and improves Kalman filtering algorithm for dynamic prediction. A whole pro-
cess of dynamic prediction for corporate financial distress is developed from a long period of
time, and time-series data of high-frequency are collected for optimal estimation of financial
state, which is seen as a stochastic process. The advantage of the model is proved by an
empirical research, and the result shows that it can give relatively accurate warning before
the occurrence of financial distress.

The rest of this chapter is organized as follows. Dynamic prediction models consisting of a
process model and a discriminant model based on Kalman filtering algorithm are described in
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Section 2. Then, a whole process of dynamic prediction for corporate financial distress is
elaborated in Section 3. Section 4 presents empirical analysis for China’s manufacturing indus-
try. Section 5 draws conclusions and discusses future research.

2. Dynamic prediction models based on Kalman filtering algorithm

Based on the state-space method, we establish two models, being used to describe the dynamic
process and discriminant rules of financial distress, respectively, that is, a process model and a
discriminant model. These two models collectively are called dynamic prediction models for
financial distress. We see the evolution of financial distress for a company as a stochastic
process and establish a process model, which is used to describe the dynamic process of
development of the financial state. We define the financial state as a set of vectors, which
summarizes all the information necessary about the past behavior of the company except for
the external effects of the inputs, so that it can uniquely describe the behavior of the company
in the near future [24]. The financial state of a company often cannot be observed directly, but
only some signal indicators associated with the financial state can be observed. Therefore, we
establish a discriminant model, which is used to describe the correlation between the financial
state and the signal indicators. The discriminant model can be a recursive form of any statisti-
cal model or artificial intelligence model, theoretically. At first, we take the linear models,
which are simple and intuitive as an example and establish dynamic prediction models for
financial distress, as

Xt ¼ At t�1j Xt�1 þWt�1 (1)

Zt ¼ HtXt þ Vt (2)

where Xt is the financial state of a company in period t; Zt is the signal indicators of the
company in period t; Wt-1 is the process noise of the financial state in period t�1; Vt is the
observation noise of the signal indicators in period t; At|t� 1 is used to describe the dynamic
process of the financial state transferring from period t�1 to t; Ht is used to describe the
mathematical relations between the financial state and the signal indicators in period t. Eq. (1)
is a process model; and Eq. (2) is a discriminant model.

Assume that the process noise and the observation noise are Gaussian white noises, which are
mutually independent and normally distributed, i.e.

E Wt½ � ¼ 0, E WtWT
j

h i
¼ Qtδtj

E Vt½ � ¼ 0, E VtVT
j

h i
¼ Rtδtj

E WtVT
j

h i
¼ 0

8>>>>><
>>>>>:

(3)

where, Qt is a p � p-dimensional symmetric nonnegative definite covariance matrix of process
noise Wt; Rt is a m � m-dimensional symmetric positive definite covariance matrix of observa-
tion noise Vt; δtj is Kronecker - δ function.
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The above equations can be solved by Kalman filtering algorithm. The Kalman filter is named
after Rudolph E. Kalman, who in 1960 published his famous paper describing a recursive
solution to the discrete-data linear filtering problem. The Kalman filter is essentially a set of
mathematical equations that implement a predictor–corrector type estimator that is optimal in
the sense that it minimizes the estimated error covariance, when some presumed conditions
are met [25, 26]. Kalman filter is widely used for its relative simplicity and robust nature.
Rarely do the conditions necessary for optimality actually exist, and yet, the filter apparently
works well for many applications in spite of this situation. Application of Kalman filter in
dynamic prediction for corporate financial state consists of five steps [27, 28]:

The first step is to compute the one-step prediction of the financial state bXt t�1j under the

conditions of known bXt�1 t�1j , which is the optimal estimation of the financial state at time t�1
bXt t�1j ¼ At t�1j bXt�1 t�1j (4)

The second step is to compute the error covariance matrix Pt|t� 1 for one-step prediction

Pt t�1j ¼ At t�1j Pt�1 t�1j AT
t t�1j þQt�1 (5)

The third step is to compute the Kalman gain Kt, which is a blending factor that is used to

adjust the discrepancy between the predicted observation HtbXt t�1j and the actual observation

Zt, in order to obtain the optimal estimation bXt tj closer to the actual financial state

Kt ¼ Pt t�1j HT
t HtPt t�1j HT

t þ Rt
� ��1

(6)

The fourth step is to correct the one-step predicted financial state bXt t�1j according to the

principle of minimum error covariance and thus obtain the optimal estimation bXt tj of the
financial state

bXt tj ¼ bXt t�1j þ Kt Zt �HtbXt t�1j
h i

(7)

The fifth step is to compute the error covariance matrix Pt|t of the updated financial state

estimation bXt tj

Pt tj ¼ I � KtHt½ �Pt t�1j (8)

These are the basic equations of Kalman filtering for a stochastic linear discrete financial
system. The actual filtering process is an ongoing “predicting-correcting” process of a recur-
sive nature. Figure 1 below offers a complete picture of the operation of the Kalman filter in
dynamic prediction for corporate financial state.

The Kalman filter does not require storing large amount of data in solving the problem. Once
new data are observed, new filtering value can be calculated at any time. Therefore, this
method facilitates real-time processing and is easy to implement on the computer.
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3. Awhole process of dynamic prediction for corporate financial distress

As previously described, corporate financial distress is a gradual and cumulative process,
which is developed from a healthy state, and so the prediction should be long-term and
continuous and the continuously updated time-series data should be collected for the dynamic
prediction, which could be the fresh input into the Kalman filter in order to obtain the optimal
estimation closer to the actual state. The whole process of dynamic prediction for corporate
financial distress is described as follows.

From Figure 2, we can see that if we want to predict the corporate financial state at time t + 2,
we just need to know the optimal estimation of the corporate financial state at time t and the
signal indicators observed at time t + 1. The rest may be deduced by analogy; if we want to
predict the corporate financial state at time t + n, we just need to know the optimal estimation
of the corporate financial state at time t + n�2 and the signal indicators observed at time
t + n�1. This continuous prediction does not require saving the observed data in the past.
Every time the new signal indicators are observed, they are put into the Kalman filter as fresh.
It helps solve the problems of storing, calling, and processing the massive data and thus
greatly improving the speed of operation on the computer.

Further, if we want to predict the corporate financial state n-step ahead, we can obtain the n-step-
ahead prediction algorithm derived from the basic Kalman filtering algorithm according to the
dynamic prediction process described above.
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Figure 1. A complete picture of the operation of the Kalman filter in dynamic prediction for corporate financial state.
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dynamic prediction for corporate financial state.
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The general n-step-ahead prediction algorithm is derived as

bXtþn tj ¼ Atþn tþn�1j Atþn�1 tþn�2j ⋯Atþ1 tj bXt tj ¼
Yn

i¼1 Atþi tþi�1j bXt tj (9)

The n-step-ahead prediction error variance matrix is

Figure 2. A whole process of dynamic prediction for corporate financial distress.
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Ptþn tj ¼
Yn

i¼1 Atþi tþi�1j Pt tj
Yn

i¼1 A
T
tþi tþi�1j þ

Yn

j¼2 Atþj tþj�1j Qt

Yn

j¼1 A
T
tþj tþj�1j þ⋯

þ Atþn tþn�1j Qtþn�2A
T
tþn tþn�1j þQtþn�1

(10)

Assume that the system parameters At andQt have nothing to do with the time, then the above
equations simplify to

bXtþn tj ¼ AnbXt tj (11)

Ptþn tj ¼ AnPt tj AT� �n þ An�1Q AT� �n�1 þ⋯þ AQAT þQ ¼ AnPt tj AT� �n

þ
Xnþ1

j¼2 Anþ1�jQ AT� �nþ1�j (12)

Based on the Eqs. (9)–(12), we could use data at shorter time interval to predict n-step ahead,
but the prerequisite of sufficiently long-term data to find out the trend of development of the
financial state should be satisfied.

In the dynamic prediction models for financial distress established in Section 2, we suppose that
the financial stateX cannot be observed. But in reality, whether the company is trapped in financial
distress at time t-1 and before can be known at time t, that is part ofX can be observed.We put this
part of observed information into a likelihood equation in order to improve the accuracy of
dynamic prediction. The probability of the company being trapped in financial distress is

P Xt > Scð Þ ¼
ð∞
S
p xtð Þdxt (13)

where, Sc is the critical value; xt + 1 equals etþ1 ¼ xtþ1 � bxtþ1 tj , and the latter is normally distrib-

uted with mean of 0 and variance of Ftþ1 ¼ Htþ1Ptþ1 tj HT
tþ1 þ Rtþ1. Then

p xtð Þ ¼ 1ffiffiffiffiffiffi
2π
p

Pt
e
�1

2
xt�x̂ t
Pt

� �2

(14)

If M is the last year that X can be observed, then the additional estimation equation is

l ¼ �NM
2

lg 2πð Þ � 1
2

XM
t¼1

lg Ftj j � 1
2

XM
t¼1

eTt Fet þ
XM
t¼1

lg P Xt > Scð Þ½ �δ tð Þ þ lg P Xt < Scð Þ½ � 1� δ tð Þ½ �f g

(15)

This additional estimation equation is used every year, no matter if 1 year is divided into n
periods. If standing at managers’ position and suppose we know the corporate financial state
at time t�1, when we stay at time t, and then the additional estimation equation can be
embedded in the general n-step-ahead prediction algorithm every time to help improve the
accuracy of dynamic prediction.
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4. Empirical analysis

4.1. Data description and experiment design

Manufacturing industry is a major industry in China. “Made in China” has an important
impact on the global economy. Therefore, prediction of corporate financial distress for China’s
manufacturing industry is of great significance. Generally, the manufacturing companies have
complete production processes, equilibrious production cycle, as well as a more stable trend of
development of the financial state. The characteristics of these companies can be well described
using the existing financial indicators, and the dynamic prediction method described above
can be put into practice for these manufacturing companies.

In this research, the data for our experiment are collected from the Shanghai Stock Exchange and
Shenzhen Stock Exchange databases in China. ST (special treatment) companies because of finan-
cial problems are selected as distress samples; meanwhile, companies of similar asset size that
have never been special treated are selected as healthy samples. The ST time is treated as period T.
For a 6-month interval, the data 8 years or 16 periods before STare selected as time-series sets for
the distress samples. The time span of the paired samples is the same as the distress samples.

According to the above principles, the data of 152 listed companies are collected, and the time
span is year 2002 to year 2009, year 2003 to year 2010, year 2004 to year 2011, respectively. A
total of 60 ST companies and 60 paired companies of the first half of year 2010 and 2011 are
treated as training set, which is used to derive the model. A total of 16 ST companies and 16
paired companies of the first half of year 2012 are treated as testing set, which is used to test the
effect of the model.

From the holistic perspective, we select 29 financial indicators covering four aspects of profit-
ability, solvency, management efficiency, and market reaction as alternative signal indicators.
The effect of the corporate financial problems may be amplified or reduced in information
transmission mechanism of the market, and the problems may be exposed to the open market
in advance or with a delay. If the problems are exposed in advance, the indicators can be used
as a pilot signal of financial distress prediction; if delayed exposure, it can also be served as
comprehensive evaluation of financial distress or the signal for the trend of development in the
future. These are indicators of market reaction. The 29 signal indicators are listed in Table 1.

A three-dimensional database is established consisting of 16 periods’ time-series data of the
above 152 sample enterprises, the financial state of which is represented by 27 signal indicators
each (As operating profit margin growth (Z5) and interest coverage ratio (Z12) have much
missing data, we ignore these two subsets of the data, leaving the rest 27 subsets.). The
dynamic prediction method described above is based on the trend of the time-series data. The
centralized tendency of signal indicators of profitability, solvency, management efficiency, and
market reaction is shown in Figures 3–6 (Some indicators of management efficiency and
market reaction show cyclical fluctuations, so we amend these indicators by smoothing.
Figures 5 and 6 have been amended.).

From Figures 3–6, we can see most indicators show a certain trend, which is the foundation of
dynamic prediction.
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Then, we use nonparametric test of Mann-Whitney U to find out when the difference between
distress samples and healthy samples occurs. The results show that the gap between the two is
maximized 2 years before ST time and the significant difference occurs 4 years before ST time,
that is, the earliest time to accurately predict the occurrence of financial distress should be
4 years before ST time.

Type Code Signal indicators

Profitability Z1 Operating profit margin

Z2 Net profit margin

Z3 Return on assets

Z4 Return on equity

Z5 Operating profit margin growth

Z6 Operating revenue growth

Z7 Total assets growth

Solvency Z8 Current ratio

Z9 Quick ratio

Z10 Cash debt ratio

Z11 Debt coverage ratio

Z12 Interest coverage ratio

Z13 Liabilities to assets ratio

Z14 Liabilities to equity ratio

Management efficiency Z15 Total assets turnover

Z16 Fixed asset turnover

Z17 Current assets turnover

Z18 Inventory turnover

Z19 Accounts receivable turnover

Z20 Cash ratio of main business

Z21 Cash return on assets

Market reaction Z22 Earnings per share

Z23 Net assets per share

Z24 Operating revenue per share

Z25 Capital reserve per share

Z26 Retained earnings per share

Z27 Price to book ratio

Z28 Equity to invested capital ratio

Z29 Net cash flow per share

Table 1. Comprehensive signal indicators of financial distress prediction.
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4. Empirical analysis

4.1. Data description and experiment design
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each (As operating profit margin growth (Z5) and interest coverage ratio (Z12) have much
missing data, we ignore these two subsets of the data, leaving the rest 27 subsets.). The
dynamic prediction method described above is based on the trend of the time-series data. The
centralized tendency of signal indicators of profitability, solvency, management efficiency, and
market reaction is shown in Figures 3–6 (Some indicators of management efficiency and
market reaction show cyclical fluctuations, so we amend these indicators by smoothing.
Figures 5 and 6 have been amended.).

From Figures 3–6, we can see most indicators show a certain trend, which is the foundation of
dynamic prediction.
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maximized 2 years before ST time and the significant difference occurs 4 years before ST time,
that is, the earliest time to accurately predict the occurrence of financial distress should be
4 years before ST time.
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Z9 Quick ratio

Z10 Cash debt ratio
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Management efficiency Z15 Total assets turnover
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Z18 Inventory turnover
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Z20 Cash ratio of main business

Z21 Cash return on assets

Market reaction Z22 Earnings per share

Z23 Net assets per share

Z24 Operating revenue per share
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Z26 Retained earnings per share

Z27 Price to book ratio
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4.2. Experiment results and analysis

We use principal component analysis to eliminate the effect of multicollinearity on the original
variables. We extract first 10 principal components, and the accumulative contribution rate is
above 92% each for 152 companies. These principal components are linear combinations of the
original signal indicators, which can be served as part of discriminant models for each com-
pany.

The parameters of process model are estimated from the data of training set and also using the
data of training set, the judgment for the threshold of financial distress is set as an interval,
which has lower and upper confidence limit.

The results show that the lower confidence limit is �0.796 and the upper confidence limit is
0.205. When the predictive value of a company’s financial state is lower than �0.796, the
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company may fall into severe financial distress; when the predictive value is higher than 0.205,
the company is well operated; and when the predictive value is between�0.796 and 0.205, it is
possible that the company is getting into financial distress.

Then, we test the effect of the dynamic prediction models using the data of testing set. Subject
to space restrictions, we just list dynamic prediction figures for six companies, among which
first three are ST companies, while the other three are non-ST companies. Names and stock
codes of the companies are Sichuan Chemical Company Limited (000155), MCC Meili Paper
Industry Co., Ltd. (000815), Guangzhou Guangri Stock Co., Ltd. (600894), Xinxiang Chemical
Fiber Co., Ltd. (000949), Nantong Jiangshan Agrochemical & Chemicals Co., Ltd. (600389),
Nanzhi Co., Ltd., and Fujian (600163), in turn. Dynamic prediction figures for these six com-
panies are shown in Figure 7.
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4.2. Experiment results and analysis

We use principal component analysis to eliminate the effect of multicollinearity on the original
variables. We extract first 10 principal components, and the accumulative contribution rate is
above 92% each for 152 companies. These principal components are linear combinations of the
original signal indicators, which can be served as part of discriminant models for each com-
pany.

The parameters of process model are estimated from the data of training set and also using the
data of training set, the judgment for the threshold of financial distress is set as an interval,
which has lower and upper confidence limit.

The results show that the lower confidence limit is �0.796 and the upper confidence limit is
0.205. When the predictive value of a company’s financial state is lower than �0.796, the
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company may fall into severe financial distress; when the predictive value is higher than 0.205,
the company is well operated; and when the predictive value is between�0.796 and 0.205, it is
possible that the company is getting into financial distress.

Then, we test the effect of the dynamic prediction models using the data of testing set. Subject
to space restrictions, we just list dynamic prediction figures for six companies, among which
first three are ST companies, while the other three are non-ST companies. Names and stock
codes of the companies are Sichuan Chemical Company Limited (000155), MCC Meili Paper
Industry Co., Ltd. (000815), Guangzhou Guangri Stock Co., Ltd. (600894), Xinxiang Chemical
Fiber Co., Ltd. (000949), Nantong Jiangshan Agrochemical & Chemicals Co., Ltd. (600389),
Nanzhi Co., Ltd., and Fujian (600163), in turn. Dynamic prediction figures for these six com-
panies are shown in Figure 7.
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Figure 7. Dynamic prediction figures for part of testing samples.
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The testing results show that almost all the curves of predictive value fits the ones of real value
for 32 testing samples.

Of 16 distress testing samples, 15 companies give mild alarm in period T�9 (4 years
ahead), and 13 companies give severe alarm in period T�7 and period T�5 (3 years ahead
and 2 years ahead). All the 16 companies give severe alarm in period T�3 (1 year ahead).
This shows that the information the dynamic model absorbed and produced almost covers
the characteristics of financial distress. An accurate warning can be made 4 years before
financial distress, and the accuracy is 93.8% (We also take triple BPNN to make a compar-
ison. The results show that the accuracy of prediction 1 year ahead to 4 years ahead is 100,
93.8, 62.5, and 43.8%, respectively. The accuracy sharply declines 3 years ahead. It shows
that the triple BPNN has better effect for short-term prediction rather than long-term
prediction.)

For healthy testing samples, none is lower than the severe alarm limit. But sometimes, the
predictive values appear slightly below the mild alarm limit, showing that there have been
cases of temporary deviation from healthy state for healthy testing samples. The dynamic
model conducts a track and thereafter modifies. This shows that the model can objectively
track and effectively predict the overall financial state of a company from a long run.

5. Conclusions and future work

In this chapter, we focus on the dynamic nature of corporate financial distress and establish
dynamic prediction models consisting of a process model and a discriminant model, which are
used to describe the dynamic process and discriminant rules of financial distress, respectively.
The operation of the dynamic prediction is achieved by Kalman filtering algorithm, and a
general n-step-ahead prediction algorithm based on Kalman filter is derived for prospective
prediction. To validate the prediction performance of this method, we conduct an empirical
study for China’s manufacturing industry. The empirical results have proved the accuracy and
advance of predicting financial distress using this dynamic model. The accuracy of prediction
4 years before financial distress is 93.8%. In addition, this method also solves the problem of
massive data processing as it does not require storing large amounts of historical data and thus
can achieve real-time processing of data.

In this research, we suppose the dynamic process of financial distress is linear. The Kalman
filtering algorithm will be applied to a nonlinear dynamic model in the future research, and it
will offer a wider range of applications.
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The testing results show that almost all the curves of predictive value fits the ones of real value
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and 2 years ahead). All the 16 companies give severe alarm in period T�3 (1 year ahead).
This shows that the information the dynamic model absorbed and produced almost covers
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ison. The results show that the accuracy of prediction 1 year ahead to 4 years ahead is 100,
93.8, 62.5, and 43.8%, respectively. The accuracy sharply declines 3 years ahead. It shows
that the triple BPNN has better effect for short-term prediction rather than long-term
prediction.)

For healthy testing samples, none is lower than the severe alarm limit. But sometimes, the
predictive values appear slightly below the mild alarm limit, showing that there have been
cases of temporary deviation from healthy state for healthy testing samples. The dynamic
model conducts a track and thereafter modifies. This shows that the model can objectively
track and effectively predict the overall financial state of a company from a long run.

5. Conclusions and future work

In this chapter, we focus on the dynamic nature of corporate financial distress and establish
dynamic prediction models consisting of a process model and a discriminant model, which are
used to describe the dynamic process and discriminant rules of financial distress, respectively.
The operation of the dynamic prediction is achieved by Kalman filtering algorithm, and a
general n-step-ahead prediction algorithm based on Kalman filter is derived for prospective
prediction. To validate the prediction performance of this method, we conduct an empirical
study for China’s manufacturing industry. The empirical results have proved the accuracy and
advance of predicting financial distress using this dynamic model. The accuracy of prediction
4 years before financial distress is 93.8%. In addition, this method also solves the problem of
massive data processing as it does not require storing large amounts of historical data and thus
can achieve real-time processing of data.

In this research, we suppose the dynamic process of financial distress is linear. The Kalman
filtering algorithm will be applied to a nonlinear dynamic model in the future research, and it
will offer a wider range of applications.
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Abstract

The growing trend of the use of robots in many areas of daily life makes it necessary to 
search for approaches to improve efficiency in tasks performed by robots. For that reason, 
we show, in this chapter, the application of the Kalman filter applied to the navigation 
of mobile robots, specifically the Time-to-contact (TTC) problem. We present a summary 
of approaches that have been taken to address the TTC problem. We use a monocular 
vision-based approach to detect potential obstacles and follow them over time through 
their apparent size change. Our approach collects information about obstacle data and 
models the behavior while the robot is approaching the obstacle, in order to predict col-
lisions. We highlight some characteristics of the Kalman filter applied to our problem. 
Finally, we show of our results applied to sequences composed of 210 frames in different 
real scenarios. The results show a fast convergence of the model to the data and good fit 
even with noisy measures.

Keywords: Kalman filter, Time-to-contact, avoiding collisions, robot navigation, 
forecasting

1. Introduction

Nowadays, many robotic entities have been developed in order to make many human activities 
more efficient. In fact, it is common to find robots in hospitals, factories, and even in homes, which 
help to automate many tasks autonomously or semi-autonomously. However, many problems 
can arise when mobile autonomous robots must travel in uncertain and unknown environments. 
For this reason, techniques, programs, and sensors have been developed over time to address 
such tasks as localization, communication, path planning, and collision avoidance. Faced with 
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these problems, robots must be able to sense their environment and understand it to make the 
best decisions. From these tasks, we will analyze the task of avoiding obstacles by mobile robots, 
using the well-known term “Time-to-contact” or TTC.

TTC is a biologically inspired method for obstacle detection and reactive control of motion. 
TTC was first studied and defined in [1] as “the distance to an obstacle divided by the relative veloc-
ity between them.” In other words, TTC is the elapsed time before an observer (the center of pro-
jection) makes contact with the surface being viewed if the current relative motion between the 
observer (e.g., a robot’s camera) and the surface were to continue without changes, i.e., under 
constant relative velocity. TTC is usually expressed in terms of the speed and the distance of 
the considered obstacle. The classical equation to compute TTC is given by Eq. (1)

  TTC = −   Z ___ 
  dZ ___ dt  

    (1)

where Z is the distance between the observer and the obstacle, and    dZ ___ dt    is the velocity of the 
robot with respect to the obstacle. Figure 1 shows the camera model and perception of obsta-
cles from a mobile robot using monocular vision, where t represents the time, Z is the distance, 
f referring to the focal length, r is defined as the distance between the center of projection and 
the obstacle, and S representing the height of an obstacle.

Figure 1. Isometric view of the model of perception.
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The main idea of this chapter is to address this problem, modeling the growth of objects as 
the camera approaches the obstacle, in order to avoid detection obstacles in each frame once 
a precise model is built. First, we highlight some important works in the literature to give an 
overview of the different approaches that have been used to address this problem, discussing 
advantages and disadvantages of them. In the next section, we will give a brief description 
of the whole process that we use and how we address the problem using the Kalman Filter. 
Subsequently, we describe some experiments and results that we have made, to conclude 
with some conclusions and future work.

2. Background

The problem of estimating the Time-to-contact continues to be approached with different 
techniques. This is due to the fact that there are some factors that can prevent the robot from 
recognizing its environment reliably, such as the change of light intensity in the environment, 
erroneous segmentation of obstacles, or errors due to sinuous floors (especially with mobile 
robots on wheel).

Perhaps, the most practical and accurate approach is to use specialized sensors embedded in 
robots, such as sonars [2, 3]. Depth sensing used in the literature for robotic navigation and 
egomotion has been performed by binocular vision (stereo vision) [4, 5]. Other studies [6] 
have estimated TTC using paracatadioptric sensors with good results in real time. Although 
ultrasonic range sensors have large field of view, cross-talk problems might appear if more 
than one sensor is used simultaneously. As a result, “the frequency of obstacle detection is lim-
ited by the number of sensors in use and the time required for an echo to return from an obstacle” [7].

In order to minimize the energy consumption and cost, we decided to use passive sensors 
such as one camera only, i.e., monocular vision. Several studies have employed monocular 
vision to estimate TTC. For example, motion has been computed from images in space and 
spectral domains, and specifically TTC has been estimated using temporal change in power 
spectra between successive images [8]; however, switching from time domain to frequency 
domain involves extra processing. Additionally, TTC can be estimated for different goals (e.g., 
docking and landing) [9, 10] from the focus of expansion (FOE), however, these approaches 
are based on estimating optical flow, and hence they “are iterative, need to work at multiple scales, 
tend to be computationally expensive and require a significant effort to implement properly” [11].

Other method to estimate TTC is by “Direct method,” which works directly with the derivatives 
of image brightness and does not require feature detection, feature tracking, or estimate of the 
optical flow [12]. Despite this method has achieved good results to approach surfaces, there are 
cases where the accuracy is compromised (e.g., when the robot approaches untextured walls 
and thus changing of the brightness is zero).

Finally, TTC has been computed using changes in the obstacle’s size. For instance, studies 
in [13, 14] have used the fact that animals and insects obtain information from the apparent 
size S of objects and the temporal changes in the size. This information is usually called the 
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“tau-margin” defined as Eq. (2). Tau-margin is derived from Eq. (1) by using a characteristic 
size of the obstacle on the image [15] and the approximation that the obstacle is planar and 
parallel to the image plane.

  τ = −   S __ 
  dS ___ dt  

    (2)

However, a last focus on which we are interested is based on modeling the robot’s movement. 
The study [16] has calculated TTC in vehicular motion using several scenarios. The idea is 
promising; however, due to the use of interest points, a mechanism needs to be implemented 
for grouping these points into different regions representing different obstacles.

In this brief summary, we can see that many approaches have been proposed, however, more 
approaches are still emerging because there are factors that condition the accuracy of the TTC 
estimate. But, we decided to use monocular vision to minimize costs of specialized sensors (in 
terms of energy and money).

The approach we have worked on is to model the apparent sizes of the segmented obstacle in 
each number of frames, in order to predict the Time-to-contact, that is, in how many frames 
the robot could collide with that obstacle. Since the TTC is estimated by analyzing how the 
apparent size of the object is changing with respect to time, we can find errors if the segmenta-
tion is not correct, which would lead to an incorrect acceleration or deceleration of the robot 
and to a possible collision.

When constructing models of a phenomenon, we base the predictions on previous data, 
which leads the robot to “understand” the behavior of its environment, if it has a constant 
speed. Having explained the importance of modeling, we decided to incorporate the Kalman 
Filter to address this problem and have reliable predictions. Figure 2 shows the methodology 
used to estimate and forecast TTC.

Figure 2. Methodology to performance the TTC forecasting.

Kalman Filters - Theory for Advanced Applications154

3. Estimating Time-to-contact

In the following sections, we will give an outline of the processes used in each module, shown 
in Figure 2.

3.1. Segmentation process

In a controlled experimental environment, we detect obstacles by color, and analyze the 
height of the segmented region by enclosing it in a rectangle. The colors are pre-calibrated. 
Figure 3 shows examples of two experimental cases and their segmentation by color. In the 
first scenario, the robot approaches an opaque red cylinder. In the second case, the robot 
approaches a bright green sphere.

3.2. Calculating apparent size

Figure 4 represents a mobile robot model, where S is representing the size of the detected 
object, r represents the distance between the mobile robot and the detected obstacle, and θ 
the proportional the aperture of the angle to the object’s size projected on the image called 
“apparent size.”

Figure 5 illustrates how the apparent size of the objects is expanded while it is approaching 
the camera. From a perspective view, T regions decrease in the image and the apparent size 
S′ (S projected on the image) grows proportionally as the robot approaches the obstacle. The 

Figure 3. Example of segmentation by color process with experimental scenarios.
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best case is when the obstacle approaching the camera is alienated with it. In this case, to find 
the value of θ, the triangle ACD (see Figure 6) is divided into two right triangles (ABD and 
BCD) and from opposite angles by a vertex, we can estimate θ1 by Eq. (3). Since θ1 = θ2, rear-
ranging Eq. (3) we obtain θ as is shown in Eq. (4)

  tan  ( θ  1  )  =   
   S   ′  __ 2  

 __ f    (3)

Figure 5. Perspective view of the approaching process.

Figure 4. View of the mobile robot approaching an obstacle.
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  θ = 2 [arc (  
   S   ′  __ 2  

 __ f  ) ]   (4)

3.3. Modeling process

So, suppose we have a mobile robot moving towards an obstacle and we need to be generat-
ing a model of the size of the obstacle, that is, as it approaches the obstacle, the camera detects 
that the obstacle is growing. This is a scenario for the Kalman Filter, because the method is 
a part of the temporal and tracking models, which when applied to our problem means the 
tracking of the apparent size of any obstacle over time. The main characteristic of the temporal 
models is that they relate the state of the system to time t − 1 and t as shown by Eq. (5)

   w  t   =  μ  p   + F w  t−1   + ϵ  (5)

In Eq. (4), Wt is an n-dimensional vector of the state components, F is an n-by-n matrix called 
the transfer matrix or transition matrix, which relates the mean of the state at time t to the state 
at time t − 1, and ε is a random variable (usually called the process noise) associated with ran-
dom events or forces that directly affect the actual state of the system, and which is normally 
distributed and determines how closely related the states are at times t and t − 1 [16].

In Eq. (4), we can see that it is a recursive model, because we assume that each state depends 
only upon its predecessor. We assume that Wt is conditionally independent of the states 
W1,…, Wt − 2 given its immediate predecessor Wt − 1, and just model the conditional relationship 
Pr(Wt|Wt − 1) [17].

Below, we give a brief description of the specific case Kalman filter. It is not our intention to 
explain in detail the Kalman filter, we only want to highlight some characteristics and explain 
the application to our problem.

Figure 6. Geometrical view of the camera model.
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a part of the temporal and tracking models, which when applied to our problem means the 
tracking of the apparent size of any obstacle over time. The main characteristic of the temporal 
models is that they relate the state of the system to time t − 1 and t as shown by Eq. (5)

   w  t   =  μ  p   + F w  t−1   + ϵ  (5)

In Eq. (4), Wt is an n-dimensional vector of the state components, F is an n-by-n matrix called 
the transfer matrix or transition matrix, which relates the mean of the state at time t to the state 
at time t − 1, and ε is a random variable (usually called the process noise) associated with ran-
dom events or forces that directly affect the actual state of the system, and which is normally 
distributed and determines how closely related the states are at times t and t − 1 [16].

In Eq. (4), we can see that it is a recursive model, because we assume that each state depends 
only upon its predecessor. We assume that Wt is conditionally independent of the states 
W1,…, Wt − 2 given its immediate predecessor Wt − 1, and just model the conditional relationship 
Pr(Wt|Wt − 1) [17].

Below, we give a brief description of the specific case Kalman filter. It is not our intention to 
explain in detail the Kalman filter, we only want to highlight some characteristics and explain 
the application to our problem.

Figure 6. Geometrical view of the camera model.
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3.3.1. Description of Kalman filter

The Kalman filter is a set of mathematical equations, described first time in [18], where a recursive 
solution to the discrete data linear filtering problem is presented. This method has been exten-
sively researched and applied in various fields because it provides us an efficient computational 
(recursive) mechanism to estimate the state of a process. The filter is powerful because it involves 
estimations of past, present, and even future states. Kalman filter involves these elements with 
the use of knowledge of the system and measurement device, the statistical description of the sys-
tem noises and any available information about initial conditions of the variables of interest [19].

To begin, we must remember that the basic idea of the Kalman Filter is, under a set of assump-
tions, it will be possible, given a history of measurements of a system, construct a model for 
the state of the System that maximizes the a posteriori probability of previous measurements. 
We can maximize a posteriori probability without having a long history of measurements 
above. Instead, we can iteratively update our state model of a system and maintain only that 
model for the next iteration [16]. These iterations are formed mainly by processes of predic-
tion, measurement, and updating of the state.

Before explaining the process used, we must remember that Kalman Filter is based on three 
assumptions:

1. The evolution of state space is linear.

2. The errors or noise subject to the measurements are “white.”

3. This noise is also Gaussian.

In other words, the first assumption means that the state of the system at time t can be mod-
eled as a matrix multiplied by the state at time t − 1. That is good because linear systems 
are more easily manipulated and practical than nonlinear. The additional assumptions that 
the noise is white and Gaussian means that the noise is not correlated over time and that 
its amplitude can be accurately modeled using a mean and a covariance (i.e., noise is fully 
described by its first and second moments) [16].

3.3.2. Kalman filter applied to TTC

Below, a brief explanation of how the Kalman Filter is used to predict new apparent size mea-
surements of the obstacle to avoid will be given. We emphasize that we do not model the TTC 
as such, but we model the behavior of the apparent size of the projected obstacle on the image 
because the TTC depends on this growth.

So, at some time t1, we determine the apparent size θ to be θ1. However, because of inherent 
measuring device inaccuracies (such as changes of light intensity or non-smooth floor men-
tioned above), the result of the measurements is somewhat uncertain. Then, we decide that the 
precision is such that the standard deviation involved is σ1 (only one variable). Thus, we can 
establish the conditional probability, the value at time t1, conditioned on the observed value 
of the measurement θ1, that is, we have the probability that θ has a value, based upon the 
measurement we took. At this moment, we best estimate of the    θ ˆ    

1
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    and the variance    σ ˆ     θ  1  
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After, the robot takes another measurement based on color segmentation at time t2, and there-
fore, is obtained θ2 with a variance σθ2 (which is assumed to be less than the first). To combine 
these measures, and to obtain a new one with its own variation (Gaussian distribution) Eqs. 
(6) and (7) are used, where can be seen that the new value is just a weighted combination of 
the two measured means and the weighting is determined by the relative uncertainties of the 
two measurements (conditional mean). The weight in these equations can be seen as: if σθ1 is 
greater than σθ2 (that is, more variability), σθ2 would have more weight because σθ2 has less 
variability. Also, the uncertainty in the estimate of new θ has been decreased by combining 
the two pieces of information [19]
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Now that we know how to obtain a next measure, we can continue with this process N times 
(N measurements). This is because we can combine the first two, then the third with the com-
bination of the first two, the fourth with the combination of the first three, and so on [16]. This 
is what happens when we are tracking the θ over time, we obtain one measure followed by 
another followed by another.

Usually, Eq. (6) is rewritten as Eq. (8), and Eq. (7) as Eq. (9) because with this new forms, we 
can separate the old information from de new information. The new information (θ2 − θ1) is 
called innovation
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Finally, Eq. (10) shows our optimal iterative update factor, which is known as the update gain 
K, and so, we obtain the recursive form described in Eqs. (11) and (12). For a more detailed 
explanation, we suggest to the reader have a look in [19]
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Finally, once the behavior has been modeled, it will be possible to forecast TTC by Eq. (2).
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Figure 7. Robot based on Raspberry pi used for experiments.

Figure 8. Results of experiments of scenario 1 with a red cylinder. (a) Measurements. (b) Filtered data. (c) Window 
example, where there is greater variation. (d) Initial convergence process.

Kalman Filters - Theory for Advanced Applications160

4. Experiments and results

In order to test our proposal, we design experiments in which a robot approaches two obstacles 
mentioned in the segmentation section (see Figure 3) at constant velocity and we took 210 
frames (equivalent to 7 s) of these real scenarios. A camera was used as a sensor to locate the 
objects in the robot environment.

Figure 7 shows the robot used for the experiments. In Figures 8 and 9, the results of the filter-
ing process are shown for the experiments with the red cylinder and green sphere, respec-
tively. For both figures, (a) shows blue, the measurements obtained by the sensor (specifically 
by the process of segmentation by color in each image). As can be seen, growth of the θ 
(obtained by the camera) over time is not “smooth,” due to various factors in the environment 
mentioned above. (b) Indicates red color, the Kalman filtering on the measurements, where it 
can be seen that they are very close. (c) Shows, for each case, a window of the results where 
there is greater error in the measurements, which leads to have errors in the prediction but 
it getting closer to the measurements. (d) Shows an expansion at the beginning of (b), where 

Figure 9. Results of experiments of scenario 2 with a green sphere. (a) Measurements. (b) Filtered data. (c) Window 
example, where there is greater variation. (d) Initial convergence process.
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it can be seen that in both cases it takes little less than 10 frames (about 0.3 s) to converge to 
obtain estimates close to the measurements.

5. Conclusions and future work

In this chapter, an approach for estimating possible collisions was presented. A brief descrip-
tion of different approaches used to address the TTC problem was analyzed. Taking into 
account the advantages and disadvantages of these approaches, we present a way to handle 
the problem by modeling the behavior of the apparent size of the segmented obstacles, 
which the robot senses in each frame. This apparent size calculation is formally described 
and used to obtain measures of obstacles. We also apply Kalman filtering as a mechanism 
to model and predict θ, which will ultimately serve to predict the TTC and therefore avoid 
collisions. Some features of the Kalman Filter are also highlighted and we describe how 
it does the estimation for our problem. Finally, our approach is applied to two real cases 
where the modeling process is observed and the proximity to the measures taken, reducing 
noise of the measurements. This approach is gaining strength because it is easier to predict 
(given some measures taken previously) than to be looking for obstacles in each frame. In 
addition, the Kalman filter will correct errors if measures are incorporated sometimes. As 
future work, we will continue working on several scenarios and comparing this approach 
with some others, such as modeling and predicting using system identification techniques 
or time series.
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formulation and relatively easy implementation. In the EnKF, an ensemble of model realiza-
tions is utilized in order to, among other things, estimate the moments of the prior error
distribution (forecast distribution). During this estimation and the assimilation of observa-
tions, many challenges are present in practice. Some of them are addressed in this chapter:
the first one is related to the proper estimation of background error correlations, which has a
high impact on the quality of the analysis corrections while the last one is related to the proper
estimation of the posterior ensemble when the observation operator is nonlinear. In all cases,
background error correlations are estimated based on the Bickel and Levina estimator [1].

2. Preliminaries

We want to estimate the state of a dynamical system x∗ ∈Rn�1, which (approximately) evolves
according to some (imperfect) numerical model operators x∗k ¼Mtk�1!tk x∗k�1

� �
, for instance, a

model which mimics the behavior of the atmosphere and/or the ocean where n is the model
dimension (typically associated with the model resolution). The estimation process is based on
two sources of information: a prior estimate of x∗, xb ¼ x∗ þ ξ with ξ � N 0n;Bð Þ, and a noisy
observation y ¼H x∗ð Þ þ e with e � N 0m;Rð Þ, where m is the number of observed model
components, Rm�m is the estimated data error covariance matrix, H : Rn�1 ! Rm�1 is the
(nonlinear) observation operator that maps the information from the model domain to the
observation space, 0n is the nth dimensional vector whose components are all zeros. In prac-
tice, m≪ n or m < n. The assimilation process can be performed by using sequential data
assimilation methods, and one of the most widely used methods is the ensemble Kalman filter,
which is detailed in the following paragraphs.

2.1. The ensemble Kalman filter

In the ensemble Kalman filter (EnKF) [2], an ensemble of model realizations

Xb ¼ xb 1½ �; xb 2½ �;…; xb N½ �
h i

∈Rn�N, (1)

is utilized in order to estimate the moments of the background error distribution,

xb i½ � � N xb;B
� �

, (2)

via the empirical moments of the ensemble (1) and therefore,

xb ≈ xb ¼ 1
N
�
XN

i¼1
xb i½ � ∈Rn�1, (3)

and
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B ≈Pb ¼ 1
N � 1

� ΔXb � ΔXb� �T
∈Rn�n, (4)

where N is the ensemble size, xb i½ � ∈Rn�1 is the ith ensemble member, for 1 ≤ i ≤N, xb ∈Rn�1 is
well known as the background state, B∈Rn�n stands for the background error covariance

matrix, xb is the ensemble mean, and Pb is the ensemble covariance matrix. Likewise, the

matrix of member deviations ΔXb ∈Rn�N reads,

ΔXb ¼ Xb � xb � 1TN ∈Rn�N: (5)

A variety of EnKF implementations have been proposed in the current literature, most of them
rely on basic assumptions over the moments of two probability distributions: the background
(prior) and the analysis (posterior) distributions. In most of EnKF formulations, normal assump-
tions are done over both error distributions.

In general, depending on how the assimilation process is performed, the EnKF implementation
will fall in one of two categories: stochastic filter [3] or deterministic filter [4]. In the context of
stochastic filters, for instance, the assimilation of observations can be performed by using any
of the next formulations,

Xa ¼ A � Pb� ��1 � Xb þHT � R�1 � Ys
h i

∈Rn�N, (6)

Xa ¼ Xb þ A �HT � R�1 � ΔY ∈Rn�N, (7)

and

Xa ¼ Xb þ Pb �HT � R�1 þH � Pb �HT� ��1 � ΔY ∈Rn�N, (8)

where the analysis covariance matrix A∈Rn�n is given by A ¼ Pb� ��1 þHT � R�1 �H
h i�1

, the

matrix of innovations (on observations) is denoted by ΔY ¼ Ys �H � Xb ∈Rn�N, and the matrix
of perturbed observations reads Ys ¼ y � 1TN þ E∈Rm�N , where the columns of E∈Rm�N are
formed by samples from a normal distribution with moments N 0;Rð Þ. In practice, one of the
most utilized formulations is given by (8).

2.2. Cholesky and modified Cholesky decomposition

The forms of the Cholesky and the modified Cholesky decomposition were discussed by Golub
and Van Loan in [5]. If A∈Rn�n is symmetric positive definite, then there exist a unique lower
triangular L∈Rn�n with positive diagonal entries such that A ¼ L � LT . If all the leading princi-
pal submatrices of A∈Rn�n are non-singular, then there exist unique lower triangular matrices L
and M and a unique diagonal matrix D ¼ diag d1; d2;…; dnð Þ such that A ¼ L �D �MT : If A is

symmetric, then L ¼M and A ¼ L �D � LT . Golub and Van Loan provide proofs of those
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decompositions, as well as various ways to compute them. We can use the Cholesky factor of a
covariance matrix to quickly solve linear systems that involve a covariance matrix. Note that if
we compute the Cholesky factorization and solve the triangular system L � y ¼ b and LT � x ¼ y,
then

A � x ¼ L � LT� � � x ¼ L � LT � x� � ¼ L � y ¼ b: (9)

For a symmetric matrix A∈Rn�n, the modified Cholesky decomposition involves finding a
non-negative diagonal matrix E such that Aþ E is positive definite. In particular, E ¼ 0 when-
ever A is positive definite, otherwise Ek k should be sufficiently small. This allows applying the
usual Cholesky factorization to Aþ E, i.e. finding matrices L,D∈Rn�n such that Aþ E
¼ L �D � LT .

Recall ΔXb ¼ Xb � xb ⊗ 1TN ∈Rn�N . Thus, Δxb i½ � � N 0n;Bð Þ for 1 ≤ i ≤ n. Let xb i½ � ∈RN�1, the

vector holding the ith row across all columns of ΔXb for 1 ≤ i ≤ n. Bickel and Levina in [1]
discussed a modified Cholesky decomposition for the estimation of precision covariance
matrix, and this allows in our context to estimate of B�1 by fitting regressions of the form:

xb i½ � ¼
Xi�1

j¼1
xb j½ � � βi, j þ ξ i½ � ∈RN�1, (10)

then, Lf gij ¼ �βi, j, for 1 ≤ i < j ≤ n.

3. Filters based on modified Cholesky decomposition

3.1. Ensemble Kalman filter based on modified Cholesky

In the ensemble Kalman filter based on a modified Cholesky decomposition (EnKF-MC) [6],
the analysis ensemble is estimated by using the following equations,

Xa ¼ Xb þ B�1 þHTR�1 �H� ��1 �HT � R�1 � ΔY, (11)

and

ΔY ¼ YS �H:Xb� �
∈Rn�N : (12)

In this context, error correlations are estimated via a modified Cholesky decomposition. This
provides an estimate of the inverse background error covariance matrix of the form,

B�1 ≈ bB�1 ¼ LT �D�1 � L∈Rn�n, (13)
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or equivalently

B ≈ bB ¼ L�1 �D � L�T ∈Rn�n, (14)

where L∈Rn�n is a lower-triangular matrix whose diagonal elements are all ones, and
D∈Rn�n is a diagonal matrix. Even more, when only local effects are considered during the

estimation of bB�1, sparse estimators of the precision background can be obtained. Further-
more, the matrix L can be sparse with only a few non-zero elements per row. Typically, the
number of non-zero elements depends on the radius of influence during the estimation of
background error correlations. For instance, in the one-dimensional case, the radius of influ-
ence denotes the maximum number of non-zero elements, per row, in L. The EnKF-MC is then
obtained by plugging in the estimator (3) in (6). Given the structure of the Cholesky factors, the
EnKF-MC can be seen as a matrix-free implementation of the EnKF.

Recall that the precision analysis covariance matrix reads,

A�1 ¼ B�1 þHT � R�1 �H � Rn�n, (15)

moreover, since HT � R�1 �H ∈Rn�n can be written as a sum of m rank-one matrices, the factors
(3) can be updated in order to obtain an estimate of the inverse analysis covariance matrix. The
next section discussed such approximation in detail.

3.1.1. Posterior ensemble Kalman filter stochastic (PEnKF-S)

In the stochastic posterior ensemble Kalman filter (PEnKF-S) [7, 8], we want to estimate the
moments of the analysis distribution,

x � N xa;Að Þ, (16)

based on the background ensemble Xb� �
, where xa is the analysis state and A∈Rn�n is the

analysis covariance matrix. Consider the estimate of the inverse background error covariance
matrix Eq. (3), the precision analysis covariance matrix Eq. (4) can be approximated as follows:

A�1 ≈ bA�1 ¼ bB�1 þ X � XT , (17)

where X ¼ HT � R�1
2 ∈Rn�m. The matrix (17) can be written as follows:

bA�1 ¼ LT �D�1 � Lþ
Xm

i¼1
xi � xTi ,

where xi denotes the ith column of matrix X, for 1 ≤ i ≤m. Consider the sequence of factor
updates,
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Li� �T �Di � Li ¼ L i�1ð Þ
h iT

�Di�1 � Li�1 þ xi � xTi

Li� �T �Di � Li ¼ L i�1ð Þ
h iT

� D i�1ð Þ þ pi � pTi
h i

� L i�1ð Þ

Li� �T �Di � Li ¼ ~L i�1ð Þ � L i�1ð Þ
h iT

� ~D i�1ð Þ � ~L i�1ð Þ � L i�1ð Þ
h i

,

where Li�1 � pi ¼ xi ∈Rn�1, for 1 ≤ i ≤m, bB�1 ¼ L 0ð Þ
h iT

�D 0ð Þ � L 0ð Þ and

D ið Þ þ pi � pTi ¼ ~L ið Þ
h iT

� ~D ið Þ � ~L ið Þ ∈Rn�n, (18)

We can use of Dolittle’s method in order to compute the factors ~D ið Þ and ~L ið Þ in (9), and it is
enough to note that,

1 ~l21 ~l31 ⋯ ~ln1
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After some math simplifications, the next equations are obtained,

~dk ¼ p2k þ dk �
Xn

q¼kþ1
~dq �~l2qi, (19)

and

~lkj ¼ 1
~dk
� pk � pj �

Xn

q¼kþ1
~dq �~lqi �~lqj

2
4

3
5, (20)
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for 1 ≤ k < n and 1 ≤ j ≤ k� 1. The set of Eqs. (19) and (20) can be used in order to derive an
algorithm for rank-one update of Cholesky factors, and the updating process is shown in
Algorithm 1.

Algorithm 1. Rank-one update for the factors L i�1ð Þ and D i�1ð Þ

1. function UPD_CHOLESKY_FACTORS L i�1ð Þ;D i�1ð Þ; xi
� �

2. Compute pi from Li� �T � pi ¼ xi

3. for k ¼ n � 1 do

4. Compute ~dk via Eq. (10).

5. Set lkk  1.

6. for j ¼ 1! k� 1 do

7. Compute ~lkk according to (11).

8. end for

9. end for

10. Set L ið Þ  L i�1ð Þ � L i�1ð Þ and D ið Þ  ~D ið Þ.

11. return L ið Þ, D ið Þ

12. end function

Algorithm 1 can be used in order to update the factors of bB�1for all column vectors in X, and
this process is detailed in Algorithm 2.

Algorithm 2. Computing the factors L mð Þ and D mð Þ of L mð Þ
h iT

�D mð Þ � L mð Þ

13. function COMPUTE_ANALYSIS_FACTOR L 0ð Þ;D 0ð Þ;H;R
� �

14. Set X  HT � R�1
2.

15. for i ¼ 1! m do

16. Set L ið Þ;D ið Þ
h i

 UPD_CHOLESKY_FACTORS L i�1ð Þ;D i�1ð Þ; xi
� �

17. end for

18. return L mð Þ, D mð Þ

19. end function
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h i
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Once the updating process has been performed, the resulting factors form an estimate of the
inverse analysis covariance matrix,

bA�1 ¼ L mð Þ
h iT

�D mð Þ � L mð Þ ∈Rn�n, (21)

From this covariance matrix, the posterior mode of the distribution can be approximated as
follows:

xa ¼ xb þ z∈Rn�1, (22)

where

L mð Þ
h iT

�D mð Þ � L mð Þ � z ¼ q, (23)

with q ¼ HT � R�1 � y�H � xb� �
∈Rn�1. Note that the linear system (23) involves lower and

upper triangular matrices, and therefore, xa can be estimated without the need of matrix
inversion. Once the posterior mode is computed, the analysis ensemble is built about it. Note

that bA reads bA ¼ L mð Þ
h i�1

� D mð Þ
h i�1

� L mð Þ
h i�T

, and therefore, a square root of bA can be

approximated as follows:

bA
1
2 ¼ L mð Þ

h i-1
� D mð Þ
h i�1

2 ∈Rn�n, (24)

which can be utilized in order to build the analysis ensemble,

Xa ¼ xa � 1TN þ ΔXa, (25)

where ΔXa ∈Rn�N is given by the solution of the linear system,

L mð Þ � D mð Þ
h i�1

2 � ΔXa ¼W ∈Rn�N , (26)

In addition, the columns ofW ∈Rn�N are formed by samples fromamultivariate standardnormal

distribution. Again, since L mð Þ is lower triangular, the solution of (26) can be obtained readily.

3.1.2. Posterior ensemble Kalman filter deterministic (PEnKF-D)

The deterministic posterior ensemble Kalman filter (PEnKF-D) is a square root formulation of
the PEnKF-S. The main difference between them lies on the use of synthetic data. In both

methods, the matrices A�1 and B�1 are computed similarly (i.e., by using Dolittle’s method
and the algorithms described in the previous section).

In the PEnKF-D, the computation of bB�1 is performed (13) based on the empirical moments of
the ensemble. The analysis update is performed by using the perturbations
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bB�
1
2 � Xb � xb � 1TN
� � � N 0; Ið Þ, (27)

which are consistent with the dynamics of the numerical model, for instance, samples from
(27) are driven by the physics and the dynamics of the numerical model. Finally, the analysis
equation of the PEnKF-D

Xa ¼ xa � 1TN þ bA
1
2 � bB�

1
2 � ΔXb ∈Rn�N , (28)

where

xa ¼ xb þ A �HT � R�1 � y�H � xb� �
, (29)

A
1
2 ≈ bA

1
2 ¼ ~LT � ~D1

2

h i�1
, (30)

and

B�
1
2 ≈ bB�

1
2 ¼ L �D1

2, (31)

Since the moments of the posterior distribution are unchanged, we expect both methods
PEnKF-S and PEnKF-D to perform equivalently in terms of errors during the estimation
process.

3.2. Markov Chain Monte Carlo-based filters

Definitely, the EnKF represents a breakthrough in the data assimilation context, perhaps its
biggest appeal is that we can obtain a closed form expression for the analysis members.
Nevertheless, as can be noted, during the derivation of the analysis equations, some constrains
are imposed, for instance, the observation operator is assumed linear, and therefore, the
likelihood P yjxð Þ obeys a Gaussian distribution. Of course, in practice, this assumption can
be easily broken, and therefore, bias can be introduced on the posterior prediction; this is
notoriously significant if one considers the fields in which data assimilation lives are sub-
merged. From a statistical point of view, more specifically, under the Bayesian framework, this
situation can be summarized as follows:

• The prediction is obtained from the posterior distribution: P xjyð Þ.

• The information from numerical model is known like the prior of background: Pb xð Þ:
• The information from the observations is incorporated through the likelihood: P yjxð Þ.

• The posterior distribution is calculated: P xjyð Þ∝Pb xð Þ �P yjxð Þ.

• If Pb xð Þ and P yjxð Þ are Gaussian, P yjxð Þ is Gaussian too, and the analysis is equal to the
mean of P yjxð Þ.
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A significant number of approaches have been proposed in the current literature in order to
deal with these constraints; for instance, the particle filters (PFs) and the maximum likelihood
ensemble filter (MLEF) are ensemble-based methods, which deal with nonlinear observation
operators. Unfortunately, in the context of PF, its use is questionable under realistic weather
forecast scenarios since the number of particles (ensemble members) increases exponentially
regarding the number of components in the model state. Anyways, an extended analysis of
these methods exceeds the scope of this document, but its exploration is highly recommended.

Taking samples directly from the posterior distribution is a strategy that can help to remove
the bias induced by wrong assumptions on the posterior distribution (i.e., normal assump-
tions). We do not put the sights on finding the mode of the posterior distribution; instead of
this, we want a set of state vectors that allow us to create a satisfactory representation of the
posterior error distribution, then, based on these samples, it is possible to estimate moments of
the posterior distribution from which the analysis ensemble can be obtained [9].

Hereafter, we will construct a modification of the sequential scheme of data assimilation; first,
we will describe how to compute the analysis members by using variations in Markov Chain
Monte Carlo (MCMC)-based methods, and then, we will include the modified Cholesky
decomposition in order to estimate a precision background covariance.

An overview of the proposed method is as follows:

1. The forecast step is unchanged; the forecast ensemble is obtained by applying the model
to the ensemble of states of the previous assimilation cycle.

2. The analysis step is modified, so that the analysis is not obtained anymore by, for instance
(28), but we perform k iterations of an algorithm from the Markov Chain Monte Carlo
(MCMC) family in order to obtain samples from the posterior distribution.

In order to be more specific in the explanation, let us define Metropolis-Hastings (MH) as the
selected algorithm from the MCMC family. Now let us focus on MCMC in the most intuitive
way possible. Let us define J x; yð Þ equal to the posterior pdf obtained from the expression

P xjyð Þ∝Pb xð Þ �P yjxð Þ. MH explores the state space in order to include model states in a so-
called Markov Chain. The selection of candidates is based on the condition
x cð Þ; y
� �

> J x t�1ð Þ; y
� �

, that is, if the value of J �ð Þ for a candidate x cð Þ is greater than that for a
previous vector x t�1ð Þ. Candidates are generated from a pre-defined proposal distributionQ �ð Þ;
generally, a Gaussian multivariate distribution with mean x t�1ð Þ is chosen, and a covariance
matrix is defined in order to handle the step sizes. Concisely, MCMC methods proceed as
follows: at first iteration, the chain is started with xb vector. At end, the sample is obtained by
extracting the last t vectors on the chain, and the other vectors are dismissed or “burned”. In
(32), we can see the expression to calculate the acceptance probability that relates the target
pdf, J �ð Þ, with the proposal Q �ð Þ

α ¼ J x cð Þjy
� �

Q x t�1ð Þjx cð Þ
� �

J x t�1ð Þjy
� �

Q x cð Þjx t�1ð Þ
� � , (32)
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The terms that involve Q �ð Þ can be canceled if a symmetric distribution is chosen as the
proposal one, for instance, in the Gaussian distribution case. The procedure for the calculation
of the analysis applying MH is described below:

1. Initialize the Markov Chain, C, assigning the background value xb to C 0ð Þ.

2. Generate a candidate vector state x cð Þ, fromQ.

3. ObtainU from a uniform (0, 1) distribution.

4. If U ≤α Then: C tþ1ð Þ ¼ x cð Þ Else: C tþ1ð Þ ¼ C tð Þ

5. Repeat Steps 2 through 4, for t ¼ 1 until t ¼ k� 1

6. Remove the first p vectors of the chain, the burned ones.

The analysis is computed over the sample:

xa ¼ 1
k� pð Þ �

Xk

i¼k�p
C ið Þ,

MCMC methods are straightforward to implement; when an enough number of iterations is
performed, the behavior of the target function is captured on the chain [10]. This is true for
even, complex density functions such as those with multiple modes. Briefly, let us focus on the
fact that, generally, simulation-based methods such as MCMC explore a discretized grid, and
as the mesh is refined, a huge number of iterations are needed before a high probability zone of
the posterior distribution is reached [11]. Concretely, Hu et al. [12] proposed a family of
modified MCMC dimension-independent algorithms under the name of preconditioned
Crank-Nicolson (pCN) MCMC. These methods are robust regarding the curse of dimensional-
ity in the statistical context. Initially, the Crank-Nicolson discretization is applied to a stochas-
tic partial differential equation (SPDE) in order to obtain a new expression for the proposal
distribution:

x cð Þ ¼ x t�1ð Þ �
1
2
δKL x t�1ð Þ þ x cð Þ

� �þ ffiffiffiffiffiffiffiffiffi
2Kδ
p

e0, (33)

where L is the precision matrix of B, K is a preconditioning matrix, e0 is white noise, if K ¼ B
and δ∈ 0; 2½ � in (33), we get the pCN proposal described in (34):

x cð Þ ¼ x t�1ð Þ � 1
2
δKL x t�1ð Þ þ x cð Þ

� �þ ffiffiffiffiffiffiffiffiffi
2Kδ
p

, (34)

where ωeN 0;Bð Þ and β ¼ 8δ= 2þ δð Þ2. Of course, we use Pb like a computationally efficient
estimation of B. The acceptance probability is defined in (35):

α ¼ min 1; exp J xt�1; yð Þ � J xc; yð Þð Þ� �
, (35)
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, that is, if the value of J �ð Þ for a candidate x cð Þ is greater than that for a
previous vector x t�1ð Þ. Candidates are generated from a pre-defined proposal distributionQ �ð Þ;
generally, a Gaussian multivariate distribution with mean x t�1ð Þ is chosen, and a covariance
matrix is defined in order to handle the step sizes. Concisely, MCMC methods proceed as
follows: at first iteration, the chain is started with xb vector. At end, the sample is obtained by
extracting the last t vectors on the chain, and the other vectors are dismissed or “burned”. In
(32), we can see the expression to calculate the acceptance probability that relates the target
pdf, J �ð Þ, with the proposal Q �ð Þ

α ¼ J x cð Þjy
� �

Q x t�1ð Þjx cð Þ
� �

J x t�1ð Þjy
� �

Q x cð Þjx t�1ð Þ
� � , (32)
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The terms that involve Q �ð Þ can be canceled if a symmetric distribution is chosen as the
proposal one, for instance, in the Gaussian distribution case. The procedure for the calculation
of the analysis applying MH is described below:

1. Initialize the Markov Chain, C, assigning the background value xb to C 0ð Þ.

2. Generate a candidate vector state x cð Þ, fromQ.

3. ObtainU from a uniform (0, 1) distribution.

4. If U ≤α Then: C tþ1ð Þ ¼ x cð Þ Else: C tþ1ð Þ ¼ C tð Þ

5. Repeat Steps 2 through 4, for t ¼ 1 until t ¼ k� 1

6. Remove the first p vectors of the chain, the burned ones.

The analysis is computed over the sample:

xa ¼ 1
k� pð Þ �

Xk

i¼k�p
C ið Þ,

MCMC methods are straightforward to implement; when an enough number of iterations is
performed, the behavior of the target function is captured on the chain [10]. This is true for
even, complex density functions such as those with multiple modes. Briefly, let us focus on the
fact that, generally, simulation-based methods such as MCMC explore a discretized grid, and
as the mesh is refined, a huge number of iterations are needed before a high probability zone of
the posterior distribution is reached [11]. Concretely, Hu et al. [12] proposed a family of
modified MCMC dimension-independent algorithms under the name of preconditioned
Crank-Nicolson (pCN) MCMC. These methods are robust regarding the curse of dimensional-
ity in the statistical context. Initially, the Crank-Nicolson discretization is applied to a stochas-
tic partial differential equation (SPDE) in order to obtain a new expression for the proposal
distribution:

x cð Þ ¼ x t�1ð Þ �
1
2
δKL x t�1ð Þ þ x cð Þ

� �þ ffiffiffiffiffiffiffiffiffi
2Kδ
p

e0, (33)

where L is the precision matrix of B, K is a preconditioning matrix, e0 is white noise, if K ¼ B
and δ∈ 0; 2½ � in (33), we get the pCN proposal described in (34):

x cð Þ ¼ x t�1ð Þ � 1
2
δKL x t�1ð Þ þ x cð Þ

� �þ ffiffiffiffiffiffiffiffiffi
2Kδ
p

, (34)

where ωeN 0;Bð Þ and β ¼ 8δ= 2þ δð Þ2. Of course, we use Pb like a computationally efficient
estimation of B. The acceptance probability is defined in (35):

α ¼ min 1; exp J xt�1; yð Þ � J xc; yð Þð Þ� �
, (35)
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The procedure for the calculation of the analysis applying pCN Metropolis-Hastings is
described as follows:

1. Initialize the Markov Chain, C, assigning the background value xb to C 0ð Þ.

2. Generate a candidate vector state using (3): x cð Þ ¼ 1� β2
� �1

2x t�1ð Þ þ βω.

3. Obtain U from a uniform (0, 1) distribution.

4. If U ≤α, then C tþ1ð Þ ¼ x cð Þ . Else: C tþ1ð Þ ¼ C tð Þ:

5. Repeat Steps 2 through 4, for t ¼ 1 until t ¼ k� 1.

6. Remove the first p vectors of the chain, the burned ones.

7. The analysis is calculated over the sample: xa ¼ 1
k�pð Þ �

Pk
i¼k�p C ið Þ.

Finally, in the data assimilation context, by using the modified Cholesky decomposition
described in the earlier sections, the pCN-MH filter reads:

1. The forecast step remains unchanged; the forecast ensemble is obtained by applying the
model to the ensemble of states of the previous iteration, but the estimation of background
covariance matrix is calculated by modified Cholesky.

2. The update step is modified, so that the analysis is obtained by run k iterations of pCN-
MH, to obtain a sample of the posterior error distribution.

Now we are ready to numerically test the methods discussed in this chapter.

4. Experimental results

4.1. Stochastic filter PEnKF-S

We assess the accuracy of the PEnKF-S and compare it against that of the LETFK implementa-
tion proposed by Hunt [13]. The numerical model is the Lorenz 96 model [11], which mimics
the behavior of the atmosphere:

dxk
dt
¼ �xk�1 � xk�2 � xkþ1ð Þ � xk þ F, for 1 ≤ k ≤n, (36)

where n is the number of components in the model and F is an external force; with the value of
the parameter, F ¼ 8, the model presents a great entropy.

The experimental settings are described below:

1. An initial random solution xþ�3 is propagated for a while in time by using Lorenz 96 model
and a fourth-order Runge Kutta method in order to obtain a vector state xþ�2 whose
physics are consistent with the dynamics of such numerical model. This vector state serves
as our reference solution.
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2. The reference solution is perturbed by using samples from a normal distribution with
parametersN 0n; σB � Ið Þ. Three different values for σB are considered during the numerical
experiments σB ∈ 0:05; 0:10; 0:15f g. This perturbed state is propagated in time in order to
make it consistent with the physics and dynamics of the numerical model. From here, an
initial background state xb�1 is obtained.

3. A similar procedure is performed in order to build a perturbed ensemble about xb�1. The
ensemble members are propagated in time from where an ensemble of model realizations

xb i½ �
0

n oN

i¼1
of model is obtained.

4. The assimilation windows consist of 15 equidistant observations. The frequency of obser-
vations is 0.5 time units, which represents 3.5 days in the atmosphere.

5. The dimension of the vector state is n ¼ 40. The external force of the numerical model is
set to F ¼ 80.

6. The number of observed components is 50% of the dimension of the vector state.

7. Three ensemble sizes are tried during the experiments ∈ 20; 40; 60f g.
8. As a measure of quality, the L2 norm of the analysis state and the reference solution are

computed across assimilation steps.

9. A total of 100 runs are performed for each pair N; σBð Þ. For each run, a different initial
random vector is utilized in order to build the initial perturbed reference solution xþ�3
(before the model is applied x∗�2). This yields to different initial ensembles as well as
synthetic data for the different runs of each configuration (pair).

The average of the error norms of each pair N; σBð Þ for the LETKF and the PEnKF
implementations is shown in Table 1. As can be seen, on average across 100 runs, the

σB N LETKF PEnKF-S

0.05 20 22,6166 21,2591

40 20,5671 18,2548

60 20,0567 17,8824

0.10 20 23,1742 21,0725

40 20,9513 18,3542

60 18,5048 17,8240

0.15 20 24,8201 20,9059

40 21,1314 18,1731

60 20,8487 17,7590

Table 1. Average of L-2 norm of errors for 100 runs of each configuration σB;Nð Þ for the compared filter
implementations.
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i¼k�p C ið Þ.
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Now we are ready to numerically test the methods discussed in this chapter.

4. Experimental results
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We assess the accuracy of the PEnKF-S and compare it against that of the LETFK implementa-
tion proposed by Hunt [13]. The numerical model is the Lorenz 96 model [11], which mimics
the behavior of the atmosphere:

dxk
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¼ �xk�1 � xk�2 � xkþ1ð Þ � xk þ F, for 1 ≤ k ≤n, (36)

where n is the number of components in the model and F is an external force; with the value of
the parameter, F ¼ 8, the model presents a great entropy.

The experimental settings are described below:

1. An initial random solution xþ�3 is propagated for a while in time by using Lorenz 96 model
and a fourth-order Runge Kutta method in order to obtain a vector state xþ�2 whose
physics are consistent with the dynamics of such numerical model. This vector state serves
as our reference solution.
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experiments σB ∈ 0:05; 0:10; 0:15f g. This perturbed state is propagated in time in order to
make it consistent with the physics and dynamics of the numerical model. From here, an
initial background state xb�1 is obtained.

3. A similar procedure is performed in order to build a perturbed ensemble about xb�1. The
ensemble members are propagated in time from where an ensemble of model realizations
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i¼1
of model is obtained.

4. The assimilation windows consist of 15 equidistant observations. The frequency of obser-
vations is 0.5 time units, which represents 3.5 days in the atmosphere.

5. The dimension of the vector state is n ¼ 40. The external force of the numerical model is
set to F ¼ 80.

6. The number of observed components is 50% of the dimension of the vector state.

7. Three ensemble sizes are tried during the experiments ∈ 20; 40; 60f g.
8. As a measure of quality, the L2 norm of the analysis state and the reference solution are

computed across assimilation steps.

9. A total of 100 runs are performed for each pair N; σBð Þ. For each run, a different initial
random vector is utilized in order to build the initial perturbed reference solution xþ�3
(before the model is applied x∗�2). This yields to different initial ensembles as well as
synthetic data for the different runs of each configuration (pair).

The average of the error norms of each pair N; σBð Þ for the LETKF and the PEnKF
implementations is shown in Table 1. As can be seen, on average across 100 runs, the

σB N LETKF PEnKF-S

0.05 20 22,6166 21,2591

40 20,5671 18,2548

60 20,0567 17,8824

0.10 20 23,1742 21,0725

40 20,9513 18,3542

60 18,5048 17,8240
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implementations.
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performance of the proposed EnKF implementation outperforms that of the LETKF in terms of
L2 norm of the error. Even more, the PEnKF-S seems to be invariant to the initial background
error σB since, in all cases, when the ensemble size is increased a better estimation of the
reference state x∗ at different observation times is obtained. This can also obey to the estima-
tion of background error correlations via the modified Cholesky decomposition since it is
drastically improved whenever the ensemble size is increased as pointed out by Bickel and
Levina in [1]. In such case, the error decreases by O log nð Þ=Nð Þ. This is crucial in the PEnKF-S
formulation since estimates of the precision analysis covariance matrix are obtained by rank-
one updates on the inverse background error covariance matrix. On the other hand, in the
LETKF context, increasing the ensemble size can improve the accuracy of the method but that
is not better than the one shown by the PEnKF.

Some plots of the L2 norm of error for the PEnKF and the LETKF across different configura-
tions and runs are shown in Figure 1. Note that the error of the PEnKF decreases aggressively
since the earlier iterations. In the LETKF context, the accuracy is similar to that of the PEnKF
only at the end of the assimilation window.

4.2. Deterministic filter PEnKF-D

Holding the settings from the previous section, experiments are performed by using the
PEnKF-D. The results have similar behavior to that of the LETFK and the PEnKF-S implemen-
tation proposed by Niño et al. in [8]. This can be appreciated in Figures 1–3. As can be seen, the
error distributions reveal similar behavior across all compared filters.

4.3. MCMC filter based on modified Cholesky decomposition

We will describe experiments of our proposed filter based on a modified Cholesky decompo-
sition and the preconditioned Crank-Nicolson Metropolis-Hastings. Again, the numerical

Figure 1. Local ensemble transform Kalmar filter (LETKF).
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model is the Lorenz 96 model. In this section, we are mainly interested on describing the
behavior of the method, especially when the observational operator is nonlinear.

The experimental settings are as follows:

1. The observational operator is quadratic: H xð Þf gi ¼ x2i , where xi denotes the ith compo-
nent of the vector state x.

2. The vector of states has n ¼ 40 components.

3. The ensemble size is N ¼ 20.

4. The length of the Markov Chain is 1000.

5. The proposal is pCN with β ¼ 0:09.

Figure 2. Posterior ensemble Kalmar filter stochastic (PEnKF-S).

Figure 3. Posterior ensemble Kalmar filter deterministic (PEnKF-D).
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Figure 4 describes the distribution of six of the 40 components of the state vector after 1000
iterations of the algorithm, attempting to visualize if the actual value is within or near the region
of the highest probability density described by the sample contained in the Markov Chain.

Note that, not in all cases, the actual values of the model components were located at the peaks
of the histogram, but most of them were within or near to zones of high probability described
by the sample. This result is important if we take into account that probably the posterior
distribution is not normal as is the case of quadratic observation operators.

5. Conclusions

In this chapter, efficient EnKF implementations were discussed. All of them are based on a
modified Cholesky decomposition wherein a precision background covariance is obtained in
terms of Cholesky factors. In the first filter, the PEnKF-S, synthetic data are utilized in order to
compute the posterior members, as done in stochastic formulations of the filter. Even more, a
sequence of rank-one updates can be applied over the factors of the prior precision matrix in
order to estimate those of the posterior precision. In the second filter, the PEnKF-D, synthetic
data are avoided by using perturbations obtained from the physics and the dynamics of the
numerical model. Finally, a MCMC-based filter is obtained in order to reduce the impact of bias
when Gaussian assumptions are broken during the assimilation of observations, for instance,
when the observation operator is nonlinear. Numerical experiments with the Lorenz 96 model
reveal that the proposed filters are comparable to filters from the specialized literature.

Figure 4. Histogram of six components of the state vector after 1000 iterations of the algorithm, the dashed lines indicate
the position of the true value for the respective component.
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Abstract

Shunt active power filter (APF) method have been used by many researchers as a solu-
tion in reducing the harmonics creating by the non-liner loads. Therefore, this research is 
targeted to design and implement a three-phase shunt APF employing Kalman filter esti-
mator. Conventionally, low-pass filter (LPF) is used to filter out the unwanted DC compo-
nent of the non-linear load to produce the sinusoidal waveform called the reference current. 
However, when applying LPF it contributes with the phase shift and high transient at the 
supply current. Therefore, to reduce these problems, the digital Kalman filter estimator is 
used to replace the LPF for generating the reference current. Details on the investigation 
between conventional and proposed methods under simulation based on Matlab Simulink 
platform and experimental that are made for two types of load, namely, three-phase recti-
fier with RC-load and three-phase induction motor, are presented. The performance criteria 
of the shunt APF are determined by the supply current waveform, total harmonic distortion 
(THD), harmonic spectrum and power quality measurements, which were also obtained 
by simulation and experimental. In conclusion, by employing Kalman filter estimator for 
generating the reference current, it reduces the time delay and high transient current at the 
power supply and, thus, improved the overall THD from 0.1 to 0.42% compared to the LPF.

Keywords: three-phase system, harmonic reduction, active power filter (APF), reference 
current generation, Kalman filter

1. Introduction

Electrical power is essential to people’s modern lifestyle. In recent five decades, due to the 
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Abstract

Shunt active power filter (APF) method have been used by many researchers as a solu-
tion in reducing the harmonics creating by the non-liner loads. Therefore, this research is 
targeted to design and implement a three-phase shunt APF employing Kalman filter esti-
mator. Conventionally, low-pass filter (LPF) is used to filter out the unwanted DC compo-
nent of the non-linear load to produce the sinusoidal waveform called the reference current. 
However, when applying LPF it contributes with the phase shift and high transient at the 
supply current. Therefore, to reduce these problems, the digital Kalman filter estimator is 
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between conventional and proposed methods under simulation based on Matlab Simulink 
platform and experimental that are made for two types of load, namely, three-phase recti-
fier with RC-load and three-phase induction motor, are presented. The performance criteria 
of the shunt APF are determined by the supply current waveform, total harmonic distortion 
(THD), harmonic spectrum and power quality measurements, which were also obtained 
by simulation and experimental. In conclusion, by employing Kalman filter estimator for 
generating the reference current, it reduces the time delay and high transient current at the 
power supply and, thus, improved the overall THD from 0.1 to 0.42% compared to the LPF.
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grid connected load drastically. For that reason, all the electrical consumers at all levels of 
usage have facing an issue of power quality problems. Both industrial/commercial sector 
and domestic environment commonly use sensitive equipment and non-linear loads (NLL). 
Inadvertently, these result in a non-sinusoidal current being drawn from the supply, which 
contains the harmful harmonic component and fed back to the supply system on the same 
point of common coupling (PCC). Passive filter is one of the common methods that have 
been used to overcome this problem. The passive filter is connected in parallel between 
the supply and NLL for improvement of power factor and harmonic suppression and thus 
exhibits lower impedance at tuned harmonic frequency. However, this approach does not 
solve the problem effectively due to its inability to compensate random frequency variation 
in the current, tuning problem and parallel resonant. Among the techniques, the d-q algo-
rithm has been widely used to eliminate the harmonics due to its simplicity of control design 
relative to the rest. Commonly, the d-q algorithm is using LPF to generate the reference cur-
rent. However, time delay introduced when applying the LPF will contribute to the phase 
shift in harmonics and higher transient current. Therefore, a new proposed technique of the 
current reference generator embedded with Kalman filter for shunt APF system is proposed 
where it reduces the time delay, thus producing improvement of the overall total harmonic 
distortion (THD) in the system.

1.1. State of the art

The active power filter (APF) technology is now mature in providing compensation for har-
monics, reactive power and neutral current in AC networks. It has evolved for the past quar-
ter century of development with varying configurations, control strategies and solid-state 
devices. Commonly, the APFs are used to eliminate the voltage harmonics, regulate terminal 
voltage, suppress voltage flicker and improve voltage balance in three-phase systems. This 
wide range of objectives can be achieved either individually or in combination depending 
upon the requirements, control strategy and configuration, which have to be selected appro-
priately. This section describes the history of development and the present status of the APF 
technology.

With the proliferation of power electronics in energy conversions, power quality is fast becoming 
an issue of an increasingly important aspect of electrical consumers at all levels of usage. A large 
number of publications have been covering the power quality survey, measurements, analysis, 
cause and effects of harmonics and reactive power in the electric networks [1–9]. APFs can be 
categorized into three types, namely, two-wire (single-phase), three-wire and four-wire three-
phase configurations, to meet the requirements of the three types of NLL on supply systems. 
Domestic lights and ovens, TVs, computer power supplies, air conditioners, laser printers and 
Xerox machines behave as NLL and cause power quality problems for single-phase loads. For 
this type of load, the APFs are investigated in varying configurations and control strategies [10–
19]. Starting in 1971, many configurations of APF have been developed for improving the power 
system quality. It can be categorized into four basic types, namely, series, parallel (shunt), hybrid 
APFs and unified power quality conditioner (universal AF). The series APF operates mainly as 
a voltage regulator and a harmonic isolator between NLL and utility system [20–23]. In other 
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words, it allows only fundamental component of the current to flow in the system, suppress-
ing other higher-frequency components. It can also be used to regulate the negative sequence 
voltage at the load. The series active filter is ideal for eliminating and/or maintaining the output 
voltage while balancing three-phase voltages [20, 21, 23–26]. On the other hand, shunt APF has 
been widely used to mitigate the harmonics. It cancels the load-current harmonics and provides 
reactive compensation to the supply, through the act of injecting equal but opposite harmonic 
compensating current to the supply [27–38]. Shunt APF has the advantage of carrying only the 
compensation current plus a small amount of active fundamental current to compensate for sys-
tem losses. It is also possible to connect several filters in parallel to cater for higher currents, mak-
ing this type of circuit suitable for a wide range of power ratings [26, 39, 40]. The most common 
configuration of shunt APF is the inverter type where the role of the filter inductor is to suppress 
the high frequency at tuned current generated at tuned frequency, while the converter provides 
complementary filtering on others that includes any random variations through switching tech-
niques [28, 34, 41, 42]. The shunt APF controller can be used in direct or indirect connection. 
Hybrid APF can be characterized by a combination of passive filter and APF in series or parallel. 
The combination between series APF with parallel passive filter is the most popular arrangement 
because the solid-state devices used in active series part help in reducing the size and cost, to 
about 60–80% of load size [43, 44]. Furthermore, the passive parallel LC filter is used to eliminate 
lower-order harmonics at reasonable cost [26, 37, 44–49]. Another arrangement is the combina-
tion of active filter in series with a parallel passive filter, which is used especially for medium- 
and high-voltage applications [26]. Further arrangements also include a combination of parallel 
active and passive filters where the APF part is designed to eliminate the lower order of harmon-
ics, while the passive filter works to eliminate the bulk load-current harmonic [26]. The combi-
nation of series active and parallel APF will produce unified power quality conditioner (also 
known as universal AF). The DC-link element of either inductor or capacitor is shared between 
two current sources or voltage-source bridges operating as active series and active parallel com-
pensator [50, 51]. This universal AF is considered as an ideal AF, which eliminates voltage and 
current harmonics, thus capable of providing clean power to critical and harmonic-prone loads, 
such as computer, medical equipment and others. The main drawbacks are large costs and com-
plex control due to dependency on the number of solid-state devices involved [26, 50, 51].

Many control approaches have been developed to extract and estimate the harmonics in the 
system. Instantaneous reactive power theory (p-q theory), modified p-q theory [52–54], p-q-r 
theory [55, 56], vectorial theory [57] and d-q theory [58–60] are the techniques that fall into the 
extraction technique. Due to its simplicity of control design relative to the rest, for that reason 
this d-q algorithm has been widely used to eliminate the harmonics [61]. On the other hand, 
estimation approach is used to estimate harmonics of frequency component present in the 
signal and measurement or estimation of the amplitude and phases of those frequencies [62]. 
This approach can be divided into two classes, non-parametric and parametric methods. The 
non-parametric methods are based on transformation of the given time-series data sequence. 
During the estimation process, these methods are not capable of incorporating with any avail-
able information about the system. Frequency domain approach using Fourier transform is 
most commonly used for spectrum analysis in this harmonic estimation [62]. In addition, 
parametric methods use an appropriate model to represent the signal and then estimate the 
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parameters of the model from the available data points. Estimated parameters are applied to 
the selected model to determine harmonic contents in the signal. This parametric methods 
offer higher resolution and better accuracy than the non-parametric methods [62]. Kalman 
filter (KF) estimator is one of the methods that fall into the parametric method category which 
have been widely studied and used for different applications [62–69].

1.2. Main contribution

There are three main contributions regarding with this research:

a. Developed a new design of shunt APF employing Kalman filter estimator.

• The new design of shunt APF for generating the reference currents using Kalman filter es-
timator was proposed to reduce the delay time and high transient current when applying 
the conventional technique. In addition, the developed system was tested for two different 
types of loads such as three-phase rectifier with RC-load and three-phase induction motor.

b. Investigation of the details of performance based on simulation and experimental for con-
ventional and the proposed technique.

• The investigation criteria are on the harmonic spectrum, THD and power quality for dif-
ferent three types of load because these criteria affect directly the performance of system 
that used active power filter.

c. Comparative studies between the conventional and the proposed technique upon experi-
mental implementation.

d. An analysis is carried out in terms of harmonic spectrum, THD and power quality as well 
to validate the advantages offered by employing the new techniques relative to the com-
mon implementation of an active power filter.

1.3. Proposal of the research

Power quality problems have becoming a critical issue when dealing with power electronic 
converter and NLL due to the effects of the harmonic contamination in power system. Many 
techniques have been proposed to overcome these problems such as passive filter which con-
tribute to improve the power factor and harmonic suppression and exhibit lower impedance 
at a tuned harmonic frequency. However this approach provides incomplete solutions par-
ticularly when compensating random frequency variations in the current, tuning and paral-
lel resonant problems. Therefore, various active power filter (APF) configurations with their 
respective control strategies have been proposed and have been recognized as a viable solu-
tion to the problem created by harmonics. Among the technique, the d-q algorithm has been 
widely used to eliminate the harmonics due to its simplicity of control design relative to the 
rest. Commonly, the d-q algorithm is using LPF to generate the reference current. However, 
time delay introduced when applying the LPF will contribute to the phase shift in harmonics 
and higher transient current. A new proposed technique of the current reference generator 
embedded with Kalman filter (KF) for shunt APF system is proposed as shown in Figure 1. 
The KF in the system was used as a LPF to produce a reference current in three-phase system 
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as shown in Figure 2. The KF used a form of feedback control in which the filter estimates 
the process at any time and then obtains feedback in the form of noisy measurements. These 
noisy measurements can be further exploited to improve the next estimates in which KF is 
able to perform because it has both time update and measurement update equations. The 
time update also known as predictor equation is responsible for projecting forward (in time) 
current state and error covariance estimate to obtain the estimation in the next time step, 
while the measurement update equation also called corrector equation is responsible for the 
feedback such as for incorporating a new measurement into the estimator to improve the 

Figure 1. Overall system of shunt APF.

Figure 2. New technique of three-phase reference current generator employing Kalman filter estimator.
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estimation. Therefore the estimation resembles the combination of predictor-corrector algo-
rithm, which is used in the system. By applying KF, it improves the overall performance and 
also reduces the time delay and transient current which occurs in the conventional technique. 
Furthermore, this technique uses every measurement that the system has to further improve 
on the results by giving a better estimate at each time epoch. The significant improvement 
can be observed at the total harmonic distortion (THD) reduction at 2.38% compared to when 
the shunt APF is not implemented at all which performs at 168.39%. The TDH of the source 
current after the compensation is at 2.18% which is way below the IEEE 519 Standard which 
imposed a limit at less than 5% of the overall harmonics. In fact, for comparison, the use of KF 
also performed better than the established low-pass filter, which performs at 2.8% of the THD.

2. Mathematical formulation

There are three elements that involved in generating the required current reference that is 
used to compensate the undesirable load current components as shown in Figure 2. These 
elements are stationary reference frame, Kalman filter (KF) and DC voltage regulator. The 
mathematical formulation for each element is further explained in the next subtopics.

2.1. Stationary reference frame

Stationary reference frame also known as d-q algorithm was developed based on Park trans-
formation. This method transforms three-phase into d-q coordinates (rotating reference frame 
with fundamental frequency) using Park transformations. In this case, the load currents are 
measured and transformed into d-q coordinates. The equations to transform a-b-c coordinate 
into α-β-0 coordinate is presented in Eq. (1):
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By employing Park transformation, the α-β-0 coordinate is transformed into d-q coordinate as 
shown in Eq. (1):
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The phase angle,  θ , in d-q frame is the same with fundamental frequency which makes the DC 
fundamental current component   ( i  
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  )   and harmonic AC component   ( i  
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  )   arise due to har-

monics at the load [61]. Low-pass filter (LPF) is normally used to determine the DC component. 
Nevertheless, for such system, phase shift in harmonics and high transient response is unavoid-
able before attaining its steady state. This is where KF estimator is used to replace the LPF and 
further improve the overall performance of the system. In order to stabilize the voltage on the 
DC side of the VSI, the measurement voltage, Vdc, measure must follow the reference voltage, 
Vdc ref. Therefore, DC voltage regulator loop is designed by integrating a suitable PI controller.
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2.2. DC voltage regulator

The DC voltage regulator is controlled with a traditional PI controller. The DC voltage, Vdc, is 
measured and then compared with a constant reference value Vdc*. The error is processed by a 
PI controller with two gains: Kp and Ki. Both gains are calculated and tuned accordingly to the 
dynamic response in which the values of both gain are set to 4 for Kp and 91 for Ki.

2.3. Kalman filter

The use of Kalman filter (KF) provides an efficient computational means to estimate the state 
of a process which is able to minimize the means of the squared error. This is achieved by 
keeping tracks of the estimated state of the system as well as the variance of the estimates via 
two distinct phases: predict and update. The basic KF can be defined as.

   x  k   = A  x  k−1   + B  u  k   +  w  k    (3)

and

   z  k   = H  x  k   +  v  k    (4)

where  A  is the state transition matrix,  B  is the control matrix that is applied to   u  
k
   , which is the 

control vector of the system, and  H  is defined as observation matrix with   x  
k
    the state of the 

system and   y  
k
    the measurement or sometimes called observation vector.   w  

k
    and   v  

k
    are the pro-

cess noise vector and observation noise vector, respectively, and it is assumed to be mutually 
independent and normally distributed. Relative to the system, since the fundamental positive 
sequence components of the non-linear load current appears as DC quantities of the synchro-
nous reference frame rotating at 50 Hz, it can then be separated from the load currents using 
KF as depicted in Figure 3.

In this case, the state transition matrix is the differential equation that relates the state at 
the previous time step k − 1 to the current step k. Therefore, the state vector   x  

k
    can be further 

defined as.

   x  k   =  [ 
 i  d (k)      i  q (k)   

  ]   (5)

Figure 3. Kalman filter.
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By employing Park transformation, the α-β-0 coordinate is transformed into d-q coordinate as 
shown in Eq. (1):
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The phase angle,  θ , in d-q frame is the same with fundamental frequency which makes the DC 
fundamental current component   ( i  

 d ̄  
  ,  i  

 q ̄  
  )   and harmonic AC component   ( i  

  d 
~

  
  ,  i  

  q ~  
  )   arise due to har-

monics at the load [61]. Low-pass filter (LPF) is normally used to determine the DC component. 
Nevertheless, for such system, phase shift in harmonics and high transient response is unavoid-
able before attaining its steady state. This is where KF estimator is used to replace the LPF and 
further improve the overall performance of the system. In order to stabilize the voltage on the 
DC side of the VSI, the measurement voltage, Vdc, measure must follow the reference voltage, 
Vdc ref. Therefore, DC voltage regulator loop is designed by integrating a suitable PI controller.
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2.2. DC voltage regulator

The DC voltage regulator is controlled with a traditional PI controller. The DC voltage, Vdc, is 
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PI controller with two gains: Kp and Ki. Both gains are calculated and tuned accordingly to the 
dynamic response in which the values of both gain are set to 4 for Kp and 91 for Ki.

2.3. Kalman filter

The use of Kalman filter (KF) provides an efficient computational means to estimate the state 
of a process which is able to minimize the means of the squared error. This is achieved by 
keeping tracks of the estimated state of the system as well as the variance of the estimates via 
two distinct phases: predict and update. The basic KF can be defined as.

   x  k   = A  x  k−1   + B  u  k   +  w  k    (3)

and

   z  k   = H  x  k   +  v  k    (4)

where  A  is the state transition matrix,  B  is the control matrix that is applied to   u  
k
   , which is the 

control vector of the system, and  H  is defined as observation matrix with   x  
k
    the state of the 

system and   y  
k
    the measurement or sometimes called observation vector.   w  

k
    and   v  

k
    are the pro-

cess noise vector and observation noise vector, respectively, and it is assumed to be mutually 
independent and normally distributed. Relative to the system, since the fundamental positive 
sequence components of the non-linear load current appears as DC quantities of the synchro-
nous reference frame rotating at 50 Hz, it can then be separated from the load currents using 
KF as depicted in Figure 3.

In this case, the state transition matrix is the differential equation that relates the state at 
the previous time step k − 1 to the current step k. Therefore, the state vector   x  

k
    can be further 

defined as.

   x  k   =  [ 
 i  d (k)      i  q (k)   

  ]   (5)

Figure 3. Kalman filter.
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Furthermore, the optional control input which defined the control matrix B can be neglected. 
Since the system only measured two parameters, respectively, therefore the measurement 
matrix can be simply represented by two-by-two identity matrix. Therefore, the implementa-
tion of the KF can be rewritten as.

    
 x  k   = A  x  k−1   +  w  k      P  k  −  = A  P  k−1    A   T  + Q   (6)

for the predictor:

    

 z  k   = H   x ̂    k  −  +  v  k  

    S  k   = H  P  k  −   H   T  +  R  k     
  x ̂    k   =   x ̂    k  −  +  K  k   ( z  k   − H   x ̂    k  − ) 

   (7)

The measurement update equation    x ̂    
k
    is the estimate reference current of   i  

d
    and   i  

q
   ,    x ̂    

k
  −   is the pre-

dicted state,   z  
k
    is the measurement of actual current,   P  

k
    is the estimate error covariance,   R  

k
    is the 

observation covariance matrix and   K  
k
    is the Kalman gain. In this representation, matrix  P  is the 

variance matrix of the error   x  
k
   −   x ̂    

k
    where the goal is to minimize this value. Here the Kalman 

gain calculation will be based on the conventional calculation defined in Eq. (8):

    
 K  k   =  P  k  −   H   T   S   −1 

    P  k   =  (I −  K  k   H)   P  k  − 
   (8)

The process noise covariance matrix  Q  and observation noise covariance matrix  R  are tuned 
manually in order to achieve the optimal performance of the filter. Figure 4 shows the cycle 
of KF.

Figure 4. Cycle of discrete Kalman filter.
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3. Simulation and experimental result

The proposed simulation and experimental results designed for the three-phase reference 
current generation employing KF estimator for three-phase shunt APF are presented. The 
work is simulated and implemented using Matlab Simulink and dSPACE.

3.1. Non-linear load

The results for the APF before and after compensation are simulated using Matlab Simulink, 
while Fluke Power Quality Analyzer captures the results for the experimental. Figure 5(a) and (b) 
shows the supply current waveform before the compensation for simulation and experimental 
result; thus, the harmonic spectrum of both simulation and experimental is shown in Figure 6, 
respectively.

From the harmonic spectrum results, the total harmonic distortion (THD) can be determined 
by using the formula defined as.

  %THD =   
 √ 

_____
  ∑ 

n=2
  

∞
     I  h  2   
 _____  I  f  

    (9)

Figure 5. Simulation and experimental result without shunt APF (a) simulation and (b) Experiment.

Figure 6. Harmonic spectrum before the compensation.
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where Ih is the harmonic component, If is the fundamental component, and n is the harmonic 
number: 2, 3, 4, etc.

Therefore, the THD of the line current obtained by the simulation is 56.14%, while the experi-
mental obtains about 47.26%. There are slightly different between the simulation and experi-
mental results because the simulation is simulated at an ideal condition.

3.2. Kalman filter estimator result versus low-pass filter

Commonly, a Butterworth low-pass filter (LPF) was applied to filter out the unwanted DC 
component for d-q algorithm to ensure that the correct reference currents are generated in 
the system. Failure to obtain the correct reference current resolves reduction of the overall 

Figure 8. Simulation of Kalman filter.

Figure 7. Simulation Butterworth low-pass filter.
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performance of the active power filter (APF). But, time delay which contributes to the phase 
shift in harmonics and high transient current is the common effect when applying the LPF. 
Figure 7 shows the shunt APF when applying Butterworth LPF. It is clearly shown that from 
the figure, the time delay is recorded at 0.02 s with 43.36% of the THD. On the other hand, 
there is no time delay when applying the shunt APF using KF estimator which is shown in 
Figure 8. Therefore, the THD produced by the KF estimator is 98% improvement compared to 
LPF. On the other hand, the experimental results for low-pass and KF are shown in Figures 9 
and 10, respectively.

Figure 9. Experimental Butterworth low-pass filter.

Figure 10. Experiment of Kalman filter.
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3.3. Three-phase shunt active power filter

In this shunt active power filter feeding a non-linear load, the results between Butterworth 
LPF and KF estimator are compared between simulation and experimental, which are shown 
in Figures 11 and 12, respectively.

From the results obtained, it can be concluded that almost the same waveform was produced 
for both simulation and experimental approaches. Furthermore, the harmonic spectrum form 
the experimental is shown in Figure 13.

Both methods have demonstrated a harmonic reduction with almost identical fundamental 
current between simulation and experimental.

The THD results obtained show that the new technique shunt APF abides the regulation of 
IEEE 519–1992 standard. Tables 1 and 2 show the THD after simulation and experimental 
results, respectively.

From the observation, the shunt APF using KF estimator technique produces about 0.1% bet-
ter THD than LPF either in simulation or experimental.

Figure 12. Experimental results for shunt APF: (a) low-pass filter and (b) Kalman filter.

Figure 11. Simulation result for shunt APF (a) low-pass filter and (b) Kalman filter.
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3.4. Operation with three-phase induction motor speed drive

A 1.5 kW, 380 V variable speed induction motor (IM) drive is connected in parallel to the APF 
and the three-phase supply voltages. The motor is operated as a non-linear load and starts to 
accelerate from standstill at time, t = 0.06 s, until it reached the required reference speed which 
is set at 1400 rpm. Figures 14 and 15 show the supply current when the IM starts to accelerate 
without and with shunt APF, respectively. Fluke Power Quality Analyzer was used to measure 

Figure 13. Harmonics spectrum.

Types of reference current generation THD before (%) THD after (%)

Low-pass filter 55.88 2.09

Kalman filter estimator 1.99

Table 1. Simulation results.

Types of reference current generation THD before (%) THD after (%)

Low-pass filter 47.27 2.30

Kalman filter estimator 2.18

Table 2. Experimental results.
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the THD at steady-state condition (t = 0.28 s). THD obtained before applying shunt APF is 
168.39%, whereas when applying the shunt APF using both KF and LFP, the THD reduced to 
2.38 and 2.80%. Furthermore, the harmonic spectrum with or without shunt APF for both KF 
and LPF is shown in Figures 16–18, respectively. It can conclude that from the results, the shunt 
APF employing KF-based estimator produced lower THD than LPF for an induction motor 
drive application.

Figure 15. Supply current when applying shunt APF with Kalman filter estimator.

Figure 14. Supply current waveform without shunt APF.
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The overall total harmonic distortion with or without shunt APF is shown tabulated in 
Table 3, which shows that the KF estimator produces lower THD than LPF for three-phase 
induction motor.

Figure 16. Harmonic spectrum without shunt APF.

Figure 17. Harmonics spectrum after applying shunt APF.
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4. Conclusion

The new techniques of reference current generator by employing KF estimator for shunt 
APF technique have been presented. The results of the proposed technique in generating the 
three-phase reference current towards reducing the THD are established using simulation 
and experimental. For the three-phase rectifier connected with RC load, the performance of 
the proposed technique is comparable with those based on the LPF reference current gen-
eration. The THD of the source current from the experimental result after the compensa-
tion is 2.18% which is less than 5% of the harmonic limit imposed by the IEEE 519 standard. 
Furthermore, nearly 0.1% THD improvement was gained by the proposed techniques com-
pared to LPF. Thus, the comparison of different reference current grid generations for shunt 
APF is also presented. The performance of KF estimator reference current generation was also 
studied for induction motor variable speed drive. In induction motor, almost 0.42% improve-
ment of THD was gathered when applying KF estimator compared to LPF.

5. Future works

Although the proposed technique improved the overall performance of shunt APF, there is a 
room of improvement and suggestion for further research work such as:

Reference current generation THD before (%) THD after (%)

Low-pass filter 168.39 2.80

Kalman filter estimator 2.38

Table 3. THD of supply current before and after applying shunt APF.

Figure 18. Harmonics spectrum without fundamental.
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1. The hysteresis band plays a significant influence to the THD reduction. With the lower hys-
teresis band, more accurate PWM generated, thereby improving the THD. In this  thesis, 
the hysteresis band is set to ±0.08 while in simulation at ±0.001. Therefore, in order to have 
faster and more accurate result, the combination of dSpace and FPGA can be implemented 
to reduce the computational time from the dSpace.

2. Further combination between shunt APF and passive filter (hybrid APF) can be used to im-
prove the performance of the APF. Where the passive filter used to filter the higher order 
harmonic while shunt APF filter the lower order harmonic.

3. Apply the Kalman filter to the instantaneous real and reactive algorithm. Convention-
ally, the technique used p-q algorithm that combined with high-pass filter. However, 
Kalman filter can be used to replace it, and the performance of the system can be further 
investigated.
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Abstract

In this chapter, we review various applications of Kalman filtering for coherent optical
communication systems. First, we briefly discuss the principles of Kalman filter and its
variations including extended Kalman filter (EKF) and adaptive Kalman filter (AKF).
Later on, we illustrate the applicability of Kalman filters for joint tracking of several
optical transmission impairments, simultaneously, by formulating the state space model
(SSM) and detailing the principles. A detailed methodology is presented for the joint
tracking of linear and nonlinear phase noise along with amplitude noise using EKF.
Also, approaches to enhance the performance obtained by EKF by combining with other
existing digital signal processing (DSP) techniques are presented. Frequency and phase
offset estimation using a two stage linear Kalman filter (LKF)/EKF is also discussed. A
cascaded structure of LKF and EKF by splitting the SSM to jointly mitigate the effects of
polarization, phase and amplitude noise is also presented. The numerical analysis con-
cludes that the Kalman filter based approaches outperform the conventional methods
with better tracking capability and faster convergence besides offering more feasibility
for real-time implementations.

Keywords: optical communication systems, coherent optical transmission, digital
signal processing, nonlinear mitigation, phase noise, amplitude noise, QAM

1. Introduction

In order to meet the yearning demands of bandwidth and capacity due to ever increasing data
traffic, the contemporary research in the field of optical transmission, is focused on developing
400 Gbps and above, Ethernet transmission [1–5]. The achievable information rates using
optical fiber as communication channel have been rapidly increased over the past few decades.
Some of the technology breakthroughs behind this rapid increase in the transmission capacity,
can be listed as the invention and development of the erbium doped fiber amplifiers (EDFA),
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Abstract

In this chapter, we review various applications of Kalman filtering for coherent optical
communication systems. First, we briefly discuss the principles of Kalman filter and its
variations including extended Kalman filter (EKF) and adaptive Kalman filter (AKF).
Later on, we illustrate the applicability of Kalman filters for joint tracking of several
optical transmission impairments, simultaneously, by formulating the state space model
(SSM) and detailing the principles. A detailed methodology is presented for the joint
tracking of linear and nonlinear phase noise along with amplitude noise using EKF.
Also, approaches to enhance the performance obtained by EKF by combining with other
existing digital signal processing (DSP) techniques are presented. Frequency and phase
offset estimation using a two stage linear Kalman filter (LKF)/EKF is also discussed. A
cascaded structure of LKF and EKF by splitting the SSM to jointly mitigate the effects of
polarization, phase and amplitude noise is also presented. The numerical analysis con-
cludes that the Kalman filter based approaches outperform the conventional methods
with better tracking capability and faster convergence besides offering more feasibility
for real-time implementations.

Keywords: optical communication systems, coherent optical transmission, digital
signal processing, nonlinear mitigation, phase noise, amplitude noise, QAM

1. Introduction

In order to meet the yearning demands of bandwidth and capacity due to ever increasing data
traffic, the contemporary research in the field of optical transmission, is focused on developing
400 Gbps and above, Ethernet transmission [1–5]. The achievable information rates using
optical fiber as communication channel have been rapidly increased over the past few decades.
Some of the technology breakthroughs behind this rapid increase in the transmission capacity,
can be listed as the invention and development of the erbium doped fiber amplifiers (EDFA),
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wavelength division multiplexing (WDM) systems, coherent detection, digital signal processing
(DSP) techniques and forward error correction (FEC) schemes ensuring reliable transmission.
The advent of coherent detection along with subsequent DSP made it possible to deploy spec-
trally efficient higher order modulation formats and multiplexing techniques [6, 7]. Moreover, it
has also made feasible to digitally equalize the optical fiber transmission impairments [8], which
are the main hurdle to increase the bandwidth-distance product. The transmission capacity can
be increased several times by employing complex modulation formats like m-ary quadrature
amplitude modulation (with m = 4, 16, 64 and so on), and multiplexing techniques like polariza-
tion division multiplexing (PDM) and WDM. However, they are more vulnerable to the optical
transmission impairments as well as to the carrier phase and frequency offset (FO). Hence,
effective DSP algorithms for combatting with the channel impairments were under active
research over the past decade [8–23]. Consequently, coherent optical receivers are well developed
and employ digital filters that allow for effective equalization of fiber linear impairments like
chromatic dispersion (CD) and polarization mode dispersion (PMD) in the electric domain [9].
Typically, CD can be compensated by either frequency or time domain filters using finite impulse
response (FIR) or infinite impulse response (IIR) design. Optical receivers exploiting polarization
diversity should also compensate for the random fluctuations of the polarization state caused by
the stochastic change of fiber birefringence. PMD compensation is widely performed using
constant modulus algorithm (CMA) [15] or multi modulus algorithm (MMA) [16]. Attributed to
these well-developed linear equalization techniques, fiber nonlinearity still remains a bottleneck
for increasing the capacity and transmission reach [24].

Although, multiple information bits being encoded in a single symbol significantly increase the
spectral efficiency, the signal becomes more sensitive to the amplified spontaneous emission
(ASE) noise that is added in the optical amplifiers along the transmission link. Therefore, a
reliable transmission over long distance demands the signal to be launched into the optical fiber
at higher power, to ensure a sufficiently high optical signal to noise ratio (OSNR) at the receiver.
However, the maximum transmittable launch power per fiber span is constrained by the Kerr
nonlinear effects, including self-phase modulation (SPM) and cross phase modulation (XPM) in
case of WDM systems, which results in signal degradation [25]. This degrading impact of Kerr
nonlinearity is much more severe in multi-channel systems with increasing number of chan-
nels [26]. Moreover, the nonlinear phase noise (NLPN) resulting from the signal and ASE noise
interactions at high launch powers, deteriorates the signal quality further. On the other hand,
signal transmission at low launch powers is limited by the ASE noise. Therefore, mitigation of
fiber nonlinearity is vital to enhance the capacity ensuring reliable transmission. Consequently,
several nonlinear mitigation techniques have been proposed in the recent era, of which, digital
backward propagation (DBP) [10], maximum likelihood sequence estimation (MLSE) based
nonlinearity mitigation [17], spectral inversion [18–20], phase conjugated twin waves [21, 22]
and perturbation based approaches [23] gained considerable attention. However, the real time
implementation of these algorithms is extremely challenging owing to either the high required
computational effort or the higher bandwidth consumption. Although computationally com-
plex, DBP has drawn significant attention owing to its capability of mitigating linear and
nonlinear impairments simultaneously, provided the channel characteristics are known and the
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step size is sufficiently small when solving the inverse nonlinear Schrodinger equation (NLSE).
Several strategies have been proposed in the literature to reduce the number of required DBP
steps and enhancing the performance either by including temporal correlations [27, 28] or
optimizing the parameters [29]. Nevertheless, the performance of DBP significantly deteriorates
in the presence of stochastic impairments like laser phase noise and NLPN [30–32]. Moreover, its
applicability is limited to single channel systems [33, 34].

Apart from fiber linear and nonlinear impairment compensation, digital carrier synchroniza-
tion has also become an essential component of the coherent receivers, for synchronizing the
phase and frequency offsets between the transmitter laser and the local oscillator (LO), elimi-
nating the necessity of a phase locked loop. Several carrier phase estimation (CPE) techniques
have been proposed for suppressing the laser phase noise [35–44]. CPE being a low complex
technique is also under wide investigation to compensate the nonlinear phase shift owing to
Kerr effect, besides laser phase noise [30, 44–47]. Investigations were also carried on the
combined performance of DBP and CPE, in order to reduce the number of DBP steps per span
and there by its complexity [31, 48]. It was reported in [30, 45], that the considered CPE
methods outperform the DBP technique implemented using asymmetric split step Fourier
method (SSFM) with one step per span and without any parameter optimization. However,
the accumulated ASE noise and the NLPN at high signal powers pose a challenging constraint
on the conventional CPE limiting its nonlinear mitigation capability. Moreover, a phase
unwrapping function [35] is typically required by CPE, which might increase the probability
of cycle slips [49] and error propagation. Furthermore, the commonly employed CPE tech-
niques have low tolerance towards the frequency offset (FO) between the transmitter laser and
the LO. Therefore, a separate FO estimation module is necessary [50].

In the recent era, Kalman filtering has gained huge attention in the field of optical communi-
cation systems, owing to its potential capability to mitigate several optical transmission
impairments simultaneously. The Kalman filter was first developed by R. E. Kalman in 1960.
In [51], he presented a new approach to the linear filtering and prediction problems by
introducing the state space notation, where the random processes/signals to be estimated are
represented as the output of a linear dynamic system perturbed by uncorrelated noise. This
approach facilitates recursive computation of the optimal solution and highly reduces the
computational effort as compared to the conventional Wiener filter besides eliminating the
memory problems. The so called Kalman filter computes the optimal solution recursively in
the minimum mean square error (MMSE) sense. While the applicability of the Wiener filter is
limited to stationary processes, the Kalman filters can be also applied to the non-stationary
processes. An added advantage of the Kalman filter is its extended applicability also to the
nonlinear systems through an approximate linearization and the so called filter is known as
extended Kalman filter (EKF). This has attracted the Kalman filters for numerous real-time
applications in the fields of navigation, radar, mobile communications, speech signal
processing and so forth. Currently, EKF is under wide investigation in coherent optical com-
munication systems for tracking and mitigating linear and nonlinear phase noise, amplitude
noise, phase and frequency offsets as well as polarization de-multiplexing [12, 13, 31, 52–66].
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nonlinearity mitigation [17], spectral inversion [18–20], phase conjugated twin waves [21, 22]
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computational effort or the higher bandwidth consumption. Although computationally com-
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step size is sufficiently small when solving the inverse nonlinear Schrodinger equation (NLSE).
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phase and frequency offsets between the transmitter laser and the local oscillator (LO), elimi-
nating the necessity of a phase locked loop. Several carrier phase estimation (CPE) techniques
have been proposed for suppressing the laser phase noise [35–44]. CPE being a low complex
technique is also under wide investigation to compensate the nonlinear phase shift owing to
Kerr effect, besides laser phase noise [30, 44–47]. Investigations were also carried on the
combined performance of DBP and CPE, in order to reduce the number of DBP steps per span
and there by its complexity [31, 48]. It was reported in [30, 45], that the considered CPE
methods outperform the DBP technique implemented using asymmetric split step Fourier
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unwrapping function [35] is typically required by CPE, which might increase the probability
of cycle slips [49] and error propagation. Furthermore, the commonly employed CPE tech-
niques have low tolerance towards the frequency offset (FO) between the transmitter laser and
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cation systems, owing to its potential capability to mitigate several optical transmission
impairments simultaneously. The Kalman filter was first developed by R. E. Kalman in 1960.
In [51], he presented a new approach to the linear filtering and prediction problems by
introducing the state space notation, where the random processes/signals to be estimated are
represented as the output of a linear dynamic system perturbed by uncorrelated noise. This
approach facilitates recursive computation of the optimal solution and highly reduces the
computational effort as compared to the conventional Wiener filter besides eliminating the
memory problems. The so called Kalman filter computes the optimal solution recursively in
the minimum mean square error (MMSE) sense. While the applicability of the Wiener filter is
limited to stationary processes, the Kalman filters can be also applied to the non-stationary
processes. An added advantage of the Kalman filter is its extended applicability also to the
nonlinear systems through an approximate linearization and the so called filter is known as
extended Kalman filter (EKF). This has attracted the Kalman filters for numerous real-time
applications in the fields of navigation, radar, mobile communications, speech signal
processing and so forth. Currently, EKF is under wide investigation in coherent optical com-
munication systems for tracking and mitigating linear and nonlinear phase noise, amplitude
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Moreover, enhancing the performance obtained from EKF by incorporating with other existing
techniques like DBP has also been studied in [31, 58, 59]. EKF requires only a few complex
multiplications to recover one data symbol. Besides the advantage from low complexity, it
further offers other benefits including faster convergence, joint tracking and compensation of
fiber impairments. Therefore, it is worth discussing and reviewing the applications of Kalman
filters for coherent optical communications in a nutshell.

This chapter is organized as follows: In Section 2, we discuss the principles of Kalman filter by
describing the state space notation and the recursive equations. We further present some
variations of the Kalman filter, namely, EKF and adaptive Kalman filter (AKF). Section 3
details the applications of EKF for coherent optical communications. We illustrate how to
employ Kalman filtering for the joint tracking of several optical transmission impairments by
formulating the state space model (SSM) and detailing the working principles. We also
describe our numerical model and present the results to justify the theoretical findings. Finally,
the chapter is concluded with a note on the key points, in Section 4.

2. The Kalman filter

A Kalman filter is an optimal recursive linear MMSE estimator that estimates the state of a
linear dynamic perturbed by noise. Since the true state of the system is not observable, instead
we obtain the measurements or observations that are corrupted by noise. Now, the goal of the
Kalman filter is to obtain an optimal estimate of the unknown state from the noisy observa-
tions recursively. The stochastic process under estimation is modeled by a state space model
(SSM) which facilitates the recursive nature of the Kalman filter. In the following, we present
the general framework of the Kalman filtering and also discuss briefly the principles of the
EKF and AKF.

2.1. Principles of Kalman filter

Consider a discrete-time, linear, time varying system in the state space notation, given by
Eqs. (1) and (2). Eq. (1) describes how the true state of the system evolves over time and is
known as the state or the process equation. Eq. (2) describes how the measurements are related
to the states and is known as measurement or observation equation. Here, k denotes the time
instant, xk and yk denote the state vector and the measurement vector, respectively. Fk denotes
the state transition matrix that relates the states at the time instances k and k – 1, in the absence
of process noise wk. Hk denotes the measurement matrix that relates the states to the measure-
ments in the absence of measurement noise nk. The process and measurement noise vectorswk

and nk are assumed to be zero mean white Gaussian noise processes with co-variance matrices
Qk and Rk, respectively. It is also assumed that the initial state x0 at time instant 0, is a Gaussian
random vector. Given the SSM and these assumptions, the objective of the Kalman filter is to
obtain a linear MMSE estimate of xk based on the observations {y1, y2,…yk}. The solution
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corresponds to the conditional mean [67] as given in Eq. (3). Here, E[�] denotes the expectation
operator.

xk ¼ Fkxk�1 þwk (1)

yk ¼ Hkxk þ nk (2)

x̂k ¼ E½xkjy1,y2,…, yk� (3)

The Kalman filter computes the optimal state recursively, following a predictor-corrector struc-
ture, where a prediction is computed prior to the availability of the observation at current time
instant k and updates the prediction when the observation at time instant k is available. Through-
out this Chapter, we follow the typical notation convention for the Kalman filter equations: any
variable with subscript k|k – 1 denotes prediction or apriori estimate, and any variable with
subscript k|k or simply, denotes the updated or aposteriori estimate. During the prediction step,
the Kalman filter makes the best guess about the system’s state based on its dynamics, prior to
the availability of the current observation. The state prediction denoted by x̂kjk�1 is given in
Eq. (4). The uncertainty associated with the prediction is given by the apriori error covariance
matrix Pk|k–1, as in Eq. (5). Under the given assumptions and initial conditions, the conditional
probability density function (pdf) p(xk|y1,y2,…,yk–1) is also Gaussian, where the apriori state
estimate x̂kjk�1 and the apriori error covariance Pk|k–1, reflects the mean and variance of the
distribution, as given in Eq. (6). Here, N denotes normal or Gaussian distribution.

x̂kjk�1 ¼ E½xkjy1, y2,…, yk�1� ¼ Fkx̂k�1jk�1 (4)

Pkjk�1 ¼ E½ðxk � x̂kjk�1Þðxk � x̂kjk�1ÞH� ¼ FkPkFHk þQk (5)

pðxkjy1, y2,…, yk�1Þ � Nðx̂kjk�1,Pkjk�1 Þ (6)

During the update step, when the new observation at time k is available, the optimal estimate
is computed as a linear combination of the prediction and the new information available from
the current measurement weighted by an optimal weighting matrix known as Kalman gain.
The update equations can be summarized in Eqs. (7)–(10). The innovation denoted by vk, can
be interpreted as the new information that is available in the observation yk relative to all the
past observations up to time instant k – 1. It is computed as the difference between the actual
and the predicted observation ŷkjk�1, and is given in Eq. (7). The Kalman gain, denoted by Kk,

determines the extent up to which the innovation should be taken into account in updating the
apriori state estimate and is computed according to Eq. (8). Here, H denotes the Hermitian
operator. The updated or aposteriori state estimate x̂kjk, and the aposteriori error covariance Pk|k,
are computed as given in Eqs. (9) and (10), respectively. The aposteriori pdf p(xk|y1,y2,…,yk)
is also Gaussian distributed with mean and variance given by the aposteriori state estimate x̂kjk
and the aposteriori error covariance Pk|k, respectively, as given in Eq. (11). Thus, the Kalman
filter propagates the first and second order moments of the state distribution recursively for
computing the optimal state estimate.
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the current measurement weighted by an optimal weighting matrix known as Kalman gain.
The update equations can be summarized in Eqs. (7)–(10). The innovation denoted by vk, can
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vk ¼ yk � ŷkjk�1 (7)

Kk ¼ Pkjk�1 HH
k ðHkPkjk�1HH

k þ RkÞ�1 (8)

x̂kjk ¼ x̂kjk�1 þ Kkvk (9)

Pkjk ¼ Pkjk�1 � Pkjk�1KkHk (10)

pðxkjy1, y2,…, ykÞ � Nðx̂kjk,Pkjk Þ (11)

2.2. Extended Kalman filtering

In Section 2.1, we addressed the problem of estimating the unknown state of a linear dynamic
system from noisy observations. Now, we consider the filtering problem for nonlinear system
dynamics (either the process or observation model or both being nonlinear). The Kalman filter
solution can be adopted for the nonlinear dynamic systems through an approximate lineariza-
tion procedure and the resulting filter is known as EKF. Consider a nonlinear dynamic system
described by the SSM given in Eqs. (12) and (13). Here, fk(�) and hk(�) denote the nonlinear state
transition function and the measurement function, respectively.

xk ¼ fkðxk�1Þ þwk (12)

yk ¼ hkðxkÞ þ nk (13)

The nonlinear system dynamics can be linearized through a first order Taylor approximation
at each time instant, around the most recent state estimate. This forms the basic idea of EKF.
Let, Ak and Bk be the Jacobian matrices of fk(�) and hk(�), respectively, and are computed
according to Eqs. (14) and (15). Under the given assumptions and, the initial conditions as
discussed in the earlier section, the EKF recursive equations can be summarized in Eqs. (16)–
(20).

Ak ¼ ∂fkðxÞ
∂x

at x ¼ x̂k�1jk�1 (14)

Bk ¼ ∂hkðxÞ
∂x

at x ¼ x̂kjk�1 (15)

x̂kjk�1 ¼ fkðx̂k�1jk�1 Þ (16)

Pkjk�1 ¼ AkPkAH
k þQk (17)

vk ¼ yk � ŷkjk�1 ¼ yk � hkðx̂kjk�1 Þ (18)

Kk ¼ Pkjk�1 BH
k ðBkPkjk�1BH

k þ RkÞ�1 (19)

x̂kjk ¼ x̂kjk�1 þ Kkvk (20)

Pkjk ¼ Pkjk�1 � Pkjk�1KkBk (21)
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2.3. Adaptive Kalman filtering

The Kalman filter computes the optimal solution, provided the process noise and measure-
ment noise covariances, Qk and Rk, respectively, are known apriori. However, in practice, a
precise knowledge about the noise statistics might not be available. The Kalman gain Kk takes
into account the noise covariances,Qk and Rk, to determine the extent of reliability between the
predicted state x̂kjk�1 and the innovation vk. Therefore, a poor knowledge of the noise statistics
might significantly degrade the filter performance and even leads to divergence. To overcome
these difficulties, an adaptive approach can be followed to adaptively estimate the noise
covariances from the noise samples, (for example, the innovation sequence) that are generated
during the Kalman recursions at each time instant. This leads to the adaptive Kalman filtering.
The different approaches for adaptive filtering are classified into four types: Bayesian, maxi-
mum likelihood, correlation and covariance matching methods [68]. Here, we discuss the
approach based on covariance matching [68, 69] for adaptive estimation of noise statistics.
The basic idea behind this approach lies on the fact that for an optimal filter, the theoretical
covariance of the innovation vk, denoted by Sk, given in Eq. (22) should be consistent with the
empirically estimated covariance given in Eq. (23). Here,m denotes the window size to provide
statistical smoothing.

Sk ¼ HkPkjk�1HH
k þ Rk (22)

EðvkvHk Þ ¼
1
m

Xm�1

i¼0
vk�ivHk�i (23)

HkPkjk�1HH
k þ Rk ¼ 1

m

Xm�1

i¼0
vk�ivHk�i (24)

Since the Kalman gain Kk depends on the ratio of the process and measurement noise covari-
ancesQk/Rk, rather than on their individual values, if either ofQk or Rk, is known, the other can
be adaptively estimated by satisfying the condition for covariance matching, given in Eq. (24).
When Qk is known, Rk can be directly estimated from Eq. (24). Alternatively, when Rk is given,
Qk can be estimated by a scaling procedure to improve the robustness of the filter. The basic
idea behind this scaling method is that if the estimated covariance of vk, on the right hand side
of Eq. (24), is much larger than the theoretical covariance, then Qk (please note that Pkjk�1 ¼
FkPkFHk þQk) should be increased to bring the theoretical covariance closer to the estimated
one and vice-versa. Therefore,Qk can be adaptively updated in order to balance any deviations
between the theoretical and estimated innovation covariance by considering a scaling factor αk,

as given in Eq. (25). The estimate of Qk, denoted by Q̂k, is given in Eq. (26).

αk ¼
traceð1m

Xm�1
i¼0 vk�ivHk�i � RkÞ

traceðHkPkjk�1HH
k Þ

(25)

Q̂k ¼ αkQ̂k�1 (26)
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vk ¼ yk � ŷkjk�1 (7)

Kk ¼ Pkjk�1 HH
k ðHkPkjk�1HH

k þ RkÞ�1 (8)

x̂kjk ¼ x̂kjk�1 þ Kkvk (9)

Pkjk ¼ Pkjk�1 � Pkjk�1KkHk (10)

pðxkjy1, y2,…, ykÞ � Nðx̂kjk,Pkjk Þ (11)

2.2. Extended Kalman filtering
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xk ¼ fkðxk�1Þ þwk (12)

yk ¼ hkðxkÞ þ nk (13)
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Ak ¼ ∂fkðxÞ
∂x

at x ¼ x̂k�1jk�1 (14)

Bk ¼ ∂hkðxÞ
∂x

at x ¼ x̂kjk�1 (15)

x̂kjk�1 ¼ fkðx̂k�1jk�1 Þ (16)

Pkjk�1 ¼ AkPkAH
k þQk (17)

vk ¼ yk � ŷkjk�1 ¼ yk � hkðx̂kjk�1 Þ (18)

Kk ¼ Pkjk�1 BH
k ðBkPkjk�1BH

k þ RkÞ�1 (19)

x̂kjk ¼ x̂kjk�1 þ Kkvk (20)

Pkjk ¼ Pkjk�1 � Pkjk�1KkBk (21)
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2.3. Adaptive Kalman filtering
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covariances from the noise samples, (for example, the innovation sequence) that are generated
during the Kalman recursions at each time instant. This leads to the adaptive Kalman filtering.
The different approaches for adaptive filtering are classified into four types: Bayesian, maxi-
mum likelihood, correlation and covariance matching methods [68]. Here, we discuss the
approach based on covariance matching [68, 69] for adaptive estimation of noise statistics.
The basic idea behind this approach lies on the fact that for an optimal filter, the theoretical
covariance of the innovation vk, denoted by Sk, given in Eq. (22) should be consistent with the
empirically estimated covariance given in Eq. (23). Here,m denotes the window size to provide
statistical smoothing.
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ancesQk/Rk, rather than on their individual values, if either ofQk or Rk, is known, the other can
be adaptively estimated by satisfying the condition for covariance matching, given in Eq. (24).
When Qk is known, Rk can be directly estimated from Eq. (24). Alternatively, when Rk is given,
Qk can be estimated by a scaling procedure to improve the robustness of the filter. The basic
idea behind this scaling method is that if the estimated covariance of vk, on the right hand side
of Eq. (24), is much larger than the theoretical covariance, then Qk (please note that Pkjk�1 ¼
FkPkFHk þQk) should be increased to bring the theoretical covariance closer to the estimated
one and vice-versa. Therefore,Qk can be adaptively updated in order to balance any deviations
between the theoretical and estimated innovation covariance by considering a scaling factor αk,

as given in Eq. (25). The estimate of Qk, denoted by Q̂k, is given in Eq. (26).

αk ¼
traceð1m
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In the case of EKF, the same procedure can be followed for adaptive estimation of noise
covariances, by replacing the measurement matrix with the Jacobian matrix.

3. Kalman filtering for coherent optical communications

3.1. Kalman filtering for carrier phase and amplitude noise estimation (CPANE)

Digital carrier phase estimation (CPE) has become an essential component of coherent optical
receivers to recover the carrier phase perturbed by laser phase noise arising from the transmit-
ter laser or LO [35–43]. Several CPE techniques have been developed in the literature based on
feedback [39, 40] or feed forward loops [35–37]. Depending on how the data phase is wiped
off, they can be further classified into decision directed (DD) [35, 40, 42, 46] or non-decision
directed (NDD) methods [39, 41, 43]. NDD methods like Viterbi-Viterbi [41] CPE has gained
high attention due to its ease of implementation. However, it employs m-th power scheme to
remove the data modulation and therefore, are only better suited for QPSK systems. However,
for higher QAM systems, DD-CPE methods exhibit better performance compared to NDD
CPE methods [35, 42].

Apart from tracking the carrier phase, CPE being a low complex technique, can also be
employed for compensating the nonlinear phase shift stemming from the Kerr nonlinear
effects [30, 44–47]. However, the nonlinear mitigation performance of CPE is limited in the
presence of ASE noise and at high launch powers. Moreover, a phase unwrapping function is
typically required for CPE that might increase the probability of cycle slips [35, 49]. Addressing
these problems, we have proposed a CPANE algorithm using EKF in [12, 53] for the joint
mitigation of linear and nonlinear phase noise as well as ASE induced phase and amplitude
distortions. Unlike CPE, EKF-CPANE estimates a complex quantity, and therefore, no argu-
ment function is required which eliminates the ambiguity associated with multiples of 2π and
consequent cycle slips.

Kalman filter based CPE has been introduced and numerically verified in [52]. From the
numerical results, it was reported that the Kalman based phase estimation combined with
DD equalizer in a feedback configuration outperforms the conventional CMA based
approach [52]. CPE based on EKF was demonstrated and verified experimentally for QPSK
and 16-QAM systems in [57]. In [55], EKF has been investigated for characterizing the laser
phase and amplitude noise. EKF based carrier synchronization has also been verified experi-
mentally, in combination with expectation maximization (EM). A carrier recovery scheme
based on block estimation process with Kalman filter has been demonstrated in [56]. This
approach was verified experimentally for 16 and 64-QAM signals. However, these Kalman
filter based approaches estimate an argument which involves sine and cosine functions, com-
putation of the Jacobian matrix and also require matrix multiplications and inversions, which
increases the computational complexity. The proposed method in [12, 53], estimates a complex
quantity accounting also for the phase and amplitude distortions arising from the ASE noise in
addition to the carrier phase. The variables in the SSM reduce to scalars and therefore, the
vectors and matrices are reduced to scalars which will ease the computational effort. In the
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following, we first describe the general principles of CPE. Later, we explain our proposed
CPANE algorithm illustrating its principles and implementation details using EKF.

3.1.1. Principles of CPE

Consider an m-ary QAM received signal on single polarization, which is sampled and com-
pensated for linear impairments. Assuming perfect linear equalization, the k-th input signal to
the CPE can be written as in Eq. (27). Here, rk denotes the k-th input signal to CPE, ak denotes
the transmitted symbol, and nk denotes the collective amplified spontaneous emission (ASE)
noise which is assumed to be white Gaussian process. θk denotes the phase noise arising from
the laser linewidth effects and fiber nonlinearity, which is typically modeled as a Wiener
process and is given in Eq. (28). Figure 1 (a) describes the input signal model to CPE. It can be
seen that after ak is rotated by phase noise θk, nk further adds additional phase noise n0k and
amplitude noise ~nk. The objective of CPE is to estimate the phase noise θk, and derotate the
received signal rk, in order to recover the transmitted symbol ak, as given in Eq. (29) and

Figure 1 (b). However, since the CPE targets at estimating an accurate θ̂k, the recovered
transmitted symbol âk, still suffers from the residual phase noise or amplitude noise or both.
For more details, please refer [12].

rk ¼ akejθk þ nk (27)

θk ¼ θk�1 þ wk (28)

âk ¼ rke�jθ̂k (29)

3.1.2. Principles of CPANE

The effects of nk, as discussed in Section 3.1.1, can be taken into account by reformulating
Eq. (27) as given in Eq. (30) which forms the input signal to CPANE. Here, rk is modeled as the
transmitted symbol ak being rotated by a complex quantity ψk, that considers the effects of both
phase and amplitude noise in its real and imaginary parts, respectively, as given in Eq. (30).

ñ
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Figure 1. (a) Input signal model to CPE (b) recovered symbols using CPE and CPANE [54].
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In the case of EKF, the same procedure can be followed for adaptive estimation of noise
covariances, by replacing the measurement matrix with the Jacobian matrix.

3. Kalman filtering for coherent optical communications

3.1. Kalman filtering for carrier phase and amplitude noise estimation (CPANE)

Digital carrier phase estimation (CPE) has become an essential component of coherent optical
receivers to recover the carrier phase perturbed by laser phase noise arising from the transmit-
ter laser or LO [35–43]. Several CPE techniques have been developed in the literature based on
feedback [39, 40] or feed forward loops [35–37]. Depending on how the data phase is wiped
off, they can be further classified into decision directed (DD) [35, 40, 42, 46] or non-decision
directed (NDD) methods [39, 41, 43]. NDD methods like Viterbi-Viterbi [41] CPE has gained
high attention due to its ease of implementation. However, it employs m-th power scheme to
remove the data modulation and therefore, are only better suited for QPSK systems. However,
for higher QAM systems, DD-CPE methods exhibit better performance compared to NDD
CPE methods [35, 42].

Apart from tracking the carrier phase, CPE being a low complex technique, can also be
employed for compensating the nonlinear phase shift stemming from the Kerr nonlinear
effects [30, 44–47]. However, the nonlinear mitigation performance of CPE is limited in the
presence of ASE noise and at high launch powers. Moreover, a phase unwrapping function is
typically required for CPE that might increase the probability of cycle slips [35, 49]. Addressing
these problems, we have proposed a CPANE algorithm using EKF in [12, 53] for the joint
mitigation of linear and nonlinear phase noise as well as ASE induced phase and amplitude
distortions. Unlike CPE, EKF-CPANE estimates a complex quantity, and therefore, no argu-
ment function is required which eliminates the ambiguity associated with multiples of 2π and
consequent cycle slips.

Kalman filter based CPE has been introduced and numerically verified in [52]. From the
numerical results, it was reported that the Kalman based phase estimation combined with
DD equalizer in a feedback configuration outperforms the conventional CMA based
approach [52]. CPE based on EKF was demonstrated and verified experimentally for QPSK
and 16-QAM systems in [57]. In [55], EKF has been investigated for characterizing the laser
phase and amplitude noise. EKF based carrier synchronization has also been verified experi-
mentally, in combination with expectation maximization (EM). A carrier recovery scheme
based on block estimation process with Kalman filter has been demonstrated in [56]. This
approach was verified experimentally for 16 and 64-QAM signals. However, these Kalman
filter based approaches estimate an argument which involves sine and cosine functions, com-
putation of the Jacobian matrix and also require matrix multiplications and inversions, which
increases the computational complexity. The proposed method in [12, 53], estimates a complex
quantity accounting also for the phase and amplitude distortions arising from the ASE noise in
addition to the carrier phase. The variables in the SSM reduce to scalars and therefore, the
vectors and matrices are reduced to scalars which will ease the computational effort. In the
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following, we first describe the general principles of CPE. Later, we explain our proposed
CPANE algorithm illustrating its principles and implementation details using EKF.

3.1.1. Principles of CPE

Consider an m-ary QAM received signal on single polarization, which is sampled and com-
pensated for linear impairments. Assuming perfect linear equalization, the k-th input signal to
the CPE can be written as in Eq. (27). Here, rk denotes the k-th input signal to CPE, ak denotes
the transmitted symbol, and nk denotes the collective amplified spontaneous emission (ASE)
noise which is assumed to be white Gaussian process. θk denotes the phase noise arising from
the laser linewidth effects and fiber nonlinearity, which is typically modeled as a Wiener
process and is given in Eq. (28). Figure 1 (a) describes the input signal model to CPE. It can be
seen that after ak is rotated by phase noise θk, nk further adds additional phase noise n0k and
amplitude noise ~nk. The objective of CPE is to estimate the phase noise θk, and derotate the
received signal rk, in order to recover the transmitted symbol ak, as given in Eq. (29) and

Figure 1 (b). However, since the CPE targets at estimating an accurate θ̂k, the recovered
transmitted symbol âk, still suffers from the residual phase noise or amplitude noise or both.
For more details, please refer [12].

rk ¼ akejθk þ nk (27)

θk ¼ θk�1 þ wk (28)

âk ¼ rke�jθ̂k (29)

3.1.2. Principles of CPANE

The effects of nk, as discussed in Section 3.1.1, can be taken into account by reformulating
Eq. (27) as given in Eq. (30) which forms the input signal to CPANE. Here, rk is modeled as the
transmitted symbol ak being rotated by a complex quantity ψk, that considers the effects of both
phase and amplitude noise in its real and imaginary parts, respectively, as given in Eq. (30).
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The objective of CPANE is to recover θk more accurately, by estimating the complex quantity
ψk. The recovered transmitted symbol âk is given in Eq. (32). Since ψk takes into account, both
the phase and amplitude distortions, âk can be recovered more accurately by employing
CPANE compared to CPE, as depicted in Figure 1 (b). Moreover, unlike CPE, CPANE elimi-
nates the necessity of phase unwrapping function.

rk ¼ akejψk (30)

ψk ¼ ðθk þ n0kÞ þ j~nk (31)

âk ¼ rke�jψ̂k (32)

3.1.3. EKF-CPANE for joint mitigation of phase and amplitude noise

As discussed earlier, CPANE algorithm can be employed for the joint mitigation of phase and
amplitude noise. However, it requires a reliable tracking of the complex quantity ψk, which can
be accomplished by an EKF. The required SSM for the EKF can be formulated using Eqs. (33)
and (34). Eq. (33) represents the state or process equation that describes the time evolution of
ψk. Eq. (34) represents the observation equation that describes the relation of the states ψk to the
observations rk. Eq. (34) is similar to Eq. (30), however, for consistency of the filter, the
measurement noise mk has been taken into account. Here, all the variables in the SSM are
scalar quantities. Comparing to the standard SSM for EKF described in Section 2.2, it can be
noted that the state transition is identity and the measurement matrix is the transmitted
symbol, ak, for simplicity, we call it measurement weight (MW), since it is a scalar. The EKF
recursive equations can be derived analogously by relating the SSM to the standard SSM of
EKF discussed in Section 2.2. Since the MW ak is required to compute the update equations,
which is not known apriori, EKF-CPANE is DD. The required decisions of ak, denoted by dk are

obtained by de-rotating rk with an average of the past updated estimates ψ̂k over a window
length of N, as given in Eq. (35). For more details on the prediction and update equations of
EKF-CPANE, please refer [12]. Figure 2 depicts the schematic of the EKF-CPANE algorithm,

illustrating that the prediction ψ̂kjk�1 is the delayed version of the past updated estimate and

the current updated state ψ̂kjk is the linear combination of the prediction ψ̂kjk�1 and the

innovation vk weighted by the Kalman gain Kk. The process of making the required decisions
for the update step has also been illustrated in Figure 2.

ψk ¼ ψk�1 þ wk (33)

rk ¼ akejψk þmk (34)

dk ¼ decisionðtkÞ where tk ¼ rke
�j 1N
X

N
ψ̂k�N (35)

3.1.4. Numerical analysis of EKF-CPANE

The performance of EKF-CPANE algorithm for mitigating the laser phase noise, fiber nonlinearity
besides the ASE induced phase and amplitude distortions has been verified through numerical
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simulations on single channel systems in [12, 53] and multi-channel systems in [54]. Here, we
briefly discuss the numerical model and present a few simulation results reproduced from [12], so
that the flow of the readers is not interrupted. The numerical model of polarization multiplexed
(PM) m-QAM coherent transmission system including a DSP module at the receiver, is depicted
in Figure 3. Here, we consider the PM-m-QAM transmitter with m = 16 and 64, operated at 28 and
18.667 GBaud, respectively. These signals are transmitted through a standard single mode fiber
(SSMF) link at different launch powers. The SSMF has the following parameters: attenuation
coefficient (α) = 0.2 dB/km, dispersion coefficient (D) = 16 ps/nm-km, and nonlinearity coefficient
(γ) = 1.2/W-km. The span length of SSMF is 80 km and a number of 12 and 6 spans have been
considered for 16 and 64 QAM, respectively, yielding a total transmission distance of 960 and
480 km. The span losses are compensated by an EDFAwith a gain of 16 dB and noise figure (NF) of
4 dB. For simplicity, PMD has been neglected in this study. At the receive end, we employ a dual
polarization coherent receiver which is followed by a DSP module. The laser linewidth of the LO
has been set to 100 kHz. After coherent detection, the signals are re-sampled to twice the symbol
rate and are followed by linear compensation. Then the signals are further down sampled to the
symbol rate and are further processed by the EKF-CPANE for mitigating linear and nonlinear
phase noise besides amplitude noise. The performance of EKF-CPANE is compared to
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Figure 3. Numerical model of PM-m-QAM coherent transmission system with DSP module [12].
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Figure 2. Block diagram of EKF-CPANE algorithm [54].
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The objective of CPANE is to recover θk more accurately, by estimating the complex quantity
ψk. The recovered transmitted symbol âk is given in Eq. (32). Since ψk takes into account, both
the phase and amplitude distortions, âk can be recovered more accurately by employing
CPANE compared to CPE, as depicted in Figure 1 (b). Moreover, unlike CPE, CPANE elimi-
nates the necessity of phase unwrapping function.

rk ¼ akejψk (30)

ψk ¼ ðθk þ n0kÞ þ j~nk (31)

âk ¼ rke�jψ̂k (32)

3.1.3. EKF-CPANE for joint mitigation of phase and amplitude noise

As discussed earlier, CPANE algorithm can be employed for the joint mitigation of phase and
amplitude noise. However, it requires a reliable tracking of the complex quantity ψk, which can
be accomplished by an EKF. The required SSM for the EKF can be formulated using Eqs. (33)
and (34). Eq. (33) represents the state or process equation that describes the time evolution of
ψk. Eq. (34) represents the observation equation that describes the relation of the states ψk to the
observations rk. Eq. (34) is similar to Eq. (30), however, for consistency of the filter, the
measurement noise mk has been taken into account. Here, all the variables in the SSM are
scalar quantities. Comparing to the standard SSM for EKF described in Section 2.2, it can be
noted that the state transition is identity and the measurement matrix is the transmitted
symbol, ak, for simplicity, we call it measurement weight (MW), since it is a scalar. The EKF
recursive equations can be derived analogously by relating the SSM to the standard SSM of
EKF discussed in Section 2.2. Since the MW ak is required to compute the update equations,
which is not known apriori, EKF-CPANE is DD. The required decisions of ak, denoted by dk are

obtained by de-rotating rk with an average of the past updated estimates ψ̂k over a window
length of N, as given in Eq. (35). For more details on the prediction and update equations of
EKF-CPANE, please refer [12]. Figure 2 depicts the schematic of the EKF-CPANE algorithm,

illustrating that the prediction ψ̂kjk�1 is the delayed version of the past updated estimate and

the current updated state ψ̂kjk is the linear combination of the prediction ψ̂kjk�1 and the

innovation vk weighted by the Kalman gain Kk. The process of making the required decisions
for the update step has also been illustrated in Figure 2.

ψk ¼ ψk�1 þ wk (33)

rk ¼ akejψk þmk (34)

dk ¼ decisionðtkÞ where tk ¼ rke
�j 1N
X

N
ψ̂k�N (35)

3.1.4. Numerical analysis of EKF-CPANE

The performance of EKF-CPANE algorithm for mitigating the laser phase noise, fiber nonlinearity
besides the ASE induced phase and amplitude distortions has been verified through numerical
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simulations on single channel systems in [12, 53] and multi-channel systems in [54]. Here, we
briefly discuss the numerical model and present a few simulation results reproduced from [12], so
that the flow of the readers is not interrupted. The numerical model of polarization multiplexed
(PM) m-QAM coherent transmission system including a DSP module at the receiver, is depicted
in Figure 3. Here, we consider the PM-m-QAM transmitter with m = 16 and 64, operated at 28 and
18.667 GBaud, respectively. These signals are transmitted through a standard single mode fiber
(SSMF) link at different launch powers. The SSMF has the following parameters: attenuation
coefficient (α) = 0.2 dB/km, dispersion coefficient (D) = 16 ps/nm-km, and nonlinearity coefficient
(γ) = 1.2/W-km. The span length of SSMF is 80 km and a number of 12 and 6 spans have been
considered for 16 and 64 QAM, respectively, yielding a total transmission distance of 960 and
480 km. The span losses are compensated by an EDFAwith a gain of 16 dB and noise figure (NF) of
4 dB. For simplicity, PMD has been neglected in this study. At the receive end, we employ a dual
polarization coherent receiver which is followed by a DSP module. The laser linewidth of the LO
has been set to 100 kHz. After coherent detection, the signals are re-sampled to twice the symbol
rate and are followed by linear compensation. Then the signals are further down sampled to the
symbol rate and are further processed by the EKF-CPANE for mitigating linear and nonlinear
phase noise besides amplitude noise. The performance of EKF-CPANE is compared to

224 Gb/s
PM-m-QAM Tx

80km
SSMF

α = 0.2 dB/km
D = 16 ps/nm-km
γ = 1.2 /km-W

EDFA
PBS

LO

D
ua

lP
ol

ar
iz

at
io

n
C

oh
er

en
t

R
ec

ei
ve

r

L
in

ea
rc

om
pe

ns
at

io
n

C
PA

N
E

/C
PE

B
E

R
E

va
lu

at
io

n

Ix + jQx

Iy + jQy

x N

Figure 3. Numerical model of PM-m-QAM coherent transmission system with DSP module [12].
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Figure 2. Block diagram of EKF-CPANE algorithm [54].
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feedforward DD-CPE [46], feedback DD phase locked loop (DD-PLL) [36] and a NDD universal
CPE (U-CPE) [39]. The noise covariances for EKF-CPANE, the tap length or step size for DD-CPE,
DD-PLL and U-CPE are set to optimize the performance.

The bit error rate (BER) performance of the considered algorithms is evaluated and a Q-factor
is computed as 20log10 erfcinv(2*BER). The Q-factor vs. launch power curves for 16-QAM and
64-QAM are depicted in Figure 4(a) and (b), respectively. It can be seen that EKF-CPANE
exhibits better performance compared to DD-CPE, DD-PLL and U-CPE in both linear and
nonlinear regimes. This performance enhancement is better visible compared to the DD-CPE
method. For PM-64-QAM, it can also be seen that the DD-CPE experiences cycle slips occur-
ring through the error propagation of wrong decisions which can be seen in Figure 4(b) at
launch powers ranging from �2 to 1 dBm [12]. Since the performance of DD algorithms
strongly depends on the pre-decisions made by the algorithm, we study the impact of ideal
error free decisions on their performance by replacing the pre-decisions dk with the true data
symbols ak. The algorithms with the ideal case are denoted by IEKF-CPANE, IDD-CPE and
IDD-PLL. It can be seen from Figure 4(a) and (b), that the IEKF-CPANE shows significant
performance enhancement and better tolerance towards linear and nonlinear phase noise as
well as amplitude noise, compared to IDD-CPE and IDD-PLL. Unlike EKF-CAPNE, no notable
improvement can be obtained for the DD-CPE and DD-PLL between their practical and ideal
cases. Although, the ideal case, where the true symbols ak are already known, is not possible in
practice, it should be noted that the performance of EKF-CPANE can be further improved by
reducing the number of decision errors, which will be further discussed in the next Section 3.2.

3.2. EKF and DBP for fiber nonlinear mitigation

In Section 3.1, we have described how the EKF can be employed for the joint mitigation of
phase and amplitude noise. From the numerical results discussed in Section 3.1.4, it can be
concluded that the EKF-CAPNE algorithm shows promising results in mitigating the linear
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and nonlinear phase noise as well as amplitude noise simultaneously besides less computa-
tional effort. Although, EKF-CPANE outperforms several other considered CPE methods, the
effectiveness of EKF-CPANE in mitigating fiber nonlinear effects can be further enhanced by
reducing the number of errors in the pre-decisions dk. We have proposed a weighted innova-
tion approach (WIA) in [12], where the innovation is computed as a weighted combination of
the two nearest likely decisions. Although a gain of ≈ 0.3 dB in the Q-factor can be obtained
compared to conventional EKF-CPANE, in the linear regime, no notable improvement can be
seen in the nonlinear regime. On the other hand, DBP has emerged to be an effective technique
in mitigating linear and nonlinear impairments simultaneously, provided the channel param-
eters are known a-priori and the step size is sufficiently small. However, DBP can compensate
only the deterministic impairments of self-phase modulation and its performance deteriorates
significantly in the presence of stochastic impairments like laser phase noise, ASE and NLPN.
Moreover, the required huge computational effort keeps it far away from real-time implemen-
tation. Nevertheless, by employing a few DBP steps prior to EKF-CPANE would yield an
enhanced tolerance towards nonlinearities since DBP is well capable of mitigating determinis-
tic impairments and EKF takes into account the stochastic nature of ASE noise and NLPN. By
partially compensating fiber nonlinear effects employing few DBP steps prior to EKF, would
result in improved pre-decisions and thereby facilitates the residual compensation of non-
linearities along with amplitude and phase noise effectively. These theoretical findings are
verified through numerical simulations on both single [31] and multichannel systems [58].

In [31], it was reported that the EKF-CPANE outperforms the asymmetric split step Fourier
method (ASSFM) based one step per span (OSPS) DBP with optimized nonlinear co-efficient γ
(ODBP), for single channel systems, for transmission on both SSFM and non-zero dispersion
shifted fiber (NZ-DSF). A detailed investigation has also been carried out on the combined
performance of DBP and EKF-CPANE with an analysis on the influence of the nonlinear
coefficient and the step size of DBP when employed prior to EKF-CPANE. The numerical
model employed in this study is similar to the one discussed in Section 3.1.4, with a few
changes in the parameters of NF being 5 dB and the linewidth of LO being 500 kHz. The
influence of DBP step size on the combined performance of DBP and EKF-CPANE for both
SSMF as well as NZ-DSF transmission is illustrated in Figure 5(a) [31]. Here, OCDBP denotes
the optimized DBP which has a nonlinear coefficient different from ODBP when employed
prior to EKF. A worth noting result is that at a launch power of 3 dBm and a transmission
distance of 960 km, a gain of 1 dB in the Q-factor can be obtained by employing 0.3 DBP steps
per span prior to EKF-CPANE, for both SSMF and NZ-DSF transmission. At the expense of
additional computational effort, the deployment of a few DBP steps prior to EKF-CPANE
further enhances its performance trading off to complexity.

For the case of multi-channel systems, also, a detailed analysis has been performed in [58], on
the combined performance of DBP and EKF for mitigation of inter and intra channel non-
linearities besides phase and amplitude noise. Here, the DBP is employed by considering the
temporal correlations between the neighboring signal samples and is termed as correlated DBP
(CDBP) [27, 28]. This approach will improve the accuracy in computing the nonlinear phase
shift and there by enhances the nonlinear mitigation performance. Since the optimization of
nonlinear coefficient plays a vital role on the performance of DBP, we proposed an amplitude
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practice, it should be noted that the performance of EKF-CPANE can be further improved by
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and nonlinear phase noise as well as amplitude noise simultaneously besides less computa-
tional effort. Although, EKF-CPANE outperforms several other considered CPE methods, the
effectiveness of EKF-CPANE in mitigating fiber nonlinear effects can be further enhanced by
reducing the number of errors in the pre-decisions dk. We have proposed a weighted innova-
tion approach (WIA) in [12], where the innovation is computed as a weighted combination of
the two nearest likely decisions. Although a gain of ≈ 0.3 dB in the Q-factor can be obtained
compared to conventional EKF-CPANE, in the linear regime, no notable improvement can be
seen in the nonlinear regime. On the other hand, DBP has emerged to be an effective technique
in mitigating linear and nonlinear impairments simultaneously, provided the channel param-
eters are known a-priori and the step size is sufficiently small. However, DBP can compensate
only the deterministic impairments of self-phase modulation and its performance deteriorates
significantly in the presence of stochastic impairments like laser phase noise, ASE and NLPN.
Moreover, the required huge computational effort keeps it far away from real-time implemen-
tation. Nevertheless, by employing a few DBP steps prior to EKF-CPANE would yield an
enhanced tolerance towards nonlinearities since DBP is well capable of mitigating determinis-
tic impairments and EKF takes into account the stochastic nature of ASE noise and NLPN. By
partially compensating fiber nonlinear effects employing few DBP steps prior to EKF, would
result in improved pre-decisions and thereby facilitates the residual compensation of non-
linearities along with amplitude and phase noise effectively. These theoretical findings are
verified through numerical simulations on both single [31] and multichannel systems [58].

In [31], it was reported that the EKF-CPANE outperforms the asymmetric split step Fourier
method (ASSFM) based one step per span (OSPS) DBP with optimized nonlinear co-efficient γ
(ODBP), for single channel systems, for transmission on both SSFM and non-zero dispersion
shifted fiber (NZ-DSF). A detailed investigation has also been carried out on the combined
performance of DBP and EKF-CPANE with an analysis on the influence of the nonlinear
coefficient and the step size of DBP when employed prior to EKF-CPANE. The numerical
model employed in this study is similar to the one discussed in Section 3.1.4, with a few
changes in the parameters of NF being 5 dB and the linewidth of LO being 500 kHz. The
influence of DBP step size on the combined performance of DBP and EKF-CPANE for both
SSMF as well as NZ-DSF transmission is illustrated in Figure 5(a) [31]. Here, OCDBP denotes
the optimized DBP which has a nonlinear coefficient different from ODBP when employed
prior to EKF. A worth noting result is that at a launch power of 3 dBm and a transmission
distance of 960 km, a gain of 1 dB in the Q-factor can be obtained by employing 0.3 DBP steps
per span prior to EKF-CPANE, for both SSMF and NZ-DSF transmission. At the expense of
additional computational effort, the deployment of a few DBP steps prior to EKF-CPANE
further enhances its performance trading off to complexity.

For the case of multi-channel systems, also, a detailed analysis has been performed in [58], on
the combined performance of DBP and EKF for mitigation of inter and intra channel non-
linearities besides phase and amplitude noise. Here, the DBP is employed by considering the
temporal correlations between the neighboring signal samples and is termed as correlated DBP
(CDBP) [27, 28]. This approach will improve the accuracy in computing the nonlinear phase
shift and there by enhances the nonlinear mitigation performance. Since the optimization of
nonlinear coefficient plays a vital role on the performance of DBP, we proposed an amplitude
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dependent optimization (AO) [58] of the nonlinear coefficient, according to the discrete ampli-
tude levels present in the higher order modulation formats like 16-QAM. The combined
performance of AO-CDBP and EKF-CPANE for WDM systems with varying number of chan-
nels has been investigated in [58]. Analogous to the single channel systems, the combined
performance of AO-CDBP and EKF yields an improved performance also for the WDM case.
However, with increasing impact of the cross phase modulation (XPM) as the number of
channels increase, the gain obtained from their combined performance starts vanishing which
can be observed in Figure 5(b).

3.3. EKF for mitigation of nonlinearities in dispersion managed links

Since the advent of coherent detection and DSP for coherent optical receivers, CD can be
effectively compensated by digital equalization in the electric domain ad thereby, eliminating
the need for dispersion compensating fibers (DCF). However, nonlinear mitigation in the
dispersion managed (DM) links is also vital in order to upgrade existing links. Although, the
computational complexity of DBP is quite high, for DM links, the DBP algorithm can be
simplified by assuming that the nonlinear behavior repeats itself every span and therefore,
the total nonlinearity after N spans of transmission can be approximated to N times the
nonlinearity from a single span [70]. This is termed as distance folded DBP [70] and it reduces
the complexity by a factor of N assuming the step size of DBP is equal to the span length and
the span length is assumed to be constant. Assuming the dispersion is fully compensated in
each span, only the nonlinear term in the nonlinear Schrödinger equation (NLSE) can be solved
in the time domain avoiding the Fourier and inverse Fourier transformation (FFT/IFFT) pairs
which reduces the computational cost of DBP drastically. We call this approach single step
nonlinearity mitigation (SSNL). Similar to the unmanaged links as discussed in the earlier section
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of 3.2, we investigated the combined performance of SSNL and EKF-CPANE for mitigating the
fiber nonlinearity in DM links [59].

The numerical model of PM-16-QAM coherent transmission system over DM link [59] is
depicted in Figure 6. Here, a fully compensated periodical DM link with several spans has been
considered. Each span consists of 80 km of SSMF and 17 km of dispersion compensating fiber
(DCF). The SSMF has the following parameters: α = 0.2 dB/km, D = 17 dB/nm-km, γ = 1.2/W-km.
The parameters of DCF are given by: α = 0.5 dB/km, D = �80 dB/nm-km and γ = 5/W-km. In this
study, the input power to DCF was set to half of the input power to SSMF. Therefore, the gains of
EDFA1 and EDFA2 are adjusted accordingly, to compensate the span losses. The NF of both the
EDFAs are set to 4 dB. As described earlier, after coherent detection, the signals are further
processed by the SSNL and EKF-CPANE algorithms for mitigating fiber nonlinearities. It has
been reported in [59], that the combined performance of SSNL and EKF yields an improved
tolerance towards nonlinearities of up to 2 dB for a transmission distance of 1200 km and at a
BER of 2*10�2. Further, their combined performance increases the transmission reach by ≈ 250 km
at a launch power of 3 dBm and at a BER of 2*10�2 as depicted in Figure 7.
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dependent optimization (AO) [58] of the nonlinear coefficient, according to the discrete ampli-
tude levels present in the higher order modulation formats like 16-QAM. The combined
performance of AO-CDBP and EKF-CPANE for WDM systems with varying number of chan-
nels has been investigated in [58]. Analogous to the single channel systems, the combined
performance of AO-CDBP and EKF yields an improved performance also for the WDM case.
However, with increasing impact of the cross phase modulation (XPM) as the number of
channels increase, the gain obtained from their combined performance starts vanishing which
can be observed in Figure 5(b).

3.3. EKF for mitigation of nonlinearities in dispersion managed links

Since the advent of coherent detection and DSP for coherent optical receivers, CD can be
effectively compensated by digital equalization in the electric domain ad thereby, eliminating
the need for dispersion compensating fibers (DCF). However, nonlinear mitigation in the
dispersion managed (DM) links is also vital in order to upgrade existing links. Although, the
computational complexity of DBP is quite high, for DM links, the DBP algorithm can be
simplified by assuming that the nonlinear behavior repeats itself every span and therefore,
the total nonlinearity after N spans of transmission can be approximated to N times the
nonlinearity from a single span [70]. This is termed as distance folded DBP [70] and it reduces
the complexity by a factor of N assuming the step size of DBP is equal to the span length and
the span length is assumed to be constant. Assuming the dispersion is fully compensated in
each span, only the nonlinear term in the nonlinear Schrödinger equation (NLSE) can be solved
in the time domain avoiding the Fourier and inverse Fourier transformation (FFT/IFFT) pairs
which reduces the computational cost of DBP drastically. We call this approach single step
nonlinearity mitigation (SSNL). Similar to the unmanaged links as discussed in the earlier section
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of 3.2, we investigated the combined performance of SSNL and EKF-CPANE for mitigating the
fiber nonlinearity in DM links [59].

The numerical model of PM-16-QAM coherent transmission system over DM link [59] is
depicted in Figure 6. Here, a fully compensated periodical DM link with several spans has been
considered. Each span consists of 80 km of SSMF and 17 km of dispersion compensating fiber
(DCF). The SSMF has the following parameters: α = 0.2 dB/km, D = 17 dB/nm-km, γ = 1.2/W-km.
The parameters of DCF are given by: α = 0.5 dB/km, D = �80 dB/nm-km and γ = 5/W-km. In this
study, the input power to DCF was set to half of the input power to SSMF. Therefore, the gains of
EDFA1 and EDFA2 are adjusted accordingly, to compensate the span losses. The NF of both the
EDFAs are set to 4 dB. As described earlier, after coherent detection, the signals are further
processed by the SSNL and EKF-CPANE algorithms for mitigating fiber nonlinearities. It has
been reported in [59], that the combined performance of SSNL and EKF yields an improved
tolerance towards nonlinearities of up to 2 dB for a transmission distance of 1200 km and at a
BER of 2*10�2. Further, their combined performance increases the transmission reach by ≈ 250 km
at a launch power of 3 dBm and at a BER of 2*10�2 as depicted in Figure 7.
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3.4. Kalman filtering for polarization de-multiplexing

An effective way to double the transmission capacity is to employ PDM which allows the
transmission of two information signals simultaneously on the orthogonal polarization states
of the same optical carrier wave. However, due to fiber birefringence, the state of polarization
is not preserved during the propagation on the fiber that leads to crosstalk upon the receipt of
the signal. In coherent receivers, CMA [15] or MMA [16] is commonly employed in order to
align the polarization states and recover the transmitted signal fully. However, CMA or MMA
suffer from the drawbacks of low convergence speed and singularity problem [71]. Moreover,
a separate phase estimation scheme is required to track the laser phase noise. Since the Kalman
filter allows simultaneous tracking of several state variables provided a precise SSM, the
Kalman filter and its variations including radius directed linear Kalman filter (RD-LKF), EKF
and UKF are widely investigated for tracking the complex elements of the Jones matrix along
with the carrier phase [61–63].

3.4.1. RD-LKF, EKF and UKF for joint tracking polarization state and phase noise

An EKF has been proposed in [61] for joint tracking of the polarization and phase noise. It has
also been reported that the EKF shows faster convergence than the conventional approach
based on CMA and VV-CPE [61]. However, the variables in the state vector are restricted to
real values, which would lead to singularity problems or divergence of the filter [63], besides
increasing the dimensions of the vectors and matrices in the Kalman recursive equations. A
polarization state tracking scheme using Kalman filter, which is immune to phase/frequency
offset, has been introduced in [62], and is termed as RD-LKF. Although, it shows faster
convergence compared to CMA, this method needs significant modifications for applying to
higher order QAM. Moreover, it is not possible to track the carrier phase simultaneously with
the polarization state. The joint tracking of polarization state and carrier phase using EKF has
been experimentally verified in [57]. A reduced SSM using UKF has been introduced in [63],
which facilitates the joint tracking of polarization state and phase noise. Here, the variables of
the state vector are considered to be complex valued. This approach exhibits better perfor-
mance compared to EKF at high OSNRs at the expense of additional computational effort.

3.4.2. Adaptive cascaded Kalman filtering (A-CKF) for polarization de-multiplexing with simultaneous
tracking of phase and amplitude distortions

A cascaded Kalman filtering (CKF), a series of EKF and linear Kalman filtering (LKF) for joint
tracking of phase and amplitude distortions besides polarization state, has been proposed
in [13]. By splitting up the conventional SSM into linear and nonlinear SSM, the inaccuracies
in the linearization of the SSM as a whole can be reduced and thus CKF exhibits enhanced
performance besides no increased computational cost compared to the approaches like
UKF [63] and radius directed (RD) LKF [62]. Since the optimal performance of the Kalman
filter depends on the noise covariances, we proposed an adaptive CKF (A-CKF) [13] to adapt
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the process noise covariance recursively using the covariance matching method as described in
Section 2.3.

3.4.2.1. Principles of A-CKF

The transmitted and received signal in the presence of phase noise and polarization rotation
can be related as given in Eq. (36). Here, tk, rk and nk denote the transmitted and received signal
and ASE noise in dual polarization, respectively. Jk denotes the Jones matrix, θk denotes the
phase noise and α denotes the loss factor. Assuming negligible, the inverse of the Jones matrix
can be described as in Eq. (37) and the elements of the Jones matrix satisfy Jyy ¼ J�xx and
Jyx ¼ �J�xy [15]. From now on, for simplified notation, we omit the time variable k in this

section. The observation model in Eq. (36) can be rewritten in dual polarization as given in
Eq. (38). Here, the subscripts x and y denote the x and y polarizations, respectively. The
conventional approach to track the phase and the polarization effects using EKF, the state
vector consists of the parameters, a, b, c, and d. However, we reduce the dimensions of the
state vector and also the other matrices in the SSM by considering the complex elements in the
state vector given by SðkÞ ¼ ½JxxJxy φ�. Moreover, we also split up the nonlinear observation

model given in Eq. (38), into a nonlinear and linear observation model, where we employ an
EKF-CPANE for the joint tracking of phase and amplitude distortions and an LKF for tracking
of the complex elements in the Jones matrix. The process noise covariance has been adaptively
updated by employing the covariance matching method as described in Section 2. For more
details on the A-CKF algorithm, please refer to [13].

tk ¼ e�jθkðαJkÞ�1rk þ nk (36)

J�1 ¼ Jxx Jxy
Jyx Jyy

" #
¼ aþ jb cþ jd

�cþ jd a� jb

� �
(37)

tx
ty

� �
¼ e�jθkðαJkÞ�1

rx
ry

� �
þ nx

ny

� �
(38)

Numerical investigations on both back-to-back (BTB) and transmission scenarios, have been
carried out in [13], on the variations of the Kalman filter including EKF, UKF, CKF and A-CKF,
for tracking the polarization state and phase noise jointly and are compared to the conventional
MMA algorithm. Since the MMA can track only the polarization state, it is accompanied by a
DD-CPE algorithm for the phase noise mitigation. It can be concluded from [13] that the CKF
and A-CKF outperform the rest of the considered algorithms with a better tolerance towards
polarization rotations, phase and amplitude noise. This can be attributed to the decrement in the
inaccuracies through the linearization of the whole SSM in CKF/A-CKF, compared to EKF and
UKF. The benefit from the adaptive computation of process noise covariance compared to the
CKF can be observed at rotation angular frequencies of 400 Mrad/s and higher in the BTB case
and at higher launch powers of 5 dBm in the transmission case [13].
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3.4. Kalman filtering for polarization de-multiplexing

An effective way to double the transmission capacity is to employ PDM which allows the
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is not preserved during the propagation on the fiber that leads to crosstalk upon the receipt of
the signal. In coherent receivers, CMA [15] or MMA [16] is commonly employed in order to
align the polarization states and recover the transmitted signal fully. However, CMA or MMA
suffer from the drawbacks of low convergence speed and singularity problem [71]. Moreover,
a separate phase estimation scheme is required to track the laser phase noise. Since the Kalman
filter allows simultaneous tracking of several state variables provided a precise SSM, the
Kalman filter and its variations including radius directed linear Kalman filter (RD-LKF), EKF
and UKF are widely investigated for tracking the complex elements of the Jones matrix along
with the carrier phase [61–63].

3.4.1. RD-LKF, EKF and UKF for joint tracking polarization state and phase noise

An EKF has been proposed in [61] for joint tracking of the polarization and phase noise. It has
also been reported that the EKF shows faster convergence than the conventional approach
based on CMA and VV-CPE [61]. However, the variables in the state vector are restricted to
real values, which would lead to singularity problems or divergence of the filter [63], besides
increasing the dimensions of the vectors and matrices in the Kalman recursive equations. A
polarization state tracking scheme using Kalman filter, which is immune to phase/frequency
offset, has been introduced in [62], and is termed as RD-LKF. Although, it shows faster
convergence compared to CMA, this method needs significant modifications for applying to
higher order QAM. Moreover, it is not possible to track the carrier phase simultaneously with
the polarization state. The joint tracking of polarization state and carrier phase using EKF has
been experimentally verified in [57]. A reduced SSM using UKF has been introduced in [63],
which facilitates the joint tracking of polarization state and phase noise. Here, the variables of
the state vector are considered to be complex valued. This approach exhibits better perfor-
mance compared to EKF at high OSNRs at the expense of additional computational effort.

3.4.2. Adaptive cascaded Kalman filtering (A-CKF) for polarization de-multiplexing with simultaneous
tracking of phase and amplitude distortions

A cascaded Kalman filtering (CKF), a series of EKF and linear Kalman filtering (LKF) for joint
tracking of phase and amplitude distortions besides polarization state, has been proposed
in [13]. By splitting up the conventional SSM into linear and nonlinear SSM, the inaccuracies
in the linearization of the SSM as a whole can be reduced and thus CKF exhibits enhanced
performance besides no increased computational cost compared to the approaches like
UKF [63] and radius directed (RD) LKF [62]. Since the optimal performance of the Kalman
filter depends on the noise covariances, we proposed an adaptive CKF (A-CKF) [13] to adapt
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the process noise covariance recursively using the covariance matching method as described in
Section 2.3.

3.4.2.1. Principles of A-CKF

The transmitted and received signal in the presence of phase noise and polarization rotation
can be related as given in Eq. (36). Here, tk, rk and nk denote the transmitted and received signal
and ASE noise in dual polarization, respectively. Jk denotes the Jones matrix, θk denotes the
phase noise and α denotes the loss factor. Assuming negligible, the inverse of the Jones matrix
can be described as in Eq. (37) and the elements of the Jones matrix satisfy Jyy ¼ J�xx and
Jyx ¼ �J�xy [15]. From now on, for simplified notation, we omit the time variable k in this

section. The observation model in Eq. (36) can be rewritten in dual polarization as given in
Eq. (38). Here, the subscripts x and y denote the x and y polarizations, respectively. The
conventional approach to track the phase and the polarization effects using EKF, the state
vector consists of the parameters, a, b, c, and d. However, we reduce the dimensions of the
state vector and also the other matrices in the SSM by considering the complex elements in the
state vector given by SðkÞ ¼ ½JxxJxy φ�. Moreover, we also split up the nonlinear observation

model given in Eq. (38), into a nonlinear and linear observation model, where we employ an
EKF-CPANE for the joint tracking of phase and amplitude distortions and an LKF for tracking
of the complex elements in the Jones matrix. The process noise covariance has been adaptively
updated by employing the covariance matching method as described in Section 2. For more
details on the A-CKF algorithm, please refer to [13].

tk ¼ e�jθkðαJkÞ�1rk þ nk (36)

J�1 ¼ Jxx Jxy
Jyx Jyy

" #
¼ aþ jb cþ jd

�cþ jd a� jb

� �
(37)

tx
ty

� �
¼ e�jθkðαJkÞ�1

rx
ry

� �
þ nx

ny

� �
(38)

Numerical investigations on both back-to-back (BTB) and transmission scenarios, have been
carried out in [13], on the variations of the Kalman filter including EKF, UKF, CKF and A-CKF,
for tracking the polarization state and phase noise jointly and are compared to the conventional
MMA algorithm. Since the MMA can track only the polarization state, it is accompanied by a
DD-CPE algorithm for the phase noise mitigation. It can be concluded from [13] that the CKF
and A-CKF outperform the rest of the considered algorithms with a better tolerance towards
polarization rotations, phase and amplitude noise. This can be attributed to the decrement in the
inaccuracies through the linearization of the whole SSM in CKF/A-CKF, compared to EKF and
UKF. The benefit from the adaptive computation of process noise covariance compared to the
CKF can be observed at rotation angular frequencies of 400 Mrad/s and higher in the BTB case
and at higher launch powers of 5 dBm in the transmission case [13].
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3.5. Kalman filtering for joint compensation of phase and frequency offset

Apart from digital equalization, carrier synchronization is also vital to mitigate the phase and
frequency offsets between the transmitter laser and free running LO. Since the CPE methods
have low tolerance towards FO, which may go as high as �5 GHz, a separate FO estimation
(FOE) is required. Consequently, several FOE algorithms have been proposed in the literature
that are either based on the phase increments between adjacent symbols [72] or spectrum
based methods [73]. These methods are either not accurate for higher order QAM systems or
computationally complex.

3.5.1. LKF and EKF for FO estimation

A novel FOE algorithm using Kalman filtering have been proposed and numerically verified
in [60]. The simulation results in [60] concludes that the Kalman filter can achieve faster
convergence and outperforms the conventional FO estimation at low OSNR. In [64], FOE
schemes based on blind and training data, using LKF and EKF have been proposed for QPSK
systems. These Kalman based FOE algorithms are evaluated both numerically and experimen-
tally, and are compared to FFT based FOE methods. The investigations in [64] report that the
training data based Kalman FOE methods show better accuracy in estimating the FO in case of
fewer symbols and high OSNR, compared to FFT based methods. However, a separate phase
estimation has to be carried out after FO compensation.

3.5.2. Two stage EKF for joint compensation of FO, phase and amplitude noise

The Kalman based FOE algorithms proposed in [60, 64] can compensate only for the FO and
therefore, the carrier phase has to be recovered separately after FO compensation. In [65], a
two stage EKF method based on training data has been proposed for joint tracking of FO,
phase and amplitude noise. In the first stage, a coarse estimate of FO is obtained using a set of
training data symbols following the training data scheme proposed in [64]. In the second stage,
CPANE algorithm has been employed to jointly compensate for the residual FO, phase and
amplitude noise.

3.5.2.1. Principles of two stage EKF

After linear equalization, the received signal on single polarization, with frequency and phase
offset can be represented as given in Eq. (39). Here, rk and ak denote the received and transmit-
ted symbol, respectively, at the time instant. w denotes the FO between the transmitter laser
and the LO. Ts denotes the symbol duration. Øk and nk denote the phase noise and ASE noise,
respectively. In order to obtain the measurement for FO, the first step is to wipe off the data
phase which is performed by employing training data. Then the phase difference between the
adjacent symbols [64] is computed, which gives the measurement of FO denoted by mk, in
Eq. (40). Here, vk is given by Øk – Øk–1, and follows a Gaussian distribution. By considering the
observation model given in Eq. (40) for EKF, a coarse FO estimation is performed in the first
stage using a set of training data sequence. The input signal r̂k to the second stage after coarse
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FO estimation is given in Eq. (41). Here, the CPANE algorithm is employed to compensate the
residual FO, phase noise and ASE induced phase and amplitude distortions. Figure 8 illus-
trates the basic structure of this two stage EKF [65]. A similar two stage model using LKF has
also been evaluated in [65] and compared to EKF.

rk ¼ akejðwkTsþ ∅kÞ þ nk (39)

mk ¼ ejðwþvkÞ þ ϑk (40)

r̂k ¼ akejðΔwkþ ∅kÞ þ nk (41)

The BER vs OSNR curves for LKF and EKF after the 2nd stage, using 200 and 500 training data
symbols, for a FO of 1 GHz, are depicted in Figure 9 [65]. It can be concluded from [65], that both
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Figure 8. Block diagram of two stage EKF for the joint compensation of FO, phase and amplitude noise [65].
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Figure 9. BER vs. OSNR curves for LKF and EKF after residual FO compensation for a FO of 1 GHz [65].
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phase which is performed by employing training data. Then the phase difference between the
adjacent symbols [64] is computed, which gives the measurement of FO denoted by mk, in
Eq. (40). Here, vk is given by Øk – Øk–1, and follows a Gaussian distribution. By considering the
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Training
data

Figure 8. Block diagram of two stage EKF for the joint compensation of FO, phase and amplitude noise [65].

16 18 20 22
10−4

10−3

10−2

10−1

OSNR (dB)

B
E

R

LKF
EKF

200 symbols
500 symbols

Theory

Figure 9. BER vs. OSNR curves for LKF and EKF after residual FO compensation for a FO of 1 GHz [65].

Applications of Kalman Filters for Coherent Optical Communication Systems
http://dx.doi.org/10.5772/intechopen.71617

223



LKF and EKF show faster convergence irrespective of the number of training data symbols
utilized in the first stage. However, since the EKF estimates a complex quantity, it facilitates in
compensating also for the amplitude noise and therefore, outperforms LKF. Moreover, as
discussed earlier, EKF does not require any angle operations unlike LKF, and thereby the
additional few computations required by the EKF compared to LKF can be sought to be com-
pensated with the additional benefit of better tracking capability.

This two stage EKFmodel has been extended in [66] to compensate also for the fiber nonlinearity
in addition to FO, phase and amplitude noise. The first stage is similar and compensates FO
coarsely, as discussed earlier. In the second stage, the total phase noise to be estimated comprises
of both laser phase noise and fiber nonlinearities. The EKF-CPANE algorithm is employed for
tracking the residual FO and the total phase noise in addition to amplitude noise. From the
numerical analysis, it was reported in [66] that compared to LKF, the maximum possible trans-
mission reach can be increased by an additional 500 km using EKF, at a BER of 2.4*10�2.

4. Conclusions

We have discussed in detail on how to exploit the potential of Kalman filters for the joint
mitigation of several fiber optical transmission impairments in coherent optical transmission
systems. Various Kalman based approaches for tracking carrier phase and frequency offset,
polarization state have been reviewed. The CPANE algorithm and its implementation details
using EKF for joint mitigation of linear and nonlinear phase noise as well as amplitude noise
have been illustrated in detail. It is also verified that the combination of DBP and EKF
enhances the nonlinear mitigation performance, at the expense of few DBP steps. A cascaded
structure using LKF and EKF is illustrated for tracking the polarization state and carrier phase
besides amplitude noise, simultaneously. A two stage EKF model for simultaneous tracking of
FO, phase and amplitude noise is also discussed. From the discussed numerical verifications, it
can be concluded that the Kalman filter based approaches for tracking the optical transmission
impairments outperforms the conventional methods in coherent optical communication sys-
tems, with faster convergence, better tracking ability and more tolerance towards the optical
transmission impairments. Since the Kalman filter is an optimal recursive MMSE estimator,
with its attractive properties of hardware efficient implementation feasibility, less computa-
tional effort as well as memory requirements, it seems to be an essential component of future
coherent optical receivers.
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Abstract

This chapter presents Kalman filters for tracking moving objects and their efficient
design strategy based on steady-state performance analysis. First, a dynamic/measure-
ment model is defined for the tracking systems, assuming both position-only and
position-velocity measurements. Then, problems with the Kalman filter design in track-
ing systems are summarized, and an efficient steady-state performance index proposed
by the author [termed the root-mean-squared error index (the RMS index)] is introduced
to resolve these concerns. The analytical relationship between the proposed RMS index
and the covariance matrix of the process noise is shown, leading to a proposed design
strategy that is based on this relationship. Theoretical performance analysis is conducted
using the performance indices to show the optimality of the design strategy. Numerical
simulations show the validity of the theoretical analyses and effectiveness of the pro-
posed strategy in realistic situations. In addition, the optimal performance of the
position-only-measured and position-velocity-measured systems is analyzed and com-
pared. This comparison shows that the position-velocity-measured Kalman filter track-
ing is accurate when compared with the position-only-measured filter.

Keywords: Kalman tracking filter, moving object tracking, steady-state analysis,
performance index, filter design, process noise

1. Introduction

Remote monitoring systems for cars and robots require accurate tracking of moving objects.
Representative tracking algorithms include the Kalman filter [1–5] and its variants, such as the
extended/unscented Kalman [6–9] and particle filters [10–12]. These can accurately track
movement based on adaptive filtering by using a state-space model.

To use the Kalman filter for the tracking of moving objects, it is necessary to design a dynamic
model of target motion. The most common dynamic model is a constant velocity (CV) model
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[1, 10], which assumes that the velocity is constant during a sampling interval. This model has
been used in many applications because of its versatility, effectiveness, and simplicity. How-
ever, in almost conventional tracking systems, the selection of process noise (zero-mean white
noise in the dynamic model) is conducted empirically [4, 6, 8]. This is because conventional
studies tend to assume that process noise takes one of a limited number of forms, which is
known as appropriate selections. Thus, despite the large number of investigations into Kalman
filter trackers, the optimal selection of a process noise model has not been discussed. The
general problems of model selection for Kalman filter trackers were discussed by Ekstrand in
2012 [1]. In the years since, further research on these issues has been conducted, but no
satisfactory solutions to the abovementioned problems have been presented. Crouse [13]
described a general solution for optimal trackers in a steady state. However, this method also
requires an empirical selection of the dynamic models. A detailed analysis of the Kalman filter
has been provided for various applications, including global navigation satellite systems [14]
and video trackers [15]. However, only limited systems have yet been considered, and no
definitive parameter-setting procedure for the Kalman tracking filter has been provided.
Although various criteria have been proposed and investigated for the design of Kalman filters
and its variants to achieve better tracking accuracy, robustness, and real-time capability, rela-
tionship between these performance indices and the model parameters such as the process
noise variance is not discussed even in recent studies [16].

Another significant problem in a measurement model of the conventional Kalman tracking
filter is that most studies consider only position measurements and therefore cannot make full
use of modern sensors that are able to measure velocity, such as ultrawideband Doppler radar
[17, 18]. Moreover, sensor fusion based on Internet of Things technology also enables the
simultaneous measurement of position and velocity (e.g., sensor data fusion based on the
communication between radars/lasers/sonars and speedometers embedded in targets). Conse-
quently, Kalman filters for such systems have become an important area of research [19–24]. In
Ref. [24], the extended Kalman filter for radar measurements is modified for range (position)
and range-rate (velocity) measurements, and its effectiveness in realistic radar applications is
verified. However, concrete design criterion is not shown. The number of conventional studies
on position-velocity-measured (PVM) Kalman filters is smaller than those on the more com-
mon position-only-measured (POM) Kalman filters, and the performance and design of PVM
Kalman filters are not sufficiently considered.

To resolve the two problems described above concerning the process noise selection and PVM
systems, our previous work clarified the fundamental properties of PVM tracking filters [25,
26] and generated an efficient performance index to design an optimal process noise matrix [3,
5]. In the studies of PVM tracking filters [25, 26], fixed-gain PVM filter properties were
analytically clarified, but there was no optimization of the PVM Kalman filters. In our work
on the process noise matrix [3], an optimal POM Kalman filter, with respect to position
prediction, was presented. In this chapter, an appropriate process noise design strategy, based
on our proposed efficient steady-state performance index (introduced in Section 3), and its
applicability are verified. Our previous work highlighted the following issues, which we
address in this chapter:

Kalman Filters - Theory for Advanced Applications234

i. Analysis of the performance of a PVM Kalman filter with a CV model, based on the
proposed index.

ii. Application of the proposed process noise design strategy to a PVM Kalman filter.

iii. Comparison of the performance of optimal POM and PVM Kalman filters.

This chapter presents the theoretical analyses and simulations required to tackle these issues.
The remainder of this chapter is organized as follows: Section 2 defines the tracking filtering
problem dealt in this chapter and explains the existing concerns and models for POM and PVM
Kalman filter design. Section 3 introduces our proposed efficient performance indices with their
mathematical formulations. Section 4 presents the proposed process noise design strategy based
on the performance index. Section 5 shows the theoretical analysis of the optimal POM and
PVM Kalman filter performance in a steady state. The effectiveness of the PVM Kalman filter is
proven by the comparison with the POM filter. Section 6 shows realistic maneuvering-target-
tracking application examples. Section 7 concludes this chapter and proposes future tasks.

2. Problem statement

This section introduces the Kalman filter for moving object tracking and defines the model
assumed in this chapter.

2.1. Dynamic model

The Kalman filter for tracking moving objects estimates a state vector comprising the param-
eters of the target, such as position and velocity, based on a dynamic/measurement model. For
simplicity, this chapter deals with a typical second-order one-dimensional Kalman filter
tracker whose true state vector is defined as

xt ¼ xt vtð ÞT, (1)

where xt and vt are the true position and velocity of the target moving object, respectively,
and T denotes the transpose. The assumed dynamic model is a CV model, which is a simple
and popular model for tracking moving objects. The CV model assumes that the velocity is
constant during the sampling interval, which is expressed as

xtk ¼ Φxtk�1 þwk, (2)

where xtk denotes the true state at time kT, T is the sampling interval,wk is the process noise with
covariance matrixQ, andΦ is the transition matrix from kT to kþ 1ð ÞT, which is expressed as

Φ ¼ 1 T
0 1

� �
, (3)

The Kalman filter predicts the target state based on this dynamic model.
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� �
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2.2. Measurement model

The measurements are simply modeled as

zk ¼ Hxtk þ vk, (4)

where zk denotes the measurement vector, H denotes the measurement matrix, and vk is the
measurement noise with covariance matrix R. This chapter considers two types of measure-
ment systems, which are discussed as follows.

2.2.1. Position-only-measured system

The POM system assumes that the sensors (such as radar, laser, and sonar) can measure only
the position of the target. This is a general assumption in the moving object tracking. H and R
of this model are expressed as

H ¼ 1 0ð Þ, (5)

R ¼ Bxð Þ, (6)

where Bxis the variance of the position measurement errors.

2.2.2. Position-velocity-measured system

The PVM system assumes that the sensor system can measure position and velocity simulta-
neously. One example of the PVM model system is a pulse Doppler radar. Sensor fusion
systems using communications of position/velocity sensors can also be expressed by the PVM
model. H of this model is expressed as

H ¼
1 0

0 1

 !
: (7)

We now assume that the noises of position and velocity measurements are uncorrelated, and R
of PVM systems under this assumption is defined as

R ¼
Bx 0

0 Bv

 !
: (8)

where Bvis the variance of the velocity measurement errors.

2.3. Kalman filter tracking

The Kalman filter tracker based on the abovementioned models sequentially estimates state
vectors via the Kalman filter equations. The prediction and estimation are calculated as
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~xk ¼ Φbxk�1, (9)

bxk ¼ ~xk þKk zk �H~xkð Þ, (10)

where predicts and estimates are denoted by ~ and ^, respectively, and Kk denotes the Kalman
gain that minimizes the errors in the estimated position and velocity. Kk is calculated as

Kk ¼ ~PkHT H~PkHT þ R
� �

: (11)

where Pk is the covariance matrix of errors determined from

~Pk ¼ ΦbPk�1ΦT þQ: (12)

bPk ¼ ~Pk � KkH~Pk: (13)

2.4. Aspects of tracking filter design

Moving object tracking obtains accurate and sequential estimation of the target position and
velocity by using Eqs. (9)–(13). As indicated in Eqs. (1)–(13), the design parameters of the
Kalman filter tracker are elements of the covariance matrix of the process noise Q. We must
set Q to achieve tracking errors that are as small as possible. Thus, we must know how to
design an appropriateQ. Moreover, we must be able to define the evaluation index of the filter
performance. However, these issues have not been sufficiently deliberated because the selec-
tion of Q has not been sufficiently addressed in previous studies. Here, the design of Q is
empirically carried out.

In the conventional tracking systems, the most commonly used random acceleration (RA)
process noise is often selected because it has a better performance. Its Q is

Qra ¼
T4=4 T3=2
T3=2 T2

 !
σ2q: (14)

The appropriate selection of σq is important because σq (and sensor noise variance R) directly
determines the performance of the tracking filter with the CV model. However, in conven-
tional studies, process noises and their parameters are empirically selected, and the validity of
the selection is discussed only casually [1, 16]. Many conventional tracking systems select the
RA process noises (Qra), with variance σq set based on the assumed target motion. However,
no definitive method of determining σq has been established. Although tracking index defined
by Kalata [27] is known as an effective design parameter, its empirical selection is still required.
Moreover, the validity in selecting the RA process noise is also questionable. Various other
forms of Q are known and have been used for different target motions [12]. For example,
random velocity model [2] and the diagonal Q, which do not include correlations in process
noise [7], are also frequently used. However, for the reasons discussed earlier, the differences
in performance between the various process noise models are not known.
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3. The efficient steady-state performance index (RMS index)

The process noise selection problems discussed in Section 2.3 must be solved to effectively
design Kalman tracking filters. Thus, we must properly evaluate the performance of the filter.
The effective steady-state performance index was derived [3] and is termed root-mean-squared
error index (an RMS index). This section introduces the RMS index for POM and PVM systems
and shows the analytical relationships between the RMS index and Q.

3.1. Definition of RMS index

In tracking filtering, the following two functions are required:

• Function 1. Reduces random errors caused by measurement noises.

• Function 2. Tracks targets with complicated motions (e.g., accurate tracking of an acceler-
ating target is required for the CV model).

The RMS index is proposed for the comprehensive evaluation of the performance of these two
functions and is defined as

εp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E xtak � ~xkð Þ2
h ir

(15)

where ~xk is the predicted target position (second element of ~xk ), E[] indicates the mean with
respect to k, and xtak is the true position of a constant acceleration target which is

xtak ¼ ac kTð Þ2=2 (16)

where ac is constant acceleration of the target. In the Kalman filter tracker using the CV model,
it is assumed that the target velocity is constant during the sampling interval. Thus, for the
constant acceleration target, a steady-state bias error occurs because of the difference between
the target motion and the assumed dynamic model. Moreover, ~xk includes random errors due
to measurement noise. Thus, the RMS index εp expresses both bias errors and random errors.
With the steady-state bias error due to the model/motion difference of eac and the steady-state
standard deviation of the random errors in ~xk of σp, εp is expressed as

εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ac þ σ2p

q
(17)

σp expresses the performance corresponding to Function 1 and eac expresses the performance
corresponding to Function 2. The smaller these errors are, the better is the tracking filter. Thus,
the minimum εp achieves the best tracking filter in a steady state.

3.2. RMS index of a POM system

One important advantage of the RMS index is that it can be expressed in closed form. The
closed form of εp for the POM system was derived in Ref. [3]. This subsection introduces the
RMS index and its relationship to the design parameter Q in the POM system.
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First, the arbitrary Q is defined as

Qgen ¼ a b

b c

 !
(18)

where a > 0, b > 0, and c > 0, and the dimensions of a, b, and c are [m2], [m2/s], and [m2/s2],

respectively. For example, substituting a; b; cð Þ ¼ σ2qT
4=4; σ2qT

3=2; σ2qT
2

� �
into Eq. (18) gives the

Qra of Eq. (14) and b = 0 leads to the diagonal Q. The analytical relationship between Qgen and
εp is expressed by the following closed form.

ε2p,pom ¼ ac2T4

β2
þ 2α2 þ 2βþ αβ
α 4� 2α� β
� �Bx (19)

where α and β are components of the steady-state Kalman gain K∞ ¼ α; β=T
� �T calculated

from (a, b, c) using the following equations:

β ¼ Cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 16þ 4A� 4Bþ Cð Þp

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 16þ 4A� 4Bþ Cð Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 16þ 4A� 4Bþ Cð Þp þ Cð2A� 2Bþ C

8

s
(20)

A ¼ a=Bx, B ¼ bT=Bx, C ¼ cT2=Bx (21)

α ¼ 1� β2=C (22)

The derivation process of these equations is shown in Ref. [3]. As shown in Eqs. (19)–(22), the
optimal (a, b, c) is designed minimizing εp.

3.3. RMS index of a PVM system

In a similar manner to the treatment of the POM system, this subsection introduces the RMS
index of a PVM system and its relationship to Qgen. The RMS index of the PVM system is

ε2p,pvm ¼ 2� 2η� θ
2 βþ αθ� βη
� �

 !2

a2cT
4 þ g2 α; β; η;θ

� �
Bx þ g3 α; β; η;θ

� �
T2Bv

g1 α; β; η;θ
� � (23)

where α, β, η, and θ are components of the steady-state Kalman gain:

K∞ ¼ α Tη
β=T θ

� �
(24)

and,

g1 α; β; η;θ
� � ¼ βη� αθ� β

� �
αθ� βη� α� θ
� �

4� 2α� β� 2θþ αθ� βη
� �

(25)
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3. The efficient steady-state performance index (RMS index)

The process noise selection problems discussed in Section 2.3 must be solved to effectively
design Kalman tracking filters. Thus, we must properly evaluate the performance of the filter.
The effective steady-state performance index was derived [3] and is termed root-mean-squared
error index (an RMS index). This section introduces the RMS index for POM and PVM systems
and shows the analytical relationships between the RMS index and Q.

3.1. Definition of RMS index

In tracking filtering, the following two functions are required:

• Function 1. Reduces random errors caused by measurement noises.

• Function 2. Tracks targets with complicated motions (e.g., accurate tracking of an acceler-
ating target is required for the CV model).

The RMS index is proposed for the comprehensive evaluation of the performance of these two
functions and is defined as

εp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E xtak � ~xkð Þ2
h ir

(15)

where ~xk is the predicted target position (second element of ~xk ), E[] indicates the mean with
respect to k, and xtak is the true position of a constant acceleration target which is

xtak ¼ ac kTð Þ2=2 (16)

where ac is constant acceleration of the target. In the Kalman filter tracker using the CV model,
it is assumed that the target velocity is constant during the sampling interval. Thus, for the
constant acceleration target, a steady-state bias error occurs because of the difference between
the target motion and the assumed dynamic model. Moreover, ~xk includes random errors due
to measurement noise. Thus, the RMS index εp expresses both bias errors and random errors.
With the steady-state bias error due to the model/motion difference of eac and the steady-state
standard deviation of the random errors in ~xk of σp, εp is expressed as

εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ac þ σ2p

q
(17)

σp expresses the performance corresponding to Function 1 and eac expresses the performance
corresponding to Function 2. The smaller these errors are, the better is the tracking filter. Thus,
the minimum εp achieves the best tracking filter in a steady state.

3.2. RMS index of a POM system

One important advantage of the RMS index is that it can be expressed in closed form. The
closed form of εp for the POM system was derived in Ref. [3]. This subsection introduces the
RMS index and its relationship to the design parameter Q in the POM system.
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First, the arbitrary Q is defined as

Qgen ¼ a b

b c

 !
(18)

where a > 0, b > 0, and c > 0, and the dimensions of a, b, and c are [m2], [m2/s], and [m2/s2],

respectively. For example, substituting a; b; cð Þ ¼ σ2qT
4=4; σ2qT

3=2; σ2qT
2

� �
into Eq. (18) gives the

Qra of Eq. (14) and b = 0 leads to the diagonal Q. The analytical relationship between Qgen and
εp is expressed by the following closed form.

ε2p,pom ¼ ac2T4

β2
þ 2α2 þ 2βþ αβ
α 4� 2α� β
� �Bx (19)

where α and β are components of the steady-state Kalman gain K∞ ¼ α; β=T
� �T calculated

from (a, b, c) using the following equations:

β ¼ Cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 16þ 4A� 4Bþ Cð Þp

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 16þ 4A� 4Bþ Cð Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 16þ 4A� 4Bþ Cð Þp þ Cð2A� 2Bþ C

8

s
(20)

A ¼ a=Bx, B ¼ bT=Bx, C ¼ cT2=Bx (21)

α ¼ 1� β2=C (22)

The derivation process of these equations is shown in Ref. [3]. As shown in Eqs. (19)–(22), the
optimal (a, b, c) is designed minimizing εp.

3.3. RMS index of a PVM system

In a similar manner to the treatment of the POM system, this subsection introduces the RMS
index of a PVM system and its relationship to Qgen. The RMS index of the PVM system is

ε2p,pvm ¼ 2� 2η� θ
2 βþ αθ� βη
� �

 !2

a2cT
4 þ g2 α; β; η;θ

� �
Bx þ g3 α; β; η;θ

� �
T2Bv

g1 α; β; η;θ
� � (23)

where α, β, η, and θ are components of the steady-state Kalman gain:

K∞ ¼ α Tη
β=T θ

� �
(24)

and,

g1 α; β; η;θ
� � ¼ βη� αθ� β

� �
αθ� βη� α� θ
� �

4� 2α� β� 2θþ αθ� βη
� �

(25)
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g2 α; β; η;θ
� � ¼ α3θ θ� 2ð Þ θ� 1ð Þ þ α2β 2� 2θ� 3ηθ2 þ 6ηθ� 2η

� �

þ α2θ2 2� θð Þ þ 2αβθ η� 2ð Þ θ� 2ð Þ þ αβ2 1þ 2η� θ� 3η2 þ 3η2θ
� �

þ β3η 1þ ηð Þ 1� ηð Þ þ β2η 2� ηð Þ θ� 2ð Þ þ β2 2� θð Þ
(26)

g3 α; β; η;θ
� � ¼ αθ 2η2 þ 2ηθþ θ2 � θ

� �þ ηβ 2ηþ 2θ� 2η2 � θ2 � 2ηθ
� �þ θ2 2� θð Þ (27)

Eq. (22) is obtained from σ2p and eac of the steady-state PVM Kalman filter (α� β� η� θ filter)

by using Eq. (17). The derivation processes for these are shown in Ref. [25]. The relationship
between the steady-state Kalman gains and Qgen is derived as follows:

a ¼ T2Bv

1� Rxvβ2 � 1� θð Þα� θ
αβ2 þ 2β3 þ β2 þ θ� 1ð Þθβ� �

Rxv
�

þα2Rxv 1� θð Þ 1þ 2αβ
� �þ β2θþ β 3θ� 2� θ2� �� �þ θ 1� θð Þ α� 1ð Þ� (28)

b ¼ β3R2
xv þ Rxv α β 1� θð Þ � θ2 þ θ

� �þ β2θþ βθþ θ2 � θ
� �

1� Rxvβ2 � 1� θð Þα� θ
TBv (29)

c ¼ Rxv αβθþ β2 θþ 1ð Þ � βθ
� �� αθ βþ θ

� �þ βθþ θ2

1� Rxvβ2 � 1� θð Þα� θ
Bv (30)

where

Rxv ¼ Bx=T2Bv (31)

η ¼ Rxvβ (32)

The derivation of these is given in the Appendix. Note that the dimensionless parameter Rxv

corresponds to the ratio of the measurement accuracies in position and velocity and directly
affects the tracking accuracy in PVM tracking systems. From these results, we also obtain the
closed form of the RMS index for PVM systems and can design optimalQ using Eqs. (22)–(32).

4. Filter design strategy based on the RMS index

Using the RMS index introduced in the previous section, we can design the Kalman filter
parameters (i.e.,Q) to achieve optimal tracking. This section defines the optimization problems
for POM and PVM systems with a Q that minimizes the RMS index εp.

4.1. RMS-index minimization problem

4.1.1. POM system optimization

The evaluating function to determine optimalQ is εp,pom normalized by Bx, which is defined as
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μpom ¼ ε2p,pom=Bx ¼ aD2

β2
þ 2α2 þ 2βþ αβ

α 4� 2α� β
� � (33)

where

a2D ¼ a2cT
4=Bx (34)

is the preset parameter for the proposed strategy. Substituting Eqs. (20)–(22) into (33), we
obtain μpom a; b; c; aDð Þ. Using this, the optimal (a, b, c) for the POM system is determined by

solving

argmin
a, b, c

μpom a; b; c; aDð Þ
sub: to: a > 0, b > 0, c > 0, and aD ¼ Const:

(35)

4.1.2. PVM system optimization

Like the POM system, a normalized RMS index can be used for the design of the PVM system.
Normalizing Eq. (22) by Bx and substituting Eqs. (31) and (32) into this, the evaluating function
for the PVM system is given by

μpvm ¼ ε2p,pvm=Bx ¼ 2� 2βRxv � θ
2 βþ αθ� β2Rxv
� �

 !2

aD2 þ g2 α; β;θ;Rxv
� �þ g3 α; β;θ;Rxv

� �
=Rxv

g1 α; β;θ;Rxv
� � (36)

To design optimal (a, b, c) for the PVM system, the optimal steady-state Kalman gains are
calculated by solving the following minimization problem.

arg min
α, β,θ

μpvm α; β;θ;Rxv
� �

sub: to: Stability conditions are satisfied, and aD ¼ Const:
(37)

where the stability conditions with respect to Kalman gains are easily derived by the well-
known Jury’s test as

1� ηð Þβ < αθ and 4� 2α� β� 2θþ αθ� ηβ > 0 and αθ� ηβ� α� θþ 1
�� �� < 1 (38)

Substituting the optimal (α, β,θ) calculated by Eq. (37) into Eqs. (28)–(30), we obtain an optimal
(a, b, c) for the PVM Kalman filter.

4.2. Procedure and notes of the proposed design strategy

The procedure of the proposed strategy for each system is summarized in this section.

4.2.1. Design procedure for a POM system

1. Set Bx from the sensor performance.
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g2 α; β; η;θ
� � ¼ α3θ θ� 2ð Þ θ� 1ð Þ þ α2β 2� 2θ� 3ηθ2 þ 6ηθ� 2η

� �

þ α2θ2 2� θð Þ þ 2αβθ η� 2ð Þ θ� 2ð Þ þ αβ2 1þ 2η� θ� 3η2 þ 3η2θ
� �

þ β3η 1þ ηð Þ 1� ηð Þ þ β2η 2� ηð Þ θ� 2ð Þ þ β2 2� θð Þ
(26)

g3 α; β; η;θ
� � ¼ αθ 2η2 þ 2ηθþ θ2 � θ

� �þ ηβ 2ηþ 2θ� 2η2 � θ2 � 2ηθ
� �þ θ2 2� θð Þ (27)

Eq. (22) is obtained from σ2p and eac of the steady-state PVM Kalman filter (α� β� η� θ filter)

by using Eq. (17). The derivation processes for these are shown in Ref. [25]. The relationship
between the steady-state Kalman gains and Qgen is derived as follows:

a ¼ T2Bv

1� Rxvβ2 � 1� θð Þα� θ
αβ2 þ 2β3 þ β2 þ θ� 1ð Þθβ� �

Rxv
�

þα2Rxv 1� θð Þ 1þ 2αβ
� �þ β2θþ β 3θ� 2� θ2� �� �þ θ 1� θð Þ α� 1ð Þ� (28)

b ¼ β3R2
xv þ Rxv α β 1� θð Þ � θ2 þ θ

� �þ β2θþ βθþ θ2 � θ
� �

1� Rxvβ2 � 1� θð Þα� θ
TBv (29)

c ¼ Rxv αβθþ β2 θþ 1ð Þ � βθ
� �� αθ βþ θ

� �þ βθþ θ2

1� Rxvβ2 � 1� θð Þα� θ
Bv (30)

where

Rxv ¼ Bx=T2Bv (31)

η ¼ Rxvβ (32)

The derivation of these is given in the Appendix. Note that the dimensionless parameter Rxv

corresponds to the ratio of the measurement accuracies in position and velocity and directly
affects the tracking accuracy in PVM tracking systems. From these results, we also obtain the
closed form of the RMS index for PVM systems and can design optimalQ using Eqs. (22)–(32).

4. Filter design strategy based on the RMS index

Using the RMS index introduced in the previous section, we can design the Kalman filter
parameters (i.e.,Q) to achieve optimal tracking. This section defines the optimization problems
for POM and PVM systems with a Q that minimizes the RMS index εp.

4.1. RMS-index minimization problem

4.1.1. POM system optimization

The evaluating function to determine optimalQ is εp,pom normalized by Bx, which is defined as
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μpom ¼ ε2p,pom=Bx ¼ aD2

β2
þ 2α2 þ 2βþ αβ

α 4� 2α� β
� � (33)

where

a2D ¼ a2cT
4=Bx (34)

is the preset parameter for the proposed strategy. Substituting Eqs. (20)–(22) into (33), we
obtain μpom a; b; c; aDð Þ. Using this, the optimal (a, b, c) for the POM system is determined by

solving

argmin
a, b, c

μpom a; b; c; aDð Þ
sub: to: a > 0, b > 0, c > 0, and aD ¼ Const:

(35)

4.1.2. PVM system optimization

Like the POM system, a normalized RMS index can be used for the design of the PVM system.
Normalizing Eq. (22) by Bx and substituting Eqs. (31) and (32) into this, the evaluating function
for the PVM system is given by

μpvm ¼ ε2p,pvm=Bx ¼ 2� 2βRxv � θ
2 βþ αθ� β2Rxv
� �

 !2

aD2 þ g2 α; β;θ;Rxv
� �þ g3 α; β;θ;Rxv

� �
=Rxv

g1 α; β;θ;Rxv
� � (36)

To design optimal (a, b, c) for the PVM system, the optimal steady-state Kalman gains are
calculated by solving the following minimization problem.

arg min
α, β,θ

μpvm α; β;θ;Rxv
� �

sub: to: Stability conditions are satisfied, and aD ¼ Const:
(37)

where the stability conditions with respect to Kalman gains are easily derived by the well-
known Jury’s test as

1� ηð Þβ < αθ and 4� 2α� β� 2θþ αθ� ηβ > 0 and αθ� ηβ� α� θþ 1
�� �� < 1 (38)

Substituting the optimal (α, β,θ) calculated by Eq. (37) into Eqs. (28)–(30), we obtain an optimal
(a, b, c) for the PVM Kalman filter.

4.2. Procedure and notes of the proposed design strategy

The procedure of the proposed strategy for each system is summarized in this section.

4.2.1. Design procedure for a POM system

1. Set Bx from the sensor performance.
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2. Preset aD based on the approximate target acceleration.

3. Determine (a, b, c) by solving Eq. (35).

The methodology of presetting aD is discussed in the simulation section.

4.2.2. Design procedure for a PVM system

1. Set Bx and Bv from the sensor performance.

2. Preset aD based on the approximate target acceleration.

3. Determine α; β;θ
� �

by solving Eq. (37).

4. Determine (a, b, c) from α; β;θ
� �

using Eqs. (28)–(30).

4.2.3. Notes on computation in the proposed strategy

With respect to the proposed strategy, note that:

• Eqs. (35) and (37) can be solved by gradient descent with several initial values. This is
because that the parameter searching range is narrow due to the stability conditions.

• The proposed design process is only carried out once before using the Kalman filter.
Although the computational cost of the above optimization process is not small, it does
not affect the Kalman filtering process.

4.3. Discussion on preset parameter aD

Here, the appropriate presetting for aD in practical use is discussed. The covariance matrix of
process noise Q determined by the proposed strategy is only optimal when aD is matched to
the target acceleration and the target is moving with constant acceleration corresponding to aD.
However, using the proposed strategy, the tracking accuracy is always better than when using
conventional models as verified in Ref. [3]. Consequently, the proposed method achieves
sufficient accuracy, even if aD is not matched to the true target acceleration. This means that
the relatively small difference between the true and preset acceleration is acceptable. Thus, in
practical use, we estimate an approximate or a typical value for the acceleration (e.g., mean
and maximum) in advance based on the assumed motion of the target and then set aD by using
this estimated value. The example application presented in Section 6 assumes the approximate
maximum acceleration of the target is known and is used for the Kalman filter design.

Thus, target acceleration information is required for accurate Kalman filter tracking by using
the proposed strategy. As a method to obtain an approximated acceleration, communications
between the tracking systems and the accelerometers embedded in targets can be considered.
Many sensing targets have acceleration sensors; for example, robots and vehicles have inertial
sensors, and humans have accelerometers embedded in smartphones. Soon, Internet of Things
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technology will make data communications between robots, smartphones, and radar possible.
Thus, we can obtain approximated acceleration based on this novel technology.

5. Theoretical steady-state performance analysis

This section presents theoretical performance analyses of the Kalman tracking filters by using
the proposed design strategy. With respect to POM systems, our previous study [3] verified the
effectiveness of the proposed strategy by comparison with a conventional random acceleration
model based filter design. Thus, the RMS indices for the following filters are compared:

• Optimal POM filter: the Kalman filter for the POM system designed using the strategy
mentioned in Section 4.2.1.

• Optimal PVM filter: the Kalman filter for the PVM system designed using the strategy
mentioned in Section 4.2.2.

• RA filter: the Kalman filter for the PVM system with the RA process noises by using
optimal σq with respect to the RMS index.

The comparison of the optimal PVM filter with the RA filter indicates the effectiveness of the
proposed strategy (i.e., considering the arbitrary covariance matrix of the process noise Qgen)
and the comparison of the optimal POM and PVM filters illustrates the enhancement of
tracking accuracy by using the velocity measurements in the proposed strategy. This section
assumes that Bx and T are normalized to 1.

Figure 1 shows the relationship between the design parameter aD and the minimum RMS
index εp,opt for Rxv = 1 (Figure 1 left) and Rxv = 10 (Figure 1 right). It can be seen that the
optimal PVM filter achieves the best performance. This result verifies that the proposed strat-
egy determines steady-state gains corresponding to a better covariance matrix of process noise
than the RA model. The optimal PVM filter also achieves better performance compared with
the optimal POM filter even for Rxv ¼ 1, which means that the measurement accuracy of the

Figure 1. Analytical relationship between aD and εp,opt(Rxv ¼ 1 (left), Rxv ¼ 10 (right)).
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2. Preset aD based on the approximate target acceleration.

3. Determine (a, b, c) by solving Eq. (35).

The methodology of presetting aD is discussed in the simulation section.

4.2.2. Design procedure for a PVM system

1. Set Bx and Bv from the sensor performance.

2. Preset aD based on the approximate target acceleration.

3. Determine α; β;θ
� �

by solving Eq. (37).

4. Determine (a, b, c) from α; β;θ
� �

using Eqs. (28)–(30).

4.2.3. Notes on computation in the proposed strategy

With respect to the proposed strategy, note that:

• Eqs. (35) and (37) can be solved by gradient descent with several initial values. This is
because that the parameter searching range is narrow due to the stability conditions.

• The proposed design process is only carried out once before using the Kalman filter.
Although the computational cost of the above optimization process is not small, it does
not affect the Kalman filtering process.

4.3. Discussion on preset parameter aD

Here, the appropriate presetting for aD in practical use is discussed. The covariance matrix of
process noise Q determined by the proposed strategy is only optimal when aD is matched to
the target acceleration and the target is moving with constant acceleration corresponding to aD.
However, using the proposed strategy, the tracking accuracy is always better than when using
conventional models as verified in Ref. [3]. Consequently, the proposed method achieves
sufficient accuracy, even if aD is not matched to the true target acceleration. This means that
the relatively small difference between the true and preset acceleration is acceptable. Thus, in
practical use, we estimate an approximate or a typical value for the acceleration (e.g., mean
and maximum) in advance based on the assumed motion of the target and then set aD by using
this estimated value. The example application presented in Section 6 assumes the approximate
maximum acceleration of the target is known and is used for the Kalman filter design.

Thus, target acceleration information is required for accurate Kalman filter tracking by using
the proposed strategy. As a method to obtain an approximated acceleration, communications
between the tracking systems and the accelerometers embedded in targets can be considered.
Many sensing targets have acceleration sensors; for example, robots and vehicles have inertial
sensors, and humans have accelerometers embedded in smartphones. Soon, Internet of Things
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technology will make data communications between robots, smartphones, and radar possible.
Thus, we can obtain approximated acceleration based on this novel technology.

5. Theoretical steady-state performance analysis

This section presents theoretical performance analyses of the Kalman tracking filters by using
the proposed design strategy. With respect to POM systems, our previous study [3] verified the
effectiveness of the proposed strategy by comparison with a conventional random acceleration
model based filter design. Thus, the RMS indices for the following filters are compared:

• Optimal POM filter: the Kalman filter for the POM system designed using the strategy
mentioned in Section 4.2.1.

• Optimal PVM filter: the Kalman filter for the PVM system designed using the strategy
mentioned in Section 4.2.2.

• RA filter: the Kalman filter for the PVM system with the RA process noises by using
optimal σq with respect to the RMS index.

The comparison of the optimal PVM filter with the RA filter indicates the effectiveness of the
proposed strategy (i.e., considering the arbitrary covariance matrix of the process noise Qgen)
and the comparison of the optimal POM and PVM filters illustrates the enhancement of
tracking accuracy by using the velocity measurements in the proposed strategy. This section
assumes that Bx and T are normalized to 1.

Figure 1 shows the relationship between the design parameter aD and the minimum RMS
index εp,opt for Rxv = 1 (Figure 1 left) and Rxv = 10 (Figure 1 right). It can be seen that the
optimal PVM filter achieves the best performance. This result verifies that the proposed strat-
egy determines steady-state gains corresponding to a better covariance matrix of process noise
than the RA model. The optimal PVM filter also achieves better performance compared with
the optimal POM filter even for Rxv ¼ 1, which means that the measurement accuracy of the

Figure 1. Analytical relationship between aD and εp,opt(Rxv ¼ 1 (left), Rxv ¼ 10 (right)).
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position and velocity is the same. The addition of the velocity measurements effectively
enhances the tracking accuracy. Furthermore, when the velocity measurement accuracy is high,
the optimal PVM filter achieves greater accuracy than the POM filter.

Figure 2 shows the relationship between Rxv and εp,opt for a2D ¼ 0:01 (left) and 0.1 (right). Both
cases exhibit the same trend. For both optimal PVM and RA filters, better performance is
achieved with better velocity measurement accuracy. The performance of the optimal PVM
filter is better than that of the optimal POM filter including relatively small Rxv (the velocity
measurement accuracy is low). In contrast, the performance of the RA filter is worse than that
of the optimal POM filter for small Rxv because the covariance matrix is limited to Eq. (14).
Moreover, by comparing the two insets of Figure 2, we see the greater effectiveness of the
proposed strategy for relatively large aD.

6. Application to radar tracking simulation

Finally, this section provides an example of the Kalman filter tracker designed with the
proposed strategy in a realistic application, namely, pulse Doppler radar tracking.

6.1. Simulation setup

We simulated the pulse Doppler radar tracking of a maneuvering target and compared the
tracking errors of the filters assumed in the previous section. Figure 3 shows the simulation

scenario and the true target acceleration. The true target position is xtk; ytk
� � ¼ kTð Þ2; 20þ

�

kTð Þ1:5 cos πkT=5ð ÞÞ. Two-dimensional tracking in the x-y plane of the point target is assumed.
We consider two pulse Doppler radars located at (x, y) = (0.5 m, 0) and (1.0 m, 0). The sampling
interval T is 100 ms, and the observation time is 4 s. The transmitted signal is a pulse with
central frequency of 60 GHz and bandwidth of 500 MHz. The received radar signals are
calculated using ray tracing with the addition of the Gaussian white noise. The radar measure-
ment parameter depends on the system under consideration: the POM system assumes the
measurement of the position by using ranging results, and the PVM system assumes the
position and velocity measurements where the position measurement is the same as the POM

Figure 2. Analytical relationship between Rxv and εp,opt (aD ¼ 0:01 (left), aD ¼ 0:1 (right)).
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system, and the velocity measurement is based on the Doppler shift with the method
presented in Ref. [18]. We determine a variance for this noise to set Bx ¼ 9� 10�4 m2 and
Bv ¼ 0:09 m2/s2. In these settings, Rxv ¼ 1. These values are the averages along the two axes.
Using the RMS prediction error calculated from 1000 Monte Carlo simulations, the perfor-
mance is defined as

εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000
m¼1

xtk � xpmk
� �2 þ ytk � ypmk

� �2� �vuut (39)

where xpmk and ypmk are the predicted positions in the mth Monte Carlo simulation.

6.2. Implementation of Kalman filter

First, the implementation of the Kalman filters for two-dimensional system is presented. The
implementation of a two-dimensional optimal POM filter is as follows:

xt ¼ xt vxt yt vyt
� �T (40)

Φ ¼

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

0
BBBB@

1
CCCCA

(41)
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� �
(43)

Figure 3. Simulation setting (simulation scenario (left), true target acceleration (right)).
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position and velocity is the same. The addition of the velocity measurements effectively
enhances the tracking accuracy. Furthermore, when the velocity measurement accuracy is high,
the optimal PVM filter achieves greater accuracy than the POM filter.

Figure 2 shows the relationship between Rxv and εp,opt for a2D ¼ 0:01 (left) and 0.1 (right). Both
cases exhibit the same trend. For both optimal PVM and RA filters, better performance is
achieved with better velocity measurement accuracy. The performance of the optimal PVM
filter is better than that of the optimal POM filter including relatively small Rxv (the velocity
measurement accuracy is low). In contrast, the performance of the RA filter is worse than that
of the optimal POM filter for small Rxv because the covariance matrix is limited to Eq. (14).
Moreover, by comparing the two insets of Figure 2, we see the greater effectiveness of the
proposed strategy for relatively large aD.

6. Application to radar tracking simulation
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proposed strategy in a realistic application, namely, pulse Doppler radar tracking.

6.1. Simulation setup

We simulated the pulse Doppler radar tracking of a maneuvering target and compared the
tracking errors of the filters assumed in the previous section. Figure 3 shows the simulation

scenario and the true target acceleration. The true target position is xtk; ytk
� � ¼ kTð Þ2; 20þ

�

kTð Þ1:5 cos πkT=5ð ÞÞ. Two-dimensional tracking in the x-y plane of the point target is assumed.
We consider two pulse Doppler radars located at (x, y) = (0.5 m, 0) and (1.0 m, 0). The sampling
interval T is 100 ms, and the observation time is 4 s. The transmitted signal is a pulse with
central frequency of 60 GHz and bandwidth of 500 MHz. The received radar signals are
calculated using ray tracing with the addition of the Gaussian white noise. The radar measure-
ment parameter depends on the system under consideration: the POM system assumes the
measurement of the position by using ranging results, and the PVM system assumes the
position and velocity measurements where the position measurement is the same as the POM

Figure 2. Analytical relationship between Rxv and εp,opt (aD ¼ 0:01 (left), aD ¼ 0:1 (right)).
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system, and the velocity measurement is based on the Doppler shift with the method
presented in Ref. [18]. We determine a variance for this noise to set Bx ¼ 9� 10�4 m2 and
Bv ¼ 0:09 m2/s2. In these settings, Rxv ¼ 1. These values are the averages along the two axes.
Using the RMS prediction error calculated from 1000 Monte Carlo simulations, the perfor-
mance is defined as

εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000
m¼1

xtk � xpmk
� �2 þ ytk � ypmk

� �2� �vuut (39)

where xpmk and ypmk are the predicted positions in the mth Monte Carlo simulation.

6.2. Implementation of Kalman filter

First, the implementation of the Kalman filters for two-dimensional system is presented. The
implementation of a two-dimensional optimal POM filter is as follows:

xt ¼ xt vxt yt vyt
� �T (40)

Φ ¼

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

0
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 !
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Figure 3. Simulation setting (simulation scenario (left), true target acceleration (right)).
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Q ¼

aopt bopt 0 0
bopt copt 0 0
0 0 aopt bopt
0 0 bopt copt

0
BBB@

1
CCCA (44)

where vyt is the true velocity in the y-axis and aopt; bopt; copt
� �

is optimized (a, b, c), calculated
using the procedure in Section 4.2.1. xt and Φ of a two-dimensional PVM filter are the same as
for a POM filter. H and R are

H ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA (45)

R ¼

Bx 0 0 0
0 Bv 0 0
0 0 Bx 0
0 0 0 Bv

0
BBB@

1
CCCA (46)

In addition, the formulation of Q is the same as in Eq. (43) and aopt; bopt; copt
� �

is calculated
using the procedure in Section 4.2.2. A two-dimensional RA filter is the same as the optimal
PVM filter, with the exception of Q. Q of the RA filter is

Qra ¼

T4=4 T3=2 0 0
T3=2 T2 0 0
0 0 T4=4 T3=2
0 0 T3=2 T2

0
BBB@

1
CCCAσ2q (47)

Next, the design for an appropriate aD is presented. We presume an approximate prediction of
accelerations. For instance, when the maximum acceleration of the target in Figure 3 is
predicted to be approximately ac ¼ 3 m/s2, aD is then 1.0, from Eq. (34). Using this aDand the
radar settings described in the previous section, we have aopt; bopt; copt

� �
for each filter.

6.3. Results and discussion

Figure 4 shows the simulation results. Clearly, the filters using velocity measurements achieve
greater accuracy than the optimal POM filter. The mean steady-state prediction RMS errors
(E εk½ � in 2 s < kT) of the optimal POM, RA, and optimal PVM filters are 0.59, 0.46, and 0.19 m,
respectively. These results indicate that the proposed strategy achieves greater accuracy than
the conventional RA filter even in realistic situations. The mean RMS error of the optimal PVM
filter is 41% of that of the RA filter. This is because the RA model cannot track the abrupt
motion of the high-maneuvering target because of limitations in expressing the process noise.
In contrast, the optimal PVM filter can set gains corresponding to the appropriate process
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noise to accurately track high-maneuvering target. Moreover, the mean RMS error of the
optimal PVM filter is 32% of the error in optimal POM filter, and this clearly indicates the
effectiveness of the velocity measurement, even when Rxv ¼ 1 (when the measurement reli-
ability of the position and velocity are the same). These simulation results are consistent with
the theoretical analyses presented in Figure 1.

7. Final remarks

7.1. Conclusions

In this chapter, the efficient steady-state performance index, known as the RMS index, was
introduced for both POM and PVM Kalman filters for systems that track moving objects.
Automatic design (preset) of the covariance matrix of the process noise Q, to realize optimal
position prediction, was achieved using the analytical relationship between Q and the RMS
index. The validity of the proposed design strategy was shown via analyses and simulations.
These results verified that the proposed index attained accurate tracking when compared with
the conventional RA-model-based Kalman filter design. A simulation of a realistic situation
indicated that the optimal performance given by the proposed strategy is 41% better than that
given by the conventional design procedure for a PVM system. Moreover, the optimal perfor-
mance of the optimal POM and PVM Kalman filters was compared showing that the optimal
PVM Kalman filter is accurate when compared with the POM filter in a steady state.

7.2. Future works

The most important future objective is the extension of the RMS index-based design strategy
to the third-order (and higher order) Kalman filters that are widely used for real applications.
In third-order tracking, an acceleration is added to the state vector, becoming one of the
input parameters of the Kalman filter. Performance analysis and the establishment of a design

Figure 4. Simulation results.
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predicted to be approximately ac ¼ 3 m/s2, aD is then 1.0, from Eq. (34). Using this aDand the
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for each filter.

6.3. Results and discussion

Figure 4 shows the simulation results. Clearly, the filters using velocity measurements achieve
greater accuracy than the optimal POM filter. The mean steady-state prediction RMS errors
(E εk½ � in 2 s < kT) of the optimal POM, RA, and optimal PVM filters are 0.59, 0.46, and 0.19 m,
respectively. These results indicate that the proposed strategy achieves greater accuracy than
the conventional RA filter even in realistic situations. The mean RMS error of the optimal PVM
filter is 41% of that of the RA filter. This is because the RA model cannot track the abrupt
motion of the high-maneuvering target because of limitations in expressing the process noise.
In contrast, the optimal PVM filter can set gains corresponding to the appropriate process
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noise to accurately track high-maneuvering target. Moreover, the mean RMS error of the
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ability of the position and velocity are the same). These simulation results are consistent with
the theoretical analyses presented in Figure 1.
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In this chapter, the efficient steady-state performance index, known as the RMS index, was
introduced for both POM and PVM Kalman filters for systems that track moving objects.
Automatic design (preset) of the covariance matrix of the process noise Q, to realize optimal
position prediction, was achieved using the analytical relationship between Q and the RMS
index. The validity of the proposed design strategy was shown via analyses and simulations.
These results verified that the proposed index attained accurate tracking when compared with
the conventional RA-model-based Kalman filter design. A simulation of a realistic situation
indicated that the optimal performance given by the proposed strategy is 41% better than that
given by the conventional design procedure for a PVM system. Moreover, the optimal perfor-
mance of the optimal POM and PVM Kalman filters was compared showing that the optimal
PVM Kalman filter is accurate when compared with the POM filter in a steady state.

7.2. Future works

The most important future objective is the extension of the RMS index-based design strategy
to the third-order (and higher order) Kalman filters that are widely used for real applications.
In third-order tracking, an acceleration is added to the state vector, becoming one of the
input parameters of the Kalman filter. Performance analysis and the establishment of a design
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strategy for such systems (i.e., position/acceleration and position/velocity/acceleration mea-
sured Kalman filters) are important considerations for advanced sensor fusion systems
under development. Moreover, considerations of other dynamic models (e.g., the constant
turn model) should also be probed for use in many applications including pedestrian tracking.

A. Appendix

A.1. Derivation of Eqs. (28)–(30)

Because we assume a steady state, the index k of all parameters and matrices is omitted in the
following calculations. The ith row and jth column of a matrix P are denoted as Pi, j.

Eq. (11) is also written using bP as

K ¼ bPHTR�1 (48)

As indicated in Eq. (7), H of the PVM Kalman filter is the identity matrix. Thus, from Eq. (48),
the relationship between the Kalman gains and the error covariance matrix in the estimated

state bP is calculated using Eqs. (8) and (24) as

bP ¼ KR ¼ αBx TηBv

βBx=T θBv

� �
(49)

With P1,2 ¼ P2,1 and Eq. (31), we have the following relationship:

η ¼ β
Bx

T2Bv
¼ βRxv (50)

Eq. (50) is equal to Eq. (32), showing that this relationship is satisfied in the assumed PVM

Kalman filter without depending on the process noise. bP is also calculated using Eq. (13) by
substituting Eqs. (7) and (24) as

bP ¼ 1� αð Þ~P1,1 � Tη~P1,2 1� αð Þ~P1,2 � Tη~P2,2

1� θð Þ~P1,2 � β=T
� �

~P1,1 1� θð Þ~P2,2 � β=T
� �

~P1,2

 !
(51)

Elements of ~Pare required to calculate Eq. (51) and are calculated using Eqs. (3), (12), and (18) as

~P ¼ P1,1 þ 2TP1,2 þ T2P2,2 þ a P1,2 þ TP2,2 þ b
P1,2 þ TP2,2 þ b P2,2 þ c

 !
(52)

Substituting Eq. (52) into Eq. (51), and comparing elements of Eq. (49), we have the following
linear system:
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αBx ¼ 1� αð Þ αBx þ 2ηT2Bv þ θT2Bv þ a
� �� ηT ηTBv þ θTBv þ bð Þ (53)

βBx=T ¼ 1� αð Þ ηTBv þ θTBv þ bð Þ � ηT θBv þ cð Þ (54)

θBv ¼ 1� θð Þ θBv þ cð Þ � β=T
� �

ηTBv þ θTBv þ bð Þ (55)

Solving this linear system with respect to (a, b, c) and substituting Eq. (50) into the solutions,
we arrive at Eqs. (28)–(30).
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Abstract

The continuing trend toward connected sensors (“internet of things” and” ubiquitous
computing”) drives a demand for powerful distributed estimation methodologies. In
tracking applications, the distributed Kalman filter (DKF) provides an optimal solution
under Kalman filter conditions. The optimal solution in terms of the estimation accuracy
is also achieved by a centralized fusion algorithm, which receives all associated measure-
ments. However, the centralized approach requires full communication of all measure-
ments at each time step, whereas the DKF works at arbitrary communication rates since
the calculation is fully distributed. A more recent methodology is based on ”accumulated
state density” (ASD), which augments the states from multiple time instants to overcome
spatial cross-correlations. This chapter explains the challenges in distributed tracking.
Then, possible solutions are derived, which include the DKF and ASD approach.

Keywords: distributed Kalman filter, target tracking, multisensor fusion, information
fusion, accumulated state density

1. Introduction

Modern tracking and surveillance system development is increasingly driving technological
trends and algorithm developments toward networks of dislocated sensors. Besides classical
target tracking, many other applications can be found, for instance, in robotics, manufacturing,
health care, and financial economics. A multisensor network can exploit spatial diversity to
compensate for the weak attributes of a single sensor such as limited field of view or high
measurement noise. Also, heterogeneous sensors can reveal a more complete situational aware-
ness and a more precise estimate of the underlying phenomena. Additionally, a sensor network
is more robust against a single point of failure in comparison to a standalone system, if its
architecture is chosen carefully.

Despite its unquestioned advantages, a multisensor network must cope with design-specific
challenges, for instance, a full transmission of all the measurements to a fusion center can be
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hindered, when the communication links are unreliable or constrained in bandwidth or costs.
A well-known approach to cope with the limited bandwidth data links is to apply data
processing on the sensor sites to generate local track parameters that are transmitted to the
fusion center. The latter then reconstructs the global track parameters by an application of a
Track-to-Track Fusion (T2TF) scheme. Depending on the scenario constraints, this is a nontrivial
task, since the local tracks are mutually correlated due to the common process noise. The first
known solution in the literature to the T2TF problem proposed to apply an information filter-
based multisensor fusion algorithm in [1], which later became famous as the “tracklet fusion.”
However, the tracklet fusion also requires a transmission from each sensor after each time step
in order to reconstruct the optimal solution.

This chapter presents the theory and the derivation of the distributed Kalman filter (DKF), which
is an optimal solution of the T2TF problem under Kalman filter assumptions with respect to
the mean squared error (MSE). Assuming Kalman conditions means that linear Gaussian models
are provided for the motion model and all measurement models of the sensors. Moreover, it is
assumed that measurement-to-track (at the sensors) and track-to-track (at the fusion center)
association has been solved. The DKF approach requires, however, all remote sensor models to
be known at each local sensor site, which is infeasible in most practical scenarios. Therefore,
this chapter also presents a solution based on the accumulated state density (ASD), which is
closely related to the DKF but does not require the measurement models to be known. Surveys
that reflect the history of research in distributed estimation can be found, for instance, in [2, 3].

This chapter is structured as follows: Section 2 summarizes the problem formulation. A basic
approach to T2TF is given in Section 3, where we present the least squares solution. Section 4
presents a simple fusion methodology, which is easy to compute and provides practical results
for various applications. The reason why this approach is suboptimal is investigated in Section 5
by means of a recursive computation of the cross-covariances of the local tracks. In Section 6, the
product representation of Gaussian probability densities is introduced, which is the basis for the
derivation of the distributed Kalman filter in Section 7. An alternative derivation in terms of
information parameters is provided in Section 8. Since the local measurement models are often
unknown in practical applications, the distributed accumulated state density filter is introduced
in Section 9. The chapter concludes with Section 10.

2. Problem formulation

Throughout this chapter, it is assumed that all S sensors produce their measurements zsk ∈Rm

at each time step tk of the same target with its true state xk ∈Rn in a synchronized way. The
extension to the unsynchronized case is straightforward by means of standard Kalman filter
predictions, and is therefore omitted for the sake of notational simplicity. The measurement
equation for sensor s∈ 1;…; Sf g is given by

zsk ¼ Hs
kxk þ vsk (1)
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where vsk � Ν vsk; 0;R
s
k

� �
is the Gaussian distributed, zero-mean random variable, which models

the noise of the sensing process. Therefore, the likelihood for a single measurement is fully
described by the Gaussian

p zskjxk
� � ¼ Ν zsk;H

s
kxk;R

s
k

� �
(2)

Since the measurement processes across all sensors Zk ¼ z1k ;…; zSk
� �

are mutually independent,
the joint likelihood of all sensor data produced at time tk factorizes:

p Zkjxkð Þ ¼
YS
s¼1

p zskjxk
� �

¼
YS
s¼1

Ν zsk;H
s
kxk;R

s
k

� �
(3)

The true state of the target itself is modeled as a time-variant stochastic process, where the
transition from time tk�1 to time tk is given by the following motion equation:

xk ¼ Fk∣k�1xk�1 þ wk (4)

where wk � Ν wk; 0;Qkð Þ is the Gaussian distributed, zero-mean random variable to model the
process noise of the system. Analogously to the likelihood, this provides the probability
density function for the transition model:

p xkjxk�1ð Þ ¼ Ν xk; Fk∣k�1xk�1;Qk
� �

(5)

Based on the local processors, each sensor node produces a track at time tk in terms of an
estimate xsk∣k and a corresponding estimation error covariance Ps

k∣k. In a T2TF scheme, these

parameters are the only information, which is transmitted to a fusion center (FC). It should be
noted that the FC may also not be centralized, distinguished instance in the architecture, but
each and every processing node can act as a FC. The introduction of a distinguished FC is only
for clarification of different computation layers. An excellent overview of pros and cons of
various data fusion layers can be found in [4].

The T2TF problem can now be stated as follows: compute a fused estimate xk∣k of the state xk and
a consistent error covariance Pk∣k by means of the local tracks and knowledge on their models:

xk∣k  x1k∣k;…; xSk∣k
n o

(6)

3. Least squares estimate

In order to compute an estimate as a well-suited combination of the local tracks, it is useful to
consider the joint likelihood function given by the following Gaussian:
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p x1k∣k,…, xSk∣kjxk
� �

¼ N

x1k∣k
⋮
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0
BB@
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CCA;

xk
⋮
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P1,1
k∣k ⋯ P1,S
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0
B@

1
CA

0
BB@

1
CCA, (7)

where Ps,s
k∣k ¼ Ps

k∣k are the track covariances on the block-diagonal entries and Pi, j
k∣k ≜ cov xik∣k, x

j
k∣kjxk

h i

¼ Pj, i T
k∣k are the cross-covariances on the off-diagonal entries of the joint error covariance.

Since the joint likelihood from above is proportional to an exponential function:
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(8)

the maximum likelihood (ML) estimate can be computed in terms of the least squares:

xk∣k ¼ argminxk x1:Sk∣k � I1:Sxk
� �T

P1:S
k∣k

� ��1
x1:Sk∣k � I1:Sxk
� �� �

, (9)

where x1:Sk∣k ¼ x1 T
k∣k ;…; xS T

k∣k

� �T
, I1:S ¼ I;…; Ið ÞT, and P1:S

k∣k for the joint error covariance have been

introduced for notational simplicity. A closed form solution of the ML estimates can be obtai-
ned by setting the gradient with respect to the state to zero:

0 ¼ ∇xk x1:Sk∣k � I1:Sxk
� �T

P1:S
k∣k

� ��1
x1:Sk∣k � I1:Sxk
� �

¼ 2 I1:S
� �T

P1:S
k∣k

� ��1
x1:Sk∣k � I1:Sxk
� �

, (10)

Therefore, the ML estimate is given by:

xk∣k ¼ I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �� ��1

I1:S
� �T

P1:S
k∣k

� ��1
x1:Sk∣k : (11)

For information fusion applications, it is also important to have a consistent estimate of the
squared error, in other words, we need to compute the corresponding error covariance:

cov xk∣kjxk
� � ¼ E xk � xk∣k

� �
xk � xk∣k
� �Th i
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� �2h i
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(12)
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The last equation holds due to the fact that E I1:S
� �

xk � x1:Sk∣k

� �2� �
¼ P1:S

k∣k is the joint covariance.

Concluding the derivations from above equation, one can obtain:

xk∣k ¼ Pk∣k I1:S
� �T

P1:S
k∣k

� ��1
x1:Sk∣k ,

Pk∣k ¼ I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �� ��1 (13)

4. Naïve fusion

It is obvious that for the ML estimate, it is assumed that the cross-covariances Pi, j
k∣k, i, j∈

1;…; Sf g are known. Since this might not be given in practical scenarios, a simple approxima-
tion is to assume them to be zero. This approach is called Naïve fusion. It implies that the joint
error covariance is given in block-diagonal form:

P1:S
k∣k ¼

P1,1
k∣k

⋱
PS,S
k∣k

0
B@

1
CA (14)

As a direct consequence of the matrix inversion lemma (see Appendix 12.1), the inverse can be
obtained in closed form solution:

P1:S
k∣k

� ��1
¼

P1,1
k∣k

� ��1

⋱

PS,S
k∣k

� ��1

0
BBB@

1
CCCA (15)

Filling into the maximum likelihood formulas directly yields.

xk∣k ¼ Pk∣k
XS
s¼1

Ps
k∣k

� ��1
xsk∣k,

Pk∣k ¼
XS
s¼1

Ps
k∣k

� ��1 !�1 (16)

Thus, by means of a simple approximation of the ML estimate, we have obtained a first
practical fusion rule for the FC, which we call convex combination due to its structure for further
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For information fusion applications, it is also important to have a consistent estimate of the
squared error, in other words, we need to compute the corresponding error covariance:
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The last equation holds due to the fact that E I1:S
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k∣k is the joint covariance.

Concluding the derivations from above equation, one can obtain:
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4. Naïve fusion

It is obvious that for the ML estimate, it is assumed that the cross-covariances Pi, j
k∣k, i, j∈

1;…; Sf g are known. Since this might not be given in practical scenarios, a simple approxima-
tion is to assume them to be zero. This approach is called Naïve fusion. It implies that the joint
error covariance is given in block-diagonal form:

P1:S
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k∣k

⋱
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0
B@

1
CA (14)

As a direct consequence of the matrix inversion lemma (see Appendix 12.1), the inverse can be
obtained in closed form solution:
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Filling into the maximum likelihood formulas directly yields.

xk∣k ¼ Pk∣k
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Ps
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xsk∣k,
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Ps
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� ��1 !�1 (16)

Thus, by means of a simple approximation of the ML estimate, we have obtained a first
practical fusion rule for the FC, which we call convex combination due to its structure for further
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usage. The fusion scheme as a whole can be outlined schematically as in the flowing Figure 1.
Each sensor node s processes its produced sensor data by means of a local filter, which results
in a track in terms of an estimate together with an error covariance. These parameters are
transmitted to the fusion center, which applies the convex combination to compute the fused
result.

5. What makes the Naïve fusion naïve?

For the Naïve fusion, we have assumed that the cross-covariances vanish. It is worth to be
aware of the structure of the cross-covariances to see the conditions whether this holds or does

not hold. This can be achieved by a recursive computation of the posterior cross-covariance Pi, j
k∣k

of two sensors with indices i and j, which process their data by means of local Kalman filters.

At the beginning of the estimation process at t0 tracks are not yet correlated, that is, Pi, j
0∣0 ¼ 0,

due to the fact that initial measurements are mutually uncorrelated. A recursive computation
can be achieved by a prediction-filtering cycle.

5.1. Cross-covariance prediction

For the prediction step, it is assumed that a previous posterior cross-covariance Pi, j
k∣k�1 has been

computed. The prior parameters are obtained by means of the motion model:

Pi, j
k∣k�1 ¼ E xk � xik∣k�1

� �
xk � xjk∣k�1
� �T� �

¼ E Fk∣k�1xk�1 þ wk � Fk∣k�1xik�1∣k�1
� �

Fk∣k�1xk�1 þ wk � Fk∣k�1x
j
k�1∣k�1

� �T� �

¼ Fk∣k�1E xk�1 � xik�1∣k�1
� �

xk�1 � xjk�1∣k�1
� �T� �

FTk∣k�1

(17)

Figure 1. Fusion scheme of the Naive Fusion approach.
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where the last equality holds due to the fact that the estimation errors at time tk�1 of both
sensor processors are uncorrelated to the process noise wk.

5.2. Cross-covariance filtering

In the filtering step, both sensors compute their posterior parameters based on the produced

measurements zik and zjk, respectively. It is assumed that the local processors have applied local

Kalman filter update steps with Kalman gains Wi
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(18)

For these equations, we have used the fact that the prior estimate error xk � xik∣k�1
� �

is inde-

pendent of the measurement noise vik, and that vik and vjk are mutually independent.

Concluding the calculations from this section, we have obtained a recursive solution for the
cross-covariances:

Pi, j
0∣0 ¼ 0

Pi, j
k∣k�1 ¼ Fk∣k�1P

i, j
k�1∣k�1F

T
k∣k�1 þQk

Pi, j
k∣k ¼ I �Wi

k∣k�1H
i
k

� �
Pi, j
k∣k�1 I �Wi

k∣k�1H
i
k

� �T
(19)

One can see that the cross-covariances are zero, if and only if the process noise covariance Qk

vanishes. In other words, if the tracks refer to a deterministically moving target and all sensors
do local Kalman filtering, then the convex combination equations yield the optimal fusion
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where the last equality holds due to the fact that the estimation errors at time tk�1 of both
sensor processors are uncorrelated to the process noise wk.
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In the filtering step, both sensors compute their posterior parameters based on the produced
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For these equations, we have used the fact that the prior estimate error xk � xik∣k�1
� �

is inde-

pendent of the measurement noise vik, and that vik and vjk are mutually independent.

Concluding the calculations from this section, we have obtained a recursive solution for the
cross-covariances:

Pi, j
0∣0 ¼ 0

Pi, j
k∣k�1 ¼ Fk∣k�1P
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One can see that the cross-covariances are zero, if and only if the process noise covariance Qk

vanishes. In other words, if the tracks refer to a deterministically moving target and all sensors
do local Kalman filtering, then the convex combination equations yield the optimal fusion
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result. If this is not the case, as maybe in most practical applications, then the Naïve fusion
method is an approximation and its degree of approximation depends primarily on the level of
the process noise.

6. Gaussian product representation

The basic concept of the distributed Kalman filter is to make the local parameters stochastically
independent, even if process noise is present. This is achieved by a product representation, which
directly follows from the fact that.

exp � 1
2

x1k∣k
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0
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ exp � 1
2

XS
s¼1

xsk∣k � xk
� �T
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� ��1
xsk∣k � xk
� �( )

∝
YS
s¼1

N xk; xsk∣k;P
s
k∣k

� �

(20)

Thus, the Gaussian product representation is equivalent to uncorrelated track parameters for
each processing node. It should be noted that the product representation is not normalized,
that is, the integral for S > 1 is not unity. This, however, is not of practical relevance since the
fused estimate density is a Gaussian and the parameters of which are provided by the convex
combination.

7. Derivation of the distributed Kalman filter

For the DKF, we are going to modify the local processing scheme for each sensor in order to have
the product representation hold at each instant of time. Then, when the fusion center receives the
parameters from all sensors, the convex combination can be applied to compute the optimal
global estimate. Note that the convex combination does not consider a local prior of the fusion
center; therefore, the result will be independent from previous transmissions. This can be of great
benefit, if communication channels with unreliable links have to be considered, since the full
information on the target state is distributed in the sensor network. However, for completeness,
it should also be noted that the modified local parameters are not optimal anymore in a local
sense. One could say that local optimality is given up for the sake of global optimality [5].

In the following sections, the derivation of a prediction-filtering recursion of the DKF is
discussed.
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7.1. DKF prediction

For the prediction, it is assumed that the previous posterior is given in product representation:

p xk�1jZk�1� �
∝
YS
s¼1

N xk�1; xsk�1∣k�1;P
s
k�1∣k�1

� �
(21)

For notational simplicity, we have conditioned the posterior on the full data set Zk�1 ¼ Zk�1
1 ;…;

�

Zk�1
s g, where Zk�1

s Zs
1;…;Zs

k�1
� �

are from all sensors and all time steps up to time tk�1, of which
the local tracks are sufficient statistics. At the initialization phase, that is, k� 1 ¼ 0, the product
representation is trivial, since the initial estimates can be based on first measurements, which are
mutually independent.

To derive a closed form solution for the prediction of product representation, it is required to
globalize the covariances Ps

k�1∣k�1 of the local processing nodes at first. This process changes the
local parameters such that the same previous posterior density is factorized; however, the local

covariances will be unified to a single ePk�1∣k�1. Rigorously speaking, this matrix does not
represent a meaningful covariance in the sense of an expected estimation error squared any-
more. Still, the fused result will be optimal since the global density is not changed during this
process. Thus, if we set

p xk�1jZk�1� �
∝
YS
s¼1

N xk�1;exsk�1∣k�1; ePk�1∣k�1
� �

(22)

where
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k�1∣k�1

� ��1 !�1
(23)

then the same fused density will be obtained, which is easily verified by means of the convex
combination. It should be noted that the remote error covariances Ps

k�1∣k�1 are required to

compute the globalized covariance matrix ePk�1∣k�1. Since Kalman filter conditions are assumed,
they can be computed without data transmission, as they do not depend on the local sensor
measurements. Therefore, it is sufficient to be aware of the remote sensor models.

The prediction formulas can now be obtained by a marginalization of the joint density of the
current and the last time step:

Distributed Kalman Filter
http://dx.doi.org/10.5772/intechopen.71941

261



result. If this is not the case, as maybe in most practical applications, then the Naïve fusion
method is an approximation and its degree of approximation depends primarily on the level of
the process noise.

6. Gaussian product representation

The basic concept of the distributed Kalman filter is to make the local parameters stochastically
independent, even if process noise is present. This is achieved by a product representation, which
directly follows from the fact that.

exp � 1
2

x1k∣k

⋮

xSk∣k

0
BBBB@

1
CCCCA
�

xk

⋮

xk

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

T P1
k∣k

� ��1

⋱

PS
k∣k

� ��1

0
BBBBBB@

1
CCCCCCA

x1k∣k

⋮

xSk∣k

0
BBBB@

1
CCCCA
�

xk

⋮

xk

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ exp � 1
2

XS
s¼1

xsk∣k � xk
� �T

Ps
k∣k

� ��1
xsk∣k � xk
� �( )

∝
YS
s¼1

N xk; xsk∣k;P
s
k∣k

� �

(20)

Thus, the Gaussian product representation is equivalent to uncorrelated track parameters for
each processing node. It should be noted that the product representation is not normalized,
that is, the integral for S > 1 is not unity. This, however, is not of practical relevance since the
fused estimate density is a Gaussian and the parameters of which are provided by the convex
combination.

7. Derivation of the distributed Kalman filter

For the DKF, we are going to modify the local processing scheme for each sensor in order to have
the product representation hold at each instant of time. Then, when the fusion center receives the
parameters from all sensors, the convex combination can be applied to compute the optimal
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p xkjZk�1� � ¼
ð
dxk�1 p xk; xk�1jZk�1� �

¼
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(24)

The last equality holds due to the Markov property of the system. Filling in our linear Gauss-
ian transition model and the previous posterior yields
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� �YS
s¼1

N xk�1;exsk�1∣k�1; ePk�1∣k�1
� �

(25)

By means of a simple algebraic manipulation, it is possible to factorize the transition kernel
Gaussian up to proportionality:

Ν xk; Fk∣k�1xk�1;Qk
� �

∝ exp � 1
2

Fk∣k�1xk�1 � xk
� �T Qkð Þ�1 Fk∣k�1xk�1 � xk

� �� �

¼ exp � 1
2

Fk∣k�1xk�1 � xk
� �TS SQkð Þ�1 Fk∣k�1xk�1 � xk

� �� �

∝ Ν xk; Fk∣k�1xk�1; SQk
� �� �S

(26)

Thus, we can factorize the integration term of the global prior completely:

p xkjZk�1� �
∝
ð
dxk�1

YS
s¼1

Ν xk; Fk∣k�1xk�1; SQk
� �

N xk�1;exsk�1∣k�1; ePk�1∣k�1
� �

(27)

An application of the product formula (Section 12.2 in the appendix) yields:

p xkjZk�1� �
∝
YS
s¼1

Ν xk; xsk∣k�1; eP
s

k∣k�1

� � ð
dxk�1

YS
s¼1

N xk�1; ys;Yð Þ, (28)

where

xsk∣k�1 ¼ Fk∣k�1exsk�1∣k�1
ePs
k∣k�1 ¼ Fk∣k�1ePk�1∣k�1Fk∣k�1T þ SQk

ys ¼ Y ePs
k∣k�1

� ��1
xsk∣k�1 þ Fk∣k�1T SQkð Þ�1xk

� �

Y ¼ ePs
k∣k�1

� ��1
þ Fk∣k�1T SQkð Þ�1Fk∣k�1

� ��1
:

(29)

At this point, we have derived factorized prediction formulas for the DKF prediction, and to
our knowledge, the remaining integral is part of the normalization constant. This, however, is
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not trivial, since the parameter ys depends on xk. A successive application of the product
formula yields the desired result:

Ð
dxk�1

YS
s¼1

N xk�1 � YFk∣k�1T SQkð Þ�1xk;Y ePs
k∣k�1

� ��1
xsk∣k�1;Y

� �

∝
Ð
dxk�1N xk�1 � YFk∣k�1T SQkð Þ�1xk; y;Y

� �
¼ 1,

(30)

for some auxiliary variables y and Y. All factors, which are independent of xk have been
omitted. This proves that the integral is independent of the state variable xk. Concluding the
derivations from above, we have derived the prediction formulas of the local estimation
parameters as:

exsk�1∣k�1 ¼ SPk�1∣k�1 Ps
k�1∣k�1

� ��1
xsk�1∣k�1

ePk�1∣k�1 ¼ SPk�1∣k�1

xsk∣k�1 ¼ Fk∣k�1exsk�1∣k�1
ePs
k∣k�1 ¼ Fk∣k�1ePk�1∣k�1Fk∣k�1T þ SQk:

7.2. DKF filtering

Let Zk denotes the set of measurements produced by all sensors at time tk. The posterior
density can be inferred by using the Bayes theorem:

p xkjZk� � ¼ p Zkjxkð Þp xkjZk�1� �

p ZkjZk�1� � (31)

Due to the mutual independence of the measurement noises, the joint likelihood function is
given by:

p Zkjxkð Þ ¼
YS
s¼1

p Zs
kjxk

� �
(32)

This is particularly useful for the structure of the product representation used for the DKF.
Filling in the linear Gaussian models and neglecting the normalization constant in the denom-
inator directly yields:

p xkjZk� �
∝
YS
s¼1

Ν Zk;Hs
kxk;R

s
k

� �
Ν xk; xsk∣k�1; eP

s

k∣k�1

� �
(33)

Thus, the product formula again can be applied to compute the posterior parameters:

p xkjZk� �
∝
YS
s¼1

Ν xk; xsk∣k;P
s
k∣k

� �
(34)
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not trivial, since the parameter ys depends on xk. A successive application of the product
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for some auxiliary variables y and Y. All factors, which are independent of xk have been
omitted. This proves that the integral is independent of the state variable xk. Concluding the
derivations from above, we have derived the prediction formulas of the local estimation
parameters as:

exsk�1∣k�1 ¼ SPk�1∣k�1 Ps
k�1∣k�1

� ��1
xsk�1∣k�1

ePk�1∣k�1 ¼ SPk�1∣k�1

xsk∣k�1 ¼ Fk∣k�1exsk�1∣k�1
ePs
k∣k�1 ¼ Fk∣k�1ePk�1∣k�1Fk∣k�1T þ SQk:

7.2. DKF filtering

Let Zk denotes the set of measurements produced by all sensors at time tk. The posterior
density can be inferred by using the Bayes theorem:

p xkjZk� � ¼ p Zkjxkð Þp xkjZk�1� �

p ZkjZk�1� � (31)

Due to the mutual independence of the measurement noises, the joint likelihood function is
given by:

p Zkjxkð Þ ¼
YS
s¼1

p Zs
kjxk

� �
(32)

This is particularly useful for the structure of the product representation used for the DKF.
Filling in the linear Gaussian models and neglecting the normalization constant in the denom-
inator directly yields:

p xkjZk� �
∝
YS
s¼1

Ν Zk;Hs
kxk;R

s
k

� �
Ν xk; xsk∣k�1; eP

s

k∣k�1

� �
(33)

Thus, the product formula again can be applied to compute the posterior parameters:

p xkjZk� �
∝
YS
s¼1

Ν xk; xsk∣k;P
s
k∣k

� �
(34)
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where

xsk∣k ¼ xsk∣k�1 þWs
k∣k�1ν

s
k

Ps
k∣k ¼ Ps

k∣k�1 �Ws
k∣k�1S

s
kW

s T
k∣k�1

νsk ¼ zsk �Hs
kx

s
k∣k�1

Ws
k∣k�1 ¼ Ps

k∣k�1H
s T
k Ssk
� ��1

Ssk ¼ Hs
kP

s
k∣k�1H

s T
k þ Rs

k:

(35)

Again, we have omitted the factors, which are independent of xk.

8. Information filter formulation of the DKF

In [6], an elegant derivation of the DKF formulas was published based on the information filter (IF).
The IF uses informationmatrices, which are inverted covariances, and information states, which are
informationmatrices multipliedwith states. The optimal, centralized update formulas for S sensors

based on the predicted information parameters Pk∣k�1
� ��1 and Pk∣k�1

� ��1xk∣k�1 are given by:

Pk∣k
� ��1xk∣k ¼ Pk∣k�1

� ��1xk∣k�1 þ
XS
s¼1

isk

Pk∣k
� ��1 ¼ Pk∣k�1

� ��1 þ
XS
s¼1

Isk

(36)

where isk ¼ Hs T
k Rs

k

� ��1zsk and Isk ¼ Hs T
k Rs

k

� ��1Hs
k are the local information contribution from the

current measurements at time tk, which were received by the FC. If we want to distribute the
computation to S nodes, we will have them uncorrelated as in the DKF previously. Since the fused
estimate is obtained via the convex combination, the local information parameters are summed up:

Pk∣k
� ��1xk∣k ¼

XS
s¼1

Ps
k∣k

� ��1
xsk∣k

Pk∣k
� ��1 ¼

XS
s¼1

Ps
k∣k

� ��1
(37)

This summation structure can be used to provide a closed prediction-filtering cycle.

8.1. Information DKF prediction

The prediction of the state is easier than a direct transition of the information parameters.
Based on the fused estimate, one can obtain.
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xk∣k�1 ¼ Fk∣k�1xk�1∣k�1

¼ Fk∣k�1Pk�1∣k�1
XS
s¼1

Ps
k�1∣k�1

� ��1
xsk�1∣k�1

¼
XS
s¼1

Fk∣k�1Pk�1∣k�1 Ps
k�1∣k�1

� ��1
xsk�1∣k�1:

(38)

Thus, we have given the local predicted state parameters as:

xsk∣k�1 ¼ Fk∣k�1Pk�1∣k�1 Ps
k∣k

� ��1
xsk∣k (39)

Analogously, one obtains for the prior covariance:

Pk∣k�1 ¼ Fk∣k�1Pk�1∣k�1FTk∣k�1 þQk

¼ 1
S
Fk∣k�1SPk�1∣k�1FTk∣k�1 þ SQk

(40)

Thus, if we set Ps
k∣k�1 ¼ SPk∣k�1 ¼ Fk∣k�1SPk�1∣k�1FTk∣k�1 þ SQk, then the convex combination

yields the exact global fused covariance.

8.2. Information DKF filtering

For the filtering, it is assumed that each sensor has computed its local information contribution
parameter isk and Isk from its own sensor model and, in addition, the information matrix

contributions Ilk from all remote sensors l by using the individual sensor models which are
again assumed to be known. Then, the information state is updated via.

Pk∣k
� ��1xk∣k ¼ Pk∣k�1

� ��1xk∣k�1 þ
XS
s¼1

isk

¼
XS
s¼1

Ps
k∣k�1

� ��1
xsk∣k�1 þ isk:

(41)

As a direct consequence, the updated parameters of the local processors follow the standard IF
filtering equations:

Ps
k∣k

� ��1
xsk∣k ¼ Ps

k∣k�1
� ��1

xsk∣k�1 þ isk: (42)

For the globalized information matrix, the remote information parameters from the sensor
models are used:
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S
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Thus, if we set Ps
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yields the exact global fused covariance.

8.2. Information DKF filtering

For the filtering, it is assumed that each sensor has computed its local information contribution
parameter isk and Isk from its own sensor model and, in addition, the information matrix

contributions Ilk from all remote sensors l by using the individual sensor models which are
again assumed to be known. Then, the information state is updated via.
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isk
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k∣k�1
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Ps
k∣k
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Pk∣k
� ��1 ¼ Pk∣k�1

� ��1 þ
XS
s¼1

Isk

¼
XS
s¼1

Ps
k∣k�1

� ��1
þ Isk,

Ps
k∣k

� ��1
¼ Ps

k∣k�1
� ��1

þ Isk

(43)

It is important to note that the local processing nodes compute both the local pseudo information

matrix Ps
k∣k

� ��1
and the global fused error covariance Pk∣k, which is required for the prediction to

the next time step.

9. Distributed accumulated state density filter

The DKF from Sections 7 and 8 can be considered a big step toward distributed state estima-
tion, tracking, and information inference. However, in practical applications, the exact solution
is often hindered by the fact that the exact remote sensor model parameters are unknown and
can only be approximated based on local state estimates. The good news is that there is
another exact solution based on the accumulated state density (ASD). The distributed ASD
equations turn the spatial correlations into temporal correlations of successive states. Origi-
nally, the ASD equations were introduced to solve the out-of-sequence problem, which han-
dles delayed transmissions of measurements into an ongoing fusion process in an optimal
manner. Therefore, the temporal correlations can well be coped with the ASD approach.

At first, let us introduce the ASD state xk:n as

xk:n ¼ xTk ;…; xTn
� �T

(44)

where tk refers to the current time of the filtering process and tn refers to the initialization time.
The ASD approach now considers the conditional joint density p xk:njzk

� �
, that is, the posterior

of the full trajectory of the target between tn and tk. In particular, the individual state densities
of a single instant of time can be obtained via marginalization. Also, it should be noted that the
Rauch-Tung-Striebel (RTS) smoothing equations are inherently integrated in the ASD posterior,
since all states are conditioned on the full set of measurements up to time tk [7].

A recursive computation of the ASD posterior can be achieved by using the Bayes theorem:

p xk:njZk� � ¼ p Zkjxk:nð Þp xk:njZk�1� �

p ZkjZk�1� � (45)
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Since the measurements conditioned on the whole trajectory only depend on the state at time
tk, the joint likelihood function is given by:

p Zkjxk:nð Þ ¼ p Zkjxkð Þ ¼
YS
s¼1

p zskjxk
� �

(46)

The second factor can be reformulated as follows:

p xk:njZk�1� � ¼ p xkjxk�1:n, Zk�1� �
p xk�1:njZk�1� �

¼ p xkjxk�1ð Þp xk�1:njZk�1� � (47)

where we have used the Markov property of the system in the last equation. This recursive
representation can now be repeated on the term p xk�1:njZk�1� �

. A successive application of this
procedure yields

pðxk:n Zk
�� �

∝
YS
s¼1

p zskjxk
� �� �

p xkjxk�1ð Þ
YS
s¼1

p zsk�1jxk�1
� �� �

p xk�1jxk�2ð Þ∙∙∙

YS
s¼1

p zsnþ1jxnþ1
� �� �

p xnþ1jxnð Þ∙p xnjZnð Þ
(48)

where we have neglected the normalization constant in the denominator. Filling in our Gaussian
models and using the factorization of the transition model from above equation yields

pðxk:n Zk
�� �

∝
Yk

l¼nþ1

YS
s¼1

N zsl ;H
s
l xl;R

s
l

� �
N xl; Fl∣l�1xl�1; SQl
� �� �

∙p xnjZnð Þ (49)

Since the initial density usually is based on a first measurement, we can assume that it
factorizes into independent local track starts:

p xnjZnð Þ∝
YS
s¼1

N xn; xsn∣n;P
s
n∣n

� �
(50)

When the posterior is fully factorized in the number of sensors and in the time steps, each
processing node can compute the resulting ASD Gaussian with mean xsk:n∣k and covariance

matrix Ps
k:n∣k [7]:

pðxk:n zk
�� �∝

YS
s¼1

N xk:n; xsk:n∣k;P
s
k:n∣k

� �
(51)

where the parameters are given by:
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. A successive application of this
procedure yields
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�� �
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(48)

where we have neglected the normalization constant in the denominator. Filling in our Gaussian
models and using the factorization of the transition model from above equation yields

pðxk:n Zk
�� �

∝
Yk

l¼nþ1

YS
s¼1

N zsl ;H
s
l xl;R

s
l

� �
N xl; Fl∣l�1xl�1; SQl
� �� �

∙p xnjZnð Þ (49)

Since the initial density usually is based on a first measurement, we can assume that it
factorizes into independent local track starts:

p xnjZnð Þ∝
YS
s¼1

N xn; xsn∣n;P
s
n∣n

� �
(50)

When the posterior is fully factorized in the number of sensors and in the time steps, each
processing node can compute the resulting ASD Gaussian with mean xsk:n∣k and covariance

matrix Ps
k:n∣k [7]:

pðxk:n zk
�� �∝

YS
s¼1

N xk:n; xsk:n∣k;P
s
k:n∣k

� �
(51)

where the parameters are given by:
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We have used a short notation such that xl∣k ¼ E xljzk
� �

are the smoothed state estimates and

Pl∣k ¼ cov xljzk
� �

are the covariances, respectively, which result from the Rauch-Tung-Striebel
equations. Also, the combined retrodiction gain matrices are known from the RTS smoother:

Wl∣k ¼
Yk�1

i¼l
Wi∣iþ1

Wi∣iþ1 ¼ Pi∣iFTiþ1∣i Piþ1∣i
� ��1

(52)

Thus, when the FC receives the local ASD parameters, the optimal fused estimate can be
obtained via the convex combination:

xk:n∣k ¼ Pk:n∣k
XS
s¼1

Ps
k:n∣k

� ��1
xsk:n∣k,

Pk:n∣k ¼
XS
s¼1

Ps
k:n∣k

� ��1 !�1 (53)

For a continuous state estimation process, it is convenient to formulate the distributed ASD
solution in terms of a prediction-filtering cycle.

9.1. Distributed ASD prediction

For the prediction step, it is assumed that the local processing node s has computed the
previous filtering parameters xsk�1:n∣k�1 and Ps

k�1:n∣k�1, which refer to time tk�1. Then, the prior

parameters are given by:

xsk:n∣k�1 ¼ xs Tk∣k�1; x
s T
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� �T
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s
k�1:n∣k�1 Ps
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 !

xsk∣k�1 ¼ Fk∣k�1xsk�1∣k�1

(54)
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9.2. Distributed ASD filtering

Since the prior is factorized in form of a product representation and the current measurements
from time tk are mutually uncorrelated, local Kalman filters can be applied to obtain the
posterior parameters:

xsk:n∣k ¼ xsk:n∣k�1 þWs
k:n∣k zsk �Hs

kΠkxsk:n∣k�1
� �

Ps
k:n∣k ¼ Ps

k:n∣k�1 �Ws
k:n∣kS

s
kW

s T
k:n∣k
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kΠkPs

k:n∣k�1Π
T
k H

s T
k þ Rs

k

Ws
k:n∣k ¼ Ps

k:n∣k�1Π
T
k H

s T
k Ssk
� ��1 (55)

10. Conclusion

In this chapter, we have introduced the least squares solution to the track-to-track fusion
problem, where cross-covariances of the track estimation errors are required. Neglecting the
cross-covariances has led us to the Naïve fusion, a simple but powerful fusion algorithm for
practical applications. By recursive computation of the cross-covariances, we have seen that
they primarily depend on the process noise of the state transition kernel. Since a centralized
computation of the cross-covariances is infeasible in practical applications, more sophisticated
solutions are required for optimal fusion results. The distributed Kalman filter, which uses the
product representation to keep the local parameters decorrelated achieved this. However, this
approach only works, if the local processors know all measurement models at each time step.
Then, the distributed accumulated state density filter uses the temporal correlations to factor-
ize the global posterior density. This approach does not require remote sensor models and is
therefore, well suited for extensions with measurement ambiguity or nonlinear measurement
functions.

In the study, one can find more extensions based on the distributed Kalman filter to overcome
the lack of knowledge on the remote sensor models. In [8] and the references therein, a
debiasing matrix is introduced to compensate for globally biased gain matrices of the local
filters. An application of the tracklet fusion based on the distributed accumulated state density
filter can be found in [9]. Then, in [10], the information filter formulation of the distributed
Kalman filter also was extended to scenarios with input information on the transition process.
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practical applications. By recursive computation of the cross-covariances, we have seen that
they primarily depend on the process noise of the state transition kernel. Since a centralized
computation of the cross-covariances is infeasible in practical applications, more sophisticated
solutions are required for optimal fusion results. The distributed Kalman filter, which uses the
product representation to keep the local parameters decorrelated achieved this. However, this
approach only works, if the local processors know all measurement models at each time step.
Then, the distributed accumulated state density filter uses the temporal correlations to factor-
ize the global posterior density. This approach does not require remote sensor models and is
therefore, well suited for extensions with measurement ambiguity or nonlinear measurement
functions.

In the study, one can find more extensions based on the distributed Kalman filter to overcome
the lack of knowledge on the remote sensor models. In [8] and the references therein, a
debiasing matrix is introduced to compensate for globally biased gain matrices of the local
filters. An application of the tracklet fusion based on the distributed accumulated state density
filter can be found in [9]. Then, in [10], the information filter formulation of the distributed
Kalman filter also was extended to scenarios with input information on the transition process.
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A. Appendix

A.1. Matrix inversion lemma

Let A, B, C, and D be matrices of a block matrix such that A and D are invertable, and also such

that the Schur-complements D� CA�1B and A� BD�1C have full rank. Then, the inversion of
the block matrix is given by:

A B
C D

� ��1
¼ A� BD�1C

� ��1 � A� BD�1C
� ��1

BD�1

�D�1C A� BD�1C
� ��1

D�1 þD�1C A� BD�1C
� ��1

BD�1

0
@

1
A

¼ A�1 þ A�1B D� CA�1B
� ��1

CA�1 �A�1B D� CA�1B
� ��1

� D� CA�1B
� ��1

CA�1 D� CA�1B
� ��1

0
@

1
A: (56)

In particular, it holds that

A� BD�1C
� ��1 ¼ A�1 þ A�1B D� CA�1B

� ��1
CA�1 � A� BD�1C

� ��1
BD�1 ¼

�A�1B D� CA�1B
� ��1 �D�1C A� BD�1C

� ��1 ¼ � D� CA�1B
� ��1

CA�1D�1

þD�1C A� BD�1C
� ��1

BD�1 ¼ D� CA�1B
� ��1

(57)

Proof. Let the inverted block matrix be given by submatrices E, F, G, and H. By definition, it
holds that

A B
C D

� �
E F
G H

� �
¼ I O

O I

� �
and

E F
G H

� �
A B
C D

� �
¼ I O

O I

� �
,

where I andO are the identity and zero matrix, respectively. A matrix multiplication of the first
and second equality yields two blocks of equations:

AEþ BG ¼ I

AFþ BH ¼ O

CEþDG ¼ O

CFþDH ¼ I

(58)

which we call block A and

EAþ FC ¼ I

EBþ FD ¼ O

GAþHC ¼ O

GBþHD ¼ I

(59)

which we call block B. Resolving block A for E, F, G, and H yields the first version of the
inverted block matrix, whereas resolving block B yields the second version.
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A.2. Product formula for Gaussian densities

For two Gaussian distributed random variables x and z, it holds that

N x; y;Pð ÞN z;Hx;Rð Þ ¼ N x; y;P
� �

N z; z; Sð Þ (60)

where

y ¼
yþWν

P�1yþHTR�1z

(

P ¼
P�WSWT

P�1 þHTR�1H
� ��1

8<
:

S ¼ HPHT þ R

W ¼ PHTS�1

ν ¼ z�Hy

(61)

A proof can be found, for instance, in [11].
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Abstract

Kalman filtering in its distributed information form is reviewed and applied to a network
of receivers tracking Global Navigation Satellite Systems (GNSS).We show, by employing
consensus-based data-fusion rules between GNSS receivers, how the consensus-based
Kalman filter (CKF) of individual receivers can deliver GNSS parameter solutions that
have a comparable precision performance as their network-derived, fusion center depen-
dent counterparts. This is relevant as in the near future the proliferation of low-cost
receivers will give rise to a significant increase in the number of GNSS users. With the
CKF or other distributed filtering techniques, GNSS users can therefore achieve high-
precision solutions without the need of relying on a centralized computing center.

Keywords: distributed filtering, consensus-based Kalman filter (CKF), global
navigation satellite systems (GNSS), GNSS networks, GNSS ionospheric observables

1. Introduction

Kalman filtering in its decentralized and distributed forms has received increasing attention in
the sensor network community and has been extensively studied in recent years, see e.g. [1–8].
While in the traditional centralized Kalman filter setup all sensor nodes have to send their
measurements to a computing (fusion) center to obtain the state estimate, in the distributed
filtering schemes the nodes only share limited information with their neighboring nodes (i.e. a
subset of all other nodes) and yet obtain state estimates that are comparable to that of the
centralized filter in a minimum-mean-squared-error sense. This particular feature of the dis-
tributed filters would potentially make the data communication between the nodes cost-
effective and develop the nodes’ capacity to perform parallel computations.

Next to sensor networks, distributed filtering can therefore benefit several other applications
such as formation flying of aerial vehicles [9], cooperative robotics [10] and disciplines that
concern the Global Navigation Satellite Systems (GNSS). The latter is the topic of this present
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contribution. The GNSS have been proven to be an efficient tool for determination of time
varying parameters that are of importance for Earth science disciplines like positioning, defor-
mation, timing and atmosphere [11, 12]. Parameter estimation in GNSS often relies on the data
processing of a network of receivers that collect measurements from visible GNSS satellites. In
the context of sensor networks, GNSS network receivers therefore serve as sensor nodes,
providing their data to a computing center, thereby computing network-based parameter
solutions in a (near) real-time manner. In this contribution we intend to demonstrate how
consensus algorithms [13] and the corresponding consensus-based Kalman filter (CKF), as a
popular means for distributed filtering, can take an important role in GNSS applications for
which a network of receivers are to be processed. Although each single receiver can run its
own local filter to deliver GNSS-derived solutions, the precision of such single-receiver solu-
tions is generally much lower than its network-derived counterparts, see e.g. [14, 15]. It will be
shown, through a CKF setup, that single-receiver parameter solutions can achieve precision
performances similar to that of their network-based versions, provided that a sufficient num-
ber of iterative communications between the neighboring receivers are established. The impor-
tance of such consensus-based single-receiver solutions is well appreciated in the light of the
recent development of new GNSS constellations as well as the proliferation of low-cost mass-
market receivers [16–18]. With the increase in the number and types of GNSS receivers, many
more GNSS users can establish their own measurement setup to determine parameters that
suit their needs. By taking recourse to the CKF or other distributed filtering techniques, GNSS
users can therefore potentially deliver high-precision parameter solutions without the need of
having a computing center.

The structure of this contribution is as follows. We first briefly review the principles of the
standard Kalman filter and its information form in Section 2. The additivity property of the
information filter that makes this filter particularly useful for distributed processing is also
highlighted. In Section 3 we discuss average consensus rules on which the sensor nodes agree
to fuse each other information. Different consensus protocols are discussed and a ‘probabilis-
tic’ measure for the evaluation of their convergence rates is proposed. Section 4 is devoted to
the CKF algorithmic steps. Its two time-scale nature is remarked and a three-step recursion for
evaluating the consensus-based error variance matrix is developed. In Section 5 we apply the
CKF theory to a small-scale network of GNSS receivers collecting ionospheric observables over
time. Conducting a precision analysis, we compare the precision of the network-based iono-
spheric solutions with those of their single-receiver and consensus-based counterparts. It is
shown how the CKF of each receiver responses to an increase in the number of iterative
communications between the neighboring nodes. Concluding remarks and future outlook are
provided in Section 6.

2. Kalman filtering

Consider a time series of observable random vectors y1,…, yt. The goal is to predict the
unobservable random state-vectors x1,…, xt. By the term ‘prediction’, we mean that the observ-
ables y1,…, yt are used to estimate realizations of the random vectors x1,…, xt. Accordingly, the
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means of the state-vectors x1,…, xt can be known, while their unknown realizations still need
to be guessed (predicted) through observed realizations of y1,…, yt. In the following, to show
on which set of observables prediction is based, we use the notation bxt∣τ as the predictor of xt

when based on y τ½ � ¼ yT1 ;…; yTτ
� �T . The expectation, covariance and dispersion operators are

denoted by E :ð Þ, C :; :ð Þ and D :ð Þ, respectively. The capital Q is reserved for (co)variance matri-
ces. Thus C xt; yτ

� � ¼ Qxtyτ
.

2.1. The Kalman filter standard assumptions

To predict the state-vectors in an optimal sense, one often uses the minimum mean squared
error (MMSE) principle as the optimality criterion, see e.g., [19–25]. In case no restrictions are
placed on the class of predictors, the MMSE predictor bxt∣τ is given by the conditional mean

E xtjy τ½ �
� �

, known as the Best Predictor (BP). The BP is unbiased, but generally nonlinear, with

exemptions, for instance in the Gaussian case. In case xt and y τ½ � are jointly Gaussian, the BP

becomes linear and identical to its linear counterpart, i.e. the Best Linear Predictor (BLP)

bxt∣τ ¼ E xtð Þ þQxty τ½ �
Q�1y τ½ �y τ½ �

y τ½ � � E y τ½ �
� �n o

(1)

Eq. (1) implies that (1) the BLP is unbiased, i.e. E bxt∣τ
� � ¼ E xtð Þ, and that (2) the prediction error

of a BLP is always uncorrelated with observables on which the BLP is based, i.e. C xt � bxt∣τ,
�

y τ½ �Þ ¼ 0. These two basic properties can be alternatively used to uniquely specify a BLP [26].

The Kalman filter is a recursive BP (Gaussian case) or a recursive BLP. A recursive predictor,
say bxt∣t, can be obtained from the previous predictor bxt∣t�1 and the newly collected observable
vector yt. Recursive prediction is thus very suitable for applications that require real-time
determination of temporally varying parameters. We now state the standard assumptions that
make the Kalman filter recursion feasible.

The dynamic model: The linear dynamic model, describing the time-evolution of the state-
vectors xt, is given as

xt ¼ Φt, t�1 xt�1 þ dt, t ¼ 1, 2,… (2)

with

E x0ð Þ ¼ x0∣0, D x0ð Þ ¼ Qx0x0 (3)

and

E dtð Þ ¼ 0, C dt; dsð Þ ¼ St δt, s, C dt; x0ð Þ ¼ 0 (4)

for the time instances t, s ¼ 1, 2,…, with δt, s being the Kronecker delta. The nonsingular matrix
Φt, t�1 denotes the transition matrix and the random vector dt is the system noise. The system
noise dt is thus assumed to have a zero mean, to be uncorrelated in time and to be uncorrelated
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more GNSS users can establish their own measurement setup to determine parameters that
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users can therefore potentially deliver high-precision parameter solutions without the need of
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The structure of this contribution is as follows. We first briefly review the principles of the
standard Kalman filter and its information form in Section 2. The additivity property of the
information filter that makes this filter particularly useful for distributed processing is also
highlighted. In Section 3 we discuss average consensus rules on which the sensor nodes agree
to fuse each other information. Different consensus protocols are discussed and a ‘probabilis-
tic’ measure for the evaluation of their convergence rates is proposed. Section 4 is devoted to
the CKF algorithmic steps. Its two time-scale nature is remarked and a three-step recursion for
evaluating the consensus-based error variance matrix is developed. In Section 5 we apply the
CKF theory to a small-scale network of GNSS receivers collecting ionospheric observables over
time. Conducting a precision analysis, we compare the precision of the network-based iono-
spheric solutions with those of their single-receiver and consensus-based counterparts. It is
shown how the CKF of each receiver responses to an increase in the number of iterative
communications between the neighboring nodes. Concluding remarks and future outlook are
provided in Section 6.

2. Kalman filtering

Consider a time series of observable random vectors y1,…, yt. The goal is to predict the
unobservable random state-vectors x1,…, xt. By the term ‘prediction’, we mean that the observ-
ables y1,…, yt are used to estimate realizations of the random vectors x1,…, xt. Accordingly, the
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means of the state-vectors x1,…, xt can be known, while their unknown realizations still need
to be guessed (predicted) through observed realizations of y1,…, yt. In the following, to show
on which set of observables prediction is based, we use the notation bxt∣τ as the predictor of xt

when based on y τ½ � ¼ yT1 ;…; yTτ
� �T . The expectation, covariance and dispersion operators are

denoted by E :ð Þ, C :; :ð Þ and D :ð Þ, respectively. The capital Q is reserved for (co)variance matri-
ces. Thus C xt; yτ

� � ¼ Qxtyτ
.

2.1. The Kalman filter standard assumptions

To predict the state-vectors in an optimal sense, one often uses the minimum mean squared
error (MMSE) principle as the optimality criterion, see e.g., [19–25]. In case no restrictions are
placed on the class of predictors, the MMSE predictor bxt∣τ is given by the conditional mean

E xtjy τ½ �
� �

, known as the Best Predictor (BP). The BP is unbiased, but generally nonlinear, with

exemptions, for instance in the Gaussian case. In case xt and y τ½ � are jointly Gaussian, the BP

becomes linear and identical to its linear counterpart, i.e. the Best Linear Predictor (BLP)

bxt∣τ ¼ E xtð Þ þQxty τ½ �
Q�1y τ½ �y τ½ �

y τ½ � � E y τ½ �
� �n o

(1)

Eq. (1) implies that (1) the BLP is unbiased, i.e. E bxt∣τ
� � ¼ E xtð Þ, and that (2) the prediction error

of a BLP is always uncorrelated with observables on which the BLP is based, i.e. C xt � bxt∣τ,
�

y τ½ �Þ ¼ 0. These two basic properties can be alternatively used to uniquely specify a BLP [26].

The Kalman filter is a recursive BP (Gaussian case) or a recursive BLP. A recursive predictor,
say bxt∣t, can be obtained from the previous predictor bxt∣t�1 and the newly collected observable
vector yt. Recursive prediction is thus very suitable for applications that require real-time
determination of temporally varying parameters. We now state the standard assumptions that
make the Kalman filter recursion feasible.

The dynamic model: The linear dynamic model, describing the time-evolution of the state-
vectors xt, is given as

xt ¼ Φt, t�1 xt�1 þ dt, t ¼ 1, 2,… (2)

with

E x0ð Þ ¼ x0∣0, D x0ð Þ ¼ Qx0x0 (3)

and

E dtð Þ ¼ 0, C dt; dsð Þ ¼ St δt, s, C dt; x0ð Þ ¼ 0 (4)

for the time instances t, s ¼ 1, 2,…, with δt, s being the Kronecker delta. The nonsingular matrix
Φt, t�1 denotes the transition matrix and the random vector dt is the system noise. The system
noise dt is thus assumed to have a zero mean, to be uncorrelated in time and to be uncorrelated
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with the initial state-vector x0. The transition matrix from epoch s to t is denoted as Φt, s. Thus
Φ�1t, s ¼ Φs, t and Φt, t ¼ I (the identity matrix).

The measurement model: The link between the observables yt and the state-vectors xt is assumed
given as

yt ¼ Atxt þ εt, t ¼ 1, 2,… (5)

with

E εtð Þ ¼ 0, C εt; εsð Þ ¼ Rt δt, s, C εt; x0ð Þ ¼ 0, C εt; dsð Þ ¼ 0 (6)

for t, s ¼ 1, 2,…, with At being the known design matrix. Thus the zero-mean measurement
noise εt is assumed to be uncorrelated in time and to be uncorrelated with the initial state-
vector x0 and the system noise dt.

2.2. The three-step recursion

Initialization: As the mean of x0 is known, the best predictor of x0 in the absence of data is the
mean E x0ð Þ ¼ x0∣0. Hence, the initialization is simply given by

bx0∣0 ¼ x0∣0, P0∣0 ¼ Qx0x0 (7)

That the initial error variance matrix P0∣0 ¼ D x0 � bx0∣0
� �

is identical to the variance matrix Qx0x0

follows from the equality D x0 � x0∣0
� � ¼ D x0ð Þ.

Time update: Let us choose Φt, t�1bxt�1∣t�1 as a candidate for the BLP bxt∣t�1. According to Eq. (1),
the candidate would be the BLP if it fulfills two conditions: (1) it must be unbiased and (2) it
must have a prediction error uncorrelated with the previous data y t�1½ �. The first condition,

i.e. EðΦt, t�1bxt�1∣t�1Þ ¼ E xtð Þ, follows from Eq. (2) and the equalities E bxt�1∣t�1
� � ¼ E xt�1ð Þ and

E dtð Þ ¼ 0. The second condition, i.e. Cðxt � Φt, t�1bxt�1∣t�1; y t�1½ �Þ ¼ 0, follows from the fact that

the prediction error xt � Φt, t�1bxt�1∣t�1 is a function of the previous BLP prediction error
xt�1 � bxt�1∣t�1 and the system noise dt, i.e. (cf. 2)

xt � Φt, t�1bxt�1∣t�1 ¼ Φt, t�1 xt�1 � bxt�1∣t�1
� �þ dt, (8)

that are both uncorrelated with the previous data y t�1½ �. Hence, the time update is given by

bxt∣t�1 ¼ Φt, t�1bxt�1∣t�1, Pt∣t�1 ¼ Φt, t�1Pt�1∣t�1ΦT
t, t�1 þ St (9)

The error variance matrix Pt∣t�1 ¼ D xt � bxt∣t�1
� �

follows by applying the covariance propaga-

tion law to (8), together with C xt�1 � bxt�1∣t�1; dt
� � ¼ 0.
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Measurement update: In the presence of new data yt, one may yet offer bxt∣t�1 as a candidate for
the BLP bxt∣t. Such a candidate fulfills the unbiasedness condition E bxt∣t�1

� � ¼ E xtð Þ, but not
necessarily the zero-correlation condition, that is, Cðxt � bxt∣t�1, y t½ �Þ 6¼ 0. Note, however, that

Cðxt � bxt∣t�1, y t�1½ �Þ ¼ 0. Thus the zero-correlation condition Cðxt � bxt∣t�1, y t½ �Þ ¼ 0 would have

been met if the most recent data yt of y t½ � ¼ yTt�1½ �; y
T
t

h iT
would be a function of the previous

data y t�1½ �, thereby fully predicted by y t�1½ �. Since an observable is its own best predictor, this

implies that yt ¼ Atbxt∣t�1, where Atbxt∣t�1 is the BLP of yt. But this would require the zero-mean
quantity vt ¼ yt � Atbxt∣t�1 to be identically zero which is generally not the case. It is therefore
the presence of vt that violates the zero-correlation condition. Note that vt is a function of the
prediction error xt � bxt∣t�1 and the measurement noise εt, i.e. (cf. 5)

vt ¼ At xt � bxt∣t�1
� �þ εt, (10)

that are both uncorrelated with y t�1½ �. Therefore, vt cannot be predicted by the previous data

y t�1½ �, showing that vt contains truly new information. That is why vt is sometimes referred to as

the innovation of yt, see e.g. [27–29]. We now amend our earlier candidate bxt∣t�1 by adding a
linear function of vt to it. It reads bxt∣t ¼ bxt∣t�1 þ Ktvt, with Kt being an unknown matrix to be
chosen such that the zero-correlation condition is met. Such a matrix, known as the Kalman
gain matrix, is uniquely specified by

Kt ¼ Pt∣t�1AT
t Q
�1
vtvt ⇔ C xt � bxt∣t�1 � Ktvt; yt

� � ¼ 0 (11)

since C xt � bxt∣t�1; yt
� � ¼ Pt∣t�1AT

t and C vt; yt
� � ¼ Qvtvt . The measurement update reads then

bxt∣t ¼ bxt∣t�1 þ Ktvt, with Pt∣t ¼ Pt∣t�1 � KtQvtvtK
T
t (12)

The error variance matrix Pt∣t ¼ D xt � bxt∣t
� �

follows by an application of the covariance prop-

agation law, together with C xt � bxt∣t�1; vt
� � ¼ Pt∣t�1AT

t . Application of the covariance propaga-
tion law to (10) gives the variance matrix of vt as follows

Qvtvt ¼ AtPt∣t�1AT
t þ Rt (13)

since C xt � bxt∣t�1; εt
� � ¼ 0.

2.3. A remark on the filter initialization

In the derivation of the Kalman filter one assumes the mean of the random initial state-vector
x0, in Eq. (3), to be known, see e.g. [30–37]. This is because of the BLP structure (1) that needs
knowledge of the means E xtð Þ and Eðy τ½ �Þ. Since in many, if not most, applications the means of

the state-vectors x1,…, xt are unknown, such derivation is therefore not appropriate. As shown
in Ref. [38], one can do away with this need to have both the initial mean x0∣0 and variance
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the prediction error xt � Φt, t�1bxt�1∣t�1 is a function of the previous BLP prediction error
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that are both uncorrelated with the previous data y t�1½ �. Hence, the time update is given by

bxt∣t�1 ¼ Φt, t�1bxt�1∣t�1, Pt∣t�1 ¼ Φt, t�1Pt�1∣t�1ΦT
t, t�1 þ St (9)
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t . Application of the covariance propaga-
tion law to (10) gives the variance matrix of vt as follows
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� � ¼ 0.
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In the derivation of the Kalman filter one assumes the mean of the random initial state-vector
x0, in Eq. (3), to be known, see e.g. [30–37]. This is because of the BLP structure (1) that needs
knowledge of the means E xtð Þ and Eðy τ½ �Þ. Since in many, if not most, applications the means of
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matrix Qx0x0 , given in Eq. (3), known. The corresponding three-step recursion would then
follow the Best Linear Unbiased Prediction (BLUP) principle and not that of the BLP. The
BLUP is also a MMSE predictor, but within a more restrictive class of predictors. It replaces
the means E xtð Þ and Eðy τ½ �Þ by their corresponding Best Linear Unbiased Estimators (BLUEs).

Within such BLUP recursion, the initialization Eq. (7) is revised and takes place at time
instance t ¼ 1 in the presence of the data y1. Provided that matrix A1 is of full column rank,
the predictor bx1∣1 follows from solving the normal equations

N1bx1∣1 ¼ r1, with N1 ¼ AT
1R
�1
1 A1, r1 ¼ AT

1R
�1
1 y1 (14)

Thus

bx1∣1 ¼ N�11 r1, and P1∣1 ¼ N�11 (15)

The above error variance matrix P1∣1 is thus not dependent on the variance matrix of x1, i.e.

Qx1x1 ¼ Φ1,0Qx0x0 Φ
T
1,0 þ S1. This is, however, not the case with the variance matrix of the

predictor bx1∣1 itself, i.e. Qbx1∣1bx1∣1
¼ D bx1∣1

� �
. This variance matrix is given by [38]

Qbx1∣1bx1∣1
¼ Qx1x1 þ P1∣1 (16)

showing that P1∣1 6¼ Qbx1∣1bx1∣1
. Matrices Pt∣t and Qbxt∣tbxt∣t

(t ¼ 1, 2,…) are used for two different

purposes. The error variance matrix Pt∣t ¼ D xt � bxt∣t
� �

is a measure of ‘closeness’ of bxt∣t to its
target random vector xt, thereby meant to describe the ‘quality’ of prediction, i.e. precision of
the prediction error xt � bxt∣t

� �
. The variance matrix Qbxt∣tbxt∣t

¼ D bxt∣t
� �

however, is a measure of

closeness of bxt∣t to the nonrandom vector E xtð Þ, as D bxt∣t
� � ¼ DðE xtð Þ � bxt∣tÞ. Thus Qbxt∣tbxt∣t

does

not describe the quality of prediction, but instead the precision of the predictor bxt∣t.
The MMSE of the BLUP recursion is never smaller than that of the Kalman filter, as the Kalman
filter makes use of additional information, namely, the known mean x0∣0 and variance matrix
Qx0x0 . When the stated information is available, the BLUP recursion is shown to encompass the
Kalman filter as a special case [39]. In the following we therefore assume that the means of the
state-vectors x1,…, xt are unknown, a situation that often applies to GNSS applications.

2.4. Filtering in information form

The three-step recursion presented in Eqs. (7), (9) and (12) concerns the time-evolution of the
predictor bxt∣t and the error variance matrix Pt∣t. As shown in Eq. (15), both P1∣1 and bx1∣1 can be

determined by the normal matrix N1 ¼ P�11∣1 and the right-hand-side vector r1 ¼ P�11∣1bx1∣1. One

can therefore alternatively develop recursion concerning the time-evolution of P�1t∣t and P�1t∣t bxt∣t.
From a computational point of view, such recursion is found to be very suitable when the
inverse-variance or information matrices S�1t and R�1t serve as input rather than the variance
matrices St and Rt. To that end, one may define [34]
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information vector it∣τ : ¼ P�1t∣τbxt∣τ and information matrix I t∣τ : ¼ P�1t∣τ (17)

Given the definition above, the information filter recursion concerning the time-evolution of it∣t
and I t∣t would then follow from the recursion Eqs. (15), (9) and (12), along with the following
matrix-inversion equalities

Time-update : ðΦt, t�1Pt�1∣t�1ΦT
t, t�1 þ StÞ�1 ¼ Mt �MtðMt þ S�1t Þ�1Mt

Measurement-update : ðPt∣t�1 � Pt∣t�1AT
t QvtvtAtPt∣t�1Þ�1 ¼ P�1t∣t�1 þ AT

t R
�1
t At

(18)

where Mt ¼ ΦT
t�1, t P

�1
t�1∣t�1Φt�1, t.

The algorithmic steps of the information filter are presented in Figure 1. In the absence of data,
the filter is initialized by the zero information i1∣0 ¼ 0 and I1∣0 ¼ 0. In the presence of the data
yt, the corresponding normal matrix Nt and right-hand-side vector rt are added to the time
update information it∣t�1 and I t∣t�1 to obtain the measurement update information it∣t and I t∣t.

Figure 1. Algorithmic steps of the information filter recursion concerning the time-evolution of the information
vector it∣t and matrix I t∣t .
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The transition matrix Φt, t�1 and inverse-variance matrix S�1t would then be used to time
update the previous information it�1∣t�1 and I t�1∣t�1.

Singular matrix St: In the first expression of Eq. (18) one assumes the variance matrix St to be
nonsingular and invertible. There are, however, situations where some of the elements of the
state-vector xt are nonrandom, i.e., the corresponding system noise is identically zero. As a
consequence, the variance matrix St becomes singular and the inverse-matrix S�1t does not
exist. An example of such concerns the presence of the GNSS carrier-phase ambiguities in the
filter state-vector which are treated constant in time. In such cases the information time update

in Figure 1 must be generalized so as to accommodate singular variance matrices St. Let ~St be
an invertible sub-matrix of St that has the same rank as that of St. Then there exists a full-
column rank matrix Ht such that

St ¼ Ht ~StHT
t (19)

Matrix Ht can be, for instance, structured by the columns of the identity matrix I

corresponding to the columns of St on which the sub-matrix ~St is positioned. The special case

St ¼
~St 0
0 0

" #
¼ I

0

� �
~St

I
0

� �T
) Ht ¼

I
0

� �
, (20)

shows an example of the representation (19). With Eq. (19), a generalization of the time update
(Figure 1) can be shown to be given by

I t∣t�1 ¼Mt �MtHt HT
t MtHt þ ~S

�1
t

h i�1
HT

t Mt (21)

Thus instead of S�1t , the inverse-matrix ~S�1t and Ht are assumed available.

2.5. Additivity property of the information measurement update

As stated previously, the information filter delivers outcomes equivalent to those of the Kalman
filter recursion. Thus any particular preference for the information filter must be attributed to the
computational effort required for obtaining the outcomes. For instance, if handling matrix inver-
sion requires low computational complexity when working with the input inverse-matrices S�1t

and R�1t , the information filter appears to be more suitable. In this subsection we will highlight
yet another property of the information filter that makes this recursion particularly useful for
distributed processing.

As shown in Figure 1, the information measurement update is additive in the sense that the
measurement information Nt and rt is added to the information states I t∣t�1 and it∣t�1. We
now make a start to show how such additivity property lends itself to distributed filtering. Let
the measurement model Eq. (5) be partitioned as
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yt ¼ Atxt þ εt )

y1, t

⋮

yi, t

⋮

yn, t

2
6666666664

3
7777777775

¼

A1, t

⋮

Ai, t

⋮

An,t

2
666666664

3
777777775
xt þ

ε1, t

⋮

εi, t

⋮

εn, t

2
666666664

3
777777775
, t ¼ 1, 2,… (22)

Accordingly, the observable vector yt is partitioned into n sub-vectors yi, t (i ¼ 1,…, n), each
having its own design matrix Ai, t and measurement noise vector εi, t. One can think of a
network of n sensor nodes where each collects its own observable vector yi, t, but aiming to
determine a common state-vector xt. Let us further assume that the nodes collect observables
independently from one another. This yields

C εi, t; εj, t
� � ¼ Ri, t δi, j, for i, j ¼ 1,…, n, and t ¼ 1, 2,… (23)

Thus the measurement noise vectors εi, t (i ¼ 1,…, n) are assumed to be mutually uncorrelated.

With the extra assumption Eq. (23), the normal matrix Nt ¼ AT
t R
�1
t At and right-hand-side

vector rt ¼ AT
t R
�1
t yt can then be, respectively, expressed as

Nt ¼
Xn

i¼1
Ni, t, and rt ¼

Xn

i¼1
ri, t (24)

where

Ni, t ¼ AT
i, tR

�1
i, t Ai, t, and ri, t ¼ AT

i, tR
�1
i, t yi, t (25)

According to Eq. (24), the measurement information of each node, say Ni, t and ri, t, is individ-
ually added to the information states I t∣t�1 and it∣t�1, that is

I t∣t ¼ I t∣t�1 þ
Xn

i¼1
Ni, t, it∣t ¼ it∣t�1 þ

Xn

i¼1
ri, t (26)

Now consider the situation where each node runs its own local information filter, thus having
its own information states I i, t∣t and ii, t∣t (i ¼ 1,…, n). The task is to recursively update the local
states I i, t∣t and ii, t∣t in a way that they remain equal to their central counterparts I t∣t and it∣t
given in Eq. (26). Suppose that such equalities hold at the time update, i.e. I i, t∣t�1 ¼ I t∣t�1 and
ii, t∣t�1 ¼ it∣t�1. Given the number of contributing nodes n, each node just needs to be provided
with the average quantities

Nt ¼ 1
n

Xn

i¼1
Ni, t, and rt ¼ 1

n

Xn

i¼1
ri, t (27)
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The transition matrix Φt, t�1 and inverse-variance matrix S�1t would then be used to time
update the previous information it�1∣t�1 and I t�1∣t�1.

Singular matrix St: In the first expression of Eq. (18) one assumes the variance matrix St to be
nonsingular and invertible. There are, however, situations where some of the elements of the
state-vector xt are nonrandom, i.e., the corresponding system noise is identically zero. As a
consequence, the variance matrix St becomes singular and the inverse-matrix S�1t does not
exist. An example of such concerns the presence of the GNSS carrier-phase ambiguities in the
filter state-vector which are treated constant in time. In such cases the information time update

in Figure 1 must be generalized so as to accommodate singular variance matrices St. Let ~St be
an invertible sub-matrix of St that has the same rank as that of St. Then there exists a full-
column rank matrix Ht such that

St ¼ Ht ~StHT
t (19)

Matrix Ht can be, for instance, structured by the columns of the identity matrix I

corresponding to the columns of St on which the sub-matrix ~St is positioned. The special case

St ¼
~St 0
0 0
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0
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0
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) Ht ¼

I
0

� �
, (20)

shows an example of the representation (19). With Eq. (19), a generalization of the time update
(Figure 1) can be shown to be given by

I t∣t�1 ¼Mt �MtHt HT
t MtHt þ ~S

�1
t

h i�1
HT

t Mt (21)

Thus instead of S�1t , the inverse-matrix ~S�1t and Ht are assumed available.

2.5. Additivity property of the information measurement update

As stated previously, the information filter delivers outcomes equivalent to those of the Kalman
filter recursion. Thus any particular preference for the information filter must be attributed to the
computational effort required for obtaining the outcomes. For instance, if handling matrix inver-
sion requires low computational complexity when working with the input inverse-matrices S�1t

and R�1t , the information filter appears to be more suitable. In this subsection we will highlight
yet another property of the information filter that makes this recursion particularly useful for
distributed processing.

As shown in Figure 1, the information measurement update is additive in the sense that the
measurement information Nt and rt is added to the information states I t∣t�1 and it∣t�1. We
now make a start to show how such additivity property lends itself to distributed filtering. Let
the measurement model Eq. (5) be partitioned as
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Accordingly, the observable vector yt is partitioned into n sub-vectors yi, t (i ¼ 1,…, n), each
having its own design matrix Ai, t and measurement noise vector εi, t. One can think of a
network of n sensor nodes where each collects its own observable vector yi, t, but aiming to
determine a common state-vector xt. Let us further assume that the nodes collect observables
independently from one another. This yields

C εi, t; εj, t
� � ¼ Ri, t δi, j, for i, j ¼ 1,…, n, and t ¼ 1, 2,… (23)

Thus the measurement noise vectors εi, t (i ¼ 1,…, n) are assumed to be mutually uncorrelated.

With the extra assumption Eq. (23), the normal matrix Nt ¼ AT
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t At and right-hand-side

vector rt ¼ AT
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where
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According to Eq. (24), the measurement information of each node, say Ni, t and ri, t, is individ-
ually added to the information states I t∣t�1 and it∣t�1, that is

I t∣t ¼ I t∣t�1 þ
Xn

i¼1
Ni, t, it∣t ¼ it∣t�1 þ

Xn

i¼1
ri, t (26)

Now consider the situation where each node runs its own local information filter, thus having
its own information states I i, t∣t and ii, t∣t (i ¼ 1,…, n). The task is to recursively update the local
states I i, t∣t and ii, t∣t in a way that they remain equal to their central counterparts I t∣t and it∣t
given in Eq. (26). Suppose that such equalities hold at the time update, i.e. I i, t∣t�1 ¼ I t∣t�1 and
ii, t∣t�1 ¼ it∣t�1. Given the number of contributing nodes n, each node just needs to be provided
with the average quantities
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The local states I i, t∣t�1 and ii, t∣t�1 would then be measurement updated as (cf. 26)

I i, t∣t ¼ I i, t∣t�1 þ nNt, ii, t∣t ¼ ii, t∣t�1 þ nrt (28)

that are equal to the central states I t∣t and it∣t, respectively. In this way one has multiple
distributed local filters i ¼ 1,…, n, where each recursively delivers results identical to those of
a central filter.

To compute the average quantities Nt and rt, node i may need to receive all other information
Nj, t and rj, t (j 6¼ i). In other words, node i would require direct connections to all other nodes
j 6¼ i, a situation that makes data communication and processing power very expensive (par-
ticularly for a large number of nodes). In the following cheaper ways of evaluating the
averages Nt and rt are discussed.

3. Average consensus rules

In the previous section, we briefly discussed the potential applicability of the information filter
as a tool for handling the measurement model Eq. (22) in a distributed manner. With the
representation Eq. (28) however, one may be inclined to conclude that such applicability is
limited to the case where the nodes i ¼ 1,…, n, have ‘direct’ communication connections to one
another in order to receive/send their measurement information Ni, t and ri, t (i ¼ 1,…, n).

Instead of having direct connections, the idea is now to relax such a stringent requirement by
assuming that the nodes are linked to each other at least through a ‘path’ so that information
can flow from each node to all other nodes. It is therefore assumed that each node along the
path plays the role of an agent transferring information to other nodes. To reach the averages
Nt and rt, the nodes would then agree on specific ‘fusion rules’ or consensus protocols, see e.g. [6,
8, 40]. Note that each node exchanges information with neighboring nodes (i.e. those to which
the node has direct connections) and not the entire nodes. Therefore, a repeated application of
the consensus protocols is required to be carried out. The notion is made precise below.

3.1. Communication graphs

The way the nodes interact with each other to transfer information is referred to as the
interaction topology between the nodes. The interaction topology is often described by a
directed graph whose vertices and edges, respectively, represent the nodes and communica-
tion links [4]. The interaction topology may also undergo a finite number of changes over
sessions k ¼ 1,…, ko. In case of one-way links, the directions of the edges face toward the
receiving nodes (vertices). Here we assume that the communication links between the nodes
are two-way, thus having undirected (or bidirectional) graphs. Examples of such representing a
network of 20 nodes with their interaction links are shown in Figure 2. Let an undirected
graph at session k be denoted by Gk ¼ V; Ekð Þ where V ¼ 1;…; nf g is the vertex set and
Ek ⊂ i; jð Þj i; j∈Vf g is the edge set. We assume that the nodes remain unchanged over time,
that is why the subscript k is omitted for V. This is generally not the case with their interaction
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links though, i.e. the edge set Ek depends on k. As in Figure 2 (b), the number of links between
the nodes can be different for different sessions k ¼ 1,…, ko. Each session represents a graph
that may not be connected. In a ‘connected’ graph, every vertex is linked to all other vertices at
least through one path. In order for information to flow from each node to all other nodes, the
union of the graphs Gk (k ¼ 1,…, ko), i.e.

G ¼ V; Eð Þ with E ¼ ⋃
ko

k¼1
Ek ko : a finite numberð Þ (29)

is therefore assumed to be connected. We define the neighbors of node i as those to which the
node i has direct links. For every session k, they are collected in the set N i, k ¼ j j j; ið Þ∈ Ekf g.
For instance for network (a) of Figure 2, we have only one session, i.e. ko ¼ 1, in which
N 2,1 ¼ 1; 3; 4; 5f g represents the neighbors of node 2. In case of network (b) however, we have
different links over four sessions, i.e. ko ¼ 4. In this case, the neighbors of node 2 are given by
four sets: N 2,1 ¼ 5f g in session 1 (red), N 2,2 ¼ fg in session 2 (yellow), N 2,3 ¼ 4f g in session 3
(green) and N 2,4 ¼ fg in session 4 (blue).

3.2. Consensus protocols

Given the right-hand-vector ri, t, suppose that node i aims to obtain the average rt for which all
other vectors rj, t (∀j 6¼ i) are required to be available (cf. 27). But the node i only has access to
those of its neighbors, i.e. the vectors rj, t (j∈N i, k). For the first session k ¼ 1, it would then
seem to be reasonable to compute a weighted-average of the available vectors, i.e.

ri, t 1ð Þ ¼
X

j∈ i;N i,1f g
wij 1ð Þrj, t (30)

as an approximation of rt, where the scalars wij 1ð Þ ( j∈ i;N i,1f g) denote the corresponding
weights at session k ¼ 1. Now assume that all other nodes j 6¼ i agree to apply the fusion rule

Figure 2. Communications graphs of 20 sensor nodes. The edges represent two-way communication links between the
nodes. (a) Network with 49 links. (b) Network with different numbers of links over four sessions: 7 links in session 1 (R), 6
links in session 2 (Y), 8 links in session 3 (G) and 7 links in session 4 (B).
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The local states I i, t∣t�1 and ii, t∣t�1 would then be measurement updated as (cf. 26)
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distributed local filters i ¼ 1,…, n, where each recursively delivers results identical to those of
a central filter.
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can flow from each node to all other nodes. It is therefore assumed that each node along the
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the node has direct connections) and not the entire nodes. Therefore, a repeated application of
the consensus protocols is required to be carried out. The notion is made precise below.
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The way the nodes interact with each other to transfer information is referred to as the
interaction topology between the nodes. The interaction topology is often described by a
directed graph whose vertices and edges, respectively, represent the nodes and communica-
tion links [4]. The interaction topology may also undergo a finite number of changes over
sessions k ¼ 1,…, ko. In case of one-way links, the directions of the edges face toward the
receiving nodes (vertices). Here we assume that the communication links between the nodes
are two-way, thus having undirected (or bidirectional) graphs. Examples of such representing a
network of 20 nodes with their interaction links are shown in Figure 2. Let an undirected
graph at session k be denoted by Gk ¼ V; Ekð Þ where V ¼ 1;…; nf g is the vertex set and
Ek ⊂ i; jð Þj i; j∈Vf g is the edge set. We assume that the nodes remain unchanged over time,
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links though, i.e. the edge set Ek depends on k. As in Figure 2 (b), the number of links between
the nodes can be different for different sessions k ¼ 1,…, ko. Each session represents a graph
that may not be connected. In a ‘connected’ graph, every vertex is linked to all other vertices at
least through one path. In order for information to flow from each node to all other nodes, the
union of the graphs Gk (k ¼ 1,…, ko), i.e.

G ¼ V; Eð Þ with E ¼ ⋃
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k¼1
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is therefore assumed to be connected. We define the neighbors of node i as those to which the
node i has direct links. For every session k, they are collected in the set N i, k ¼ j j j; ið Þ∈ Ekf g.
For instance for network (a) of Figure 2, we have only one session, i.e. ko ¼ 1, in which
N 2,1 ¼ 1; 3; 4; 5f g represents the neighbors of node 2. In case of network (b) however, we have
different links over four sessions, i.e. ko ¼ 4. In this case, the neighbors of node 2 are given by
four sets: N 2,1 ¼ 5f g in session 1 (red), N 2,2 ¼ fg in session 2 (yellow), N 2,3 ¼ 4f g in session 3
(green) and N 2,4 ¼ fg in session 4 (blue).

3.2. Consensus protocols

Given the right-hand-vector ri, t, suppose that node i aims to obtain the average rt for which all
other vectors rj, t (∀j 6¼ i) are required to be available (cf. 27). But the node i only has access to
those of its neighbors, i.e. the vectors rj, t (j∈N i, k). For the first session k ¼ 1, it would then
seem to be reasonable to compute a weighted-average of the available vectors, i.e.

ri, t 1ð Þ ¼
X

j∈ i;N i,1f g
wij 1ð Þrj, t (30)

as an approximation of rt, where the scalars wij 1ð Þ ( j∈ i;N i,1f g) denote the corresponding
weights at session k ¼ 1. Now assume that all other nodes j 6¼ i agree to apply the fusion rule

Figure 2. Communications graphs of 20 sensor nodes. The edges represent two-way communication links between the
nodes. (a) Network with 49 links. (b) Network with different numbers of links over four sessions: 7 links in session 1 (R), 6
links in session 2 (Y), 8 links in session 3 (G) and 7 links in session 4 (B).
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Eq. (30) to those of their own neighbors. Thus the neighboring nodes j∈N i, k also have their own
weighted-averages rj, t 1ð Þ. But they may have access to those to which the node i has no direct
links. In other words, the weighted-averages rj, t 1ð Þ (j∈N i,1) contain information on the nodes
to which the node i has no access. For the next session k ¼ 2, it is therefore reasonable for the
node i to repeat the fusion rule Eq. (30), but now over the new vectors rj, t 1ð Þ (j∈ i;N i,2f g), aiming
to improve on the earlier approximation ri, t 1ð Þ. This yields the following iterative computations

ri, t kð Þ ¼
X

j∈ i;N i, kf g
wij kð Þrj, t k� 1ð Þ, k ¼ 1, 2,… (31)

with rj, t 0ð Þ : ¼ rj, t. Choosing a set of weights wij kð Þ, the nodes i ¼ 1,…, n agree on the consen-
sus protocol (31) to iteratively fuse their information vectors ri, t kð Þ. Here and in the following,
we use the letter ‘k’ for the ‘session number’ k ¼ 1,…, ko (cf. 29) and for the ‘number of iterative
communications’ k ¼ 1,…, kn (cf. 34). The maximum iteration kn is assumed to be not smaller
than the maximum session number ko, i.e. kn ≥ ko.

The question that now comes to the fore is how to choose the weights wij kð Þ such that the
approximation ri, t kð Þ gets close to rt through the iteration Eq. (31). More precisely, the stated
iteration becomes favorable if ri, t kð Þ ! rt when k! ∞ for all nodes i ¼ 1,…, n. To address this
question, we use a multivariate formulation. Let p be the size of the vectors ri, t (i ¼ 1,…, n). We

define the higher-dimensioned vector r ¼ rT1, t;…; rTn, t
h iT

. The multivariate version of Eq. (31)

reads then

r1, t kð Þ
⋮

ri, t kð Þ
⋮

rn, t kð Þ

2
6666664

3
7777775
¼

w11 kð ÞIp … w1i kð ÞIp … w1n kð ÞIp
⋮ ⋱ ⋮ ⋱ ⋮

wi1 kð ÞIp … wii kð ÞIp … win kð ÞIp
⋮ ⋱ ⋮ ⋱ ⋮

wn1 kð ÞIp … wni kð ÞIp … wnn kð ÞIp

2
6666664

3
7777775

r1, t k� 1ð Þ
⋮

ri, t k� 1ð Þ
⋮

rn, t k� 1ð Þ

2
6666664

3
7777775
, k ¼ 1, 2,… (32)

or

r kð Þ ¼ W kð Þ⊗ Ip
� �

r k� 1ð Þ, k ¼ 1, 2,… (33)

The n� n weight matrix W kð Þ is structured by wij kð Þ (j∈ i;N i, kf g) and wij kð Þ ¼ 0.

(j∉ i;N i, kf g). The symbol ⊗ is the Kronecker matrix product [41]. According to Eq. (33), after
kn iterations the most recent iterated vector r knð Þ is linked to the initial vector r 0ð Þ by
Qkn

k¼1 W kð Þ⊗ Ip
h i

r 0ð Þ. Thus the vectors ri, t kð Þ (i ¼ 1,…, n) converge to rt when

L knð Þ≔
Ykn
k¼1

W kð Þ ! 1
n
eneTn , as kn ! ∞ (34)

where the n-vector en contains ones. If the condition Eq. (34) is met, the set of nodes 1;…; nf g
can asymptotically reach average consensus [4]. It can be shown that (34) holds if the weight
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matrices W kð Þ (k ¼ 1,…, ko) have bounded nonnegative entries with positive diagonals, i.e.
wij kð Þ ≥ 0 and wii kð Þ > 0, having row- and column-sums equal to one, i.e.

Pn
j¼1 wij kð Þ ¼ 1 andPn

i¼1 wij kð Þ ¼ 1 (i, j ¼ 1,…, n), see e.g. [3, 5, 40, 42, 43].

Examples of such consensus protocols are given in Table 1. As shown, the weights form a
symmetric weight matrix W kð Þ, i.e. wji kð Þ ¼ wij kð Þ. In all protocols presented, self-weights
wii kð Þ are chosen so that the condition

Pn
j¼1 wij kð Þ ¼ 1 is satisfied. The weights of Protocols 1

and 2 belong to the class of ‘maximum-degree’ weights, while those of Protocol 3 are referred
to as ‘Metropolis’ weights [8]. The weights of Protocols 1 and 3 are driven by the degrees
(number of neighbors) of nodes i ¼ 1,…, n, denoted by dgi kð Þ ¼ N i, k. For instance, in network
(a) of Figure 2we have dg1 1ð Þ ¼ 4 as node 1 has 4 neighbors, while dg14 1ð Þ ¼ 7 as node 14 has 7
neighbors. Protocol 4 is only applicable to networks like (b) in Figure 2, i.e. when each node
has at most one neighbor at a session [4]. In this case, each node exchanges its information to
just one neighbor at a session. Thus for two neighboring nodes i and j we have
wii kð Þ ¼ wjj kð Þ ¼ wij kð Þ ¼ 0:5, each averaging ri, t k� 1ð Þ and rj, t k� 1ð Þ to obtain ri, t kð Þ ¼ rj, t kð Þ.
To provide insight into the applicability of the protocols given in Table 1, we apply them to the
networks of Figure 2. Twenty values (scalars), say ri (i ¼ 1,…, 20), are generated whose aver-
age is equal to 5, i.e. r ¼ 5. Each value is assigned to its corresponding node. For network (a),
Protocols 1, 2 and 3 are separately applied, whereas Protocol 4 is only applied to network (b).
The corresponding results, up to 30 iterations, are presented in Figure 3. As shown, the
iterated values ri kð Þ (i ¼ 1,…, 20) get closer to their average (i.e. r ¼ 5), the more the number
of iterative communications.

3.3. On convergence of consensus states

Figure 3 shows that the states ri, t kð Þ (i ¼ 1,…, n) converge to their average rt, but with different
rates. The convergence rate depends on the initial states ri, t 0ð Þ ¼ ri, t and on the consensus
protocol employed. From the figure it seems that the convergence rates of Protocols 1 and 3
are about the same, higher than those of Protocols 2 and 4. Note that the stated results are

Protocols wij kð Þ i; j
� �

∈ Ek
� �

wii kð Þ

Protocol 1 1
max

u ∈ 1;…;nf g
dgu kð Þf g 1�

X
u 6¼i

wiu kð Þ

Protocol 2 1
n 1�

X
u 6¼i

wiu kð Þ

Protocol 3 1
1þmax dgi kð Þ;dgj kð Þf g 1�

X
u 6¼i

wiu kð Þ

Protocol 4 1
2 1�

X
u 6¼i

wiu kð Þ

otherwise wij kð Þ ¼ 0

The degree (number of neighbors) of node i is denoted by dgi kð Þ ¼ #N i, k. Protocol 4 is only applicable when each node has
at most one neighbor at a session.

Table 1. Examples of average-consensus protocols forming the weights wij kð Þ in Eq. (31).
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Eq. (30) to those of their own neighbors. Thus the neighboring nodes j∈N i, k also have their own
weighted-averages rj, t 1ð Þ. But they may have access to those to which the node i has no direct
links. In other words, the weighted-averages rj, t 1ð Þ (j∈N i,1) contain information on the nodes
to which the node i has no access. For the next session k ¼ 2, it is therefore reasonable for the
node i to repeat the fusion rule Eq. (30), but now over the new vectors rj, t 1ð Þ (j∈ i;N i,2f g), aiming
to improve on the earlier approximation ri, t 1ð Þ. This yields the following iterative computations

ri, t kð Þ ¼
X

j∈ i;N i, kf g
wij kð Þrj, t k� 1ð Þ, k ¼ 1, 2,… (31)

with rj, t 0ð Þ : ¼ rj, t. Choosing a set of weights wij kð Þ, the nodes i ¼ 1,…, n agree on the consen-
sus protocol (31) to iteratively fuse their information vectors ri, t kð Þ. Here and in the following,
we use the letter ‘k’ for the ‘session number’ k ¼ 1,…, ko (cf. 29) and for the ‘number of iterative
communications’ k ¼ 1,…, kn (cf. 34). The maximum iteration kn is assumed to be not smaller
than the maximum session number ko, i.e. kn ≥ ko.

The question that now comes to the fore is how to choose the weights wij kð Þ such that the
approximation ri, t kð Þ gets close to rt through the iteration Eq. (31). More precisely, the stated
iteration becomes favorable if ri, t kð Þ ! rt when k! ∞ for all nodes i ¼ 1,…, n. To address this
question, we use a multivariate formulation. Let p be the size of the vectors ri, t (i ¼ 1,…, n). We

define the higher-dimensioned vector r ¼ rT1, t;…; rTn, t
h iT

. The multivariate version of Eq. (31)

reads then

r1, t kð Þ
⋮

ri, t kð Þ
⋮

rn, t kð Þ

2
6666664

3
7777775
¼

w11 kð ÞIp … w1i kð ÞIp … w1n kð ÞIp
⋮ ⋱ ⋮ ⋱ ⋮

wi1 kð ÞIp … wii kð ÞIp … win kð ÞIp
⋮ ⋱ ⋮ ⋱ ⋮

wn1 kð ÞIp … wni kð ÞIp … wnn kð ÞIp

2
6666664

3
7777775

r1, t k� 1ð Þ
⋮

ri, t k� 1ð Þ
⋮

rn, t k� 1ð Þ

2
6666664

3
7777775
, k ¼ 1, 2,… (32)

or

r kð Þ ¼ W kð Þ⊗ Ip
� �

r k� 1ð Þ, k ¼ 1, 2,… (33)

The n� n weight matrix W kð Þ is structured by wij kð Þ (j∈ i;N i, kf g) and wij kð Þ ¼ 0.

(j∉ i;N i, kf g). The symbol ⊗ is the Kronecker matrix product [41]. According to Eq. (33), after
kn iterations the most recent iterated vector r knð Þ is linked to the initial vector r 0ð Þ by
Qkn

k¼1 W kð Þ⊗ Ip
h i

r 0ð Þ. Thus the vectors ri, t kð Þ (i ¼ 1,…, n) converge to rt when

L knð Þ≔
Ykn
k¼1

W kð Þ ! 1
n
eneTn , as kn ! ∞ (34)

where the n-vector en contains ones. If the condition Eq. (34) is met, the set of nodes 1;…; nf g
can asymptotically reach average consensus [4]. It can be shown that (34) holds if the weight
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matrices W kð Þ (k ¼ 1,…, ko) have bounded nonnegative entries with positive diagonals, i.e.
wij kð Þ ≥ 0 and wii kð Þ > 0, having row- and column-sums equal to one, i.e.

Pn
j¼1 wij kð Þ ¼ 1 andPn

i¼1 wij kð Þ ¼ 1 (i, j ¼ 1,…, n), see e.g. [3, 5, 40, 42, 43].

Examples of such consensus protocols are given in Table 1. As shown, the weights form a
symmetric weight matrix W kð Þ, i.e. wji kð Þ ¼ wij kð Þ. In all protocols presented, self-weights
wii kð Þ are chosen so that the condition

Pn
j¼1 wij kð Þ ¼ 1 is satisfied. The weights of Protocols 1

and 2 belong to the class of ‘maximum-degree’ weights, while those of Protocol 3 are referred
to as ‘Metropolis’ weights [8]. The weights of Protocols 1 and 3 are driven by the degrees
(number of neighbors) of nodes i ¼ 1,…, n, denoted by dgi kð Þ ¼ N i, k. For instance, in network
(a) of Figure 2we have dg1 1ð Þ ¼ 4 as node 1 has 4 neighbors, while dg14 1ð Þ ¼ 7 as node 14 has 7
neighbors. Protocol 4 is only applicable to networks like (b) in Figure 2, i.e. when each node
has at most one neighbor at a session [4]. In this case, each node exchanges its information to
just one neighbor at a session. Thus for two neighboring nodes i and j we have
wii kð Þ ¼ wjj kð Þ ¼ wij kð Þ ¼ 0:5, each averaging ri, t k� 1ð Þ and rj, t k� 1ð Þ to obtain ri, t kð Þ ¼ rj, t kð Þ.
To provide insight into the applicability of the protocols given in Table 1, we apply them to the
networks of Figure 2. Twenty values (scalars), say ri (i ¼ 1,…, 20), are generated whose aver-
age is equal to 5, i.e. r ¼ 5. Each value is assigned to its corresponding node. For network (a),
Protocols 1, 2 and 3 are separately applied, whereas Protocol 4 is only applied to network (b).
The corresponding results, up to 30 iterations, are presented in Figure 3. As shown, the
iterated values ri kð Þ (i ¼ 1,…, 20) get closer to their average (i.e. r ¼ 5), the more the number
of iterative communications.

3.3. On convergence of consensus states

Figure 3 shows that the states ri, t kð Þ (i ¼ 1,…, n) converge to their average rt, but with different
rates. The convergence rate depends on the initial states ri, t 0ð Þ ¼ ri, t and on the consensus
protocol employed. From the figure it seems that the convergence rates of Protocols 1 and 3
are about the same, higher than those of Protocols 2 and 4. Note that the stated results are

Protocols wij kð Þ i; j
� �

∈ Ek
� �

wii kð Þ

Protocol 1 1
max

u ∈ 1;…;nf g
dgu kð Þf g 1�

X
u 6¼i

wiu kð Þ

Protocol 2 1
n 1�

X
u 6¼i

wiu kð Þ

Protocol 3 1
1þmax dgi kð Þ;dgj kð Þf g 1�

X
u 6¼i

wiu kð Þ

Protocol 4 1
2 1�

X
u 6¼i

wiu kð Þ

otherwise wij kð Þ ¼ 0

The degree (number of neighbors) of node i is denoted by dgi kð Þ ¼ #N i, k. Protocol 4 is only applicable when each node has
at most one neighbor at a session.

Table 1. Examples of average-consensus protocols forming the weights wij kð Þ in Eq. (31).
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obtained on the basis of specific ‘realizations’ of ri, t (i ¼ 1,…, n). Consider the states ri, t to be
random vectors. In that case, can the results be still representative for judging the convergence
performances of the protocols? To answer this question, let us define the difference vectors

dri, t kð Þ ¼ ri, t kð Þ � rt that are collected in the higher-dimensioned vector dr kð Þ ¼ drT1, t kð Þ;…;
h

drTn, t kð Þ�T . The more the number of iterations, the smaller the norm of dr kð Þ becomes. According

to Eq. (33), after kn iterations the difference vector dr knð Þ is linked to r ¼ rT1, t;…; rTn, t
h iT

through

dr knð Þ ¼ L knð Þ � 1
n
eneTn

� �
⊗ Ip

� �
r (35)

Now let the initial states ri, t have the same mean and the same variance matrix D ri, tð Þ ¼ Q
(i ¼ 1,…, n), but mutually uncorrelated. An application of the covariance propagation law to
(35), together with L knð Þen ¼ en, gives

D dr knð Þð Þ ¼ L2 knð Þ � 1
n
eneTn

� �
⊗Q (36)

Thus the closer the squared matrix L2 knð Þ to 1=nð ÞeneTn , the smaller the variance matrix Eq. (36)
becomes. In the limit when kn ! ∞, the stated variance matrix tends to zero. This is what one
would expect, since dr knð Þ ! 0. Under the conditions stated in Eq. (34), matrices W kð Þ have
λn ¼ 1 as the largest absolute value of their eigenvalues [42]. A symmetric weight matrix W
can then be expressed in its spectral form as

W ¼
Xn�1

i¼1
λi uiuTi þ

1
n
eneTn (37)

Figure 3. Performances of protocols 1, 2 and 3 (network (a) of Figure 2) and protocols 4 (network (b)) in delivering the
average of 20 values (scalars). The iterated values get closer to their average (i.e. r ¼ 5), the more the number of iterative
communications.
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with the eigenvalues λ1 ≤… ≤λn�1 < λn ¼ 1, and the corresponding orthogonal unit eigenvec-
tors u1,…, un�1, un ¼ 1=

ffiffiffi
n
pð Þen. By a repeated application of the protocol W , we get

L knð Þ ¼Wkn . Substitution into Eq. (36), together with Eq. (37), gives finally

D dr knð Þð Þ ¼
Xn�1

i¼1
λ2kn
i uiuTi

 !
⊗Q ≤λ2kn

n�1 In ⊗Q½ � (38)

The above equation shows that the entries of the variance matrix (36) are largely driven by the
second largest eigenvalue of W , i.e. λn�1. The smaller the scalar ∣λn�1∣, the faster the quantity

λ2kn
n�1 tends to zero, as kn ! ∞. The scalar ∣λn�1∣ is thus often used as a measure to judge the

convergence performances of the protocols [7]. For the networks of Figure 2, ∣λn�1∣ of Protocols
1, 2 and 3 are about 0.92, 0.97, 0.91, respectively. As Protocol 3 has the smallest ∣λn�1∣, it is
therefore expected to have the best performance. Note, in Protocol 4, that the weight matrix
W kð Þ varies in every session, the performance of which cannot be judged by a single eigen-
value λn�1. One can therefore think of another means of measuring the convergence perfor-
mance. Due to the randomness of the information vectors ri, t (i ¼ 1,…, n), one may propose
‘probabilistic’ measures such as

Prob max
i

dri, t knð Þk kQ ≤ q
� �

, q > 0ð Þ (39)

to evaluate the convergence rates of the protocols, where dri, tk k2Q :¼ drTi, tQ
�1dri, t. Eq. (39) refers

to the probability that the maximum-norm of the difference vectors dri, t knð Þ ¼ ri, t knð Þ � rt
(i ¼ 1,…, n) is not larger than a given positive scalar q for a fixed number of iterations kn. The
higher the probability Eq. (39), the better the performance of a protocol. For the scalar case
Q ¼ σ2, Eq. (39) is reduced to

Prob max
i
jdri, t knð Þj ≤ qσ

� �
(40)

which is the probability that the absolute differences ∣dri, t knð Þ∣ (i ¼ 1,…, n) are not larger than q
times the standard-deviation σ. For the networks of Figure 2, 100,000 normally-distributed

vectors as samples of r ¼ r1;…; r20½ �T are simulated to evaluate the probability (40). The results
for Protocols 1, 2, 3 and 4 are presented in Figure 4. The stated probability is plotted as a
function of q for three numbers of iterative communications kn ¼ 10, 20 and 30. As shown,
Protocol 3 gives rise to highest probabilities, while Protocol 2 delivers lowest probabilities.
After 10 iterations, the probability of having absolute differences smaller than one-fifth of the
standard-deviation σ (i.e. q ¼ 0:2) is about 80% for Protocol 1, whereas it is less than 5% for
Protocol 2. After 30 iterations, the stated probability increases to 80% for Protocol 2, but close
to 100% for Protocols 1 and 3.

Figure 4 demonstrates that the convergence performance of Protocol 4 is clearly better than
that of Protocol 2, as it delivers higher probabilities (for the networks of Figure 2). Such a
conclusion however, cannot be made on the basis of the results of Figure 3. This shows that
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obtained on the basis of specific ‘realizations’ of ri, t (i ¼ 1,…, n). Consider the states ri, t to be
random vectors. In that case, can the results be still representative for judging the convergence
performances of the protocols? To answer this question, let us define the difference vectors

dri, t kð Þ ¼ ri, t kð Þ � rt that are collected in the higher-dimensioned vector dr kð Þ ¼ drT1, t kð Þ;…;
h

drTn, t kð Þ�T . The more the number of iterations, the smaller the norm of dr kð Þ becomes. According

to Eq. (33), after kn iterations the difference vector dr knð Þ is linked to r ¼ rT1, t;…; rTn, t
h iT

through

dr knð Þ ¼ L knð Þ � 1
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⊗ Ip
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r (35)

Now let the initial states ri, t have the same mean and the same variance matrix D ri, tð Þ ¼ Q
(i ¼ 1,…, n), but mutually uncorrelated. An application of the covariance propagation law to
(35), together with L knð Þen ¼ en, gives

D dr knð Þð Þ ¼ L2 knð Þ � 1
n
eneTn

� �
⊗Q (36)

Thus the closer the squared matrix L2 knð Þ to 1=nð ÞeneTn , the smaller the variance matrix Eq. (36)
becomes. In the limit when kn ! ∞, the stated variance matrix tends to zero. This is what one
would expect, since dr knð Þ ! 0. Under the conditions stated in Eq. (34), matrices W kð Þ have
λn ¼ 1 as the largest absolute value of their eigenvalues [42]. A symmetric weight matrix W
can then be expressed in its spectral form as

W ¼
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i¼1
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Figure 3. Performances of protocols 1, 2 and 3 (network (a) of Figure 2) and protocols 4 (network (b)) in delivering the
average of 20 values (scalars). The iterated values get closer to their average (i.e. r ¼ 5), the more the number of iterative
communications.
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with the eigenvalues λ1 ≤… ≤λn�1 < λn ¼ 1, and the corresponding orthogonal unit eigenvec-
tors u1,…, un�1, un ¼ 1=

ffiffiffi
n
pð Þen. By a repeated application of the protocol W , we get

L knð Þ ¼Wkn . Substitution into Eq. (36), together with Eq. (37), gives finally

D dr knð Þð Þ ¼
Xn�1

i¼1
λ2kn
i uiuTi

 !
⊗Q ≤λ2kn

n�1 In ⊗Q½ � (38)

The above equation shows that the entries of the variance matrix (36) are largely driven by the
second largest eigenvalue of W , i.e. λn�1. The smaller the scalar ∣λn�1∣, the faster the quantity

λ2kn
n�1 tends to zero, as kn ! ∞. The scalar ∣λn�1∣ is thus often used as a measure to judge the

convergence performances of the protocols [7]. For the networks of Figure 2, ∣λn�1∣ of Protocols
1, 2 and 3 are about 0.92, 0.97, 0.91, respectively. As Protocol 3 has the smallest ∣λn�1∣, it is
therefore expected to have the best performance. Note, in Protocol 4, that the weight matrix
W kð Þ varies in every session, the performance of which cannot be judged by a single eigen-
value λn�1. One can therefore think of another means of measuring the convergence perfor-
mance. Due to the randomness of the information vectors ri, t (i ¼ 1,…, n), one may propose
‘probabilistic’ measures such as

Prob max
i

dri, t knð Þk kQ ≤ q
� �

, q > 0ð Þ (39)

to evaluate the convergence rates of the protocols, where dri, tk k2Q :¼ drTi, tQ
�1dri, t. Eq. (39) refers

to the probability that the maximum-norm of the difference vectors dri, t knð Þ ¼ ri, t knð Þ � rt
(i ¼ 1,…, n) is not larger than a given positive scalar q for a fixed number of iterations kn. The
higher the probability Eq. (39), the better the performance of a protocol. For the scalar case
Q ¼ σ2, Eq. (39) is reduced to

Prob max
i
jdri, t knð Þj ≤ qσ

� �
(40)

which is the probability that the absolute differences ∣dri, t knð Þ∣ (i ¼ 1,…, n) are not larger than q
times the standard-deviation σ. For the networks of Figure 2, 100,000 normally-distributed

vectors as samples of r ¼ r1;…; r20½ �T are simulated to evaluate the probability (40). The results
for Protocols 1, 2, 3 and 4 are presented in Figure 4. The stated probability is plotted as a
function of q for three numbers of iterative communications kn ¼ 10, 20 and 30. As shown,
Protocol 3 gives rise to highest probabilities, while Protocol 2 delivers lowest probabilities.
After 10 iterations, the probability of having absolute differences smaller than one-fifth of the
standard-deviation σ (i.e. q ¼ 0:2) is about 80% for Protocol 1, whereas it is less than 5% for
Protocol 2. After 30 iterations, the stated probability increases to 80% for Protocol 2, but close
to 100% for Protocols 1 and 3.

Figure 4 demonstrates that the convergence performance of Protocol 4 is clearly better than
that of Protocol 2, as it delivers higher probabilities (for the networks of Figure 2). Such a
conclusion however, cannot be made on the basis of the results of Figure 3. This shows that
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results obtained on the basis of specific ‘realizations’ of ri, t (i ¼ 1,…, n) are not necessarily
representative.

4. Consensus-based Kalman filters

4.1. Two time-scale approach

In Section 2.5 we discussed how the additivity property of the measurement update Eq. (26)
offers possibilities for developing multiple distributed local filters i ¼ 1,…, n, each delivering
local states I i, t∣t and ii, t∣t equal to their central counterparts I t∣t and it∣t. In doing so, each
node has to evaluate the averages Nt and rt at every time instance t. Since in practice the nodes
do not necessarily have direct connections to each other, options such as the consensus-based
fusion rules (cf. Section 3) can alternatively be employed to ‘approximate’ Nt and rt. As
illustrated in Figures 3 and 4, such consensus-based approximation requires a number of
iterative communications between the nodes in order to reach the averages Nt and rt. The
stated iterative communications clearly require some time to be carried out and must take
place during every time interval t; tþ 1½ � (see Figure 5). We distinguish between the sampling
rate Δ and the sending rate δ. The sampling rate refers to the frequency with which the node i
collects its observables yi, t (t ¼ 1, 2,…), while the sending rate refers to the frequency with
which the node i sends/receives information Nj, t kð Þ and rj, t kð Þ (k ¼ 1,…, kn) to/from its neigh-
boring nodes. As shown in Figure 5, the sending rate δ should therefore be reasonably smaller

Figure 4. Probability Eq. (40) as a function of q for three numbers of iterative communications kn ¼ 10, 20 and 30 (pro-
tocols 1 (P.1), 2 (P.2), 3 (P.3) and 4 (P.4)). It refers to the probability that the absolute differences ∣ri, t knð Þ � rt∣ (i ¼ 1,…, 20)
are not larger than q times the standard-deviation σ (cf. Figure 2).
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than the sampling rate Δ so as to be able to incorporate consensus protocols into the informa-
tion filter setup. Such a consensus-based Kalman filter (CKF) would thus generally be of a two
time-scale nature [2], the data sampling time-scale t ¼ 1, 2,…, versus the data sending time-
scale k ¼ 1,…, kn. The CKF is a suitable tool for handling real-time data processing in a
distributed manner for the applications in which the state-vectors xt (t ¼ 1, 2,…) change rather
slowly over time (i.e. Δ can take large values) and/or for the cases where the sensor nodes
transfer their data rather quickly (i.e. δ can take small values).

Under the assumption δ ≤Δ, the CKF recursion follows from the Kalman filter recursion by
considering an extra step, namely, the ‘consensus update’. The algorithmic steps of the CKF in
information form are presented in Figure 6. Compare the recursion with that of the informa-
tion filter given in Figure 1. Similar to the information filter, the CKF at node i is initialized by
the zero information I i,1∣0 ¼ 0 and ii,1∣0 ¼ 0. In the presence of the data yi, t, node i computes its
local normal matrix Ni, t and right-hand-side vector ri, t to send them to its neighboring nodes
j∈N i, k (k ¼ 1,…, kn). In the consensus update, iterative communications between the neigh-
boring nodes i;N i, kf g are carried out to approximate the averages Nt and rt by Ni, t knð Þ and
ri, t knð Þ, respectively. After a finite number of communications kn, the consensus states Ni, t knð Þ
and ri, t knð Þ are, respectively, added to the time update information I i, t∣t�1 and ii, t∣t�1 to obtain
their measurement update version I i, t∣t and ii, t∣t at node i (cf. 28). The time update goes along
the same lines as that of the information filter.

4.2. Time evolution of the CKF error covariances

With the consensus-based information filter, presented in Figure 6, it is therefore feasible to
develop multiple distributed filters, all running in parallel over time. By taking recourse to an
average-consensus protocol, not all the nodes are needed to be directly linked, thereby
allowing non-neighboring nodes to also benefit from information states of each other. The
price one has to pay for such an attractive feature of the CKF is that the local predictors

bxi, t∣t ¼ I�1i, t∣t ii, t∣t, i ¼ 1,…, n, (41)

will have a poorer precision performance than that of their central counterpart bxt∣t. This is due
to the fact that the consensus states Ni, t knð Þ and ri, t knð Þ i ¼ 1;…; nð Þ are just approximations of

Figure 5. The two time-scale nature of a consensus-based Kalman filter (CKF): The data sampling time-scale t ¼ 1, 2,…,
versus the data sending time-scale k ¼ 1,…, kn . The sending rate δmust be reasonably smaller than the sampling rate Δ so
as to be able to incorporate consensus protocols into the CKF setup.
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the averages Nt and rt. Although they reach the stated averages as kn ! ∞, one of course
always comes up with a finite number of communications kn. As a consequence, while the
inverse-matrix I�1t∣t represents the error variance matrix Pt∣t ¼ D xt � bxt∣t

� �
(cf. 17), the inverse-

matrices I�1i, t∣t i ¼ 1;…; nð Þ do not represent the error variance matrices Pi, t∣t ¼ D xt � bxi, t∣t
� �

. To

see this, consider the local prediction errors xt � bxi, t∣t
� �

which can be expressed as (Figure 6)

Figure 6. Algorithmic steps of the CKF in information form concerning the time-evolution of the local information
vector ii, t∣t and matrix I i, t∣t of node i.
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xt � bxi, t∣t ¼ I�1i, t∣t I i, t∣t�1 xt � bxi, t∣t�1
� �� n ri, t knð Þ �Ni, t knð Þxt½ �� �

(42)

Note that the terms xt � bxi, t∣t�1
� �

and ri, t knð Þ �Ni, t knð Þxt½ � are uncorrelated. With lij as the
entries of the product matrix L knð Þ in Eq. (34), one obtains4

ri, t knð Þ �Ni, t knð Þxt½ � ¼
Xn

j¼1
lij rj, t �Nj, t xt
� �

, ) D ri, t knð Þ �Ni, t knð Þxt½ �ð Þ ¼
Xn

j¼1
l2ij Nj, t (43)

since D rj, t �Nj, t xt
� � ¼ Nj, t. With this in mind, an application of the covariance propagation

law to (42) results in the error variance matrix

Pi, t∣t ¼ I�1i, t∣t I i, t∣t�1Pi, t∣t�1I i, t∣t�1 þ n2
Xn

j¼1
l2ij Nj, t

8<
:

9=
;I�1i, t∣t (44)

that is not necessarily equal to I�1i, t∣t (see the following discussion on Eqs. (47) and (48)).

In Figure 7 we present the three-step recursion of the error variance matrix Pi, t∣t (for node i). As

shown, the node i would need an extra input, i.e., the term
Pn

j¼1 l
2
ij Nj, t in order to be able to

compute Pi, t∣t. In practice however, such additional information is absent in the CKF setup. This
means that the node i does not have enough information to evaluate the error variance matrix
Pi, t∣t. Despite such restriction, it will be shown in Section 5 how the recursion of Pi, t∣t conveys
useful information about the performance of the local filters i ¼ 1,…, n, thereby allowing one to
a-priori design and analyze sensor networks with different numbers of iterative communications.

To better appreciate the recursion given in Figure 7, let us consider a special case where a
stationary state-vector xt is to be predicted over time. Thus Φt, t�1 ¼ I and St ¼ 0 t ¼ 1; 2;…ð Þ.
Moreover, we assume that all nodes deliver the same normal matrices Ni, t ¼ N i ¼ 1;…; nð Þ.
The central error variance matrix Pt∣t would then simply follow by inverting the sum of all
normal matrices over n nodes and t time instances. Collecting observables up to and including
time instance t, the stated variance matrix reads Pt∣t ¼ 1=tnð ÞN�1. We now compare Pt∣t with its
consensus-based local counterpart at node i, i.e. Pi, t∣t. The aforementioned assumptions,
together with

Pn
j¼1 lij ¼ 1, give

Ni, t knð Þ ¼
Xn

j¼1
lij Nj, t ¼ N, and n2

Xn

j¼1
l2ij Nj, t ¼ αnN (45)

in which the scalar α is given by

α :¼ n
Xn

j¼1
l2ij (46)

Substitution into the stated recursion provides us with the time-evolution of the error variance
matrix Pi, t∣t as follows (Figure 7)
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I i,1∣0 ¼ 0, Fi,1 ¼ 0
↓

I i,1∣1 ¼ nN, ) Pi,1∣1 ¼ α
1
n
N�1

↓

I i,2∣1 ¼ I i,1∣1, Fi,2 ¼ αnN ) Pi,2∣1 ¼ Pi,1∣1

⋮ ⋮ ⋮
I i, t∣t�1 ¼ I i, t�1∣t�1, Fi, t ¼ α t� 1ð ÞnN ) Pi, t∣t�1 ¼ Pi, t�1∣t�1

↓

I i, t∣t ¼ tnN, ) Pi, t∣t ¼ α
1
tn

N�1

(47)

This shows that the consensus-based error variance matrix Pi, t∣t is α times its central counter-

part Pt∣t ¼ 1=tnð ÞN�1. With the vector l≔ li1;…; lin½ �T, application of the Cauchy-Schwarz
inequality gives the lower-bound

Figure 7. The three-step recursion of the error variance matrix Pi, t∣t ¼ D xt � bxi, t∣t
� �

for node i. The extra term
Pn

j¼1 l
2
ij Nj, t

would be required to compute Pi, t∣t. The entries of the product matrix L knð Þ in Eq. (34) are denoted by lij.
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α ¼ eTn en
� �

lTl
� �

≥ lTen
� �2 ¼ 1 (48)

as lTen ¼ 1. Thus scalar α is never smaller than 1, i.e. Pi, t∣t ≥Pt∣t, showing that the performance
of the consensus-based predictor bxi, t∣t is never better than that of its central version bxt∣t. The
lower-bound Eq. (48) is reached when l ¼ 1=nð Þen, i.e. when lij ¼ 1=n (j ¼ 1,…, n). According to

Eq. (34), this can be realized if L knð Þ ! 1=nð ÞeneTn , for which the number of iterations kn might
be required to be reasonably large. The conclusion reads therefore that the local filters at nodes
i ¼ 1,…, n, generate information matrices I i, t∣t, the inverse of which are different from the
actual error variance matrices of the predictors bxi, t∣t, i.e. I�1i, t∣t 6¼ Pi, t∣t.

5. Applications to GNSS

The purpose of this section is to demonstrate how the CKF theory, discussed in Section 4, can
play a pivotal role in applications for which the GNSS measurements of a network of receivers
are to be processed in a real-time manner. In a GNSS network setup, each receiver serves as a
sensor node for receiving observables from visible GNSS satellites to determine a range of
different parameters such as positions and velocities in an Earth-centered Earth-fixed coordi-
nate system, atmospheric delays, timing and instrumental biases, see e.g. [11, 12]. As the
observation equations of the receivers have satellite specific parameters in common, the
receivers’ observables are often integrated through a computing (fusion) center to provide
network-derived parameter solutions that are more precise than their single-receiver versions.
Now the idea is to deliver GNSS parameter solutions without the need of having a computing
center, such that their precision performance is still comparable to that of network-derived
solutions.

As previously discussed, consensus-based algorithms and in particular the CKF can be
employed to process network data in a distributed filtering scheme, i.e. no computing center
is required. In order to illustrate such applicability, we simulate a network of 13 GNSS
receivers located in Perth, Western Australia (Figure 8). As shown in the figure, each node
(white circle) represents a receiver having data links (red lines) to its neighbors with inter-
station distances up to 4 km. We therefore assume that the receivers receive each other data
within the ranges not longer than 4 km. For instance, receiver 1 is directly connected to
receivers 2 and 6, but not to receiver 3 (the inter-station distance between receivers 1 and 3 is
about 8 km).

5.1. GNSS ionospheric observables: Dynamic and measurement models

Although the GNSS observables contain information on various positioning and non-
positioning parameters, here we restrict ourselves to ionospheric observables of the GPS pseudo-
range measurements only [44]. One should however bear in mind that such restriction is made
just for the sake of presentation and illustration of the theory discussed in Sections 3 and 4.
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Would one, for instance, make use of the very precise carrier-phase measurements and/or
formulate a multi-GNSS measurement setup, solutions of higher precision levels are therefore
expected.

Let the scalar ysi, t denote the pseudo-range ionospheric observable that the receiver i collects
from satellite s at time instance t. The corresponding measurement model, formed by the
between-satellite differences ypsi, t≔ysi, t � ypi, t s 6¼ pð Þ, reads (cf. 5)

ypsi, t ¼ apsi, t; o νo, t þ apsi, t;ϕ νϕ, t þ apsi, t;ψ νψ, t
n o

� bpst þ εpsi, t (49)

where the term within :f g refers to the first-order slant ionospheric delays, and bpst denotes the
between-satellite differential code biases (DCBs). We use a regional single-layer model [45, 46]
to represent the slant ionospheric delays in terms of 1) νo, t as the vertical total electron content
(TEC), 2) νϕ, t and 3) νψ, t as the south-to-north and west-to-east spatial gradient of νo, t, respec-
tively. The corresponding known coefficients follow from Ref. [47]

asi, t; o ¼
1

cos zsi, t
� � , asi, t;ϕ ¼

1

cos zsi, t
� � ϕs

i, t � ϕo, t

� �
, asi, t;ψ ¼

1

cos zsi, t
� � cos ϕs

i, t

� �
ψs
i, t � ψo, t

� �

(50)

with :ð Þps≔ :ð Þs � :ð Þp. The angles ψs
i, t and ϕs

i, t, respectively, denote the longitude and latitude of

the ionospheric piercing points (IPPs) corresponding to the receiver-to-satellite line-of-sight

Figure 8. A network of 13 GNSS receivers simulated over Perth, Western Australia. Each node (white circle) represents a
receiver tracking GNSS satellites. The receivers have data links to their neighbors with inter-station distances up to 4 km.
The data links are shown by red lines.
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i� s (see Figure 9). They are computed with respect to those of the reference IPP at time
instance t, i.e. ψo, t and ϕo, t. The angle zsi, t denotes the zenith angle of the IPPs. These angles

are computed based on the mean Earth’s radius 6378:137 km and height of layer 450 km. The
measurement noises εsi, t are assumed to be mutually uncorrelated with the dispersion (cf. 6)

D εsi, t
� �

¼ 1:022

0:02þ sin θs
i, t

� �� �2 σ2 (51)

forming the variance matrices Rt in Eq. (6), where θs
i, t is the satellite elevation angle. The scalar

σ is set to σ ≈ 65:6 cm as the zenith-referenced standard-deviation of the GPS ‘geometry-free’
pseudo-range measurements [48].

Suppose that m number of satellites s ¼ 1,…, m, are tracked by the network receivers
i ¼ 1,…, n ¼ 13, during the observational campaign. The state-vector sought is structured as

xt ¼ νo, t; νϕ, t; νψ, t; b
p1
t ; bp2t ;…; bpmt

h iT
(52)

Thus the state-vector xt contains three TEC parameters νo, t, νϕ, t, νψ, t and m� 1ð Þ between-

satellite DCBs bpst (s 6¼ p). The dynamic model is assumed to be given by (cf. 2, 4 and 21)

νo, t
νϕ, t
νψ, t

2
64

3
75 ¼

νo, t�1
νϕ, t�1
νψ, t�1

2
64

3
75þ

do
dϕ
dψ

2
64

3
75, and bpst ¼ bpst�1 s 6¼ p (53)

Thus the DCBs bpst are assumed constant in time, while the temporal behavior of the TEC
parameters νo, t, νϕ, t, νψ, t is captured by a random-walk process. The corresponding zero-mean

Figure 9. Longitude (ψ) and latitude (ϕ) of an ionospheric piercing point (IPP) corresponding to a receiver-to-satellite
line-of-sight. The distance scales are exaggerated.
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Would one, for instance, make use of the very precise carrier-phase measurements and/or
formulate a multi-GNSS measurement setup, solutions of higher precision levels are therefore
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Let the scalar ysi, t denote the pseudo-range ionospheric observable that the receiver i collects
from satellite s at time instance t. The corresponding measurement model, formed by the
between-satellite differences ypsi, t≔ysi, t � ypi, t s 6¼ pð Þ, reads (cf. 5)
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� � ϕs
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� �
, asi, t;ψ ¼

1
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� �
ψs
i, t � ψo, t

� �

(50)

with :ð Þps≔ :ð Þs � :ð Þp. The angles ψs
i, t and ϕs

i, t, respectively, denote the longitude and latitude of

the ionospheric piercing points (IPPs) corresponding to the receiver-to-satellite line-of-sight

Figure 8. A network of 13 GNSS receivers simulated over Perth, Western Australia. Each node (white circle) represents a
receiver tracking GNSS satellites. The receivers have data links to their neighbors with inter-station distances up to 4 km.
The data links are shown by red lines.
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process noises are assumed to be mutually uncorrelated, having the standard-deviations
σdo ¼ 1 mm/

ffiffiffiffiffiffi
sec
p

and σdϕ ¼ σdpsi ¼ 5 mm/rad/
ffiffiffiffiffiffi
sec
p

[49].

5.2. Observational campaign

The network receivers i ¼ 1,…, n (n ¼ 13), shown in Figure 8, are assumed to track GPS satel-
lites over 16 hours from 8:00 to 24:00 Perth local time, on 02-06-2016. The observation sampling
rate is set to Δ ¼ 1 minute. Thus the number of observational epochs (time instances) is 960. As
to the data sending rate δ (cf. 5), we assume three different sending rates δ ¼ 5, 10 and 15 sec-
onds. Thus the number of iterative communications between the neighboring receivers takes the
values kn ¼ 4, 6 and 12. The consensus protocol 3 (Table 1) is applied to the CKF of each receiver.

As the satellites revolve around the Earth, not all of which are simultaneously visible to the
‘small-scale’ network of Figure 8. Their visibility over time is shown in Figure 10 (left panel) in
which the satellites with elevation angles smaller than 10 degrees are excluded. There are 31
GPS satellites (i.e. m ¼ 31), with PRN 4 absent (PRN refers to the satellite identifier). PRN 22
has the maximum duration of visibility, while PRN 21 has the minimum duration of visibility.
Note also that PRNs 2, 6, 16, 17, 19, 26 and 32 disappear (set) and reappear (re-rise). That is
why their visibility is shown via two separate time intervals. Figure 10 (right panel) shows the
trajectories of the ionospheric pierce points on the ionospheric single layer that are made by
receiver-to-satellite line-of-sight paths. It is the spatial distribution of these points that drives
the coefficients apsi, t; o, a

ps
i, t;ϕ, a

ps
i, t;ψ in Eq. (49).

In the following we present precision analyses on the measurement update solutions of xt in
Eq. (52), given the network and satellite configurations shown in Figures 8 and 10, respec-
tively. Throughout the text, PRN 10 is chosen as the pivot satellite p (cf. (49)). By the term
‘standard-deviation’, we mean the square-root of prediction errors’ variance.

Figure 10. Left: GPS satellites visibility over time, viewed from Perth, Western Australia. Right: Trajectories of the
corresponding IPPs made by receiver-to-satellite line-of-sight paths. The satellites are indicated by different colors.
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5.3. Central (network-based) versus local (single-receiver) solutions

Before discussing the precision performance of the CKF solutions, we first compare the network-
based (central) TEC solutions with the solutions that are obtained by the data of one single-
receiver only (referred to as the local solutions). At the filter initialization, the standard-deviations

of the local TEC solutions are
ffiffiffiffiffi
13
p

≈ 3:6 times larger than those of the central TEC solutions (i.e.
square-root of the number of nodes). This is because of the fact that each of the 13 network
receivers independently provides equally precise solutions. In that case, the central solution
follows then by averaging all the 13 local solutions. Due to the common dynamic model Eq. (53)
however, the local solutions become correlated over time. After the filter initialization, the central
solution would therefore not follow the average of its local versions. The standard-deviation
results, after one hour of the filter initialization, are presented in Figure 11. Only the results of
the receiver 1 are shown as local solutions (in red). As shown, the standard-deviations get stable
over time as the filters reach their steady-state. On the right panel of the figure, the local-to-central
standard-deviation ratios are also presented. In case of the vertical TECs νo, t, the ratios vary from
1.5 to 3. For the horizontal gradients νϕ, t and νψ, t, the ratios are about 2 and 2.5, respectively.

5.4. Role of CKF in improving local solutions

With the results of Figure 11, we observed that the central TEC solutions considerably
outperform their local counterparts in the sense of delivering more precise outcomes, i.e. the
local-to-central standard-deviation ratios are considerably larger than 1. We now employ the

Figure 11. Left: Standard-deviation of the central (green) and local (red) solutions of the TEC parameters νo, t (top), νϕ, t
(middle) and νψ, t (bottom) as functions of time. Right: The corresponding local-to-central standard-deviation ratios.
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5.3. Central (network-based) versus local (single-receiver) solutions

Before discussing the precision performance of the CKF solutions, we first compare the network-
based (central) TEC solutions with the solutions that are obtained by the data of one single-
receiver only (referred to as the local solutions). At the filter initialization, the standard-deviations

of the local TEC solutions are
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≈ 3:6 times larger than those of the central TEC solutions (i.e.
square-root of the number of nodes). This is because of the fact that each of the 13 network
receivers independently provides equally precise solutions. In that case, the central solution
follows then by averaging all the 13 local solutions. Due to the common dynamic model Eq. (53)
however, the local solutions become correlated over time. After the filter initialization, the central
solution would therefore not follow the average of its local versions. The standard-deviation
results, after one hour of the filter initialization, are presented in Figure 11. Only the results of
the receiver 1 are shown as local solutions (in red). As shown, the standard-deviations get stable
over time as the filters reach their steady-state. On the right panel of the figure, the local-to-central
standard-deviation ratios are also presented. In case of the vertical TECs νo, t, the ratios vary from
1.5 to 3. For the horizontal gradients νϕ, t and νψ, t, the ratios are about 2 and 2.5, respectively.

5.4. Role of CKF in improving local solutions

With the results of Figure 11, we observed that the central TEC solutions considerably
outperform their local counterparts in the sense of delivering more precise outcomes, i.e. the
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CKF for each node (receiver) i ¼ 1,…, 13, to improve the local solutions’ precision performance
via consensus-based iterative communications between the receivers. In doing so, we make
use of the three-step recursion given in Figure 7 to evaluate the error variance matrices Pi, t∣t

(i ¼ 1,…, 13), thereby computing the CKF-to-central standard-deviation ratios. The stated
ratios are presented in Figure 12 for two different data sending rates δ ¼ 15 seconds (left panel)
and δ ¼ 5 seconds (right panel). In both cases, the CKF-to-central standard-deviation ratios are
smaller than their local-to-central versions shown in Figure 11 (right panel), illustrating that
employing the CKF does indeed improve the local solutions’ precision. Since more iterative
communications take place for δ ¼ 5, the corresponding ratios are very close to 1. In that case,
the CKF of each receiver is expected to have a similar precision performance to that of the
central (network-based) filter. For the case δ ¼ 15 however, the CKF performance of each
receiver does very much depend on the number of the receiver’s neighbors. This is because of
the fact that only 4 iterative communications between the receivers take place (i.e. kn ¼ 4). The
receivers with the minimum number of neighbors, i.e. receivers 1, 3 and 13 (Figure 8), have the
worst precision performance as the corresponding ratios take largest values. On the other
hand, the receivers with the maximum number of neighbors, i.e. receivers 4, 7, 9 and 8, have
the best performance as the corresponding ratios are close to 1.

Next to the solutions of the TEC parameters νo, t, νϕ, t and νψ, t, we also analyze CKF solutions of

the between-satellite DCBs bpst (s 6¼ p) in Eq. (52). Because of the difference in the satellites
visibility over time (cf. Figure 10), the DCBs’ standard-deviations are quite distinct and very
much depend on the duration of the satellites visibility. The more a pair of satellites p� s are

Figure 12. Time-series of the CKF-to-central standard-deviation ratios corresponding to the TEC parameters νo, t (top),
νϕ, t (middle) and νψ, t (bottom). Left: The data sending rate is set to δ ¼ 15 seconds (i.E. 4 iterative communications). Right:
The data sending rate is set to δ ¼ 5 seconds (i.E. 12 iterative communications). The results of the nodes (receivers) are
indicated by different colors.
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visible, the smaller the standard-deviation is expected. We now consider the required time to
have between-satellite DCBs solutions with standard-deviation smaller than 0.5 nanoseconds.
Because of the stated difference in the standard-deviations, each between-satellite DCB corre-
sponds to a different required time. For the central filter, the minimum value of such required
time is 7 minutes, with the 25th percentile as 12, median as 38, 75th percentile as 63 and the
maximum as 84 minutes. Thus after 84 minutes of the filter initialization, all central DCB
solutions have standard-deviations smaller than 0.5 nanoseconds. Such percentiles can be
represented by a ‘boxplot’. We compute the stated percentiles for all the CKF solutions and
compare their boxplots with the central one in Figure 13. The results are presented for three

Figure 13. Boxplots of the required time (minutes) to have between-satellite DCBs solutions with standard-deviation
smaller than 0.5 nanoseconds. The performance of the CKF of each node (receiver) is compared to that of the central filter
(Cen.). In each boxplot, the horizontal lines from bottom to top show the minimum (black), 25th percentile (blue), median
(green), 75th percentile (blue) and maximum (black) of the stated required time. The data sending rate is set to Top: δ ¼ 15
seconds (i.E. 4 iterative communications), Middle: δ ¼ 10 seconds (i.E. 6 iterative communications), and Bottom: δ ¼ 5
seconds (i.E. 12 iterative communications).
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visible, the smaller the standard-deviation is expected. We now consider the required time to
have between-satellite DCBs solutions with standard-deviation smaller than 0.5 nanoseconds.
Because of the stated difference in the standard-deviations, each between-satellite DCB corre-
sponds to a different required time. For the central filter, the minimum value of such required
time is 7 minutes, with the 25th percentile as 12, median as 38, 75th percentile as 63 and the
maximum as 84 minutes. Thus after 84 minutes of the filter initialization, all central DCB
solutions have standard-deviations smaller than 0.5 nanoseconds. Such percentiles can be
represented by a ‘boxplot’. We compute the stated percentiles for all the CKF solutions and
compare their boxplots with the central one in Figure 13. The results are presented for three

Figure 13. Boxplots of the required time (minutes) to have between-satellite DCBs solutions with standard-deviation
smaller than 0.5 nanoseconds. The performance of the CKF of each node (receiver) is compared to that of the central filter
(Cen.). In each boxplot, the horizontal lines from bottom to top show the minimum (black), 25th percentile (blue), median
(green), 75th percentile (blue) and maximum (black) of the stated required time. The data sending rate is set to Top: δ ¼ 15
seconds (i.E. 4 iterative communications), Middle: δ ¼ 10 seconds (i.E. 6 iterative communications), and Bottom: δ ¼ 5
seconds (i.E. 12 iterative communications).
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different data sending rates δ ¼ 15 seconds (top), δ ¼ 10 seconds (middle) and δ ¼ 5 seconds
(bottom). As shown, the more the number of iterative communications, the more similar the
boxplots becomes, i.e. the nodes (receivers) are reaching consensus. Similar to the TEC solu-
tions, the DCB precision performance of the CKF corresponding to the receivers 4, 7, 9 and 8 is
almost similar to that of the central one, irrespective of the number of iterative communica-
tions. This follows from the fact that the stated receivers have the maximum number of
neighbors (Figure 8), thus efficiently approximating the averages Nt and rt in Eq. (28) after a
few iterations. On the other hand, the receivers with the minimum number of neighbors require
more number of iterative communications in order for their CKF precision performance to get
similar to that of the central filter.

6. Concluding remarks and future outlook

In this contribution we reviewed Kalman filtering in its information form and showed how the
additive measurement update (28) can be realized by employing average-consensus rules,
even when not all nodes are directly connected, thus allowing the sensor nodes to develop
their own distributed filters. The nodes are assumed linked to each other at least through a
‘path’ so that information can flow from each node to all other nodes. Under this assumption,
average-consensus protocols can deliver consensus states Ni, t knð Þ; ri, t knð Þ½ � as an approxima-
tion of the averages Nt; rt

� �
in Eq. (28) at every time instance t ¼ 1, 2,…, thus allowing one to

establish a CKF recursion at every node i ¼ 1,…, n. To improve the stated approximation, the
neighboring nodes have to establish a number of iterative data communications to transfer and
receive their consensus states. This makes the CKF implementation applicable only for the
applications in which the state-vectors change rather slowly over time (i.e. the sampling rate Δ
can take large values) and/or for the cases where the sensor nodes transfer their data rather
quickly (i.e. the sending rate δ can take small values).

We developed a three-step recursion of the CKF error variance matrix (Figure 7). This recur-
sion conveys useful information about the precision performance of the local filters i ¼ 1,…, n,
thereby enabling one to a-priori design and analyze sensor networks with different numbers of
iterative communications. As an illustrative example, we applied the stated recursion to a
small-scale network of GNSS receivers and showed the role taken by the CKF in improving
the precision of the solutions at each single receiver. In near future the proliferation of low-cost
receivers will give rise to an increase in the number of GNSS users. Employing the CKF or
other distributed filtering techniques, GNSS users can therefore potentially deliver high-
precision parameter solutions without the need of having a computing center.
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receivers will give rise to an increase in the number of GNSS users. Employing the CKF or
other distributed filtering techniques, GNSS users can therefore potentially deliver high-
precision parameter solutions without the need of having a computing center.
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