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Preface

Digital image processing and computer vision represent an exciting and important part of
computer science. The last three decades have witnessed a significant growth of applications
in the field of remote sensing, approach towards super resolution images, image analytics,
scalable image and video coding, biomedical imaging and automatic surveillance due to In‐
ternet explosion.

Image processing is a technique to enhance raw images received from different sources such
as satellites, biomedical field and pictures taken in normal day-to-day life for various appli‐
cations. Various techniques have been developed in image processing during the last four to
five decades. Image processing systems are becoming popular since image processing is
used in various applications such as (a) remote sensing, (b) medical imaging, (c) forensic
studies, (d) textiles, (e) mineral science, (h) film industry and (i) document processing.

Information and processing are the buzz words in the modern era. The demand for multi‐
media applications has increased enormously. Like many other recent developments, the
tremendous growth of image and video processing is due to the contribution from major
areas such as good network access, easy availability of powerful personal computers, large-
size memory devices, availability of graphics software, good number of fast processors
available in the market and evolution of pretty good signal processing algorithms.

The various image processing techniques are (1) image enhancement (2) image restoration,
(3) image analysis, (4) image registration, (5) image segmentation, (6) image data compres‐
sion, etc.

Image enhancement: Sometimes images obtained from satellites or conventional digital
cameras lack in contrast and brightness (qualities of image) because of the shortcomings of
imaging subsystems and poor illumination conditions. In image enhancement, the aim is to
modify certain image features for subsequent analysis or for image display. Examples in‐
clude contrast and edge enhancement, noise filtering, sharpening and magnifying. Image
enhancement is useful in feature extraction, image analysis and image display. The enhance‐
ment process itself does not increase the inherent information content in the data.

Image analysis: This deals with taking quantitative measurements from an image to pro‐
duce a description of the same. In the simple way, this could be reading a label on a grocery
item, getting features from an image or measuring the size and orientation of cells in a medi‐
cal image. More advanced image analysis systems measure quantitative information and
use the same to make a sophisticated decision, such as navigating an aircraft with the aid of
images acquired along its trajectory. Image analysis techniques require extraction of certain
features that aid in the identification of the object.



Image segmentation: It is the process to subdivide an image into its constituent parts. In a
simple understanding, this could be like locating countries in world map. The amount to
which this subdivision is carried out depends on the problem, that is the segmentation
should stop when the objects of interest in an application have been isolated, for example
isolation of tumour from brain images. numbers of algorithms available such as image
thresholding, watershed algorithm, atlas-based segmentation, region-based split and merge
techniques and clustering-based segmentation which are used for image segmentation.

Image registration: It is the process of spatially aligning two or more images of a scene. The
alignment process will determine the correspondence between points in the images, ena‐
bling the fusion of information in the images and the determination of scene changes. If
identities of objects in one of the images are known, by registering the images, identities of
objects and their locations in another image can be determined. Image registration is a criti‐
cal component of remote sensing, biomedical and industrial image analysis systems.

Image restoration: This includes reduction of image degradation by different causes such as
defects of optical lenses, relative motion between object and camera, wrong focus, turbu‐
lence in atmosphere and accumulation of noise. There are two main algorithms available for
restoration: (1) deterministic methods and (2) stochastic methods in both spatial and fre‐
quency domains.

Image/video compression: Image and video data compression refers to a process in which
the amount of data used to represent image and video is reduced to meet a bit rate (coding
rate) requirement (below or at most equal to the maximum available bit rate), while the
quality of the reconstructed image or video satisfies a requirement for a certain application,
and the complexity of computation involved is affordable for the application. The required
quality of the reconstructed image and video is application dependent. In still image com‐
pression, a certain amount of information loss is allowed and this is called lossy compres‐
sion. Normally transform-based compression scheme removes interpixel correlation. The
recent growth of data intensive multimedia-based web applications has not only sustained
the need for more efficient ways to encode signals and images but has made compression of
such signals central to storage and communication technology.

The first recommended international coding standard was Joint Photographic Experts
Group (JPEG), and it completely relies on 8 X 8 block-based discrete cosine transform (DCT).
The limitation of the JPEG standard comes from the introduction of blocking artefacts. A
new standard called JPEG-2000 (using wavelets) was introduced because of the advance‐
ments in embedded quantization schemes and new transforms. Still, there is a need for the
improvement in the image and video quality with an acceptable compression ratio.

The advancement of computer storage facility continues at a rapid pace so that a means of
reducing storage requirements of an image and video has been evolved. Thus, the concept
of digital video compression/coding emerged. This storage capacity seems to be more attrac‐
tive when it is realized that the motive is to deliver very high quality video to the end user
with as few visible artefacts as possible. Current methods of video compression such as
Moving Picture Experts Group (MPEG) standard provide good performance in terms of re‐
taining video quality while reducing the storage requirements.

Scope of this book: Many books are available for image and video coding fundamentals.
This book is the research outcome of various researchers and professors who have contribut‐
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ed a might in this field. This book suits researchers doing their research in the area of image
processing and video coding. The understanding of fundamentals of image processing and
video coding is essential for the readers before reading this book. The book revolves around
three different challenges, namely, (i) coding strategies (coding efficiency and computational
complexity), (ii) video compression and (iii) error resilience. The complete efficient video
system depends upon source coding, proper inter- and intra-frame coding, emerging newer
transform, quantization techniques and proper error concealment. The book gives the solu‐
tion of all the challenges and is available in different sections.

Structure of the book: The book contains eleven chapters grouped into five sections. The
user of the book is expected to know the fundamentals of digital image processing which is
available in the entire standard digital image processing books. Section 1 deals with image
compression algorithms containing two chapters. Section 2 describes image segmentation
and classification containing two chapters. Section 3 concentrates on image fusion algo‐
rithms containing two chapters. Section 4 deals with the role of artificial vision in mechani‐
cal applications, and the last section is devoted for video coding containing four chapters.
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Abstract

Perceptual coding is a subdiscipline of image and video coding that uses models of
human visual perception to achieve improved compression efficiency. Nearly, all image
and video coders have included some perceptual coding strategies, most notably visual
masking. Today, modern coders capitalize on various basic forms of masking such as
the fact that distortion is harder to see in very dark and very bright regions, in regions
with higher frequency content, and in temporal regions with abrupt changes. However,
beyond these obvious forms of masking, there are many other masking phenomena that
occur (and co-occur) when viewing natural imagery. In this chapter, we present our
latest research in perceptual image coding using natural-scene masking models. We
specifically discuss: (1) how to predict local distortion visibility using improved natural-
scene masking models and (2) how to apply the models to high efficiency video coding
(HEVC). As we will demonstrate, these techniques can offer 10–20% fewer bits than
baseline HEVC in the ultra-high-quality regime.

Keywords: HEVC, visual masking, contrast gain control, adaptive quantization

1. Introduction

Recent advancements in digital signal processing technologies have made available a wide
variety of digital media for end use by consumers and practitioners. It is estimated that more
than 100 billion digital photos and videos are recorded, transmitted, and viewed annually just
in the United States. Today, the tremendous popularity of ubiquitously connected digital
imaging devices has made the Internet the standard means by which to share imagery. Of

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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course,  digital  images/videos  have  many  uses  beyond  entertainment,  including  online
education, video conferencing, remote medical diagnoses, and many others. Such widespread
use of digital images and videos places a great demand on compression algorithms which are
absolutely crucial for reducing the bandwidth requirements of storing and transmitting these
images and videos.

To this end, state-of-the-art image/video compression algorithms exploit the fact that the
human visual system (HVS) is an imperfect sensor. When a digital image/video is to be viewed
by a human, an exact bit-for-bit reconstruction is unnecessary; rather, the data can be coded
in a non-invertible or lossy fashion. Lossy compression is useful for applications where lower
information fidelity can be tolerated, such as in consumer photography, computer vision, and
machine vision applications. If the compression distortions are invisible, the compression is
said to be visually lossless. Visually lossless compression techniques generally take advantage
of a low-level psychophysical phenomenon such as visual masking. If, on the other hand, the
compression distortions are visible, the compression is called visually lossy. Visually lossy
compression techniques aim to generate the best-looking reconstructed version under the
given bit-rate constraints. Both of these paradigms fall under the more general category of the
so-called perceptual coding, owing to the need to model the human visual system (HVS), and
in particular, how the HVS detects and perceives compression-induced distortions.

With the release of each new coding standard, the emphasis in perceptual coding research has
largely shifted from the mid-quality regime toward the ultra-high-quality regime, with the aim
of producing compressed images and videos which are visually equivalent to the originals.
Thus, research in visually lossless compression has seen a recent resurgence in importance. In
this chapter, we focus exclusively on visually lossless image compression. The key challenge
in visually lossless compression is to automatically determine, on a per image basis, the
maximum amount of compression that can be applied before the resulting image appears
distorted. However, to tackle this challenge requires the ability to accurately and efficiently
predict the visibility of local distortions in an image, a task which still remains elusive in the
current research.

Perceptual coding strategies have long relied on well-known properties of the HVS largely
derived from the visual psychophysics literature (e.g., see [1, 2]). Perhaps, the most well-known
and widely used property is the contrast sensitivity function (CSF), which specifies the visibility
of a narrowband spatial pattern (the target of detection) as a function of the pattern’s spatial or
temporal frequency. Previous psychophysical studies have shown that the minimum contrast
needed to detect a visual target (e.g., distortions) varies with both the spatial frequency and
the temporal frequency of the target. This minimum contrast is called the contrast threshold,
and the inverse of this threshold is called contrast sensitivity. For targets consisting of spatial
sine waves, the CSF is band-pass, indicating that we are least sensitive to very low-frequency
and very high-frequency targets. The temporal CSF is an extension of the spatial CSF which
takes into account sensitivity to time-varying targets, typically demonstrating a peak in
sensitivity around 4–8 Hz.

The CSF can be thought of as a baseline visual sensitivity measure because the CSF is tradi-
tionally measured for targets shown against a blank background. However, for targets
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consisting of compression distortions, this blank-background scenario occurs only when the
distortions happen to appear in very smooth regions such as in the sky. In other image regions,
such as in structures, textures, and hybrids regions, the distortions are generally more difficult
to detect (i.e., they exhibit higher contrast detection thresholds), and therefore, visual sensi-
tivity to the distortions is said to be reduced in these regions. This concept of visual masking
has served as the cornerstone of modern perceptual coding.

At the most general level, visual masking refers to a reduction or elimination in the visibility
of one signal (called the “target”) caused by the presence of another signal (called the “mask”).
For image compression, the image serves as the mask, and the compression distortions serve
as the targets of detection. There are various forms of visual masking which can occur and co-
occur in images and video. For example, it is well-known that humans have a harder time
seeing distortions in very bright regions of an image, an HVS property called luminance
masking. To capitalize on this fact, modern coding schemes more coarsely quantize the
coefficients corresponding to (devote fewer bits to) locations of higher luminance. A similar
strategy can be used for very busy regions of an image (contrast masking) or during scene
changes in video (temporal masking).

These low-level aspects of the HVS are so commonly used in image/video coding for two
simple reasons: (1) they are easy to incorporate and (2) such low-level aspects have been well-
documented in the visual psychology literature with accompanying computational models.
However, most existing models of masking (and thus, existing perceptual coding techniques)
are largely based on findings using artificial stimuli rather than on a true database of natural
scenes. The advantage of these artificial masks is that they have well-defined features and
parameters, which allows one to investigate the effects of specific mask properties on the
detection thresholds. However, in image compression, the mask is necessarily an image, and
thus, it remains unclear whether the results obtained using artificial masks can be used to
predict the results obtained using natural scene masks. There are some studies using natural
scenes as masks, but these studies either employed only a limited number of tested images, or
the thresholds were limited to select spatial locations within images (e.g., [3–5]).

In this chapter, we present our latest research in visually lossless image compression which
operates based on the concept of masking maps predicted from a natural-scene masking model
built upon a large local masking database [6]. Specifically, we recently published the results of
a large-scale psychophysical study designed to obtain local contrast detection thresholds
(masking maps) for a database of natural images [6]. This database can serve as crucial ground-
truth data for investigating on how local image content affects the visual masking thresholds.
Using this database, we present an high efficiency video coding (HEVC)-based quantization
scheme which uses the contrast gain control (CGC) with structure facilitation model trained
on the database of local masking thresholds to predict a masking map for the to-be-compressed
image. The masking map is then used to guide a spatially adaptive quantization scheme, which
more coarsely quantizes the blocks that can induce greater masking, and vice-versa. Using this
approach, our technique can generate compressed images in which the contrasts of the local
compression artifacts are much closer to their masked visibility thresholds than when using
standard HEVC.

Visually Lossless Perceptual Image Coding Based on Natural-Scene Masking Models
http://dx.doi.org/10.5772/65362
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This chapter is organized as follows: Section 2 provides a brief review of current visually
lossless perceptual image compression algorithms. In Section 3, we describe the computational
models used to predict the masking map for any given input image. In Section 4, we describe
how to incorporate the masking map to perform spatially adaptive compression using HEVC.
In Section 5, we analyze and discuss the performance of the proposed visually lossless
compression method. General conclusions are presented in Section 6.

2. Previous work on perceptual image compression

As we mentioned, the goal of visually lossless image compression is to generate images
containing distortions at or just below the visual detection threshold. To this end, previous
work in this area has exploited properties of the HVS (most notably the CSF and visual
masking) and has taken a variety of approaches toward incorporating these visual properties
into the transform, quantization, and/or encoding stages. In this section, we briefly review
previous work on perceptual (HVS-based) image compression.

Perceptual image compression techniques can be dated back as early as 1990s when Safranek
et al. [7] published one of earliest attempts at incorporating HVS properties into compression
through a system called perceptually tuned subband image coder (PIC). Three properties of
low-level vision were modeled in PIC: (1) contrast sensitivity, (2) luminance masking, and (3)
contrast masking. These properties were used to guide the selection of per-subband quanti-
zation step sizes designed to yield visually lossless results. Although PIC was initially designed
for visually lossless compression, Pappas et al. [8] reported that this system can also be used
for visually lossy compression, and high performance can be achieved when the perceptual
thresholds are properly scaled. Also, Hontsch et al. [9] extended PIC by exploiting visual
masking; they proposed a locally adaptive perceptual coder, which discriminates between
image components based on their perceptual relevance.

Later research on compression has exploited the properties of the HVS and employed the CSF
to regulate the quantization step size in order to minimize the visibility of compression
artifacts. For example, Nadenau et al. [10] incorporated HVS properties into a wavelet-based
coding algorithm via a noise-shaping filtering stage which preceded quantization. Albanesi
[11] proposed a method for incorporating HVS characteristics directly into the transform stage
of a wavelet-based coder via the design of analysis and synthesis filters based on the CSF.
Antonini et al. [12] introduced a wavelet coder which employed a CSF-weighted distortion
criterion during bit allocation. O’Rourke et al. [13] proposed a wavelet-based image compres-
sion technique based on two properties of the HVS: orientation sensitivity and contrast
sensitivity. Specifically, the diamond-shaped frequency passband of the HVS was exploited for
the design of the compression scheme, and the logarithm of the contrast sensitivity was
employed for bit allocation. Lai et al. [14] presented an image compression scheme in which
contrast-sensitivity and visual masking adjustments were performed within a wavelet-based
coder using a low-pass model of the CSF and a local measure of visual distortion. In two similar
approaches, Beegan et al. [15] used a “CSF mask” to adjust transform coefficients prior to the

Recent Advances in Image and Video Coding6



This chapter is organized as follows: Section 2 provides a brief review of current visually
lossless perceptual image compression algorithms. In Section 3, we describe the computational
models used to predict the masking map for any given input image. In Section 4, we describe
how to incorporate the masking map to perform spatially adaptive compression using HEVC.
In Section 5, we analyze and discuss the performance of the proposed visually lossless
compression method. General conclusions are presented in Section 6.

2. Previous work on perceptual image compression

As we mentioned, the goal of visually lossless image compression is to generate images
containing distortions at or just below the visual detection threshold. To this end, previous
work in this area has exploited properties of the HVS (most notably the CSF and visual
masking) and has taken a variety of approaches toward incorporating these visual properties
into the transform, quantization, and/or encoding stages. In this section, we briefly review
previous work on perceptual (HVS-based) image compression.

Perceptual image compression techniques can be dated back as early as 1990s when Safranek
et al. [7] published one of earliest attempts at incorporating HVS properties into compression
through a system called perceptually tuned subband image coder (PIC). Three properties of
low-level vision were modeled in PIC: (1) contrast sensitivity, (2) luminance masking, and (3)
contrast masking. These properties were used to guide the selection of per-subband quanti-
zation step sizes designed to yield visually lossless results. Although PIC was initially designed
for visually lossless compression, Pappas et al. [8] reported that this system can also be used
for visually lossy compression, and high performance can be achieved when the perceptual
thresholds are properly scaled. Also, Hontsch et al. [9] extended PIC by exploiting visual
masking; they proposed a locally adaptive perceptual coder, which discriminates between
image components based on their perceptual relevance.

Later research on compression has exploited the properties of the HVS and employed the CSF
to regulate the quantization step size in order to minimize the visibility of compression
artifacts. For example, Nadenau et al. [10] incorporated HVS properties into a wavelet-based
coding algorithm via a noise-shaping filtering stage which preceded quantization. Albanesi
[11] proposed a method for incorporating HVS characteristics directly into the transform stage
of a wavelet-based coder via the design of analysis and synthesis filters based on the CSF.
Antonini et al. [12] introduced a wavelet coder which employed a CSF-weighted distortion
criterion during bit allocation. O’Rourke et al. [13] proposed a wavelet-based image compres-
sion technique based on two properties of the HVS: orientation sensitivity and contrast
sensitivity. Specifically, the diamond-shaped frequency passband of the HVS was exploited for
the design of the compression scheme, and the logarithm of the contrast sensitivity was
employed for bit allocation. Lai et al. [14] presented an image compression scheme in which
contrast-sensitivity and visual masking adjustments were performed within a wavelet-based
coder using a low-pass model of the CSF and a local measure of visual distortion. In two similar
approaches, Beegan et al. [15] used a “CSF mask” to adjust transform coefficients prior to the

Recent Advances in Image and Video Coding6

quantization, and Wei et al. [16] used a “visual compander.” Also, in [17], Zhang et al. proposed
luminance and chrominance CSF-based weighting in the discrete-wavelet-packet-transform
domain to reduce perceptible information of the high-dynamic-range images.

There are also some researchers who conducted psychophysical experiment to measure
visibility thresholds for compression artifacts in unnatural images and/or on natural scenes.
For example, Watson et al. [18] measured visual detection thresholds for both individual
wavelet basis functions and simulated wavelet subband quantization distortions presented
against a gray background. The thresholds were modeled as a function of the spatial frequency
of the distortions, and the model was then used to compute quantizer step sizes for each
wavelet subband. In [19], Watson’s approach was extended to lower rate coding via models of
visual masking and summation. Nadenau et al. [5] measured the visibility thresholds of
quantization noise in natural scenes and compared five visual masking models to predict the
visibility thresholds. They concluded that a masking model considering local activity of the
wavelet subbands performed better than point-wise contrast masking models.

In a recent study, Chandler et al. [3] proposed a new kind of masking called the structural
masking by psychophysically measuring the visibility thresholds of wavelet distortions placed
on small patches categorized in three groups: texture, structure, and edges. The authors have
also proposed different set of values of parameters of contrast-gain control model [20] for three
different categories and have shown that the category-specific masking model showed better
compression results for wavelet-type compression schemes. Similarly, in [21], Chandler et al.
proposed a visually lossless compression algorithm based on psychophysical detection
experiments of wavelet distortion on radiograph images.

Several other studies have specifically focused on the visually lossless compression of JPEG
and JPEG2000 compression schemes. For example, Oh et al. [22] developed a visually lossless
compression model which allocates the code streams of the JPEG2000 encoder by measuring
visibility thresholds via a wavelet statistics-based quantization distortion model and a visual
masking model. In [23], Ponomarenko et al. pointed out that the visual quality of input (to-be-
compressed) image has a large effect on the compression performance. Thus, they adaptively
adjusted the scaling factor of the JPEG quantization matrix based on the estimated blur and
noise content of the input image and showed that such a compression scheme gives larger
compression ratio compared to super-high quality mode of consumer digital cameras. Leung
et al. [24] proposed a JPEG2000-based visually lossless compression scheme for CT images in
which the visibility thresholds varied according to the viewing window/display size of the CT
image.

3. Computational models of local masking

This section describes the computational masking models that we developed to predict the
masking map for the given input (to-be-compressed) image. First, we describe the ground-
truth database used to train the models. Next, we describe a modified version of the model
put forth by Watson and Solomon, which operates by simulating V1 neural responses with
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contrast gain control (CGC). Here, we have modified the model and optimized its parameters
to provide the best predictions for the aforementioned database. In addition, we describe an
extension of the model to deal with structural facilitation which we earlier reported in [3].
Structural facilitation refers to the reduction in threshold (increased distortion visibility) in
parts of the image containing highly recognizable structure.

3.1. Database of local masking in natural scenes

In [6], we performed a large-scale psychophysical experiment in which we measured thresh-
olds for detecting simulated distortions placed within each 85 × 85 block of every image from
the CSIQ database [25]. The simulated distortion was a narrowband log-Gabor noise target
whose center frequency was chosen to be near the peak of visual sensitivity (3.6 cycles/degree
of visual angle). The thresholds were obtained using a three-alternative forced-choice proce-
dure [26]; we employed at least three subjects per image, with at least two trials per subject.
The end result of the experiment was a masking map for each of the 30 CSIQ images; each
entry in each map denotes the minimum contrast required for a human subject to detect
distortions at that location in the image.

Figure 1. Masking maps and the corresponding standard deviation maps for all 30 images in the CSIQ database. See
text for details.
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Figure 1 shows the masking maps from the database. Each map consists of 36 values corre-
sponding to the 36 blocks of the associated image. Brighter map values denote higher thresh-
olds (i.e., more masking); darker maps values denote lower thresholds (less masking). The first
and seventh rows of Figure 1 show the 30 mask images. Below the mask images, the first,
second, and third images show the average maps of the two trials of Subject 1, Subject 2, and
Subject 3. The remaining rows show the average maps (taken across all six trials; 2 × 3 subjects),
and the corresponding maps of the standard deviations of each average. Note that the averages
and standard deviations are on different scales; please refer to the respective color bars
shown in Figure 1. Overall, the subjects were in high agreement with each other and with
themselves across separate trials.

In the following subsection, we describe the contrast gain control with structure facilitation
model which operates by simulating V1 neural responses to predict these masking maps.

3.2. Contrast gain control with structure facilitation (CGC+SF) model

Contrast masking [27] has been widely used for predicting distortion visibility in images and
videos [28, 42–44]. Among the many existing models of contrast masking, those which simulate
the contrast gain-control response properties of V1 neurons are most widely used. Although
several contrast gain control (CGC) models have been proposed in previous studies (e.g., Refs.
[20, 27, 30, 31, 41]), in most cases, the model parameters are selected based on results obtained
using either unnatural masks [20] or only a very limited number of natural images. Thus, in
this chapter, we describe two approaches to improve the current CGC model: (1) the CGC
model parameters are optimized by training on the large dataset of local masking in natural
scenes; and (2) the CGC model is incorporated by a structural facilitation (SF) model which
better captures the reduced masking observed in structured regions.

3.2.1. Watson-Solomon contrast gain control (CGC) model

The Watson and Solomon model [20] is a model of V1 simple-cell responses that includes CGC
from neighboring neurons. Figure 2 shows a block diagram of the model. The model takes two
images as input: (1) the mask image (original image), and (2) the mask+target image (distorted
image). Both of these images are then subjected to the following stages:

1. A spatial filter designed to mimic the human contrast sensitivity function (CSF).

2. A local spatial-frequency decomposition designed to mimic the initially linear response
properties of individual V1 neurons.

3. Excitatory and inhibitory nonlinearities designed to mimic the nonlinear response
properties of individual V1 neurons.

4. Divisive inhibition designed to mimic the interactions among groups of V1 neurons.

Steps 1 and 2: For Step 1, we use the CSF filter specified in [32, 33]. For Step 2, we use a log-
Gabor filterbank consisting of six scales and six orientations. The center radial frequencies of
the filters are 0.3, 0.61, 1.35, 3.22, 7.83, 16.1 c/deg, each with a radial-frequency bandwidth of

Visually Lossless Perceptual Image Coding Based on Natural-Scene Masking Models
http://dx.doi.org/10.5772/65362

9



2.75 octaves. The center orientations of the filters are 0°, ± 30°, ± 60°, 90°, each with an
orientation bandwidth of 30°.
Steps 3 and 4: Let  0,  0,  0,  0  denote the output of the log-Gabor filter with a center of

radial frequency 0,   an orientation 0, and at the spatial location 0, 0 . This filter output

represents the initially linear response of the neuron. To obtain the nonlinear neural response, 0, 0, 0, 0 , we perform Steps 3 and 4 via the following equation:

(1)

Here,  is an output gain factor (we use  = 0.1). The parameters  and  are the exhitatory and
inhibitory exponents which impose the nonlinearities (we use  = 2.4 and  = 2.35). The
parameter  is a constant designed to prevent division by zero (we use  = 0.035). The division
simulates inhibition from neighboring neurons; these neurons constitute the so-called inhibi-
tory pool, and they are neighbors in space, radial frequency, and orientation. In Eq. (1), the
inhibitory pool is represented by the set of spatial and spatial frequency coordinates . The

neighbors come from a 3 × 3 surround in space, a ±0.7 octave bandwidth surround in radial
frequency, and a ±60° bandwidth surround in orientation.

Figure 2. Flow of Watson and Solomon contrast gain control model.

All of the abovementioned parameters (, , , , and ) were chosen via a brute-force search

to provide the best overall fit to the thresholds from our database, under the condition that the
parameters remain within biologically plausible ranges [3]. The radial frequency bandwidth
and center radial frequencies were chosen in this way as well. The other parameters of the
model were either set as specified in [20] or were chosen based on our prior related modeling
efforts [3].
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Comparing the responses: Step 4 results in two collections of responses: One collection of
responses to the mask, and another set of responses to the mask+target. The target is deemed
visible if these collections of responses are sufficiently different from each other; thus, indi-
cating a visible difference in the two stimuli (i.e., that the distortions are visible). To determine
whether this condition is met, the collections of responses are subtracted from each other, then
collapsed via Mikowski sum [20], and then this scalar difference () is compared to a pre-
defined “at-threshold” difference value ( = 1). We used a Minkowski exponent of 2.0 to
collapse across space, and an exponent of 1.5 to collapse across radial frequency and orienta-
tion. The contrast of the target is iteratively adjusted until  ≈ . When this condition is met,
the contrast of the target is deemed to be the at-threshold contrast (i.e., the contrast detection
threshold).

We refer interested readers to [6] for more specific details of the database and model.

3.2.2. Structure facilitation (SF) model

Using the optimized parameters described in the previous subsection, our implementation of
the Watson and Solomon CGC model is quite accurate in predicting detection thresholds. On
our database, the model is able to achieve a Pearson correlation coefficient (PCC) of 0.83
between the ground-truth and predicted thresholds. Generally, the model works best on
regions containing textures and is worst on regions containing more complex structure. In
particular, the model tends to overestimate thresholds for regions containing recognizable
structure. This notion is demonstrated in Figure 3, which shows the ground-truth and
predicted thresholds for two images; observe that the model predict the thresholds to be higher
than ground-truth near the top of the gecko’s body and in the child’s face.

Figure 3. Examples of the Watson and Solomon model overestimating thresholds for distortion in some image regions
that contain recognizable structures.
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As we mentioned in [3], recognizable structures within the local regions of natural scenes
facilitate (rather than mask) the distortion visibility. Thus, to model this “structure facilitation,”
we employ an inhibition modulation factor () in the gain control equation:

(2)

where we adjust  depending on the strength of structure within an image. Although the

specific amount of inhibition modulation remains an open area of research, we have found the
following sigmoidal relationship between  and estimated structure strength to be quite

effective (shown in Figure 4):
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Figure 4. The inhibition multiplier  varies depending on structure strength. Strong structures give rise to lower in-

hibition to facilitate the distortion visibility.

Observe that the inhibition modulation is applied in a block-based fashion. Here, λ,  denotes

the inhibition modulation factor for the ith block of size ×.
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The variable  in Eq. (3) is a map which denotes the local structure strength (described next),
and  is a block of  corresponding to the ith block of the image. The inhibition modulation for

each block is further adjusted based on 80% largest values of S, denoted by the variable , 80 . Furthermore, if the largest value of S is small, or if the kurtosis of S is small, then there
is either no sufficient structure (e.g., the image is mostly textured or smooth), or the structure
is not locally concentrated. In this case, no inhibition modulation is applied (i.e., ,  = 1, for

all blocks) (Figure 4).

The structure map  of an image is generated via the following equation which uses different
feature maps:

( ) ( )2 21 .1= ´ ´ ´ - ´ -n n n n nS L Sh E D Dm s (4)

Here, , ℎ, and  denote maps of local luminance, local sharpness [29], and local first-order

Shannon entropy, respectively. The values 𝀵𝀵 and 𝀵𝀵 denote, respectively, maps of the

average and the standard deviation of fractal texture features [34] computed for each local
region. All features were computed for 32 × 32 blocks with 50% overlap between neighboring
blocks. Each feature map was then normalized to the range [0, 1] and then resized to match
the input image’s dimensions. Figure 5 shows some examples.

Figure 5. Structure maps of two example images. The color bar at right denotes the structure strength at each spatial
location of the structure map.

The prediction performance of the Watson and Solomon CGC model can be greatly improved
when the structure facilitation is taken into account [as specified in Eq. (2)]. As demonstrated
in Figure 6, the proposed SF model was able to improve the CGC model’s prediction perform-
ance in local image regions that contain recognizable structures, while not adversely affecting
the prediction results of the others. For example, near the top of the gecko’s body and in the
child’s face, the contrast detection thresholds predicted using the combined CGC+SF model
match the ground-truth thresholds better than using the CGC model. Furthermore, the Pearson
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correlation coefficients between the CGC+SF model predictions and ground-truth thresholds
also improved as compared to using the CGC model alone.

Figure 6. Structural facilitation improves the distortion visibility predictions in local regions of images containing rec-
ognizable structures. Pearson correlation coefficient (PCC) of each map with the experiment map is shown below the
map.

4. Application of the masking model to compression

The masking model described in the previous section provides a way of predicting a masking
map for any given input image. In this section, we show how to use this masking map to achieve
visually lossless compression. In particular, we describe two different ways of incorporating
the masking maps into an HEVC image coder: (1) by adjusting the 𝀵𝀵𝀵𝀵 values in HEVC on a
per-block basis; and (2) by pre-adjusting the image’s pixel values prior to the HEVC compres-
sion, and post-adjusting the pixel values of the decompressed image following HEVC decom-
pression.
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Similar to H.264/AVC, HEVC employs a uniform reconstruction quantizer for the transform
coefficients. It is the quantization stage that introduces distortions; thus, to generate visually
lossless results requires direct or indirect modification of the quantization step sizes (𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵
values) or quantization parameters (𝀵𝀵 values). Previous efforts toward improved quantiza-
tion have aimed at achieving higher PSNR values (e.g., [35, 36]) or other visual quality
measures (e.g., [37, 38]). However, for visually lossless compression, we argue that the use of
masking maps is a much better and logical alternative.

Our approach assumes that each local area within an image should have its own 𝀵𝀵 based on
the amount of masking induced in that region. Note that the larger 𝀵𝀵 value is, the greater the
contrast of the distortions. Therefore, the first step of our method is to predict a QP map
consisting of block-based 𝀵𝀵 values, such that the resulting distortions in each corresponding
block exhibit a contrast at the contrast threshold . Furthermore, as we mention later in Section

5, because the predicted  values are underestimates of thresholds for normal viewing

conditions (as opposed to the highly controlled viewing conditions used in the psychophysical
experiment), we aim for 𝀵𝀵 values required to generate slightly greater than  (greater by at

most 10 dB).

4.1. Local QP estimation from the masking map

Let 𝀵𝀵 denotes the 𝀵𝀵 value for the ith block, and let  denotes the contrast of the resulting

distortions. Our objective is to employ a 𝀵𝀵 for the ith block such that the  for that block is

given by  = , , where ,  denotes the contrast threshold for the ith block. That is, we seek

the 𝀵𝀵 value for each block required to make the block’s distortions at the threshold of

visibility.

The primary difficulty in determining the relationship between  and 𝀵𝀵 is that the relationship
changes depending the patch. In our previous work [39], we used a regression model to predict
the relationship between 𝀵𝀵 and  on a per-block basis using statistical properties of each block
as regressors. Although that approach was extremely fast, it suffered from a significant number
of mispredicted 𝀵𝀵 values and thus induced distortions with incorrect contrasts. Here, we
present a much more accurate solution based on the use of a pre-compression lookup table.

Specifically, prior to using HEVC, we perform the following steps:

STEP 1. Divide the image into 32 × 32 blocks (the maximum block size for HEVC).

STEP 2. Compute the 2D DCT of each block.

STEP 3. Iterate over a 𝀵𝀵 range from 1 to 51…

a. Quantize the block using a corresponding Qstep value given by Qstep = (21/6)QP - 4 as specified
in [40].

b. Perform an inverse 2D DCT of each block.
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c. Measure and record the contrast of the resulting distortions.

In this way, for each block, we record a table that can be used to look up the closest 𝀵𝀵𝀵𝀵 value

required to achieve  = , . Figure 7 shows the lookup table values in the forms of plots (𝀵𝀵𝀵𝀵
vs. ) for eight different image blocks. Generating the lookup table requires only a small
fraction of the total time required to encode the image because only a series of inverse 2D DCTs
and contrast measurements in required. Most importantly, this technique provides extremely
accurate selection of the 𝀵𝀵𝀵𝀵 values.

Figure 7. The relationship between distortion contrast  (in dB) and the 𝀵𝀵𝀵𝀵 used to generate that distortion for eight
blocks from an image. Observe that the 𝀵𝀵𝀵𝀵 vs.  relationships are patch-specific; thus, we generate these curves (in the
form of lookup tables) for all blocks prior to the compression.

4.2. Spatially adaptive quantization using the QP map

Given the QP map, we present two approaches to implement the compression. The first
approach, which is the more direct approach, assigns different 𝀵𝀵𝀵𝀵 values for each 64 × 64 block.
This approach was implemented by modifying the reference HEVC profile to explicitly use a
separate 𝀵𝀵𝀵𝀵 value for each 64 × 64 coding unit. This approach is straightforward to implement,
but it lacks some flexibility.

The other approach, which can be used with any lossy compression algorithm, effects the
spatially adaptive quantization using pre-processing and post-processing stages. Let 1 and2 denote the two image pixels and their corresponding quantization step sizes are denoted

by 𝀵𝀵1 and 𝀵𝀵2, respectively. The quantized values of the two pixels (denoted by 1 and 2)

are then given by
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(5)

(6)

where  = 1/2 is a scaling factor;  is a factor that normalizes the scaled pixel value (e.g.,2 ⋅ ) into [0, 255]. Eqs. (5) and (6) indicate that different local image areas can have different

quantization parameters even though the whole image is quantized using one uniform 𝀵𝀵, as
long as different image pixels are scaled properly.

For standard HEVC, the quantization step sizes relate to the 𝀵𝀵 values via𝀵𝀵𝀵𝀵𝀵𝀵 = 21/6 𝀵𝀵 𝀵𝀵 4. However, in our second approach, because pixel values are quantized,

we relate the quantization step to 𝀵𝀵 value through

( ) ,= = × +t
stepQ f QP A QP B (7)

where t is a nonlinear coefficient which aims at increasing/decreasing the 𝀵𝀵 value range
within a QP map;  and  are the ratio and offset parameters which adjust the quantization
step size after the nonlinear transform. The block diagram of the second approach is shown
in Figure 8. Specifically, in the pre-processing stage, the luma channel of an image is first
multiplied by a scaling map (dented by ) and then divided by  to have a range of [0, 255].
The scaling map is given by

Figure 8. Block diagram of the second approach to achieve spatially adaptive quantization. Although in this chapter,
we show results using HEVC as the encoder and decoder, this second approach can be used with any image compres-
sion algorithm.
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where 1,   2,…,  denote the 𝀵𝀵 values for  different local image areas;  denotes the

average value of 1 ,   2 ,   ⋯,     [i.e.,  = 1 + 2 +   ⋯ +  /]; is given by
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In this chapter, we set  = 2/3,  = 0. Thus,  and  can be written as
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In the post-processing stage, an inverse scaling map (dented by ) is applied to convert the
scaled luminance to the original value:
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In standard HEVC stage, the global 𝀵𝀵 is computed by
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(13)

where 1 and 2 are the linear coefficients which adjust the RMS contrast of the distortions in

the compressed image to be near or below the threshold. We estimated their values by fitting
the model to the 30 images in the CSIQ database, and thus, we set 1 = 0.8, 2 = 2.4.
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where 1 and 2 are the linear coefficients which adjust the RMS contrast of the distortions in

the compressed image to be near or below the threshold. We estimated their values by fitting
the model to the 30 images in the CSIQ database, and thus, we set 1 = 0.8, 2 = 2.4.
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Two problems can occur with this approach. First, the QP map may possibly contain zero
values, in which case the above equations are not valid. Second, the predicted block-based QP
maps often contain abrupt changes of 𝀵𝀵𝀵𝀵 values on the patch edges, which may possibly
deteriorate the qualities of the compressed images by producing the ringing or blocking
artifacts especially at lower bit compression. To solve these two problems, we first set the
local zero 𝀵𝀵𝀵𝀵 values to be the minimum value among all the extra 𝀵𝀵𝀵𝀵 values within the image
and then applied a Gaussian filter to the modified QP maps. As we have observed, for most
natural images, the image contrast should change smoothly, not abruptly, and consequently,
the resulting QP maps should also be smooth. Figure 9 shows the 1600 image compressed
using the QP map with and without the Gaussian filtering. Observe that the blocking artifacts
occur in the compressed image (Figure 9a) if the original QP map was used; these blocking
artifacts disappear when the QP map is smoothed by a Gaussian filter (Figure 9b).

Figure 9. Gaussian filtering of the QP map improves the perceived quality of the compressed image.

In the following section, we show qualitative and quantitative results of using these two
schemes with HEVC.

5. Results and discussion

In this section, we analyze the performance of the proposed visually lossless image coding
algorithm. For this task, all 30 reference images in the CSIQ database were compressed at
visually lossless rates using the proposed method and compared against standard HEVC. The
main difference is that standard HEVC employs a uniform 𝀵𝀵𝀵𝀵 for coding the whole image,
whereas our approach uses spatially adaptive 𝀵𝀵𝀵𝀵 values based on masking.
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Furthermore, we have found that it is possible to induce distortions at up to 10 dB above the
predicted  values while still yielding images which are visually lossless under normal
viewing conditions. The contrast thresholds measured in the aforementioned experiment and
thus the contrast thresholds predicted by the CGC+SF model are accurate for the highly
controlled viewing conditions; yet, they are quite conservative for normal, everyday viewing.

5.1. QP maps

The CGC+SF model takes the 64 × 64-pixels image patch as input and predicts the distortion
contrast threshold () and the corresponding threshold QP map. Figure 10 shows the QP maps
generated from the CGC+SF model for eight images in the CSIQ database.

Figure 10. Eight sample reference images in CSIQ and their corresponding QP maps estimated based on CGC+SF
model.

Observe that the QP maps are indeed image-adaptive; that is, the pattern of how quantization
step sizes are varied across space adapts based on the image content (which is itself based on
the masking model and the relationships between 𝀵𝀵𝀵𝀵 and ). In general, the QP maps specify
larger quantization step sizes for regions that can mask the resulting distortions, and small
quantization step sizes for regions with less masking. For example, in the cactus image, the
bodies of the cacti impose great masking, the bird and boundaries of the cacti impose much
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less masking, and sky has almost no masking. Accordingly, the 𝀵𝀵𝀵𝀵 values are smallest for the
sky, larger for the bird and cacti boundaries, and largest for the bodies of the cacti.

Again, we remind the reader that the QP maps alone can provide only a rough gauge of how
the distortions will be distributed across space. Recall from Figure 7 that the relationship
between 𝀵𝀵𝀵𝀵 and the contrast of the resulting distortion C is very much patch-specific. The same𝀵𝀵𝀵𝀵 applied to two different blocks can give rise to vastly different distortion contrasts.

5.2. Distortion contrast maps

The proposed coding approach assumes that to compress an image in a visually lossless
manner, the RMS contrast of the distortion in any compressed image region should be near or
below the ground truth RMS contrast threshold. Thus, to verify the effectiveness of our
proposed approach, Figure 11 shows the contrast threshold maps (masking maps) for four
sample images (as predicted by the CGC+SF model), as well as the resulting distortion contrast
maps of the corresponding images coded with standard HEVC and the two proposed ap-
proaches. Note that the displayed contrast threshold maps are all 10 dB greater than predicted
by the CGC+SF model due to the fact that the experimental contrast thresholds are overly
conservative for normal viewing conditions. As we have found in our research, distortions
with a contrast up to 10 dB above threshold can still remain visually undetectable under normal
viewing conditions. Observe from Figure 11 that images coded by standard HEVC have quite
different contrast patterns with the ground truth, whereas images coded by the proposed
approaches appear quite similar in pattern to the masking maps. These figures demonstrate
that it is possible to achieve better compression performance than standard HEVC if using QP
maps and the proposed adaptive coding scheme. We will quantify the compression perform-
ance of each method in the following section.

Figure 11. The ground truth RMS contrast threshold maps for four sample images, as well as the RMS contrast maps of
their corresponding compressed images coded by standard HEVC, and two proposed approaches.
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Image Standard HEVC JPEG JPEG2000 Approach 1 Approach 2

QP bpp PSNR Error bpp PSNR Error bpp PSNR Error bpp PSNR Error bpp PSNR Error

1600 24 1.98 40.21 733.48 3.31 45.83 563.06 2.21 45.88 594.24 1.88 39.21 676.20 1.49 41.94 786.39

Aerial_city 23 1.75 40.29 794.63 2.52 42.29 841.94 2.21 45.05 692.72 2.09 38.36 716.19 2.10 46.09 653.83

Boston 20 2.41 43.02 502.98 2.61 42.31 712.80 2.34 45.43 534.92 1.81 38.53 699.00 1.61 44.37 703.05

Bridge 22 1.73 41.97 706.05 1.46 38.41 1017.83 2.09 46.57 575.40 1.85 39.83 689.23 1.67 43.35 645.30

Butter_flower 23 1.13 42.10 1036.55 2.17 47.32 1153.96 0.60 41.29 890.83 0.87 35.58 1005.51 0.71 42.64 1282.70

Cactus 21 2.14 42.64 638.78 1.75 39.16 876.22 2.20 46.97 651.90 1.55 33.40 757.97 1.65 47.20 642.46

Child_swimming 25 2.17 38.35 577.45 3.32 43.14 438.94 2.49 43.83 426.37 1.74 33.67 715.74 1.67 43.80 641.40

Couple 25 1.60 39.22 460.92 2.74 45.07 323.70 1.47 42.61 431.27 1.21 34.76 618.40 1.45 42.21 375.91

Elk 29 1.02 35.60 740.88 1.94 40.37 616.10 1.23 39.80 665.91 1.38 34.09 660.53 1.47 42.92 521.01

Family 22 0.94 42.60 962.12 1.15 43.74 966.63 1.13 47.04 794.78 1.65 45.80 586.11 0.74 51.36 845.01

Fisher 21 1.27 42.25 936.04 1.41 43.27 1034.82 1.16 44.84 953.55 1.63 43.02 789.65 0.93 46.91 995.65

Foxy 26 2.43 37.42 415.59 3.00 39.33 427.49 2.48 42.08 434.99 1.62 29.47 680.18 2.14 42.65 374.69

Geckos 28 1.57 35.70 546.44 2.03 37.41 593.12 2.48 43.83 242.22 1.48 31.78 696.98 2.05 39.93 294.62

Lady_liberty 22 0.70 43.55 948.07 2.36 50.94 691.58 0.52 44.55 1027.35 1.26 39.56 767.69 0.58 50.48 932.29

Lake 23 3.14 40.59 433.81 2.26 34.64 937.05 3.99 48.82 420.27 2.24 31.84 634.87 2.42 39.93 517.14

Log_seaside 25 2.53 38.40 582.71 2.34 36.49 867.01 3.99 50.95 359.16 2.15 33.74 651.16 2.52 41.75 462.66

Monument 22 1.49 41.51 687.93 2.01 43.03 741.39 1.52 44.17 692.42 1.48 36.64 696.29 1.12 42.84 737.65

Native_american 23 1.57 40.63 801.26 1.60 41.28 911.87 1.98 46.68 633.27 1.70 38.14 713.70 1.62 43.99 676.87

Redwood 22 1.97 41.59 675.00 1.57 38.18 942.47 2.34 46.40 539.17 1.81 35.81 710.60 1.33 46.47 778.18

Roping 23 1.67 41.63 573.60 1.57 40.85 737.25 1.47 43.79 682.79 1.10 32.22 653.10 1.42 40.88 586.43

Rushmore 21 2.88 42.16 558.05 3.34 42.79 627.87 2.48 43.70 622.51 2.29 34.39 726.84 2.89 44.70 461.22

Shroom 19 2.35 43.94 410.47 1.52 42.36 630.61 1.28 43.89 549.87 1.25 36.79 610.10 0.79 43.71 683.36

Snow_leaves 28 1.08 37.26 675.15 1.58 38.92 787.26 1.47 41.99 612.13 1.31 35.25 548.25 1.35 40.54 519.24

Sunset_sparrow 23 1.56 40.27 1012.00 1.37 40.27 1142.99 1.52 45.13 907.72 2.04 40.10 721.38 0.91 44.04 1052.54

Sunsetcolor 22 0.32 44.57 1165.65 0.50 46.37 1166.02 0.26 47.32 1137.51 1.42 48.35 810.06 0.60 49.00 1061.84

Swarm 21 1.03 42.60 1001.60 1.42 44.85 1014.01 0.91 45.19 1024.93 1.59 41.05 813.39 0.67 44.27 1066.44

Trolley 22 2.57 41.14 482.71 3.17 41.55 589.34 3.31 47.75 387.67 1.95 34.47 668.14 1.94 43.13 581.13

Turtle 19 1.49 44.15 839.82 0.97 42.85 1038.58 1.16 46.64 866.72 1.46 40.26 778.86 1.06 44.96 880.51

Veggies 24 1.64 40.83 497.75 1.96 41.98 696.02 1.72 44.79 602.85 1.01 31.49 584.03 1.23 41.48 616.87

Woman 24 1.72 39.61 654.98 2.09 41.17 730.93 1.98 44.55 538.89 1.51 36.76 710.15 1.45 43.25 655.77

Average 23 1.73 40.86 701.75 2.03 41.87 793.96 1.86 45.05 649.81 1.61 36.81 703.01 1.45 44.03 701.07

Table 1. Performance comparison of standard HEVC, JPEG, JPEG2000, and the two proposed CGC+SF model based
approaches in terms of coded rate (bpp), PSNR, and the absolute RMS contrast error.
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Veggies 24 1.64 40.83 497.75 1.96 41.98 696.02 1.72 44.79 602.85 1.01 31.49 584.03 1.23 41.48 616.87

Woman 24 1.72 39.61 654.98 2.09 41.17 730.93 1.98 44.55 538.89 1.51 36.76 710.15 1.45 43.25 655.77

Average 23 1.73 40.86 701.75 2.03 41.87 793.96 1.86 45.05 649.81 1.61 36.81 703.01 1.45 44.03 701.07

Table 1. Performance comparison of standard HEVC, JPEG, JPEG2000, and the two proposed CGC+SF model based
approaches in terms of coded rate (bpp), PSNR, and the absolute RMS contrast error.
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5.3. Compression performance

Table 1 shows the compression results of 30 images using standard HEVC, JPEG, JPEG2000,
and the two proposed approaches. To compare with the standard HEVC, JPEG, and JPEG2000
coding methods, a visual quality matching experiment was performed by three experienced
subjects. The purpose of the experiment was to find at which compression rate, the three
reference coding methods (i.e., HEVC, JPEG, and JPEG2000) yielded images with just detect-
able distortions; the corresponding bit-rates of these “at-threshold” compressed images were
then recorded. Note that all these five coding methods only add near or below-threshold
distortions, and thus judging the quality of the images is quite difficult. Although the human
subjective judgment is a more reliable way for assessing the intensities of the near/below
threshold distortions, we also report the PSNRs and the absolute RMS contrast errors between
the reference images and the coded images for reference.

From Table 1, observe that the second approach of the CGC+SF model demonstrates a
reduction in coded rate (bpp) by an average factor of about 16% as compared with standard
HEVC, while still maintaining relatively higher PSNR values and equivalent RMS contrast
errors. In comparison, the first approach seems to work less effectively. This might due to the
fact that fixed local 𝀵𝀵𝀵𝀵 values are applied to the local image areas, but some local 𝀵𝀵𝀵𝀵 values
are improperly estimated because of the much complex image patches and potential model
limitations. However, this straightforward approach still performs competitively well,
considering the relatively smaller errors it produces. For the second approach, we employed
additional parameters, which indirectly adjust the coded rate to meet the visually lossless
requirement. Note that for each method, the average total error is around 700 dB, which means
that for each block there is an approximately 10 dB RMS contrast error (each image contains
64 blocks) compared with the ground truth. This is also attributed to the three-alternative
forced-choice procedure that has been used in the experiment and mentioned in Section 5.2.
Also, it should be noted that we generated the QP maps mainly from contrast masking and
structural facilitation. Thus, if an image does not contain areas that can sufficiently mask the
distortions, using the QP map yields no gain.

6. Conclusion

This chapter described a computational model which predicts masking maps for any given
input images, and two approaches which employ the predicted masking map to achieve
visually lossless compression. The proposed computational model consists of a contrast gain
control model, which was trained on a database of local masking thresholds in natural images,
and a structural facilitation model, which was incorporated to take into account the effects of
recognizable structures on distortion visibility. Compared with standard HEVC, our approach
shows an average of 16% improvement in bit-rate when testing on the CSIQ database
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Abstract

In this chapter, we consider lossy compression of multichannel images acquired by
remote sensing systems. Two main features of such data are taken into account. First,
images contain inherent noise that can be of different intensity and type. Second, there
can be essential correlation between component images. These features can be exploited
in 3D compression that is demonstrated to be more efficient than component-wise
compression. The benefits are in considerably higher compression ratio attained for the
same or  even less  distortions  introduced.  It  is  shown that  important  performance
parameters of lossy compression can be rather easily and accurately predicted.

Keywords: adaptation, automation, lossy compression, multichannel, remote sensing,
image processing

1. Introduction

Remote sensing (RS) is an application area where compression of images acquired on-board
of an aircraft or a spacecraft is a very important task [1]. Its actuality is explained by continuous
tendencies  of  improving  sensor  spatial  resolution,  more  frequent  observation  of  sensed
terrains, larger number of exploited channels (e.g., in multi- and, especially, hyperspectral
sensing),  etc.  [2].  Meanwhile,  the  communication  channel  bandwidth  and  time  of  data
transferring can be limited [1, 3, 4]. Facilities of data processing on-board can be restricted.
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Possibilities of image compression in a lossless manner are often limited as well [4]. Even the
best  existing  methods  of  lossless  compression  applied  to  hyperspectral  data  and  fully
exploiting interband correlation inherent for such images provide a compression ratio (CR) of
about 4.5 [4, 5], and this is often not enough. Thus, there is a need in efficient methods for lossy
compression of acquired multichannel images.

There are several peculiarities of lossy compression with application to multichannel remote
sensing images. First, if it is performed on-board, full or partial automation is required [1, 6].
Second, lossy compression is reasonable and useful only if introduced losses do not have
essential impact on the value of compressed data, i.e., if accuracy and reliability of information
extracted from compressed images are approximately at the same level as from original
(uncompressed, compressed in a lossless manner) data. In this sense, introduced losses should
be smaller, or in the worst case, comparable to the original image distortions due to noise [7].
This means that image-processing (compression) methods should be adaptive to noise
characteristics. Meanwhile, noise in images acquired by modern multichannel RS sensors is
not additive and has more complicated nature [8–11]. Thus, either blind estimation of its
characteristics or attraction of available a priori information is needed. Third, adaptation to
other specific properties of subband images is desired. Here, we mean that images in channels
might have considerably different dynamic ranges, signal-to-noise ratios, and interchannel
correlation factors [8, 12, 13].

All these influence efficiency of lossy compression and open perspectives of its improvement.
Meanwhile, all or some of the aforementioned peculiarities of multichannel RS images are
often ignored in the design of lossy compression techniques.

On the one hand, it is well understood that high interchannel correlation should be exploited
for more sparse representation of data and reaching higher CR than for component-wise
compression [14–16]. On the other hand, there are many different ways to realize this. Different
transforms can be used [17–20]. Component image grouping can be organized in different
manner [15, 21, 22] and till the moment there are no strict rules what is the best way to do this
and what benefit can be maximally achieved compared to component-wise compression in the
sense of CR under condition of the same or smaller distortions introduced.

Noise characteristics and different dynamic ranges of data in component images are often not
taken into account in lossy compression as well. Little attention has been paid to these aspects
in the design of lossy compression techniques for the considered application although it is
clear that they are important and restrict applicability of methods designed for other types of
multidimensional data [3, 20, 23].

Requirements to lossy compression of multichannel images and their priority have to be taken
into consideration as well. The main requirements [1, 3, 20] are the following. First, introduced
distortions should not negatively influence the efficiency of solving further tasks of multi-
channel image processing such as classification, object detection, visual inspection, etc. Only
under aforementioned condition, the compressed data remain to be practically of the same
value as original images. This means that introduced distortions should be less or of the same
order as noise in each component (channel) image. Second, there can be a necessity to provide
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CR not smaller than some limit value or a desire to provide as large CR as possible. Third, lossy
compression and operations associated with it (preliminary analysis of data, some transfor-
mations, and/or normalizations, etc.) have to be quite simple, especially if one deals with lossy
compression on-board. Fourth, there can be some recommendations or restrictions imposed
on standardization of lossy compression or mathematical basis. Currently, there are no
standards for lossy compression of multichannel RS images although special efforts are put
toward its creation [3]. In addition, it is understood that most of the aforementioned require-
ments can be met on the basis of 2D or 3D orthogonal transforms under condition of proper
preparation of multichannel images to compression [20].

In this chapter, we focus on the aspects of automation and adaptation of lossy compression
with application to multichannel image processing. First, we show that noise is signal de-
pendent where its signal-dependent component is either of the same order as signal inde-
pendent (additive) or is dominant [6, 8, 9]. Second, we show how this property can be taken
into account at lossy compression stage by applying proper variance stabilizing transform
(VST) in component-wise manner [20, 24]. Third, we analyze peculiarities of lossy compression
in the neighborhood of the so-called optimal operation point (OOP) where introduced losses
characterized by mean square error are of the same order as equivalent noise variance [25].
Fourth, we demonstrate that there is quite strict relation between OOP existence and com-
pression ratio (CR) in it and some statistical parameters of noisy images [25, 26]. Moreover,
there are quite easy methods to provide a desired CR by exploiting this statistics [27]. Fifth,
we discuss and compare component-wise and 3D compression. Advantages of the latter
approach have been paid special attention [28, 29] and more discussion on group size is
provided.

2. Image and noise models and their parameters

While 10–20 years ago, it was usually assumed that noise is additive in all components of
multichannel remote sensing data [30], studies carried out by different researchers [9, 10]
indicate that the following image/noise model is more adequate

noisy true rue( ), 1,..., , 1,..., , 1,...,t
k ij k ij k ij kijI I n I i I j J k K= + = = = (1)

Here, 𝀵𝀵 𝀵𝀵𝀵𝀵noisy denotes the 𝀵𝀵𝀵𝀵th sample of the kth component for a considered multichannel image,𝀵𝀵 𝀵𝀵𝀵𝀵 is the ijth value of the signal-dependent noise in the kth component image. To indicate

that noise is signal dependent, we use notation 𝀵𝀵 𝀵𝀵𝀵𝀵(𝀵𝀵𝀵𝀵𝀵𝀵rue) where 𝀵𝀵𝀵𝀵𝀵𝀵rue is the true value for the

kijth voxel, I and J define the data size, and K denotes the number of components. For multi-
and hyperspectral images, model (1) transforms to
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noise true SI SD ,kij kij kij kijI I N N= + + (2)

where 𝀵𝀵𝀵𝀵𝀵𝀵SD  and 𝀵𝀵𝀵𝀵𝀵𝀵SI denote signal-dependent (SD) and signal-independent (SI) noise compo-

nents. SI is usually associated with dark and electronic noise and is assumed zero mean, white,
and Gaussian. The situation with the SD component is more complicated since it is associated
with wave power estimation by sensors and system calibration. For photon-counting detectors
it can be assumed that this noise component is also zero mean, white, and its variance is

proportional to 𝀵𝀵𝀵𝀵𝀵𝀵rue. Thus, one gets the following model for the noise variance:

2 2 rue ,t
kij k kijIs s g= + (3)

where 𝀵𝀵2 denotes the SI noise variance and  is the SD noise proportionality factor. Then, it

becomes possible to determine the input MSE for each component images as

inp noise true 2

1 1
MSE ( ) / ( ), 1,...,

I J

k k ij kij
i j

I I IJ k K
= =

= - =åå

and the input PSNR

np 2 np
10PSNR 10log ( / MSE ), 1,..., ,i i

k k kD k K= = (4)

where 𝀵𝀵 determinates image dynamic range.

One can estimate equivalent noise variance for SD component as

Im Im Im Im
2 rue n
eq SD Im Im Im Im mean

1 1 1 1

ˆ ˆ( ) ( ) / ( ) ( ) / ( ) ( ) ( )
I J I J

t
kij kij

i j i j
k k I I J k I I J k I ks g g g

= = = =

= » =åå åå)
(5)

where Im, Im denotes the image size, (𝀵𝀵) is the SD noise component parameter estimate

assumed accurate enough, and mean(𝀵𝀵) is the image mean. If there is also an estimate of SI

component variance 𝀵𝀵2, then one can obtain an estimate of the input MSE as

inp 2 2
q SD

ˆMSE ( ) ,k e kks s» +) ) (6)
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where  denotes the SI noise variance estimate (assumed accurate enough) for a kth compo-
nent of multichannel image.

It is important to know how large is relative contribution of SD noise component into the input

MSE. To get imagination about this, the values  have been derived and graphically
compared to  [25]. The plots for AVIRIS [31] (224 subbands in optical visible and
infrared ranges) and Hyperion [32] (242 subbands in the same ranges, for some very noisy
subbands the estimates have not been obtained) sensors are represented in Figure 1 in
logarithmic scale (since there is a very wide limit of variation for these estimates). The values

of  for subbands for which negative estimates of () have been obtained by the method
[10] are assigned unity values (zero values in logarithmic scale).

Figure 1. Variance estimation results for Hyperion dataset EO1H2010262004157110KP (a) and for AVIRIS images Lunar
Lake (b), Cuprite (c), and Moffett Field (d).

Analysis of data presented in Figure 1 shows the following. For Hyperion data (Figure 1a), in
most subbands of visible and near infrared ranges (these are subbands with indices from 13

to 61),  Is larger than , i.e., the SD component contribution is prevailing. In infrared
range (these are subbands with indices from 78 to 230; Figure 1a), there is approximately equal
percentage of subbands where the influence of SD or SI components is dominant. According
to our experiments, similar conclusions can be drawn for other real-life images acquired by
the Hyperion sensor.
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The results for three widely known test datasets acquired by the sensor AVIRIS are given in
Figure 1(b)–(d). Their analysis allows concluding the following. All three dependences of the
same type (for instance, ) are very similar to each other. Then, if hyperspectral images are
acquired during the same session, one can assume that noise characteristics do not change. In

addition,  are larger than  for most images acquired by visible range AVIRIS sensor
(spectrometer A, indices 1, …, 32). The same conclusion is valid for most subbands of the
second AVIRIS spectrometer (B, indices 33, …, 96). Contributions of the considered noise
components are comparable for the third spectrometer images (C, indices 97, …, 160). SI noise
is dominating for most subband images acquired by the fourth AVIRIS spectrometer (D,
indices 161, …, 224). Thus, contributions of noise components depend upon wavelength and
sensor used in a hyperspectral system. But in any case, assumption on additive character of
the noise is not valid. Moreover, for hyperspectral imaging, there is a tendency to increasing
the relative contribution of SD component [33].

Figure 2. Dependence of cross-correlation factor R on k for the 166th subband image.

One more important property of multichannel RS images is that signal components in them
are often cross-correlated. Meanwhile, the cross-correlation factor also depends upon noise
intensity in both images and decreases if noise is intensive in one or both component images.
Keeping this in mind, we have chosen for analysis the subband image with k = 166 that
corresponds to far-infrared range and is acquired by the fourth spectrometer of AVIRIS. This
image is quite noisy and the input PSNR for it is less than 30 dB (dynamic range of this image
is small and this is the second reason of low input PSNR). The dependence of the cross-
correlation factor R on k is presented in Figure 2.
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The factor R(166) = 1 and for this subband image the signal-independent noise component is
prevailing with the input MSE about 11. But we are more interested in R(k) for other subbands.
Analysis of data presented in Figure 2 shows that R(k) varies in rather wide limits. On average,
values of R(k) are the largest for the subband images acquired by the fourth spectrometer of
AVIRIS imager for which k > 160. Meanwhile, cross-correlation factors are large enough for
subbands relating to other ranges as well.

Although cross-correlation of images in multichannel images is often high, there can also be

sufficient variation in the dynamic range  usually defined as  = max − min where max
and min are maximal and minimal values in the kth subband image, respectively. For hyper-
spectral data, the values Dk and Dk+1, i.e., for neighbor subbands, are usually close enough. As
it follows from analysis of noise components in Figure 1, neighbor channels commonly have

quite close values of input MSEs (equal to noise variance 2 if the noise is pure additive). Thus,

input PSNR values determined as PSNRinp = 10log10(2/MSEinp) are usually close to each
other for neighbor images of hyperspectral and multispectral data.

3. Considered performance criteria and peculiarities of lossy compression
of noisy images

After lossy compression of a multichannel image, one obtains { 𝀵𝀵𝀵𝀵  , i = 1, …,I, j = 1,…,J, k = 1,
…,K}. If one deals with lossy compression of a noise-free image, then quality of compressed
image is worse for a larger compression ratio (smaller bpp, larger quantization step or scaling
factor for DCT-based coders). The reason is that more distortions are introduced for larger CR.

Meanwhile, many researchers [34–36] have stressed that there are peculiarities in lossy
compression of noisy images. Lossy compression leads to a specific noise removal effect that
can be large enough under certain conditions. Due to this, it might be possible that MSE for
compressed image

rue 2

1 1
MSE ( ) / ( ), 1,...,

I J
c c t
k k ij kij

i j
I I IJ k K

= =

= - =åå (7)

is less than MSE𝀵𝀵np and MSE  be minimum for some value of a parameter that characterizes
compression for a given method. This can be quantization step (QS), scaling factor (SF), or bits
per pixel (bpp)—this depends on a coder used. Then, such a parameter is associated with the
so-called optimal operation point (OOP). Figure 3 presents dependences of

2
10PSNR 10log ( / MSE ), 1,...,c c

k k kD k K= = (8)
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Figure 3. Dependences PSNR(QS) for the coder AGU and test images Airfield, Aerial, and Frisco corrupted by
AWGN with noise variance equal to 100.

on QS for the lossy DCT-based coder AGU [37] applied to three standard grayscale test noisy
RS images, Airfield, Aerial, and Frisco. All three images were corrupted by additive white
Gaussian noise (AWGN) with variance 100. Note that the test image Frisco has a simpler
structure while the test images Aerial and Airfield have more details. This is the reason why
the denoising effect of lossy compression is considerably greater for the image Frisco and the

dependence for it has an obvious global maximum. This is OOP according to the metric PSNR
that coincides with OOP according to the metric MSE—see Figure 8. For the test image Aerial,
the OOP is not so “obvious” although it exists. Finally, for the test image Airfield, there is no

OOP formally but the dependence PSNR(QS) has local maximum. Note that in all cases maxima
occur QSOOP ≈ 4. This is the choice recommended for the coder AGU [24] and for a more

complex coder ADCT [38]. This recommendation allows compressing lossy images by the
aforementioned DCT-based coders component-wise in one iteration under assumption that
noise characteristics for component images are known or preestimated with an appropriate
accuracy. Note that there are many modern methods for blind estimation of parameters of
additive noise [39, 40] and signal-dependent noise [41–43]. Availability of these techniques
gives rise to fully automatic compression based on noise parameter estimation [20, 44].

For the recommended QSOOP ≈ 4(or QSOOP ≈ 4equiv, equiv2 = MSEinp, used if noise is signal

dependent and VST is not applied before compression), it can be interesting to study such

parameters as PSNROOP and PSNROOP determined as

OOP OOP inpPSNR PSNR PSNRk k kd = - (9)
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where positive PSNROOP means that OOP exists according to a corresponding metric. Such a

study has been carried out recently [26]. It has been established that PSNROOP can vary in

rather wide limits, from about –3 to 5–6 dB. Negative values show that OOP does not exist and
this happens if a compressed image has a rather complex structure and/or noise is not intensive.
On the contrary, positive values indicate that there is OOP and it takes place for quite simple

structure images and/or quite intensive noise. It has also been shown in [26] that PSNROOP
can be quite accurately predicted before compression using different statistics of DCT
coefficients determined for a limited number of 8 ×8 pixel blocks.

Let us consider dependences of CR on QS for the same test noisy images as in Figure 3. These
dependences are represented in Figure 4. The first observation is that lossy compression with
the recommended QS leads to sufficiently different compression ratios for different images.
Recall that the recommended QS is equal to 40 for σ2=100 and to 56 for σ2=200. Simpler structure
and/or noisier images are compressed with larger CR. For QS=40 (σ2=100), one has CR about
17 for the image Frisco and about 7 for two other test images. If noise intensity is greater (QS=56,
σ2=200), larger CR values are attained: about 26 for Frisco and 14 for other two images. Thus,
noisier images are compressed in OOP with larger CR. This means that image complexity and
noise intensity should be taken into account in practice. Some ways to do this will be described
in the next section.

Figure 4. Dependences of CR on QS for three test images of different complexity for two values of noise variance σ2

(100 and 200).
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4. Efficiency for 3D compression

4.1. Main dependences and benefits

As mentioned above, the compression of multichannel RS images can be carried out compo-
nent-wise and using variants of 3D approach. In the former case, there are certain benefits.
First, it is easier to handle data. For example, QS or bpp can be set individually for each
component image. Second, a part of operations can be performed in parallel. For example,
orthogonal transforms and quantization of coefficients can be performed separately for each
component image and, thus, this part of processing can be parallelized. In the latter case, 3D
compression can be applied to multichannel image as a whole [14] or as to a set of component
image groups [15, 22]. Each variant has its own positive features and drawbacks. If groups are
used, it is easier to parallelize computations (since processing can be partly performed
separately in each group) and adjust compression parameters.

Figure 5. Noise-free (a) and noisy (b) three-channel test image in pseudocolor representation.

Let us analyze some peculiarities of 3D compression for a rather simple three-channel test
image (presented in Figure 5a). This image has been considered noise free and it has been
composed from three channels of visible range of Landsat RS data associated with red, green,
and blue components for visualization. The noisy image with artificially added AWGN having
the same variance equal to 130 in all components is shown in Figure 5(b). Noise is seen well
in quasihomogeneous regions.

The plots of MSE (QS) are presented in Figure 6(a). Notation 2d relates to two-dimensional,

i.e., component-wise compression. For all three components, the plots almost coincide and,
therefore, we present the averaged dependence. In turn, notation 3d concerns 3D compression
using 3D version of AGU coder [15]. Again, the dependence averaged for all three components
is given.
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There are several interesting observations for these plots. If QS is rather small, e.g., less than

2σ, the dependences MSE (QS) practically coincide, i.e., there is almost no difference between

2D (component-wise) and 3D (volumetric) compression. Then, for larger QS, differences start
to appear. And they become quite large for QS about 4σ, i.e., when OOP can be observed. First,

OOP is observed (see Figure 6a) for both 2D and 3D compression. But MSE (QS) in OOP for

3D compression is considerably (by almost two times) smaller. This means that noise-filtering
effect due to 3D compression is sufficiently better compared to 2D compression. This can be
noticed in Figure 7 that presents images compressed in OOP for 2D and 3D AGU coder
versions. Second, OOP in the case of 3D compression is observed for the same conditions as
for 2D compression. More examples confirming this can be found in the paper [29].

Figure 6. Averaged dependences MSE(QS) (a) and CR(QS) (b) for 2D and 3D compression.

Figure 7. Images compressed in OOP for 2D (a) and 3D (b) compression.

Consider now the plots of CR(QS) represented in Figure 6(b). For QS less than 2σ there are
almost no benefits of 3D compression. However, for larger QS, the benefits become obvious.
CR provided by 3D compression occurs to be almost twice larger than for component-wise
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processing. A question is why this happens? Another question is can we predict CR and
situations when 3D compression might be beneficial compared to component-wise coding.

4.2. Prediction of compression parameters

There are two main compression parameters for which prediction is desirable for compression

in OOP neighborhood, namely, PSNROOP and CR. An approach to predict PSNROOP for

component-wise compression has been recently proposed [26]. Its essence is the following.
Suppose that one has a parameter that is able to jointly characterize complexity of image to be
compressed and noise intensity in it. Suppose also that this (input) parameter can be calculated
easily (quickly, considerably faster than compression is performed) and it is tightly connected
to output (predicted) parameter (indicator) that characterizes compression from a desired
viewpoint. This connection is expressed either as some analytical dependence allowing to
determine (predict) output parameter easily and quickly. Then, it becomes possible to estimate
the input parameter for a considered image, to use it as argument for calculating the output
parameter, and to carry out some decision based on this prediction [26].

Having described the general strategy of prediction, let us give some details. First of all, there
are many parameters that can be used as inputs [45–47]. Under condition that noise parameters
(variance) are known in advance or preestimated with appropriate accuracy, statistical
parameters of the family 𝀵𝀵𝀵𝀵 can be used. These are mean probabilities that absolute values

of DCT coefficients calculated in Nbl blocks of size 8 × 8 pixels are less than a threshold 𝀵𝀵𝀵𝀵 where𝀵𝀵 is the parameter (in our experiments it has been equal to 0.5, 1.0, 1.5, or 2.0). The input
parameter 𝀵𝀵𝀵𝀵 is indirectly connected with number of zeroed DCT coefficients in image

filtering [45] that influences denoising efficiency performed by lossy compression applied to
noisy images. There is also parameter 0—mean probability that DCT coefficients calculated

in Nbl blocks of size 8 × 8 pixels are equal to zero after quantization with a used QS.

Obtaining dependence between output and input parameters is a special stage performed in
advance (offline). This stage presumes getting a scatterplot where the horizontal axis corre-
sponds to an input parameter and vertical relates to a predicted output parameter. Scatter-plot
points correspond to a test image corrupted by AWGN with a certain variance compressed in
a specified way. An example of the scatterplot is shown in Figure 8. 2𝀵𝀵 serves as an input

parameter and PSNROOP as an output parameter.

Having such a scatterplot, curve fitting is applied to obtain a desired dependence. At this
substage, several subtasks should be solved. They can be, in general, treated as providing good
fit and include choice of proper type and parameters of approximating functions, accounting
for restrictions, etc. Different criteria of fitting quality can be used [48] where R2 (goodness of
fit that has to approach unity for good fit) is one of the commonly employed parameters. The
example for 2D image compression presented in Figure 8 shows that the scatter-plot points
are not spread a lot and it can be assumed that the dependence is a smooth function. Then,
polynomials of the fourth and fifth orders and some other functions provide appropriate
results (the fitted polynomial expression is presented in Figure 8). The performance of
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for restrictions, etc. Different criteria of fitting quality can be used [48] where R2 (goodness of
fit that has to approach unity for good fit) is one of the commonly employed parameters. The
example for 2D image compression presented in Figure 8 shows that the scatter-plot points
are not spread a lot and it can be assumed that the dependence is a smooth function. Then,
polynomials of the fourth and fifth orders and some other functions provide appropriate
results (the fitted polynomial expression is presented in Figure 8). The performance of
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prediction for different input parameters should be analyzed and compared since considerably
different values of R2 can be potentially and practically produced [27]. Some analysis has been
already carried out [27] but this study is far from completeness.

Figure 8. Scatterplot of PSNROOP on 2 and the fitted fourth-order polynomial.

Figure 9. Scatterplots of CR vs 1 (a) and 0 (b) and the fitted curves.

Similar strategy has been applied in the prediction of CR for 2D compression. The first attempt
to predict CR for lossy compression of noisy images in OOP for AGU and ADCT [38] coders
has been made in 2015 [26] using two input parameters, 2 and 2.7. A more thorough study

has been carried out later [27]. Below we present two scatterplots from the aforementioned
paper (Figure 9). As it can be seen, both scatterplots have small spread and, according to their
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visual inspection, CR has the tendency to increase if the input parameters 1 or 0 (consid-

ered here as example) become larger. Fitting is excellent in both cases although the results for0 are slightly better. Here, tight connection of CR with 0 is easily understood. A larger 0
shows that there are more zeros in a sequence to be coded and this in turn [49] leads to a larger
CR.

Figure 10. Dependences 0 on QS for 2D and 3D compression.

Thus, we can expect that benefits of 3D compression compared to 2D deal with more zeros
after 3D DCT (better decorrelation of the data) than in component-wise compression. To check
this hypothesis, we have determined 0 for 3D compression and for 2D component-wise

compression for the test image in Figure 5(b). The results are given as dependences of 0 on

QS for 3D AGU (notation 3D) and for two components, red and green (notations 2D-R and 2D-
G, respectively). As it can be seen, the curves for “red” and “green” channels practically
coincide. In 3D compression, more zeros are observed for any QS. For optimal QS=56 one has0 about 0.87; the predicted CR is about 13 (see Figure 9b) and this practically coincides with

the value of practically attained CR (Figure 6b). In turn, for 3D compression, 0 is about 0.92;

the predicted CR is over 20 (see Figure 9b), and this is in good agreement with the value of
practically attained CR (Figure 6b). Certainly, a more thorough study is needed. However, we
can expect that the prediction of CR using 0 can work for 3D DCT-based compression as

well (Figure 10).

4.3. Experimental data

The observations described above have also been verified for two types of multichannel
images. The first type is Landsat TM data [50]. Different variants of uniting eight images of the
same resolution into groups for further 3D compression have been considered. It has been
shown that there are benefits in CR (it sufficiently increases for the same level of introduced
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same resolution into groups for further 3D compression have been considered. It has been
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distortions) only if images combined into a group are highly correlated and have similar
dynamic range [50]. Then, there is an increase in the percentage of zeros 0 for 3D coder

compared to 0 for component images within this group. This increase can serve as an

indicator of expedience to apply 3D compression. Meanwhile, there are component images
(e.g., in channel nine, wavelength 1360–1390 nm) for which separate compression is expedient
since adding it to any group does not improve the compression performance.

The second type of analyzed data is hyperspectral images acquired by the Hyperion sensor
(the dataset EO1H1800252002116110KZ). Hyperion produces bad-quality (very noisy) data in
some bands (for example, in subbands with indices q=1–12). These component images are
usually discarded in analysis and we have not processed them too.

Hyperspectral data can be compressed with and without utilizing VST to take into account
signal-dependent nature of the noise. Below we consider data obtained for the procedure that
employs VST for both 2D and 3D compression. In both cases, after determining the parameters
of the noise in all subbands (if needed), the generalized Anscombe transform and/or normal-
ization is carried out [20]. Note that original data are presented as 16-bit values and this is
taken into account in CR calculation and prediction.

We have considered four variants to compress the data. The first variant is to perform com-
ponent-wise compression. The second is to divide this hyperspectral image into two groups.
The first group includes subbands with indices from 13 to 57 while the second one contains
subband images with indices from 83 to 224. The third variant is to use groups of size eight
subbands. The fourth is to apply 16-channel groups. Some subbands left in both ranges formed
groups of smaller size. CR for all subbands of each group is assumed to be the same since all
images are compressed jointly.

The obtained results are presented in Figure 11. Their analysis shows several interesting facts.
First, CR for component-wise compression is, on average, sufficiently smaller than for any of
3D compression variants. If component-wise compression is applied, CR for neighbor
subbands are close to each other although the total range of CR variation is rather wide—from
about 4 to about 27. In general, there is correlation between CR values for 2D and 3D com-
pression. If CR for 2D compression is larger, CR for variants of 3D compression is usually larger
too. However, there are a few exceptions when CR for a particular subband image compressed
separately is larger than for 3D compression. This happens for subband images with low-input
SNR and low correlation with data in neighbor subbands [50].

It is difficult to understand from visual inspection of plots (see Figure 11) what variant of 3D
compression is preferable. More thorough analysis has shown that the CRs for groups of size
8 (18.34 and 12.72) and 16 (20.81 and 14.65) subbands are quite close. CRs for the case of using
only two large unequal size groups are slightly smaller (17.43 and 13.00).

We have also determined the percentage of zeros for 3D compression in groups of size 8 and
16 subbands. The results are presented in Figure 12. As can be seen, there is tight correlation
between CR for a group and the corresponding percentage. This allows expecting that it is
possible to predict CR for 3D compression in groups by analyzing 0 for these groups. Note
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that 0 varies from 0.3 (30%) for subbands compressed with small CR till almost 0.9 (90%) for

subbands compressed with very large CR.

Figure 11. CR values for subbands of hyperspectral Hyperion data for component-wise and 3D lossy compression, 8
channels (blue), 16 channels (yellow), and all channels in group(violet) and component-wise (red).

Figure 12. Percentages of zero values for quantized DCT coefficients for hyperspectral data compression in groups of
size 8 and 16 channels.
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Examples of real-life images before and after compression for particular subbands can be
found in the paper [22]. If noise intensity is high and noise is visible, lossy compression pro-
vides noticeable filtering effect. If noise is invisible, original and compressed images look al-
most the same.

5. Conclusions

The task of lossy compression of multichannel remote sensing images is considered. It is shown
that this type of data has some peculiarities to be taken into account in compression. The main
peculiarities consist in signal-dependent nature of the noise, wide limits of variation of data
dynamic range and SNR in subband images, and sufficient correlation of data in neighbor
channels. Lossy compression should be carried out in automatic manner especially if it has to
be performed on-board. Then, it has to adapt to noise properties where the simplest adaptation
mechanism is to set QS proportional to noise standard deviation (before or after VST depend-
ing upon whether it is applied or not). A good decision in compression of noisy images is to
perform compression in the neighborhood of optimal operation point. It is shown that OOP
exists for both component-wise and 3D compression where the latter approach is preferable
since it produces better denoising and considerably larger CR. Parameters of compression can
be predicted rather easily before execution compression with quite high accuracy. This allows
adapting compression to image and noise properties and to undertake decision does com-
pression performance meet requirements.

Meanwhile, there are several tasks to be solved in the future. The main of them could be
adaptive grouping. Another task is QS adjusting to provide a desired CR.

Author details

Vladimir Lukin1*, Alexander Zemliachenko1, Ruslan Kozhemiakin1, Sergey Abramov1,
Mikhail Uss1, Victoriya Abramova1, Nikolay Ponomarenko1, Benoit Vozel2 and
Kacem Chehdi2

*Address all correspondence to: lukin@ai.kharkov.com

1 Dept of Transmitters, Receivers and Signal Processing, National Aerospace University,
Kharkov, Ukraine

2 University of Rennes 1, Institute of Electronics and Telecommunications of Rennes, UMR
CNRS 6164, School of Applied Sciences and Technology, Lannion, France

Automatic Adaptive Lossy Compression of Multichannel Remote Sensing Images
http://dx.doi.org/10.5772/64944

45



References

[1] Christophe E. Hyperspectral Data Compression Tradeoff in Optical Remote Sensing.
In: Prasad S., Bruce L.M., Chanussot J., editors. Advances in Signal Processing and
Exploitation Techniques. 8th ed. Springer; Berlin Heidelberg 2011. pp. 9–29.

[2] Schowengerdt R. Remote Sensing: Models and Methods for Image Processing. 3rd ed.
Academic Press; Orlando USA 2006. p. 560.

[3] Blanes I., Magli E., Serra-Sagrista J. A tutorial on image compression for optical space
imaging systems. IEEE Geoscience and Remote Sensing Magazine. 2014;2(3):8–26.

[4] Yu G., Vladimirova T., Sweeting M.N. Image compression systems on board satellites.
Acta Astronautica. 2009;64(9–10):988–1005.

[5] Magli E., Olmo G., Quacchio E. Optimized onboard lossless and near-lossless com-
pression of hyperspectral data using CALIC. IEEE Geoscience and Remote Sensing
Letters. 2004;1(1):21–25.

[6] Lukin V., Abramov S., Ponomarenko N., Krivenko S., Uss M., Vozel B., Chehdi K.,
Egiazarian K., Astola J. Approaches to automatic data processing in hyperspectral
remote sensing. Telecommunications and Radio Engineering. 2014;73(13):1125–1139.

[7] Aiazzi B., Alparone L., Barducci A., Baronti S., Pippi I. Estimating noise and information
of multispectral imagery. Journal of Optical Engineering. 2002;41:656–668.

[8] Abramov S., Uss M., Abramova V., Lukin V., Vozel B., Chehdi K. On Noise Properties
in Hyperspectral Images. In: Proceedings of IGARSS;; Milan, Italy; July 2015. pp. 3501–
3504. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7325672)

[9] Meola J., Eismann M.T., Moses R.L., Ash J.N. Modeling and estimation of signal-
dependent noise in hyperspectral imagery. Applied Optics. 2011;50(21):3829–3846.

[10] Uss M.L., Vozel B., Lukin V., Chehdi K. Image informative maps for component-wise
estimating parameters of signal-dependent noise. Journal of Electronic Imaging.
2013;22(1). DOI: 10.1117/1.JEI.22.1.013019 (see http://electronicimaging.spiedigitalli-
brary.org/article.aspx?articleid=1568204)

[11] Uss M., Vozel B., Lukin V., Chehdi K. Maximum likelihood estimation of spatially
correlated signal-dependent noise in hyperspectral images. Optical Engineering.
2012;51(11). DOI: 10.1117/1.OE.51.11.111712 see http://opticalengineering.spiedigital-
library.org/issue.aspx?journalid=92&issueid=24230

[12] Lukin V., Ponomarenko N., Fevralev D., Vozel B., Chehdi K., Kurekin A. Classification
of pre-filtered multichannel remote sensing images. In: Escalante-Ramirez B., editor.
Remote Sensing—Advanced Techniques and Platforms. In-Tech, Austria; 2012. pp.
75–98.

Recent Advances in Image and Video Coding46



References

[1] Christophe E. Hyperspectral Data Compression Tradeoff in Optical Remote Sensing.
In: Prasad S., Bruce L.M., Chanussot J., editors. Advances in Signal Processing and
Exploitation Techniques. 8th ed. Springer; Berlin Heidelberg 2011. pp. 9–29.

[2] Schowengerdt R. Remote Sensing: Models and Methods for Image Processing. 3rd ed.
Academic Press; Orlando USA 2006. p. 560.

[3] Blanes I., Magli E., Serra-Sagrista J. A tutorial on image compression for optical space
imaging systems. IEEE Geoscience and Remote Sensing Magazine. 2014;2(3):8–26.

[4] Yu G., Vladimirova T., Sweeting M.N. Image compression systems on board satellites.
Acta Astronautica. 2009;64(9–10):988–1005.

[5] Magli E., Olmo G., Quacchio E. Optimized onboard lossless and near-lossless com-
pression of hyperspectral data using CALIC. IEEE Geoscience and Remote Sensing
Letters. 2004;1(1):21–25.

[6] Lukin V., Abramov S., Ponomarenko N., Krivenko S., Uss M., Vozel B., Chehdi K.,
Egiazarian K., Astola J. Approaches to automatic data processing in hyperspectral
remote sensing. Telecommunications and Radio Engineering. 2014;73(13):1125–1139.

[7] Aiazzi B., Alparone L., Barducci A., Baronti S., Pippi I. Estimating noise and information
of multispectral imagery. Journal of Optical Engineering. 2002;41:656–668.

[8] Abramov S., Uss M., Abramova V., Lukin V., Vozel B., Chehdi K. On Noise Properties
in Hyperspectral Images. In: Proceedings of IGARSS;; Milan, Italy; July 2015. pp. 3501–
3504. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7325672)

[9] Meola J., Eismann M.T., Moses R.L., Ash J.N. Modeling and estimation of signal-
dependent noise in hyperspectral imagery. Applied Optics. 2011;50(21):3829–3846.

[10] Uss M.L., Vozel B., Lukin V., Chehdi K. Image informative maps for component-wise
estimating parameters of signal-dependent noise. Journal of Electronic Imaging.
2013;22(1). DOI: 10.1117/1.JEI.22.1.013019 (see http://electronicimaging.spiedigitalli-
brary.org/article.aspx?articleid=1568204)

[11] Uss M., Vozel B., Lukin V., Chehdi K. Maximum likelihood estimation of spatially
correlated signal-dependent noise in hyperspectral images. Optical Engineering.
2012;51(11). DOI: 10.1117/1.OE.51.11.111712 see http://opticalengineering.spiedigital-
library.org/issue.aspx?journalid=92&issueid=24230

[12] Lukin V., Ponomarenko N., Fevralev D., Vozel B., Chehdi K., Kurekin A. Classification
of pre-filtered multichannel remote sensing images. In: Escalante-Ramirez B., editor.
Remote Sensing—Advanced Techniques and Platforms. In-Tech, Austria; 2012. pp.
75–98.

Recent Advances in Image and Video Coding46

[13] Zhong P., Wang R. Multiple-spectral-band CRFs for denoising junk bands of hyper-
spectral imagery. IEEE Transactions on Geoscience and Remote Sensing. 2013;51(4):
2269–2275.

[14] Khelifi F., Bouridane A., Kurugollu F. Joined spectral trees for scalable SPIHT-based
multispectral image compression. IEEE Transactions on Multimedia. 2008;10(3):316–329.

[15] Ponomarenko N., Zriakhov M., Lukin V., Kaarna A. Improved grouping and noise
cancellation for automatic lossy compression of AVIRIS images. In: Editors Jacques
Blanc-Talon, Don Bone, and Wilfried Philips Proceedings of ACIVS, Springer, Heidel-
berg, Australia. LNCS-6475, Part II; 2010. pp. 261–271.

[16] Valsesia D., Magli E. A novel rate control algorithm for onboard predictive coding of
multispectral and hyperspectral images. IEEE Transactions on Geoscience and Remote
Sensing. 2014;52(10):6341–6355.

[17] Shoba L.L., Mohan V., Venkataramani Y. Landsat image compression using lifting
scheme. In: Proceedings of International Conference on Communication and Signal
Processing; India; April 2014. pp. 1963–1968.

[18] Thayammal S., Silvathy D. Multispectral band image compression using adaptive
wavelet transform—tetrolet transform. In: Proceedings of 2014 International Confer-
ence on Electronics and Communication Systems; Coimbatore, India; February 2014.
pp. 1–5. DOI: 10.1109/ECS.2014.6892610

[19] Wang L., Jiao L., Bai J., Wu J. Hyperspectral image compression based on 3D reversible
integer lapped transform. Electronic Letters. 2010;46(24):1601–1602. DOI: 10.1049/el.
2010.1788

[20] Zemliachenko A.N., Kozhemiakin R.A., Uss M.L., Abramov S.K., Ponomarenko N.N.,
Lukin V.V., Vozel B., Chehdi K. Lossy compression of hyperspectral images based on
noise parameters estimation and variance stabilizing transform. Journal of Applied
Remote Sensing. 2014;8(1):25. DOI: 10.1117/1.JRS.8.083571

[21] Shinoda K., Murakami Y., Yamaguchi M., Ohyama N. Multispectral image compression
for spectral and color reproduction based on lossy to lossless coding. In: Proc. SPIE
Image Processing: Algorithms and Systems VIII; SPIE 75320H; February 2010. DOI:
10.1117/12.838843

[22] Zemliachenko A.N., Abramov S.K., Lukin V.V., Vozel B., Chehdi K. Prediction of
optimal operation point existence and parameters in lossy compression of noisy
images. In: Proceedings of SPIE, Vol. 9244, Image and Signal Processing for Remote
Sensing XX; SPIE 92440H; October 15, 2014. DOI: 10.1117/12.2065947

[23] Aiazzi B., Alparone L., Baronti S., Lastri C., Selva M. Spectral distortion in lossy
compression of hyperspectral data. Journal of Electrical and Computer Engineering.
2012;20(12):850637. DOI: 10.1155/2012/850637

[24] Zemliachenko A.N., Kozhemiakin R.A., Uss M.L., Abramov S.K., Lukin V.V., Vozel B.,
Chehdi K. VST-based lossy compression of hyperspectral data for new generation

Automatic Adaptive Lossy Compression of Multichannel Remote Sensing Images
http://dx.doi.org/10.5772/64944

47



sensors. In: Proceedings of SPIE Symposium on Remote Sensing; Dresden, Germany;
September 2013. SPIE Vol. 8892; p. 12. DOI: 10.1117/12.2028415

[25] Zemliachenko A., Abramov S., Lukin V., Vozel B., Chehdi K. Compression ratio
prediction in lossy compression of noisy images. In: Proceedings of IGARSS; Milan,
Italy; July 2015. pp. 3497–3500.

[26] Zemliachenko A.N., Abramov S.K., Lukin V.V., Vozel B., Chehdi K. Lossy compression
of noisy remote sensing images with prediction of optimal operation point existence
and parameters. Journal of Applied Remote Sensing. 2015;9(1):095066. DOI:
10.1117/1.JRS.9.095066

[27] Zemliachenko A., Kozhemiakin R., Vozel B., Lukin V. Prediction of compression ratio
in lossy compression of noisy images. In: Modern Problems of Radio Engineering,
Telecommunications and Computer Science (TCSET); Lviv-Slavske, Ukraine; February
2016. pp. 693–697.

[28] Kozhemiakin R., Abramov S., Lukin V., Djurović I., Vozel B. Peculiarities of 3D
compression of noisy multichannel images. In: Proceedings of MECO; Budva, Monte-
negro; June 2015. pp. 331–334.

[29] Lukin V., Abramov S., Kozhemiakin R., Vozel B., Djurovic B., Djurovic I. Optimal
operation point in 3D DCT-based lossy compression of color and multichannel remote
sensing images. Telecommunications and Radio Engineering. 2015;20:1803–1821.

[30] Christophe E., L´eger D., Mailhes C. Quality criteria benchmark for hyperspectral
imagery. IEEE Transactions on Geoscience and Remote Sensing. 2005;43(9):2103–2114.

[31] Green R.O., Eastwood M.L., Sarture C.M., Chrien T.G., Aronsson M., Chippendale B.J.,
et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer
(AVIRIS). Remote Sensing of Environment. 1998;65:227–248.

[32] Pearlman J.S., Barry P.S., Segal C.C., Shepanski J., Beiso D., Carman S.L. Hyperion, a
space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote
Sensing. 2003;41(6):1160–1173. DOI: 10.1109/TGRS.2003.815018

[33] Gao L., Du Q., Zhang B., Yang W., Wu Y. A comparative study on linear regression-
based noise estimation for hyperspectral imagery. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing. 2013;6(2):488–498.

[34] Al-Chaykh O.K., Mersereau R.M. Lossy compression of noisy images. IEEE Transac-
tions on Image Processing. 1998;7(12):1641–1652.

[35] Bekhtin Y.S. Adaptive wavelet codec for noisy image compression. In: Proceedings of
the 9th East-West Design and Test Symposium; Sevastopol, Ukraine; September 2011.
pp. 184–188.

[36] Lukin V., Bataeva E. challenges in pre-processing multichannel remote sensing terrain
images. In: Djurovic I., editor. Importance of GEO Initiatives and Montenegrin Capaci-

Recent Advances in Image and Video Coding48



sensors. In: Proceedings of SPIE Symposium on Remote Sensing; Dresden, Germany;
September 2013. SPIE Vol. 8892; p. 12. DOI: 10.1117/12.2028415

[25] Zemliachenko A., Abramov S., Lukin V., Vozel B., Chehdi K. Compression ratio
prediction in lossy compression of noisy images. In: Proceedings of IGARSS; Milan,
Italy; July 2015. pp. 3497–3500.

[26] Zemliachenko A.N., Abramov S.K., Lukin V.V., Vozel B., Chehdi K. Lossy compression
of noisy remote sensing images with prediction of optimal operation point existence
and parameters. Journal of Applied Remote Sensing. 2015;9(1):095066. DOI:
10.1117/1.JRS.9.095066

[27] Zemliachenko A., Kozhemiakin R., Vozel B., Lukin V. Prediction of compression ratio
in lossy compression of noisy images. In: Modern Problems of Radio Engineering,
Telecommunications and Computer Science (TCSET); Lviv-Slavske, Ukraine; February
2016. pp. 693–697.

[28] Kozhemiakin R., Abramov S., Lukin V., Djurović I., Vozel B. Peculiarities of 3D
compression of noisy multichannel images. In: Proceedings of MECO; Budva, Monte-
negro; June 2015. pp. 331–334.

[29] Lukin V., Abramov S., Kozhemiakin R., Vozel B., Djurovic B., Djurovic I. Optimal
operation point in 3D DCT-based lossy compression of color and multichannel remote
sensing images. Telecommunications and Radio Engineering. 2015;20:1803–1821.

[30] Christophe E., L´eger D., Mailhes C. Quality criteria benchmark for hyperspectral
imagery. IEEE Transactions on Geoscience and Remote Sensing. 2005;43(9):2103–2114.

[31] Green R.O., Eastwood M.L., Sarture C.M., Chrien T.G., Aronsson M., Chippendale B.J.,
et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer
(AVIRIS). Remote Sensing of Environment. 1998;65:227–248.

[32] Pearlman J.S., Barry P.S., Segal C.C., Shepanski J., Beiso D., Carman S.L. Hyperion, a
space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote
Sensing. 2003;41(6):1160–1173. DOI: 10.1109/TGRS.2003.815018

[33] Gao L., Du Q., Zhang B., Yang W., Wu Y. A comparative study on linear regression-
based noise estimation for hyperspectral imagery. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing. 2013;6(2):488–498.

[34] Al-Chaykh O.K., Mersereau R.M. Lossy compression of noisy images. IEEE Transac-
tions on Image Processing. 1998;7(12):1641–1652.

[35] Bekhtin Y.S. Adaptive wavelet codec for noisy image compression. In: Proceedings of
the 9th East-West Design and Test Symposium; Sevastopol, Ukraine; September 2011.
pp. 184–188.

[36] Lukin V., Bataeva E. challenges in pre-processing multichannel remote sensing terrain
images. In: Djurovic I., editor. Importance of GEO Initiatives and Montenegrin Capaci-

Recent Advances in Image and Video Coding48

ties in This Area. The Section for Natural Sciences Book No 16 ed. The Montenegrin
Academy of Sciences and Arts Book. No 119; 2012. pp. 63–76.

[37] Ponomarenko N.N., Lukin V.V., Egiazarian K., Astola J. DCT based high quality image
compression. In: Proceedings of 14th Scandinavian Conference on Image Analysis;
Joensuu, Finland; 2005. pp. 1177–1185.

[38] Ponomarenko N., Lukin V., Egiazarian K., Astola J. ADCT: a new high quality DCT
based coder for lossy image compression. In: CD ROM Proceedings of LNLA; Swit-
zerland; August 2008. p. 6.

[39] Liu C., Szeliski R., Kang S.B., Zitnick C.L., Freeman W.T. Automatic estimation and
removal of noise from a single image. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2008;30(2):299–314.

[40] Vozel B., Abramov S., Chehdi K., Lukin V., Ponomarenko N., Uss M., Astola J. Blind
methods for noise evaluation in multi-component images. In: Wiley-ISTE Multivariate
Image Processing; France; 2009. pp. 263–295.

[41] Abramov S., Zabrodina V., Lukin V., Vozel B., Chehdi K., Astola J. Methods for blind
estimation of the variance of mixed noise and their performance analysis. In: J.
Awrejcewicz, editor. Numerical Analysis—Theory and Applications. Austria: In-Tech;
2011. pp. 49–70. ISBN 978-953-307-389-7

[42] Anfinsen S.N., Doulgeris A.P., Eltoft T. Estimation of the equivalent number of looks in
polarimetric synthetic aperture radar imagery. IEEE Transactions on Geoscience and
Remote Sensing. 2009;47(11):3795–3809.

[43] Colom M., Lebrun M., Buades A., Morel J.M. A non-parametric approach for the
estimation of intensity-frequency dependent noise. In: IEEE International Conference
on Image Processing (ICIP); Paris, France; 27–30 October 2014. pp. 4261–4265. DOI:
10.1109/ICIP.2014.7025865

[44] Lukin V., Abramov S., Ponomarenko N., Uss M., Zriakhov M., Vozel B., Chehdi K.,
Astola J. Methods and automatic procedures for processing images based on blind
evaluation of noise type and characteristics. SPIE Journal on Advances in Remote
Sensing. 2011;5(1):27/053502. DOI: 10.1117/1.3539768

[45] Abramov S., Krivenko S., Roenko A., Lukin V., Djurovic I., Chobanu M. Prediction of
filtering efficiency for DCT-based image denoising. In: Proceedings of MECO; Budva,
Montenegro; June 2013. pp. 97–100.

[46] Kozhemiakin R.A., Zemliachenko A.N., Lukin V.V., Abramov S.K., Vozel B. An
approach to prediction and providing of compression ratio for DCT-based coder
applied to remote sensing images. Ukrainian Journal of Earth Remote Sensing.
Forthcoming. No 9, 2016, pp. 22-29.

[47] Rubel O.S., Kozhemiakin R.O., Krivenko S.S., Lukin V.V. A method for predicting
denoising efficiency for color images. In: Proceedings of 2015 IEEE 35th International

Automatic Adaptive Lossy Compression of Multichannel Remote Sensing Images
http://dx.doi.org/10.5772/64944

49



Conference on Electronics and Nanotechnology (ELNANO); Kiev, Ukraine; April 2015.
pp. 304–309.

[48] Cameron C., Windmeijer A., Frank A.G., Gramajo H., Cane D.E., Khosla C. An R-
squared measure of goodness of fit for some common nonlinear regression models.
Journal of Econometrics. 1997;77(2):1790–1792. (see http://www.irbis-nbuv.gov.ua/cgi-
bin/irbis_nbuv/cgiirbis_64.exe?
I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21
FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=ukjdzz_2016_9_5), No 9,
2016, pp. 22–29.

[49] Rissanen J. Modeling by shortest data description. Automatica. 1978;14(5):465–471.
DOI: 10.1016/0005-1098(78)90005-5

[50] Kozhemiakin R., Abramov S., Lukin V., Djurović B., Djurović I., Vozel B. Lossy
compression of Landsat multispectral images. In: Proceedings of MECO; Bar, Monte-
negro; June 2016. pp. 104–107.

Recent Advances in Image and Video Coding50



Conference on Electronics and Nanotechnology (ELNANO); Kiev, Ukraine; April 2015.
pp. 304–309.

[48] Cameron C., Windmeijer A., Frank A.G., Gramajo H., Cane D.E., Khosla C. An R-
squared measure of goodness of fit for some common nonlinear regression models.
Journal of Econometrics. 1997;77(2):1790–1792. (see http://www.irbis-nbuv.gov.ua/cgi-
bin/irbis_nbuv/cgiirbis_64.exe?
I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21
FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=ukjdzz_2016_9_5), No 9,
2016, pp. 22–29.

[49] Rissanen J. Modeling by shortest data description. Automatica. 1978;14(5):465–471.
DOI: 10.1016/0005-1098(78)90005-5

[50] Kozhemiakin R., Abramov S., Lukin V., Djurović B., Djurović I., Vozel B. Lossy
compression of Landsat multispectral images. In: Proceedings of MECO; Bar, Monte-
negro; June 2016. pp. 104–107.

Recent Advances in Image and Video Coding50

Section 2

Image Segmentation and Classification





Chapter 3

Mineral Froth Image Classification and Segmentation

Wang Weixing and Chen Liangqin

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65028

Provisional chapter

Mineral Froth Image Classification and Segmentation

Wang Weixing and Chen Liangqin

Additional information is available at the end of the chapter

Abstract

Accurate segmentation of froth images is always a problem in the research of floating
modeling based on Machine Vision. Since a froth image is with the characteristic of
complexity and diversity, it is a feasible research idea for the workflow of which the
froth  image  is  firstly  classified  and  then  segmented  by  the  image  segmentation
algorithm designed for each type of froth images. This study proposes a new froth
image  classification  algorithm.  The  texture  feature  is  extracted  to  complete  the
classification.  Meanwhile,  an  improved  method  based  on  the  original  valley‐edge
detection algorithm is also proposed in the study. Firstly, the fractional differential is
introduced to design the new valley‐edge detection templates which can extract more
information on bubble edges after the enhancement of the weak edges, and finally
the close bubble boundaries are obtained by carrying out the improved deburring
and gap connection algorithms. Experimental results show that the new classification
method  can  be  used  to  distinguish  the  types  of  small,  middle  and  large  bubble
images. The improved image segmentation algorithm can well reduce the problems
of over‐segmentation and under‐segmentation, and it is in higher adaptability.

Keywords: froth image, bubble, classification, segmentation, valley‐edge detection

1. Introduction

In the conventional mineral processing, froth flotation is the most widely used method [1].
Based on the difference between the physical and chemical properties of mineral surfaces,
flotation is a separation method by making the mineral particles selectively attached to the
bubbles [2]. The froth flotation is a continuous physical and chemical process occurring in the
solid, liquid and gas‐phase interface [3], in which the froth layer is a key factor. The visual
feature of the surface of the froth layer is a direct indicator of flotation process conditions and

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



production performance [3–7]. The flotation operation process is controlled by workers’ visual
observation of the surface condition of the foam layer [8–10]. Clearly, this traditional way of
working has many disadvantages, such as strong subjectivity, randomness and huge errors
[11]. It seriously affects the flotation efficiency and performance. Since the 1990s of the last
century, Machine Vision is introduced into the flotation process monitoring. Machine Vision
flotation  monitoring  and control  system is  on  the  research  about  obtaining  quantitative
characteristics of the visual surface of the foam layer by using a computer, cameras and other
industrial equipments, and applying digital image processing and artificial intelligence and
other advanced technologies [12]. And further, by studying the relationship between these
features and the flotation performance the flotation modeling can be realized, and accordingly
the automatic monitoring and optimization control of the flotation process can be achieved
[13]. Machine vision is a nonintrusive, cost‐effective, reliable technique for monitoring and
controlling flotation systems [14–17].

In recent years, with the rapid development of computer and digital image processing
technology, the bubble image analysis attracts more and more attention. The University of
Queensland, Australia, the United States of Process Technology Co., Ltd., UK, Sweden,
Finland, Italy, Chile and other countries have been joined the research of the flotation process
by computer vision. Efforts continues to be directed into how to measure accurately the
physical and dynamic features of froth, and linking concentrate grade with these measurable
attributes of the froth phase, although this is creating difficult [5, 12, 18]. The physical features
of froth are the bubble size distribution, bubble shapes and colors. These features can be
measured directly from digitized images of the froth, in which the image is segmented in order
to explicitly identify individual bubbles on the froth surface [5]. Edge detection algorithm and
Watershed algorithm are commonly used for bubble image segmentation and edge delinea‐
tion. Reference [19] has proposed the use of valley‐edge detection and valley‐edge tracing to
segment froth images. The method firstly uses Otsu threshold algorithm to extract the white
spot areas on bubbles, under which the froth images are classified as the large, medium, small
and mix‐sized bubble images; then based on the different gray scale distribution characteristics
for each class, a set of valley‐edge detection algorithms are designed to extract the bubble edges.
For each category, the filtering parameters and the threshold used in valley‐edge detection are
set separately, which can obtain good segmentation results for different classes of images.
Hence, before the image segmentation the froth image must be classified correctly, otherwise
the segmentation result will be unsatisfactory. In the end, a cleanup procedure based on valley‐
edge tracing is carried out to complete the gap connection between the valley edges. The
advantage of such methods based on the edge detection algorithm is the fast calculation speed,
but it is sensitive to noise in large bubble images, and the rough areas of the bubble surface
always result in a large number of false boundary information, which are difficult to be
completely removed. Watershed‐based algorithms are morphological approaches based on a
simulation of water rising from a set of markers [5].Watershed algorithm can obtain good
segmentation results when they are used to process the froth images of bubble size distributed
more uniform, but for the images with the large variation of the bubble sizes, it is easy to
encounter the over‐segmentation or under‐segmentation problems.
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Around these two categories, many improved methods and other algorithms have been
studied [20–25]. However, to a certain degree these improved algorithms suffer the same
problem that the balance of the accuracy of bubbles extraction and the high adaptability of
algorithms is difficult to achieve in the application. Measuring the bubble size distribution is
an intricate process [26]. No algorithm can obtain good segmentation result for all types of
froth images. Currently, there are several commercial froth image processing systems, such as
FrothMaster (Outokumpu), SmartFroth (UCT) and VisioFroth (Metso). About the bubble size
and shape measurement, each of the systems is only available in some special cases, not for all
the cases. The implementation of a long‐term fully automated flotation control system is
difficult due to the image segmentation problem [12, 18].

In this study, a new classification algorithm and a new image segmentation algorithm of froth
images are proposed. The new classification algorithm combines the size feature of white spot
and the texture feature. And the new image segmentation algorithm is improved based on the
original valley‐edge detection algorithm.

2. Flotation and froth image

2.1. Flotation mechanism and process

Flotation process is described as in Figure 1: A flotation agent is added to the pulp and mixed
mechanically, while air is blown to create bubbles; under certain operating conditions of
flotation, the hydrophobic mineral particles are adhered to the surface of bubbles during the
floating of the air bubbles, and eventually rise to the surface of the flotation cell mineral to
enrich and form a froth layer, while the hydrophilic particles are primarily retained in water
and are discharged with the tailings finally. The flotation process circuit includes grinding,
classification and flotation roughing, cleaning and scavenging operations. Each flotation bank
includes dozens of flotation cells. Figure 2 shows a concise flowchart of the flotation circuit.
The rough concentration from the rougher cell should be processed by the subsequent flotation
procedures to improve the concentration grade. The first operation in which the slurry is fed
is called rougher operation. The froth obtained from the rougher operation is again in the
flotation process, which is called the cleaner operation. The tailing output from the rougher
operation is again in the flotation process, which is called the scavenger operation. The outputs,
including the tailing from the cleaner operation and the froth from the scavenger operation,
are called the middle minerals. After the slurry is fed into the rougher cell, the useful mineral
particles are adhered to the bubbles and floated to overflow the flotation cell and then fed into
the cleaner operation from the pipe. The froth output from the cleaner operation is fed into the
total fine groove and processed to get the final concentration production by settling and
filtration operations. The underflow slurry of the rougher cells is put into the scavenger
operation. The froth from the scavenger operation is back as middle mineral into the rougher
cell to be processed again. The underflow slurry of the scavenger cells is converged into the
total end groove. In the end groove, the tailing is discharged after the final operation. The
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flotation process is a continuous and complex industrial production process in which each
subprocess is interrelated and interacted with each other.

Figure 1. Principle of flotation cell.

Figure 2. Schematic of flotation circuit.

2.2. Flotation image characteristic analysis

In the flotation system based on image analysis and machine vision, a CCD video camera is
mounted vertically above a flotation cell to capture froth images. The froth image is a special
kind of professional image. Figure 3 shows a lead froth image. A typical flotation image has
the following characteristics: (1) A large number of bubbles stick together to form the fore‐
ground of an image without background; (2) The bubbles sizes are different, and there is a
high‐light area (or more) on the top of each bubble, and the boundaries of bubbles are in low
gray value; (3) The contrast is low, and there is noise on the surface of bubbles, and the
illumination is uneven. In addition, there are often some black holes of different sizes on some
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bubble surfaces, and the colors of bubbles of different mineral flotation images are very
different. Flotation is a dynamic and continuous process, and therefore the bubble will be a
growth, burst and merger process.

Figure 3. A froth image and its gray characteristic analysis.

All the characteristics of froth images make bubble delineation hard. Therefore, how to achieve
an efficient froth image segmentation method has become a major task in this research field.
Since a flotation image is with much noise and without background at all, the flotation image
processing is very difficult. In order to achieve fast and efficient image processing results, it is
necessary to classify froth image first, then the image segmentation is carried out.

3. Froth image classification

As described above, before image segmentation, a froth image should be classified into
accurate categories based on the bubble size. Previous studies have shown that in most of the
cases, each of the bubbles in a froth image includes one or more high light areas, called white
spots, the size of a white spot is proportional to the bubble size and the average size of the
white spots is inversely proportional to the number of the bubbles in a froth image. The white
spots are generated by the artificial illumination in a froth cell.
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3.1. Classification method on the white spot

One kind of bubble classification method is based on the size of the white spot area of bubble.
Firstly, the white spot is extracted by an image segmentation method such as a method on
threshold. And then the average size of the white spot is used to classify the bubble image
category. Similarly, it can also determine the category based on the number distribution of
white spots. Figure 4 presents three froth image binarization results, which can be used for
image classification.

Figure 4. Image classification based on the white spot. (a) Three types froth images, from left to right are mixed, mid‐
dle and large bubble image. (b) Extracted white spot using Otsu threshold segmentation method.

3.2. Classification method on bubble surface texture feature

3.2.1. Bubble surface texture feature based on GLCM

In this section, a new classification method is proposed.

Based on the above‐mentioned information, for the correct bubble segmentation results, we
believe that the froth images should be classified into four classes: (1) images with small size
bubbles (or mixed with a few middle/large size bubbles), which is called “small bubble;” (2)
images in which most of the bubbles have a medium size, which is called “middle bubble;” (3)
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images, where, most of the bubbles have a relatively large size, which is called “large bubble”;
and (4) a few white spots can be detected or the detected white spots with a very large size,
which is called “super‐large bubble.”

For class 1 images, a bubble consists of a few pixels, it is difficult to detect the contours of
bubbles, but it is enough to estimate the bubble size distribution property by detecting white
spots; for class 2, 30–60 pixels are contained in a bubble, a rough contour location can be
detected by using a morphological segmentation algorithm; therefore, just the size distribution
and texture information can be obtained; for class 3, where the contours of bubbles are clear,
a small miss‐location of bubble contours cannot affect shape analysis results, thereby, the size,
shape distribution can be obtained exactly with an image segmentation algorithm based on
bubble contour tracing; and for class 4, the white spots information is less useful, only valuable
information of bubbles is of bubble edges, so the valley‐edge detection algorithm was devel‐
oped and used for estimation of size and texture information.

Texture is about the pixels collection with a certain size and shape. It is used to express the
properties of the surface or structure of an object. Texture provides a measure of roughness,
smoothness, regularity and other features of an image in an intuitive manner. The methods
commonly used to extract texture can be summed up in two categories: the method on the
spatial domain and the method on the frequency domain. In the space domain method, the
brightness variation, relevance and direction of adjacent pixels are calculated, and then the
characteristics of image texture are obtained using a statistical method. The analysis of power
spectrum is a method widely applied to extract the texture of the frequency domain. The fine
texture is reflected in the higher frequency, and the rough texture is reflected in the low
frequency. For that, the texture features can be extracted from the spectral distribution of an
image. However, the Fourier transformation should be calculated for the power spectrum,
which leads to the large amount of computation.

In this paper, gray‐level co‐occurrence matrix (GLCM) is used to describe the texture feature
of a bubble image. GLCM is a method based on the space domain. It provides the probability
of a certain gray value variation between adjacent pixels. GLCM is different to histogram of
an image. The histogram gives the statistical result. GLCM is a function of distance and
direction. Given the condition and the size of window, the numbers of pixel pairs that meet
with the condition are calculated. For an image of M×N size, given a predetermined direction (0°, 45°, 90°, 135°, etc.) and a distance value d, the element of (,  , ) describes the proba‐
bility of appearances of a pixel pair with the gray value i and j, of which the two pixels are
along  direction and at a distance of d.

Once the co‐occurrence matrix is calculated, the texture features can be described using the
matrix. The most used ones are the following:

1. Energy, the formula is as:

( ) 2
1 , | ,

i j

ASM P dF iT j q= = é ùë ûåå (1)
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Energy is the square values of the element of GLCM. The texture changes more regular,
the value of energy becomes greater.

2. Contrast, the formula is expressed as follows:

( )( )2
2

i j

, | ,CON P i j d iFT jq= = -åå (2)

The clarity of an image is higher, the value of contrast is greater.

3. Entropy, the formula is:

( ) ( )3 2, | , log  , | ,
i j

P i j d P dF i jT q q=åå (3)

Entropy is a measure of irregularities of texture in an image. The distribution of the gray
value of the image is messier and more disordered, and the value of entropy is greater.

4. Evenness, the formula can be expressed as:

(4)

The change and distribution of the local area of an image is less and more uniform, the
value of evenness is greater.

5. Correlation, the formula is as follows:

Correlation is the expression of the degree of similarity of GLCM elements between each
column and row.
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In the experiment, four froth images are chosen to carry out GLCM calculation. Based on
human eyes, the chosen four images are classified into small, middle, large and super large
bubble images, as shown in Figure 5. Energy, entropy, contrast and correlation are obtained
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from GLCM, and the results are shown in Table 1. In the calculation of GLCM, the distance d
is 1, and for each texture feature, the average value in 0°,45°,90°,135°four directions is calcu‐
lated as the final value.

Figure 5. Four types of bubble images. (a) Small, (b) middle, (c) large and (d) super‐large.

Image type Energy Entropy Contrast Correlation

Small 0.0512 3.6108 1.9535 0.1227

Middle 0.0382 3.7851 1.5868 0.1113

Large 0.0644 3.3802 1.0884 0.1366

Super‐large 0.0596 3.5659 1.6412 0.1284

Table 1. GLCM texture features of four images in Figure 5.

Tests are carried out on 50 images, including the four types of bubble images. The statistical
data show that for the small, middle and large bubble images, the value of the contrast
parameter of each type has a significant difference distribution area. The value of the small
bubble images is the maximum one, and the area is about 1.9–2.1; and The value of the small
bubble image is the maximum one, and the corresponding area is about 1.9–2.1; and the
contrast value of the middle bubble image is about 1.4–1.6. The only exception is the super‐
large bubble image. The value of the super‐large bubble image is not distributed at a fixed
interval.

Based on the above analysis, a method combining the size of the white spot area and the texture
feature is proposed to classify the bubble images. The input image is firstly segmented to
extract the white spots. If the average size of the white spot areas is greater than a given
threshold, the input image is classified into a super‐large bubble image. If not, GLCM of the
input image is calculated to extract the contrast feature, and then the image is classified into
the small, middle and large bubble image based on the difference distribution area of the value
of the contrast feature.
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3.2.2. Classification experiments and results based on SVM

After the texture features are extracted based on GLCM, these features can be used to design
and train the classifier. And the classifier can be used to classify the froth images.

Support vector machine (SVM) was proposed based on the structural risk minimization
principle. It means that the design principle of SVM is based on the maximization of the
accuracy of both training and testing, or the minimization of the risk of both experience and
expectation. For the traditional classifiers, the insufficient samples always lead to the imbalance
between the training samples and the testing samples, and it affects the performance of the
classifiers. SVM can overcome this shortcoming, and is one of the better machine learning
algorithms. In this chapter, SVM method is used to classify the froth images.

Figure 6. The voting and the decision process.

In the experiment, one‐to‐one way (two kinds of classifier) is used to design the classifier. Let
class A denote the large froth image, class B for the middle froth image, and class C for the
small froth image. Each two classes of A, B and C is composed to design and train the classifier.
That's to say, there are total three classifiers, that is, classifier (A, B), classifier (A, C) and
classifier (B, C). During the testing phase, the test sample xi is sequentially fed into these three
classifiers, and then the voting way is used to decide the category. The specific voting procedure
is described as follows:

1. The initialization process: set these variables as in initial value 0, that is, vote(A) = vote(B) 
= vote(C) = 0;

2. The voting process: If the test sample xi is judged as class A in the classifier (A,B), then
vote(A) = vote(A) + 1, otherwise vote(B) = vote(B) + 1;

If the test sample xi is judged as class A in the classifier (A,C), then vote(A) = vote(A) + 1,
otherwise vote(C) = vote(C) + 1;

If the test sample xi is judged as class B in the classifier (B,C), then vote(B) = vote(B) + 1,
otherwise vote(C) = vote(C) + 1;
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3. The final decision process: Find the category corresponding to the maximum based on the
following formula, and the test sample xi is classified into the corresponding class.

Max(vote(A),vote(B),vote(C))

If there are two maximum values, the class corresponding to the first maximum is generally
taken as the selected class. Figure 6 gives the demonstration of the voting and decision process.

In the following section, we take the classifier (A,B), that is, the classifier of the large froth
image and the middle froth image, as an example to describe the design procedure. The designs
of the other two classifiers are similar.

We chose the radial basis function (RBF) with the strong generalization ability as the kernel
function of SVM. The formula of RBF is as follows:

( ) ( )2, expi iK x x x xg= - - (6)

where  = 12 , and in our experiment,  is set as 0.07.

In the experiment, 35 large froth images and 35 middle froth images are chosen as the datasets.
Among the datasets, 15 samples of each class are selected as a training set and the remaining
20 samples of each class as a test set. That is, there are 30 training samples and 40 testing samples
in total. Eight dimensions of the texture features based on GLCM of each sample are used
including the mean and the standard deviation of the energy, entropy, moment of inertia and
correlation feature.

The model of the classifier is obtained after the training of 30 samples, and then 40 testing
samples are fed into the classifier to complete the prediction classification. Figure 7 gives the
classification results, of which label 1 represents the large froth image and label -1 for the
middle froth image.

Figure 7. Forty test samples classification results of classifier (A,B).
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As shown in Figure 7, 20 large froth image test samples were all classified correctly and three
samples were classified into the false class in 20 middle froth image test samples.

Classifier (A,C) and classifier (B,C) are designed as the above procedure. When the three
classifiers are available, each test sample is fed into the classifier by turn and judged to the
corresponding class by the voters. For 60 test samples, the classification results are shown in
Figure 8, where label 2 represents the large froth image test sample, label 1 the middle froth
image test sample and label -1 the small froth image test sample. Table 2 shows the statistical
result corresponding to the figure. The statistical result shows that the probability of misclas‐
sification of the middle froth image test samples is highest. It leads to a higher misclassification
rate for the reason that the texture feature of some middle froth images is possibly close to the
large froth image or small froth image. However, the overall average correct classification rate,
83.3%, can basically meet the application requirements.

Figure 8. Sixty test samples classification results.

Froth image category Number of test samples Number of correct classification
test samples 

Correct classification rate
(%) 

Large 20 18 90

Middle 20 15 75

Small 20 17 85

Total amount 60 50 83.3

Table 2. The statistical data corresponding to Figure 8.

4. Froth image segmentation

Bubble image segmentation and delineation are the key to extract the morphological charac‐
teristics of froth. Classical image segmentation methods, such as methods on threshold and on
edge detection, can only detect the highlighted areas of some bubbles. These methods fail to
extract the edges of bubbles. Actually the practice has proved that the better methods are the
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ones based on valley‐edge extraction and Watershed. Around these two categories, many
improved methods have been proposed.

4.1. Segmentation method based on valley‐edge extraction

Segmentation method based on valley‐edge extraction was purposed by Wang et al. [19]. The
algorithm includes valley‐edge detection and valley‐edge tracing. The detection process was
designed on the gray value distribution feature of a cross‐section of a froth image. It detects
each pixel to see if it is the lowest valley point in a certain direction. If it is, then the pixel is
used as the valley‐edge candidate, and both its direction and location are marked. The above‐
mentioned search process is performed in the 0°, 45°, 90° and 135° four directions of the current
pixel respectively. A threshold is set to find the greatest value, and then the detected point is
marked as a valley‐edge candidate point.

Valley‐edge tracing is performed on the result image of valley‐edge detection after simple
denoising. First, the significant endpoints of curves are detected, and then the direction is
estimated, and finally the contour is traced according to the information of direction of each
new detected point and an intensity cost function.

It should be noted that good segmentation results could be obtained only if the input froth
image is classified into the exact type. Figure 9 gives the valley‐edge extraction results of the
four types of bubble images in Figure 5. We can see that over‐segmentation or under‐segmen‐
tation problem cannot be avoided in the four types of bubble images.

Figure 9. Segmentation results on the valley‐edge extraction.

4.2. Segmentation method based on watershed

Watershed is a kind of segmentation method based on mathematical morphology. The
watershed algorithm is used to find the local maximal values (Watersheds) of an image. Vincent
and Soille [27] proposed and described the algorithm in detail. An image is seen as a topo‐
graphical surface, with holes pierced at the location of the minima. As this surface is lowered
into a lake, the water level within the surface will start to rise within each of the catchment
basins. When the water from two catchment basins is about to merge, a dam is built to prevent
this. At the end of the process, each minimum is surrounded by a dam, with the dams
corresponding to the watershed of the image. In order to obtain the good segmentation result,
minimal location of each object should be found to be as a marker, see Ref. [28]. Figure 10
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shows the watershed segmentation results of the four types of bubble images in Figure 5. The
same problems with the valley‐edge extraction method can be seen in the watershed segmen‐
tation results.

Figure 10. Segmentation results on Watershed.

4.3. New segmentation method based on valley‐edge extraction

The main reason for that the froth image is hard to segment accurately is in the very weak
boundaries of bubbles. Based on the original valley‐edge extraction algorithm, we propose an
improved segmentation method on the fractional integral. The valley‐edge detection mask is
designed based on the fractional integral in the improved method. The new mask helps to
extract more details on the bubble edges.

The fractional integral of signal f(x) is defined as:
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The first three coefficients, i.e. 0, 1, 2, are taken to define the eight detection templates of the

valley‐edge detection algorithm. The eight templates are defined as shown in Figure 11.
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Figure 11. Eight directions templates. (a) X1, (b) X2, (c) X3, (d) X4, (e) X5, (f) X6, (g) X7 and (h) X8.

Based on the eight direction templates, the convolution operation is carried out on the image.
For each pixel f(i,j), eight operation results can be obtained, each of which is marked with
G1∼G8. The convolution operation rules of the eight directions are defined as:
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In the above‐mentioned formula, b is the size of the template, and in this chapter we take, b =
3.

In accordance with the detection rules of the original valley‐edge extraction algorithm, if the
values of the two directions of each pair are both greater than the value of the given threshold
T, then the value of the current center pixel f(i,j), the pixel f(i,j), would be marked as a valley
point of the current direction. And the new values of the four directions are set as follows:

4
4, ( , ) & & ( , )

( , ) 2
0,

m m
m m

m

G G G f i j T G f i j T
g i j

other

+
+

+ì - ³ - ³ï= í
ïî

(17)

where m = 1, 2, 3, 4. Take the maximum value of the four directions as the final value of valley
point g(i,j). Finally, the valley‐edge image is binarized based on the selected threshold T2.
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Figure 12 shows the bubble edges obtained by the improved valley‐edge extraction method.
The original images are from Figure 5.

Figure 12. Bubble edge extracted by improved valley‐edge extraction method.

In the bubble edge image, as shown in Figure 12, there are many isolated point noise, short
lines and gaps. A series of post‐processing functions must be applied to get clean and complete
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In the bubble edge image, as shown in Figure 12, there are many isolated point noise, short
lines and gaps. A series of post‐processing functions must be applied to get clean and complete
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closure of the boundaries of bubbles. The post‐processing procedure includes denoising, burr
removal and gap connection.

(1) Denoising processing

The first step is for the expansion procedure on eight‐neighbor, and the second step is for the
corrosion procedure on four‐neighbor. The expansion processing can be used to connect the
small gaps, and the corrosion processing can eliminate the small glitches, and the boundaries
can become smoother after the expansion and corrosion processing. Figure 13 gives the
structural elements of the expansion and corrosion.

Figure 13. Structural elements of expansion and corrosion. (a) Expansion structure on 8‐neighbor. (b) Corrosion struc‐
ture on 4‐neighbor.

(2) Deburring process

For the short line noise, the traditional method is to eliminate them based on a given length
threshold. In order to maintain more information of bubble boundaries as possible while
removing the glitch noise, an improved deburring algorithm is designed, and it is shown in
Figure 14.

(3) Gap connection processing

There are some boundary gaps after the deburring process. A normal method for the gap
connection is to find the endpoints of the fracture gaps firstly and then to search other candidate
endpoints in the surrounding area of the current pixel. If the candidate endpoints are found,
the connection is carried out or not based on the condition of the distance and angle difference
between the current endpoint and the candidate endpoint.

Since the bubble boundary is complex, an improved gap connection algorithm combined the
long connection and the short connection is studied. Figure 15 shows the workflow of the
improved algorithm.
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In the above algorithm, the processing of the short connection is described as follows. When
the distance between the two endpoints is less than a given value (here it is taken as 4 pixels),
the two endpoints are connected directly.

Figure 14. Workflow of improved deburring algorithm.

The long connection processing is a connection method based on the maximum entropy
threshold method. The processing steps are shown as follows:

a. Take the original froth image as a reference image.

b. Calculate the threshold value of the original froth image based on the maximum entropy
threshold. There is a fact that the gray value of bubble boundary is less than the threshold.

c. Use the current endpoint and the candidate endpoint to locate the positions in the original
image. If there is boundary information (the gray value is less than the threshold value of
step b), the two endpoints can be connected.

For the four types of bubble images in Figure 5, the proposed improved segmentation method
is tested on them. The segmentation results are shown in Figure 16. Compared with the results
of the original valley‐edge extraction and the watershed methods, the improved algorithm has
the advantage of restraining the over‐segmentation and under‐segmentation problems.
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Figure 15. Workflow of improved gap point connection algorithm.

Figure 16. Final segmentation results on improved valley‐edge extraction algorithm.
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Figure 17. Comparison between improved algorithm and other segmentation algorithms. (a) Original froth images be‐
longing to the four types. (b) Results of the original valley‐edge detection algorithm. (c) Results of the watershed algo‐
rithm. (d) Results of our improved algorithm.

Another experiment is carried out on the other four types of froth images as shown in
Figure 17. The experimental results demonstrate again that no algorithm can always obtain
good segmentation result for all types of froth images. For the froth image with the uniform
bubble size distribution, the segmentation result is always satisfactory. The black hole areas
and the raised mineral particle areas always lead to the over‐segmentation problem. And for
the super large type of the froth image, the segmentation results of the four algorithms are all
not satisfactory. The noise and the uneven gray value distribution become more obvious for
the super large type of the image, so the position deviation of the extracted bubbles edges,
over‐segmentation and other problems become more serious.

5. Conclusion

The classification and the segmentation of froth images are discussed and analyzed in this
paper. And for each of the two questions, a new method is proposed.
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1. The existing classification and segmentation methods are discussed firstly.

2. A new froth image classification method is proposed. It adopts GLCM to extract the
contrast texture feature, and based on the difference distribution area of the contrast
feature, the froth image can be classified into small, middle or large bubble image. The
classification experiments and results based on SVM show that the supposed method is
feasible for the application.

3. An improved froth image segmentation method is suggested based on the original valley‐
edge extraction algorithm. Firstly, the fractional differential is introduced to design the
new eight direction templates used to extract the bubble boundary. Secondly, the mathe‐
matical morphology methods including expansion and corrosion are used to denoise.
Thirdly, an improved deburring algorithm is used to remove burrs. Finally, an improved
gap connection combined the long connection and the short connection is applied to form
the close and integral bubble boundary.

4. The experimental results demonstrate the effectiveness of the two improved algorithms.
A froth image can be correctly classified using the new classification method. The
improved segmentation algorithm can reduce over‐segmentation and under‐segmenta‐
tion.

However, because of the complexity, particularity, diversity, randomness and dynamic of
froth images, it should be noted that the difficulties of the classification and segmentation of
froth images are still not completely overcome.

Author details

Wang Weixing* and Chen Liangqin

*Address all correspondence to: znn525d@qq.com

College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China

References

[1] Nissinen A, Lehikoinen A, Mononen M, et al. Mint: Estimation of the bubble size and
bubble loading in a flotation froth using electrical resistance tomography. Minerals
Engineering. 2014; 69: 1–12. DOI:

[2] Napier‐Munn T, Wills BA. Wills’ Mineral Processing Technology: an Introduction to
the Practical Aspects of Ore Treatment and Mineral Recovery. Butterworth: Heinemann.
2011.

Mineral Froth Image Classification and Segmentation
http://dx.doi.org/10.5772/65028

73



[3] Farrokhpay S. Mint: The significance of froth stability in mineral flotation—a review.
Advances in Colloid and Interface Science. 2011; 166: 1–7.

[4] Nunez F, Cipriano A. Mint: Visual information model based predictor for froth speed
control in flotation process. Mineral engineering. 2009; 22: 366–371.

[5] Aldrich C, Marais C, Shean B J, et al. Mint: Online monitoring and control of froth
flotation systems with machine vision: a review. International Journal of Mineral
Processing. 2010; 96(1–4): 1–13.

[6] Kistner M, Jemwa G T, Aldrich C. Mint: Monitoring of mineral processing systems by
using textural image analysis. Mineral Engineering.2013; 52: 169–177.

[7] Neethling S J, Cilliers J J. Mint: Modelling flotation froths. International Journal of
Mineral Processing. 2003; 72: 267–287.

[8] Moolman DW, Eksteen JJ, Aldrich C, et al. Mint: The significance of flotation froth
appearance for machine vision control. International Journal of Mineral Processing.
1996; 48 : 135–158.

[9] Reddick J F, Hesketh A H, Morar S H, et al. Mint: An evaluation of factors affecting the
robustness of colour measurement and its potential to predict the grade of flotation
concentrate. Minerals Engineering. 2009; 22: 64–69.

[10] Tan J K, Liang L, Peng Y L, et al. Mint: The concentrate ash content analysis of coal
flotation based on froth images. Minerals Engineering. 2016; 92: 9–20.

[11] Zhang J, Tang Z, Liu J, et al. Mint: Recognition of flotation working conditions through
froth image statistical modeling for performance monitoring. Minerals Engineering.
2016; 86: 116–129.

[12] Jovanovic I, Miljanovic L, Jovanovic T. Mint: Soft computing‐based modeling of
flotation process—A review. Minerals Engineering. 2015; 84: 34–63.

[13] Morar S H, Harris M C, Bradshaw D J. Mint: The use of machine vision of predict
flotation performance. Minerals Engineering. 2012; 36–38:31–36.

[14] Mehrabi A, Mehrshad N, Massinaei M. Mint: Machine vision based on monitoring of
an industrial flotation cell in an iron flotation plant. International Journal of Mineral
Processing. 2014; 133: 60–66.

[15] Moolman D W, Aldrich C, Schmitz G, et al. Mint: The interrelationship between surface
froth characteristics and industrial flotation performance. Minerals Engineering. 1996;
9: 837–854.

[16] Bonifazi G, Massacci P, Meloni A. Mint: Prediction of complex sulfide flotation
performances by a combined 3D fractal and colour analysis of the froths. Minerals
Engineering. 2000; 13: 737–746.

Recent Advances in Image and Video Coding74



[3] Farrokhpay S. Mint: The significance of froth stability in mineral flotation—a review.
Advances in Colloid and Interface Science. 2011; 166: 1–7.

[4] Nunez F, Cipriano A. Mint: Visual information model based predictor for froth speed
control in flotation process. Mineral engineering. 2009; 22: 366–371.

[5] Aldrich C, Marais C, Shean B J, et al. Mint: Online monitoring and control of froth
flotation systems with machine vision: a review. International Journal of Mineral
Processing. 2010; 96(1–4): 1–13.

[6] Kistner M, Jemwa G T, Aldrich C. Mint: Monitoring of mineral processing systems by
using textural image analysis. Mineral Engineering.2013; 52: 169–177.

[7] Neethling S J, Cilliers J J. Mint: Modelling flotation froths. International Journal of
Mineral Processing. 2003; 72: 267–287.

[8] Moolman DW, Eksteen JJ, Aldrich C, et al. Mint: The significance of flotation froth
appearance for machine vision control. International Journal of Mineral Processing.
1996; 48 : 135–158.

[9] Reddick J F, Hesketh A H, Morar S H, et al. Mint: An evaluation of factors affecting the
robustness of colour measurement and its potential to predict the grade of flotation
concentrate. Minerals Engineering. 2009; 22: 64–69.

[10] Tan J K, Liang L, Peng Y L, et al. Mint: The concentrate ash content analysis of coal
flotation based on froth images. Minerals Engineering. 2016; 92: 9–20.

[11] Zhang J, Tang Z, Liu J, et al. Mint: Recognition of flotation working conditions through
froth image statistical modeling for performance monitoring. Minerals Engineering.
2016; 86: 116–129.

[12] Jovanovic I, Miljanovic L, Jovanovic T. Mint: Soft computing‐based modeling of
flotation process—A review. Minerals Engineering. 2015; 84: 34–63.

[13] Morar S H, Harris M C, Bradshaw D J. Mint: The use of machine vision of predict
flotation performance. Minerals Engineering. 2012; 36–38:31–36.

[14] Mehrabi A, Mehrshad N, Massinaei M. Mint: Machine vision based on monitoring of
an industrial flotation cell in an iron flotation plant. International Journal of Mineral
Processing. 2014; 133: 60–66.

[15] Moolman D W, Aldrich C, Schmitz G, et al. Mint: The interrelationship between surface
froth characteristics and industrial flotation performance. Minerals Engineering. 1996;
9: 837–854.

[16] Bonifazi G, Massacci P, Meloni A. Mint: Prediction of complex sulfide flotation
performances by a combined 3D fractal and colour analysis of the froths. Minerals
Engineering. 2000; 13: 737–746.

Recent Advances in Image and Video Coding74

[17] Vanegas C, Holtham P. Mint: On‐line froth acoustic emission measurements in indus‐
trial sites. Minerals Engineering. 2008; 21: 883–888.

[18] Jahedsaravani A, Marhaban M, Massinaei M, et al. Mint: Froth‐based modeling and
control of a batch flotation process. International Journal of Mineral Processing. 2016;
146: 90–96.

[19] Wang WX, Bergholm F, Yang B. Mint: Froth delineation based on image classification.
Minerals Engineering. 2003; 16(11): 1183–1192.

[20] Banford AW, Aktas Z. Mint: The effect of reagent addition strategy on the performance
of coal flotation. Minerals Engineering. 2004; 17: 745–760.

[21] Yang CH, Xu CH, Mu XM, et al. Mint: Bubble size estimation using interfacial mor‐
phological information for mineral flotation process monitoring. Transaction of
Nonferrous Metals Society of China. 2009; 19: 694–699.

[22] Wang WX, Chen LQ. Mint: Flotation bubble delineation based on Harris corner
detection and local gray value minima. Minerals. 2015; 5(2): 142–163.

[23] Vinnett L, Alvares‐Silva M. Indirect estimation of bubble size using visual techniques
and superficial gas rate. Minerals Engineering. 2015; 81: 5–9.

[24] Jahedsaravani A, Marhaban M H, Massinaei M, et al. Mint: Development of a new
algorithm for segmentation of flotation froth images. Minerals and Metallurgical
Processing. 2014;31(1):66–72.

[25] Liu JP, Gui GH, Tang ZH, et al. Mint: Recognition of the operational statuses of reagent
addition using dynamic bubble size distribution in copper flotation process. Minerals
Engineering. 2013; 45: 128–141.

[26] Kracht W, Emery X, Paredes C. Mint: A stochastic approach for measuring bubble size
distribution via image analysis. International Journal of Mineral Processing. 2013; 121:
6–11.

[27] Vincent L, Soille P. Mint: Watersheds in digital spaces: An efficient algorithm based on
immersion simulutions. IEEE Transactions on Pattern Analysis Machine Intelligence.
1991; 13(6): 583–598.

[28] Vincent L. Mint: Morphological grayscale reconstruction in image analysis: Appli‐
cations and efficient algorithms. IEEE Transactions on Image Processing. 1993; 2(2):
176–201.

Mineral Froth Image Classification and Segmentation
http://dx.doi.org/10.5772/65028

75





Chapter 4

Segmentation of Fuzzy and Touching Cells Based on

Modified Minimum Spanning Tree and Concave Point

Detection

Wang Weixing and Lin Liqun

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65029

Provisional chapter

Segmentation of Fuzzy and Touching Cells Based on
Modified Minimum Spanning Tree and Concave Point
Detection

Wang Weixing and Lin Liqun

Additional information is available at the end of the chapter

Abstract

In  order  to  segment  fuzzy  and  touching  cell  images  accurately,  an  improved
algorithm is proposed based on minimum spanning tree (MST) and concave point
detection. First, the cell images are smoothed and enhanced by a Gaussian filter. Then,
the improved minimum spanning tree algorithm is used to segment the cell images.
The MST algorithm is modified from three aspects, namely, weight function of edges,
difference function of internal and inter region, and threshold function and parameter
k.  Furthermore,  the problem of cell  touching is  solved by means of  concave point
detection. According to the rugged topography of touching cells, the concave points
are found from the concave regions in the touching cell images, which are used to
find the separation points quickly and accurately. Experimental results indicate that
the new algorithm is ideal and effective.

Keywords: image segmentation, touching cell, MST, concave

1. Introduction

Nowadays, the medical image segmentation has a wide range of applications and researches in
the medical research field, such as clinical diagnosis, pathological analysis, surgical planning,
computer‐aided surgery, and so on. Especially in recent years, the global incidence of cancer is
increasing, and the early diagnosis of cancer is particularly important. Accurate segmentation
is an important part in computer‐aided analysis of blood cell image. And the blood cell image
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has the characteristics of cell touching, frequent severe adhesion, varying sizes of the cells,
unclear cell boundary, and so on. It is difficult to accurately segment them. In particular, it has
become a hot and difficult topic to study how to extract the cell region and achieve good
segmentation of cell adhesion in the complex background.

Li et al. [1] and Al‐Kofahi et al. [2] proposed that the cell touching is the most difficult problem
in the field of cell segmentation, which easily leads to undersegmentation, and a plurality of
cells adhered together is regarded as a cell detection and segmentation, eventually leading to
cell density calculation, spatial distribution, and morphological analysis error. In the field of
the concave point detection, Anand et al. [3] used the color as the feature for the segmentation
of adhesion cells, the algorithm can be highly segment irregular images, and has high seg‐
mentation accuracy. To segment fuzzy and touching cell images accurately, Micko et al. [4]
used fast radial symmetry transform (FRST) algorithm to extract target and background
markers, an improved watershed algorithm based on FRST was proposed for the cell touching
segmentation. Aymen et al. [5] put forward improved watershed algorithm based on gradient
distance transform combined with concave detection. It can split touching cells, and overseg‐
mentation phenomenon has been partially improved.

The image segmentation method based on graph theory is widely used in recent years [6–10].
Zhang et al. [11] proposed an image segmentation method based on watershed and graph
theory. Wang et al. [12] adopted a new image segmentation algorithm based on graph theory
and mathematical morphology. Fabijanska et al. [13] used an improved algorithm based on
minimum spanning tree, which can increase the speed of image segmentation by reducing the
number of vertices in the graph. Song et al. [14] made graph theory combined with the method
of multiscale convolution network (MSCN) to segment the cervical cell touching images, and
achieved good results. Other methods such as Hough circular detection [15] and adaptive
template matching [16] are also used for the segmentation of cell images, but there is more
error localization and they cannot effectively isolate the touching cells.

From the study, it is found that the segmentation accuracy rate of the above algorithms is not
high, the main reason may be the effect of the complex image background, and the dividing
lines of the touching cells cannot be accurately obtained [17]. Hence, the most critical is to split
the touching cells.

In addition, Felzenszwalb and Huttenlocher algorithm (FH algorithm) [18] suggested an
improved minimum spanning tree segmentation algorithm, namely, when the regional
internal differences are larger than the pixel differences between regions, it identifies two
regions belonging to a homogeneous region and then merges them. According to the different
characteristics of the images, it can work with high efficiency. But it also has its own short‐
comings; when the threshold is set too large, it is easy to produce oversegmentation problem,
and if the threshold is set too small, the phenomenon of undersegmentation will appear, so
the segmentation scale is difficult to be grasped.

Based on this, a new blood cell image segmentation algorithm is studied which is based on the
graph theory and concave point detection.
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2. Image segmentation based on graph theory

2.1. Graph theory

Let G = (V, E) be an undirected graph with vertices  ∈ , and edges (, ) ∈ , which are

corresponding to pairs of neighboring vertices. Each edge (, ) ∈  as a corresponding

weight (, ), which is a nonnegative measure of the dissimilarity between neighboring

elements vi and vj. In the case of image segmentation, the elements in V are pixels and the
weight of an edge is some measure of the dissimilarity between the two pixels connected by
that edge (e.g., the difference in intensity, color, motion, location, or some other local attributes).

Figure 1. Minimum spanning tree: (a) pixel matrix of an image; (b) mapping diagram; (c) minimum spanning tree gen‐
erated by graph.

By using the MST to segment images, the image information might be grasped from the overall
situation, the growth process of MST can keep details of a region, and the process of looking
for the smallest weight is adaptive, thus the global performance of an image meets the needs
of the human visual characteristics. The algorithm can guarantee a good segmentation result
in general, and it is of the high efficiency and has the simple data structure. So this paper uses
the improved MST algorithm to conduct the cell image segmentation.

Using the MST algorithm, Figure 2 is the segmentation result of Figure 1(c). The threshold is
greater than or equal to 51, and the segmentation result is shown in Figure 2(a), which is the
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red region and the blue region; if the threshold is 4, then the image is divided into three parts,
as shown in Figure 2(b).

Figure 2. Minimum spanning tree segmentation: (a) segmentation results of threshold 51; (b) segmentation results of
threshold 4.

Using the MST algorithm, Figure 2 is the segmentation result of Figure 1(c). The threshold is
greater than or equal to 51, and the segmentation result is shown in Figure 2(a), which is the
red region and the blue region; if the threshold is 4, then the image is divided into three parts,
as shown in Figure 2(b).

Thus, the threshold K selection is very important for the segmentation results.

2.2. Modified MST algorithm

In this paper, the image is mapped into a weighted graph G (V, E), and using Kruskal algorithm
based on merged strategy. It is mainly related to three kinds of parameters: Gaussian filter
parameter sigma; threshold function parameters of K used to control the extent of segmenta‐
tion; and the parameters of minimum size, if the two neighboring region size is less than
minimum size, the two regions are merged. The algorithm has the advantages of simple
structure and high computational efficiency. For the algorithm, the following points of its
improvement are presented.

2.2.1. Improved weight function of edges

According to Felzenszwalb and Huttenlocher algorithm (FH algorithm), the edge weights of
MST only represent absolute difference of color information between two pixels, without
considering their spatial position information. If the space position (distance) of the two pixels
is farther away, their relevance in general will also become weak, we should increase the edge
strength. Only the edge weights of gray level images are redefined in the literature [19]. It can
be redefined as the weight function.

For gray level images, the edge weight is defined as:
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coordinates for  and  correspondingly. The definition for the weight is made by the

difference of image pixel gray level values and spatial distance between the pixels.

For color images, the edge weight is defined as:
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Among them, Hi, Hj, Si, Sj, Ii, and Ij are the pixel components. , , , and  are the horizontal

and vertical coordinates of the point.

2.2.2. Improved difference function of internal and inter region

We redefine the internal difference, Int (C), such that it gives a more accurate description of
component C. Formally,

( ) ( )
( ),

1 *
e MST C E

Int C N w e
Î

= å (3)

where N is the number of the MST edges, namely N =|C| – 1. It can reduce the sensitivity to a
certain extent, and control segmentation scale by adjusting the parameter K, mainly inhibit the
effect of noise. It is more stable than the original definition. More importantly, it does not
increase the time complexity.

The definition of Diff (C1, C2) is as the following merge condition:

1 2 1 1 1 2 2 2( , ) ( ) ( ) and ( , ) ( ) ( )Diff C C Int C T C Diff C C Int C T C£ + £ + (4)

where Diff(C1, C2) is the difference between components C1 and C2; Int(C1) and Int(C2) are
respectively the internal differences of C1 and C2; T(C) = k/|C| is the threshold function.
Parameter k controls the size of the components in the image segmentation.

2.2.3. Improvement of threshold function and parameter k

Felzenszwalb et al. pointed out that a large k was conducive to large areas, but the quantitative
relationship between the K and the size of the region was not given. Therefore, an appropriate
value is difficult to provide users with a parameter k for the expected component size. For
example, two different k values of 150 and 300 are used. But they do not explain why 150 or
300 is selected, rather than the other values. For each particular image, this approach becomes
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infeasible in real‐time applications if the value of k is determined by trial and error. Therefore,
the expressions of the improved threshold and parameter k are as follows:

max min( ) ( / ) * ( / )cT c w w c Num k= - (5)

In the formula (5), 𝀵𝀵𝀵𝀵𝀵𝀵 is the region number, the initial value is the number of pixels, k is a

constant. The larger the k is, the more obvious the boundaries of the two regions can be
distinguished. Note that k is not for the region numbers of the segmentation; the bigger the K
value is, the lager the producing area is. Based on this, the stop‐merge condition for the
component C becomes:

max min 1 2(( ) ) / ( ( , ) ( ))ck w w Num c Diff c c Int c> - - (6)

In the formula (6), for a given image, (max − min) is fixed. 𝀵𝀵𝀵𝀵𝀵𝀵 is monotonically decreasing,

while (Diff(c1, c2) ‐ Int(c)) is not decreasing.

3. Separation of touching cells based on concave point detection

3.1. Determination of cell adhesion and the extraction of core coordinate

Cell touching can be divided into three types: parallel, series, and serial‐parallel, as shown in
Figure 3. In parallel, the cell is enclosed in a closed area, as shown in Figure 3(a). Series cells
are end‐to‐end cells, as shown in Figure 3(b); and the third is both cells connected in series and
parallel cell, as shown in Figure 3(c).

3.1.1. Principle of cell touching

When the cells are stuck together, the boundaries will become more complex, usually concave
regions will appear in the touching areas. The shape factor can describe the complexity of cell
boundaries, and its formula is defined as follows:

2

4 APE
C
p

= (7)

In the formula, C is the circumference of the object, and A is the area of the object.

By scanning the image, the total numbers of pixels in the same marked area are the area of the
target. The accumulation of the distances between adjacent edge points in the closed curve is
the perimeter of the target. The distance between the two adjacent edge points in any horizontal
direction or vertical direction is 1, while the distance between the two adjacent edge points in
the tilt direction is 2.
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Figure 3. Cell touching categories: (a) parallel cells; (b) serial cells; (c) serial‐parallel cells.

The range of shape factor is less than 1. When the target is close to the circle, the shape factor
is close to 1. If cells are stuck together, their boundaries are complex. In the case of the same
area, the circumference of the target with a concave object is larger than that of the target
without a concave target, resulting in a corresponding smaller size of the shape factor. After
learning and training to determine a threshold P0, when PE > P0, the cell touching does not exist.
When PE is less than or equal to P0, the cell touching exists. With this constraint, the shape
factor can prevent the error of separation.

3.1.2. Extraction of the cell core coordinates

The core of the cell is the central pixel of the cell, which is the core of each cell that is touched
together. As long as the touching cells are split into single cells, you can simplify the problem
into the calculation of the core of a single cell. The algorithm flow chart is shown in Figure 4.

start

Extracting 
connected regions

To determine whether 
the cell adhesion?

Adhesion cells were 
repeatedly corroded 
until cell separation

Computing the core 
of a single cell

Calculation of 
individual cell core 
after each corroded

separation

END

N

Y

Figure 4. Algorithm flow chart.
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3.1.3. Experimental results and analysis

Fu et al. [21] used the drawing software to generate cell images. After repeated experiments
and training, the threshold of the best shape factor is P0 = 0.5. When PE is greater than P0, there
is no cell adhesion, and when PE is less than or equal to P0, there are cell adhesion. However,
for the cells of some complex shape, the threshold of the shape factor may cause the misjudge
phenomenon. After a number of experimental training, it is found that the value of PE is
generally distributed in the range of 0.4–0.6, so a spinner control is added, as shown in Figure 5.
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The experimental results of adhesion cell core extraction are shown in Figures 6–9. From the
above experimental results, we can see that the number of cell cores extracted by the algorithm
in this paper is consistent with the actual cell numbers, and the core position is also basically
accurate.

Figure 6. Two cell series: (a) origin image; (b) core extraction.

Figure 7. Three cell series: (a) origin image; (b) core extraction.
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Figure 8. Four cell series: (a) origin image; (b) core extraction.

Figure 9. Three cell parallel: (a) origin image;. (b) core extraction.

3.2. Principle and method of searching adhesion cell concave point

The angle and curvature may be the most widely used in the concave point separation
algorithm. However, angle and curvature are susceptible to the effect of noise, especially when
the cell image has a complex background and uneven cells in the outer nuclear region, the cell
division will not produce the correct cell profile. Hence, considering the simplicity and
robustness of the algorithm, the best concave points are found through detecting the concave
points in major concave regions. How to search and extract the main concave points on the
edges is described as follows.

3.2.1. Search for concave points

The concave point is a very important parameter in the study of cell shape. If the number of
concave points is more, then there are many touching cells. If there are a large number of
concave points in a single cell, then the probability of cell mutation is higher. So it is a very
meaningful work to study the concave points.

A cell image is generally characterized by concave pattern. The pixel value of the image
background is 0, and the foreground pixel value is 1. There is no pixel value 0 on the line
connecting any two pixel value 1, and the image is a convex figure; otherwise, it is concave.
Therefore, the main problem of the algorithm is to determine the location relationship between
the line connecting two edge points and the cells. It is observed that only the local concave
points are the concave points on the cell edge, and the local convex points are not the concave
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points on the cell edge. Based on this, the algorithm first finds out the local concave points of
the cell edge and then selects a concave point from the concave point group as the main concave
point of the concave region.

As shown in Figure 10, set Li for the edge of the cell adhesion profile, pj represents a point on
the Li. Pj‐h and pj+h are the locations of h pixel points before and after pj pixel point. After a
number of experimental tests, when h is equal to 10, the results will be better. If the line
connecting pj+h and pj‐h is more than 60% outside of the adherent cell, pj is considered as a
concave point [22]. In order to enhance the robustness of the algorithm, discarding the concave
regions that only contain two or fewer local concave points, and only retaining the main
concave points, and finally the main concave point is the central point of the corresponding
concave region.

Figure 10. Concave points searching.

Specific implementation steps are as follows:

1. Select a point pj on the cell edge;

2. To determine whether pj is J (horizontal) direction change or I (vertical) direction change;

3. In accordance with the direction of step 2, to find adjacent points pj+h or pj‐h in the 8
neighborhood of pj, if not found adjacent point, return to step 1;

4. To determine whether to find the first h point, if not, then pj+1 or pj‐1 as the starting point,
return to step 2, if there is, step 5 is executed;

5. To connect point pj‐h and pj+h, getting the percentage of the connection located in the outer
region of the adhesion cells, if it is greater than or equal to 60%, then pj is a concave point,
if less than 60%, pj is not a concave point;

6. To determine whether the edge pixels are extracted, if not, return to step 1, if there is, the
algorithm ends.

3.2.2. Extraction of the main concave point

After all the local concave points of the cell edge are extracted, find out the main concave points
from them. First, the local concave points are classified, finding the concave points that are in
the concave regions, because the local concave point distance is relatively close in a concave
region, so just find out a local threshold Dh. The concave points on the cell edge are divided
into k classes, then the classes that contained only less than or equal to two local concave points
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are removed, and finally, the intermediate point in concave point group is taken as the main
concave point of the concave area.

3.2.3. Design of adhesion cell separation method

Due to the diversity of the cell itself and the complexity of cell adhesion, there are many
difficulties in the design of the separation algorithm, the difficulty and the key point is how to
find the separation point. When the cells are stuck together, a pair of matched points can be
found out on the edge of the cell profile, and a straight line that connects the two points can
divide the touching cell into two parts. This pair of matching points satisfies the following
properties:

1. Located in the cell junction.

2. The distance between them is locally the shortest.

According to the concave and convex of the adhesion cells, the concave area is calculated from
the cell adhesion area, and the main concave point is found to be the separation point.

(a) Tandem cell separation

For cells that are connected in series, the separation points are all located on the edge of the
touching region, because the cell series connection will form a pair of concave region. Accord‐
ing to this characteristic, as long as the main concave points are found from the concave areas,
connecting a pair of concave points, the tandem cells will be reasonably separated. Assuming
that the number of the concave points is A, and the number of cells is M, then:

2 2A M= - (8)

If there are only two touching cells, then the number of the main concave points is 2, which
can be directly connected to split the touching cells. However, for more than three touching
cells, the main concave points will be greater than or equal to 4, and then you need to determine
which of the two main concave points are paired. As shown in Figure 11, the green dots are
the main concave points of the cells, and the red spots are the center of the cells.

Figure 11. Main concave pairing.

According to the geometric relationship between the cell core and the main concave point, the
distance between the main concave point and the core of the cell is close to each other. As
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shown in Figure 11, 11 ≅ 12, 31 ≅ 32. However, the distance between M1 and
M3 to O3 is much larger than that of O1 and O2.

|M1O1-M1O2| {|M1O1-M1O3|,|M1O2-M1O3|}< (9)

| 2 2 2 3 | {| 2 1 2 2 |,| 2 1 2 3 |}M O M O M O M O M O M O- < - - (10)

In conclusion, the distance between M1 to O1 and O2 is minimal, and the distance between
M3 to O1 and O2 is minimal, so M1 and M3 and M2 and M4 are paired. The experimental
results are shown in Figure 12.

Figure 12. Separation of cell series.

(b) Separation of parallel cells

In parallel, the pairing of the main concave points is relatively easy, because the adhesion of
the parallel cells is located in the internal of the adhesion area, so the central point of the
adhesive cells can be connected with the main concave point to split the touching cells.
Assuming that the number of cells is parallel to M, the number of concave points is A, and it
should satisfy:

A=M (11)

The experimental results are shown in Figure 13.

Figure 13. Separation of cell parallel.
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3.3. Experimental results and analysis

The blood cell image of this paper comes from the First Affiliated Hospital of Fujian Medical
University, and a total of 35 different types of blood smear cell images were collected. In order
to verify the practicability of the algorithm, the experiments are carried out on 35 images, and
selects some representative images to do further analysis. In Figure 14, the algorithm can
efficiently split the touching cells. The segmentation result is stable and controllable.

Figure 14. Split process of touching color cell image: (a) origin image; (b) bilateral filtering; (c) improved graph; (d)
binarization; (e) main concave point extraction; (f) separation of adherent cells.

4. Flow chart of new algorithm

Through the above analysis, the general flow chart of this algorithm (including two partial
operation based on graph theory segmentation and adhesion separation) is shown in Figure 15.
The red digital label 1 is the improved image segmentation algorithm based on the MST, and
the mark 2 is the part of touching cells split based on concave point detection.
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Figure 15. Flow chart of the proposed algorithm.
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5. Experiments and analysis

5.1. Experimental result analysis

The original gray cell image is shown in Figure 16(a). The background is clear. In addition to
red blood cells, there are some small particles and cell nucleus in the cells and the gray value
of the nucleus is relatively large. It has a large difference of gray value compared with the
cytoplasm, so using ordinary methods are difficult to segment them. The overall cell is of
regular shape, except for a small number of touching cells. For the original MST algorithm,
there are many rough edges in the segmentation result. Because of the defects in the algorithm,
dyeing pollution, particle noise, and the more redundant areas will be produced, with nonideal
effect, and the segmentation result is shown in Figure 16(b). In order to control region merging,
the size of the area is introduced in the construction process of MST in the FH algorithm, which
can reduce the generated redundant region segmentation results. So the holes of the segmen‐
tation results are eliminated and the cell surface becomes smooth, as shown in Figure 16(d).
The watershed algorithm is intuitive, fast, and accurate, which is widely applied in medical
image segmentation. It is more effective for segmenting touching cell images, but it is prone
to produce oversegmentation phenomenon. The watershed segmentation results are shown
in Figure 16(e), and the oversegmentation phenomenon is very obvious. The split results of
FCM and mean shift are shown in Figure 16(f) and (g); they are not ideal. For Figure 16(d), the
split result of the touching cells is shown in Figure 16(h).

Figure 16. Split process of touching gray cell image: (a) original image; (b) result of MST; (c) result of reference [13]; (d)
result of improved MST; (e) result of watershed algorithm; (f) result of FCM; (g) result of mean shift; and (h) result of
applying concave point searching in (d).

Figures 17 and 18 are more complex than Figure 16, in which the gray value of the target is
close to background. These two images have more holes caused by uneven light, and there are
a lot of touching cells. In Figure 17, the contrast of the object and background is relatively
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obvious and has also more holes caused by uneven light, so the normal segmentation algo‐
rithms are difficult to segment this kind of images. There are a lot of rough edges in the
segmentation results and the similar areas have not been well merged in Figures 16(b), 17(b),
and 18(b). The rough edges reduce and region merging are good, but there are still some
redundancies in Figures 16(c), 17(c), and 18(c). In comparison with the results of Ref. [18], the
results are more ideal in Figures 16(d), 17(d), and 18(d). It is found from the split results of
each algorithm that, in comparison with several commonly used classical algorithms, the
segmentation result of the proposed algorithm is ideal.

Figure 17. Split process of fuzzy and touching color cell image #1: (a) original image; (b) result of MST; (c) result of Ref.
[18]; (d) result of improved MST; (e) result of watershed algorithm; (f) result of FCM; (g) result of mean shift; and (h)
result of applying concave point searching in (d).

From the above segmentation results, for the adhesion separation part of a medical cell image,
the algorithm proposed in this paper is ideal, and the algorithm can also be used for other
separating adhesion target images with more effective effect. Figure 19 is a land flow particle
image, in which the discrimination of the object and the background is very clear. Because the
viewing distance is farther, the rock surface information is vague. And the contour is relatively
clear, but the individual parts have adhesion phenomenon. In Figure 19(b), the segmentation
results based on MST have not only good separation of target and background, but also
increasing the adhesion degree of rock blocks. In Figure 19(c), it exsits a lot of rough edges and
holes. In Figure 19(d), the rough edges are removed, and different regions are distinguished.
As shown in Figure 19(e), the watershed segmentation is able to handle some adhesion part,
but it is easy to cause the oversegmentation phenomenon. The segmentation effect based on
FCM algorithm is unable to handle the adhesive part of the rock mass, as shown in Fig‐
ure 19(f). Figure 19(g) is also not ideal.
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Figure 18. Split process of fuzzy and touching color cell image #2: (a) original image; (b) result of MST; (c) result of Ref.
[18]; (d) result of improved MST; (e) result of watershed algorithm; (f) result of FCM; (g) result of mean shift; and (h)
result of applying concave point searching in (d).(e) Concave searching in (d) (f) Watershed (g) Canny (h) Ostu Fig‐
ure 5. Split process of fuzzy and touching color cell image #2

Figure 19. Split process of the land flow particle image: (a) original image; (b) result of MST; (c) result of Ref. [13]; (d)
result of improved MST; (e) result of watershed algorithm; (f) result of FCM; (g) result of mean shift; and (h) result of
applying concave point searching in (d).

5.2. Location analysis

In this paper, the author uses the proposed method to segment these images, and then the final
segmentation results are located to verify the accuracy of the algorithm. The positioning results
are shown in Figures 20 and 21.
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(a) (b)                                                                    (c )

Figure 20. Result of fuzzy and touching color cell image #1: (a) original image; (b) result of the proposed algorithm;
and (c) result of (b) diagram located in (c).

(a) (b) (c)

Figure 21. Result of the land flow particle image: (a) original image; (b) result of the proposed algorithm; and (c) result
of (b) diagram located in (c).

Image ID Number of cells Undersplit Oversplit

1 32 1/2 0/23

2 25 0/0 0/much

3 14 0/0 0/19

4 75 2/0 0/much

5 71 6/2 0/0

6 83 3/1 0/much

7 52 1/0 0/22

8 45 3/2 0/much

9 67 8/5 0/35

10 78 4/3 0/10

Ave. 54 2.5/1.3 0/much

Table 1. Evaluation of splitting performance based on the proposed segmentation algorithm and watershed algorithm.
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5.3. Performance analysis

In order to illustrate the differences of the new algorithm and others, comparative analysis
data are listed in Table 1. The data include the number of objects with oversplit and undersplit,
and the total number of cells. The new algorithm has the minimum value in the above statistic
data. In Table 1, in comparison with other algorithms, the new algorithm presents a better
result. For this kind of the touching cell images, the watershed algorithm is better in compar‐
ison with other algorithms, but it causes an oversegmentation problem.

6. Conclusion

In order to solve the segmentation problem of the medical cell images with fuzzy and touching
characteristics, this paper proposes an algorithm combing with modified MST and concave
point detection. The MST method is improved from the following three aspects, namely,
regional difference function, edge weight function, and the threshold function and parameter
k, which can reduce the effect of noise on the segmentation result and improve the segmenta‐
tion accuracy. But the improved MST cannot solve the cell touching problem. For splitting the
touching cells, the concave point detection is adopted to find out the separation points. In
comparison with the results of several commonly used image segmentation algorithms, the
segmentation results of the proposed algorithm do not have many small areas, the overseg‐
mentation phenomenon does not appear basically, and the touching cells can be split accu‐
rately, which is helpful to improve cell counting and recognition. A large number of tests show
that the new algorithm is more ideal, undersegmentation and oversegmentation numbers are
less, and the error rate is relatively low.
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Abstract

Super-resolution consists of processing an image or a set of images in order to enhance
the resolution of a video sequence or a single frame. There are several methods to apply
super-resolution, from which fusion super-resolution techniques are considered to be
the most adequate for real-time implementations. In fusion, super-resolution and high-
resolution images are constructed from several observed low-resolution images, thereby
increasing the high-frequency components and removing the degradations caused by
the recording process of low-resolution imaging acquisition devices. Moreover, the
proposed imaging system considered in this work is based on capturing various frames
from several sensors, which are attached to one another by a P × Q array. This framework
is known as a multicamera system. This chapter summarizes the research conducted to
apply  fusion  super-resolution  techniques  to  select  the  most  adequate  frames  and
macroblocks together with a multicamera array. This approach optimizes the temporal
and spatial correlations in the frames and reduces as a consequence the appearance of
annoying artifacts, enhancing the quality of the processed high-resolution sequence and
minimizing the execution time.

Keywords: super-resolution, multicamera, camera array, video enhancement, fusion

1. Introduction

The limitations of imaging devices directly affect the spatial resolution of images and video.
The super-resolution (SR) reconstruction concept is considered in the literature as the process
of combining information from multiple low-resolution images with subpixel displacements
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to obtain a higher resolution image. Even though numerous methods have been developed to
this end, there are still multiple future research challenges [1]. SR arises in several fields, such
as remote sensing, surveillance, and an extensive set of consumer electronics applications [2–
4].

This chapter proposes an imaging system in which high-resolution (HR) images are generated
from low-resolution (LR) sensors through a SR image reconstruction process. In order to get
several LR images minimizing the local motion, several digital cameras are attached to each
other by a P × Q array frame. This framework is known as a multicamera (MC) system. The
image reconstruction problem using an MC system applying an SR process could be stated as
follows: Given a set of multiview low-resolution frames of size M × N pixels taken with a multicamera
system, and a scale factor s, reconstruct a higher resolution frame of size sM × sN pixels that accomplishes
the definition of resolution enhancement.

After a comprehensive review of the state of the art [5–21], it has been concluded that the
application of SR to an MC system involves some preceding and subsequent steps. These steps
are summarized in the proposed block diagram shown in Figure 1. However, in some cases,
many steps could be skipped. For instance, the previous steps: MC system prototyping and
construction and sometimes the MC system adjustment are not applicable if a commercial
camera array is used [5], image capture is almost always considered, and pre- and postpro-
cessing are sometimes omitted.

Figure 1. Block diagram of SR applied to an MC system.

This chapter is organized as follows: the state of the art of the steps described in Figure 1 is
discussed in Section 2, whereas Section 3 shows dedicated preprocessing schemes imple-
mented together with three different methods which maximize the combination between SR
and MC, proposed by the authors. These methods exploit the temporal correlation of the re-
corded videos and the spatial correlation among cameras. Finally, the conclusions are high-
lighted in Section 4.
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2. Applying SR to an MC system

2.1. Multicamera system prototyping and construction

The prototyping of the MC system mainly depends on the application. One of the most used
approaches is image-based rendering [4]. Using a MC array for this purpose can allow a device
to process a higher quality frame in real time by means of multiple observations recorded
simultaneously.

Some advisable factors to consider in any prototype of MC system are the following [4]:

• User-friendliness: The system should be designed to be easily created, i.e., cameras should
require minimal setup and time-consuming calibration procedures should be avoided.

• Flexibility: Addition or removal of cameras according to their participation in the network
and to a certain extent the flexibility in placing the cameras physically.

• Off-the-shelf components: It is desirable to keep reduced costs.

SR through the concept of MC imaging has been considered in the literature:

• Fanaswala [5] introduced in his thesis a commercial camera array of 25 cameras arranged
on a 5 × 5 grid (ProFUSION25) of the commercial brand Pointgrey.

• Park et al. [6] used a prototype of a MC system based on a 3 × 3 array composed of nine
digital cameras, CCD (charged coupled device).

• In Agrawal et al. [7], an implementation using four PointGrey Dragonfly2 cameras, each one
equipped with 12 mm lens and triggering the cameras with a microcontroller (PIC) is
presented.

• Finally, Firoozfam [8] presented a stereo MC conical system with 6 and 12 cameras, showing
that increasing the number of cameras makes it possible to take advantage of several scenes
observations at each time instant.

All these camera array systems are illustrated in Figure 2. In real-time applications, there is a
compromise between the number of cameras and the computational cost, so it is useful to have
a flexible architecture in order to select the cameras to be used, often in a N2 configuration: 4,
9, 16, 25, … [5].

2.2. Multicamera system adjustment

The success of SR recovery from multiple views in real applications mainly depends on two
factors [9]:

• The accuracy of multiple view registration results.

• The accuracy of the camera and data acquisition model.

Hence, in order to have a good level of SR, it is very important to perform a detailed adjustment
of the MC system. The approach of using software located in a central server for the system
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adjustment is usually taken into account. For instance, Park et al. [6] developed a software that
shows previews and the status of the images, grabbing them simultaneously. The intensity and
focusing indexes are also included in the implementation in order to adjust the lenses for the
purpose of intensity and blur uniformity.

Figure 2. MC systems used for SR: (a) Fanaswala [5], (b) Park [6], (c) Agrawal et al. [7], and (d) Firoozfam [8].

There are also calibrations based on other elements, for example, Agrawal et al. [7] assumed
that the scene is planar and perform geometric calibration using a checkerboard. Meanwhile
color calibration is done using a Macbeth chart by computing a 3 × 3 color transformation for
every camera. Finally, in this system, all cameras are triggered using microcontrollers, which
avoid temporal synchronization issues. In the same way, both determining the camera
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parameters and rectifying the images for lens distortion are achieved by intrinsic calibration
with a checkerboard by Firoozfam [8].

The adjustment process of the MC system is a basic step to settle a solid basis for the rest of
the steps in the multicamera-super-resolution (MC-SR) approach. If a commercial system is
used (as for instance Fanaswala in [5]), this process is simplified, but the calibration step is
limited by the system performance; however, this makes the comparison between SR algo-
rithms easier.

2.3. Image capture

Low-resolution images are captured by cameras generally using software implemented in a
central server. The variation between researches depends on where the software is included:
in an external computer, in the MC system, or sharing both systems.

Figure 3. Classic VS distributed acquisition device [11]. a) Classic device, b) Distributed device.

• Using an external computer: Directo et al. [10] uses a vision server as the core of the SR system.
It organizes the image capture from camera nodes, and processes the images using a high-
resolution image reconstruction algorithm. In order to capture low-resolution images, three
image transmission protocols, are used. In a similar way, Baboulaz et al. [11] introduced a
distributed acquisition system. Figure 3 shows a classic versus a distributed acquisition
device. On the one hand, in the classic case of a single acquisition device, see Figure 3(a),
the incoming 2D projection f(x, y) of the 3D scene is first filtered with a smoothing kernel
modeling the point spread function of the lens of the camera and returning the set of samples
Sm,n. On the other hand, in a distributed acquisition system, N cameras Pi, i = 0,…, N − 1, are
observing the same 3D scene from different unknown locations. Therefore, the incoming 2D
projections fi(x, y) at each sensor will differ. Every projection fi(x, y) is the result of a trans-
formation with Ti of the projection of reference f(x, y). By choosing a camera as a reference
(e.g., i = 0) the distributed acquisition system can be modeled as depicted in Figure 3(b).
Examples of transformations T are translation, rotation, or affine transformation according
to the observed scene and to the locations of the cameras. Similarly to the single camera case,
each sensor outputs a set of samples S(i)

m,n. Finally, Park et al. [6] proposed a system in which
low-resolution images of the same scene with different subpixel displacements from each
other, are taken simultaneously by frame grabbers and a controlling software within the
computer of the MC system.
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• Using the MC system: Agrawal et al. [7] used a dedicated device, a microcontroller, to trigger
all the cameras of the system, since they found that this was more stable than using a PC’s
parallel port [12], which could have triggered variations of 1 ms.

• Using a shared approach with the MC system and a computer: This approach utilizes the MC
system to perform part of the multiimaging capture process. In Ref. [5], the ProFUSION25
camera array outputs raw 8-bit gray-scale images of pixel resolution 640 × 480 using one-
shot mode to restrict the possibility of temporal motion of objects in the scene. In such a way,
the multiview images captured by this system are well fitted for SR applications. The small
baseline between each camera in the array allows the multiple views to sample the high-
resolution image appropriately. Then, the images are ready to be sent to a PC using a PCI
Express external cable. This connection provides more than 200 MB/s effective bandwidth
and transfers 25 images at 25 FPS to the PC. In Ref. [12], a mapping between a conical view
and the MC realization is performed by forming overlapping areas on the images of
neighboring cameras. Unlike a rotational conical camera, a MC configuration can have
multiple observations for some points of the scene. This allows recovering 3D information
for these points from multiple view cues using the computational power of external software
in a PC. Figure 4 shows a sample image taken by the six-camera prototype system.

Figure 4. A sample-image taken from a MC conical system [8].

2.4. Preprocessing steps

In an MC set-up, low-resolution images are acquired by different cameras, which have
different positions in space and are possibly not synchronized [9]. This causes some spatial
and temporal misalignments among the sequences. On the one hand, the temporal misalign-
ment results as a result of the possible frame rate and time offset differences among the cameras
and can be modeled by a 1D affine transformation. On the other hand, the spatial misalignment
between the two sequences results from the fact that the two cameras could have different
internal and external parameters and has been mainly described by one of next two different
models:

• Homography: Describes the exact image motion of an arbitrary planar surface between two
discrete uncalibrated perspective views. The spatial transformation among the low-
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resolution sequences can be approximated by a homography when a planar scene assump-
tion can be made [9, 10].

• Fundamental matrix: Homography assumption is no longer valid when there are a significant
amount of camera translations and nonplanar depth variations. Such scenarios require 3D
motion models, which consist a set of local parameters (per pixel) for the representation of
the 3D structure and global parameters for the camera motion.

In Ref. [11], the use of the continuous moments, instead of the discrete moments, together with
the approach described in Ref. [13], allowed to perform an affine registration of very low-
resolution sampled images with the accuracy of the original image.

In Ref. [7], coded sampling is used, demonstrating that it is optimal by considering a linear
invertible combination of time samples.

Figure 5. Video stabilization algorithm flow chart [14].

In Ref. [6], preprocessing steps consist of selecting one of the frames to be the referenced,
meanwhile the contrast and lightness of the other frames are accordingly adjusted with the
reference image by histogram specification. As a result, the relative global motions of the other
images are calculated in accordance with the reference frame.

Images rendered by remote sensing MC platforms are basically considered to contain jitter
caused by decoding timing delays, target movement and platform motion. The problem of
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stabilizing large-frame and low-frame rate imagery acquired from a multicamera array system
for persistent surveillance and monitoring is dealt with in Ref. [14] with an algorithm based
on temporal coherence properties between the cameras, thus eliminating the need to perform
motion estimation on every individual camera sequence. The video stabilization algorithm is
shown in Figure 5 and consists of the following three steps:

1. Motion estimation module: It computes the interframe or frame-to-frame (F2F) transforma-
tion between adjacent frames for the primary camera(s).

2. Motion prediction module: It predicts the F2F transformations for the video frames from the
secondary set of cameras, which relies on a prior knowledge of the camera-to-camera
transformations and the outputs from the motion estimation module.

3. Stabilization module: It temporally aligns the final image sequence from each camera so
that the jitter is reduced.

There are also techniques to reduce motion blur as presented in Ref. [15], where the main idea
is to capture the same static scene with a hand-held MC array by keeping different exposure
settings for different cameras and subsequently reconstruct high-resolution space time volume
to get less motion blur image frames.

2.5. Super-resolution

In order to apply SR, many different approaches have been adopted in the literature. A good
classification for all of them could be established depending on the approach to the real
conditions of the MC system: first, in some cases, a popular technique is used without
introducing any modification; second, one of these techniques could be slightly adapted to the
camera array; finally, the algorithm may be prepared to be adjusted to the MC system, using
an observation model.

• Using a well-known technique: There are several approaches to the SR reconstruction of a
reference image from multiple still images or video sequences. Among the popular SR
recovery, techniques are the projection onto convex sets (POCS) approach [10, 16] and the
Bayesian approach [17]. These techniques assume global motion between successive frames
of video, as in the case of camera motion with static scenes.

• Modifying a well-known technique: In order to consider the MC system, Eren et al. [18]
extended POCS method to object-based super-resolution from video by proposing segmen-
tation and validity maps. In the same way, the formulation used in Ref. [6] is an extended
form of the SR algorithms in Refs. [19, 20] to estimate the local accuracy of the motion
estimation results and incorporate it in the minimization functional as a local regularization
parameter. According to the research in Ref. [19], the result of inaccurate motion estimation
is proportional to the partial derivatives of the image, which can be interpreted as the
amount of high-frequency data.

• Adjusting the algorithm to the MC system: In this approach, real conditions of the camera array
are assumed. The exposure time, for example, is critical in order to achieve a good quality
super-resolved image. In Ref. [17], a Bayesian SR algorithm based on an imaging model is
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shown. It includes camera response function, exposure time, sensor noise, and quantization
error in addition to spatial blurring and sampling. SR reconstruction is then presented as
an inverse problem, where the input q is estimated from a set of observations zi, as shown
in Figure 6.

Figure 6. SR algorithm proposed in Ref. [20].

Including characteristics of the camera array in the SR process is also considered in Ref. [5]
(see Figure 7), where a detailed observation model is integrated in the SR restoration method
(see Figure 8). This model is sometimes referred to as the forward model to emphasize the fact
that SR is an inverse problem (as shown in Figure 6). The accurate description of the observa-
tion model is vital for the success of the SR process. This involves characterizing the imaging
sensor as fully as possible and making appropriate assumptions about the type of scene being
imaged.

Figure 7. General observation model proposed in Ref. [5].
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Figure 8. Single iteration in regularized super-resolution restoration [5].

The idea of the observation model is well presented in Figures 6 and 7. Including an observation
model in the SR restoration minimizes the preprocessing steps. The fundamental components
comprise the warp operator, the blur operator, and the downsampling operator:

• Warp operator: It describes the existing displacement between two images in a sequence,
which could arise from camera motion, object motion in the scene, or a combination of both.

• Blurring operator: It defines the cumulative blurring effects from sensor averaging, motion
blur, and out-of-focus blur.

• Downsampling operator: It applies a magnification factor “m” in each dimension (undersam-
pling).

It is also important to consider the noise that is directly added by the system once an image is
captured. This is the reason why the sensor noise is added directly in a typical observation
model. Besides these fundamental components, there are some specific parameters such as the
sensor response function in Figure 6 or the vignetting operator in Figure 7, which are intro-
duced due to the characteristics specific to every system. The observation model is flexible
enough to include many different applications. For example, in Ref. [8], a similar observation
model, which is represented in Figure 9, is presented for a 3D-SR application, only including
geometric projection, which is based on the 3D model of the scene and position of every camera.
The geometric transformation of X (3D SR scene) to the coordinates of each image (Yn

L, low-
resolution image) is computed using the camera projection model. In this situation, the
accuracy of the 3D model and the camera positions are critical to the performance of the 3D-
SR algorithm.

The method to measure the quality of the reconstructed image should also be considered. It is
demonstrated [21] that although the image quality is usually measured by the expected and
the actual mean squared error (MSE), an alternative performance measure might be based on
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edge errors, since edges are often the first step in more complex image analysis for both image
processing systems and biological systems. Finally, the use of MC commercial applications, as
in Ref. [5], is interesting since it can be exploited by different researchers in order to compare
the suitability of the SR algorithm.

Figure 9. 3D-SR observation model [9].

2.6. Postprocessing

The implementation of postprocessing steps is not very common in the literature. In fact, SR
is usually the last link in the chain of SR applied to MC systems. However, there are some
researchers that continue working with the images once the SR step has concluded.

• In Ref. [6], the quality of the SR solution can be enhanced with the application of spatially
adaptive regularization parameters. Also an image fusion algorithm is applied for merging
the high-resolution image reconstructed by the SR algorithm and color channel resolution
images. By combining image fusion with the color difference domain, which is widely used
in color interpolation, the proposed image fusion algorithm can produce clearer multispec-
tral images, even when the spectral low-resolution channels are not perfectly registered one
to another.

• In Ref. [8], as it was explained in Subsection 2.5, it is demonstrated that when an accurate
3D model of the scene is available, or can be estimated, perspective projection of the scene
can be exploited in place of the image alignment/warping step in the 2D super-resolution
technique, so the 3D adaptation could be considered as part of the observation model or a
postprocessing step.
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3. Spatial and temporal SR through a MC system

It has been shown in the previous section that, there are several methods where either temporal
information between frames captured by a single camera or spatial information between
cameras when using a camera array is used to obtain an HR sequence using SR. Accordingly,
these method are named in the literature as spatial SR and temporal SR. In this section, the
implementation of algorithms to enhance video sequences combining spatial and temporal SR
with an MC approach is presented, together with some associated preprocessing steps [22,
23]. According to the block diagram of Figure 1 this corresponds to Subsections 2.4 and 2.5.
The video SR algorithm used as a basis in this work belongs to the “fusion” category. The
baseline super-resolution (BSR) algorithm execution can be divided into three independent
stages: Motion Estimation, Shift & Add and Fill Holes:

• The Motion Estimation stage determines the motion between two or more frames with
subpixel accuracy; depending on the selected scale factor (i.e., obtaining an output frame
whose size is twice the vertical and horizontal size of the input frame would mean a scale
factor of 2). In order to obtain the motion vectors of each MB, a block-matching method is
considered.

• The second stage, known as Shift & Add, is executed once the motion vectors have been
calculated. A grid is filled with the contributions given by the estimated motion vectors.

• Finally, the Fill Holes stage considers that it is possible that there could be some empty
positions in the grid for the current frame, as the candidate frames do not contain informa-
tion enough to fill all the locations. These empty positions are denoted as holes in the scope
of this work. In this case, a bilinear surface interpolator is used to fill each empty pixel. For
each one of the frames, the whole process is repeated. As a result, a HR super-resolved image
is obtained and the SR sequence is stored.

Figure 10 summarizes a general scheme using LR frames captured by multiple cameras to
generate an HR sequence from a user selected camera. It includes the following steps:

Figure 10. General scheme showing preprocessing modes and SR methods [22].
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• First, the frames captured by the cameras are lexicographically reordered.

• Second, a preprocessing step is considered, including three possible options: Full Frame,
Overlap + Borders and Overlap.

• Finally, the SR process is applied considering three methods: temporal-spatial SR method,
spatial-temporal SR method, and mixed SR method. These methods combine spatial and
temporal information.

3.1. Preprocessing

After reordering the frames recorded from the different cameras of the MC array, the first stage
of the algorithm implementation is based on preprocessing algorithms. The target consists on
deciding whether some regions of the captured frames should be discarded in order to enhance
quality by avoiding artifacts and/or reducing the execution time. Some constraints to the MC
array configuration are considered:

• A rectangular geometry.

• Location of the cameras in the same plane.

• Common parts from the same global scene are recorded by the cameras from different
locations.

Considering a MC system which complies with these constraints, as the one shown in
Figure 11(a), a common region (or overlap) of the recorded information by the cameras of
the MC system could be available (or a subset of cameras). Surrounding the overlap, there
will be a border, as presented in Figure 11(b). The separation and geometry between
cameras of the MC system affects the way to obtain the borders and the overlap as shown
in Figure 11(b).

Figure 11. Borders and overlap in an MC array. (a) Frames recorded by an MC array in perspective. (b) Side and front
elevations, and plan views of the recorded frames [22].

From this analysis, several ways to process the frames captured by the MC array arise:

• Considering the whole frame information (Full Frame mode). This is the basic mode, in which
the full frame is captured by every camera.

• Considering the overlap between cameras (Overlap mode). In order to obtain the overlap, it is
necessary to know the offset in pixels between cameras.
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• Considering dividing the frame between the overlap and the borders (Overlap + Borders mode).
As shown in Figure 12, this method provides 9 different parts to be super-resolved: 4 sides,
4 corners, and the overlap.

Figure 12. Frames division of the MC array in Overlap + Borders mode [22].

3.2. Temporal-spatial SR method

This method considers information provided by the MC array in order to obtain an HR
sequence in two phases. In the first phase, only temporal information is considered, while in
the second phase spatial information is processed. Figure 13 presents this method. First,
temporal SR is applied to the LR frames of each camera of the MC system. This SR process
considers a temporal working window (TWW), which determines the number of frames used in
the SR process. The output of this phase consists on a sequence of a resolution named Medium
Resolutiontemporal (MRt) determined by the MC array dimensions: P × Q.

Figure 13. Temporal-spatial SR method [22].
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The second phase begins with a frame reordering process, storing the frames in lexicographical
order, from left to right and top to bottom, as shown in Figure 14. Then, the spatial informa-
tion of the MRt sequences is used to obtain a super-resolved HR output sequence. In order to
perform the spatial SR, the working window considers the frames pf the spatial SR process
(spatial working window, SWW).

Figure 14. Frames reordering process [22].

The computational cost of this method is high, since the dimensions of the MC array directly
affect the number of SR processes to be applied in the first phase, plus a Spatial SR, determining
a total of (P × Q) + 1 SR processes.

3.3. Spatial-temporal SR method

The spatial-temporal SR method, presented in Figure 15, is similar to the temporal-spatial SR
method but reversing the order of the SR processes. In this case Spatial SR is applied first. As
a result, the output sequence resolution is named Medium Resolutionspatial (MRs). After applying
Spatial SR a Temporal SR process is applied considering a temporal working window as in BSR,
and obtaining as output an HR sequence.

Figure 15. Spatial-temporal SR method [22].

In this case, only two SR processes are applied to obtain the HR output, which reduces
considerably the computational cost.

3.4. Mixed SR method

After analyzing the characteristics of the previous methods, the mixed SR method was
considered. The advantage of this method consists on integrating the spatial and the temporal
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information in a combined SR process way to generate the HR output. In this scope, a new
WW is defined (mixed working window, MWW). The frames selection process is performed in
a smart way in the block matching process of the motion estimation stage, widening the possibil-
ities to find more appropriate information in the SR process.

An example of how MWW is defined is shown in Figure 16. A 2 × 2 MC array is selected
and SR is applied to camera #2. As it is shown, MWW considers the information of a back-
ward time slot and a forward time slot from the frame to be processed. For instance, the
time slot “t” considers a WW including both the frames of the MC system captured in the
time slots “t − 1,” “t,” and “t + 1.” After processing the frame of the camera #2 in the time
slot “t,” SR is applied to the same frame in the time slot “t + 1.” In this case, a similar MWW
is generated, but considering the time slots “t,” “t + 1,” and “t + 2” and proceeding in the
same way for the subsequent frames.

Figure 16. Mixed SR method [22].

This method reduces the computational cost of the previous presented methods, as it only
consists on one SR, but the memory requirements of the algorithm are higher.

3.5. Results

In this section, significant results based both on test sequences adapted for comparison and on
real MC acquisition systems are shown. The Water Cooler sequence [24] was recorded by using
a 5 × 5 MC system. The selected cameras for this sequence are the leftmost center, topmost center,
bottommost center, and rightmost center, forming a rhomboid. Additionally, several tests were
completed by using a rectangular 3 × 3 camera array, to demonstrate the versatility of the
proposed methods. As the rhomboid configuration of Water Cooler has no information of the
corners, no results for the preprocessing mode Overlap + Borders can be shown.
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Sequence/method Water cooler   Mobcal Stockholm Shields Parkrun

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

TS SR 28.33 0.879 26.55 0.879 27.05 0.901 26.92 0.927 19.82 0.825

ST SR 27.85 0.868 26.51 0.879 26.64 0.895 26.61 0.923 19.57 0.820

Mixed SR 27.67 0.869 27.26 0.920 28.32 0.939 27.73 0.952 20.47 0.900

BSR 27.66 0.868 26.47 0.891 26.31 0.891 25.91 0.903 19.30 0.808

INT 27.20 0.858 26.32 0.858 25.47 0.834 25.44 0.870 18.67 0.736

Table 1. PSNR and SSIM results for full frame preprocessing mode (best values are represented in italics).

Sequence/method Water cooler Mobcal Stockholm Shields Parkrun

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

TS SR 27.73 0.871 26.28 0.848 26.70 0.844 27.24 0.885 19.52 0.717

ST SR 27.03 0.855 26.07 0.847 26.26 0.830 26.83 0.872 19.20 0.690

Mixed SR 27.31 0.867 27.34 0.893 28.26 0.912 27.51 0.905 19.31 0.746

BSR 26.94 0.858 25.82 0.842 25.82 0.826 26.03 0.850 18.65 0.656

INT 26.06 0.838 26.03 0.829 25.06 0.761 25.57 0.809 18.32 0.613

Table 2. AVG PSNR and SSIM results for Overlap preprocessing mode (best values are represented in italics).

Figure 17. Complete and detailed view of a frame of Stockholm sequence [22]. BSR; (left); Mixed SR method (right).
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Tables 1 and 2 show the results for the sequences under test: Water Cooler, Mobcal, Stockholm,
Shields, and Parkrun. The three presented methods are evaluated using the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) metrics: temporal-spatial SR (TS SR), spatial-
temporal SR (ST SR), and mixed SR, together with BSR and interpolation (INT) as a reference.
Each table represents the results for the preprocessing modes: Full Frame mode (Table 1) and
Overlap mode (Table 2). As it can be seen from these tables, the preprocessing modes Full Frame
and Overlap follows a similar behavior. It can be concluded from the results in Table 2, that the
mixed SR method outperforms the other methods in the majority of the cases. In terms of
subjective comparison, two sets of frames are shown for the Stockholm sequence and the Water
Cooler sequence in Figures 17 and 18, respectively. In Figure 17, there is a relevant enhancement
in the roofs and the facades of the buildings in the mixed SR method. Figure 18 shows that a
higher definition is provided by the TS SR method versus the BSR, minimizing the number of
artifacts in the items on the table [22].

Figure 18. Complete and detailed view of a frame of Water Cooler sequence [22]. BSR (left); TS SR (right).

4. Conclusions

In conclusion, the main analyzed characteristics of the studied documents which combine SR
and MC are shown in Tables 3–5:
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Ref. Multi-camera system

N° Type Arrangement

[5] 25 ProFUSION 25 5 × 5 array

[6] 9 CCD VCC-G20E20 3 × 3 array (3 C +6 I)

[7] 4 CCD Dragonfly 2 × 2 array (in PIC micro)

[8] 6–12 CCD cameras Conical array (6 or 12 cam.)

[9] 2 Pulnix Closely and overlapped

[10] 2 Logitech Quickcam Flexible and overlapped

[11] 100 Cheap LR camera Circularly shifted

Table 3. Multi-camera system.

Ref. Image characteristics

Correspondence Registration

[5] One-shot mode Two-parameter shift

[6] Lenses adjustment and Blur uniformity Preprocessing steps

[7] Accurate trigger using PIC16F690 3D fundamental matrix

[8] Planar checkerboard Conical acquisition

[9] Sequence to sequence alignment 2D homography

[10] Harris feature points 2D homography

[11] Continuous moments Distributed acquisition

Table 4. Image characteristics.

Ref. SR algorithm  Application Limitations

[5] Dense displacement estimation Rendering Grayscale cameras and vignetting

[6] Bayesian multichannel Rendering Nonextensible MC system

[7] Temporal: Point sampling Rendering No spatial resolution, only temporal resolution

[8] 3D mosaicing Underwater Non-real-time

[9] POCS Surveillance Planar scene assumption and no tracking of the interest region

[10] POCS + PSF Rendering Planar scenes and placement of cameras at a constant distance

[11] - Rendering Restoration step to be improved and don’t use “real-world” data

Table 5. SR Algorithm, applications, and limitations.

• MC system: Number, type, and position of cameras.

• Image characteristics: Correspondence and registration of images.
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• SR algorithm: Algorithm used to perform the SR.

• Application: System use.

• Limitations: Not considered issues in the system.

As it can be noticed in the tables, there are limited approaches combining MC system and SR
and what is more important, there are some issues which are almost always disregarded, such
as:

• The implementation in MC systems of SR algorithms for real-time performance, using
approaches as dedicated hardware or distributed systems. This is an important limitation
for applications which require real-time solutions such as surveillance.

• The real-time self-reconfiguration of cameras in a camera array for SR applications, which
has been used in the past for planning and control as a form of nonuniform sampling (or
adaptive capturing) of image-based rendering scenes [4].

• The issue of SR of color images is another important research field. Although some color
correction methods for multiview images have been introduced [25], monochrome proc-
essing by means of independently applying SR to every color channel is not optimal because
it does not take into account the spectral correlation between the channels [26]. If the
channels can be decorrelated using a transform like the Karhunen Loeve Transform (KLT) [27]
or in a suitable color space, then the SR algorithm can be applied to every decorrelated
channel separately and transformed back to the original domain or color space. The only
reference found which analyzes this issue is the one proposed by Park et al. [6].

• The concept of learning-based SR [28, 29] has not been developed for MC applications. It
exploits the prior knowledge between the HR examples and the corresponding LR examples
through the so-called learning process. Most example-based SR algorithms usually employ
a dictionary composed of a large number of HR patches and their corresponding LR patches,
which may be useful for MC applications.

The study of the issues mentioned above is a clear field to research. The potential application
of combining SR with a MC system is focused on research areas related to 3D mosaicing,
surveillance applied to extreme conditions (underwater or blurred environments), and the
improvement of more researched techniques such as medical imaging, video enhancement,
remote sensing, or sporting events.

According to this review, it is shown that the exploitation of the spatial and temporal super-
resolution is something novel which has been implemented by the authors. Section 3 presented
a novel image enhancement SR technique integrated with an MC system to take advantage
from the spatial and temporal correlations between the recorded sequences. Three different
methods have been proposed: temporal-spatial SR, spatial-temporal SR, and mixed SR. Besides,
three different preprocessing steps were introduced: Full-Frame, Overlap and Overlap +
Borders. According to the results [22, 23], it has been shown that the mixed SR method with
Full-Frame preprocessing outperforms the other methods.
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Abstract

Image fusion is a research topic about combining information from multiple images into
one fused image. Although a large number of methods have been proposed, many
challenges remain in obtaining clearer resulting images with higher quality. This chapter
addresses the multifocus image fusion problem about extending the depth of field by
fusing several images of the same scene with different focuses. Existing research in
multifocus  image  fusion  tends  to  emphasis  on  the  pixel-level  image  fusion  using
transform domain methods. The region-level image fusion methods, especially the ones
using new coding techniques, are still limited. In this chapter, we provide an overview
of regional multi-focus image fusion, and two different orthogonal matching pursuit-
based sparse representation methods are adopted for regional multi-focus image fusion.
Experiment results show that the regional image fusion using sparse representation can
achieve a comparable even better performance for multifocus image fusion problems.

Keywords: image fusion, multifocus, region, image segmentation, sparse representa-
tion

1. Introduction

The depth of field is usually limited in current imaging systems using conventional sensors
like CCD cameras. Hence, the image we obtained is usually only partly in focus, and the objects
in focus are captured more sharply and clearer. However, to accurately analyze the images,
having all objects in focus is desired [1]. Multifocus image fusion is an effective approach to
extend the depth of field by combining several images of the same scene with different focuses
and to provide a better view for human perception. The function of multifocus image fusion
is illustrated in Figure 1. The white boxes in the source images indicate the regions in focus.
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Figure 1. The function of multifocus image fusion.

In recent years, the technique of multifocus image fusion has been broadly used in various
application fields such as biochemical analysis [2], medical image processing [3], remote
sensing [4], and other areas [5]. Many novel multifocus image fusion methods have been
proposed, and they can be categorized into the pixel-level fusion methods and the region-level
fusion methods. In pixel-level image fusion, source images are usually fused by considering
the pixel-wise features to make the decision of fusion. There are several advantages for pixel-
level image fusion, such as extracting full of original information in the source images and easy
to implement. However, the pixel-level image fusion is sensitive to noise, which will cause the
wrong pixel choosing from corresponding source images. Recently, many multiscale trans-
form-based pixel-level image fusion methods are very popular because these methods can
keep more sharpness and edge information in source images. The benefits of different
transforms, such as discrete wavelet [6], curvelet [7], contourlet [8], and so on, have been well
explored. However, due to the pixel-level coefficients selection and less considerations of
spatial information, some artifacts may be found in the fused images.

Figure 2. The general process of region level multifocus image fusion.

To address the weaknesses mentioned above and employ more spatial information in images,
the manner of fusion can be changed from pixel by pixel to region by region. Few regional
multifocus image fusion methods have been proposed. For instance, Omar et al. have proposed
a region-based image fusion method using a combinatory Chebyshev-ICA method [9]. Li et
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al. have proposed a regional image fusion method using spatial frequency [10]. Regional
multifocus image fusion usually contains the following steps: the image segmentation/
partition and the fusion/merging of different regions. The general process of region-level
multifocus image fusion is illustrated in Figure 2. Each source image is initially partitioned in
some way to produce a set of regions. Various properties of these regions can be calculated
and used to determine which regions from which source images are to be included in the fused
image. This has advantages over pixel-level methods as more semantic fusion rules can be
considered based on regional features in the image. Finally, the selected regions in focus are
combined into the fused image.

The regional multifocus image fusion is the major contents of this chapter. In the following
section, we first introduce on how to express the image patches using two kinds of sparse
representation algorithms: orthogonal matching pursuit (OMP) algorithm and simultaneous
orthogonal matching pursuit (SOMP) algorithm. Besides, how to calculate the focus measure
using the obtained sparse coefficients is also described. Second, two regional multifocus image
fusion schemes based on different sparse representation algorithms are given in Section 3, and
the corresponding fusion processes are introduced. Experiments are conducted based on some
source image pairs with different depths of field. To evaluate the performance of the new
methods, we conduct the comparison of some state-of-art methods and provide the fusion
results in Section 4. Finally, the conclusion and future work are given in Section 5.

2. Sparse representation theory and clarity measure

As shown in Figure 2, one important module in regional multifocus image fusion is the focus
measure (this is also important in pixel-by-pixel fusion). Many coding schemas for images such
as wavelet and EMD have been used for this purpose [11, 12]. Here we use more recently
proposed coding schema, i.e., the sparse representation.

Figure 3. The spare representation of an image patch.
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As an extension to wavelet transform (WT), sparse representation has become a popular tool
widely used in image or signal processing tasks such as compressed sensing [13], image de-
noising [14], image classification [15], and face recognition [16]. In sparse representation, the
image patches in original image are usually represented as linear combinations of a “few”
atoms from an overcomplete dictionary [17]. Figure 3 shows the sparse linear model. In this
model, an image patch can be expressed by a sparse vector α, and

1=

= =å n n

N

n
y p d DP (1)

where the overcomplete dictionary is D = {d1, d2, …, dN} and the number of atoms is N. There
are many methods to generate the overcomplete dictionary, such as K-SVD [18] and discrete
cosine transforms (DCTs), and they can be directly created from some images by learning [19].
According to the dictionary D, the image signal can be represented by the sparse coefficient
P = {p1, p2 …, pN}.

The number of the non-zero entries in coefficient P is ‖P‖0. According to the sparse represen-
tation theory, the smaller is ‖P‖0, the sparser the image patch can be represented. Therefore,
we need to minimize the ‖P‖0, which can be formulated as follows:

0
min subje o ct t - <DP yP e (2)

where ε means the global tolerance of error. We can solve the optimization problem in Eq. (2)
by greedily testing the possible combinations of columns of y [20]. In such kind of greedy
algorithms, the orthogonal matching pursuit (OMP) is widely used, and we refer the readers
to Ref. [21] for details of the OMP algorithm.

Unlike the OMP algorithm that works on signals (image patches) separately, if we fix the
dictionary D to be used in representing several signals at the same time, we are attempting to
derive the sparse coefficients for several signals simultaneously by solving the following
optimization problem,

^ 2

,0
arg min subject to= - <

row FP
P P DP Y e (3)

where P means the sparse coefficients for a set of signals (image patches Y) and ε is the error
tolerance.  is the spare representation of image patches Y. The assumption that the several
image patches are sparse represented by the dictionary simultaneously is valuable to the
multifocus image fusion problem because the image patches at the same location of different
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source images are regarded as perceptions of the same objects. The optimization problem in
Eq. (3) can be solved by another greedy algorithm called simultaneously orthogonal matching
pursuit (SOMP); its details can be found in Ref. [22].

In multifocus image fusion, some clarity measures should be used to see the image pixel/region
in focus or not. Therefore, no matter which sparse representation algorithm we adopt to obtain
the sparse coefficients, how to use the derived coefficients to define the clarity measure is an
important step for multifocus image fusion.

When we have the sparse coefficient Pi for one image patch i, we can calculate the information
embedded in this coefficient by summarizing all the absolute values of elements in Pi. More
specifically, the information level in this patch is Fi = ║Pi║, here║·║is the Manhattan norm of
Pi. Considering the out-of-focus patch will be smoother than the in-focus patch, the information
or details contained in the out-of-focus patch will be in lower level. So the information level
defined by Manhattan norm can be regarded as a decent indicator or clarity measure on if the
patch is in focus or not [23].

By window sliding technique, each source image can be reshaped into a series of image patches.
And then each image patch can be changed into a vector, which can be denoted by sparse
coefficients. Assuming that the overcomplete dictionary contains T atoms and each source
image can be divided into r patches, we can get all the vectorized patches as follows:

1

1 2

1

(1) (1)
[ , ,... ]

( )

p

( )

¼é ù
ê ú= ê ú
ê ú¼ë û

M O M
r

r

T

p

p p
V d d d

T T

(4)

where P is the sparse coefficient matrix.
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In the following, we calculate the Manhattan norm of the vectors as the clarity measure. The
metric is also applied in Ref. [24], and we call them the activity levels or clarity levels of
responding patches.

1 1 1
,...,é ù= ë ûrP PF (6)

where ‖Pi‖1 is the Manhattan norm.
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3. Regional image fusion using sparse representation

In traditional sparse representation-based image fusion methods, the spatial information of
source images is less considered because we only calculate the sum of absolute sparse
coefficients as the activity level of image patch and apply the choose-max fusion rule pixel by
pixel. This may lead to ringing effects-related distortions in the fused image. On the contrary,
in the regional image fusion approach, the source images are first partitioned by an image
segmentation method, and then according to different sharpness measures, the sharp regions
are used to construct the fused image. A lot of image segmentation algorithms such as
normalized cuts [25], watershed-based segmentation [26], and others [27] have been proposed.
Currently, most of image segmentation algorithms are quite complicated and time consuming.

In traditional regional multifocus image fusion, less consideration on the effects of focus in
source images may increase the risk of bad segmentation in some images because the features
of in-focus and out-of-focus pixels sometimes are very similar. Using region-by-region
selection, if the in-focus and the out-of-focus pixels are segmented in the same region, the
traditional regional image fusion approach cannot avoid to get some out-of-focus pixels in the
final fused image, and the clarity level of the fusion result will be decreased. In the following
subsections, to alleviate this weakness of traditional regional image fusion, we provide two
new approaches with more considerations on the clarity information in the image segmenta-
tion step.

3.1. Regional multifocus image fusion using OMP algorithm

The first new regional multifocus image fusion approach is shown in Figure 4. This method is
also viable for the case of fusing more than two source images, but here we just use two source

Figure 4. The schematic diagram of the regional multifocus image fusion using OMP.
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images for simplicity. This approach includes a new operation before the image segmentation
step. That is, after obtaining the clarity information from sparse coefficients, we produce a new
clarity enhanced image for further image segmentation by linearly combining the average of
source images and the clarity information. We detail the three stages of the first proposed
approach in the following subsections.

3.1.1. Clarity measure based on sparse representation

To obtain the sparse coefficients PX and PY, OMP algorithm is adopted in the first stage of fusion
process [24]. Next, by Eq. (6), the clarity levels of the source image patches Fx and FY can be
calculated with the sparse coefficients PX and PY. Then we can get the clarity level images XP

and YP, in which, by averaging the clarity levels of all the patches that cover the pixel, the clarity
level of a pixel at a specific location is obtained. Finally, the relative clarity level images XP

’ and
YP’ can be obtained as follows:

/ ( )¢ = +p p ppX X YX (7)

/ ( )¢ = +p p p pY X YY (8)

3.1.2. Segmentation based on clarity enhanced image

The clarity enhanced image is constructed by the relative clarity measures XP
’, YP’, and the

source images. Here, we normalize the source images into the interval [0, 1] and denote them
as X’ and Y’. The clarity enhanced image ZZ is obtained by

exp (1 )log log¢ ¢é ù= - +ë ûpXX X Xb b (9)

exp (1 )log log¢ ¢é ù= - +ë ûPYY Y Yb b (10)

( ) / 2= +ZZ XX YY (11)

where β is used to adjust the contribution of the relative clarity measure and the original
information of source images. The clarity enhanced image ZZ is segmented to many regions
by normalized cut algorithm.

The image to be segmented is usually generated by simply averaging of source images in
traditional regional multifocus image fusion. By adding the focus information to the source
images, it is also considered as the feature in the segmentation process and the segmentation
results get lower possibility of having in- and out-of-focus pixels in one segment, and the risk
of incorrect segmentation is decreased.
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3.1.3. Regional image fusion

After the stage of image segmentation, we obtain the partition of ZZ. So we divide the
normalized images X’ and Y’ into the homogenous regions according to the segmentation
results over ZZ. In regions of the corresponding position of source images, we calculate the
mean value of clarity level of each region of X’ and Y’, compare the means and use the choose-
max-mean rule to select the regions in focus. With the selected regions, the fused sparse
coefficient matrix PF can be obtained by using the corresponding column vectors of PA and PB.
According to Eq. (12), the vectors of the image patch in the fused image can be calculated as
follows:

 =F FV P D (12)

where PF is the fused sparse coefficient matrix and D is the overcomplete dictionary.

Finally, each vector in VF is reshaped into a patch. And all the image patches are put into the
fused image according to their corresponding positions in source images. The final fused image
is obtained by averaging all the recovered patches.

3.2. Regional image fusion using SOMP algorithm

In this subsection, we introduce the second regional multifocus image fusion approach using
sparse representation. In classical sparse representation, OMP algorithm is usually used to
obtain the sparse coefficients by solving the related non-convex optimization problem.
Different from OMP, the dictionary in SOMP can be used for decomposing several image
patches simultaneously. More specifically, for a location, we can extract one patch from each
of the source images. Then, these patches are to be rebuilt by some sparse set of atoms from
the dictionary simultaneously. Because the patches in different source images contain the same

Figure 5. The schematic diagram of the regional multifocus image fusion using SOMP.
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visual information in one location, obtaining sparse coefficients together is more advanta-
geous. Combing SOMP and the regional image fusion schema in previous subsection, a new
region-based multifocus image-fusion method using the guided filter and greedy analysis is
proposed here [28]. The illustrative scheme program of this method is shown in Figure 5.

There are also three stages in this scheme. In the first stage, guided filter is adopted for
enhancing the details of source images and then we obtain the sparse coefficients using SOMP
algorithm. By doing this, more accurate sparse coefficients are obtained from images with
details sharpened by guided filter. In addition, the filter enhanced edge information is
introduced into the image to be segmented and enhances the segmentation results eventually.
The remaining two stages in this fusion approach are the same as the ones in our first proposed
approach.

3.2.1. Guided filter and image fusion

Guided filter is proposed by He et al. in 2010 [29]. For the purpose of edge preserving, guided
filter has been demonstrated better than bilateral filter, which is also used for detail enhance-
ment. Li et al. have proposed a novel guided filtering-based weighted averaging image fusion
method using spatial consistency [30]. As we know, the more feature information the processed
images have, the clearer fused image can be obtained. Figure 6 shows the process of guided
filtering. Here, we just introduce this filter briefly.

Figure 6. Guided filter.

Mathematically, the guided filter uses a local linear model as follows:

,= + " Îj t j t tQ s G m j w (13)

where Q is the output of guided filter, G is the image used to guide the filtering process, wt is
the sliding window, and (st, mt) is usually constants in wt.

By taking the difference between the filter output and the filter input as cost function and
minimizing it, we can get the best values (st, mt) by a simple linear regression problem as
follows:

2( , ) (( ) )
Î

= + - +åt t t i t j t
i wt

E s n s G m I se (14)
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Here, to avoid that the value of st is too large, we bring in a regularization parameter ε in Eq.
(14). With the optimized (st, mt), we can obtain the filtered image by averaging all the patches
generated by Eq. (13). More details can be found in Ref. [29].

For the source images processed by guided filter, we apply sliding window to get a set image
patches. For the same location in each image, the corresponding patches are simultaneously
decomposed by the same subset of atoms using SOMP. Then taking the same steps as the ones
in previous subsection, we use the obtained coefficients to calculate the clarity measure, obtain
the clarity enhanced image, conduct the image segmentation, and fuse the image regionally
according to the segmentation result.

4. Experiments and results

In this section, we will evaluate the performance of the proposed regional multifocus image
fusion methods and compare them with following four methods. They are multifocus image
fusion using DWT [31], multifocus image fusion using guided filtering [30], multifocus image
fusion using sparse representation [20], and regional multifocus image fusion using spatial
frequency [10]. For simplicity, we use DWT, GF, SR, and RIFSF to indicate these methods,
respectively. Here, DWT-based method and GF-based method are pixel-level multifocus image
fusion methods. SR-based method and RIFSF-based method are regional multifocus image
fusion methods. The platform that we use to conduct the image fusion experiments is Matlab
2014b.

4.1. Data

The test images are obtained from Ref. [32]. Four pairs of source images are shown in Figure
7, which are named as “book,” “balloon,” “flower,” and “leopard,” respectively. There are
different depths of focus in every pair of images.

Figure 7. Four pairs of multifocus source images.
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4.2. Results

4.2.1. Image segmentation results

For simplicity, we call two fusion methods introduced in this chapter RIFOMP and RIFSOMP.
Four other image fusion methods are compared with these two methods. The fusion results
will be totally different if the setting parameters are different. So in order to do the comparison
fairly, we use all the settings of parameters the same as the ones in the papers [10, 20, 30, 31].
In the proposed methods, after obtaining the image patches by window sliding technique,
based on normalized cuts on clarity enhanced image, the corresponding segmentation results
are shown in Figure 8. From the segmentation results, we can see that the in-focus and out-of-
focus pixels are basically divided into different regions.

Figure 8. The results of image segmentation.

4.2.2. Image fusion results

Our multifocus image fusion is conducted based on segmentation results, and the fusion
results for source images above are shown in Figures 8–12. The other method results are also
listed for the purpose of comparison. From these figures, we can see that the fused images
produced by DWT-based method are not so clear. Besides, there are incorrect region selections

Figure 9. The image fusion results: (a) source image: book 1, (b) source image: book 2, (c) DWT, (d) GFF, (e) SR, (f)
RIFSF, (g) RIFOMP, and (h) RIFSOMP.
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in some fused images produced by the RIFSF-based method. For example, in Figure 10(f), the
boundary of balloon is blurred because of this problem. The results of other four methods are
visually similar, so we further conduct the quantitative comparison according to several image
quality indexes.

Figure 10. The image fusion results: (a) source image: balloon 1, (b) source image: balloon 2, (c) DWT, (d) GFF, (e) SR,
(f) RIFSF, (g) RIFOMP, and (h) RIFSOMP.

Figure 11. The image fusion results: (a) source image: flower 1, (b) source image: flower 2, (c) DWT, (d) GFF, (e) SR, (f)
RIFSF, (g) RIFOMP, and (h) RIFSOMP.

Figure 12. The image fusion results: (a) source image: leopard 1, (b) source image: leopard 2, (c) DWT, (d) GFF, (e) SR,
(f) RIFSF, (g) RIFOMP, and (h) RIFSOMP.
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4.3. Quantitative evaluation

Besides the subjective evaluation of the fusion results, the objective criteria are also used to
evaluate the image fusion results quantitatively. Six popular performance criteria that we adopt
are Petrovic metric (QAB/F) [33], mutual information (MI) [34], root mean square error (RSME)
[35], peak signal-to-noise ratio (PSNR) [36], structure similarity measure (SSIM) [37], and
correlation coefficient (CC) [38].

1. Petrovic metric (QAB/F): QAB/F is used to evaluate that the edge information transferred from
the source images to the fused image. Generally speaking, the larger the value of QAB/F is,
the better the fusion result is. The value of QAB/F is always smaller than 1.

2. Mutual information (MI): MI is used to measure the dependence between the source
images and the fused image. It is a good indicator of information shared by the fused
image and the source images, therefore the higher the better.

3. Root mean square error (RMSE): RMSE is used to denote the difference of standard
deviation between the fused and source images. A better image fusion result has a smaller
RMSE value.

4. Peak signal-to-noise ratio (PSNR): PSNR is widely used to measure the similarity of
multiple images (the source images and the fused image). If the value of PSNR is higher,
the fusion result will be better.

5. Structure similarity measure (SSIM): SSIM is used to measure the structure distortion
between the source images and the fused image. The higher the value of SSIM is, the lower
structure distortion is and the better the fusion result is.

6. Correlation coefficient (CC): CC is often used to indicate the degree of correlation between
the source images and the fused image. If the value of CC approaches 1, the correlation
of the source images and the fused image is very strong.

According to these six measures, the comparison results are shown in Table 1. From this ta-
ble, we can see the MI values of two proposed methods are better than the ones of others for
source images “book,” “balloon,” and “flower.” For the source image “leopard,” the pro-
posed method RIFSOMP is still the best. According to QAB/F, the two proposed methods also
perform very well. For example, the RIFSOMP gets the best QAB/F for image “balloon.” We
also list the average performance of each method in comparison. From the average perform-
ance in each criterion, we can safely say that the performance of two proposed regional
methods is at least comparable to the best of other state-of-the-art methods and according to
some specific performance indices such as MI and QAB/F, the proposed RIFSOMP is even su-
perior to other methods in comparison. We conclude that the focus information is well pre-
served by our methods in the fused images, and there are no obvious artifacts in fusion
results.

Novel Approaches for Regional Multifocus Image Fusion
http://dx.doi.org/10.5772/65076

137



Source images Quality measure Method

DWT GFF SR RIFSF RIFOMP RIFSOMP

Book Q AB/F 0.7715 0.7985 0.8044 0.7902 0.8009 0.8010

MI 7.1809 8.9691 8.2072 9.2945 9.7756 9.7775

RMSE 0.0377 0.0117 0.0124 0.0119 0.0109 0.0110

PSNR 27.7426 37.9276 37.4354 37.8021 38.4568 38.4451

SSIM 0.9145 0.9143 0.9242 0.9148 0.9232 0.9229

CC 0.9850 0.9840 0.9861 0.9843 0.9857 0.9854

Balloon Q AB/F 0.8133 0.8218 0.8160 0.8007 0.8208 0.8220

MI 10.1277 11.1296 10.3557 11.1252 11.1355 11.1632

RMSE 0.0114 0.0056 0.0055 0.0055 0.0055 0.0056

PSNR 32.1260 38.3339 38.4714 38.4370 38.3358 38.2833

SSIM 0.9684 0.9689 0.9716 0.9685 0.9693 0.9687

CC 0.9914 0.9917 0.9923 0.9911 0.9918 0.9915

Flower Q AB/F 0.6817 0.7270 0.7224 0.6933 0.7238 0.7240

MI 5.0983 7.2740 5.6288 7.6310 7.8754 8.0319

RMSE 0.0304 0.0109 0.0094 0.0103 0.0108 0.0108

PSNR 25.5105 34.4559 35.7465 34.8986 34.5014 34.4631

SSIM 0.9041 0.8921 0.9352 0.9069 0.8922 0.8907

CC 0.9407 0.9275 0.9565 0.9387 0.9267 0.9256

Leopard Q AB/F 0.8302 0.8356 0.8378 0.8275 0.8348 0.8357

MI 9.8038 10.8384 10.0490 10.9832 10.9083 10.9901

RMSE 0.0364 0.0175 0.0116 0.0177 0.0174 0.0176

PSNR 28.0629 34.3990 38.0155 34.3415 34.4489 34.3644

SSIM 0.9036 0.9045 0.9629 0.9040 0.9058 0.9038

CC 0.9881 0.9882 0.9949 0.9881 0.9884 0.9881

Average Q AB/F 0.7741 0.7957 0.7952 0.7779 0.7951 0.7957

MI 8.0527 9.5528 8.5602 9.7585 9.9237 9.9907

RMSE 0.1159 0.0114 0.0097 0.0114 0.0112 0.0113

PSNR 28.3605 36.2791 37.4172 36.3698 36.4357 36.3890

SSIM 0.9227 0.9200 0.9485 0.9236 0.9226 0.9215

CC 0.9763 0.9729 0.9825 0.9756 0.9732 0.9727

Table 1. Quantitative assessments of different multifocus image fusion methods on different source images.
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5. Conclusion and future work

As more advanced coding techniques appear, the fused image will be clearer by using regional
multifocus image fusion methods. In this chapter, the general structure of regional multifocus
image fusion is introduced. Regional multifocus image fusion methods using two different
sparse representation algorithms, i.e., OMP and SOMP, are formulated. The experiments by
proposed regional multifocus image fusion methods are conducted, and the experimental
results demonstrate that the performance of regional methods using sparse representation is
better than several state-of-the-art methods.

To further improve the regional image fusion’s performance, two possible directions can be
explored more. The first one is to apply other coding techniques like the group or structure
sparse representations to get more robust clarity measures. The second future work can focus
on the re-designing of the image segmentation approaches. We can embed the focus informa-
tion directly in the segmentation procedures to obtain better partitions of images for the
regional fusion. For example, the biased normalized cut [39] is a possible solution to embed
the focus information as the bias in the classical normalized cut segmentation algorithm.
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Abstract

Artificial  vision  for  manufacturing  is  a  very  important  step  when  the  process  is
automatic, so to improve productivity with high quality, this investigation presents a
new method for manufacturing by applying artificial intelligence for tool selection; in
the proposed method, a camera takes a picture and artificial program is applied to
process the image and thus generate it to the size of the cutting tool. This chapter
describes the development of a new method by programming using artificial vision to
select the cutting tool. The experimental results show that the combination of artificial
vision and programming is capable of selecting the correct tool.

Keywords: artificial vision, cutting tool, artificial intelligence, image, manufacture

1. Introduction

In recent years,  artificial  vision is  impacting the manufacturing process due to the mass
adoption in different lines of research such as robotics [1, 2], machining [3, 4], and automotive
[5], among others. However, numerous variables affect the machining process, for example,
tool materials, total error compensation, concepts of autonomous manufacturing, and process
condition monitoring, among others. On the other hand, the computer vision for cutting
condition  effects  as  roughness  (presented by  Sarma et  al.  [6]),  the  prediction  of  cutting
conditions (by Gadelmawla et al. [7], and path generation are included for milling Compu‐
terized Numerical Control (CNC) machines (by Eladawi et al. [3]).

At present, the development of a system capable of recognizing complex features for tool
selection in commercial computer‐aided manufacturing (CAM) transfers this task to the
workers who do it based on their own experience, ability, and knowledge. The literature on

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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automatic tool selection using image processing is minimal; on the other hand, simple and
easy to implement algorithms are the core of this method [8].

2. Artificial vision in manufacture

This research presents a new technique based on artificial vision using image processing for
automatic tool selection in operations of milling‐turning manufacture.

The proposed method starts recognizing an image taken by a photographic camera. Then,
different techniques of image processing are applied, such as binarization to convert the image
of gray scale to black and white; after segmentation to reduce the contour or increase it if
necessary; directional morphology to determine the magnitude, position, and direction of edge
of the part; and finally, a structural element with the shape of the tool is moved to generate the
trajectory and dimensions of the cutting tool [9].

3. Artificial vision in lathe

This research consists of eight steps for machining 2D objects mainly for two‐axis lathe
machines: in step 1, an image designed in CAD or taken from a camera is extracted and saved
to a DXF file; the next step (step 2) consists of transforming the DXF file to the BMP file (image);
in step 3, a binarization is applied to convert the image to grayscale; step 4 consists of labeling
to separate the object of the picture; in step 5, the perimeter of the piece is obtained; in step 6,
a partial derivative to obtain the gradient in the edge of the piece is applied; in step 7, a structure
element with the shape of the tool is moved in the image; and finally, in steps 8 and 9, a
condition is applied to determine if there is no intersection between the selected tool and the
object to generate the selection of the tool and the trajectory [9].

The method for automatic selection of the tool consists in identifying when an element
structure with the shape of the tool travels in each pixel on the edge of the part in the image.
If there is an intersection between the cutting tool and the workpiece, then the diameter of the
cutting tool is automatically changed until there is no intersection. These steps and the previous
steps are shown in Figure 1, as well as in the following steps [9]:

Step 1. Generation of DXF file starting with a picture

The DXF file contains information of the piece inside the image (Figure 2b), while the CAD
file is generated in 3D but it is exported in 2D (Figure 2a) [9].

Step 2. File transformations (DXF to BMP)

When different transformations are applied, it is necessary to know the dimensions of the piece
and keep the precision nearest between the part in physical (length in mm) and the image
(length in pixels), an analysis applied is shown in Table 1 [9].
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Figure 1. General diagram of the automatic cutting tool selection.
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Figure 2. Principal file, (a) design from CAD and (b) DXF file [9].

Resolution Scale mm Length (pixels) Height (pixels)

800 × 600 4:3 1 15 11

3200 × 2048 25:16 1 62 40

5120 × 4096 5:4 1 100 80

7680 × 4800 16:10 1 151 94

10,000 × 10,000 1:1 1 196 196

50,800 × 50,800 1:1 1 1000 1000

Table 1. The resolution of this system.

The calibration value is also the resolution of this system and is approximately 1 μm. A method
of data extraction [6] is applied to convert the DXF file to BMP file, as shown in Figure 3(a) and
(b). The same distance is then automatically determined in pixels in the image, and a calibration
value is obtained by dividing the distance in millimeters by the distance in pixels to obtain a
relation of mm per pixel:

(1)

Figure 3. Files, (a) design without texture (Wire file) and (b) image (BMP file) [9].
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All the dimensions are known in the DXF file. In order to find the directional gradient of the
edge, image processing is applied.

Step 3. Grayscale to binary image

The workpiece  is a subset  of the image , where it represents a matrix with m pixels
to be stored in an array  in the following way:

t t

t =

Ì Þ =åf fλ λ
1
( )

m

(2)

where  is the total number of pixels in the image and  is the region of the image. After starting
with the image that is shown in Figure 3(b), a transformation (thresholding) is applied to
convert the image of gray scale to binary using Eq. (3):

{ }
= =

> = =åå f f f
1 1

( , ) 128 then ( , ) 1 ( , ) 0
n m

B B

i k
if i k i k else i k (3)

Each pixel has a value of 255 representing the largest tonality (white) and 0 when the minimum

(black) cannot work with this whole range of colors.  (image in gray scale 0 multicolor)

is needed only for two  (binary image), one for the piece (black) and the other for the
rest of the image (white) [9].

Step 4. Labeling of the workpiece into of the image

Figure 4(a) shows the labeling of the image and the piece  (Eq. (4)). Be an image 
white and black in the binary space  , where

{ }
¥

= " Î = = Ú = =e f f f fU | 0 then 0 1 1B
k k k k k

k
if x if then x (4)

Figure 4. Labeling definition, (a) labeling of part and (b) labeling of perimeter [9].
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Or it can also be written as Eq. (5):

{ }
==

é ù é ù= = = È = =ë û ë ûåå e f f f f
0

2

( , ) ( , ) 1 then ( , ) 1 ( , ) 0 then ( , ) 0
m n

e e
m ik

i k if i k i k if i k i k (5)

where  is the labeling image saved in the image of the exit  of Eq. (5), taking half

of the image  = 2  on the axis . The directional classification of the edge for half of the image

in the point (, ) is presented in Figure 3(b).

Step 5. Labeling edge and perimeter

The perimeter  can be obtained from the edge ( ∇ ) of the image  by Eq. (6):

p

q q= + = +ò òP q r r
1

0

2
2 2

0
0

ˆ ˆ ˆ ˆ( ) 2 1 ') '
z

o
z

dz d (6)

The vector  represents the partial derivative of the piece in the image (, ) with respect

to a frame of reference (  are the radii) for each pixel ((, )) (see Figure 4(b).

Another way to calculate an integral is the arithmetic sum of each pixel of the image repre‐
sented with the symbol  for a frame of reference (of 0  to1 ), with the aim of finding

the perimeter  [10] that represents the labeled edge, as shown in Eqs. (7) and (8) [9]:

{ { }{ }
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=

Ü = + Ú =å E p
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( ( , ) ( , ( )), 1N
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i k z P z N N z N (7)

-- -

= ==

ì ü
= = Ü Üí ý
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22 1

1 1
2

( , ) 1 then ( , ) ( , ), ( , ) ( , )
mm n

p N N
m i Nk

if i k i k i k else i k i k (8)

Figure 4(b) shows the labeling of the perimeter  in the edge of the piece for each point(, ).
Step 6. Using partial derivatives to obtain the gradient

There are several methods to obtain the gradient (variations in intensity of pixels) (Eq. (9)), but
among them the Sobel method is selected for its computational easeas is shown in Eqs. (10)
and (11) [11], the gradient generates directional vectors, orientation of the piece, and direction
of the contour of the workpiece:
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Step 6. Using partial derivatives to obtain the gradient

There are several methods to obtain the gradient (variations in intensity of pixels) (Eq. (9)), but
among them the Sobel method is selected for its computational easeas is shown in Eqs. (10)
and (11) [11], the gradient generates directional vectors, orientation of the piece, and direction
of the contour of the workpiece:
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Here,  and  are the transformation matrices to generate the edge applied to the image.
The vector gradient represents the maximum change of intensity for the point (, ).
The magnitude ( ∇ ) and direction (∠∇) are given by Eqs. (12) and (13), respectively,

Ñ = +x zf G G (12)

-ÐÑ = 1tan z

x

G
f

G (13)

Figure 5(a) illustrates the vector direction of the edge of the part sample.

Figure 5. Vectors of part, (a) direction vector of part and (b) magnitude of edge direction [9].

Figure 5(b) shows the directional angles according to the trajectory of the edge, when the
gradient is applied to binary image in the part.
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The magnitude and direction of the edge are saved in the variable 𝀵𝀵𝀵𝀵𝀵𝀵(, ) using Eq. (14) to
generate the dimension of structural element:
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Step 7. Automatic tool selections

The workspace is considered according to the size of the piece but it is necessary to consider
other collisions as the turret with the part, these will be considered in future issues [10]. Table 2
shows the common cutting tool, the dimensions of the cutting tool are obtained from manuals
and introduced into the software to be converted into structural elements with the length,
orientation, and radius of the nose, this part is shown in Figure 6(a). Among the common
dimensions are those of 15°, 35°, and 45°, with 9525 mm requiring 36 pixels, 2540 requiring a
mesh of 25.5 square units of pixels, and the structural element requiring 414 pixels, see
Figure 6(a) [9].

Tool for turning Type (°) Size (mm)
Name Letter Shape   𝀵𝀵𝀵𝀵 
1. Right R External 35 19.049 0.406 – –

Internal 125 – –

2. Left L External 197 19.0496 0.406 – –
Internal 19 – –

3. Neuter N External 90 12.699 0.507 – –
Internal 93 – –

4. Knife K External 90 12.699 – – –
Internal 95 – –

5. Drilling D External 60 44.449 – 38.099 12.699
Internal

6. Holder H S16R PCLNR‐L
09

95 71.118 20.141 20.319 19.989

Table 2. Common inserts (structural element).
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Figure 6. (a) Structural element for right insert, (b) incorrect insert and (c) correct insert [9].

There are several conditions for machining between them and it is necessary to determine if
the cut is internal or external, and whether it is an insert right (180° ≤ ∠∇𐕌𐕌 < 270°) or left
( 270° ≤ ∠∇𐕌𐕌 < 360°). The common are those that are situated in the last two quadrants, the
first two quadrants are generally used for internal machining. Eq. (15) generates the move‐
ments of the structural element through the image; the angle marks the start of the selection
of the cutting tool in machining :

(15)

where  is the dimension for cutting tool presented in Eq. (16):

(16)

Table 2 shows the common inserts that are generated in structural elements. Figure 6(a)
illustrates a structural element generated with pixels to be moved through the contour so that
the contour matches the nose radius of the tool. The number of pixels in a line according to the
used resolution of 800 × 600 is five pixels; the evaluation is taken from reference [9]. Second,
the pixels that are represented the line in Figure 6(a) are used only to demonstrate the method;
the pixels processed are the inner using centroid method.

When a structural element passes through the edge of the workpiece, it is necessary to know
if this insert is correct, free of intersection, if there is intersection, and if another insert is treated.
The structural element (Figure 6b) is displaced through all the images, when a structural
element (Figure 6b) collides (Figure 6c), other structural element is chosen automatically, this
process is determined in the software itself. The technique for automatic tool selection may be
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to change the radius, length, or angle of the insert according to the inserts, obtained from
handbooks [9].

After the correct holders and inserts have been selected to work on each area, many changes
in cutting tools are probably required. The number of changes can be reduced by ordering the
changes with the next procedure (Eq. (17)):

(17)

To determine the tool path, each pixel should share information with eight neighbors and
follow the path of the perimeter (edge ) in the mesh [ + ][ + 1].
Step 8. Generation of trajectory

Figure 7(a) illustrates the method of zig using one way, but there are other methods of creating
paths such as zigzag of two paths (back and forth), zig with contour, which follows only the
path of the edge of the piece widely used for finishing and roughing at the same time; the
follow‐periphery that has the function to be used only for finishing; the trochoidal profile is
used in special cases when the piece has peaks, elevations, or very long inclinations; and on
the other hand, the generation of trajectory is used only for rough cutting. To generate the
trajectories, a structural element with the shape of the cutting tool with angle , length, and
noise angle  is displaced through all the images from right to left.

Figure 7. Tool selection (final piece), (a) rough turn (zig) and (b) finish turn (zig with contour) [9].

Finally, to move the tool in the image, it is necessary to use a counter ( = 0, =  + 1) with the
total number of pixels . This method is obtained by Eq. (18) and is displayed is Figure 7(a) [9]:

{ }{ }
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1
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follow the path of the perimeter (edge ) in the mesh [ + ][ + 1].
Step 8. Generation of trajectory

Figure 7(a) illustrates the method of zig using one way, but there are other methods of creating
paths such as zigzag of two paths (back and forth), zig with contour, which follows only the
path of the edge of the piece widely used for finishing and roughing at the same time; the
follow‐periphery that has the function to be used only for finishing; the trochoidal profile is
used in special cases when the piece has peaks, elevations, or very long inclinations; and on
the other hand, the generation of trajectory is used only for rough cutting. To generate the
trajectories, a structural element with the shape of the cutting tool with angle , length, and
noise angle  is displaced through all the images from right to left.

Figure 7. Tool selection (final piece), (a) rough turn (zig) and (b) finish turn (zig with contour) [9].

Finally, to move the tool in the image, it is necessary to use a counter ( = 0, =  + 1) with the
total number of pixels . This method is obtained by Eq. (18) and is displayed is Figure 7(a) [9]:
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Machining time is given by Eq. (19):

=

=å
1

n
i

i i

L
T

v (19)

4. Results in lathe

With the proposed method, an image can be directly taken by a camera or other devices for
automatic tool selection. The use of an image generated from DXF file is to compare the
structural elements (part and tool) in pixels using PI; the original dimensions from DXF file
are used to compare them if the design comes from CAD file. This new method, which reduces
the complex, complicated, and difficult to understand mathematical algorithms, shows an easy
simulated viewing for selecting cutting tool. To show the method for automatic selection of
the tool, two pieces were used, the results are presented in Table 2. The generation of trajec‐
tories is shown in Figure 7(a) and (b), and the selection of the tool in Table 3 for the first piece.

Rough turn Finish turn
Area Type Line Type
1 L 1 L
2 L 2 R
3 L 3 L
4 R 4 N
5 N 5 R
6 – 6 K

Table 3. Selected inserts for part of Figure 7.

Figure 8. Tool selection, (a) final piece and (b) thread and rough turn (zig) [9].
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Table 3 shows the results of the selected inserts by applying the proposed method. Where the
numbers represent the area for each insert, and L, R, or N represents the types of inserts more
common than before which was proposed relative to its size.

The second example is presented in Figure 8. The selected cutting tools are presented in
Table 4, where an existing thread machining is represented by the number four and an internal
machining is labeled number five.

Rough turn Finish turn
Area Type Line Type
1 L 1 L
2 L 2 –
3 R 3 R
4 M12_×_1.25 4 –
5 D/L 5 D/L

Table 4. Cutting tool selection for second example.

Figure 9. Final software for tool selection [9].

The developed software is shown in Figure 9. It was developed in Microsoft Visual C++ 2010
and tested in 2D images generated in any CAD software and exported to DXF file.

5. Conclusions

In this work, a new method for automatic tool selection using techniques of image processing
for computer numerical control lathe machines has been presented. The proposed methodol‐
ogy has been implemented in images generated by CAD software and exported to DXF file.
The resolution of this system is determined as approximately 1 μm.
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From this, it is clear that this methodology can be implemented in commercial CAM software
in order to systematize the lathe CNC process. The novelty of this article is the use of image
processing to automatically generate the selection of the cutting tool, the design of the part can
be from a photograph taken from a camera or other device or directly from a CAD.

6. Artificial vision in mill

A 2.5D solid model can be defined as a cut with a series of 2D tool paths at different Z slices
of a 3D solid model. Nowadays, a large percentage of pieces used in the industry have a shape
of contours, where the base face is a plane denominated by 2.5 axis. Automatic tool selection
in milling operation is one of the important steps of process planning. Moreover, at present,
the commercial computer‐aided manufacturing software transfers this task to the worker who
does it based on its own experience, ability, and knowledge. Considerable articles have
reported about the variables that affect the milling process such as material piece selection [7,
12], tool selection [7], cutting conditions [7], tool materials [12], tool sequence [13], cutting fluids
tool selection [12], tool path [6], and control and identification, among others.

The tool selection, task commonly made by a human operator, is an important aspect in
machining processes, since if the tool selected is incorrect, it can produce dimensional errors
in workpiece, possible crashes, and consequently, reject the piece. In this way, some researches
based their principles on the selection of the tool for machining 2.5D parts as in the case of
Ahmad et al. [13], who present an optimization algorithm for the problem of tool sequence [8].
Or the method proposed by Lim et al. [14] who used experimental algorithms using mathe‐
matical Boolean to determine the optimal setoftools in pockets with the integration of CAD/
CAM.

In the same way, Hemant et al. [15] developed an algorithm for the tool selection used by
Veeramani tool, although using dynamic programming, human intervention is necessary
because of its mathematical complexity [4]. The tool selection using image processing based
on the shape is a new method in the literature, the core of this research issimple and easy to
implement algorithms [8].

Although the image processing plays a very important role when the images are manipulated
inside the morphology (opening operation), the main research is the defects by Tunák et al.
[16], the cutting conditions by Sarma et al. [7] and Gadelmawla et al. [3], and the path gener‐
ation by Eladawi et al. [6, 8].

The contribution of this research is the easy way to simulate the cutting path, automatic tool
selection, easy method for 2.5 axis machining in operation of milling, reduction of errors, and
not requiring prior knowledge. The novelty of this work is the use of morphology based on
the image processing applied for the automatic tool selection. The advantages of this method
are: easy to implement, eliminates the decisions and errors when the tool is selected [8].
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7. Introductions

Application of directional morphology in the tool and the workpiece with the sole aim of
finding the selection of the cutters for 2.5‐axis machining in the bibliography is a new proposal.
The method begins by taking the mesh of a 3D object exported to a DXF file (Mejia et al. [8])
or an image taken by a camera. To manipulate this file, it is necessary to extract the coordinates,
lengths, and positions of the pixels generated on the frontier of the piece on the surface. The
pixels are discretized on the edge of the piece to obtain normal vectors and stored in a text file.
The file data gives the necessary information about the orientation of tool when it passes
through that place. The dimensions of the tools are stored and discretized; these were extracted
from the handbook more common in the industry. The resolution of the system depends on
the size of the tool and the complexity of the piece. To improve the algorithm, it is necessary
to reduce the size of the pixels, after the pixels of the tool are displaced on the frontier of the
piece. Each movement of the tool is inspected if there is no collision.

The image processing techniques used are: (a) morphological operations: using erosion and
dilation [17, 18], these methods reduce or increase the contour of the workpiece; (b) binary

image: the pixels that contain a gray scale  are converted to black and white  ; (c)
direction vectors of piece: Sobel model is the common operator because it has better perform‐
ance and is easy to use [19]; (d) extracting piece: the common method is labeling (scan mask)
to register images; (e) Software CAD‐CAM‐CAE: these are the systems that graphics, designs,
and simulates, respectively; (f) 2.5D models: the images in the present article are 2.5D model.
These models are from a single 2D image having a manual axis that is the axis Z; and (g)
structural elements: the cutting tool is represented in pixels, because a greater number of pixels
to represent the cutting tool improves accuracy [8].

The work published by Bithika and Asit [18] applies mathematical morphology to detect
manufacturing defects. It is an example of the application of image processing, using such
techniques for measuring the effect of cutting speed on the surface roughness, which is another
example that provides a new strategy in manufacturing, as presented by Sarma et al. [7].

8. Methodology

This research consists of six steps for machining 2D and 2.5D objects mainly for 2.5‐axis lathe
machines, an image designed in CAD or taken from a camera is extracted and saved to a DXF
file, after transforming the DXF file to the BMP file (image), a binarization is applied to convert
the image to grayscale, the labeling to separate the object of the picture, the perimeter of the
piece is obtained, a partial derivative to obtain the gradient in the edge of the piece is applied,
in step seven, a structure element with the shape of the tool is moved in the image, finally, a
condition is applied to determine if there is no intersection, using mathematical morphology,
especially erosion and dilation to generate automatic tool selection and tool path as it is
shown in Figure 10 [8].
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Figure 10. General diagram of the automatic cutting tool selection [8].

Step 1. Generation of DXF file starting with a picture

The DXF file (Figure 11b) contains information of the piece inside the image (Figure 11a), the
CAD file is generated in 3D but it is exported in 2D.

Figure 11. Original files, (a) design from CAD or camera and (b) DXF file [8].
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When different transformations are applied (DXF to BMP), it is necessary to know the
dimensions of the piece and keep the precision nearest between the part in physical (length in
mm) and the image (length in pixels), an analysis is applied, the calibration value of this system
is in micrometer, the adjustment parameters for 1 mm of 800×600 (scale 4:3, 15×11 pixels) and
50,800×50,800 (scale 1:1, 1000×1000 pixels) [8].

The archive DXF file contains the necessary information about the part that is necessary when
the DXF file is converted to a BMP file, as shown in Figure 12(a) and (b). The calibration is the
relation between the distance in millimeters (distancemm) and the relation of millimeters per

pixel (Relation (mm per pixel)).

Figure 12. Files, (a) design without texture (Wire file) and (b) image (BMP file) [8].

Step 2. Image preprocessing

Binary image: a binary image (  ) in 2.5D is a subset  of ℜ3 if 0, 1 2.5 represents the

set of functions as  ⊂ ℜ3 in the set 0, 1 , so that any binary image can be represented by a

characteristic function :ℜ3 0, 1 . After starting with the image, a transformation (thresh‐

olding) is applied to convert the image of gray scale to binary using
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where  is the image in gray scale (image matrix of 𝀵𝀵 𝀵𝀵𝀵𝀵 pixels) and (, ) 𝀵𝀵𝀵𝀵 is the

result of the transformation of gray scale into a binary image.
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Step 3. Image processing

Detection and labeling of gradient and perimeter in the edge of the piece: The following step
is the binary label, or limitation, of the piece  , see Figure 13(a) (Eq. (22)). Be an image

 white and black in the binary space 
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where  is the labeling image saved in the image of exit (, )  of Eq. (22). The

directional classification of the edge for half of the image in the point (, ) is presented in
Figure 13(b).

Figure 14. Vectors of piece, (a) direction vector of piece and (b) magnitude of edge direction [8].

Perimeter of the piece: The perimeter (()) can be found by applying an edge ( ∇ ) into the

image ((, ) ) to provide information about the shape of the object, and the labeled

perimeter  can be defined as the position vector for the edge. Figure 14(b) presents the result

of the trajectory of the labeled perimeter  represented with label "1" in the point (, ) of the

image.

Figure 13. Labeling definition, (a) labeling of piece and (b) labeling of perimeter [8].
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Figure 14(a) and (b) show the direction vectors in the contour of the workpiece when image
processing is applied.

The magnitude ( ∇ (, )) and direction (∠∇(, )) of the labeling gradient and perimeter
(∠∇(, )) of the edge are saved in the variable  to generate the dimension of structural
element:

ì üæ öÑ Ùï ï" Î $ Ìç ÷í ýç ÷ÐÑï ïè øî þ
MaqS

( , )
( , ) ( , ) : ( , )
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Step 4. Directional morphology

Directional morphologies to generate size of tool, erosion, and dilation are fundamental
operations in morphological image processing, defined for binary images. To grayscale images
and to complete lattices, dilation () and erosion () are formed by a structural element.

Figure 15. Directional morphology, (a) tool size dilatation and (b) tool path dilatation [8].

Dilation allows thinning of the contour of the part in the image  , using a structural element(, ), which is developed in Eq. (25), see Figure 15:

{ }Å = - - +f( )( , ) max ( , ) ( , )A B w q w i q j b i j (25)

Such that (w‐i,q‐j) ∈ DA, (, ) ∈ 
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With  functions with respect to  and  [4].

Eqs. (26) and (27) represent fundamental operations of dilation 𑪕𑪕 , where  contains all

pixels and  is a structural element of cutting tool with ∧ reflected in  a variation of :
Ùì ü

Å = Ç ¹ Fí ý
þî

|( )sA B s B A (26)

Equivalently,

Ùì ü
Å = Ç Íí ý

þî
|(( ) )sA B s B A A (27)

Dilation is a joining of the translations of one picture for each pixel of an image B, called
structural element as

Î
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{ }Q = + + -f( )( , ) min ( , ) ( , )A B w q w i q j b i j (30)

Such that

+ + Î ÎA(w i,q j) D ,( , ) Bi j D (31)

With  functions with respect to  and  [8].

Eqs. (32) and (33) represent fundamental operations of erosion ( 𝀵𝀵 ), and inverse operation
to dilation:

{ }Q = Í( ) |( )sA B s B A (32)
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{ }Q = Í( ) | pA B p B A (33)

The set of edges reduction, elimination of white dots, and the expansion of the small black dots
of an image B are called erosion:
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Figure 16. Directional morphology, (a) tool size erosion and (b) tool path erosion [8].

Modifying Eqs. (29) and (35) of directional morphology to generate the structural element of
insert and tool path using the workspace boundaries, edge, and the perimeter function of the
piece generating Eq. (39) and as results provided by Figures 16 and 8:
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where (𝀵𝀵𝀵𝀵1) is the first piece of structural element and (𝀵𝀵𝀵𝀵1) is given by
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Step 5. Automatic tool selections

Table 5 shows the most common cutting tool. The dimensions of the cutting tool are obtained
from manuals and introduced into the software to be converted into structural elements with
the length, orientation, and radius of the nose, this part is shown in Figure 16(a). Among the
common dimensions are those of 15°, 35°, and 45°, with 9525 mm needing 36 pixels, 2540
requiring a mesh of 25.5 square units of pixels, and the structural element having 414 pixels,
see Figure 17(a) [8].

Tool for milling Type Size (mm)

Name Shape D d L l FI Sd ɸ(°)

Ballnose Milling 0.016 0.016 40.149 15.181 20.417 0.016 0.009

0.200 0.199 20.149 15.181 17.417 0.210 0.099

Endmill Drilling 0.150 0.015 20.149 14.181 16.417 0.015 0.749

Conic 0.099 0.099 25.149 14.181 20.417 0.100 0.049

Milling 0.049 0.049 15.149 7.181 12.417 0.050 0.025

Corner 0.009 0.005 10.149 5.181 7.4173 0.010 0.005

Dovetail 0.309 0.309 30.000 19.999 22.999 0.400 0.200

Chamber 0.349 0.349 40.149 15.181 20.417 0.350 0.210

Counter Facing 0.399 0.399 45.149 10.181 15.417 0.380 0.230

Holder 0.599 0.599 25.149 10.181 15.417 0.390 0.250

Table 5. Common cutting tool (structural element) used.
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The cutting tools are shown in Table 5, where  is the diameter,  is the tip diameter,  is the
major length,  is the minor length, 𝀵𝀵𝀵𝀵 is the usable length, 𝀵𝀵 is presetting, and  is the corner
radius of the cutting tool. The tool is generated from handbooks; although, a real insert as the
drilling cutting tool with a diameter of 5.56 mm (, 21 pixels) requires a structural element as

a tool of (20)2 pixels. For more details see Figure 17(a).

Figure 17. Tool selection, (a) structural element and (b) incorrect tool and correct tool [8].

The conditions for machining to determine the cutting tool are given by Eq. (42) that generates
the movements of the structural element through the image, and the angle labels the start of
the selection of the cutting tool in machining .

(42)

The structural element (Figure 17a) is designed to create a trajectory using Eq. (42). To check
the intersection (Figure 17b), it is necessary that the pixels have the same coordinates. The
design of the software to create the automatic tool selection is developed in Microsoft Visual
C ++ 2010, generating a matrix with coordinates (i, j) of the image.

After the correct holders and inserts have been selected to work in each area, many changes
in cutting tools are probably required. The number of changes can be reduced by ordering the
changes with the next procedure:

(43)

Recent Advances in Image and Video Coding166



The cutting tools are shown in Table 5, where  is the diameter,  is the tip diameter,  is the
major length,  is the minor length, 𝀵𝀵𝀵𝀵 is the usable length, 𝀵𝀵 is presetting, and  is the corner
radius of the cutting tool. The tool is generated from handbooks; although, a real insert as the
drilling cutting tool with a diameter of 5.56 mm (, 21 pixels) requires a structural element as

a tool of (20)2 pixels. For more details see Figure 17(a).

Figure 17. Tool selection, (a) structural element and (b) incorrect tool and correct tool [8].

The conditions for machining to determine the cutting tool are given by Eq. (42) that generates
the movements of the structural element through the image, and the angle labels the start of
the selection of the cutting tool in machining .

(42)

The structural element (Figure 17a) is designed to create a trajectory using Eq. (42). To check
the intersection (Figure 17b), it is necessary that the pixels have the same coordinates. The
design of the software to create the automatic tool selection is developed in Microsoft Visual
C ++ 2010, generating a matrix with coordinates (i, j) of the image.

After the correct holders and inserts have been selected to work in each area, many changes
in cutting tools are probably required. The number of changes can be reduced by ordering the
changes with the next procedure:

(43)

Recent Advances in Image and Video Coding166

To determine the tool path, each pixel should share information with eight neighbors and
follow the path of the perimeter (edge ) in the mesh [ + ][ + 1].
Step 6. Generation of trajectory

In the present article, zig and zig with contour were developments to generate the trajectories.
A structural element with the shape of the cutting tool, with diameter D and longitude, is
displaced through all images from right to left. If there is no intersection between the structural
element and the edge of the piece, other tool is selected [8].

Figure 18. Tool selection (final piece), (a) boundaries identification and (b) rough milling (zig) [8].

Finally, to move the tool in the image, it is necessary to use a counter ( = 0,  =  + 1) with the
total number of pixels . This method is obtained by Eq. (44) and is displayed in Figure 18(a)
and (b) [8]:

{ }{ }
- -

= =

Ü = = = +åå Maq f f Tray
1 1

1
( , ) ( , ) ; ( , ) ( , ) 1 then 1

m n

j m i
i j i j if i j i j j j (44)

9. Results in mill

A new method is presented for tool selection using directional morphology. To validate the
method, three examples were proposed.

Figure 19(a) and (b) depict machining with tools CB and C with labels “4” and “3,” respectively.
Figure 20 shows four selected tools, using pocket in zigzag with contour, applying dilation
because the machining is external. After this, in Figure 19(c), the machined area (labeled with
“2”) can be seen. In the same way, the piece finally machined with a B tool is shown in
Figure 19(d). Figure 19(e) depicts the final workpiece obtained. In Table 6, parameters of
cutting tool selected by the proposed method can be seen.
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Figure 19. Tool selection for first piece based in residues of pixels [8].

Figure 20. Tool selection for second piece using zigzag with contour [8].
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Figure 19. Tool selection for first piece based in residues of pixels [8].

Figure 20. Tool selection for second piece using zigzag with contour [8].
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Rough milling Finish milling

Area Type D (mm) D (mm)

1 B – 0.0157

2 C 0.1500 –

3 C 0.3499 –

4 CB 0.3999 –

Table 6. Selected tools for the first piece.

The second piece is shown in Figure 20. In this case, the piece is machined using zigzag with
contour and boundaries. An erosion operation, to automatically select the tool, applied to the
surface to remove pixels is internal by the geometry desired. The three contours and approx‐
imations of machining with different tools marked with labels “3,” “2,” and “1” are depicted
in Figure 20(a), (b), and (c), respectively. Finally, Figure 20(d) depicts the machined piece.
Table 7 shows the parameters of the three different tools selected by the method (see Table 8).

Figure 21 shows the rough mill with the last piece using zig with contour. Figure 21(a)–(c) with
their respective tool selections. Figure 21(d) shows the finish milling and Figure 21(e) the final
piece.

Rough milling Finish milling

Area Type D (mm) D (mm)

1 B – 0.0157

2 C 0.2000 –

3 C 0.3999 –

Table 7. Selected tools for second piece.

Rough milling Finish milling

Area Type D (mm) D (mm)

1 B – 0.0157

2 C 0.0499 –

3 C 0.1500 –

4 D 0.5999 –

Table 8. Selected tools for third example.
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Figure 21. Tool selection for third piece (rough mill using zig with contour) [8].

Figure 22. Final software for automatic tool selection [8].

Recent Advances in Image and Video Coding170



Figure 21. Tool selection for third piece (rough mill using zig with contour) [8].

Figure 22. Final software for automatic tool selection [8].
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Figure 22 shows the software developed in Microsoft Visual C ++ 2010 for the automatic tool
selection.

10. Conclusions of mill

Image processing for manufacturing three‐dimensional models that require movements in
three axes based on the directional morphology to detect collisions when the workpiece and
the tool are moving is a new method in the literature. The automatic selection of cutting tool
and the generation of tool paths to manufacture pieces in three‐axis machining have been
presented. The advantages of this method arefast and easy‐to‐implement programming, the
proposed method can correctly select cutting tool; traditional methods of morphology as
dilation and erosion in conjunction with edge piece to create tool dimensions and automatic
tool selection are used. In order to diminish the possible error in boundary obtaining, a DXF
file was used to compare and correct it when an image is utilized with a resolution of 1 μm.
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Abstract

In this chapter, first we give a brief view of transform-based video coding. Second, the
basic matrix decomposition scheme for fast algorithm and hardware-sharing-based
integer transform design are described. Finally, two case studies for fast algorithm and
hardware-sharing-based  architecture  designs  of  discrete  integer  transforms  are
presented, where one is for the single-standard multiple-mode video transform-coding
application, and the other is for the multiple-standard multiple-mode video transform-
coding application.

Keywords: video coding, transform coding, fast algorithm, matrix factorization, hard-
ware sharing, multiple modes, multiple standards

1. Introduction

Video-coding system has generally utilized block-based transform-coding skills to shrink the
data rates by joining quantization and entropy coding. Among some block-based transforms,
the discrete cosine transform (DCT) [1] and integer transforms have extensively been used to
still image and video-coding specifications, such as JPEG [2], MPEG-1/2 [3, 4], MPEG-4 [5], H.
264/AVC [6, 7], AVS [8, 9], VC-1 [10], VP8 [11], and HEVC [12]. Because integer transforms
perform the low complexity and effective coding performance, the advanced video coding
(AVC) in ITU-T H.264 [6, 7, 13, 14], which is also known as MPEG-4 part 10, applies integer

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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transforms for transform process. The 4 × 4 and 8 × 8 transforms in [13, 14] were calculated
exactly to prevent non-adaptation issues of inverse transforms for high-quality moving visual
images. The VC-1 specification [10, 15, 16] employed 4 × 4 and 8 × 8 integer transforms, and it
was developed by Microsoft Corporation and standardized by the Society of Motion Picture
and Television Engineers (SMPTE). The 8 × 8 integer transform is utilized to obtain the high-
coding performance in the Audio Video Coding Standard (AVS) for China [8, 9]. In [11], the
VP8  video-coding  standard  was  developed  for  Internet  browser  applications.  The  Joint
Collaborative Team on Video Coding proposed the high-efficiency video coding (HEVC)
specification [12]. By HEVC, the compression efficiency was greatly better than that achieved
using the H.264/AVC high-profile-coding specification.

To support the single-standard H.264/AVC video coding, several transform architectures in
[17–24] have been developed to approach the multiple transform modes in H.264. To support
the single-standard H.265/HEVC video coding, several transform architectures in [25–32] have
been developed to approach the multiple transform modes in HEVC. Besides, supporting
multiple-standard functions in video coding has been an important issue in multimedia
applications recently, such as H.264/AVC, MPEG-1/2/4, VC-1, AVS, and VP8 standards, and
several transform architectures in [33–41] have also been developed to complete the multiple
transform functions. Owing to the growth of multistandard video-coding applications, how
to achieve low-computational complexities and implement by hardware-sharing-based cost-
effective architectures simultaneously are interesting research topics for the VLSI design of
video codecs.

2. Matrix decomposition preprocessing for fast algorithm and hardware-
sharing-based designs

Based on the resemblance property, the 8 × 8 inverse integer transforms [41] in H.264/AVC,
AVS, VC-1, VP8, MPEG-1/2/4, and HEVC specifications are revealed in Eq. (1), and Table 1
depicts the coefficient values in the transforms.

8 8

a b f c a d g e
a c g e a b f d
a d g b a e f c
a e f d a c g b

C
a e f d a c g b
a d g b a e f c
a c g e a b f d
a b f c a d g e

´

é ù
ê ú- - - - -ê ú
ê ú- - -
ê ú

- - - -ê ú= ê ú- - - -
ê ú

- - - - -ê ú
ê ú- - -ê ú
ê ú- - - -ë û

(1)

Recent Advances in Image and Video Coding178



transforms for transform process. The 4 × 4 and 8 × 8 transforms in [13, 14] were calculated
exactly to prevent non-adaptation issues of inverse transforms for high-quality moving visual
images. The VC-1 specification [10, 15, 16] employed 4 × 4 and 8 × 8 integer transforms, and it
was developed by Microsoft Corporation and standardized by the Society of Motion Picture
and Television Engineers (SMPTE). The 8 × 8 integer transform is utilized to obtain the high-
coding performance in the Audio Video Coding Standard (AVS) for China [8, 9]. In [11], the
VP8  video-coding  standard  was  developed  for  Internet  browser  applications.  The  Joint
Collaborative Team on Video Coding proposed the high-efficiency video coding (HEVC)
specification [12]. By HEVC, the compression efficiency was greatly better than that achieved
using the H.264/AVC high-profile-coding specification.

To support the single-standard H.264/AVC video coding, several transform architectures in
[17–24] have been developed to approach the multiple transform modes in H.264. To support
the single-standard H.265/HEVC video coding, several transform architectures in [25–32] have
been developed to approach the multiple transform modes in HEVC. Besides, supporting
multiple-standard functions in video coding has been an important issue in multimedia
applications recently, such as H.264/AVC, MPEG-1/2/4, VC-1, AVS, and VP8 standards, and
several transform architectures in [33–41] have also been developed to complete the multiple
transform functions. Owing to the growth of multistandard video-coding applications, how
to achieve low-computational complexities and implement by hardware-sharing-based cost-
effective architectures simultaneously are interesting research topics for the VLSI design of
video codecs.

2. Matrix decomposition preprocessing for fast algorithm and hardware-
sharing-based designs

Based on the resemblance property, the 8 × 8 inverse integer transforms [41] in H.264/AVC,
AVS, VC-1, VP8, MPEG-1/2/4, and HEVC specifications are revealed in Eq. (1), and Table 1
depicts the coefficient values in the transforms.

8 8

a b f c a d g e
a c g e a b f d
a d g b a e f c
a e f d a c g b

C
a e f d a c g b
a d g b a e f c
a c g e a b f d
a b f c a d g e

´

é ù
ê ú- - - - -ê ú
ê ú- - -
ê ú

- - - -ê ú= ê ú- - - -
ê ú

- - - - -ê ú
ê ú- - -ê ú
ê ú- - - -ë û

(1)

Recent Advances in Image and Video Coding178

Transform sizes VC-1 AVS VP8 MPEG-1/2/4 H.264/AVC HEVC

4 × 4 √ √ √ N/A √ √

8 × 8 √ √ N/A √ √ √

16 × 16 N/A N/A N/A N/A N/A √

32 × 32 N/A N/A N/A N/A N/A √

Table 1. The transform modes in several video-coding standards [41].

In Eq. (1), it is decomposed by Eq. (2) as

8 8 1 0 .rC P A P´ = × × (2)

In Eq. (2), A0 is divided into two modules, U4 × 4 and D4 × 4, where 1 =
1 0 0 0 0 0 0 −10 1 0 0 0 0 −1 00 0 1 0 0 −1 0 00 0 0 1 −1 0 0 00 0 0 1 1 0 0 00 0 1 0 0 1 0 00 1 0 0 0 0 1 01 0 0 0 0 0 0 1

,

 =
1 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

, 0 =
𝀵𝀵 𝀵𝀵 𝀵𝀵 𝀵𝀵 0 0 0 0𝀵𝀵 𝀵𝀵 −𝀵𝀵 −𝀵𝀵 0 0 0 0𝀵𝀵 𝀵𝀵𝀵 𝀵𝀵𝀵 𝀵𝀵 0 0 0 0𝀵𝀵 𝀵𝀵𝀵 𝀵𝀵 𝀵𝀵𝀵 0 0 0 00 0 0 0 −𝀵𝀵 𝀵𝀵 −𝀵𝀵 𝀵𝀵0 0 0 0 −𝀵𝀵 𝀵𝀵 −𝀵𝀵 −𝀵𝀵0 0 0 0 −𝀵𝀵 𝀵𝀵 𝀵𝀵 𝀵𝀵0 0 0 0 −𝀵𝀵 𝀵𝀵𝀵 𝀵𝀵𝀵 𝀵𝀵𝀵

.

Thus

0 4 4 4 4A U D´ ´= Å (3)

and C8×8 becomes

8 8 1 4 4 4 4( ) .rC P U D P´ ´ ´= × Å × (4)

In (3), “⊕ “ is the direct sum operator, and the two diagonal blocks U4 × 4 and D4 × 4 are processing
in parallel. To cut down the computational operations and achieve effective hardware shares,
the upper diagonal matrix U4 × 4 and the down diagonal matrix D4 × 4 are further decomposed
into the cascaded multiplication form or the addition form of sparse matrices. After matrix
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factorizations, the chosen sparse matrices have the coefficients which are 1, −1, 0, or an integer,
and an integer value can equal the combination of powers of two. Besides, zero factors in the
chosen sparse matrices could be factorized as many as possible [42].

By Eq. (1), for VC-1 the values of the coefficient set {a, b, c, d, e, f, g} are {12, 16, 15, 9, 4, 16, 6},
and those for AVS are {8, 10, 9, 6, 2, 10, 4}. Next, those for MPEG-1/2/4 are {362, 502, 426, 284,
100, 473, 196}, and those for H.264/AVC are {8, 12, 10, 6, 3, 8, 4}. Finally, those for HEVC are
{64, 89, 75, 50, 18, 83, 36}.

The general 4 × 4 inverse integer transform matrices [41] can be presented in Eq. (5) as

4 4 .

h i h j
h j h i

M
h j h i
h i h j

´

é ù
ê ú- -ê ú=
ê ú- -
ê ú

- -ë û

(5)

By Eq. (5), for VC-1 the values of the coefficient set {h, i, j} are {17, 22, 10}, and those for VP8
are {128, 167, 70}. Next, those for AVS-M are {2, 3, 1}, and those for H.264/AVC are {1, 1, 0.5}.
Finally, those for HEVC are {64, 83, 36}.

3. Case study [32]: single-standard multiple-mode transform design

3.1. Hardware-sharing based 32 × 32 integer core transform for HEVC

The one-dimensional (1D) 32 × 32 inverse core transform for HEVC is described in [30]. By the
symmetrical property, the 32 × 32 inverse core transform is presented as

32 1,i A AH P C= × (6)

where 1 = 11 1221 22 ,  = 16x16 −16x1616x16 16x16 , 16x16 =
0 0 ⋯ 0 10 0 0 1 0⋮ ⋮ ⋰ 0 ⋮0 1 0 ⋮ 01 0 ⋯ 0 0

, and I16×16 is a 16 × 16

identity matrix. In Eq. (6), PA is the butterfly-like postprocessing, and CA1 is the sparse matrix.
By swapping each column of CA1, it becomes

1 2 .A A ArC C P= × (7)

By Eqs. (6) and (7), Hi32 becomes
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32 2 ,i A A ArH P C P= × × (8)

where PAr is the permutation matrix. In Eq. (7), CA2 is expressed by

11 16 16
2 11 22

16 16 22

0
,

0
A x

A A A
x A

T
C T T

T
é ù

= = Åê ú
ë û

(9)

where “⊕” means the direct sum operation, and then TA11 and TA22 are 16 × 16 matrices, which
are revealed in [32]. The matrix PAr in Eq. (8) is expressed as

 (2,16),ArP P= (10)

where the permutation matrix P(m, n) is defined in [43], and the notation “⊗” means the
Kronecker product. In Eq. (9), AA22 is presented as

22 1 1  ,A M NT T T= + (11)

First, the lower half of CN1 is divided into sixteen 8 × 1 column vectors Xi, where i = 0, 1, 2, …,
15, and then TN1 becomes

8  16

1

0 1 15

0
.

x

NT
X X X

é ù
ê ú= - - - - - - - - -ê ú
ê ú¼ë û

(12)

Second, the coefficients in a single column vector can be shared. The vector coefficient
computations are achieved by integrating several base coefficients [32]. After realizing the
column vectors of TN1, the lower half of TN1 is factorized as an integration of eight 1 × 16 row
vectors depicted as Yi, where i = 8, 9, …, and 15, and TN1 becomes

8 16

8
1

9

15

0

 .

x

N

Y
T

Y

Y

é ù
ê ú- - -ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

M

(13)
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Adder tree structures are utilized to calculate the aggregate results for the row vectors Y8–Y15

[32]. By the duplicate operations for TN1, TM1 is presented as

0 15

1

8 16

ˆ ˆ

,
0

M

x

X X
T

é ù
ê ú

= - - - - -ê ú
ê ú
ë û

L
(14)

where  is an 8 × 1 column vector, where i = 0, 1, 2, …, and 15. Then, TM1 becomes

0

1 7

8 16

,

0

M

x

Y

T Y

é ù
ê ú
ê ú
ê ú=
ê ú
- - -ê ú
ê úë û

M
(15)

where Yi is a 16 × 1 row vector, where i = 0, 1, …, and 7. The realization of TM1 equals that of
TN1. Finally, the operations of TM1 and TN1 are merged to TA22. The computational operations
TA22 require 630 additions and 326 shift operations [32]. The matrix TA11 in Eq. (9), which is also
denoted as Hi16, is the 1D 16 × 16 inverse core transform in HEVC [30].

3.2. Hardware-sharing-based 16 × 16 integer core transform for HEVC

The 16 × 16 integer core transform in [30] changes into

16 1,i B BH P C= × (16)

where  =   8x8 −8x88x8 8x8 , and CB1 is revealed in [32]. By swapping each column of CB1, it will

be

1 2 ,B B BrC C P= × (17)

where PBr = P(8,2). By Eqs. (16) and (17), Hi16 is expressed by

16 11 2 .i A B B BrH T P C P= = × × (18)
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In Eq. (18), CB2 is presented as

11 8 8
2 11 22

8 8 22

0
,

0
B x

B B B
x B

T
C T T

T
é ù

= = Åê ú
ë û

(19)

and TB22 becomes

22 2 2    ,B M NT T T= + (20)

where   2 =
−9  25 −43  57 −70  80 −87  90−25  70 −90  80 −43  −9  57 −87−43  90 −57 −25  87 −70  −9  80−57  80  25 −90  9  87 −43 −70 0  0  0  0  0  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0  0  0  0  0

,

     2 =
 0  0  0  0  0  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0  0  0  0  0 0  0  0  0  0  0  0  0−70  43  87  −9 −90 −25  80  57−80  −9  70  87  25 −57 −90 −43−87 −57  −9  43  80  90  70  25−90 −87 −80 −70 −57 −43 −25  −9

.

By the duplicate processed of TN1 in Section 3.1, TN2 turns into

4 8

2

0 7

0
,

x

NT
U U

é ù
ê ú= - - - - - -ê ú
ê ú¼ë û

(21)

where Ui is an 8 × 1 column vector, where i = 0, 1, 2, …, and 7. Next, TN2 also is

4 8

2 4

7

0

,

x

NT V

V

é ù
ê ú- - -ê ú
ê ú=
ê ú
ê ú
ê úë û

M
(22)
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where Vi is a 1 × 8 row vector, where i = 4, 5, 6, and 7. Adder tree schemes are applied to compute
the summed outcomes of V4–V7 [32]. By the same processes of TM1 in Section 3.1, TM2 becomes

0 7

2

4 8

ˆ ˆ

,
0

M

x

U U
T

é ù¼
ê ú

= - - - - - -ê ú
ê ú
ë û

(23)

where  is a 4 × 1 column vector, where i = 0, 1, 2, …, and 7. Next, TM2 also is

0

2 3

4 8

,

0

M

x

V

T V

é ù
ê ú
ê ú
ê ú=
ê ú
- - -ê ú
ê úë û

M
(24)

where Vi is a 1 × 8 row vector, where i = 0, 1, 2, and 3. Then, adder trees are used to treat the
row vectors V0–V3 [32]. Finally, the calculations of TM2 and TN2 are merged to TB22. The
computational operations of TB22 are 164 additions and 106 shift operations [32]. Meantime,
the TB11 in Eq. (19), which is also denoted as Hi8, is the 1D 8 × 8 inverse core transform in HEVC
[30].

3.3. Hardware-sharing-based 8 × 8 integer core transform for HEVC

The 8 × 8 integer transform in [30] is described as

8 1,i C CH P C= × (25)

where  =   4x4 −4x44x4 4x4 , and 1 =
64 0  83 0  64 0  36 064 0  36 0 −64 0 −83 064 0 −36 0 −64 0  83 064 0 −83 0  64 0 −36 00 −18 0  50 0 −75 0  890 −50 0  89 0 −18 0 −750 −75 0  18 0  89 0  500 −89 0 −75 0 −50 0 −18

. After swapping

each column in CC1, it changes into

8 2 ,C C CrC C P= × (26)
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where 𝀵𝀵𝀵𝀵 =
1 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

. Based on Eqs. (25) and (26), Hi8 is presented by

8 11 2 ,i B C C CrH T P C P= = × × (27)

In Eq. (27), CC2 becomes

11 4 4
2 11 22

4 4 22

0
,

0
C x

C C C
x C

T
C T T

T
é ù

= = Åê ú
ë û

(28)

where 𝀵𝀵11 = 64  83  64  3664  36 −64 −8364 −36 −64  8364 −83  64 −36  and 𝀵𝀵22 = −18  50 −75  89−50  89 −18 −75−75  18  89  50−89 −75 −50 −18 .

In Eq. (28), TC22 is factorized as

22 1 2   ,CT S S= + (29)

where 1 = −18 0 0  890 89 −18 00 18  89 0−89 0 0 −18 . Moreover, S1 is expressed by

1 1 2(18 ),S Z Z= + × (30)

where 1 = 0 0 0 −10 −1 0 00 0 −1 01 0 0 0  and 2 = −1 0  0  5 0 5 −1  0 0 1  5  0−5 0  0 −1 . In Eq. (29), S2 is presented as

2 325 ,S Z= × (31)
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where 3 = 0  2 −3  0−2 0 0 −3−3 0 0  20 −3 −2  0 . By Eqs. (29)– (31), TC22 becomes

22 1 2 3(18 ) (25 ).CT Z Z Z= + × + × (32)

In Eq. (32), the computations of TC22 require 36 additions and 28 shift operations [32]. The matrix
TC11 in Eq. (28) is also the 1D 4 × 4 inverse core transform matrix in HEVC.

3.4. Hardware-sharing-based 4 × 4 integer core transform for HEVC

The 4 × 4 integer core transform matrix is indicated as

4 1,i D DH P C= × (33)

where  = 1 0  1  00 1  0  10 1  0 −11 0 −1  0  and 1 = 64 0  64 064 0 −64 00 −36 0  830 −83 0 −36 . By swapping each column of CD1, it

changes into

1 2 2.D D DC C P= × (34)

where Dr = 1 0 0 00 0 1 00 1 0 00 0 0 1 . From Eqs. (33) and (34), Hi4 is described by

4 11 2. .i C D D DrH T P C P= = × (35)

In Eq. (34), CD2 is rewritten as

2 11 22.D D DC T T= Å (36)

In Eq. (36), TD11 becomes

11 464 ,DT Z= × (37)
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where 4 = 1  11 −1 . In Eq. (36), TD22 is indicated by Z5 and Z6 as

22 5 636 11 ,DT Z Z= × + × (38)

where 5 = 2  11 −2  and 6 = 1  00 −1 . Thus, the computations of TD22 are 10 additions and 10

shift operations [32]. Based on Eqs. (35)– (38), Hi4 is changed into

4 4 5 6[(64 ) (36 11 )] .i D DrH P Z Z Z P= × × Å × + × × (39)

By the abovementioned discussions, the hardware modules of 4 × 4, 8 × 8, and 16 × 16 inverse
core transforms are shared to implement Hi8, Hi16, and Hi32, respectively [32]. By sharing the
hardware of Hi4 in Eq. (39), the cost-effective design of the 8 × 8, 16 × 16, and 32 × 32 inverse
core transforms is obtained progressively. First, the hardware-sharing-based eight-point
inverse transform is presented as

8 4 1 2 3{ [ (18 ) (25 )]} .i C i CrH P H Z Z Z P= × Å + × + × × (40)

Next, the hardware-sharing-based 16-point inverse transform is described as

16 8 2 2{ [ ]} .i B i M N BrH P H T T P= × Å + × (41)

Finally, the hardware-sharing-based 32-point inverse transform is depicted as

32 16 1 1{ [ ]} .i A i M N ArH P H T T P= × Å + × (42)

In this section, the hardware-sharing transform architecture cuts down the hardware cost
because the same submodules and coefficients of the transforms are extracted to be shared.
Figure 1 illustrates the architecture of the hardware-sharing-based inverse core transform
design for 4 × 4/8 × 8/16 × 16/32 × 32 transforms [32].

3.5. Architecture comparison

The proposed 1D inverse core transform in [32] involves four inputs to sustain 4 × 4, 8 × 8, 16
× 16, and 32 × 32 transform modes. Several multiplexers are utilized to acquire the transform
outputs of the 32 × 32 inverse core transform by the shared design of 4 × 4, 8 × 8, and 16 × 16
inverse core transforms [32]. Table 2 lists the number of adders and shifters needed to calculate
four modes of the 1D inverse core transform for HEVC. The developed architecture in [32]
does not require any multiplier, and the fixed-coefficient multiplications are replaced with
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simple additions and shift operations. Table 3 shows the comparison of three 16-point inverse
transform designs. Compared with the previous works in [29] and [31], the applied architecture
contains fewer adders. However, several more shifters are required. Compared with the cost
of adders, the shifters need lower hardware expense. Thus, the used architecture decreases the
hardware cost more efficiently than previous transform schemes do.

Figure 1. The hardware-sharing-based inverse core transform structure for HEVC.

Transform sizes 32 × 32 16 × 16 8 × 8 4 × 4

No. of shifters 256 93 40 11

No. of adders 461 146 64 10

Table 2. The 1D inverse transform architecture at different transform modes [32].

Designs No. of shifters No. of adders

Ahmed [29] 132 232

Haggag [31] 58 242

Design in Section 3.2 93 146

Table 3. Hardware comparison of three 1D 16-point transform designs [32].

4. Case study [41]: multiple-standard multiple-mode transform design

4.1. Hardware-sharing design for 8 × 8 transforms mode

For H.264/AVC, the transform matrix is employed as a foundation matrix for the multistandard
hardware-sharing scheme. Based on Eq. (3), the cost of the upper diagonal matrix in Eq. (43)
is eight adders and two shifters.
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8 8 8 4

AVCU C C´

é ù
ê ú- -ê ú= = × ×
ê ú- -
ê ú

- -ë û

(43)

where 1 = 1 0 0 10 −1 1 00 1 1 01 0 0 −1 , and 2 = 1 0 1 00 −0.5 0 11 0 −1 00 1 0 0.5 . For AVS, the upper diagonal matrix

U4×4_AVS in Eq. (44) costs 10 adders and four shifters.

4 4 _ 1 2 3

8 10 8 4
8 4 8 10

8 ( ),
8 4 8 10
8 10 8 4

AVSU C C C´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(44)

where 3 = 0 0 0 00 0 0 0.250 0 0 00 0.25 0 0 . In Eq. (45), the upper diagonal matrix U4×4_VC1 for VC1 needs 14

adders and eight shifters.

4 4 _ 1 1 4 5 2

12 16 12 6
12 6 12 16

8 ( ),
12 6 12 16
12 16 12 6

VCU C C C C´

- -
= = × × + ×

- -
- -

(45)

where and  4 = 0 0 0 00 0 0 0.50 0 0 00 0.5 0 0 ,   and 5 = 1.5 0 0 00 1.5 0 00 0 1.5 00 0 0 1.5 . For HEVC, the 8 × 8 transform matrix

is acquired by the AVS design in Eq. (44), and the design in Eq. (46) costs 16 adders and 12
shifters.

4 4 1 2 3 1

64 83 64 36
64 36 64 83

2 [32 ( ) ],
64 36 64 83
64 83 64 36

HEVC
U C C C U´

é ù
ê ú- -ê ú= = × × × + -
ê ú- -
ê ú

- -ë û

(46)
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where 1 = 0 0 0 00 2 0 −1.50 0 0 00 −1.5 0 −2 . For MPEG-1/2/4, the upper diagonal matrix is factorized by

4 4 _ 1 4 5 2 2 3

362 473 362 196
362 196 362 473

[256 ( ) ( )],
362 196 362 473
362 473 362 196

MPEGU C C C C U U´

é ù
ê ú- -ê ú= = × × + × - +
ê ú- -
ê ú

- -ë û

(47)

where 2 = 22 0 22 00 0 0 022 0 −22 00 0 0 0 ,and 3 = 0 0 0 00 4 0 390 0 0 00 39 0 −4 . In Eq. (47), the parameter “22” of U2 is

implemented by (C5 · C5 ≪ 4) – (C1 ≪ 1), where “≪1” is left shifting one bit, and the cost in
Eq. (47) requires 28 adders and 26 shifters.

By Eq. (3), on the other side, the down diagonal matrix D4×4_AVC for H.264/AVC becomes Eq.
(48), and it needs 17 adders and eight shifters.

4 4 _ 4 4 5 2 3

3 6 10 12
6 12 3 10

8 ( ) ( ),
10 3 12 6
12 10 6 3

AVCD U D D D U´

- -é ù
ê ú- - -ê ú= = × × + × +
ê ú-
ê ú
- - - -ë û

(48)

where  4 = 1 0 0 00 1 0 00 0 1 00 0 0 −1 , 4 = −1 −1 1 01 0 1 −1−1 1 0 −10 1 1 1 , 5 = −0.5 0 0 00 0 0.5 00 0.5 0 00 0 0 0.5 ,

2 = 0.25 0 0 00 0.25 0 00 0 −0.25 00 0 0 0.25 , 3 = 0 0 0 −10 0 1 00 1 0 01 0 0 0 .

For AVS, the D4×4_AVS matrix becomes (49), and D4 and D5 are shared with the design in Eq. (48),
and then U3 and U4 are also partially shared with the scheme in Eq. (48). In Eq. (49), it costs 24
adders and 12 shifters
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4 4 _ 4 4 5 3 1 3

2 6 9 10
6 10 2 9

4 ( ) ( ),
9 2 10 6

10 9 6 2

AVSD U D D D D U´

- -é ù
ê ú- - -ê ú= = × × + × × +
ê ú-
ê ú
- - - -ë û

(49)

where 3 = 0 −1 0 00 0 0 −11 0 0 00 0 1 0 , 3 = 1 0 0 00 −1 0 00 0 −1 00 0 0 1 , and  1 = 1.5 0 0 00 1.5 0 00 0 −1.5 00 0 0 1.5 .

For VC-1, the D4×4_VC1 matrix is factorized by Eq. (50), and the design requires 21 adders and

12 shifters

4 4 _ 1 4 4 6 5 2 3

4 9 15 16
9 16 4 15

8 ( ) ( ),
15 4 16 9
16 15 9 4

VCD U D D D D U´

- -é ù
ê ú- - -ê ú= = × × × + × +
ê ú-
ê ú
- - - -ë û

(50)

where 6 = 1.5 0 0 00 1.5 0 00 0 1.5 00 0 0 1.5 . For HEVC, the D4×4_HEVC matrix is expressed by Eq. (51), and it

expends 44 adders and 20 shifters

4 4 _ 4 4 _ 5 1 6 7

18 50 75 89
50 89 18 75

9 [4 ( ) ],
75 18 89 50
89 75 50 18

HEVC AVSD D U D U U´ ´

- -é ù
ê ú- - -ê ú= = × + × × + -
ê ú-
ê ú
- - - -ë û

(51)

where   5 = 0 0 −1 00 0 0 11 0 0 00 1 0 0 , 6 = 0 −1 0 01 0 0 00 0 0 −10 0 1 0 , 7 = 0 0 0 10 1 0 00 0 1 0−1 0 0 0 . For MPEG-1/2/4, based on

D4×4_AVS, the D4×4_MPEG matrix is presented by Eq. (52), and the design costs 48 adders and 32

shifters
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4 4 _ 4 4 _ 5 1 6 7

100 284 426 502
284 502 100 426

50 [16 ( ) 2 ].
426 100 502 284
502 426 284 100

MPEG AVSD D U D U U´ ´

- -é ù
ê ú- - -ê ú= = × + × × + + ×
ê ú-
ê ú
- - - -ë û

(52)

4.2. Hardware-sharing design for 4 × 4 transforms mode

For AVS-M, the matrix M4×4_AVS is presented by (53), and it spends 10 adders and six shifters

4 4 _ 1 2 8

2 3 2 1
2 1 2 3

(2 ),
2 1 2 3
2 3 2 1

AVSM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(53)

where 8 = 0 0 0 00 0 0 10 0 0 00 1 0 0 . For VC-1, M4×4_VC1 is expressed by Eq. (54), and the design requires 14

adders and 12 shifters

4 4 _ 1 1 2 9

17 22 17 10
17 10 17 22

(16 ),
17 10 17 22
17 22 17 10

VCM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(54)

where  9 = 1 0 1 00 −2 0 61 0 −1 00 6 0 2 . For VP8, all coefficients in 4 × 4 transform matrix are multiplied by

128 to get integer values, and it costs 18 adders and 14 shifters

4 4 _ 8 1 2 10

128 167 128 70
128 70 128 167

(128 ),
128 70 128 167
128 167 128 70

VPM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(55)
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- -ë û
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4 4 _ 8 1 2 10

128 167 128 70
128 70 128 167

(128 ),
128 70 128 167
128 167 128 70

VPM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(55)
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where 10 = 0 0 0 00 −6 0 390 0 0 00 39 0 6 . The matrix U4×4_AVC/8 equals the 4 × 4 inverse transform matrix in H.

264/AVC. In addition, the matrix U4×4_HEVC equals the 4 × 4 inverse transform matrix in HEVC.
Thus, several multiplexers are used to share the hardware between the submatrices to decrease
hardware cost.

4.3. Architecture comparison

The applied hardware-sharing-based 1D multistandard inverse integer transform scheme has
two inputs, which sustain 4 × 4 and 8 × 8 transform modes. The hardware blocks of processing
the 4 × 4 inverse transforms are shared with that of the upper diagonal matrix U8×8. Thus, several
multiplexers are utilized for U8×8 to compute the 4 × 4 inverse transforms without additional
operations. For the multistandard applications, the hardware-sharing architecture of the fast
1D 4 × 4 and 8 × 8 inverse integer transforms is illustrated in [41]. The shifters are also realized
by wiring. Compared with the individual designs without hardware shares, Table 4 depicts
that the used scheme in [41] decreases the number of shifters and adders by 50 and 75%,
respectively.

Different 1D inverse integer transform modes No. of adders No. of shifters

Individual designs without hardware shares 336 180

Hardware-sharing-based design in Section 4 82 90

Reduction of cost 75% 50%

Table 4. Hardware comparison between two architectures [41].

To implement the discussed architecture, a cell-based VLSI design flow is utilized to design,
simulate, and verify the cost-effective hardware-sharing architecture. For fair comparisons
among different transform structures, the normalized mode gain, which is required to
normalize the gate counts, is described as follows: By matrix dimensions and without missing
generality [40], the normalized mode gains defined for the 32 × 32, 16 × 16, 8 × 8, and 4 × 4
inverse integer transform matrices are 16, 4, 1, and 1/4, respectively.

The hardware-sharing-based design in Section 3 supports 4 × 4, 8 × 8, 16 × 16, and 32 × 32 inverse
transform modes for HEVC. Thus, the normalized mode gain of the design is 21.25 (i.e., 16 + 4
+ 1 + 0.25). Similarly, five 8 × 8 and five 4 × 4 inverse transform functions are provided by the
hardware-shared design in Section 4. Therefore, the normalized mode gain is assigned by 6.25
(i.e., 5 + 1.25) [41]. Afterwards, the normalized gate counts are defined by [40, 41]

     .  
GatecountsNormalized gatecounts Normalized mode gain= (56)
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Table 5 shows the hardware cost comparisons among different 1D multiple transform
architectures, which includes single-standard multiple-mode [32] and multiple-standard
multiple-mode [41] transform designs.

Architecture Ahmed et
al. [29]

Hardware-
sharing
based-design
in Section 3

Shen et. al.
[26]

Martuza
et. al. [28]

Qi et al. [36] Wang
et al. [38]

Hardware-
sharing-based
design in Section
4

Gate counts 144.8K 115.7 K 134.8 K 39.4 K 18 K 23.06 K 27.4 K

Normalized
mode gain

21.25 21.25 25.75 5 3.5 4.5 6.25

Normalized
gate counts

6.81 K 5.44 K 5.23 K 7.88 K 5.14 K 5.12 K 4.38 K

Supporting
modes

Single-
standard
Multiple-
mode

Single-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-mode

Supporting
standards/
Transforms

HEVC:
4 × 4, 8 × 8,
16 × 16, 32
× 32 modes

HEVC:
4 × 4, 8 ×
8, 16 × 16, 32
× 32 modes

H.264/AVC,
VC-1:
4 × 4,8 × 8
modes
MPEG-1/2/4,
AVS: 8 × 8
mode;
HEVC: 4 × 4,
8 × 8, 16 × 16,
32 × 32 modes

H.264/
AVC,
VC-1,
AVS,
HEVC:
4 × 4, 8 × 8
modes

H.264/AVC,
VC-1:
4 × 4, 8 × 8
modes;
MPEG-1/2/4:
8 × 8 mode

H.264/
AVC;,
VC-1:
4 × 4,
8 × 8
modes;
MPEG-
1/2/4,
AVS:
8 × 8 mode

H.264/AVC,
VC-1, HEVC:
4 × 4, 8 × 8 modes;
MPEG-1/2/4,
AVS: 8 × 8 mode;
VP8, AVS-M: 4 ×
4 mode

Table 5. Hardware cost comparisons among different 1D multiple transform architectures [32, 41].

5. Conclusion

For the single-standard multiple-mode transform design, this chapter discussed the 4 × 4, 8 ×
8, 16 × 16, and 32 × 32 inverse core transforms in HEVC with a cost-effective and hardware-
efficient design. By the symmetrical characteristics of the elements, the core transform matrices
were factorized into several submatrices. Thus, the hardware of the (N/2) × (N/2) inverse core
transform was shared with that of the N × N inverse core transform for N = 32, 16, and 8.
Compared with the direct design without hardware shares, the applied transform scheme in
Section 3 decreased the hardware cost of adders and shifters by 32 and 36%, respectively.
Besides, for VLSI implementation, the design in Section 3 requires less normalized gate counts
than the design does in [29].

For the multiple-standard multiple-mode transform design, this chapter also discussed the
fast algorithm and hardware-sharing-based design of 4 × 4 and/or 8 × 8 inverse transforms
among H.264/AVC, VC-1, HEVC, MPEG-1/2/4, AVS, and VP8 for multistandard video
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For the multiple-standard multiple-mode transform design, this chapter also discussed the
fast algorithm and hardware-sharing-based design of 4 × 4 and/or 8 × 8 inverse transforms
among H.264/AVC, VC-1, HEVC, MPEG-1/2/4, AVS, and VP8 for multistandard video
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decoders. By only shifters and adders, the decomposition scheme of matrices was used to
develop the hardware-shared scheme. The used structure in Section 4 decreased the number
of shifters and adders by 50 and 75% more than the individual fast algorithm-based imple-
mentation did. Besides, for VLSI implementation, the design in Section 4 requires less nor-
malized gate counts than the designs do in [26, 28, 36, 38].
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Abstract

In  this  paper,  a  video  compression  standard  used  in  digital  television  systems  is
discussed. Basic concepts of video compression and principles of lossy and lossless
compression are given. Techniques of video compression (intraframe and interframe
compression),  the  type  of  frames  and  principles  of  the  bit  rate  compression  are
discussed.  Characteristics  of  standard-definition  television  (SDTV),  high-definition
television  (HDTV)  and  ultra-high-definition  television  (UHDTV)  are  given.  The
principles  of  the  MPEG-2,  MPEG-4  and  High  Efficiency  Video  Coding  (HEVC)
compression standards are analyzed. Overview of basic standards of video compression
and the impact of compression on the quality of TV images and the number of TV
channels in the multiplexes of terrestrial and satellite digital TV transmission are shown.
This work is divided into six sections.

Keywords: MPEG-2, MPEG-4, HEVC, SDTV, HDTV, UHDTV

1. Introduction

Video compression technology is technology which allows you to record video in such a way
that they take up less memory space and allows for the video to be a little different from the
original,  when playing. Reducing data (data compression) is  possible because the image
contains  redundant  (same)  information  [1].  Compression  is  the  process  of  reducing  the
number of bits that are used to encode individual picture elements.

In digital television, parameters for digital video signal with compression and without
compression are given by recommendation ITU-R BT.601 [2]. In broadcasting, transmission
with lower speed requires less bandwidth and transmitter with lower power. Recording
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signals, using compression, reduces the required capacity of storage media, and it is directly
proportional to the size of compression. For archival purposes that significantly reduces the
required space and cost of the archive.

Techniques for accomplishing a reduction in the video size are mostly confined to compress
individual frames of content and techniques of writing changes and differences between
frames. Videos are usually composed of three types of frames: I-frames (intra-frames), P-
frames (predicted-frames) and B-frames (bidirectional-frames). The difference between different
types of frames is only in the write mode and read mode (the interpretation). During the
playing (displaying), each frame is shown as a normal image regardless of recording technique
of the video format. Intraframe or spatial compression is technique in the video compression
for reducing the size of individual frames. Interframe or temporal compression is a video
compression technique that achieves a reduction in size of similar series of frames [3].

The development of digital telecommunications allows the use of high-definition television
(HDTV) besides standard-definition television (SDTV). HDTV is a technology that offers
significantly higher quality of picture and sound than the traditional display technology did
(analog PAL, NTSC, SECAM, SDTV and digital). Since the resolution is higher, the image is
sharper, less blurry and the content is closer to reality. HDTV offers smoother movement,
detailed and more vibrant colors, and there is a very high-quality multichannel sound that
makes viewing experience even better. Table 1 shows the basic characteristics of the primary
digital TV standards.

DTV  Resolution  Aspect ratio  Number of frames per second 

HDTV  1920 × 1080  16:9  25p, 30p, 50i 

1280 × 720  16:9  25p, 30p, 50i 

SDTV  720 × 576  16:9  25p, 30p, 50i 

720 × 576  4:3  25p, 30p, 50i 

Table 1. Primary DTV standards.

HDTV offers two quality signals: 720 and 1080 are the basic tags, which can be added to either
the letter “i” or the letter “p”, which means the ways of drawing the image (i = interlaced—
draws every other line; p = progressive—draws the line-by-line). The “heights” of image are 720
and 1080, and the width is 1280 or 1920 pixels. The number of images per second is specified
next to the tag, for example. 720p50 indicates a resolution of 1280 × 720, progressively rendering
images and 50 frames per second [4].

Without compression, digital video signal would contain an enormous amount of data. For
example, the standard digital video signal according to CCIR standards has 25 frames per
second, resolution of 720 × 576 pixels, and each pixel is represented by 24 bits (3 bits for each
color component). Transmission of uncompressed video signals requires channel capacity of
216 Mb/s. Video-definition HDTV signal requires six times bigger channel capacity of about
1.5 Gb/s. In multimedia systems, problems occur during the storage of digital video signal.
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That is why different algorithms are used to compress video signals. Compression ratio
depending on the algorithm used for compression (MPEG-2, MPEG-4, etc.) can be different.
The required bit rate for MPEG-2 standard used to transfer HD signal is about 20 Mb/s, and
for SDTV, resolution 720 × 576, line is about 4 Mb/s. If we are using the MPEG-4 standard then
for the same quality, twice lower is required signal strength. European broadcasters mainly
use MPEG-2 standard, although lately MPEG-4 standard is increasingly used [5, 6].

Table 2 shows the flows of compressed television signals that are used in practice in a
broadcast, obtained from the MPEG-2 and MPEG-4 standards.

Standards for video compression  TV video resolution  Bit rates compressed video signals (Mb/s) 

MPEG-2  SDTV  2–4 

HDTV  15–20 

MPEG-4  SDTV  1.5–2 

HDTV  6–8 

Table 2. The flows of compressed video/audio signals for certain standards.

Ultra-high-definition television (UHDTV) includes 4K UHDTV (2160p) and 8K UHDTV
(4320p), which represents the two digital video formats proposed by NHK Science & Tech-
nology Research Laboratories and approved by the International Telecommunications Union
(ITU). Minimum resolution of this format is 3840 × 2160 pixels [7]. Digital TV program consists
of three components: video, audio and service data as shown in Figure 1.

Figure 1. Components of digital television.

Service information, which contains additional information such as teletext and specific
information of network, including an electronic program guide (EPG), is generated in digital
form and does not require coding. Encoders compress the data by removing irrelevant or
redundant parts of the image and sound signals and perform a reduction operation to produce
separate video and audio packets of elementary streams.
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In 1990, due to the need for storage and playback of moving images and sound in digital format
for multimedia applications on various platforms, ISO has formed an expert group called
Motion Picture Experts Group (MPEG).

In order to enable the interconnection of equipment from different manufacturers, standards
for compression and transmission of video signals are defined. Among them, the best known
are H.261, H.263 and H.264 for videoconferencing transmission, videophone and distribution
of digital material via the web, as well as the MPEG standards (MPEG-1, MPEG-2, MPEG-4,
MPEG-7, MPEG-21), which are intended for standardization of multimedia systems and digital
television.

2. MPEG-2 standard

2.1. The principles of the MPEG-2 standard

Other standard developed by the MPEG group is ISO/IEC IS 13818: Generic Coding of Moving
Pictures and Associated Audio, so-called MPEG-2 standard. It is aimed to professional digital
television [8, 9], adopted in 1999, produced on the disadvantages of the standard MPEG-1. It
is compatible with MPEG-1 standard, using the same tools and adding some new.

Basic innovations with the MPEG-2 standard are as follows: an increased bit rate, picture
formats with and without thinning, scalability of quality and time, improved methods of
quantization and coding, etc. Since it is primarily designed for TV signal compression, MPEG-2
standard allows the use of both types of image scanning: progressive scanning and scan by
line spacing. In the compression process, all three types of pictures can be coded as I, P and B
pictures. Standard encoder structure comprises a mixture of I, P and B frames in a way that I
frame appears after every 10–15 frames, and two B frames between two adjacent I frame.
Usually, a group of pictures (GOP) has one I frame or more P and B frames.

2.2. Profiles and levels MPEG-2 standard

Since the complete syntax of the MPEG-2 standard is complex and difficult for practical
implementation on a single silicon chip, the MPEG-2 standard defines five subsets of the full
syntax, called profiles, which are designed for a variety of applications. These are simple
(simple) profile, main (main) profile, signal-to-noise ratio (SNR) scalable profile, spatial
scalability (spatial scalable) and high profile (high) profile. Later, another is created, 4:2:2
profile, and definition of another (multiview) profile is in progress.

The profile is defined by four levels, which regulate the choice of available parameters during
the hardware implementation. The levels determine the maximum bit rate, and according to
the bit rate the speed of transmission of TV programs and resolutions of the system are chosen,
and they are, on the other hand, determined by the number of samples per line, number of
lines per image and the number of frames per second. There are four levels: high level (HL)
H14L (H 1440 level), main level (ML) and low level (LL) [2]. Parameter limitations by levels
are shown in Table 3 [3].
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Level  Maximum pixel number  Maximum line number  Maximum frames/s 

Low level  352  288  30 

Main level  720  576  30 

H 1440 level  1440  1152  60 

H 1920 level  1920  1080  60 

Table 3. Limits of parameters in the levels of MPEG-2 standard.

Simple profile is designed to simplify the transmitter encoder and receiver decoder, with
reductions in binary rate (transfer speed), and the inability bidirectional prediction (B pictures
do not exist) supports only I and P prediction. As such it is suitable only for low-resolution
terrestrial television. The maximum bit rate is 15 Mb/s.

The main profile is the optimal compromise between compression ratio and price. It supports
all three types of prediction I, P, B, which automatically leads to the complexity of the encoder
and decoder. Main profile supports all four levels, with a maximum bit rates of 4, 15, 60 and
80 Mb/s, for low, main, high-1440 and 1920 high level, respectively. The majority of broadcast
applications are scheduled for operation in the main profile. Terrestrial digital TV uses the
main profile and main level (MP and ML). SNR scalable supports profile only for low and main
levels with a maximum bit rate of 4 and 15 Mb/s, respectively.

Spatially scalable profile supports only high-1440 level with a maximum flow rate of 60 Mb/s,
of which 15 Mb/s is part of the base layer. It allows the transfer of basic image quality depending
on the spatial resolution (spatial) or quantization accuracy, with addition of supporting
information (enhanced layer). This allows simultaneous broadcasting of a program in ele-
mentary and higher resolution, so that in case of difficult reception conditions the signal of
lower quality can be received (lower resolution) instead of higher. They are intended for
extended-definition TV (EDTV).

High profile (also known as professional) is designed for later use with hierarchical coding for
applications with extremely high definition (HDTV—high-definition TV) in format sampling
4:2:2 or 4:2:0. High profile supports the main, high-1440 and 1920 high level, with a maximum
flow rates of 20, 80 and 100 Mb/s, respectively. The flow of the base layer is 4, 20 and 25 Mb/s,
respectively.

4:2:2 profile has been introduced to allow working with color images in 4:2:2 format, which is
necessary for studio equipment. Although, during the development of MPEG-2 standard,
studio uses have not been taken into account, it showed that the MPEG-2 standard is suitable
for this purpose. 4:2:2 profile has allowed the use of existing tools for coding and in studio
applications, which requires a higher bit rate.

Multiview profile (MVP) is introduced in order to enable efficient coding of two video
sequences derived from two cameras which are recording the same scene, and which are set
at a slight angle (stereovision). This profile also uses existing tools for encoding, but with a
new purpose. There is also reverse compatible decoder which means a higher level still can
play lower level profile, while compatibility in the opposite direction is not possible. Present
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stage of development uses a combination profile and level of main profile at main level.
Maximum number of pixels that can theoretically be transmitted by MPEG-2 encoder is 16,383
× 16,383 = 22,657,689.

2.3. MPEG-2 transport stream

Video and audio encoders transmit signal in the main stream. Raw uncompressed audio and
video parts of the signal, known as presentation units, are located in the encoder for receiving
video and audio access units. Video access unit can be I, P and B coded picture. Audio access
units are containing encoded information for a few milliseconds of sound window: 24 ms (layer
II), and 24 or 8 ms in the case of the layer III. The video and audio access units form the
elementary streams in a respective manner. Each elementary stream (ES) is then divided into
packets to form a video or audio packetized elementary stream (PES). Service and other data are
similarly grouped into their PES. PES packets are then divided into smaller 188-bit transport
packages [2, 10].

To gain access to the transfer of MPEG-2 signal, data streams must be multiplexed. With
multiplexing, the following is obtained:

• portable data stream (TS = transport stream)—designed to transmit signals to terrestrial, cable
and satellite connections,

• programming data stream (PS = program stream)—designed for storing digital data on DVD
or other storage space.

Multiplexing of audio and video signals is necessary in order to enable their joint transmission,
and properly decode and display. The multiplexing hierarchy determined by MPEG-2
standard can be divided into:

• basic data stream (ES = elementary stream),

• packetized basic data stream (PES = packetized elementary stream),

• portable (TS) or program data stream—PS (Figure 2).

Programming flow obtained by multiplexing includes packages resulting from one or more
elementary streams belonging to one program. It can contain one stream of the video signal,
and more data streams of an audio signal.

All packages have certain common components that are grouped into three parts: header, data
and control data [10, 11].

Packets of the program stream have a variable length, which causes difficulties when the
decoder needs to recognize the exact beginning and the end of the package. To make this
possible, the packet header contains information of the length of the package. PES packet can
vary in length up to a maximum of 64 KB, while the typical length is about 2 KB. The part that
follows the header contains the access unit as parts of the original elementary stream. At the
same time, there is no obligation to equalize the start of access units with a start of information
part (payload). According to that a new access unit can start at any point in the information
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packets to form a video or audio packetized elementary stream (PES). Service and other data are
similarly grouped into their PES. PES packets are then divided into smaller 188-bit transport
packages [2, 10].

To gain access to the transfer of MPEG-2 signal, data streams must be multiplexed. With
multiplexing, the following is obtained:

• portable data stream (TS = transport stream)—designed to transmit signals to terrestrial, cable
and satellite connections,

• programming data stream (PS = program stream)—designed for storing digital data on DVD
or other storage space.

Multiplexing of audio and video signals is necessary in order to enable their joint transmission,
and properly decode and display. The multiplexing hierarchy determined by MPEG-2
standard can be divided into:

• basic data stream (ES = elementary stream),

• packetized basic data stream (PES = packetized elementary stream),

• portable (TS) or program data stream—PS (Figure 2).

Programming flow obtained by multiplexing includes packages resulting from one or more
elementary streams belonging to one program. It can contain one stream of the video signal,
and more data streams of an audio signal.

All packages have certain common components that are grouped into three parts: header, data
and control data [10, 11].

Packets of the program stream have a variable length, which causes difficulties when the
decoder needs to recognize the exact beginning and the end of the package. To make this
possible, the packet header contains information of the length of the package. PES packet can
vary in length up to a maximum of 64 KB, while the typical length is about 2 KB. The part that
follows the header contains the access unit as parts of the original elementary stream. At the
same time, there is no obligation to equalize the start of access units with a start of information
part (payload). According to that a new access unit can start at any point in the information
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part of PES packets, there is also the possibility that a few small access units can be contained
in one PES packet.

Figure 2. Obtaining transmission and programming data flow.

The most important components of the header are as follows:

• starting prefix code (3 bits),

• starting code of a flow (1 bit),

• start time stamp,

• PTS (33 bits),

• decoding time stamp (DTS; 33 bit).

PTS and DTS cannot be included in each PES packet, as long as they are being involved in at
least 100 ms in the transport data stream (DTV), or every 700 ms in the programming data
stream (DVD). DTS indicates the time required for deleting or decoding access unit. Within
the headers, some other fields that contain important parameters are included, such as the
length of the PES packet, the length of the header and whether the PTS and DTS fields are
present in the package. Among this, there are several other optional fields, a total of 25, which
can be used to transfer additional information about packetized elementary stream, such as
the relative priority and copyright information.

3. MPEG-4 standard

3.1. General characteristics of the MPEG-4 standard

MPEG-4 is a generic standard for coding audiovisual information, and it was presented in 1998
under the label ISO/IEC 14496 [12]. In this standard, video and audio signals are characterized
by interactivity, high degree of compression, and universal access, and this standard has a high
level of flexibility and expandability.
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The algorithms that are implemented in MPEG-4 standard represent scene as a set of audio-
visual objects, among which there are some hierarchical relations in space and time. In all
previous standards for compression of video, image has been seen as a unified whole. In this
standard, we are meeting with the concept of video object, thereby to distinguish two types of
visual objects—natural and synthetic visual objects.

At the lowest hierarchical level are primitive media objects, such as, for example, static images
(fixed background scenes), visual objects (a person who speaks no background), and audio
facilities (voice of the speaker). This approach brings an increase in compression ratio,
increased interactivity and enables the integration of objects’ different nature such as natural
image or video, graphics, text and sound.

MPEG-4 standard has inherited the MPEG-2 standard. Each MPEG standard consists of several
parts (Parts). Each part covers a certain aspect and area of use. Thus, for example, MPEG-4 Part
2 is used for video coding (such as DivX and Quicktime 6), MPEG-4 Part 10/H.264 represents
an Advanced Video Coding (AVC), and it is used in areas with high-definition content such
as HD broadcasting and storage, HD formats such as HD-DVD and Blue-ray discs [13].
MPEG-4 Part 3 Advanced Audio Coding (AAC) is a part for high-quality audio coding.

The first inheritor to MPEG-2 format was MPEG-4 Part 2, which is published by ISO in 1999.
As in the case of the MPEG-2, coding efficiency is strictly related to the complexity of the source
material and the encoder implementation. MPEG-4 Part 2 is defined for applications in the
field of multimedia in small bit rates, but it is in further expanded for applications in the field
of broadcasting. Formal subjective evaluation has shown that the gain of the efficient coding
with MPEG-4 Part 2, compared to the MPEG-2, is between 15 and 20%. For Digital Video
Broadcasting (DVB) applications, this gain is not enough to justify the destabilization and
destruction of MPEG-2 codec (which are used by DVB systems)—considering that the MPEG-4
Part 2 is not compatible with MPEG-2.

3.2. Image formats in MPEG-4 standard

Following the example of MPEG-2 standard, MPEG-4 standard supports both ways scanning
images, progressive and interlaced scanning. Spatial resolution of luminance component can
be expressed in blocks ranging from 8 × 8 pixels, up to 2048 × 2048 pixels. For presentation of
video signal in color, this standard is using a conventional Y Cb Cr color coordinate system
with weighing 4:4:4, 4:2:2, 4:1:1 and 4:2:0. Each component is represented with 4–12 bits per
image pixel. Different temporal resolution is supported, as well as an infinitely variable
number of frames per second [2].

As it was the case in the previous MPEG standards, the macroblock presents basic unit in which
data of video signal are transmitted. Macroblock contains coded information about the shape,
motion and texture (color) of the pixels. There is a wide range of bit rate from 5 Kb/s to 38.4
Mb/s, but it is optimized for use in three ranges of bit rate: <64 Kb/s, 64 Kb/s to 384 Mb/s and
384 Kb/s to 4 Mb/s. Also are supported constant bit rate and variable bit rate.

Each video object can be coded in one or more layers, which allows it variable resolution
(scalability) encoding. Also, each video object is discretized in time so that each time samples
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representing a video object plane (VOP) [2, 13, 14]. Time samples of video object are grouped
into group of video object planes (GOV).

3.3. MPEG-4.10 (H.264/AVC) standard

Previous video coding standards such as MPEG-2 and MPEG-4 Part 2 have been established
and are used in the areas of videoconferencing over mobile TV and broadcasting TV content
in standard/high definition, up to the application of very high quality, such as applications for
professional digital video recorders and digital cinema—digital images on the big screen. But
with the spread of digital video applications and its use in new applications such as advanced
mobile TV or broadcast HDTV signal, requirements for effective representation of the video
image are increased to the point where the previous standards for video coding cannot keep
pace.

The new MPEG-4 Part 10 (MPEG-4.10) standard of video compression is the result of efforts
of the Joint Video Team (JVT), which includes members of the Video Coding Expert Group
(VCEG) and the Motion Picture Experts Group (MPEG), which is the reason for naming it twice
(H.264 and MPEG-4.10). Standard is also commonly referred to as H.264/Advanced Video
Coding (AVC).

This standard, registered under the number ISO-IEC14496-10, provides a significant increase
in compression efficiency in regard to MPEG-2 (gain of at least 50%) [12]. This efficiency is of
particular importance for high-definition television (HDTV), which in the MPEG-2 requires a
bit rate of at least 15–18 Mb/s.

H.264 showed significant improvement in coding efficiency, a significant improvement when
it comes to resistance to errors, as well as increased flexibility and area of use compared to their
predecessors. A change was added in the MPEG-4.10 (H.264/AVC), the so-called FRExt (FREkt)
amendment, which further extended the area of use to areas such as mobile TV, internet
broadcasting, distribution and professional studio and postproduction [15]. Table 4 [16] shows
the usage scenarios and compression in bits supplied with the H.264 codec, and Table 5 [16]
shows the characteristics of the H.264 standard level.

Using  Resolution and frame rates  Bit rate 

Mobile content (3G)  176 × 144, 10–24 fps  70–180 Kb/s 

Internet/standard definition  640 × 480, 24 fps  2–3 Mb/s 

High definition (HDTV)  1280 × 720, 25p, 30p  7–8 Mb/s 

Full high definition (full HDTV)  1920 × 1080, 25p, 30p  10–12 Mb/s 

Table 4. Different scenarios of use H.264 standard.

H.264 consists of two layers: layer for video encoding, designed for effective representation of
video coding layer (VCL) and network-flexible layer network abstraction layer (NAL), which
converts VCL video content in formats suitable for transmission over a variety of transport
layers or storage media.
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H.264 level Resolution  Frame rate  Max. compressed bit rate (non-
FRExt profile) maximum 

Maximum number
of reference
frames 

1  QCIF  15  64 Kb/s  4 

1b  QCIF  15  128 Kb/s  4 

1.1  CIF or QCIF  7.5 (CIF)/30
(QCIF) 

192 Kb/s  2 (CIF)/9 (QCIF) 

1.2  CIF  15  384 Kb/s  6 

1.3  CIF  30  768 Kb/s  6 

2  CIF  30  2 Mb/s  6 

2.1  HHR (480i or 576i)  30/25  4 Mb/s  6 

2.2  SD  15  4 Mb/s  5 

3  SD  30/25  10 Mb/s  5 

3.1  1280 × 720p  30  14 Mb/s  5 

3.2  1280 × 720p  60  20 Mb/s  4 

4  HD formats (720p or 1080i) 60p/30i  20 Mb/s  4 

4.1  HD formats (720p or 1080i) 60p/30i  50 Mb/s  4 

4.2  1920 × 1080p  60p  50 Mb/s  4 

5  2k × 1k  72  135 Mb/s  5 

5.1  2k × 1k or 4k × 2k  120/30  240 Mb/s  5 

Table 5. Levels of H.264 standard.

3.4. The concept of video coding layer (VCL)

Video coding layer (VCL) for MPEG-4.10 (H.264/AVC) codec is in a some way similar to the
previous video codecs such as MPEG-2 [15]. Figure 3 shows a block diagram of coder.

Figure 3. Structure of H.264 video coder.

The coded video sequence in the H.264 consists of a series of encoded pictures. The coded
image may represent either the entire frame or one field, as was the case with the MPEG-2
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The coded video sequence in the H.264 consists of a series of encoded pictures. The coded
image may represent either the entire frame or one field, as was the case with the MPEG-2
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codec. Overall, it can be considered that the video frame comprises two fields: the field at the
top and the field at the bottom. If the both fields of a given frame were taken at various time
points, the frame is called interlaced scan frame; otherwise, it is called a progressive scan frame.

4. H.265/HEVC standard

4.1. General principles of HEVC standard

Thanks to the evolution of technology, which has enabled us to have a resolution of video
material from 4K and higher reality, the evolution of video coding is inevitable, so it can keep
up the step. HEVC/H.265 video coding (High Efficiency Video Coding) [17], is the fruit of
cooperation between ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video
Coding Experts Group (VCEG) standardization organization, which brings better performance
than the previous coding standards, as well as H.264/AVC, and the biggest advantage of the
new standard is up to 50% more efficient compression compared to H.264 and support for 8K
UHD resolution. This means that the video material of the same quality will occupy at half
encoding less space with HEVC than the H.264/AVC coding, thanks to better algorithms and
analysis of the video material which eventually brings better coding efficiency.

Direct predecessor of this standard is H.264/MPEG-4 Advanced Video Coding (AVC). HEVC
seeks to replace its predecessor by using a generic syntax that could be customized to newer
emerging applications. He wants to achieve several goals, such as code efficiency, adaptability
to different systems of transport, resilience on errors and implementation with parallel
processing in a multiprocessor’s architecture.

4.2. The data structure in H.265/HEVC standard

H.265/HEVC is a hybrid video coding algorithm based on blocks. The basic coding algorithm
is a hybrid of intraprediction, interprediction and transformational coding. For representation
of a color video signal, H.265/HEVC standard uses YCbCr color space in format 4:2:0. Each
sample of the individual components of the color space is represented with a resolution of 8–
10 bits per sample, in coding and decoding. Video image is progressively scanned in a
rectangular format dimensions W × H, where W represents a width, H height of the image for
the luma component. Chrominance components for color format 4:2:0 are scanned in a
rectangular format dimensions W/2 × H/2 [17, 18].

H.265/HEVC standard has kept hybrid architecture of previous coding MPEG standard for
video encoding. A significant difference in approach lies in the fact that the previous H
standards—video coding are based on macroblocks, H.265/HEVC standard for encoding uses
the adaptive quadtree structure based on Coding Tree Unit (CTU). Basically, the quadtree
structure is composed of various blocks and units.

A block is defined as a matrix of samples of different sizes, while the unit includes a luma block
and corresponding chrominance blocks together with the syntax necessary for their coding.
With the further division of structure coding units are obtained and also the coding blocks.
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Decoding of quadtree structure does not represent a significant additional burden because it
can easily be switch into a hierarchical structure by using z-scan. Predictable modes for
interframe encoded CU are using non-square PU, which requires the necessary support for
decoding in the form of additional logic in the decoder which performs multiple conversions
between the raster scan, and the scan-scan. In terms of preserving the speed of bit rates, with
the encoder side, there is a simple algorithm to analyze the structure of the tree to determine
the optimal share of the blocks [7]. CTU sizes are 16 × 16, 32 × 32 and 64 × 64 pixels.

4.3. Profiles, levels and layers

Profile is defined by a set of coding tools or algorithms which, if used, ensure compatibility of
the output coded bit stream with standard applications that belong to this profile, or have
similar functional requirements. Level refers to the limitations of the current stream bits that
define memory and resource requirements of the decoder. These restrictions are maximum
number of samples and the maximum number of samples per second that can be decoded
(sample rate), the maximum image size, maximum bit rate (how many bits can decoder spend
per second of video record), minimum compression ratio, size of the buffer memory and so
on. In HEVC standard, only for the purposes of diversity from some applications, in bit rate
and buffer memory, which are used to store the encoded image (control flow information),
were defined two layers: a basic “Main” and demanding “High”. Currently, the draft of HEVC
has defined a single profile “Main” and expectation is more defined profiles. Goal is to reduce
the number of profiles, so that there will be maximum compatibility between devices, and also,
due to the fact that sometimes services are separated, for example, for broadcasting TV signals,
mobile services and video on demand, the goal is convergence to devices that will support all
of them together.

4.4. UHDTV

Ultra-high-definition television (UHDTV or UHD) includes 4K UHDTV (2160p) and 8K
UHDTV or Super Hi-Vision (4320p), which are two digital video formats proposed by NHK
Science & Technology Research Laboratories and defined and approved by the International
Telecommunication Union (ITU) [17].

Full high definition (FHD) indicates that the image with 1920 pixels set in the 1080 lines. UHD
includes twice the number of pixels and lines in its basic version, which can be called a Quad
Full HD because it has four times more pixels than Full HD. Basically, there are two UHD
resolution, 3840 × 2160 and 7680 × 4320 for easier identification is often called the first UHD-1
(4K) and the other UHD-2 (8K).

Number of 3840 pixels in one row consist UHD 4K, while Full HD consist from 1920 lines. The
point is that the nomenclature “No. K” it was taken from formats works with theatrical
distribution; on the other side, UHD starts to use as commercial term. When you see a movie
that has a 2K resolution film, it will be 2048 pixels’ resolution in 1080 lines, and in the case of
4K projection, it will be a resolution of 4096 × 2160 pixels [19].
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UHD brings many benefits, but also the kind of disadvantages like any new technology,
especially in its beginning. The benefits of higher resolution logically have a greater amount
of information on the screen and therefore a more realistic view, especially on the diagonals
that are larger than 140 cm (55″) and where full HD resolution loses the impression of high
sharpness. This is why manufacturers have presented the first UHDTVs in diagonals of 84″
(213 cm) that they would now be available in smaller dimensions—140 cm (55″) and 165 cm
(65″). UHD on smaller diagonals does not have much sense because the density of information
is too large and the average viewing distances further details cannot be seen in relation to the
full HD content.

Many parameters have effect on the realism of images, and among them resolution is not most
important element. Number of pixels has a smaller impact on how we experience the image
of other parameters, such as increased dynamic range, the range and depth of color, as well as
the number of frames per second. UHD used Rec. 2020 standard color range in contrast to the
definition used by Rec. 709 standard. Rec. 2020 defines a bit depth of either 10 bits per sample
or 12 bits per sample. Rec. 2020 specifies the following frame rates: 120p, 119.88p, 100p, 60p,
59.94p, 50p, 30p, 29.97p, 25p, 24p, 23.976p [18]. Table 6 [18] provides an overview of the main
characteristics of images in HDTV, 4K and 8K UHDTV.

  HDTV  4K UHDTV  8K UHDTV 

Pixels × number of lines  1280 × 720 p

1440 × 1080 i

1920 × 1080 p(i) 

3840 × 2160  7680 × 4320 

Mpixels/frame  0.922

1.6

2.1 

8.3

Progressive 

33.2

Progressive 

Aspect ratio  16:9  16:9  16:9 

Frame rate  25, 50, … fps

30 fps

+24 fps 

25, 50, … fps

30, 60, 120 fps

+24 fps 

25, 50, … fps

30, 60, 120 fps

+24 fps 

Bit depth  8 or 10 bits  10 or 12 bits  10 or 12 bits 

Viewing distance  3 × H (30°)  1.5 × H (60°)  0.75 × H (100°) 

Table 6. The characteristics of different digital TV formats.

5. Comparison of compression standards for terrestrial SDTV and HDTV
transmission

In the period from May 15 to June 16, 2006, in Geneva, held a Regional Conference on Radio
Communications (RRC-06), organized by the International Telecommunication Union (ITU),
with the aim of establishing a new international agreement and the associated frequency plan
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for the digital broadcasting of radio and television programs. The conference RRC-06 Final Act
were adopted (Final Acts) which contain a new agreement Geneva 2006 (GE06), which enables
the introduction of complete digital terrestrial television broadcasting in the planning zone.
All European countries have pledged that no later than June 17, 2015, the switch to digital
broadcasting of radio and television signals, and perform analog switch off (ASO). In many
countries, it is already implemented as ASO [20].

European countries have adopted the standard Digital Video Broadcasting-Terrestrial (DVB-
T) and DVB-T2. The first concepts DVB-T were adopted in 1993, and the first final version in
1997. It involves the transmission of digitized audio and video content via terrestrial broad-
casting technology in the VHF and UHF band using conventional system transmitter and
corresponding receiver [21].

DVB-T2 is an enhanced version of the DVB standard for terrestrial broadcasting. Compared
with DVB-T, DVB-T2 offers a significantly lower sensitivity to noise and interference and
provides 30–50% greater flow of data which is particularly suitable for HDTV [22].

Video compression standards of DVB-T standards used in different countries are shown in
Table 7 [23]. The number of national multiplex (MUX) is given, local and regional non-
represented. When digital terrestrial TV transmission started and year ASO was executed are
presented. Data were collected from the official websites of national regulatory agencies and
providers of digital terrestrial transmission.

Country  MUX  DVB standard  Start  ASO 
    DVB-T  DVB-T2     

Andora  6  MPEG-2  –  2005  2007 

Austria  6  MPEG-2  MPEG4 for pay TV and HD  2004  2010 

Belgium  2  MPEG-2  –  2002  2011 

Bulgaria  3  MPEG-4  –  2004  2013 

Croatia  5  MPEG-2  MPEG-4 for pay TV  2002  2010 

Cyprus  4  MPEG-4  –  2010  2011 

Czech Republic  3  MPEG-2  MPEG-4 for experimental HD  2000  2012 

Denmark  6  MPEG-4  MPEG-4 for pay TV  2003  2009 

Estonia  4  MPEG-4  MPEG-4 for HD  2004  2010 

Finland  9  MPEG-2  MPEG-4  1999  2007 

France  8  MPEG-2  MPEG-4 for pay TV and HD  2005  2011 

Germany  5  MPEG-2  –  2002  2008 

Hungary  3  MPEG-4  –  2004  2013 

Ireland  2  MPEG-4  –  2006  2012 

Italy  22  MPEG-2, MPEG-4  MPEG-4 tests  1998  2012 

Latvia  7  MPEG-4  –  2002  2010 

Lithuania  5  MPEG-4  –  2003  2012 

Luxemburg  4  MPEG-2  –  2002  2010 
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Country  MUX  DVB standard  Start  ASO 
    DVB-T  DVB-T2     

Macedonia  7  MPEG-4  –  2004  2013 

Netherlands  5  MPEG-2  –  1998  2006 

Norway  5  MPEG-4  –  1999  2009 

Poland  3  MPEG-4  –  2001  2013 

Portugal  1  MPEG-4  –  2009  2012 

Slovakia  4  MPEG-2, MPEG-4  MPEG-4 tests  2009  2012 

Slovenia  2  MPEG-4  –  2001  2010 

Spain  8  MPEG-2, MPEG-4  –  1999  2010 

Sweden  7  MPEG-2, MPEG-4  MPEG-4  1999  2007 

Switzerland  4  MPEG-2  –  2000.  2008 

United Kingdom  6  MPEG-2  MPEG-4 for HD  1998.  2012 

Albania  10  MPEG-2, MPEG-4  MPEG-4 for HD  2004  – 

Belarus  3  MPEG-4  MPEG-4 for pay TV  2004  – 

Greece  8  MPEG-2, MPEG-4  –  2006  2015 

Iceland  3  MPEG-2  MPEG-4  2005  2015 

Moldova  2  MPEG-4  MPEG-4  2003  2015 

Montenegro  1  MPEG-4  MPEG-4  2014  2015 

Romania  3  MPEG-4  MPEG-4 adopted  2005  2015 

Russia  2  –  MPEG-4  2005  – 

Serbia  1  –  MPEG-4  2005  2015 

Turkey  1  –  MPEG-4  2006  – 

Ukraine  4  –  MPEG-4  2007  – 

Table 7. Video compression standards of digital terrestrial TV transmission in Europe.

From Table 2, it can be seen that countries that have moved completely to digital broadcasting
mainly used DVB-T standard, or used in parallel and DVB-T2, while countries that are
transitioning to digital transmission opted for the DVB-T2 standard. A small number of
countries using DVB-T standard include MPEG-2 compression, mainly for free-to-air (FTA).
Compression standard MPEG-4, due to savings in capacity, mainly used for encrypted
channels, i.e., pay TV and HDTV. An increasing number of countries that use the DVB-T
standard are planning to in the near future switch to an enhanced DVB-T2 standard.

6. Application of compression standards for UHDTV

6.1. 4K UHDTV via satellite

Number of UHD content is not large, but their number is growing rapidly. Many cameras are
now able to record materials and above 4K resolution, such as RED Epic camera which can
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record approximately 5K resolution or 5120 × 2700 pixels, as well as the Sony F65 8K camera
recording at a resolution of 8192 × 4320 pixels. The first 4K UHD facilities were available over
broadband services (Netflix and YouTube) to 2013 and in 2014 started the first experimental
TV channels that broadcast 4K UHD controversial content. Sporting events in 2012, 2013 and
2014 were the first UHD content broadcast via satellite. Pioneers in the distribution of 4K
UHDTV are the Japanese public broadcaster NHK and KBS Korean TV [24]. The leading
satellite companies took part in the distribution of UHD Eutelsat, SES Astra, Measat, Eutelsat,
and Hispasat. Although in tests carried out with video H.264/AVC, HEVC is mainly used today.
Table 8 [25] provides an overview of the number of SDTV, HDTV and 4K UHDTV that may
be received from the satellite to the various transmission parameters.

Satellite transmission  Carrier data rate

(Mbps) 

Number of channels 

SDTV (p25/p30) HDTV (p25/p30) 4K UHDTV (p50/p60) 

DVB-S, QPSK, FEC 3/4  38  4–5 in MPEG-2  4–5 in MPEG-4  – 

DVB-S2, 8PSK, FEC 5/6  72  24 + in MPEG-4  7–9 in MPEG-4

14–18 in HEVC 

2–5 in HEVC 

DVB-S2, 16APSK, FEC 2/3  79  –  7–9 in MPEG-4

15–19 in HEVC 

1 in MPEG-4

3–5 in HEVC 

DVB-S2X, 16APSK, FEC 3/4  83  –  8–10 in MPEG-4

16–20 in HEVC 

1 in MPEG-4

3–5 in HEVC 

DVB-S2X, 16APSK, FEC 135/180 99  –  9–12 in MPEG-4

19–24 in HEVC 

1 in MPEG-4

3–6 in HEVC 

Table 8. Number of satellite SSTV, HDTV and 4K UHDTV channels for the various transmission parameters.

6.2. 4K UHDTV in digital terrestrial television (DTT)

Initial tests 4K UHDTV in digital terrestrial television systems were carried out in 2012 in Japan
and South Korea by KBS and NHK still using unstandardized HEVC video compression. Later
tests were done in other countries. Table 9 [26] gives the basic test characteristics of 4K UHDTV
in digital terrestrial television (DTT) networks in the world.

Technicolor has successfully conducted tests to broadcasting terrestrial 4K UHDTV content.
Broadcasting used American ATSC 3.0 standard, trough Sinclair Broadcast transmitter [27].
Technically speaking, this is the world premiere of the use of scalable HEVC (SHVC) video
coding, MPEG-H compression standards, as well as MMT MPEG A/V standards. The test was
performed in the Sinclair Broadcast experimental facility. The new technology allows you to
receive signals via conventional antenna, as well as through mobile and tablet devices.

Based on technological profiles and the typology of the various countries, the report predicts
that the demand of end users and the transition to the new standards take between 3 and 12
years old. Markets that were among the first to adopt new technologies will likely take between
three and six years to the current broadcasting possibilities of yarn on a combination of DVB-
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T2 MPEG4/HEVC, SDTV/HDTV/UHDTV (4K). The third profile that refers to the HDTV/
UHDTV (4K/8K) is supposed to happen between 2023 and 2030. The report says that the DTT
platform is currently threatened due to scarcity of radio spectrum, as well as plans for the
redistribution of 700 MHz range, which will reduce the available capacity by an average of
30%.

Country  Multiplex capacity
(Mbit/s) 

Signal bit rate
(Mbit/s) 

Video encoding
standard 

Picture standard 

Republic of Korea <35.0  25–34  HEVC Main 10  3840 × 2160p
60 frames/s
8 bits or 10 bits/pixel 

France  40.2  22.5
17.5 

HEVC  3840 × 2160p
50 frames/s
8 bits/pixel 

Spain  36.72  35  HEVC  3840 × 2160p
50 frames/s
8 bits/pixel 

Sweden  31.7  24  HEVC  3840 × 2160p
29.97 frames/s
8 bits/pixel 

United Kingdom  40.2  Variable (35)  HEVC  Mixture of 3840 × 2160p
50 frames/s and 3840 × 2160p
59.94 frames/s
8 or 10 bits/pixel 

Czech republic  –  –  HEVC  3840 × 2160p 

Table 9. Overview of the characteristics 4K UHDTV tested in the DTT.

In addition to broadcast 4K UHDTV channels in satellite and terrestrial digital networks during
2015 in the world has launched several UHDTV services in Internet Protocol Television (IPTV)
and Over-The-Top (OTT) systems.

6.3. 8K UHDTV

Besides the ultra HD format, there is also Super Hi-Vision 8K for whose development and
promotion are in charge of the Japanese public broadcaster NHK. Super Hi-Vision format was
able to show 120 frames per second and a resolution of 7680 × 4320 pixels which corresponds
to the format of 32 megapixels. This format offers four times the resolution of 4K format and
16 times higher than HD. Table 10 [26] gives the basic test characteristics of 8K UHDTV in DTT
networks in the world.

Country  Multiplex capacity
(Mbit/s) 

Signal bit rate
(Mbit/s) 

Video encoding standard Picture standard 

Japan  91.8  91.0  MPEG-4
AVC/H.264 

7680 × 4320p
59.94 frame/s
8 bits/pixel 

Republic of Korea 50.47  50.0  HEVC  – 

Table 10. Overview of the characteristics 8K UHDTV tested in the DTT.
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Digital Video Broadcasting Consortium in July 2014 adopted the basic parameters UHDTV
transmission, and defined development plan of distribution UHDTV in stages, as shown in
Table 11 [25].

  4K UHDTV—Phase 1  4K UHDTV—Phase 2  8K UHDTV 

Deployment  2015  2018  2020 

Resolution  3840 × 2160  3840 × 2160  7680 × 4320 

Frame rate  p50/p60  p100/p120  p100/p120 

Dynamic range  HDR preferred  HDR mandatory  HDR mandatory 

Color space  Rec. 2020  Rec. 2020  Rec. 2020 

Color sampling  4:2:0, 4:2:2  4:2:0, 4:2:2  4:2:0, 4:2:2, 4:4:4 

Color bit depth  10 bits  10/12 bits  10/12 bits 

Video encoding  HEVC Main 10  HEVC Main 10  HEVC Main 10 

Audio format  5.1  Beyond 5.1  Object based 

Audio codec  Open  TBD  Next-generation audio codec 

Viewing angle  66°  66°  100° 

Viewing distance  1.5 picture height  1.5 picture height  0.75 picture height 

Table 11. Development plan of distribution UHDTV.

7. Conclusion

The advantages brought by compression of the TV signal are as follows: reducing the frequency
range of telecommunication channel which transmits TV signal, reducing the memory capacity
required for recording images (storing images), access to data is reduced because the faster
skips over the material, provided a data transfer in real time, it reduces the needed RAM
memory and hardware becomes less expensive and leads to the miniaturization of hardware
in the television. By reducing the number of bits, less power is required to broadcast; for
example, if the transmitter of the same power is broadcasting analog and digital signal, for
digital reception antenna of smaller diameter is required.

To ensure reliable communication between users who use equipment and software from
different manufacturers, standardization of methods of compression was carried out. So today,
depending on the quality and use (television, multimedia services, videoconferencing, video
telephony, etc.), there are several standards (JPEG, MPEG-1, MPEG-2, MPEG-4, H.261, H.263,
H. 264, H.265, etc.).

Since it is a new technology that just catches the “momentum” toward global use, UHD is the
future of television. Also, UHD offers the ultimate user experience and creates opportunities
for the entire industry. 4K and 8K services will stimulate the growth of broadband, as well as
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the expansion of TV services in emerging markets. Consequently, the compression standard
for TV in the near future will be HEVC/H.265.
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Abstract

In this chapter, we focus on proposing new strategies to efficiently transfer a compressed
image/video content through wireless links using a multiple antenna technology. The
proposed solutions can be considered as application layer physical layer (APP-PHY)
cross layer design methods as they involve optimizing both application and physical
layers. After a wide state-of-the-art study, we present two main solutions. The first
focuses on using a new precoding algorithm that takes into account the image/video
content structure when assigning transmission powers. We showed that its results are
better than the existing conventional precoders. Second, a link adaptation process is
integrated to efficiently assign coding parameters as a function of the channel state.
Simulations over a realistic channel environment show that the link adaptation activates
a dynamic process that results in a good image/video reconstruction quality even if the
channel is varying. Finally, we incorporated soft decoding algorithms at the receiver
side, and we showed that they could induce further improvements. In fact, almost 5 dB
peak  signal-to-noise  ratio  (PSNR)  improvements  are  demonstrated  in  the  case  of
transmission over a Rayleigh channel.

Keywords: APP-PHY cross-layer design, image and video coding, multiple-input
multiple-output (MIMO), link adaptation, soft decoding, unequal power allocation
(UPA), unequal error protection (UEP), adaptive modulation

1. Introduction

During the past decade, there has been exponential growth in various visual multimedia
applications demand over wirelessly connected devices. Maintaining good visual quality for
these applications is the central concern of service providers and system designers. Then, there
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is a critical need for efficient algorithms that guarantee good user visual quality after trans-
mission over corrupted, bandwidth-limited, and non-static wireless links.

The conventional communication model is based on layered components where the applica-
tion layer (APP) focuses on how to efficiently compress the visual content and the physical
layer (PHY) aims at transmitting the compressed stream with residual error rates. In this
context, the multimedia research community efforts lead to emerging algorithms and stand-
ards for image and video compression [1]. On the other hand, wireless communication experts
proposed new error correction and modulation methods combined with multiple antenna
techniques (multiple-input multiple-output, MIMO) to decrease the error rates and enhance
the system transmission capacity [2].

The aim of this chapter is to demonstrate that a joint optimization of the APP and PHY layers
can improve substantially the system performance. Before presenting the main contributions,
we give an overview of scalable image/video encoding and MIMO wireless communications,
which are necessary to understand the rest of the chapter.

1.1. Scalable image and video coding

In communication theory, source coding is a basic operation that makes data compression
because of the limitation in the channel capacity. In general, we apply lossless compression
algorithms to reduce the redundancy and the correlation in the original data. Then, lossy
compression can be applied to remove some useless information according to the human
sensing behaviour. In this chapter, we mainly focus on visual content delivery, and we will
treat the case of image and video source content.

1.1.1. Image and video source coding fundamentals

A static image contains many pixels that are correlated and redundant, and we speak about
spatial correlation. The latter can be efficiently compressed based on three components: fre-
quency domain transform, quantization, and entropy encoding. The most known frequency
transforms used in image compression are the discrete cosine transform (DCT) and the discrete
wavelet transform (DWT). Then, the quantization will assign a unique representation to a
range of frequency. Finally, to compress the remaining redundancy between the quantized
coefficients, entropy encoding makes lossless compression based on variable-length coding
(VLC) or arithmetic coding (AC).

A video content can be seen as a time-evolving sequence of images. Then, we still have spatial
correlation, and the three-phase image compression mechanism previously described is used
for intra encoding where an image is compressed independently to the other ones. However,
the neighbour pictures in a video have also many similarities, which we call temporal correla‐
tion. Then, to reach better compression rates, we can encode only the differences in the image
with respect to a reference one. This is called inter compression, and the encoding process will
involve motion estimation and compensation. Motion estimation will deliver the motion
vectors between the current and the reference images, while motion compensation will help
to compute the prediction error matrix.
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To provide efficient delivery for different users with different quality requirements, while
maintaining a single compression operation, scalable image/video encoders build a progres-
sive stream with many quality layers. Every correctly decoded layer induces quality refinement
in the reconstructed visual data. However, such a hierarchical structure induces different
degrees of importance between the layers. In fact, if a layer is error corrupted, all the remaining
layers will be useless for the reconstruction even correctly received. Then, the importance of a
layer depends on its position within the stream. First layers are more important than the last
layers. In the following, we will present some key image and video compression standards
and focus on the scalable versions that will be used in the following.

1.1.2. Image compression standards

The first and most used image compression standard is Joint Photographic Experts Group
(JPEG). The main advantage in JPEG is its simplicity; however, it remains non-efficient for high
compression rates, and its compressed bitstream is very sensitive to transmission errors. In
2000, the JPEG committee proposed a new image compression standard called JPEG2000 [3].
This standard uses the wavelet transform DWT and delivers a scalable stream with rate-
distortion optimized quality layers. After the DWT, the different sub-bands are quantized and
split into precincts, which are also split into code-blocks. The scalable content is generated
based on the DWT resolution level, and the bit-plane level using the embedded block coding
with optimal truncation (EBCOT) algorithm. The latter involves two steps: Tier 1 processing
that makes the bit-plane processing and entropy encoding based on binary AC, and Tier 2 that
organizes the final bitstream. JPEG2000 considers segment and synchronization markers,
which reduces the quality loss in the presence of transmission errors, but still not sufficient for
severe wireless environments.

An extension of JPEG2000 is proposed in Part 11 for image compression dedicated to wireless
multimedia applications: JPEG2000 Wireless (JPWL) [4]. This standard offers many tools to
make the compressed bitstream more resilient against errors. One of these tools is the use of
APP layer error correcting codes to protect the compressed data and the headers. The standard

proposes the use of Reed Solomon (RS) codes over 𝀵𝀵𝀵𝀵(28) and gives a choice between many
RS codes with different error-correction capabilities. JPWL allows also the use of unequal error
protection (UEP) that assigns different RS codes to the different code-blocks according to their
importance for image reconstruction. JPWL gives also some error-resilient features like
defining the sensitivity of a code-stream and localizing residual. In this chapter, we focus on
image transmission in mobile wireless environments, then a resilient image compression
method is needed which justifies the use of JPWL.

1.1.3. Video compression standards

H264 Advanced Video Coding (H264/AVC) is one of the standards proposed by the Joint
Video Team to enhance the rate-distortion performance and to form a bitstream structure
suitable for network transport. Compared to its predecessors, H264/AVC considers the same
concept (intra coding and inter prediction) but adds new tools like more precise motion esti-
mation, image prediction based on many references, spatial prediction for intra pictures,
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and more efficient entropy encoding called context-adaptive binary arithmetic coding (CAB-
AC). For better interoperability, three profiles are proposed in this standard. The extended
profile considers error resilience techniques which make it more suitable for wireless appli-
cations. Recently, Joint Collaborative Team on Video Coding (JCT-VC) developed a succes-
sor for H264/AVC. The new standard is called HEVC for High Efficiency Video Coding.
Compared to H264/AVC, HEVC doubles the data compression ratio at the same level of vid-
eo quality.

However, H264/AVC and HEVC do not support scalability, and their application to variable
rate systems is not guaranteed. In this context, scalable extensions were proposed. The main
expectation of H264 Scalable Video Coding (H264/SVC) [5] is to support temporal, spatial, and
quality scalability with similar coding efficiency as a H264/AVC. The temporal scalability is
performed by the SVC codec by introducing the concept of hierarchical B-picture coding. Inter-
layer prediction mechanisms are also introduced for spatial scalability, and quality scalability
is performed using a medium-grain quality scalability (MGS). In this chapter, we mainly focus
on scalable multimedia coding techniques, then we will consider the H264/SVC codec with
quality and temporal scalability.

1.2. MIMO for wireless communications

As described, image and video codec designers aim at having the maximum compression rate
under a given quality constraint. Some resilience techniques are applied to improve the
reconstruction quality if some errors occurred. However, when we deal with wireless com-
munications, the transmitted data are subject to many phenomena such as noise and large-
and small-scale fading. The corrupted environment will degrade the reception quality, and
consequently the user reconstructed quality will be bad. The second constraint imposed by the
wireless channel is the limited bandwidth, sometimes not enough to transfer a multimedia
content. Multiple antenna techniques, also called MIMO, exploit the time, frequency, and
spatial diversity inherent to the wireless channel to increase the transmission rate. The gain
induced by the MIMO technology motivated its integration in the recent wireless communi-
cation standards such as 802.11n WiFi, 4G LTE, and 802.16e WiMAX. This section is devoted
to the description of the basics of the MIMO technology.

1.2.1. MIMO channel modelling

Let us consider a MIMO system with  transmitting antennas and  receiving antennas. The
link between a transmitting antenna i and a receiving antenna j is characterized by its complex
gain denoted ℎ𝀵𝀵𝀵𝀵. Then, every receiving antenna j will have the contribution of the signals
transmitted by the  antennas as:

tn
j ji i ji=1

y = h s + nå (1)
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where  is the symbol transmitted by the antenna i, and  is the noise component. Finally, the

general system can be formulated by a matrix operation as:

 = +y Hs n (2)

where y, s, and n vectors represent, respectively, the received signals, the transmitted signals,
and the noise components. The matrix H is called the channel matrix because it describes the
gain of all the links between the transmitting and receiving antennas. Estimating the channel
matrix H delivers the channel state information (CSI) that can be exploited by the encoder or
the decoder as detailed in the next paragraph.

1.2.2. Open‐loop and closed‐loop MIMO systems

The MIMO system is called open-loop when the CSI is only exploited at the decoder to improve
the demodulation and decoding performance. We distinguish two main categories in this
context. The first is spatial multiplexing where the information is multiplexed on the different
antennas, which helps improve the system capacity. The second type aims at improving the
system resiliency by exploiting the space and time diversity. This can be achieved if the
antennas transmit different versions of the same information at different times. We notice that
these two strategies imply a quality capacity trade-off. Then, some hybrid optimized versions
were proposed to have the best compromise [6].

Closed-loop MIMO (CL-MIMO) systems take advantage of a feedback channel that makes
possible the use of the CSI at the transmitter. In fact, the channel information enables precoding
that jointly optimises the transmitter and the receiver operations. Hence, the system can reach
the best resilience and capacity improvements since multiplexing and diversity are now
optimized at the transmitter. Moreover, the CL-MIMO precoder virtually subdivides the
multiple antenna channels into independent parallel single antenna channels.

Many precoding techniques can be found in the literature [6]. However, the most used ones
are linear precoders that optimize the transmitting power to reach a quality criterion (maxi-
mum capacity, lower error rates, maximize the signal-to-noise ratio…). If the precoding matrix
is diagonal, we call it a diagonal precoder. The optimization process [7] generates an equivalent
diagonal matrix for H, which means an equivalent virtual channel with multiple independent
single antenna channels. Moreover, based on precoding, we can assign different powers to
these virtual subchannels. This strategy will be called unequal power allocation (UPA) and
cannot be applied in the case of open-loop MIMO (OL-MIMO) since the transmitter does not
have access to the CSI. These advantages motivated the use of CL-MIMO technology with
linear precoding in this chapter.

We notice that MIMO systems require a multipath propagation environment for spatial
diversity. However, this will introduce inter-symbol interference (ISI), which justifies the use
of the orthogonal frequency-division multiplexing (OFDM) modulation. The latter divides the
wide band into many narrow band subchannels, which reduces the ISI phenomena. All the
MIMO systems described in the following rely on OFDM modulation.
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1.2.3. MIMO receivers

In MIMO systems, each receiving antenna collects different interfering signals coming from
the transmitting antennas. In order to reconstruct the source symbols, we need to separate
them. Many decoding techniques can be applied like zero-forcing, successive interference
cancellation, minimum mean-square error estimation, and maximum likelihood. The latter
delivers the best performance with the minimum possible error rates. In the case of Gaussian
distributed noise, the ML delivers the estimate s as:

= arg minˆ ss y - H sP P (3)

The problem with the ML decoding is its prohibitive complexity that grows exponentially with. However, in this work, we will consider it with linear MIMO precoding generating

independent single antenna channels, which reduces significantly its complexity.

1.3. Context and outline of the chapter

We described in the previous subsections the developments made by two different research
communities in the fields of image/video compression and MIMO wireless communications.
We also justified the chosen standards and technologies in this work and emphasized the
need for a joint optimization of compression and transmission operations. Indeed, the multi-
media compressed data are very sensitive to transmission errors, and the source encoder
cannot take into account the fluctuating behaviour of the wireless channel. On the other
hand, the MIMO transmission strategies do not care about the content, i.e. important and
less important streams are transmitted in the same way. During the last years, APP layer
image/video compression, and PHY layer wireless communications, began to converge to
guarantee a dynamic access to the multimedia services over corrupted channels. However,
the convergence of the multimedia world and the mobile communications raised new ques-
tions. How can we satisfy users with heterogeneous scenarios and using wireless channels
varying in space and time? How can we improve the end-user visual quality without affect-
ing the wireless system rate? The aim of the proposed book chapter is to answer these issues
by proposing APP-PHY cross-layer algorithms based, respectively, on link adaptation and
soft decoding. The details and the contributions of the chapter will be provided in the next
section after the description of the state-of-the-art.

The chapter is organized as follows. Section 2 provides a state-of-the-art study where the main
contributions dealing with the joint design of image/video compression and transmission are
studied. Section 3 provides the main contributions of the chapter. After presenting the used
channel models, we give the simulation results for image and video optimized transmission
over MIMO channels. Then, a soft-input decoding method will be presented and investigated
for JPWL image transmission. Finally, Section 4 concludes the paper and gives open directions
for future work.
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2. APP-PHY cross-layer design: state-of-the-art

In the previous section, we demonstrated the need for a joint optimization of the image/video
compression and wireless communication operations. This requirement motivated researchers
and academia to develop new APP-PHY cross-layer algorithms. Some of them optimized the
error-correcting coding process; others focused on the modulation, or on the MIMO precoding.
In this chapter, we target to optimize all the operations for a better reconstruction quality. To
better illustrate the framework of our contribution, a description of the main state-of-the-art
algorithms in the context of APP-PHY cross-layer design is provided.

2.1. Joint source-channel coding (JSCC)

Motivated by the well-known Shannon [8] separation theorem, the communication system
designers have conceived separately source and channel coding. However, in most practical
applications, it is impossible to fulfil the theorem requirements like unconstrained block
lengths and unconstrained coding and decoding delays. Joint source/channel (JSC) coding and
decoding techniques have emerged as a pragmatic approach. First solutions in this context
tried to integrate some resilience modes into the source coding, which results in compression
efficiency loss [9]. Other solutions tried to exploit the residual redundancy remaining after
source coding to improve the decoding performance. Being the last block in every image/video
compression scheme, many works focused essentially on the entropy encoding operations
such as variable-length coding (VLC) and arithmetic coding (AC).

Motivated by the efficiency of the error-correcting codes, many researchers focused on
developing new entropy decoding algorithms that exploit the code properties to enhance the
system decoding performance like in [10, 11] for VLC and in [12] for AC. Then, a change was
marked by the development of soft-input soft-output (SISO) channel decoders used in the very
efficient turbo codes. JSC research community focused on developing SISO decoders for
entropy codes. First solutions, inspired by the convolutional codes, modelled the entropy
encoder by a finite-state machine or a trellis to apply conventional SISO channel decoding
algorithms. The case of VLC was treated in the study of Wang et al. [13] and Park and Miller
[14], and decoding methods for AC were considered in the study of Grangetto et al. [15] and
Bi et al. [16]. Later contributions took benefit from the existing SISO decoders and applied
iterative JSC decoding [17–19]. In Refs. [17] and [18], the authors considered specific trellis
constructions, but their complexity becomes intractable for long source sequences. Recently, a
new SISO entropy decoding was proposed for VLC [19] and AC [20]. The proposed algorithm
was inspired from the Chase II decoding first used in turbo block codes and showed a good
complexity-performance trade-off compared to trellis-based methods. In the present chapter,
a soft-input decoding method will be needed to enhance the reconstruction quality of an image
JPWL codec. Hence, we will consider the Chase decoder [19, 20] for soft-input arithmetic
decoding. More details are provided in Section 3.4.
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2.2. Unequal error protection (UEP)

In many studies, authors focused on optimizing the source and channel coding operations.
This still can be considered as a JSC coding method, but where the source and the channel
encoding and decoding algorithms remain unchanged. In fact, we just optimize their param-
eters to achieve a target constraint. We showed in Section 1.1 that the scalable image/video
compressed bitstream contains information with different levels of importance. Hence,
applying equal error protection implies the same correction performance for important and
less important information, which is not accurate. It is more suitable to apply unequal error
protection where important parts are more protected than less important ones.

Many solutions focused on applying UEP to JPEG2000 compressed streams since it provides
scalability. Then, first quality layers have to be more protected than the last quality layers. In
Refs. [21] and [22], the authors proposed different strategies for JPEG2000 stream headers
protection and the application of UEP using RS codes on the different JPEG2000 quality layers.
Substantial improvements in terms of image peak signal-to-noise ratio (PSNR) were demon-
strated, which motivated their integration in the JPWL standard. The application of UEP to
video transmission was investigated in [23] where different rate-compatible punctured
convolutional (RCPC) codes were used to protect the MPEG-2 compressed video packets. We
notice that these schemes assign different codes to the streams without guaranteeing rate-
distortion optimality. To reach such a property, optimization process has to be included. In this
context, a rate allocation process was introduced in [24] to minimize the distortion of a
reconstructed JPEG2000 image. In Ref. [25], the authors derived an optimal wireless JPEG2000
compliant error correction rate allocation scheme for robust streaming of images and videos.
In Ref. [26], the authors used the scalability property of the H264/SVC encoder to apply
convenient UEP strategy. Even efficient, the proposed strategies considered a static channel
with fixed parameters; then, we have no guarantee to obtain the same results in a MIMO
varying wireless environment. Some works [27, 28] focused on optimizing the JPEG2000
compression and protection processes for open-loop MIMO systems. Extending these UEP
results to the case of closed-loop MIMO systems can be very advantageous. Moreover, we will
have another freedom degree that we can optimize to guarantee efficient rate-distortion trade-
off. This will be the topic of the next subsection where unequal power allocation methods are
described.

2.3. Unequal power allocation (UPA)

We can also improve the transmission quality of the more important packets in the compressed
stream by improving their signal-to-noise ratio (SNR). For a given channel, this can be achieved
by allocating more transmission power to them. Under a maximum power constraint, low
transmission power will be assigned to the less important packets. This unequal power
allocation (UPA) strategy can also improve significantly the image/video reconstruction
quality.

In this framework, many researchers [29–32] proposed to allocate dynamically the power to
the different packets according to their contribution in the quality improvements. While
contributions proposed in Refs. [29, 30] focused on JPEG2000 image content, the authors in
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compression and protection processes for open-loop MIMO systems. Extending these UEP
results to the case of closed-loop MIMO systems can be very advantageous. Moreover, we will
have another freedom degree that we can optimize to guarantee efficient rate-distortion trade-
off. This will be the topic of the next subsection where unequal power allocation methods are
described.

2.3. Unequal power allocation (UPA)

We can also improve the transmission quality of the more important packets in the compressed
stream by improving their signal-to-noise ratio (SNR). For a given channel, this can be achieved
by allocating more transmission power to them. Under a maximum power constraint, low
transmission power will be assigned to the less important packets. This unequal power
allocation (UPA) strategy can also improve significantly the image/video reconstruction
quality.

In this framework, many researchers [29–32] proposed to allocate dynamically the power to
the different packets according to their contribution in the quality improvements. While
contributions proposed in Refs. [29, 30] focused on JPEG2000 image content, the authors in
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Ref. [32] designed a UPA strategy for a scalable video content. These contributions were
proposed for single antenna systems, and the extension to high capacity MIMO systems can
be gainful. Hence, in Refs. [33] and [34], the authors focused on optimizing OL-MIMO space-
time diversity exploiting systems to improve the image reconstruction quality. A novel
precoding scheme capable of integrating both channel and source characteristics in order to
achieve the desired prioritized spatial multiplexing was proposed in [35] for H264/SVC
compressed-video transmission.

We recall that in CL-MIMO systems, we can construct, based on the channel matrix, equivalent
independent single antenna subchannels with different propagation properties. Then, the
image/video transmission can be optimized more efficiently to achieve the best quality at the
receiver. In this chapter, we consider that the encoder knows the CSI, and we present a quality-
constrained precoding method.

2.4. Hierarchical and adaptive modulations

As scientists focused on optimizing error correction in UEP, or transmit power in UPA, many
other proposals treated the modulation process. The principle is the same: efficiently assign
modulation methods to the different compressed information according to their contribution
to the quality improvement.

In hierarchical modulation [36], each constellation point is assigned to a base layer and an
enhancement layer streams. The bit-symbol mapping is made in a sense where the distance
between the points with different base-layer bits is larger than that for the enhancement layer
bits. Hence, in bad channel conditions, the base layer stream will be more resilient and can be
decoded with low errors, and the base quality is guaranteed. If the channel is fair, we will be
also able to decode the enhancement-layer stream and have better quality.

Another simple strategy can be considered to apply dynamic modulation that assigns different
resiliency levels to the compressed data, which is adaptive modulation. Actually, using high-
order modulation results in a better spectral efficiency, but higher error rates. Then, if we need
to have low error rates for a very important information transmission with a noisy-channel,
we can just use low-order modulation. While UEP and UPA strategies tend to guarantee a
required user quality for a low channel SNR, adaptive modulation can help to improve the
spectral efficiency for a channel with high SNR. This motivated the development of hybrid
strategies where the described schemes can be optimized for a better system efficiency.

2.5. Contributions: hybrid optimized strategies

When the target is to deliver an image or video content over a wireless link, the system designer
should take into account that the channel is varying. Hence, we should move from a static
design to an adaptive one. To this aim, many link adaptation algorithms based on a hybrid
optimization of the previously described methods were proposed. UEP was combined with
hierarchical modulation in [37] in the case of equal power OFDM-MIMO wireless transmission.
In Refs. [38] and [39], the authors proposed UPA strategies combined with adaptive modula-
tion, respectively, for non-compressed and compressed image transmission, but the error
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correction scheme remains static. In Ref. [40], a link adaptation strategy where coding,
modulation, and power are all optimized according to the channel CSI is proposed; however,
the strategy does not take into account the content structure. The link adaptation strategy
proposed by Houas et al. [41] considers an OFDM single antenna system where the modulation
and error protection tasks are optimized based on the channel subcarrier status under a
constrained JPEG2000 image quality.

In this chapter, we introduce a new paradigm where we develop a core system optimizing all
the operations based on UEP, UPA, and adaptive modulation to achieve the best-reconstructed
image/video quality, given the channel status. Moreover, we provide soft-input source and
channel decoding to reduce the error rates at the receiver and consequently improve the user
experience.

The chapter contributions are threefold. First, we show how the optimization of the system
parameters (image/video compression and wireless transmission) can be very advantageous
to guarantee a good quality-of-service (QoS) even the channel is varying. We also demonstrate
that this is possible by using scalable techniques such as UEP, UPA, adaptive modulation, and
scalable compression. Second, we demonstrate the efficiency of the proposed optimization
procedure for JPWL image compressed data and for H264/SVC video compressed content.
Third, we show that using soft decoding methods for the demodulator, the channel decoder,
and the JPWL image decoder can provide significant quality gains while keeping the same
throughput. The results are provided based on simulation results of the visual objective and
subjective quality. This seminal chapter resumes many results [42, 43] developed in the XLIM-
RESYST team of University of Poitiers, France, and some of them [44] were under a cooperation
with the SYSCOM laboratory in Tunisia.

3. Solutions for optimized image and video transmission

3.1. Channel model

In this chapter, we consider two different channel models to run simulations: a statistical
channel and a realistic channel. At large, the statistical channel model is used to emphasize the
performance as a function of a given SNR, whereas the realistic channel model gives more
details about the propagation environment of a given scenario with fluctuating transmission
conditions.

The communication wireless channel induces random disturbances due to the thermic additive
noise and low and large-scale fading, respectively, caused by obstacles and multipath propa-
gation. These random phenomena can be described based on statistical models. In the
following, we consider a Rayleigh fading channel where the elements of the channel matrix
follow a Rayleigh distribution. The noise is modelled by the well-known additive white
Gaussian noise (AWGN). In the case of a single antenna system, if we transmit a binary phase-
shift keying modulated sequence  = 1,   …,     over a Rayleigh channel, we will receive a
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sequence  = 1,   …,     whose elements are  =  .  +  where  is random Rayleigh

distributed coefficients and  represents random AWGN samples.

To have a more realistic approximation for the propagation environment, we consider a three-
dimensional (3D) ray-tracing simulator [45] to provide the impulse responses of a realistic
channel. The transmission environments used in this chapter take into account the user
mobility and the existence of obstacles, and will be presented later. Then, the channel alternates
between bad, medium and good states. In the case of realistic channel simulations, the CSI is
obtained based on an estimate of the channel with a training sequence.

3.2. Compressed image transmission application

In this section, we focus on image transmission over CL-MIMO wireless systems. As previ-
ously specified, we consider the error-resilient scalable JPWL image compression standard.
Two contributions are presented. The first considers equal error protection, and a fixed
modulation scheme with a new CL-MIMO context-based precoder (CBP) optimized to reach
the best reconstruction quality. In the second step, the precoder will be introduced into a link
adaptation scheme where UEP, adaptive modulation, UPA, and source coding are optimized
given the channel status to reach a better quality.

3.2.1. Context‐based precoding for JPWL image transmission

In this part, we suppose that the channel coding and modulation are static. However, the power
allocation will be optimized. The system model treated in this part is depicted in Figure 1 and
aims at transmitting the compressed data using a precoded MIMO system. After diagonali-
zation, the equivalent channel matrix, given by the CSI, will have b virtual independent single
antenna channels with different SNRs. Then, the scalable JPWL encoder will be asked to
generate b quality layers that should be transmitted across the b virtual channels. Naturally,
the first quality layer, which is the most important, will be assigned to the highest SNR
subchannel. Then, according to their importance order, every quality layer will be assigned to
a specific subchannel. The JPWL standard includes RS ,  error correcting codes that assign

an encoded N-symbols codeword to every K-symbol input message, resulting in a  =  𑨒𑨒 2

Figure 1. System model for JPWL image transmission over CL-MIMO system using UPA based on the CBP algorithm.
Source coding, error correction, and modulation are not optimized.
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 symbol correction capacity. The encoded bit-sequence will be then modulated based on M-

QAM, which assigns to every n bits one of the  = 2 modulation symbols. Finally, the CBP
power allocation operation has to compute the power assigned to every quality layer i to reach

a source target bit error rate denoted  𝀵𝀵𝀵𝀵𝀵𝀵 given the RS code and the modulation parameters,
and eventually the channel CSI.

With scalable image coding, a quality layer can enhance the reconstruction quality under the
condition that it and its previous quality layers were correctly received. Otherwise, it will be
useless. Then, the proposed power allocation strategy works hierarchically: every quality layer
i transmitted on a subchannel i should take enough power to achieve the bit-error rate (BER)
target constraint. However, we should take into account that we have a maximum power 0
to not exceed, and that the error rates depend on the modulation and channel coding param-
eters. For every subchannel     ∈ 1, …,  , the precoding coefficient   is evaluated in four

steps:

The target source BER 𝀵𝀵𝀵𝀵𝀵𝀵 is defined after RS error correction; then, we have to compute the
corresponding BER before correction denoted B, which depends on the RS code correction
capacity as:
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Given the modulation order M and the noise power of the subchannel i denoted ², we can

determine the needed power precoding coefficient  to achieve the needed BER B as:
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Finally, we have to check if the remaining power 𝀵𝀵 can satisfy the precoding result. Hence, if2 ≥ 𝀵𝀵, we still have power to transmit the quality layer i with the requested BER target; then,
we have to update the remaining power to 𝀵𝀵 =   𝀵𝀵 −   2 . Then, we iterate the same process
for the next layers. However, if this condition does not hold, i.e. 2 < 𝀵𝀵, we will assign all the
remaining power to the current quality layer  2 = 𝀵𝀵 that will be transmitted with no
guarantee to reach the target BER.

To investigate the efficiency of the CBP precoder, we run simulations where an image is
transmitted for every receiver position in the trajectory given in Figure 2 where the red blocks
are buildings. The receiver is supposed to move along a path of 138 m at a speed of 5 m/s. The
channel gain shows four different areas with different channel states. We consider a MIMO
4 × 4 channel where the diagonalization results in a maximum of  = 4 subchannels. Then, the
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JPWL source encoder will compress the test image “Monarch” and deliver four quality layers
with 0.25 bits per pixel (bpp) each. We use an equal error protection method with a fixed
RS(37,32) code and a fixed M-QAM modulation with  = 4.

Figure 2. The wireless propagation environment (left) and the corresponding variation of the MIMO channel gain by
position (right) for JPWL image transmission.

Figure 3 shows the PSNR results as a function of the receiver position for different precoding
strategies. For better readability, we present the mean value over 20 samples with a sliding
window for all the schemes. The presented precoding methods have the same principle with
different optimization constraints. While water filling (WF) aims at maximizing the channel
capacity, minimum mean square error (MMSE) tends to minimize the mean square error      −    ² , and MBER stands for minimizing the BER. E-dmin is a non-diagonal precoder
that focuses on maximizing the distance between the constellation points. All these precoders
are compared to the proposed CBP precoder that aims at maximizing the image quality by
exploiting the hierarchical structure of the JPWL compressed stream.

Figure 3. PSNR evolution as a function of the receiver position for different 4 × 4 CL-MIMO precoding strategies in the
case of “Monarch” image with 4-QAM modulation and RS(37,32) channel code.

The PSNR results show that the different precoders involve different performance according
to the channels status. For the first area, where the channel is very corrupted, all the precoders
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dispatch the power between the different layers which induces a quality loss. CBP is the best
in this area, since it allocates approximately all the power to transmit correctly the first quality
layer, which results in a mean PSNR of almost 28 dB. For medium channel states (areas 2 and
4), the CBP remains more efficient than the other precoders, even for certain positions where
the E-dmin is better. The E-dmin gain with respect to the CBP is more clear for the low corrupted
channel (area 3), and this is justified by the non-diagonality of this precoder that allows
transmitting the four quality layers. However, the CBP will assign almost all the power to the
three first quality layers. In the following, we will consider link adaptation strategies, and the
CBP performance will be improved substantially for this area.

To better show the gains induced by the CBP precoder for high-to-medium corrupted channel
state, we present in Figure 4 the reconstructed images and the corresponding PSNRs to study
the visual quality for the position index 2259. The results confirm the efficiency of the CBP
precoder compared to the conventional MIMO precoders in the case of JPWL image trans-
mission. However, the question remains for the area 3 where the channel is fair, and the CBP
performance can be improved. To this aim, we propose in the next paragraph a link adaptation
process based on optimized UEP and adaptive modulation.

Figure 4. Visual quality for the 4 × 4 CL-MIMO precoding strategies in the case of “Monarch” image with 4-QAM mod-
ulation and RS(37,32) channel code. The results correspond to the position index 2259 in area 4.

3.2.2. Optimized CBP and link adaptation for JPWL image transmission

In the previous part, we presented a system where the source rate, modulation, and error
correction are static and independent from the channel state which is not accurate. In this
paragraph, we will use link adaptation techniques as presented in Figure 5. The main
difference compared to Figure 1 remains in the new joint optimization block using the CSI as
input to deliver the number of subchannels to use 𑩤𑩤 𑩤𑩤 𑩤𑩤, and, for each ith quality layer, the best
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configuration for the source coding rate 𝀵𝀵𝀵𝀵, the correction capacity of the RS code given by𝀵𝀵, and the corresponding modulation order 𝀵𝀵. The optimization process [42] makes inde-

pendent tree-based exhaustive search for every subchannel. The objective is to minimize
distortion under three main constraints, which are the rate constraint, the target BER quality
to guarantee, and the maximum power to not exceed.

Figure 5. System model for scalable content transmission over CL-MIMO system using UPA based on the CBP algo-
rithm and link adaptation techniques based on UEP, adaptive modulation, and variable rate source encoder.

Now, we run simulations to investigate the gains induced by the link adaptation technique in
the case of 4 × 4 MIMO for the same realistic channel. We also assume the same channel
estimation process. The reference static configuration for the test image “Monarch” 768 × 512
pixels considers a JPWL encoder generating four quality layers having each a constant rate of
0.125 bpp. The error correcting code is a RS(37,32), and the modulation is 4-QAM. The link
adaptation optimized system always considers a 4 × 4 MIMO and can choose dynamically the
number of subchannels to use 𑨈𑨈 𑨈𑨈 1,   2,   3,   4 , the modulation order for each subchannel Mi

∈{4, 16, 64}, the corresponding RS encoded sequence length Ni ∈{37, 38, 40, 43, 45}, and source
encoding rate RSi. The power limitation is set to P0 = 1, the objective BER to achieve is BERt =
10−9, and the rate is constrained by a maximum of 512 OFDM symbols per subchannel. We
recall that we always apply the CBP precoding process of the previous paragraph, which is
activated after fixing all the system configurations.

Figure 6 provides the PSNR results for the static and the optimized CBP strategies as a function
of the receiver position index. We can see that the link adaptation induces remarkable im-
provements in terms of reconstructed image quality. Moreover, almost a 1 dB mean PSNR gain
can be achieved for the intermediate channel state at the areas 2 and 4. The improvements are
even more significant when the channel is under good conditions. This is justified by the fact
that the link adaptation will allow the use of high order modulations with low redundancy,
and consequently higher source coding rates and better quality. The mean PSNR gain can reach
5 dB. We demonstrated that using APP-PHY cross-layer design by optimizing all the system
blocks according to the channel status can enhance remarkably the reconstructed image
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quality. Now, we propose to investigate if this efficiency remains when dealing with scalable
video transmission.

Figure 6. PSNR evolution as a function of the receiver position for 4 × 4 CL-MIMO with CBP precoding and link adap-
tation strategies in the case of “Monarch” image.

3.3. Compressed video transmission application

In this section, we propose to extend the link adaptation with the CBP MIMO precoding
algorithms to scalable H264/SVC video transmission application. In fact, this standard
generates three scalability layers. The first deals with temporal scalability where bi-directional
(B) frames are adaptively appended to a base layer group of pictures (GOP) which means
variable frame-rates. The second is spatial scalability which aims at satisfying users with
different displaying capacities by generating many resolutions for every frame. The last is the
quality scalability which transports complementary data in different layers to produce videos
with distinct quality levels. This scalability is mainly based on implementing distinct quanti-
zation parameters for each layer. H.264/SVC supports three distinct quality scalability modes
which are fine, medium, and coarse grain scalabilities (GS). While coarse GS (CGS) makes a
prediction process for each quality layer, the medium GS (MGS) increases efficiency using a
flexible prediction unit, where base and enhancement layers can be referenced. Finally, the
compressed stream has a hierarchical structure, and we can apply the CBP with the link
adaptation as described previously.

The studied system model is the same as in Figure 5 with a H264/SVC source encoder.
Simulations are operated on the “Foreman” 176 × 144 resolution test video. The source encoder
generates a base quality layer, with three CGS quality enhancement layers. For a better
scalability, we also consider subquality layers computed by the MGS process. The compressed
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bit-streams are then protected using a rate-compatible punctured convolutional (RCPC)
channel code, then modulated with M-QAM where M is adaptively optimized. Finally, the
CBP precoding is applied for the 4 × 4 MIMO channel UPA. To approach the reality, a realistic
channel depicted in Figure 7 is considered with the corresponding channel gain. The receiver
is supposed to move through a path of 20 m at a 5 m/s speed. We can see that we have two
channel states: the first part has a poor non-line-of-sight (NLOS) channel, then by the end we
have a relatively reliable status with LOS propagation.

Figure 7. The wireless propagation environment (left) and the corresponding variation of the MIMO channel gain by
position (right) for H264/SVC video transmission.

Figure 8 presents the simulation results for CBP precoding with and without link adaptation.
In fact, the considered system uses an APP-PHY cross layer design based on UEP, adaptive
modulation, UPA, and variable rate source coding. The optimization core selects for each

subchannel the good RCPC code rate among the set 𑨈𑨈 𑨈𑨈 45, 23 , 12 , 13 , 14 , the modulation order𑨈𑨈 𑨈𑨈 4,   16,   64 , and the source coding rate and applies CBP precoding with a BER target = 10−9 to guarantee reliability for the more important quality layers. All this process aims
at maximizing the user video quality under the constraints: maximum power 0 = 1, equiva-

lent overall transmission rate, and a minimum required QoS. The figure shows that applying
CBP with link adaptation (red curve) is always better than using static CBP whatever the
modulation order and coding rate. In fact, all the presented results have the same maximum

rate. Using static CBP with 𑨈𑨈 = 16 and 𑨈𑨈 = 14  results in very high error rates especially for the

NLOS area, which degrades remarkably the image quality. Then, the system using the lowest

order modulation, with the RCPC code rate 𑨈𑨈 = 12 , is more robust and makes better error

correction, which justifies its efficiency in a very noisy channel state. However, when the
channel is fair, this configuration loses its efficiency because of its low spectral efficiency, and
the high redundancy level. The CBP with link adaptation delivers a minimum PSNR quality
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of 34 dB, which is very acceptable, and can reach 37 dB for a good channel state. The results
confirm that making joint optimization of the system parameters is also advantageous for
scalable video transmission. Finally, sample frames are provided in Figure 9 to show these
video quality improvements.

Figure 8. PSNR evolution as a function of the receiver position for 4 × 4 CL-MIMO with CBP precoding and link adap-
tation strategies in the case of “Foreman” video.

Figure 9. Example of reconstructed frames for Foreman video for CBP precoding with link adaptation ((a) and (c))
compared to a static scheme with 16-QAM modulation and rate 1/2 channel code ((b) and (d)).

3.4. Soft-decoding methods for image transmission

As specified in Section 2.1, joint source channel decoding is also a good solution to improve
the image/video reconstruction quality. While CBP and link adaptation focused on how to
transmit efficiently the image/video compressed information, soft decoding algorithms can
enhance the quality of the reconstructed data without introducing extra redundancy. The aim
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of this section is to improve the performance of JPWL image transmission over highly
corrupted noisy channels.

We focus on a system where the image is compressed with a JPEG2000 encoder, then protected
by a RS code, and finally modulated and transmitted on single antenna noisy channel. Unlike
conventional hard decoding methods, no decision has to be made on the received samples.
The latter gives an extra information about the decision reliability, which can be exploited to
further improve the system decoding performance. Algorithms that exploit such extra
information are called soft decoding methods. To achieve a maximum gain, soft decoding
methods will be used for RS decoding and JPWL arithmetic decoding.

Let us consider a statistical Rayleigh fading channel with binary-phase shift keying (BPSK)
modulation. Based on the channel soft outputs, we can apply soft-input RS decoding using the
well-known Chase decoder. Since we need also to make soft-input arithmetic decoding, the RS
decoder should deliver an estimate for the probabilities of its decoded sequence elements. This
can be made using a soft-input soft-output (SISO) RS decoder. The most used RS SISO decoder
is the Chase II algorithm [46] where different test sequences are built by switching all the binary
combinations over the 𝀵𝀵𝀵𝀵 least reliable bits. After decoding all the test sequences, the decoded

sequence d will be the one having the minimum Euclidian distance with reference to the
received sequence. Finally, soft outputs are computed bit-by-bit based on the difference
between d and the valid competing sequence. We notice that increasing 𝀵𝀵𝀵𝀵 results in a better

decoding performance and also a more accurate soft-outputs computation, but higher
complexity.

Figure 10. PSNR evolution as a function of the signal-to-noise ratio for the JPWL image transmission over a Rayleigh
channel with soft decoding algorithms.

We recall that the JPEG2000 encoder uses two main components after the wavelet transform
and quantization. Tier 2 arranges the compressed stream, and Tier 1 makes lossless arithmetic
compression using MQ encoder. Then, we will have to re-arrange the reliabilities delivered by
the RS SISO decoder to reconstruct the MQ-decoder soft inputs. A soft-input decoding can be

Optimized Scalable Image and Video Transmission for MIMO Wireless Channels
http://dx.doi.org/10.5772/64924

239



applied based on a modified Chase decoder. The main differences between the RS and the MQ
Chase decoding operations reside in the error detection mechanism. While RS Chase decoder
focuses on valid code-words based on redundancy, the MQ decoder uses the variable-length
encoding property to detect invalid sequences. Finally, the decoded sequences will be used to
reconstruct the original image.

To investigate the proposed decoder performance, we use the grayscale test image Lenna
512 × 512 pixels. The latter is compressed with a JPEG2000 encoder to a  bpp source rate. The
obtained packets are then protected using a RS(37,32), to achieve an overall rate of 1 bpp. When
received with no errors, the image reconstruction leads to a maximum PSNR of 39.3 dB.
However, in the case of corrupted channels, the results should depend on the SNR.

Figure 10 presents the evolution of the mean reconstructed image PSNR as a function of the
channel SNR for different decoders having equivalent 1 bpp overall rate. It is obvious that the
results are better for an increasing SNR, but the curves are not the same. Moreover, if no RS
channel coding is used (green and red curves), the system performance is very low; however,
the soft-input arithmetic decoding induces almost a 3 dB PSNR improvement. Using the error-
correcting RS code with hard decoding (blue curve) improves the system performance
remarkably. Indeed, using the soft decoding algorithms can make extra improvements. In fact,
when applying soft-input RS decoding while keeping hard MQ decoding, we can achieve
almost a 12 dB gain at /0 = 10  dB. Furthermore, using soft decoding algorithms for RS
and MQ decoding can further improve the image quality by 5 dB at the same SNR. Finally,

Figure 11 provides sample reconstructed images for a signal-to-noise ratio of 
0 = 10   𝀵𝀵𝀵𝀵  for

conventional hard decoding and the presented soft decoding methods. It is obvious that the
PSNR gain is also justified by a remarkable visual quality improvement.

Figure 11. Examples of the reconstructed images in the case of hard and soft decoding.

We investigated in this section the main improvements we can reach by using soft decoding
algorithms for a single antenna system. The next steps include the extension of these results
to a CL-MIMO system using CBP precoding with link adaptation, which is under investigation.
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4. Conclusions and future work

In this chapter, we showed that cross-layer APP-PHY design could be very advantageous to
guarantee a good image/video quality even after transmission over a highly corrupted and
varying MIMO wireless channel. We demonstrated that this is possible by making accurate
optimization of different scalable techniques such as UEP, UPA, adaptive modulation, and
scalable image/video compression. Moreover, we established the efficiency of the proposed
optimization procedure for JPWL image compressed data, and for H264/SVC video com-
pressed content. Finally, we emphasized that using soft decoding methods can provide
remarkable quality gains while keeping the same throughput.

Future work includes the extension of the optimization process to more general networks
including cooperative communication and wireless multimedia sensor networks. On the other
hand, the proposed contributions are validated for JPEG2000 and H264 encoders, and they can
be generalized to new standards like HEVC.
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Abstract

High-efficiency video coding (HEVC or H.265) is the latest video compression standard
developed by the joint collaborative team on video coding (JCT-VC), finalized in 2013.
HEVC can achieve an average bit rate decrease of 50% in comparison with H.264/AVC
while still maintaining video quality. To upgrade the HEVC used in heterogeneous
access networks, the JVT-VC has been approved scalable extension of HEVC (SHVC) in
July 2014. The SHVC can achieve the highest coding efficiency but requires a very high
computational complexity such that its real-time application is limited. To reduce the
encoding complexity of SHVC, in this chapter, we employ the temporal-spatial and
inter-layer correlations between base layer (BL) and enhancement layer (EL) to predict
the best quadtree of coding tree unit (CTU) for quality SHVC. Due to exist a high
correlation between layers, we utilize the coded information from the CTU quadtree in
BL, including inter-layer intra/residual prediction and inter-layer motion parameter
prediction, to predict the CTU quadtree in EL. Therefore, we develop an efficient CTU
decision method by combing temporal-spatial searching order algorithm (TSSOA) in
BL and a fast inter-layer searching algorithm (FILSA) in EL to speed up the encoding
process of SHVC. The simulation results show that the proposed efficient CTU decision
method can achieve an average time improving ratio (TIR) about 52–78% and 47–69%
for low delay (LD) and random access (RA) configurations, respectively. It is clear that
the proposed method can efficiently reduce the computational complexity of SHVC
encoder with negligible loss of coding efficiency with various types of video sequences.

Keywords: video standards, video compression, high-efficiency video coding
(HEVC), scalable high-efficiency video coding (SHVC), temporal-spatial correlation
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1. Introduction

With the advanced researches of electronic technology, the panels of 4K × 2K (or 8K × 4K) high-
resolution have become the main specification of large size digital TV in future. On the other
hand, with rapid development of Internet and mobile devices, more and more people browse
high-quality video content by smart phone or laptop, which greatly enrich people’s lives.
However, the currently state-of-the-art video coding standard H.264/advanced video coding
(AVC) is difficult to support the video applications of high definition (HD) and ultrahigh
definition (UHD) resolution. Therefore, a new video coding standard called high-efficiency
video coding (HEVC) has been standardized by the Joint Collaborative Team on Video Coding
(JCT-VC) jointly established by the ITU-T and ISO/IEC to satisfy the UHD requirement in
January 2013, and the first edition of HEVC was approved as ITU-T H.265 and ISO/IEC 23008-2
by JCT-VC [1]. The goal of H.265/HEVC is to achieve roughly 50% bitrate reduction over H.
264/AVC while still maintaining video quality [2–6]. The HEVC adopts the quadtree-struc-
tured coding tree unit (CTU), and each CTU allows recursive splitting into four equal coding
units (CUs) where each CU can have the prediction unit (PU) and transform unit (TU). The
HEVC can achieve the highest  coding efficiency but requires a very high computational
complexity so that it is difficult to be used for real-time applications. On the other hand,
traditional client-server video streaming has been unable to satisfy people’s ever-growing
demands for video applications using heterogeneous devices and networks including the
Internet and mobile network nowadays. To overcome this problem, scalable video coding
(SVC) can provide an attractive solution using a single bitstream to simultaneous serve various
devices with different display resolution and image fidelities. Therefore, to upgrade the HEVC
further used in heterogeneous access networks, the JVT-CT develops a scalable extension of
HEVC (SHVC) and is finalized in July 2014 [7, 8]. SHVC mainly includes spatial scalability,
temporal scalability and quality/signal-to-noise ratio (SNR) scalability. Based on the HEVC,
the SHVC scheme supports multi-loop solutions by enabling different inter-layer prediction
(ILP) mechanisms [9–12]. Although the SHVC can achieve the highest coding efficiency, it
requires a higher computational complexity than HEVC standard. As a result, the very high
encoding complexity of SHVC has become a main obstruction for the real-time services.

To reduce the computational complexity of the SHVC encoder, there are many fast methods
with negligible losses of image quality have been proposed recently [13–17]. Tohidypour et al.
reduced the coding complexity of spatial or SNR/quality/fidelity scalability in SHVC using an
adaptive range search method according to statistical properties [13–16]. Bailleul et al. speeded
up the encoding process in enhancement layer (EL) using a fast mode decision for SNR
scalability in SHVC [16]. Qingyangl et al. also proposed a fast encoding method using
maximum encoding depth based on the correlation between the base layer (BL) and EL for
SNR scalability in SHVC encoder and greatly reduce encoding time in BL and EL, respectively
[17]. Although these methods can reduce the complexity of the encoding process for SHVC in
different level with different complexity calculation method, their methods are used only in
the correlation of CU depth and modes existing in BL and EL. So, the complexity of the whole
encoder still has the room to be further reduced.
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To overcome the drawback of huge encoding computation in SHVC, we firstly propose a
temporal-spatial searching order algorithm (TSSOA) to speed up the encoding procedure in
BL. Second, we develop a fast inter-layer searching algorithm (FILSA) in EL to predict the CTU
quadtree structure. There are five encoded temporal-spatial causal neighbouring CTUs are
chosen to be predicted by the TSSOA in BL, which shows the searching priority order according
to the correlation values which are determined by values of statistic. Due to the less data
information and high correlation existing in residual image in EL, thus only three encoded
inter-layer causal neighbouring CTUs are chosen to be predicted by the FILSA in EL.

2. SHVC background

HEVC can greatly improve coding efficiency by adopting hierarchical structures of CU, PU
and TU. The CU depths can be split by coding quadtree structure of four level, and the CU
size can vary from largest CU (LCU: 64 × 64) to the smallest CU (SCU: 8 × 8). The CTU is the
largest CU. During the encoding process, each CTU block of HEVC can be split into four
equally sized blocks according to inter/intra-prediction in rate-distortion optimization (RDO)
sense. At each depth level (CU size), HEVC performs motion estimation and compensation
(ME/MC), transforms and quantization with different size. The PU module is the basic unit
used for carrying the information related to the prediction processes, and the TU can be split
by residual quadtree (RQT) at maximally three level depths which vary from 32 × 32 to 4 × 4
pixels. The relationship of hierarchical CU, PU and TU coding structure of HEVC is shown in
Figure 1 [2–6].

Figure 1. The relationship of hierarchical CU, PU and TU coding structure of HEVC [6].

In general, intra-coded CUs have only two PU partition types including 2N × 2N and N × N
but inter-coded CUs have eight PU types including symmetric blocks (2N × 2N, 2N × N, N ×
2N, N × N) and asymmetric blocks (2N × nU, 2N × nD, nL × 2N, nR × 2N) [4]. When only
using symmetric PU blocks, H.265/HEVC encoder tests seven different partition sizes includ-
ing SKIP, inter 2N × 2N, inter 2N × N, inter N × 2N, inter N × N, intra 2N × 2N and intra N ×
N for inter-slice as shown in Figure 2. The rate distortion costs (RDcost) have to be calculated
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by performing the PUs and TUs to select the optimal partition mode under all partition
modes for each CU size. Since all the PUs and available TUs have to be exhaustively
searched by rate-distortion optimization (RDO) process for an LCU, H.265/HEVC dramati-
cally increased computational complexity compared with H.264/AVC [4, 5]. The optimiza-
tion of the block mode decision procedure will result in the high computational complexity
and limit the use of HEVC encoders in real-time applications. Since the coding procedure for
HEVC is very complex, the coding procedure for SHVC is even more complex due to an
extension of HEVC.

Figure 2. The architecture of quadtree structured CUs and PU partitioning [6].

Based on the HEVC, the SHVC scheme supports both single-loop and multi-loop solutions by
enabling different inter-layer prediction (ILP) mechanisms [18, 19]. A typical architecture of
two-layer SHVC encoder is shown in Figure 3. However, SHVC encoder allows one BL and
more than one EL. Figure 3 illustrates how the decoded BL picture is used for prediction in EL
coding in a two-layer SHVC encoder. The input video of BL can be encoded or decoded with
HEVC coding tools. The decoded picture of BL is processed by the ILP module before being
sent to the decoded picture buffer (DPB) of EL. For the EL, the BL decoded picture which
obtained by ILP is called as the inter-layer reference (ILR) picture. The ILP module performs
inter-layer intra/residual prediction and inter-layer motion parameter prediction by upsam-
pling calculations. Furthermore, the discrete cosine transform/quantization (DCT/Q) and
inverse DCT/inverse quantization (IDCT/IQ) modules are further applied to inter-layer
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prediction residues for better energy compaction. The parameters used for such EL, shown as
ILP information in Figure 3, are multiplexed together with BL and EL bitstreams to form an
SHVC bitstream. For spatial scalability, the input high-resolution video sequence should be
down-sampled to get the low-resolution video sequence, but for SNR scalability, BL and EL
layer uses the same resolution video sequence. Therefore, there are larger redundancies
between different layers for quality (SNR) scalability. From the Reference [18], we can find that
the encoding complexity of HEVC is higher than that of H.264/AVC encoder. Therefore, the
computational burden of SHVC encoder is expected to be several times more than HEVC
encoder. Nowadays, it is an important topic to study how to reduce the computational
complexity of SHVC to achieve real-time applications.

Figure 3. A typical architecture of two-layer SHVC encoder.

3. Proposed CTU decision method

Each layer encoding process in SHVC can be considered similar with HEVC, except for the
enhancement layers using inter-layer prediction techniques. However, the computational
complexity of the HEVC encoder increases dramatically due to its recursive quadtree repre-
sentation to find the best CTU partition. Therefore, we can know that the computational
complexity of SHVC encoder is more than HEVC encoder. Thus, we utilize the temporal-spatial
correlation prediction in BL based on HEVC and inter-layer correlation prediction in EL to
develop an efficient CTU decision method to speed up SHVC encoding process.
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3.1. Temporal-spatial correlation in BL

As the frame rate highly increasing, the successive two frames have a stronger temporal-spatial
correlation. Figure 4 shows two certain frames of the test sequence encoded using low-delay
(LD) configuration in BL by the SHVC reference software (SHM 6.0) [21]. As shown in
Figure 4, the quadtree structures of the CTU in the current frame, for example Figure 4 (A0)
and 4(A′0), are the same as or similar to the split quadtree structures of the temporally co-
located coded CTUs of the previous frame shown in Figure 4. On the other hand, there are
also the same as or similar to the split structures of the spatial four neighbour CTUs in the
current frame, for example Figure 4(B–E). Figure 4 shows the corresponding five causal
encoded neighbouring CTUs (A–E) of the current CTU(X) in the temporal-spatial direction.

Figure 4. Examples of the quadtree structures of CTU between two successive frames in BL.

As observed and described above, there is always a high correlation existing encoded frames
in BL. In order to show the temporal-spatial correlation existing successive frames in BL, we
made statistical analysis about the optimal quadtree structure of encoded CTU in BLs. Figure 5
shows the corresponding five causal encoded neighbouring CTUs (BA∼BE) of the current
CTU(X) in the temporal-spatial direction in BL, respectively.

Figure 5. Corresponding five causal encoded neighbouring CTUs of the current CTU(X) in BL.
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Table 1 shows the probability distribution of the same CTU quadtree between temporal-spatial
neighbouring and current CTU in BL using quantization parameter QPBL = 32 and 100 frames
in the SHM 6.0. From Table 1, we can find that there is a high temporal-spatial correlation of
quadtree exists between two successive frames. Thus, when encoding the current frame in BL,
the current CTU can be predicted through the split quadtree structure of the co-located CTU
in the reference frame and the split quadtree structure of the spatial four already encoded
neighbouring CTUs in the current frame.

Sequence P(BA = BX)% P(BB = BX)% P(BC = BX)% P(BD = BX)% P(BE = BX)%

Vidyo1 77.15 73.03 56.01 61.39 55.63

Vidyo3 76.07 70.09 55.59 61.59 55.02

Vidyo4 72.44 67.34 53.06 58.76 52.82

Kimono 33.71 30.55 22.49 27.51 22.13

ParkScene 35.80 36.81 29.67 34.60 29.10

Basketball 46.01 49.42 39.68 43.38 40.55

Cactus 52.69 48.57 39.69 45.35 40.43

BQTerrace 45.85 45.57 35.42 40.45 35.79

Average 54.97 52.92 41.45 46.63 41.43

Table 1. The probability distribution of the same CTU quadtree between temporal-spatial neighbouring and current
CTU using QPBL = 32.

3.2. Inter-layer correlation between BL and EL

As described in Section 2, there is always a strong inter-layer correlation when adopting layer-
based encoding structure. In the same situation for SHVC, we can expect that there exists a
high inter-layer correlation between BL and EL when using quality scalability configuration,
which BL and ELs have the same resolution with different QP. In order to find the inter-layer
correlation between BL and EL, we statistically analyse the split quadtree structures of encoded
CTU in BL and EL with different video sequences. In this experiment, we find that there exists
a high inter-layer correlation between BL and EL. The results we got are similar to temporal-
spatial correlation in BL. Figure 6 shows the examples of the quadtree structures of CTU
between BL and EL in the same frame. As shown in Figure 6, the quadtree structures of the
CTU in the BL, for example Figure 6(X0) and (X1), are the same as or similar to the split quadtree
structures of the corresponding co-located coded CTUs, Figure 6 (X′0) and (X′1) in the EL.

Figure 7 shows the corresponding six causal encoded neighbouring CTUs E′x,  EB EE) and

CTU(BA) of the current CTU(X) in the temporal-spatial direction in EL and in the inter-layer
between EL and BL, respectively.
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Figure 6. Examples of the quadtree structures of CTU between BL and EL in the same frame.

Figure 7. Example of the corresponding six causal encoded neighbouring CTU between BL and EL.

In the same procedure as BL, to show the inter-layer correlation existing in the same frame
between BL and EL, we made statistical analysis about the optimal quadtree structure of
encoded CTU between EL and BL. In addition, we also made statistical analysis for the
temporal-spatial correlation existing successive frames in EL at the same time. Table 2 shows
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the probability distribution of the same CTU quadtree between BL and EL using QP(BL, EL) =
QP(32, 28) in the SHM 6.0. In the same situation, we can find that there is a high inter-layer
correlation exists between BL and EL. Since there is a high correlation between BL and EL, the
encoded CTU quadtree of the BL frames can be utilized to speed up the process of selecting
the best predicted CTU quadtree for the corresponding EL frames [20]. Besides, the already
encoded neighbouring CTUs in the EL are valuable for predicting the quadtree of the current
CTU. Therefore, the temporal-spatial neighbouring encoded CTUs in the EL and the inter-layer
corresponding encoded CTU in the BL are used to predict the current CTU in EL. From
Table 2, we can find that there is a higher inter-layer correlation exists between BL and EL
except for temporal-spatial correlation in EL. In addition, we also find that the probability
distributions of CTU(Ec), CTU(EE) and CTU(E′x) are almost the same and less than the others.

For simplicity, when encoding the current frame in EL, the current CTU(X) can be interlayer
predicted by the split quadtree structure of CTU in BL and then predicted through the split
quadtree structure of the two split structure of the spatial already encoded neighbouring CTUs
in EL.

Sequence P(BA = EX)% P(EB = EX)% P(EC = EX)% P(ED = EX)% P(EE = EX)% P(EX′ = EX)%

Vidyo1 74.88 60.41 44.10 51.54 45.23 48.37

Vidyo3 74.03 61.53 44.50 51.74 44.23 46.84

Vidyo4 75.59 63.57 45.89 51.31 45.06 49.19

Kimono 32.52 32.18 24.06 27.95 23.38 26.58

ParkScene 41.45 27.53 21.56 26.35 19.77 23.67

Basketball 53.44 47.70 33.22 37.08 32.24 37.73

Cactus 54.31 43.69 35.40 41.09 35.93 36.51

BQTerrace 39.30 27.87 20.08 23.27 21.00 22.71

Average 55.69 45.56 33.60 38.79 33.35 36.45

Table 2. The probability distribution of the same CTU quadtree between inter-layer neighbouring and current CTU
using QP(BL, EL) = QP(32, 28).

3.3. Fast SHVC encoder using efficient CTU decision

3.3.1 Temporal-spatial searching order algorithm (TSSOA)

To speed up the encoding process of SHVC in BL, we propose a temporal-spatial searching
order algorithm (TSSOA) which utilizes the characteristics of natural video sequence existing
strongly temporal and spatial correlation. In this work, the five causal neighbouring encoded
split quadtree structures of CTUs shown in Figure 5, on temporal-spatial direction, are firstly
chosen as candidates for the current CTU encoding in BL. Figure 8 shows the search priority
order according to the sorted correlation values determined by experiments from Table 1.
Block 1 represents the temporal neighbour, and blocks 2–5 denote spatial neighbours in
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horizontal, vertical, 45 and 135 diagonal directions. To determine whether a candidate split
structure of the CTU is good enough for the current CTU, we check compute the RD cost using
the predicted split structure. After the candidate split structure (one of blocks 1–5) is found,
we check whether it is good enough for the current CTU by comparing its RD cost with a
threshold (Thr). If it is less than the threshold, the candidate is good enough for the current
CTU. Otherwise, it implies that the temporal-spatial correlation is low and a full recursive
process is needed to find the optimal split quadtree structure of the current CTU.

Figure 8. The search priority order.

The flow chart of the proposed TSSOA is shown in Figure 9.

Figure 9. The flow chart of the proposed TSSOA.

The proposed TSSOA in the fast encoding for SHVC can be summarized as follows:

Step 1. Set a threshold (Thr) value according to QP.

Step 2. Encode the BL of SHVC using TSSOA. If the RDcost computed by priority order 1 is
less than Thr, go to step 6. Otherwise, go to step 3.
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Step 3. If it is last neighbouring CTU, go to step 5. Otherwise, go to step 4.

Step 4. Compute RDcost of next neighbouring CTU in the priority order (2–5), if the RDcost
less than Thr, go to step 6. Otherwise, go to step 3.

Step 5. Use the original RDO module to prune the best CTU quadtree of the current CTU.

Step 6. Record the best CTU quadtree and corresponding parameters of BL.

3.3.2. Fast inter-layer searching algorithm (FILSA)

For fast EL encoding, we use the fast inter-layer searching algorithm (FILSA) between BL and
EL to predict the split quadtree structure of CTU for the current CTU in EL. Due to the less
data information and very high correlation existing in residual image in EL, thus only three
causal neighbouring split quadtree structure of CTUs shown in Figure 10 are chosen as the
candidates. This is because we find that there is a highest inter-layer correlation existing
CTU(BA), CTU(EB) and CTU(ED). In other words, we eliminate CTU(EC), CTU(EE) and CTU(Ex′)
as candidates since their probability distributions are almost the same and less than the others.
Therefore, when encoding the current frame in EL by FILSA, the current CTU(X) can be
interlayer predicted by the split quadtree structure of CTU in BL and then predicted through
the two split quadtree structure of the spatial already encoded neighbouring CTUs in EL. The
FILSA determines that split quadtree structure of CTUs is the best candidate for the current
CTU in EL, and it computes the RD costs from the predicted split quadtree of CTUs and selects
the minimum RD cost as the best split quadtree of CTU(EX). From our experiments, we can
verify the encoding performance with negligible decrease when only utilizes three candidates
as shown in Figure 10.

Figure 10. Three causal neighbouring split quadtree structure of CTUs as candidates.
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3.3.3. Fast SHVC encoder

Based on the proposed TSSOA and FILSA in BL and EL encoding procedure, respectively, we
can develop a fast SHVC encoder using efficient CTU decisions. First, we utilize the TSSOA to
speed up the encoding procedure in BL. Second, we employ the FILSA to predict the CTU
quadtree structure in ELs. Therefore, we can implement an early termination (ET) for split
quadtree search using an efficient CTU decision method based on combining the proposed
TSSOA and FILSA. The proposed SHVC encoder does not need to go through all the modes,
thus significantly reducing the computational complexity. The flow chart of the proposed fast
SHVC encoder is shown in Figure 11.

Figure 11. The flow chart of the proposed fast SHVC encoder.

4. Simulation results and discussion

For the performance evaluation, we assess the total execution time of the proposed method in
comparison with those of the SHM 6.0 [21] in order to confirm the reduction in computational
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For the performance evaluation, we assess the total execution time of the proposed method in
comparison with those of the SHM 6.0 [21] in order to confirm the reduction in computational
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complexity. The system hardware is Intel (R) Core(TW) CPU i5-3350P @ 3.10 GHz, 8.0 GB
memory, and Window XP 64-bit O/S. Additional details of the encoding environment are
described in Table 3.

Test sequences Class A (2560 × 1600): Traffic

Class B (1920 × 1080): Kimono, ParkScene, Cactus, BasketballDrive and BQTerrace

Class C (832 × 480): BasketballDrill, BQMall, PartyScene

Total frames 100 frames

Quantization parameter QP(BL, EL) (22, 20), (32, 28), (36, 32) and (40, 36)

Software SHM 6.0

Scenario Low delay (LD), random access (RA)

Table 3. Test conditions and software reference configurations.

The performance of our proposed complexity reduction method is compared with that of the
unmodified SHVC encoder in terms of encoding time, impact on bitrate and peak signal-to-
noise ratio of Y component (PSNRY). Note that for each video sequence, the encoding time is
reported for the total time (BL + EL). The coding performance is evaluated based on ΔBitrate,
ΔPSNRY and time improving ratio (TIR), respectively, which are defined in Eqs. (1–3) and
described as follows:

proposed SHM6.0

SHM6.0

Bitrate  Bitrate
Bitrate   100%,

Bitrate
-

D = ´ (1)

where the ratio of encoding bitrate reduction is represented by ΔBitrate, and Bitrateproposed and
BitrateSHM 6.0 represent the encoding bitrate of the proposed method and the conventional
method based on the SHM 6.0 reference software, respectively.

proposed HM6.0PSNRY  PSNRY   PSNRYD = - (2)

where ΔPSNRY is the ratio of encoding quality reduction, and PSNRYproposed and PSNRYHM 6.0

represent the proposed method and the SHM 6.0, respectively.

proposed SHM6.0

SHM6.0

TIME  TIME
TIR   100%

TIME
-

= ´ (3)

where TIR is the ratio of encoding time reduction, and TIMEproposed and TIMESHM 6.0 represent
the proposed method and the SHM 6.0, respectively. Encoding time is usually used to measure
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the computational complexity of the SHVC encoder, and thus, a TIR measurement is adopted
to assess our proposed fast method.

The value of the threshold (Thr) for TSSOA is an important parameter in BL encoding, which
affects the coding performance of the proposed algorithm. A lower value of means that more
RDOs are performed to prune the best CTU quadtree, and thus, more time is spent to encode
them and a closer quality to that of SHM 6.0 will be obtained. However, since the proposed
fast algorithm is very desirable for achieving a real-time implementation of SHVC encoder,
we focus on the improvement performance of encoding time. We have conducted several
experiments with different values of Thr to study the effect of varying t on the resulting TIR
for test sequences shown in Table 3. Figure 12 shows the average curve of TIR vs. ThrQP for
QPBL = 32 which indicates that the TIR is approximately the same for all ≥ 350,000. From our
experiment results, we find that there are high dependent relationships existing resulting
curves with various QPs. Since different QPBLs could yield different average curves for TIR vs.
ThrQP, the thresholds are expected to be QP-dependent. Furthermore, it can be easily observed
form our intensive experiments that there is a linear relationship between the threshold values
and the various QPBL values. To mathematically model this relationship which essentially
performs polynomial fitting to approximate a linear function, a linear regress model is used
to derive the formula as [20]

(4)

where λ = 0.4845 × 2(QP–12)/3 is defined in SHVC specification [5].

Figure 12. The average curve of TIR vs. ThrQP for QPBL = 32.

Tables 4–7 tabulate the performances obtained by testing the SHM 6.0 and the proposed
method with different quantization parameter pairs when uses the random access (RA) and
LD scenarios, separately. The simulation results show that the proposed algorithm can reduce
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the computational complexity of CTU quadtree pruning of SHVC about 34∼71% when
compared to SHM 6.0. From Tables 4–7, we find that the proposed fast SHVC encoder can
further achieve an average TIR about 47∼78%. In addition, we can observe that the encoding
time improving is more efficient when the value of QP pairs increases. This is because the
quantization error is too large that results in the lower temporal-spatial and inter-layer
correlation. Furthermore, as can be seen in Tables 4–7, they also show that the TIR of CU
module for Kimono and BasketballDrive sequences tested by different methods with different
QP values has higher encoding reduction improvement. This is because backgrounds of these
two sequences are slowly changed and the movements are rather homogenous.

QP(22, 20) RA LD

Sequence Proposed/SHM 6.0 Proposed/SHM 6.0

ΔBitrate (%) ΔPSNRY (dB) TIR (%) ΔBitrate (%) ΔPSNRY (dB) TIR (%)

Traffic 2.95 −0.17 −29.13 2.19 −0.13 −36.13

Kimono 0.90 −0.12 −62.27 0.76 −0.09 −64.45

ParkScene 1.04 −0.14 −42.41 0.92 −0.11 −46.62

Cactus 1.49 −0.15 −45.33 1.27 −0.09 −45.10

BasketballDrive 2.78 −0.18 −46.81 2.48 −0.15 −63.06

BQTerrace 2.09 −0.11 −42.24 1.86 −0.10 −50.62

BasketballDrill 0.34 −0.13 −50.64 0.28 −0.10 −55.63

BQMall 0.81 −0.11 −50.37 0.74 −0.10 −51.39

PartyScene 0.47 −0.13 −50.70 0.32 −0.09 −52.17

Average 1.93 −0.14 −46.66 1.21 −0.11 −51.68

Table 4. Comparison of the proposed method with SHM 6.0 using QP(22, 20).

QP(32, 28) RA LD
Sequence Proposed/ SHM 6.0 Proposed/ SHM 6.0

ΔBitrate (%) ΔPSNRY (dB) TIR (%) ΔBitrate (%) ΔPSNRY (dB) TIR (%)

Traffic 6.64 −0.21 −43.06 6.18 −0.17 −65.18

Kimono 1.87 −0.13 −71.26 1.38 −0.11 −78.61

ParkScene 3.62 −0.15 −62.06 3.34 −0.13 −56.95

Cactus 5.69 −0.17 −57.69 5.07 −0.15 −70.06

BQTerrace 5.96 −0.16 −56.64 5.46 −0.13 −58.60

Basketball 3.10 −0.13 −60.03 2.82 −0.11 −70.77

BQMall 2.81 −0.14 −58.96 2.74 −0.12 −64.49

PartyScene 2.21 −0.15 −58.52 1.97 −0.13 −44.06

Average 4.28 −0.16 −59.96 3.88 −0.13 −65.18

Table 5. Comparison of the proposed method with SHM 6.0 using QP(32, 28).
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QP(36, 32) RA LD
Sequence Proposed/SHM 6.0 Proposed/SHM 6.0

ΔBitrate (%) ΔPSNRY (dB) TIR (%) ΔBitrate (%) ΔPSNRY (dB) TIR (%)
Traffic 5.98 −0.17 −52.32 5.71 −0.14 −65.77

Kimono 3.84 −0.11 −78.23 3.46 −0.09 −83.23

ParkScene 4.27 −0.12 −66.29 3.93 −0.10 −75.21

Cactus 5.14 −0.14 −65.36 4.83 −0.11 −66.22

BasketballDrive 7.53 −0.16 −76.68 7.21 −0.13 −81.00

BQTerrace 5.89 −0.11 −63.88 5.27 −0.09 −73.99

BasketballDrill 2.70 −0.13 −65.70 2.38 −0.13 −82.49

BQMall 3.87 −0.14 −58.77 3.40 −0.11 −66.90

PartyScene 4.02 −0.12 −61.34 3.77 −0.10 −67.13

Average 5.14 −0.13 −65.73 4.44 −0.11 −73.55

Table 6. Comparison of the proposed method with SHM 6.0 using QP(36, 32).

QP(40, 36) RA LD
Sequence Proposed/SHM 6.0 Proposed/SHM 6.0

ΔBitrate (%) ΔPSNRY (dB) TIR (%) ΔBitrate (%) ΔPSNRY (dB) TIR (%)
Traffic 8.04 −0.18 −63.00 7.13 −0.14 −77.74

Kimono 5.06 −0.14 −80.04 4.51 −0.12 −85.82

ParkScene 5.12 −0.13 −71.59 4.37 −0.11 −79.71

Cactus 7.33 −0.15 −72.93 5.88 −0.12 −78.36

BasketballDrive 8.26 −0.16 −75.92 7.43 −0.14 −82.27

BQTerrace 7.21 −0.15 −65.76 6.14 −0.15 −75.33

BasketballDrill 4.15 −0.14 −68.43 3.72 −0.13 −76.01

BQMall 4.86 −0.15 −60.40 4.06 −0.13 −69.86

PartyScene 4.22 −0.13 −66.15 3.49 −0.11 −74.52

Average 6.03 −0.15 −69.36 5.19 −0.13 −77.74

Table 7. Comparison of the proposed method with SHM 6.0 using QP(40, 36).

In summary, the results show the superiority of our proposed fast efficient CTU decision
including TSSOA and FILSA over the state-of-the-art unmodified SHVC method.

5. Conclusions

In this chapter, we proposed a fast encoding method using temporal-spatial correlation and
inter-layer correlation to reduce the encoding complexity for quality SHVC. In our scheme, the
split quadtree information of the BL is utilized to facilitate the prediction of split CTU quadtree
selection process in the ELs by avoiding redundant computations. Performance evaluations
show that our approach results in significant SHVC coding complexity reduction (up to
77.74%, on average) while minimally hampering the overall bitrate.
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