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The finite element method (FEM) is a numerical technique for finding approximate 
solutions to different numerical problems. The practical applications of FEM are 

known as finite element analysis (FEA). FEA is a good choice for analyzing problems 
over complicated domains. The first three chapters of this book contribute to the 

development of new FE techniques by examining a few key hurdles of the FEM and 
proposing techniques to mitigate them. The next four chapters focus on the close 
connection between the development of a new technique and its implementation. 

Current state-of-the-art software packages for FEA allow the construction, refinement, 
and optimization of entire designs before manufacturing. This is convincingly 

demonstrated in the last three chapters of the book with examples from the field of 
biomechanical engineering.

This book presents a current research by highlighting the vitality and potential of the 
finite elements for the future development of more efficient numerical techniques, new 

areas of application, and FEA’s important role in practical engineering.
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Preface

The finite element method (FEM) is a numerical technique for finding approximate solutions
to different numerical problems. It subdivides a large domain into smaller parts, called finite
elements (FEs). Each FE is modeled by simple equations. The assembly of all FE equations
into a large global system gives the solution to the original complex problem. Thus, instead
of tackling a complicated problem directly, FEM allows us to divide it into simpler and easi‐
ly solvable subproblems before working our way backward in order to combine the solu‐
tions and obtain a unique result for the system as a whole.

FEM is an extremely powerful technique, but we should bear in mind that it works via dis‐
cretization, which in some cases might present an inadequate approximation of the behavior
of a real physical structure. Therefore, we must always ensure that the discrete model mesh
is dense enough, to produce accurate outputs.

The practical applications of FEM are best known as finite element analysis (FEA). FEA’s
applications in the field of engineering always include the use of a software program that
carries out the necessary computations for the FEM algorithm. FEA is a good choice for ana‐
lyzing problems over complicated domains, when the domain changes, when the desired
precision varies over the entire domain, or when the solution is not smooth.

The first three chapters of this book contribute to the development of new FE techniques by
providing an insight into a few technical handicaps of the FEM and by proposing new com‐
putational techniques and algorithms to overcome them.

Prof. Grzegorz’s chapter titled “Problems of Hierarchical Modeling and hp-Adaptive Finite
Element Analysis in Elasticity, Dielectricity and Piezoelectricity” provides a universal meth‐
odology, in which applicability is demonstrated in the context of three physical problems.
The chapter presents the author’s hitherto accomplishments in hierarchical models and hp
approximations of linear elasticity onto dielectricity and piezoelectricity, including an error
estimation and an adaptivity control.

The second chapter by Prof. Mahboub “The discontinuous Galerkin Finite Element Method
for Ordinary Differential Equations: A priori and A posteriori Error Estimates, Superconver‐
gence, and Adaptivity” demonstrates the application of the original discontinuous Galerkin
finite element method for nonlinear ordinary differential equations with upwind fluxes. A
simple, computationally efficient, and asymptotically exact error estimator is developed, in‐
cluding a local adaptive mesh refinement procedure. The applicability of the proposed
method is illustrated with several numerical examples.

In the next chapter, Prof. Seyed and his colleague Khan study the natural frequencies of
double-walled carbon nanotubes for different boundary conditions. The nanotubes are mod‐



eled as both local and nonlocal Euler-Bernoulli beams coupled with van der Waals interac‐
tion forces. The universality of the proposed model is proven by its application to a double-
elastic Euler-Bernoulli beam. This formulation paves the way for FEM analysis of
multiwalled carbon nanotubes.

It is really important to develop new efficient computer algorithms for solving complex
problems and to demonstrate their practical applications in the modeling of different physic
phenomena. The following chapters highlight this close connection between the develop‐
ment of new techniques and their implementations.

First, Associate Prof. Ezgi investigates the influence of interface parameters on critical stress
transfer factors of material under tensile loading by using an existing commercial software
for FEA. Initially, a polypropylene short fiber is embedded into a polypropylene coethylene
cylindrical interface and later into the matrix material.

Next, Dr. Kurahashi and his team demonstrate numerical examples of a shallow water flow
estimation based on the Kalman filter FEM. They explore the influence of differently set ob‐
servation points on the final numerical results using lumped matrixes for triangular FEs and
adopting the Galerkin method.

Subsequently, Dr. Asatur and his colleagues analyze the nonuniform bending of single layer
cells of epithelial tissues, surrounding a number of organs in the human body. They model
thin epithelial tissues as membranes and the total elastic energy as a combination of stretch‐
ing and bending energies. Tissues of different shapes under specific assumptions are ex‐
plored using finite element discretization.

Finally, Dr. Sarkar together with his colleagues simulates contact instability, including crack
opening in soft thin films adopting FEM. They utilize FE techniques to overcome the hur‐
dles in the atomistic level and the analytical continuum simulations.

The state-of-the-art tools for solving problems via FEA allow practitioners to produce defor‐
mation and strength visualizations and to control the complexity of both modeling and anal‐
ysis of systems in simulations, as well as fine-tune numerous other options with very little
effort, thereby optimizing the investments in labor and resources for each analysis. In partic‐
ular, for engineering applications, the desired level of accuracy and the associated computa‐
tional time requirements can be managed simultaneously. Thus, FEA allows entire designs
to be constructed, refined, and optimized before manufacturing.

This book also marks the described above advantages of FEA implemented in the industry-
level software packages via examples from the field of biomechanical engineering.

Dr. Wong and his colleagues demonstrate the advantages of FEA in studying a potential
failure of mandible through reconstruction methods. They review the basic knowledge of
the mandible necessary to perform FEA, the challenges in studying this problem, and sever‐
al studies investigating it. The authors focus on FEA as a new method for mandibular recon‐
struction and implant evaluation.

The chapter “Evaluation of Adaptive Bone Remodeling after Total Hip Arthroplasty Using
Finite Element Analysis” by Dr. Yutaka and his colleagues compares equivalent stress and
strain energy density to bone mineral density in the femur after total hip arthroplasty using
subject-specific FEA. They show that FEA can predict adaptive bone remodeling after me‐
chanical loading changes. Furthermore, they evaluate the effects of two different types of
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stem geometries on load distribution and on bone mineral density with FEA. Their analysis
reveals that a large tapered wedge-type stem and stovepipe femur may be associated with
significant proximal bone mineral density loss.

Associate Prof. Roatesi studies the behavior of functional loadings for implant prosthetics
rehabilitation. She calculates stresses, displacements, and strains in the implant and the sur‐
rounding bone and thus assesses risk factors from a biomechanical perspective. Her analysis
determines the factors affecting the implant’s stability and succeeds in calculating safety fac‐
tors for different load cases.

Finally, we can conclude that this book undoubtedly states the power and numerous advan‐
tages of FEM for various applications. Current research points to the vitality and potential of
finite elements for further development in terms of both more efficient numerical techniques
and areas of application. FEM is many practitioners’ tool of choice since it allows for an ac‐
celerated initial prototype design and subsequent design refinements via optimization on
performance in numerical tests and simulations. Additionally, state-of-the-art algorithms al‐
low for short computation times for an affordable investment which further strengthens
FEM’s positions in the modern engineering world.
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Chapter 1

Problems of Hierarchical Modelling and hp-Adaptive

Finite Element Analysis in Elasticity, Dielectricity and

Piezoelectricity

Grzegorz Zboiński

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64892

Provisional chapter

Problems of Hierarchical Modelling and hp-Adaptive
Finite Element Analysis in Elasticity, Dielectricity and
Piezoelectricity

Grzegorz Zboiński

Additional information is available at the end of the chapter

Abstract

In this chapter, we consider theoretical and implementation difficulties in application
of the hierarchical  modelling and hp-adaptive finite element approach to elasticity,
dielectricity and piezoelectricity. The main feature of the applied methodology is its
generalizing character  which is  reflected by application of  the  same or  analogous
algorithms to three mentioned physical problems, including multi-physics problem of
piezoelectricity, simple and complex physical description as well as simple and complex
geometries. In contrast to the most common approaches dealing with a single physical
phenomenon, described by a single physical model, within a single geometrical part,
this  chapter  presents  the ideas  which brake and overcome such a  simplicity.  This
presented  chapter  generalizes  author’s  hitherto  accomplishments,  in  hierarchical
models and hp-approximations of linear elasticity, onto dielectricity and piezoelectricity.
The same refers to error estimation and adaptivity control. In this context, the main
similarities and differences of three physical problems are of interest in this work.

Keywords: physical complexity, elasticity, dielectricity, piezoelectricity, geometrical
complexity, model complexity, hierarchical modelling, finite elements, hierarchical ap-
proximations, error estimation, hp-adaptivity

1. Introduction

In this chapter of the book we extend our hitherto propositions concerning 3D-based hier-
archical models of liner elasticity onto 3D-based linear dielectric and piezoelectric media. In
the case of hierarchical models of linear elasticity we apply 3D-elasticity model, hierarchical

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



shell models, first-order shell model and the solid-to-shell or shell-to-shell transition models.
In the case of dielectricity we utilize 3D-dielectricity model, and the 3D-based hierarchical
dielectric  models  as  well.  The  piezoelectric  case  needs  combination  of  two  mentioned
mechanical and electric hierarchies, so as to generate the hierarchy of 3D-based piezoelectric
models. Any combination of the mentioned elastic and dielectric models is possible. As far as
the  hp-discretization  is  concerned  we  extend  the  ideas  of  hierarchical  approximations,
constrained approximations and the transition approximations of the displacement field onto
electric potential field of dielectricity or the coupled electro-mechanical field of piezoelectricity.
The mentioned approximations allow p-adaptivity (three-dimensional or longitudinal),  q-
adaptivity (transverse one), h-adaptivity (three-dimensional or two-dimensional ones) and
M-adaptivity (model adaptivity). The error assessment in three classes of problems is based
on  the  equilibrated  residual  methods  (ERM)  applied  to  total  and  approximation  error
estimations. The modelling error is obtained as a difference of the previous two errors. The
estimated  error  values  are  utilized  for  adaptivity  control.  The  adaptive  procedures  for
dielectricity and piezoelectricity are obtained through the generalization of the three- or four-
step strategies applied so far to the elasticity case. The difficulties in generalization of the
above-mentioned methods of hierarchical modelling, hp-approximations, error estimation and
adaptivity  control  onto  electrical  and electro-mechanical  problems are  addressed in  this
chapter.

2. Considered problems

In the chapter we consider five problems. The first three correspond to stationary problems of
mechanical, electric and electro-mechanical equilibrium of the elastic, dielectric and piezo-
electric media, respectively. The last two problems deal with free vibration problems of linear
elasticity and linear piezoelectricity.

2.1. Elastostatic problem

Let us start with the standard formulation of the linear elasticity [1]. The problem local
equations include equilibrium, constitutive and geometric relations:

,

, ,

= 0,

= ,

= 1 / 2( ),

ij j i

ij ijkl kl

ij i j j i

f
D

u u V

s

s e

e

+

+ Îx
(1)

where 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵, 𝀵𝀵𝀵𝀵, 𝀵𝀵𝀵𝀵, i,j,k,l = 1,2,3 are the elasticity constants tensor, and the stress and strain
tensors, respectively. The given vector of mass load is denoted as fi , while ui is the unknown
vector of displacements. The above equations hold in volume V of the body.

The standard boundary conditions for stresses and displacements are:
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where nj denotes components of the normal to the body surface S, composed of its loaded SP
and supported SW parts:  =  ∪ . The vectors pi and wi represent the given stresses and

displacements on SP and SW, respectively.

The equivalent variational formulation results from minimization of the potential energy of
the elastic body:

, , = +ò ò òijkl i j k l i i i iV V SP
D v u dV v f dV v p dS (3)

where vi represent admissible displacements conforming to the displacement boundary
conditions.

The above variational functional can be utilized in the derivation of the global finite element
equations of the form:

,q hp
M V S= +K q F F (4)

where , , , are the stiffness matrix within the mechanical equilibrium problem, and the

vectors of the nodal forces due to volume and surface loadings. The term , ℎ stands for the
nodal displacement degrees of freedom (dofs). The applied hierarchical q,hp-approximation
of displacements will be addressed in the next sections.

2.2. Electrostatic problem of dielectrics

The standard local formulation of linear dielectricity [2] consists of the Gauss law, here
corresponding to the lack of volume charges, the constitutive relation and the electric field 
definition:
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d E
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Above, 𝀵𝀵, i,j = 1,2,3 stands for the dielectric constants tensor, while 𝀵𝀵 denotes the electric

displacement vector. The scalar term  represents the electric potential field, searched in the
volume  of the dielectric.
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The boundary conditions for the electric displacements and electric potential read:

, ,
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i i Q

F

d n c S
Sf c

= - Î

= Î

x
x

(6)

where  and  are the given scalar values of the surface charge and electric potential on the
parts  and , respectively, of the surface  of the dielectric body ( =  ∪ ).
The corresponding variational formulation which reflects minimization of the potential electric
energy can be described as follows:

, , =ij i jV SQ
dV c dSg y f yò ò (7)

with  being the admissible electric potential conforming to the second boundary condition
of Eq. (6).

The finite element formulation can be expressed as follows:

,
  

h
E Q

r p =K Fj (8)

where  is the characteristic matrix of dielectricity,  denotes the characteristic nodal vector

of electric charges and , ℎ stands for the unknown nodal vector of electric potentials. The
hierarchical ρ,hπ-approximation of the potential will be explained later on in this chapter.

2.3. Stationary electro-mechanical problem

Formally, the local formulation of the piezoelectric problem of electro-mechanical equilibrium
[3] can be treated as a combination of the linear elasticity and linear dielectricity Eqs. (1) and (5):
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(9)

What couples both sets of equations are the modified constitutive relations, where the coupling
piezoelectric constants tensor 𝀵𝀵𝀵𝀵𝀵𝀵 appears.
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of electric charges and , ℎ stands for the unknown nodal vector of electric potentials. The
hierarchical ρ,hπ-approximation of the potential will be explained later on in this chapter.

2.3. Stationary electro-mechanical problem

Formally, the local formulation of the piezoelectric problem of electro-mechanical equilibrium
[3] can be treated as a combination of the linear elasticity and linear dielectricity Eqs. (1) and (5):
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What couples both sets of equations are the modified constitutive relations, where the coupling
piezoelectric constants tensor 𝀵𝀵𝀵𝀵𝀵𝀵 appears.

Perusal of the Finite Element Method4

The boundary conditions of the coupled problem are:
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The variational functional of the electro-mechanical problem consists of the terms of function-
als (3) and (7) completed with the terms describing the piezoelectric coupling through the
tensor 𝀵𝀵𝀵𝀵𝀵𝀵, i.e.
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The above variational formulation leads to the following finite element equations
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K  q K  F F

K  q K F

j
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(12)

where  is the characteristic matrix of piezoelectric coupling.

The above finite element equations correspond to a very general case when both the direct and
inverse piezoelectric phenomena are present. Substitution of the second Eq. (12) into the first

one leads to the single combined equation from which the nodal displacements , ℎ can be
calculated. The opposite substitution gives the combined equation from which the nodal

electric potentials , ℎ can be extracted. The first situation corresponds to the so-called
actuation action of the piezoelectric, while the second one to the sensing action of the piezo-
electric body. These two modes of action can be associated with the direct and inverse piezo-
electric phenomena, respectively.

2.4. Mechanical problem of free vibration

The local formulation of the free vibration problem of linear elasticity is composed of the
following equations
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where  is a density of the elastic body, while ̈ represents the acceleration vector. The

displacements are of harmonic character, i.e. ui = ai sin ωt, with  standing for the unknown
natural frequencies of the body and  denoting the searched displacement amplitudes.

The boundary conditions are:
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The variational formulation of the free vibration problem takes advantage of the Hamilton’s
principle and reads

2
, , = 0-ò ò ñijkl i j k l i iV V

D v a dV v a dVw (15)

The finite element formulation derived from the above variational functional represents a set
of uniform algebraic equations. Such a set possesses a solution if the following characteristic
equation is fulfilled:

2det( ) 0M w- =K M (16)

From this equation  natural frequencies ,  = 1,2,…, can be calculated, where  is the total

number of degrees of freedom of the vibrating elastic body. Above, M represents the mass (or
inertia) matrix.

For each natural frequency  the nodal vector of displacement amplitudes , ℎ can be

determined with use of the below finite element equations:
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The second relation above is the normalization condition, completing 𑨒𑨒 𑨒𑨒 1 geometrically
independent finite element equations of the first relation.

2.5. Coupled problem of free vibration

We start here with the local (strong) formulation of the undamped vibration problem of the
piezoelectric medium

,
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completed with the following boundary conditions of the coupled electromechanical field
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In the case of stationary mass  = () and surface  = () loadings and charges  = (),
and the stationary displacement  = () and electric potential  = () boundary conditions

as well, the problem converts into two independent ones. The first of them is exactly the
stationary task of the electro-mechanical equilibrium defined with the local formulation (9)
and (10). The corresponding variational and finite element formulations are exactly described
with Eqs. (11) and (12), respectively. The solution in displacements  = () to this stationary

problem determines the equilibrium state around which the free vibrations of the piezoelectric
are performed. This solution allows the determination of the initial stresses 𝀵𝀵 = 𝀵𝀵(u) which

are taken into account in the second problem of free vibration.

The local formulation of the mentioned free vibration problem of the piezoelectric can now be
determined in the following way:
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where the displacement and the coupled potential fields are: ui = ai sin ωt and ϕ = α sin ωt,
respectively, with  and  standing for the displacement and potential amplitudes.

The above set of differential equations has to be completed with the boundary conditions of
the form
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The equivalent variational formulation of the problem reads
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while the corresponding finite element equation describing free vibration of the initially
stressed piezoelectric medium is
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where , ℎ and , ℎ represent the nodal, displacement and electric potential, amplitude
degrees of freedom, while  stands for the so-called geometric stiffness matrix due to the

initial stresses.

As the above set of linear algebraic equations is homogeneous, the solution to it can be obtained
if and only if the following characteristic equation:
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The equivalent variational formulation of the problem reads
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while the corresponding finite element equation describing free vibration of the initially
stressed piezoelectric medium is
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where , ℎ and , ℎ represent the nodal, displacement and electric potential, amplitude
degrees of freedom, while  stands for the so-called geometric stiffness matrix due to the

initial stresses.

As the above set of linear algebraic equations is homogeneous, the solution to it can be obtained
if and only if the following characteristic equation:
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1 2det( ) = 0T
M G C E C w-+ + -K K K K K M (24)

is fulfilled. This equation has been obtained after substitution of the second relation (23) into

the first one. This allows to remove electric potential amplitudes , ℎ from the combined
equation. From this equation  = 1,2,…, natural frequencies  can be obtained, where is

the total number of degrees of freedom within the mechanical field.

The corresponding  normalized mode shapes can be obtained from

1 2
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M G C E C n n

q hp T
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hp
n
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(25)

where the normalization condition, the same as in (17), has been applied.

3. Complexity of the modelling

There are three types of complexity considered in this chapter. The first one deals with physical
complexity which consists in the presence of more than one physical phenomenon in the
problem. The second complexity refers to geometry of the domain under consideration. The
geometry is regarded as a complex one if more than one type of geometry is applied. One may
deal with a three-dimensional geometry, thin-walled geometry and transition geometry, for
example. The third type of complexity is model complexity. In this case, one employs more
than one model for description of at least one physical phenomenon under consideration.
Combination of these three types of complexity can be regarded as a unique feature of the
presented research.

The examples of such complex modelling are electro-mechanical systems composed of
geometrically complex elastic structures, joined with the geometrically complex piezoelectric
actuators or sensors. In the general case of arbitrary geometry, such systems may require
complex mechanical and electro-mechanical description.

3.1. Physical complexity

There are two physical sub-systems present in the considered electro-mechanical systems. The
first sub-system concerns bodies subject to elastic deformation and representing structural or
machine elements, while the second one concerns piezoelectric bodies acting as actuators or
sensors, where the direct or inverse piezoelectric phenomena take place.

3.2. Geometrical complexity

In both, mechanical and piezoelectric, sub-domains we deal with the complex geometry of the
structural and piezoelectric elements. In the case of the structural elements, they can be three-

Problems of Hierarchical Modelling and hp-Adaptive Finite Element Analysis in Elasticity, Dielectricity...
http://dx.doi.org/10.5772/64892

9



dimensional bodies, bounded with surfaces, thin- or thick-shell bodies [4] and solid-to-shell
transition bodies. In the case of the piezoelectric members, they can be of three-dimensional,
symmetric-thickness or transition character. The shell or symmetric-thickness elements are
defined by means of the mid-surface and thickness concepts. In the case of both transition
members, we deal with three-dimensional geometry, bounded with surfaces, apart from the
boundary to be joined with the shell or symmetric-thickness elements. On this superficial
boundary part the mid-surface and the symmetric thickness function have to be defined.

3.3. Model complexity

In the case of the mechanical sub-system complex geometry, the mechanical description may
include: three-dimensional elasticity model, hierarchical shell models, the first-order shell
model and the solid-to-shell or shell-to-shell transition models. The latter two models allow
joining the first-order shell domains with the 3D elasticity and hierarchical shell ones, respec-
tively. In the case of the piezoelectric sub-system, the dielectric model can either represent
three-dimensional dielectricity or hierarchical symmetric-thickness dielectric models. The
piezoelectric model can be any combination of the listed elastic and dielelectric models.

4. The applied methodology

There are five related aspects of the presented methodology of adaptive hierarchical modelling
and adaptive ℎ-finite element analysis of elastic, dielectric and piezoelectric bodies. The first
of them is the 3D-based approach proposed in [5]. The second issue, i.e. hierarchical mechanical
models were initiated in [6], further developed in [7] and finalized in 3D-based version in [8],
while the electric models were introduced in [9] for laminated piezoelectrics and in [10] for
dielectrics. General rules of the next aspect of hierarchical approximations were given in [11].
Such approximations for hierarchical shells were developed in [7] and for complex struc-
tures in [8]. The latter work generalizes the former attempts given in [12–15]. Approximations
for piezoelectric problems were elaborated in [9, 16]. The next issue of error estimation by the
equilibrated residual method [17] for 3D elasticity was addressed in [18], for the hierarchical
shells in [19], for the 3D-based first-order shells in [20, 21] and for the 3D-based complex
structures in [22]. Application of the method in electric problems was proposed in [23]. Finally,
adaptivity control with the three-step strategy for simple structures was presented in [24],
while adaptivity for simple piezoelectrics was introduced in [25]. The first work was extended
onto the 3D-based complex structures in [22].

4.1. 3D-based approach

The applied 3D-based approach [5, 8] lies in application of only three-dimensional degrees of
freedom (dofs) regardless of the applied mechanical or electric models. This means that the
conventional mid-surface dofs of the shell models, i.e. mid-surface displacements, rotations
and other generalized displacement dofs of the mid-surface, are replaced with the equivalent
through-thickness displacement dofs similar to the three-dimensional dofs of the 3D elasticity
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model. Also the mid-surface dofs of the two-dimensional dielectric theory are replaced with
the through-thickness electric potential dofs of the three-dimensional dielectrics.

The equivalence of the displacement mid-surface dofs and the through-thickness dofs can be
expressed through:

3 3
0 0

   ( ) 
I I

m m m
j j m j

m m

u s t ux x
= =

¢ ¢ ¢ ¢ ¢= =å å (26)

where  represents the local, tangent ( = 1,2) and normal ( = 3), displacement fields. The
terms  and tm  stand for the mth power of the local, normal coordinate  (  = 0 on the
mid-surface) and the mth polynomial through-thickness function of this coordinate, respec-

tively. The mid-surface and through-thickness displacement dof functions are denoted as 

and , respectively, with m = 1,2,…,I and  being the order of the shell theory.

In the case of the electric potential field, the analogous equivalence can be seen in:

3 3
0 0
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= =

¢ ¢= =å å
J J

m m m
m

m m

tf x d x f (27)

where  denotes the scalar field of the potential, while  and  represent mth (m = 1,2,…,J)
mid-surface and through-thickness potential dof functions, while  is the order of the two-
dimensional dielectric theory.

4.2. Hierarchical models

In the case of the mechanical elastic models the hierarchy M of the 3D or 3D-based models 
is [5, 8]:

{3 , , , 3 / , / }M,  M D MI RM D RM MM I RMÎ = (28)

where 3D represents three-dimensional elasticity,  denotes hierarchical higher-order shell
models, 𝀵𝀵 is the first-order Reissner-Mindlin shell model, while 3/𝀵𝀵 and /𝀵𝀵 denote
the solid-to-shell or shell-to-shell transition models. It is worth mentioning that the second and
last models form the following sub-hierarchies:

= { 2, 3, 4, },
/ = { 2 / , 3 / , 4 / , }

MI M M M
MI RM M RM M RM M RM

K
K (29)

with  being the order of each particular theory.
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The hierarchical character of the above models results from the mentioned order  of the
applied 3D-based theories, i.e.

= = 1,
= 2 / , 3 / , 4 / , = 2,3,4, , = 1
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(30)

Note that for the pure models (𝀵𝀵𝀵𝀵𝀵𝀵𝀵, 3) 𑩡𑩡 𑩡𑩡 , while for the transition ones (𝀵𝀵/𝀵𝀵𝀵𝀵, 3/𝀵𝀵𝀵𝀵𝀵𑩡𑩡 𑩠𑩠 .
The hierarchy of 3D-based models possesses the following property:

( )/ ( ) 3

, ,=1,
=lim lim I K M D

U V U VK I I®¥
u u (31)

guaranteeing that the solutions /𑩡𑩡(𝀵𝀵) obtained with the subsequent models tend in the limit

to the solution 3 of the three-dimensional elasticity (the highest model of the hierarchy),
when  ∞. In the above relation the norm of the strain energy  is applied in order to compare
the solutions. The norm is defined as follows:

/ ( ) / ( ) / ( )

,

1= ( ) ( )
2

I K M T I K M I K M
U V V

dVòu u us e (32)

where  and  are the stress and strain vectors, respectively.

In the case of the dielectric theories the hierarchy E of the 3D-based models :

E,   E {3 , }E D EJÎ = (33)

is composed of the three-dimensional theory 3D and the set:

= { 1, 2, 3, }EJ E E E K (34)

of the 3D-based hierarchical dielectric models 𝀵𝀵, where 𝀵𝀵 is the order of the corresponding
dielectric theory.

The hierarchy can be ordered with respect to the order 𝀵𝀵 in the following way:
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the solutions. The norm is defined as follows:

/ ( ) / ( ) / ( )

,
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2
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U V V
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where  and  are the stress and strain vectors, respectively.

In the case of the dielectric theories the hierarchy E of the 3D-based models :

E,   E {3 , }E D EJÎ = (33)

is composed of the three-dimensional theory 3D and the set:

= { 1, 2, 3, }EJ E E E K (34)

of the 3D-based hierarchical dielectric models 𝀵𝀵, where 𝀵𝀵 is the order of the corresponding
dielectric theory.

The hierarchy can be ordered with respect to the order 𝀵𝀵 in the following way:
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and is characterized with the following property:
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(36)

which says that the solutions ϕJ/L(E) based on the subsequent models of the hierarchy give in
the limit ( ∞) the solution ϕ3D of the highest model of the hierarchy, i.e. the model of three-
dimensional dielectricity. In the case of the applied pure models, 𝀵𝀵 and 3D, L ≡ J.

The norm applied for the model comparisons is based on the electrostatic energy , i.e.

/ ( ) / ( ) / ( )
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with  and E being the electric displacement and electric field vectors, respectively.

4.3. Hierarchical approximations

The hierarchical approximations [6, 11] applied to the hierarchy of the 3D-based elastic models
can be defined as follows [5, 8]:
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(38)

Above we applied the general notation, (),ℎ, valid for any hierarchical model, and the
equivalent symbols of the approximations for each particular model (on the right side of the
above relations), where ℎ represents the generalized size of the element,  denotes the
longitudinal order of approximation and  𑩡𑩡 () is the transverse order of approximation,
equivalent to the order of the theory, i.e. () 𑩡𑩡 (). The specific approximations are either
two-dimensional (ℎ) or three-dimensional (ℎ, ℎ) or mixed (ℎ/ℎ, ℎ/ℎ).
The above approximations lead in the limit (1/ℎ ∞,  ∞) to the exact solution of the
appropriate mechanical model  of the order /, i.e.
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Combination of the models defined with (30) and the corresponding approximations of (38)
leads to the hierarchical numerical models of the following property:
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As it can be seen above, the solutions to these models tend in the limit to the exact solution of
the highest mechanical model (3).
By analogy, the numerical approximations of the 3D-based dielectric models are:
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Above, for the sake of further considerations, the longitudinal approximation order  is
denoted as  and the transverse one  as 𑩡𑩡 𑩡𑩡 𑩡𑩡(), where 𑩡𑩡() 𑩡𑩡 (). The principal property
of the above electric potential approximations reads
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p
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È®¥
(42)

while for the hierarchical numerical dielectric models, being the combination of the electric
models (35) and the above approximations (41), one has
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where the limit solutions  and 3D are present.

4.4. Error estimation

It is well known [17–19, 22] that the equilibrated residual methods of error estimation require
solution of the following approximated local (element) problems of mechanical equilibrium:
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It is well known [17–19, 22] that the equilibrated residual methods of error estimation require
solution of the following approximated local (element) problems of mechanical equilibrium:

, , , , ,

\ ( )
B( , ) L( ) ( ) ( ) = 0e

P D

e e e e
Q HP Q HP Q HP Q H P T q hp

S S S
dS

È
- - á ñòu v v v r u (44)

Perusal of the Finite Element Method14

where B and L are the bilinear and linear forms representing virtual strain energy and the
virtual work of the external forces. The last term stands for the virtual work of the inter-element

stress fluxes . The element size in the local problems is denoted as , the longitudinal
approximation order is , while the transverse one is 𑩡𑩡 𑩡𑩡 𑩡𑩡().
The above three terms can be defined as follows

(45)

with  being the elasticity constants matrix. Thus, Eq. (44) can be written in the language of
finite elements:

(46)

where  denote element stiffness matrix, and element forces vectors due to mass,

surface and inter-element stress loadings, while  and  represent solution and
admissible displacement dof vectors in the local problem. The solution vector is then utilized
in the error estimation. The collection of the element solutions obtained this way leads to the
global error estimate which constitutes the upper bound of the true error [18, 19, 22].

The above approach can be extended onto the mechanical problem of free vibration by
replacing the linear form of (44) by the virtual work of the inertia forces [26]. These forces are:

, where  is the element mass (or inertia) matrix, while the natural frequencies 
and the vector of the element displacement amplitudes  are taken from the global problem

solution. These forces replace  and  in (45) and (46). Note that now the element solutions,
analogous to this obtained from (46), do not guarantee the upper boundedness of the global
error by its residual estimate.

In the case of electrostatic dielectricity, the local problems of the equilibrated residual method
take the form [23]:

P, P, P, P, ,

\ ( )
b( , ) 1( ) ( ) = 0e

Q F

e e e e
H H H H h

S S S
h dSr pf y y y fP P P P

È
- - á ñò (47)
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with the bilinear and linear forms,  and , representing virtual electrostatic energy and the
virtual work of external charges. The right term above is equal to the virtual work of the

equilibrated charge flux . The indices , Π, P ≡ P() stand for the element size and
the element longitudinal and transverse approximation orders.

Taking into considerations the below definitions:

(48)

where γ is the dielectricity constants matrix, one can transform (47) into the following local
finite element equation

(49)

Above  denote element dielectricity matrix, and element vectors due to surface and

inter-element charges, while  and  are the solution and admissible electric potential
dof vectors of the local problem. This element solution is applied to the error estimation of the
dielectric problems. The global error estimate obtained with use of the above element solutions
upper-bounds the true global error.

4.5. Adaptive strategy

The adaptive strategy for the complex problems of elasticity is based on the Texas Three-Step
Strategy [24]. The latter strategy consists in solution of the global problem thrice on the so-
called initial, intermediate and final meshes. The intermediate mesh is obtained from the initial
one based on the initial mesh estimated values of element errors and the hp convergence theory
relating these errors to the discretization parameter ℎ. Thanks to this the h-adaptation is
performed. The final mesh is obtained from the intermediate one in the analogous way through
p-refinement. This process takes advantage of the intermediate mesh estimated errors and the
relation between these errors and the discretization parameter p. The original strategy can be
enriched with the fourth step [5, 27], called the modification one, which is performed on the
initial mesh and is applied when the unpleasant numerical phenomena due to the improper
solution limit, numerical locking or boundary layers appear in the mechanical problem. The
purpose of this additional step is to get rid of the numerical consequences of the mentioned
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phenomena before the error-controlled hp-adaptivity is started. The control of this step is based
on the sensitivity analysis of the local (element) problems solutions to these three phenomena.

The above four-step strategy can be easily extended onto the complex dielectric problems. It
has to account only for the boundary layer phenomenon within the modification step, as two
other phenomena do not appear in the problems of dielectrics. Other steps do not change.

5. Problems within the methodology

In this section of the chapter we consider the main difficulties in generalization of the hier-
archical models, hierarchical approximations, equilibration residual method of error estima-
tion and three- or four-step adaptive strategies, presented in the previous sections for the
problems of elasticity and dielectricity, onto coupled problems of piezoelectricity.

5.1. Hierarchical model and approximation issues

The first task here is to compose the elastic and dielectric models, defined with (28) and (33),
respectively, into one consistent hierarchy of the piezoelectric media. Our proposition on how
to perform this task follows from the main feature of both component hierarchies which are
characterized with the independently changing orders  and  of the elastic and dielectric
models, as shown in (30) and (35). Because of this we can propose the definition

( ){ }P,  P , : M, EÎ = Î ÎP M E M E (50)

which determines the hierarchy P of piezoelectric models  as composed of all combinations
(M,E) of the elastic  and dielectric  models. Even though the following property:

( ){ }/ ( ) / ( ) 3 3

, ,=1, =1,
lim lim lim lim ( , ) ( , )

®¥ ®¥

é ù =ê úë û
I K M J L E D D

Z V Z VK I I L J J
f fu u (51)

is valid in the limit, the ordering of the coupled electro-mechanical solutions measured in the
energy norm is not unique due to different signs of the strain (or elastostatic) , electrostatic and coupling  parts of the co-energy:  = 𑨒𑨒 + , i.e.

/ ( ) / ( )

,

1( , ) = | 2 |
2

f - +òI K M J L E T T T
Z V V

dVu E E D CEg e e e (52)

where  = (I/K(M)) and E = E(ϕJ/L(E)), while C is the coupling (piezoelectric) constants matrix.

The most general case of the ℎ-approximation within the coupled field of displacements and
electric potential may include totally independent ℎ and  approximations within the me-
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chanical and electric fields. However, such an approach requires the vice-versa projections of
the displacements and potential solutions between the independent ℎ-meshes of each field.
The approach results in the additional projection error which should be included in the error
estimation. Because of this we propose the simplified approach which consists in application
of the common ℎ mesh and the independent  and  approximations within the displacements
and electric potential fields. This assumption leads to the following limit property of the
coupled solution

( )( ), ( ), / ( ) / ( )

, ,1/ , 1/ ,
lim lim ( , ) ( , )e

q M hp E h I K M J L E
Z V Z Vh p h

r p

p
f f

È®¥ ®¥
=u u (53)

It should be noticed that the monotonic character of the co-energy of the consecutive approx-
imate solutions is not guaranteed here due to the coupled character of the electro-mechanical
field.

Practical realization of the above concepts of hierarchical modelling and approximations is
implemented by means of the ℎ𝀵𝀵- and ℎ𝀵𝀵-adaptive piezoelectric finite elements, presented
in Figure 1. As said before, ℎ represents the assumed characteristic element size, common for
both fields, while  and  denote independent longitudinal approximation orders within the
displacements and electric potential fields. The transverse approximation orders 𝀵𝀵 and 𝀵𝀵 of the
mechanical and electric fields, respectively, are equivalent to the independent hierarchical
orders  and  of the elastic and dielectric models, i.e. 𝀵𝀵 𑩡𑩡 , 𝀵𝀵 𑩡𑩡 .
The normalized versions of the prismatic adaptive elements are presented above, where the
3D-based solid (or hierarchical shell), transition (an example of) and first-order shell mechan-
ical elements are combined with the three-dimensional (or 3D-based symmetric-thickness)
dielectric elements. In the figure the normalized coordinates are defined as 1,2,3 ∈ (0,1),
while the vertex, mid-edge, mid-base, mid-side and middle nodes of mechanical character are
denoted as either 1, 2, …, 21 or 1, 2, …, 18 or 1, 2, …, 14, while the corresponding

electric ones are marked with 1, 2, …, 21.

5.2. Problems within error estimation

In order to generalize the equilibrated residual method for piezoelectricity the local elastic (44)
and dielectric (47) problems have to be replaced with the coupled stationary problems
describing the electro-mechanical equilibrium:
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Figure 1. Piezoelectric solid/three-dimensional (top), transition/three-dimensional (middle), shell/three-dimensional
(bottom) elements.
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where  and , while the above coupling forms are determined as
follows:

(55)

Definitions (45), (48) and (55) allow to rewrite (54) in the finite element language:

(56)

The main disadvantage of the local solutions  and  obtained from the above set of
equations is that they do not lead to the upper bound of the global approximation error of the
global problem (12) due to the coupled character of piezoelectricity. Note that the upper bound
property is present in the cases of pure elasticity and pure dielectricity. In these circumstances
we propose the simplified approach which consists in decoupling of the local mechanical and
electric fields:

(57)

The simplified solutions of the above two decoupled problems is suggested for serving the
approximated error assessment of the coupled field.

In the case of the coupled free-vibration problem we propose to apply the same approach as
for the purely elastic vibrations. This means that the inertia forces introduced in Subsection
4.4 have to replace the volume and surface forces in the first equations (56) and (57). The

element constitutive stiffness matrix  in both equations has to be changed for the following

sum:  + , where  stands for the element geometric stiffness matrix due to the initial
stresses which correspond to the electro-mechanical equilibrium. Because of this one may skip

the electric charges  in the second equations (56) and (57).

5.3. Adaptivity control matters

The main problem with the piezoelectricity in the context of adaptivity control of the three- or
four-step ℎ-adaptive procedure is that the convergence theorem for the finite element
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approximation of the coupled piezoelectric field is not at one’s disposal. In these circumstances
we propose to use the ℎ-convergence exponents of the elasticity and dielectricity problems
for the mechanical and electric components of the coupled field.

With this assumption in mind we generalize the adaptive scheme applied successfully for the
complex elastic structures [28]. It can also be adopted for the dielectricity problems. The
generalization is presented in Figure 2 in the form of a block diagram, where  = 1,2,3,4
represent the consecutive steps of the algorithm—the initial, modification, intermediate and
final ones.

Figure 2. Four-step hp-adaptive scheme for complex piezoelectric or piezoelectric-elastic problems.

6. Conclusions

In the presented chapter we showed how to generalize hierarchical modelling, ℎ-adaptive
hierarchical approximations, the equilibrated residual method of error estimation and the four-
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step adaptive procedure, originally applied to elasticity and possible also in dielectricity, for
the coupled pieozoelectric problems.

We suggest to combine the hierarchical models for complex elastic structures with the
analogous models of dielectricity in order to obtain all coupled combinations of the component
mechanical and electric models. In the case of the approximations, we suggest to apply the
common ℎ-mesh and independent p and  approximations for the displacement and electric
potential fields.

In the error estimation, we propose to decouple the mechanical and electric fields in the local
problems of the residual approach.

Our four-step ℎ-adaptive algorithm is based on the convergence theorems for the purely
elastic and purely dielectric problems. These theorems are applied to the intermediate and
final meshes generation.
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Nomenclature

 – displacement amplitude vector components ( = 1,2,3), – a node with displacement degrees of freedom (dofs),  = 1,2,…,21,
b – a bilinear form representing the element virtual electrostatic energy, – a node with electric potential dofs,  = 1,2,…,21,
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step adaptive procedure, originally applied to elasticity and possible also in dielectricity, for
the coupled pieozoelectric problems.

We suggest to combine the hierarchical models for complex elastic structures with the
analogous models of dielectricity in order to obtain all coupled combinations of the component
mechanical and electric models. In the case of the approximations, we suggest to apply the
common ℎ-mesh and independent p and  approximations for the displacement and electric
potential fields.

In the error estimation, we propose to decouple the mechanical and electric fields in the local
problems of the residual approach.

Our four-step ℎ-adaptive algorithm is based on the convergence theorems for the purely
elastic and purely dielectric problems. These theorems are applied to the intermediate and
final meshes generation.
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 – the elasticity constants matrix, – the number of an element,𑨒𑨒 𑨒𑨒a dielectric model,

E – the hierarchy of dielectric models,𑨒𑨒 – electric field vector components ( = 1,2,3), – the electric field vector, – mass load vector components ( = 1,2,3), – the mass load vector,

 – the inter-element charge vector,

 – the element mass forces vector,

 – the element charge vector,

 – the inter-element stress forces vector,

 – the element surface forces vector, – the global mass forces vector, – the global surface forces vector, – the global charge vector,ℎ – measure of the element size,

 – the equilibrated inter-element charge, – a measure of the element size in the local problem, – the order of the hierarchical mechanical model, – the order of the hierarchical dielectric model,

 – the element piezoelectric (coupling) matrix,

 – the element dielectric matrix,

 – the element geometric stiffness matrix,

 – the element (constitutive) stiffness matrix,
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 – the global piezoelectric (coupling) matrix, – the global dielectric matrix, – the global geometric stiffness matrix, – the global (constitutive) stiffness matrix,

 – a linear form equal to the element virtual work of the external charges,

 – a linear form representing the element virtual work of the external forces,

 – the element mass (inertia) matrix, – the number of a dof function, – mechanical model,M – the hierarchy of mechanical models, – the global mass (inertia) matrix, – the number of a natural frequency, – vector components ( = 1,2,3) of the normal to the body surface, – the global number of dofs (degrees of freedom), – the element approximation order or the longitudinal order of approximation for displace-
ments, – surface load vector components, – the longitudinal order of approximation for element displacements, – piezoelectric model,P – the hierarchy of piezoelectric models, – the surface load vector, – the transverse order of approximation for displacements,, ℎ – the global displacement (or displacement amplitude) dofs vector,

 – the element displacement (or displacement amplitude) dofs vector, – the local problem transverse order of approximation for displacements,

 – a vector of the equilibrated inter-element stresses,

 – a mid-surface displacement dof function,
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 – the surface of a body (or medium), – the body surface part with given electric potential, – the loaded part of the body surface, – the electrically charged part of the body (or medium) surface, – the body surface part with given displacements,

t – time, – the mth polynomial through-thickness function, – the vector of global displacements, – the global displacement components,  = 1,2,3,

,𝀵𝀵 – the displacement vector in the local (element) problem,

 – local components ( = 1,2,3) of the displacement vector,

 – a through-thickness displacement dof function,̈ – acceleration vector components,  = 1,2,3, – admissible displacement (or its amplitude) vector components ( = 1,2,3),
,𝀵𝀵 – the admissible displacement vector in the local (element) problem,

 – the admissible displacement dof vector of an element, – volume of a body (or medium), – given displacement vector components ( = 1,2,3) on the body surface, – global Cartesian coordinate vector, – components of the dielectricity tensor (, = 1,2,3),
γ – the dielectricity constants matrix, – the th mid-surface electric potential dof function, – strain tensor components (, = 1,2,3), – the strain vector, – normalized coordinates of an element ( = 1,2,3),

 – the local normal coordinate,
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 – the longitudinal approximation order of electric potential,Π – the element longitudinal approximation order of electric potential, – the transverse approximation order of electric potential,

 – mass density of the body,P – the element transverse approximation order of electric potential,𝀵𝀵𝀵𝀵 – initial stress tensor components (i,j = 1,2,3),

𝀵𝀵𝀵𝀵 – stress tensor components (i,j = 1,2,3),

 – the stress vector,

, ℎ – the global electric potential (or potential amplitude) dofs vector,

 – the local (element) electric potential dofs vector, – the electric potential,

 – the mth through-thickness electric potential dof function, – the given electric potential on the body surface, – the admissible electric potential,

 – the admissible electric potential dofs vector of an element, – a natural frequency, – the nth natural frequency
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Abstract

We present an analysis of the discontinuous Galerkin (DG) finite element method for
nonlinear ordinary differential equations (ODEs). We prove that the DG solution is $(p
+ 1) $th order convergent in the $L^2$-norm, when the space of piecewise polynomials
of degree $p$ is used. A $ (2p+1) $th order superconvergence rate of the DG approxi-
mation at the downwind point of each element is obtained under quasi-uniform meshes.
Moreover, we prove that the DG solution is superconvergent with order $p+2$ to a
particular projection of the exact solution. The superconvergence results are used to
show that the leading term of the DG error is proportional to the $ (p + 1) $-degree right
Radau polynomial. These results allow us to develop a residual-based a posteriori error
estimator which is computationally simple, efficient,  and asymptotically exact.  The
proposed a posteriori error estimator is proved to converge to the actual error in the
$L^2$-norm with order $p+2$. Computational results indicate that the theoretical orders
of convergence are optimal. Finally, a local adaptive mesh refinement procedure that
makes use of our local a posteriori error estimate is also presented. Several numerical
examples  are  provided  to  illustrate  the  global  superconvergence  results  and  the
convergence of the proposed estimator under mesh refinement.

Keywords: discontinuous Galerkin finite element method, ordinary differential equa-
tions, a priori error estimates, superconvergence, a posteriori error estimates, adaptive
mesh refinement

1. Introduction

In this chapter, we introduce and analyze the discontinuous Galerkin (DG) method applied to
the following first-order initial-value problem (IVP)

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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where  :[0, ] ℝ,  0 ∈ ℝ, and  :[0, ] × ℝ ℝ. We assume that the solution exists and

is unique and we would like to approximate it using a discontinuous piecewise polynomial
space. According to the ordinary differential equation (ODE) theory, the condition ∈ 1([0, ] × ℝ) is sufficient to guarantee the existence and uniqueness of the solution to (1).

We note that a general th-order IVP of the form () = (, , ′, …, ( 𑨒𑨒 1)) with initial

conditions (0) = 0, ′(0) = 1,…, ( 𑨒𑨒 1)(0) =  𑨒𑨒 1 can be converted into a system of

equations in the form (1), where  = [, ′, …, ( 𑨒𑨒 1)],  (,  ) = [2, 3, …, , (, 1, …, )],
and  0 = [0, 1, …,  𑨒𑨒 1].
The high-order DG method considered here is a class of finite element methods (FEMs) using
completely discontinuous piecewise polynomials for the numerical solution and the test
functions. The DG method was first designed as an effective numerical method for solving
hyperbolic conservation laws, which may have discontinuous solutions. Here, we will discuss
the algorithm formulation, stability analysis, and error estimates for the DG method solving
nonlinear ODEs. DG method combines the best proprieties of the classical continuous finite
element and finite volume methods such as consistency, flexibility, stability, conservation of
local physical quantities, robustness, and compactness. Recently, DG methods become highly
attractive and popular, mainly because these methods are high-order accurate, nonlinear
stable, highly parallelizable, easy to handle complicated geometries and boundary conditions,
and capable to capture discontinuities without spurious oscillations. The original DG finite
element method (FEM) was introduced in 1973 by Reed and Hill [1] for solving steady-state
first-order linear hyperbolic problems. It provides an effective means of solving hyperbolic
problems on unstructured meshes in a parallel computing environment. The discontinuous
basis can capture shock waves and other discontinuities with accuracy [2, 3]. The DG method
can easily handle adaptivity strategies since the ℎ refinement (mesh refinement and coarsen-
ing) and the  refinement (method order variation) can be done without taking into account
the continuity restrictions typical of conforming FEMs. Moreover, the degree of the approxi-
mating polynomial can be easily changed from one element to the other [3]. Adaptivity is of
particular importance in nonlinear hyperbolic problems given the complexity of the structure
of the discontinuities and geometries involved. Due to local structure of DG methods, physical
quantities such as mass, momentum, and energy are conserved locally through DG schemes.
This property is very important for flow and transport problems. Furthermore, the DG method
is highly parallelizable [4, 5]. Because of these nice features, the DG method has been analyzed
and extended to a wide range of applications. In particular, DG methods have been used to
solve ODEs [6–9], hyperbolic [5, 6, 10–19] and diffusion and convection diffusion [20–23] partial
differential equations (PDEs), to mention a few. For transient problems, Cockburn and Shu [17]
introduced and developed the so-called Runge-Kutta discontinuous Galerkin (RKDG)
methods. These numerical methods use DG discretizations in space and combine it with an
explicit Runge-Kutta time-marching algorithm. The proceedings of Cockburn et al. [24] and
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nonlinear ODEs. DG method combines the best proprieties of the classical continuous finite
element and finite volume methods such as consistency, flexibility, stability, conservation of
local physical quantities, robustness, and compactness. Recently, DG methods become highly
attractive and popular, mainly because these methods are high-order accurate, nonlinear
stable, highly parallelizable, easy to handle complicated geometries and boundary conditions,
and capable to capture discontinuities without spurious oscillations. The original DG finite
element method (FEM) was introduced in 1973 by Reed and Hill [1] for solving steady-state
first-order linear hyperbolic problems. It provides an effective means of solving hyperbolic
problems on unstructured meshes in a parallel computing environment. The discontinuous
basis can capture shock waves and other discontinuities with accuracy [2, 3]. The DG method
can easily handle adaptivity strategies since the ℎ refinement (mesh refinement and coarsen-
ing) and the  refinement (method order variation) can be done without taking into account
the continuity restrictions typical of conforming FEMs. Moreover, the degree of the approxi-
mating polynomial can be easily changed from one element to the other [3]. Adaptivity is of
particular importance in nonlinear hyperbolic problems given the complexity of the structure
of the discontinuities and geometries involved. Due to local structure of DG methods, physical
quantities such as mass, momentum, and energy are conserved locally through DG schemes.
This property is very important for flow and transport problems. Furthermore, the DG method
is highly parallelizable [4, 5]. Because of these nice features, the DG method has been analyzed
and extended to a wide range of applications. In particular, DG methods have been used to
solve ODEs [6–9], hyperbolic [5, 6, 10–19] and diffusion and convection diffusion [20–23] partial
differential equations (PDEs), to mention a few. For transient problems, Cockburn and Shu [17]
introduced and developed the so-called Runge-Kutta discontinuous Galerkin (RKDG)
methods. These numerical methods use DG discretizations in space and combine it with an
explicit Runge-Kutta time-marching algorithm. The proceedings of Cockburn et al. [24] and
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Shu [25] contain a more complete and current survey of the DG method and its applications.
Despite the attractive advantages mentioned above, DG methods have some drawbacks.
Unlike the continuous FEMs, DG methods produce dense and ill-conditioned matrices
increasing with the order of polynomial degree[23].

Related theoretical results in the literature including superconvergence results and error
estimates of the DG methods for ODEs are given in [7–9, 26–28]. In 1974, LaSaint and Raviart
[9] presented the first error analysis of the DG method for the initial-value problem (1). They
showed that the DG method is equivalent to an implicit Runge-Kutta method and proved a
rate of convergence of (hp) for general triangulations and of (hp+1) for Cartesian grids. Delfour
et al. [7] investigated a class of Galerkin methods which lead to a family of one-step schemes
generating approximations up to order 2 + 2 for the solution of an ODE, when polynomials
of degree  are used. In their proposed method, the numerical solution ℎ at the discontinuity

point  is defined as an average across the jump, i.e., ℎ(−) + (1 − )ℎ(+). By choosing

special values of , one can obtain the original DG scheme of LeSaint and Raviart [9] and

Euler's explicit, improved, and implicit schemes. Delfour and Dubeau [27] introduced a family
of discontinuous piecewise polynomial approximation schemes. They presented a more
general framework of one-step methods such as implicit Runge-Kutta and Crank-Nicholson
schemes, multistep methods such as Adams-Bashforth and Adams-Moulton schemes, and
hybrid methods. Later, Johnson [8] proved new optimal a priori error estimates for a class of
implicit one-step methods for stiff ODEs obtained by using the discontinuous Galerkin method
with piecewise polynomials of degree zero and one. Johnson and Pitkaränta [29] proved a rate
of convergence of (hp+1/2) for general triangulations and Peterson [19] confirmed this rate to be
optimal. Richter [30] obtained the optimal rate of convergence (hp+1) for some structured two-
dimensional non-Cartesian grids. We also would like to mention the work of Estep [28], where
the author outlined a rigorous theory of global error control for the approximation of the IVP
(1). In [6], Adjerid et al. showed that the DG solution of one-dimensional hyperbolic problems
exhibit an (hp+2) superconvergence rate at the roots of the right Radau polynomial of degree + 1. Furthermore, they obtained a (2 + 1)th order superconvergence rate of the DG approx-
imation at the downwind point of each element. They performed a local error analysis and
showed that the local error on each element is proportional to a Radau polynomial. They
further constructed implicit residual-based a posteriori error estimates but they did not prove
their asymptotic exactness. In 2010, Deng and Xiong [31] investigated a DG method with
interpolated coefficients for the IVP (1). They proved pointwise superconvergence results at
Radau points. More recently, the author [12, 15, 26, 32–39] investigated the global convergence
of the several residual-based a posteriori DG and local DG (LDG) error estimates for a variety
of linear and nonlinear problems.

This chapter is organized as follows: In Section 2, we present the discrete DG method for the
classical nonlinear initial-value problem. In Section 3, we present a detailed proof of the optimal
a priori error estimate of the DG scheme. We state and prove our main superconvergence results
in Section 4. In Section 5, we present the a posteriori error estimation procedure and prove that
these error estimates converge to the true errors under mesh refinement. In Section 6, we
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propose an adaptive algorithm based on the local a posteriori error estimates. In Section 7, we
present several numerical examples to validate our theoretical results. We conclude and
discuss our results in Section 8.

2. The DG scheme for nonlinear IVPs

The error analysis of nonlinear scalar and vector initial-value problems (IVPs) having smooth
solutions is similar. For this, we restrict our theoretical discussion to the following nonlinear
initial-value problem (IVP)

′ ∈ 0= ( , ), [0, ], (0) = ,u f t u t T u u (2)

where (, ): [0,] × ℝ ℝ is a sufficiently smooth function with respect to the variables  and. More precisely, we assume that (, ) ≤ 1 on the set  = [0,] × ℝ ⊂ ℝ2, where 1 is a
positive constant. We note that the assumption (, ) ≤ 1 is sufficient to ensure that (, )
satisfies a Lipschitz condition in  on the convex set  with Lipschitz constant 1

− ≤ − ∈1| ( , ) ( , )| | |, for any (t,u) and (t,v) D.f t u f t v M u v (3)

Next, we introduce the DG method for the model problem (2). Let 0 = 0 < 1 < ⋯ <  = 
be a partition of the interval  = [0,]. We denote the mesh by  = [ 𑨒𑨒 1, ],  = 1,…,. We
denote the length of  by ℎ =  𑨒𑨒  𑨒𑨒 1. We also denote ℎ = max1 ≤  ≤ ℎ andℎmin = min1 ≤  ≤ ℎ as the length of the largest and smallest subinterval, respectively. Here,

we consider regular meshes, that is, ℎℎmin ≤ , where  𑩥𑩥 1 is a constant (independent of ℎ)

during mesh refinement. If  = 1, then the mesh is uniformly distributed. In this case, the
nodes and mesh size are defined by  =  ℎ,  = 0, 1, …, , ℎ = / .
Throughout this work, we define (𑨒𑨒)  and (+)  to be the left  limit and the right limit

of  the  function    at  the  discontinuity  point  ,  i.e.,  (𑨒𑨒) = lim 0𑨒𑨒( + )  and

(+) = lim 0+( + ).  To simplify the notation,  we denote by []() = (+) 𑨒𑨒 (𑨒𑨒)  the

jump of    at  the  point  .
If we multiply (2) by an arbitrary test function , integrate over the interval , and integrate
by parts, we get the DG weak formulation
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− −
′ + − +∫ ∫ 1 1( , ) ( ) ( ) ( ) ( ) = 0.j j j jI Ij j

v udt f t u vdt u t v t u t v t (4)

We denote by ℎ the finite element space of polynomials of degree at most  in each interval, i.e.,
∈ = { : | ( ), = 1, , },p p

h I jj
V v v P I j N

where () denotes the set of all polynomials of degree no more than  on . We would like
to emphasize that polynomials in ℎ are allowed to have discontinuities at the nodes .
Replacing the exact solution () by a piecewise polynomial ℎ() ∈ ℎ and choosing 𑨈𑨈 ∈ ℎ,

we obtain the DG scheme: Find ℎ ∈ ℎ such that ∀ 𑨈𑨈 ∈ ℎ and  = 1,…,,

1 1ˆ ˆ( , ) ( ) ( ) ( ) ( ) = 0,h h h j j h j jI Ij j
v u dt f t u vdt u t v t u t v t− +

− −′ + − +∫ ∫ (5a)

where ℎ() is the so-called numerical flux which is nothing but the discrete approximation at the node  = . We remark that ℎ is not necessarily continuous at the nodes.

To complete the definition of the DG scheme, we still need to define ℎ on the boundaries of. Since for IVPs, information travel from the past into the future, it is reasonable to take ℎ
as the classical upwind flux

0 0ˆ ˆ( ) = , and ( ) = ( ), = 1, , .h h j h ju t u u t u t j N−  (5b)

2.1. Implementation

The DG solution ℎ() can be efficiently obtained in the following order: first, we compute ℎ()
in the first element 1 using (5a) and (5b) with  = 1 since ℎ(0−) = 0 is known. Then, we can
find ℎ() in 2 since ℎ() in 1 is already available. We can repeat the same process to computeℎ() in 3, …, . More specifically, ℎ() can be obtained locally for each  using the following
two steps: (i) express ℎ() as a linear combination of orthogonal basis , (),  = 0,…, , where,  is the th degree Legendre polynomial on , i.e., ℎ() = ∑ = 0 , , (),  ∈ , where
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, ()  = 0 =  is a local basis of (), and (ii) choose the test functions  = , (),  = 0,…, .

Thus, on each , we get a ( + 1) × ( + 1) system of nonlinear algebraic equations, which can

be solved for the unknown coefficients 0,, …, ,  using, e.g., Newton's method for nonlinear

systems. Once we obtain the DG solution on all elements ,  = 1,…,, we get the DG solution

which is a piecewise discontinuous polynomial of degree ≤ . We refer to [7–9] for more details
about DG methods for ODEs as well as their properties and applications.

2.2. Linear stability for the DG method

Let us now establish a stability result for the DG method applied to the linear case, i.e.,(, ) = 𝀵𝀵. Taking  = ℎ in the discrete weak formulation (5a), we get

λ
− +

− − +
− −+ − ∫

2 2
1 2

1 1

( ) ( )
( ) ( ) = ,

2 2
h j h j

h j h j hI j

u t u t
u t u t u dt

which is equivalent to

( ) λ
− −

− − +
− −− + − ∫

2 2
21 2

1 1

( ) ( ) 1 ( ) ( ) = .
2 2 2

h j h j
h j h j hI j

u t u t
u t u t u dt

Summing over all elements, we get the equality

( ) λ
−

− +
− − Ω

− + −∑ ∫
2 2 2 20

1 1
=1

( ) 1 ( ) ( ) = .
2 2 2

N
h

h j h j h
j

u T u
u t u t u dt

Consequently, 
ℎ2(−)2 − 022 ≤ 𝀵𝀵∫ℎ2𝀵𝀵, which gives the stability result ℎ2(−) ≤ 02 provided

that 𝀵𝀵 𝀵 0.

3. A priori error analysis

We  begin  by  defining  some  norms  that  will  be  used  throughout  this  work.  We

define  the  2  inner  product  of  two  integrable  functions,    and  ,  on  the  interval = [ − 1, ]  as  (, ) = ∫()()𝀵𝀵.  Denote   0, = (, )1/2  to  be  the  standard

2  norm  of    on  .  Moreover,  the  standard  ∞  norm  of    on    is  defined  by
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 ∞,  = sup𑨈𑨈 𑨈𑨈  (𑨈𑨈) .  Let  (),  where   = 0, 1, …,  denote  the  standard  Sobolev  space

of  square  integrable  functions  on    with  all  derivatives  (),  = 0, 1, …,   being  square

integrable  on  ,  i.e.,  () =  : ∫ |()(𑨈𑨈) 2𝀵𝀵𑨈𑨈 < ∞, 0 ≤  ≤  ,  and  equipped  with

the  norm   ,  = ∑ = 0 () 0,2 1/2 .  The  ()  seminorm  of  a  function    on

  is  given by  ,  = () 0,.  We also define the norms on the whole computational

domain    as  follows:

Ω ∞ Ω ∞ Ω≤ ≤

   
= = =      
   
∑ ∑

1/ 2 1/ 2
2 2

0, 0, , , , ,1=1 =1
, , .max

N N

I I s s Ij Nj j jj j
u u u u u u

The seminorm on the whole computational domain  is defined as  ,  = ∑ = 1  , 2 1/2 .
We note that if  𑨈𑨈 (),  = 1, 2, …, then the norm  ,  on the whole computational domain

is the standard Sobolev norm ∑ = 0 () 0,2 1/2 . For convenience, we use   and 
to denote  0, and  0,, respectively.

For 𑩥𑩥 𑩥𑩥 1, we consider two special projection operators, ℎ±, which are defined as follows: For

a smooth function , the restrictions of ℎ+ and ℎ− to  are polynomials in 𑩥𑩥() satisfying

1( ) = 0, ( ), and ( )( ) = 0,p
h j h jI j

P u u vdt v P I P u u t- - - -- " Î -ò (6a)

1
1( ) = 0, ( ), and ( )( ) = 0.p

h j h jI j
P u u vdt v P I P u u t+ - + +

-- " Î -ò (6b)

These two particular Gauss-Radau projections are very important in the proofs of optimal 2
error estimates and superconvergence results. We note that the special projections ℎ± are

mainly utilized to eliminate the jump terms at the cell boundaries in the error estimate in order
to achieve the optimal order of accuracy [22].
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For the projections mentioned above, it is easy to show that for any 𑨈𑨈 𑨈𑨈 𑨈𑨈 + 1() with = 1,…,, there exists a constant  independent of the mesh size ℎ such that (see, e.g., [40])

+± ±

+
′− ≤ − ≤1

1, ,
, ( ) .p p

h j h jp I p II Ij jj j
u P u Ch u u P u Ch u (7)

Moreover, we recall the inverse properties of the finite element space ℎ that will be used in

our error analysis: For any ℎ 𑨈𑨈 ℎ, there exists a positive constant  independent of ℎ andℎ, such that, ∀  = 1,…,,

( ) 1/ 2
1|| || , 1, ( ) ( ) || || .− + − −
−≤ ³ + ≤k k

h j h I h j h j j h II j jj
v Ch v k v t v t Ch v (8)

From now on, the notation , 1, 2, etc. will be used to denote generic positive constants

independent of ℎ, but may depend upon the exact solution of (1) and its derivatives. They also
may have different values at different places.

Throughout this work, let us denote  = 𑨈𑨈 𑨒𑨒 𑨈𑨈ℎ to be the error between the exact solution of (2)

and the DG solution defined in (5a) and (5b),  = 𑨈𑨈 𑨒𑨒 𑨒𑨒ℎ𑨒𑨒𑨈𑨈 to be the projection error, and = 𑨒𑨒ℎ𑨒𑨒𑨈𑨈 𑨒𑨒 𑨈𑨈ℎ to be the error between the projection of the exact solution 𑨒𑨒ℎ𑨒𑨒𑨈𑨈 and the DG
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+≤ 1 ,pe C h (9)

Ω
′ ≤ ≤∑ 2 2

1,
=1

, .
N

p p
I jj

e Ch e Ch (10)
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For the projections mentioned above, it is easy to show that for any 𑨈𑨈 𑨈𑨈 𑨈𑨈 + 1() with = 1,…,, there exists a constant  independent of the mesh size ℎ such that (see, e.g., [40])

+± ±

+
′− ≤ − ≤1

1, ,
, ( ) .p p

h j h jp I p II Ij jj j
u P u Ch u u P u Ch u (7)
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( ) 1/ 2
1|| || , 1, ( ) ( ) || || .− + − −
−≤ ³ + ≤k k

h j h I h j h j j h II j jj
v Ch v k v t v t Ch v (8)
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Proof. We first need to derive some error equations which will be used repeatedly throughout

this and the next sections. Subtracting (5a) from (4) with 𑨈𑨈 𑨈𑨈 𑨈𑨈ℎ and using the numerical flux

(5b), we obtain the following error equation: ∀ 𑨈𑨈 𑨈𑨈 𑨈𑨈ℎ,

− + − −
− −

′ + − + −∫ ∫ 1 1( ( , ) ( , )) ( ) ( ) ( ) ( ) = 0.h j j j jI Ij j
v edt f t u f t u vdt e t v t e t v t (11)

By integration by parts, we get

( ) +
− −

′ − − +∫ ∫ 1 1( , ) ( , ) [ ]( ) ( ) = 0.h j jI Ij j
e vdt f t u f t u vdt e t v t (12)

Applying Taylor's series with integral remainder in the variable  and using the relation 𑨒𑨒 ℎ = , we write

θ θ θ− − = + − = −∫ ∫
1 1

0 0
( , ) ( , ) = ( ) = , where ( , ( )) ( , ) .h h u h uf t u f t u u u e f t u s u u ds f t u se ds (13)

Substituting (13) into (12), we arrive at

( )θ +
− −

′ − + ∀ ∈∫ 1 1[ ]( ) ( ) = 0, .p
j j hI j

e e vdt e t v t v V (14)

To simplify the notation, we introduce the bilinear operator (; 𑨈𑨈) as

θ +
− −

′ − +∫ 1 1( ; ) = ( ) [ ]( ) ( ).j j jI j
e V e e Vdt e t V t (15)

Thus, we can write (14) as

∀ ∈ ( ; ) = 0, .p
j he v v V (16)

A direct calculation from integration by parts yields

θ − − − +
− −

′− − + −∫ 1 1( ; ) = ( ) ( ) ( ) ( ) ( ).j j j j jI j
e V V V edt e t V t e t V t (17)
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On the other hand, if we add and subtract ℎ+ to  then we can write (15) as

+ +− +  ( ; ) = ( ; ) ( ; ).j j h j he V e V P V e P V (18)

Combining (18) and (16) with  = ℎ+ 𑨈𑨈 () and applying the property of the projectionℎ+, i.e., ( 𑨒𑨒 ℎ+)( 𑨒𑨒 1+ ) = 0, we obtain

θ θ+ + + +
− −

′ ′− − + − − −∫ ∫ 1 1( ; ) = ( )( ) [ ]( )( )( ) = ( )( ) .j h j h j hI Ij j
e V e e V P V dt e t V P V t e e V P V dt (19)

If  is a polynomial of degree at most  then ′ is a polynomial of degree at most  𑨒𑨒 1. Therefore,

by the property of the projection ℎ+, we immediately see

+′ − ∀ ∈∫ ( ) = 0, ( ).p
h jI j

v V P V dt v P I (20)

Substituting the relation  =  +  into (19) and invoking (20) with  = , we get

ε θ ε θ+ + +′ ′− − + − − −∫ ∫ ∫ ( ; ) = ( )( ) '( ) = ( )( ) .j h h hI I Ij j j
e V e V P V dt e V P V dt e V P V dt (21)

Now, we are ready to prove the theorem. We construct the following auxiliary problem: find such that

ϕ θϕ ϕ′− − ∈= , [0, ] subject to ( ) = 0.e t T T (22)

where  = () = ∫01(, () 𑨒𑨒 𝀵𝀵())𝀵𝀵𝀵𝀵. Clearly, the exact solution to (22) is given by the

explicit formula

( )ϕ θΘ Θ −
Θ ∫ ∫

1( ) = ( ) ( ) , where ( ) = exp ( ) .
( )

T T

t t
t y e y dy t s ds

t (23)

Next, we prove some regular estimates which will be needed in our error analysis. Using the

assumption (, ) ≤ 1, we see that (),  𑨈𑨈 [0, ] is bounded by 1
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1 1

1 10 0
| ( ) | | ( , ( ) ( )) | = , [0, ].ut f t u t se t ds M ds M t Tq £ - £ " Îò ò (24a)

Using the definition of  and the estimate (24a), we have

( ) ( ) ( )1 1 10 0
0 ( ) exp | ( ) | exp = exp = .

T T
t s ds M ds M T Cq£ Q £ £ò ò (24b)

Similarly, we can easily estimate 1()  as follows

( ) ( ) ( ) ( )1 1 10 0

10 = exp ( ) exp | ( ) | exp = exp = .
( )

T T T

t
s ds s ds M ds M T C

t
q q£ £ £

Q ò ò ò (24c)

Applying the estimates (24b), (24c), and the Cauchy-Schwarz inequality, we get

ϕ £ Q £ £ £ Î
Q ò ò ò2 2 1/ 2

1 1 1 10

1( ) ( )| ( )| | ( )| | ( )| , [0, ].
( )

T T T

t t
t y e y dy C C e y dy C e y dy C T e t T

t

Squaring both sides and intergrading over  yields

2 2 24 2
1 2= .C T e C eϕ £ (25a)

We also need to obtain an estimate of  1,. Using (22) and (24a) gives

ϕ qϕ ϕ′ = + £ + Î1| | | | | | | |, [0, ].e M e t T

Squaring both sides, applying the inequality ( + )2 ≤ 22 + 22, integrating over the
computational domain , and using (25a), we get

2 2 2 2 22 2 2
1 1 2 31, 0

= | | 2( ) 2( 1) .
T

dt M e M C e C eϕ ϕ ϕ
W

′ £ + £ + £ò (25b)

Applying the projection result and the estimate (3.20b) yields

4 51,
.hP C h C h eϕ ϕ ϕ+

W
- £ £ (25c)
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Now, we are ready to show (9). Using (17) with  =  and (22), we obtain

ϕ ϕ θϕ ϕ ϕ ϕ ϕ− − − −
− − − −

′− − − + − +∫ ∫ 2
1 1 1 1( ; ) = ( ) ( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ).j j j j j j j j jI Ij j

e edt e t t e t t e dt e t t e t t

Summing over the elements and using the fact that () = (0−) = 0 yields

ϕ ϕ ϕ− − − −− +∑ 2 2

0 0
=1

( ; ) = ( ) ( ) ( ) ( ) = .
N

j
j

e e e t t e T T e (26)

On the other hand, if we choose  =  in (21) then we get

ϕ ε θ ϕ ϕ+′ − −∫ ( ; ) = ( )( ) .j hI j
e e P dt (27)

Summing over all elements and applying the Cauchy-Schwarz inequality, we get

ϕ ε ϕ ϕ+′≤ + −∑ 1
=1

( ; ) ( ) .
N

j h
j

e M e P

Using the estimate (25c), we deduce that

ϕ +

+ Ω
≤ + ≤ +∑ 1

0 1 11,
=1

( ; ) ( ) ( ) .
N

p p
j p

j
e C h u M e C h e C h h e e (28)

Combining (26) and (28), we conclude that

+≤ +1 .pe Ch Ch e (29)

Thus, (1 − ℎ)  ≤  ℎ + 1, where  is a positive constant independent of ℎ. Therefore, for

sufficiently small ℎ, e.g., ℎ ≤ 12 , we obtain 12  ≤ (1 − ℎ)  ≤  ℎ + 1, which yields ≤ 2 ℎ + 1 for ℎ small. Thus, we completed the proof of (9).

To show (10), we use  =  + , the classical inverse inequality (8), the estimate (9), and the
projection result (7) to obtain

Perusal of the Finite Element Method42



Now, we are ready to show (9). Using (17) with  =  and (22), we obtain

ϕ ϕ θϕ ϕ ϕ ϕ ϕ− − − −
− − − −

′− − − + − +∫ ∫ 2
1 1 1 1( ; ) = ( ) ( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ).j j j j j j j j jI Ij j

e edt e t t e t t e dt e t t e t t

Summing over the elements and using the fact that () = (0−) = 0 yields

ϕ ϕ ϕ− − − −− +∑ 2 2

0 0
=1

( ; ) = ( ) ( ) ( ) ( ) = .
N

j
j

e e e t t e T T e (26)

On the other hand, if we choose  =  in (21) then we get

ϕ ε θ ϕ ϕ+′ − −∫ ( ; ) = ( )( ) .j hI j
e e P dt (27)

Summing over all elements and applying the Cauchy-Schwarz inequality, we get

ϕ ε ϕ ϕ+′≤ + −∑ 1
=1

( ; ) ( ) .
N

j h
j

e M e P

Using the estimate (25c), we deduce that

ϕ +

+ Ω
≤ + ≤ +∑ 1

0 1 11,
=1

( ; ) ( ) ( ) .
N

p p
j p

j
e C h u M e C h e C h h e e (28)

Combining (26) and (28), we conclude that

+≤ +1 .pe Ch Ch e (29)

Thus, (1 − ℎ)  ≤  ℎ + 1, where  is a positive constant independent of ℎ. Therefore, for

sufficiently small ℎ, e.g., ℎ ≤ 12 , we obtain 12  ≤ (1 − ℎ)  ≤  ℎ + 1, which yields ≤ 2 ℎ + 1 for ℎ small. Thus, we completed the proof of (9).

To show (10), we use  =  + , the classical inverse inequality (8), the estimate (9), and the
projection result (7) to obtain

Perusal of the Finite Element Method42

( )ε ε ε− −′ ′ ′+ ≤ + ≤ + ≤ + + ≤ + ≤1 1
1 2 1 2 3 2= ' ' .p p p p pe e e C h e C h C h e C h C h C h Ch

We note that  1,2 =  2 + ′ 2 . Applying (9) and the estimate ′ ≤ ℎ yields 1,2 ≤ 1ℎ2 + 2 + 2ℎ2 = (h2p), which completes the proof of the theorem.

4. Superconvergence error analysis

In this section, we study the superconvergence properties of the DG method. We first show a(2 + 1)th order superconvergence rate of the DG approximation at the downwind point of
each element. Then, we apply this superconvergence result to show that the DG solution

converges to the special projection of the exact solution ℎ− at (hp+2). This result allows us to

prove that the leading term of the DG error is proportional to the ( + 1) degree right Radau
polynomial.

First, we define some special polynomials. The th degree Legendre polynomial can be defined
by Rodrigues formula [41]

( )ξ ξ ξ
ξ

− − ≤ ≤ 21( ) = ( 1) , 1 1.
2 !

p
p

p p p

dL
p d

It satisfies the following important properties: (1) = 1, ( − 1) = ( − 1), and the orthogon-

ality relation

ξ ξ ξ δ δ
− +∫  1

1

2( ) ( ) = , where  is the Kronecker symbol.
2 1p q pq pqL L d

p (30)

One can easily write the ( + 1) degree Legendre polynomial on [ − 1,1] as

ξ ξ ξ+
+ +

+
+ ∈ −

+
  1

1 1 2

(2 2)!( ) = ( ), where ([ 1,1]).
2 (( 1)!)

p p
p p pp

pL q q P
p

The ( + 1) degree right Radau polynomial on [ − 1,1] is defined as + 1() =  + 1() − (). It has  + 1 real distinct roots, −1 < 0 < ⋯ <  = 1.
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Mapping  into the reference element [ − 1,1] by the linear transformation

 =  +  − 12 + ℎ2 , we obtain the shifted Legendre and Radau polynomials on :
− −

+ + + +

   − − − −
   
   
   

 1 1
1, 1 1, 1

2 2
( ) = , ( ) = .j j j j

p j p p j p
j j

t t t t t t
L t L R t R

h h

Next, we define the monic Radau polynomial,  + 1,(), on  as

ψ
+

+
+ + +

+ +
+ +

1 2 2
1

1, 1, 1,

[( 1)!] (( 1)!)( ) = ( ) = ( ), where = .
(2 2)! (2 2)!

p
j p

p j p j p j p j p

h p pt R t c h R t c
p p

(31)

Throughout this work the roots of  + 1,() are denoted by

,  =  +  − 12 + ℎ2 ,  = 0, 1, …,  .
In the next lemma, we recall the following results which will be needed in our error analysis
[32].

Lemma 4.1. The polynomials ,  and  + 1, satisfy the following properties

ψ ψ ψ+ +
+ + +
′ − +

+ ∫
2 22 2 2 3

, 1, 1, 1 1, 2= , = , = (2 2) ,
2 1

j p p
p j p j p j j p j jII Ijj j

h
L dt k h p k h

p
(32)

where 1 = 22, 2 = 1(2 + 1)(2 + 3) , and  = (( + 1)!)2(2 + 2)! .

Now, we are ready to prove the following superconvergence results.

Theorem 4.1. Suppose that the assumptions of Theorem 1 are satisfied. Also, we assume that  is

sufficiently smooth with respect to  and  (for example, ℎ() = (, ()) ∈ ([0, ]) is enough.).

Then there exists a positive constant  such that

+− ≤ 2 1( ) , = 1, , ,p
ke t Ch k N (33)

+− ≤ 2 1( ) , = 1, , ,p
ke t Ch k N (34)
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Then there exists a positive constant  such that

+− ≤ 2 1( ) , = 1, , ,p
ke t Ch k N (33)

+− ≤ 2 1( ) , = 1, , ,p
ke t Ch k N (34)
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+′ ≤ 1 ,pe C h (35)

+≤ 2 .pe C h (36)

Proof. To prove (33), we proceed by the duality argument. Consider the following auxiliary
problem:

θ′ + ∈= 0, [0, ] subject to ( ) = 1,k kW W t t W t (37)

where 1 ≤ 𑩤𑩤 ≤ 𑩤𑩤 and  = () = ∫01(, () − 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵. The exact solution of this problem is

() = exp ∫ 𑩤𑩤(𝀵𝀵)𝀵𝀵𝀵𝀵 ,  𑨈𑨈 𑨈𑨈𑩤𑩤 = [0,𑩤𑩤] . Using the assumption ℎ() = (, ()) 𑨈𑨈 ([0, ])
and the estimate (24a), we can easily show that there exists a constant  such that

+ Ω
≤

1,
.

p k
W C (38)

Using (17) and (37), we get

θ − − − −
− − − −

′− − + − + − +∫ 1 1 1 1( ; ) = ( ) ( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ).j j j j j j j j jI j
e W W W edt e t W t e t W t e t W t e t W t

Summing over the elements ,  = 1,…, 𑩤𑩤, using (𑩤𑩤) = 1, and the fact that 𝀵𝀵(0−) = 0, we

obtain

− − −− +∑ 0 0
=1

( ; ) = ( ) ( ) ( ) ( ) = ( ).
k

j k k k
j

e W e t W t e t W t e t (39)

Now, taking  =  in (21) yields

ε θ +′ − −∫ ( ; ) = ( )( ) .j hI j
e W e W P W dt

Summing over all elements ,  = 1,…, 𑩤𑩤 with 𑩤𑩤 = 1,…,𑩤𑩤 and applying (39), we arrive at
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ε θ− +′ − −∑∫
=1

( ) = ( )( ) .
k

k hI jj
e t e W P W dt

Using (24a) and applying the Cauchy-Schwarz inequality, we obtain

ε ε− + +

Ω Ω Ω Ω
′ ′≤ + − ≤ + −1 10, 0, 0, 0,

( ) ( ) ( ) .k h h
k k k k

e t M e W P W M e W P W

Invoking the estimates (7), (9), and (38), we conclude that

+ + + + +−

+ Ω + Ω
≤ + ≤ + 1 1 1 1 2 1

0 1 1 21, 1,
( ) ( ) ( ) = ( ),p p p p p p p

k p p k
e t C h u M C h C h W C h h h h (40)

for all  = 1,…,, which completes the proof of (33).

In order to prove (34), we use the relation  =  + , the property of the projection ℎ−, i.e.,(−) = 0, and the estimate (33) to get

ε +− − − −−  2 1( ) = ( ) ( ) = ( ) = ( ).p
k k k ke t e t t e t h

Next, we will derive optimal error estimate for ′ . By the property of ℎ−, we have

ε ε −′ ∀ ∈∫ = 0, ( ), and ( ) = 0, = 1, , .p
j jI j

v dt v P I t j N (41)

Using the relation  =  + , applying (41) and (11) yields

− + − −
− −

′ + − + −∫ ∫ 1 1( ( , ) ( , )) ( ) ( ) ( ) ( ) = 0.h j j j jI Ij j
v edt f t u f t u vdt e t v t e t v t

By integration by parts on the first term, we obtain

( ) +
− −− + +∫ 1 1' ( , ) ( , ) [ ]( ) ( ) = 0.h j jI j

e f t u f t u vdt e t v t (42)
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− −
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( ) +
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Choosing () = ′() − ( − 1)′(𑨒𑨒 − 1+ ), 𑨒𑨒() ∈ (𑨒𑨒) in (42), we have, by the property( − 1) = ( − 1) and the orthogonality relation (30), (𑨒𑨒 − 1+ ) = 0 and

+ +
− −

+
−

− + − − −

− − −

∫ ∫ ∫

∫

2
1 , 1 ,

1 ,

( ') = ( 1) '( ) ' ( ( , ) ( , ))( ' ( 1) '( ) )

= ( ( , ) ( , ))( ' ( 1) '( ) ) .

p p
j p j h j p jI I Ij j j

p
h j p jI j

e dt e t L e dt f t u f t u e e t L dt

f t u f t u e e t L dt
(43)

Using (3) and applying the Cauchy-Schwarz inequality gives

( ) ( )+ +
− −

+
−

′ ′ ′ ′ ′≤ − + ≤ +

 
′ ′≤ + 

 

∫ ∫
2

1 , 1 1 ,

1 1 ,

( , ) ( , ) ( ) ( )

( ) .

h j p j j p jI I Ij j j

j p jI I Ij j j

e f t u f t u e e t L dt M e e e t L dt

M e e e t L
(44)

Combining (44) with (8) and (32), we obtain

−
    ′ ′ ′ ′ ≤ + ≤   +   

1/ 2
2 1/ 2

1 1 1/ 2 .
(2 1)

j
jI I I I I Ij j j j j j

h
e M e e C h e C e e

p

Consequently, ′ 𑨒𑨒 ≤   𑨒𑨒. Taking the square of both sides, summing over all elements, and

using (9), we conclude that

+≤ ≤
2 2 2 2' .pe C e Ch (45)

Finally, we will estimate  . Using the fundamental theorem of calculus, we write

− −′ ′+ ≤ + ∀ ∈∫ ∫| ( )|=| ( ) ( ) | | ( )| | ( )| , .
t

j j jt Ij j
e t e t e s ds e t e s ds t I

Taking the square of both sides, applying the inequality ( + )2 ≤ 22 + 22, and applying the

Cauchy-Schwartz inequality, we get
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− − − 
′ ′ ′≤ + ≤ + + 

 
∫ ∫

2
22 2 2 2 2| ( )| 2| ( )| 2 | ( )| 2| ( )| 2 | ( )| = 2| ( )| 2 .j j j j j II I jj j

e t e t e s ds e t h e s ds e t h e

Integrating this inequality with respect to  and using the estimate (34), we get

+− ′ ′≤ + ≤ +
2 2 24 32 2 22 | ( )| 2 2 2 .p

j j j j jI I Ij j j
e h e t h e Ch h e

Summing over all elements and using the estimate (35) and the fact that ℎ = maxℎ, we obtain

+ + + +≤ + ≤ + 
2 24 2 4 2 2 4 2 42

1 1 22 ' 2 = ( ),p p p pe C h h e C h C h h (46)

where we used 4 + 2 ≥ 2 + 4 for  ≥ 1. This completes the proof of the theorem.

The previous theorem indicates that the DG solution ℎ is closer to ℎ− than to the exact

solution . Next, we apply the results of Theorem 2 to prove that the actual error  can be split
into a significant part, which is proportional to the ( + 1) degree right Radau polynomial, and

a less significant part that converges at (hp+2) rate in the 2 norm. Before we prove this result,
we introduce two interpolation operators  and . The interpolation operator  is defined as

follows: For smooth  = (),   ∈ () and interpolates  at the roots of the ( + 1) degree

right Radau polynomial shifted to , i.e., at , ,  = 0, 1, …, ,. The interpolation operator 
satisfies   ∈  + 1() and   interpolates  at , ,  = 0, 1, …, , and at an additional point  in  with   ≠ , ,  = 0, 1, …, . The choice of the additional point is not important and can

be chosen as   =  − 1.

Next, we recall the following results from [12] which will be needed in our analysis.

Lemma 4.2. If  ∈ 𑨈𑨈 + 2(), then interpolation error can be split as

= , ,j j ju u on Ip f g− + (47a)

where

1, 1, ,
=0

ˆ( ) = ( ), ( ) = ( ), = ,
p

j j p j p j j i j
i

t t t t t u uf a y y g p+ + − −Õ (47b)
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Next, we recall the following results from [12] which will be needed in our analysis.

Lemma 4.2. If  ∈ 𑨈𑨈 + 2(), then interpolation error can be split as

= , ,j j ju u on Ip f g− + (47a)

where

1, 1, ,
=0

ˆ( ) = ( ), ( ) = ( ), = ,
p

j j p j p j j i j
i

t t t t t u uf a y y g p+ + − −Õ (47b)
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and  is the coefficient of  + 1 in the ( + 1) degree polynomial . Furthermore,

1
1,,

, = 0, , ,p s
j j p Is I jj

Ch u s pf + -
+

£ K (47c)

2
2,,

, = 0, , 1.p s
j j p Is I jj

Ch u s pg + -
+

£ +K (47d)

Finally,

π +-

+
- £ 2

2,
.p

h j p II jj
u P u Ch u (48)

Proof. The proof of this lemma can be found in [12], more precisely in its Lemma 2.1.

The main global superconvergence result is stated in the following theorem.

Theorem 4.2. Under the assumptions of Theorem 2, there exists a constant  independent of ℎ such

that

π +- £ 2 .p
hu u Ch (49)

Moreover, the true error can be divided into a significant part and a less significant part as

1,( ) = ( ) ( ), ,j p j j je t t t on Ia y w+ + (50a)

where

= ,j j hu uw g π+ - (50b)

and

2 22( 2) 2( 1)

=1 =1
, .

N N
p p

j jI Ij jj j
Ch Chw w+ +

¢£ £å å (50c)
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Proof. Adding and subtracting ℎ− to ℎ − 𝀵𝀵, we writeℎ − 𝀵𝀵 = ℎ − ℎ− + ℎ− − 𝀵𝀵𝀵 = −  + ℎ− − 𝀵𝀵𝀵 . Taking the 2 norm and using the triangle

inequality, we get

π π−− ≤ + − .h hu u e P u u

Applying the estimates (36) and (48), we deduce (49). Next, adding and subtracting 𝀵𝀵 to ,
we write  =  − 𝀵𝀵𝀵 + 𝀵𝀵 − ℎ. Moreover, one can split the interpolation error  − 𝀵𝀵𝀵 on  as

in (47a) to get

φ γ π φ ω ω γ π+ + − + + −= = , where = .j j h j j j j he u u u u (51)

Next, we use the Cauchy-Schwarz inequality and the inequality 𝀵𝀵𝀵𝀵 ≤ 12(𝀵𝀵2 + 𝀵𝀵2) to write

( ) ( )ω γ π γ π γ γ π π

γ π

+ − + − + − + −

 
≤ + − 

 

2 2 2

2 2

= , = 2 ,

2 .

j j h j h j j h h II II I jj jj j

j h II jj

u u u u u u u u

u u

Summing over all elements and applying (47d) with  = 0 and (49) yields the first estimate in
(50c).

Using the Cauchy-Schwarz inequality and the inequality 𝀵𝀵𝀵𝀵 ≤ 12(𝀵𝀵2 + 𝀵𝀵2), we write

( )ω γ π γ π γ π′ ′ ′ ′

 
′ ′ ′+ − + − ≤ + − 

 

2 2 2
= ( ) , ( ) 2 ( ) .j j h j h j h II II jj jj

u u u u u u (52)

Using the inverse inequality (8), i.e., (𝀵𝀵 − ℎ)′  ≤  ℎ−1 (𝀵𝀵 − ℎ) , we obtain the

estimate

ω γ π−
′ ′

 
≤ + − 

 

2 2 22 .j j h II I jj j
C h u u
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Summing over all elements and applying (49) and the estimate (47d) with  = 1, we establish
the second estimate in (50c).

5. A posteriori error estimation

In this section, we use the superconvergence results from the previous section to construct a
residual-based a posteriori error estimator which is computationally simple, efficient, and
asymptotically exact. We will also prove its asymptotic exactness under mesh refinement. First,
we present the weak finite element formulation to compute a posteriori error estimate for the
nonlinear IVP (2).

In order to obtain a procedure for estimating the error , we multiply (2) by arbitrary
smooth function  and integrate over the element  to obtain

′∫ ∫= ( , ) .
I Ij j
u vdt f t u vdt (53)

Replacing  by ℎ +  and choosing  =  + 1,(), we obtain

( )ψ ψ+ +
′ ′+ −∫ ∫1, 1,= ( , ) .p j h h p jI Ij j

e dt f t u e u dt (54)

Substituting (50a), i.e., () =  + 1,() + (), into the left-hand side of (54) yields

( )α ψ ψ ω ψ+ + +
′ ′ ′+ − −∫ ∫1, 1, 1,= ( , ) .j p j p j h h j p jI Ij j

dt f t u e u dt (55)

Using (32) and solving for , we obtain

( )α ω ψ ++
′ ′− + − −∫ 1,2 2

1

1= ( , ) .j h h j p jp I jj

f t u e u dt
k h (56)

Our error estimate procedure consists of approximating the true error on each element  by

the leading term as

1,( ) ( ) = ( ), ,j p j je t E t a t t Iψ +» Î (57a)
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where the coefficient of the leading term of the error, , is obtained from the coefficient 
defined in (56) by neglecting the terms  and , i.e.,

( ) 1,2 2
1

1= ( , ) .j h h p jp I jj

a f t u u dt
k h

y¢ ++- -ò (57b)

We remark that our a posteriori error estimate is obtained by solving local problems with no
boundary condition.

The  global  effectivity  index,  defined  by   =  ,  is  an  important  criterion  for  eval-

uating  the  quality  of  an  error  estimator.  The  main  results  of  this  section  are  stated
in  the  following  theorem.  In  particular,  we  prove  that  the  error  estimate  ,  in  the2  norm,  converges  to  the  actual  error  .  Moreover,  we  show  that  our  a  posterior
error  estimate  is  asymptotically  exact  by  showing  that  the  global  effectivity  index 1  as  ℎ 0.

Theorem 5.1. Suppose that the assumptions of Theorem 2 are satisfied. If () =  + 1,(),  𑨈𑨈 𑨈𑨈,
where ,  = 1,…,, are defined in (57b), then

+- ≤
2 2 4 .pe E C h (58)

Thus, the post‐processed approximation ℎ +  yields (ℎ + 2) superconvergent solution, i.e.,

y +
+- + - + ≤∑

22 2 4
1,

=1
( ) = ( ) .

N
p

h h j p j I jj
u u E u u a C h (59)

Furthermore, then there exists a positive constant  independent of ℎ such that

+- ≤
2 2 2 4 .pe E C h (60)

Finally, if there exists a constant  = () > 0 independent of ℎ such that

+≥ 1 ,pe Ch (61)

then the global effectivity index in the 2 norm converges to unity at (h) rate, i.e.,
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(62)

Proof. First, we will prove (58) and (59). Since  =  + 1, +  and  =  + 1, on , we

have

α ψ ω α ψ ω+ +− − + ≤ − +
2 2 22 2

1, 1,= ( ) 2( ) 2 ,j j p j j j j p j jI I I Ij j j j
e E a a

where we used the inequality ( + )2 ≤ 22 + 22. Summing over all elements yields

α ψ ω+− − ≤ − +∑ ∑ ∑
2 22 2 2

1,
=1 =1 =1

= 2 ( ) 2 .
N N N

j j p j jI I Ij j jj j j
e E e E a (63)

Next, we will derive upper bounds for ∑ = 1 ( − )2  + 1, 2 . Subtracting (56) from (57b),

we obtain

( )α ω ψ′ ++
− + − −∫ 1,2 2

1

1= ( , ) ( , ) .j j h h j p jp I jj

a f t u e f t u dt
k h (64)

Thus,

( )α ω ψ ++
′− ≤ + − +∫ 1,2 2

1

1 ( , ) ( , ) .j j h h j p jp I jj

a f t u e f t u dt
k h (65)

Using the Lipschitz condition (3) and applying the Cauchy-Schwarz inequality yields

( )
ψ

α ω ψ ω
+

++ +

 
′ ′− ≤ + ≤ + 

 
∫

1,

1 1, 12 2 2 2
1 1

1 .
p j I j

j j j p j jp p II Ijj jj j

a M e dt M e
k h k h

(66)

Applying the inequality ( + )2 ≤ 2(2 + 2), we obtain
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a M e
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Multiplying by  + 1, 2  and using (32), i.e.,  + 1, 2 = (2 + 2)2ℎ2 + 3 yields

ψ
α ψ ω ω

+

+ +

   
′ ′− ≤ + ≤ +   

   
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a M e k h e
k h

(68)

where 3 = 2(2 + 2)22212 max(12, 1) is a constant independent of the mesh size.

Summing over all elements and using ℎ = max1 ≤  ≤ 𑩤𑩤ℎ, we arrive at

α ψ ω+

 
′− ≤ + 

 
∑ ∑

2 222 2
1, 3

=1 =1
( ) .

N N

j j p j jI Ij jj j
a k h e

Combining this estimate with (9) and (50c), we establish

( )α ψ +
+− ≤∑

2 2 2 4
1,

=1
.

N
p

j j p j I jj
a Ch (69)

Now, combining (63) and the estimates (50c) and (69) yields

+ + +− ≤ +
2 2 4 2 4 2 4

1 22 2 = ,p p pe E C h C h Ch

which completes the proof of (58). Using the relation  = 𑨒𑨒 𑨒𑨒 𑨒𑨒ℎ and the estimate (58), we obtain

ψ +
+− + − + − ≤∑

2 2 2 2 4
1,

=1
( ) = ( ) = .

N
p

h j p j hI jj
u u a u u E e E Ch

Next, we will prove (60). Using the reverse triangle inequality, we have
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Next, we will prove (60). Using the reverse triangle inequality, we have
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,- £ -E e E e (70)

which, after applying the estimate (58), completes the proof of (60).

In order to show (62), we divide (70) by   to obtain |𑨒𑨒 𑨒𑨒 1| ≤ 𑨒𑨒 𑨒𑨒  . Applying the estimate

(58) and the inverse estimate (61), we arrive at

σ - £| 1| .Ch

Therefore, 𑨒𑨒 = 𑨒𑨒 = 1 + (h), which establishes (62).

Remark 5.1. The previous theorem indicates that the computable quantity 𑨒𑨒  converges to  at (hp+2) rate. This accuracy enhancement is achieved by adding the error estimate 𑨒𑨒 to the
DG solution ℎ.

Remark 5.2. The performance of an error estimator 𑨒𑨒 is typically measured by the global
effectivity index which is defined as the ratio of the estimated error 𑨒𑨒  to the actual error . We say that the error estimator is asymptotically exact if 𑨒𑨒 1 as ℎ 0. The estimate (62)

indicates that the global effectivity index in the 2 norm converge to unity at (h) rate. There-
fore, the proposed estimator 𑨒𑨒  is asymptotically exact. We would like to emphasize that 𑨒𑨒 is
a computable quantity since it only depends on the DG solution ℎ and . It provides an

asymptotically exact a posteriori estimator on the actual error  . Finally, we would like to
point out that our procedure for estimating the error  is computationally simple. Furthermore,
our DG error indicator is obtained by solving a local problem with no boundary condition on
each element. This makes it useful in adaptive computations. We demonstrate this in Section
6.

Remark 5.3. Our proofs are valid for any regular meshes and using piecewise polynomials

of degree 𑩥𑩥 𑩥𑩥 1. If 𑩥𑩥 = 0 then (46) gives  = (h) which is the same as  = (h). Thus, our
superconvergence results are not valid when using 𑩥𑩥 = 0. Also, our error estimate procedure
does not apply.

Remark 5.4. The assumption (61), which is used to prove the convergence of 𑨒𑨒 to unity at (h),
requires that terms of order (hp+1) are present in the error. If not, 𑨒𑨒 might not be a good
approximation of . We note that the exponent of ℎ in the estimate (9) is optimal in the sense
that it cannot be improved. In fact, for the ℎversion finite element method one may show that
provided that the (𑩥𑩥 + 1)th order derivatives of the exact solution  do not vanish identically
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over the whole domain, then an inverse estimate of the form  ≥ ()ℎ + 1 is valid for some
positive constant () depending only on  [42–44].

Remark 5. Our results readily extend to nonlinear systems of ODEs of the form

∈
    

0= ( , ), [0, ], (0) = ,du f t u t T u u
dt

where  = [1,…, ]: [0, ] ℝ,  0 ∈ ℝ, and  = [1,…, ]: [0, ] × ℝ ℝ. The DG

method for this problem consists of finding  ℎ ∈  ℎ =  :   ∈ (()),  = 1,…,  such

that: ∀  ∈  ℎ and  = 1,…,,

− − + −
− −+ − +∫ ∫

       
1 1( ') ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) = 0.t t t t

h h j j j jI Ij j
v u dt v f t u dt v t u t v t u t

6. Application: adaptive mesh refinement (AMR)

A posteriori error estimates play an essential role in assessing the reliability of numerical
solutions and in developing efficient adaptive algorithms. Adaptive methods based on a
posteriori error estimates have become established procedures for computing efficient and
accurate approximations to the solution of differential equations. The standard adaptive FEMs
through local refinement can be written in the following loop

→ → →SOLVE ESTIMATE MARK REFINE.

The local a posteriori errors estimator of Section 5 can be used to mark elements for refinement.

Next, we present a simple DG adaptive algorithm based on the local a posteriori error estimator
proposed in the previous section. The adaptive algorithm that we propose has the following
steps:

1. Select a tolerance 𝀵𝀵𝀵𝀵 and a maximum bound on the number of interval (saymax = 1000). Put  = 1.

2. Construct an initial coarse mesh with  + 1 nodes. For simplicity, we start with a uniform
mesh having  = 2 elements.

3. While  + 1 ≤ max and  ≥ 𝀵𝀵𝀵𝀵 do
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Next, we present a simple DG adaptive algorithm based on the local a posteriori error estimator
proposed in the previous section. The adaptive algorithm that we propose has the following
steps:
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(a) Solve the DG scheme to obtain the solution ℎ as described in Section 2.

(b) For each element, use (57a) and (57b) to compute the local error estimators ,  = 1,…, as described in Section 5 and the global error estimator

 = ∑ = 1  2 1/2
.

(c) For all elements 
i. Choose a parameter 0 ≤ 𑩤𑩤 ≤ 1. If the estimated global error  < 𑩤𑩤 max = 1,…,   then stop and accept the DG solution on the element.
ii. Otherwise, reject the DG solution on  and divide the element  into two

uniform elements by adding the coordinate of the midpoint of  to the list
of nodes.

4. Endwhile.

Remark 6.1. There are many possibilities for selecting the elements to be refined given the local error
indicator  . In the above algorithm, we used the most popular fixed‐rate strategy which consists of

refining the element  if   > 𑩤𑩤 max = 1,…,  , where 0 ≤ 𑩤𑩤 ≤ 1 is a parameter provided by the

user. Note that the choice 𑩤𑩤 = 0 gives uniform refinement, while 𑩤𑩤 = 1 gives no refinement. Also, there
are other stopping criteria that may be used to stop the adaptive algorithm.

7. Computational results

In this section, we present several numerical examples to (i) validate our superconvergence
results and the global convergence of the residual-based a posteriori error estimates, and (ii)
test the above local adaptive mesh refinement procedure that makes use of our local a posteriori
error estimate.

Example 7.1. The test problem we consider is the following nonlinear IVP

′ − − ∈2= , [0,1], (0) = 1.u u u t u

Clearly, the exact solution is () = 12 − 1 . We use uniform meshes obtained by subdividing
the computational domain [0,1] into  intervals with  = 5, 10, 20, 30, 40, 50. This example is
tested by using  polynomials with  = 0 − 4. Figure 1 shows the 2 errors   and   with
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log-log scale as well as their orders of convergence. These results indicate that  = (hp+1) and = (hp+2). This example demonstrates that our theoretical convergence rates are optimal.

Figure 1. Log-log plots of   (left) and   (right) versus mesh sizes ℎ for Example 7.1 on uniform meshes having = 5, 10, 20, 30, 40, 50 elements using ,  = 0 to 4.

Figure 2. Log-log plots of  * (left) versus ℎ for Example 7.1 using  = 5, 10, 20, 30, 40, 50 and ,  = 0 to 4. Log-

log plots of  * (right) versus ℎ using  = 5, 10, 20, 30 elements using ,  = 0 to 3.

Next, we compute the maximum error at the shifted roots of the ( + 1) degree right Radau
polynomial on each element  and then take the maximum over all elements. For simplicity,

we use  * to denote max1 ≤  ≤  max0 ≤ 𑩤𑩤 ≤  (, 𑩤𑩤− ) , where , 𑩤𑩤 are the roots of + 1,(). Similarly, we compute the true error at the downwind point of each element and

then we denote  * to be the maximum over all elements ,  = 1,…,, i.e.,
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 * = max1 ≤ 𑩤𑩤 ≤ 𑩤𑩤 (𑩤𑩤−) . In Figure 2, we present the errors  *,  * and their orders of

convergence. We observe that  * = (hp+2) and  * = (h2p+1) as expected. Thus, the error at right
Radau points converges at (hp+2). Similarly, the error at the downwind point of each element
converge with an order 2 + 1. This is in full agreement with the theory.

Next, we use (57a) and (57b) to compute the a posteriori error estimate for the DG solution. The

global errors  − 𑨒𑨒  and their orders of convergence, using the spaces  with  = 1 − 4, are

shown in Figure 3. We observe that  − 𑨒𑨒 = (hp+2). This is in full agreement with the theory.
This example demonstrates that the convergence rate proved in this work is sharp. Since − 𑨒𑨒 = 𑨒𑨒 − (𑨒𑨒ℎ + 𑨒𑨒) = (hp+2), we conclude that the computable quantities 𑨒𑨒ℎ + 𑨒𑨒 converges

to the exact solution 𑨒𑨒 at (hp+2) rate in the 2 norm. We would like to emphasize that this
accuracy enhancement is achieved by adding the error estimate 𑨒𑨒 to the DG solution 𑨒𑨒ℎ only

once at the end of the computation. This leads to a very efficient computation of the postpro-
cessed approximation 𑨒𑨒ℎ + 𑨒𑨒.

Figure 3. The errors  − 𑨒𑨒  and their orders of convergence for Example 1 on uniform meshes having 𑩤𑩤 = 5, 10, 20,

30, 40, 50 elements using ,  = 1 to 4.

In Table 1, we present the actual L2 errors and the global effectivity indices. These results
demonstrate that the proposed a posteriori error estimates is asymptotically exact.
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  = 1  = 2  = 3  = 4       
5 4.7637e-03 1.0362 2.7867e-04 1.0531 1.6847e-05 1.0637 1.0386e-06 1.0705

10 1.2750e-03 1.0179 3.7805e-05 1.0271 1.1742e-06 1.0326 3.7481e-08 1.0363

20 3.2849e-04 1.0089 4.8747e-06 1.0136 7.6227e-08 1.0164 1.2290e-09 1.0182

30 1.4736e-04 1.0059 1.4568e-06 1.0090 1.5201e-08 1.0109 1.6369e-10 1.0122

40 8.3262e-05 1.0044 6.1698e-07 1.0068 4.8296e-09 1.0082 3.9026e-11 1.0091

50 5.3429e-05 1.0035 3.1660e-07 1.0054 1.9827e-09 1.0066 1.2820e-11 1.0073

Table 1. The errors   and the global effectivity indices for Example 7.1 on uniform meshes having  = 5, 10, 20, 30,

40, 50 elements using ,  = 1 to 4.

In Figure 4, we show the errors 𝀵𝀵 = |‖ − ‖| and 𝀵𝀵 =  − 1 . We see that 𝀵𝀵 = (hp+2) and𝀵𝀵 = (h) as the theory predicts.

Figure 4. Convergence rates for 𝀵𝀵 (left) and 𝀵𝀵 (right) for Example 1 on uniform meshes having  =5, 10, 20, 30, 40,

50 elements using ,  = 1 to 4.

Example 7.2. In this example we test our error estimation procedure presented in Section 6 on
adaptively refined meshes. We consider the following model problem

β′ ∈= , [0,5], (0) = 1,u u t u

where the exact solution is simply () = 𝀵𝀵. We apply our adaptive algorithm using 𝀵𝀵 = 1
(unstable), 𝀵𝀵 = − 1 (stable), and 𝀵𝀵 = − 20 (stiff). The DG solutions and the sequence of meshes

obtained by applying our adaptive algorithm with 𝀵𝀵𝀵𝀵𝀵𝀵 𝀵𝀵𝀵 −2 for  = 1 − 4 are shown in
Figures 5–7 for 𝀵𝀵 = 1, 𝀵𝀵 = − 1, and 𝀵𝀵 = − 20, respectively. As can be expected, the adaptive
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  = 1  = 2  = 3  = 4       
5 4.7637e-03 1.0362 2.7867e-04 1.0531 1.6847e-05 1.0637 1.0386e-06 1.0705

10 1.2750e-03 1.0179 3.7805e-05 1.0271 1.1742e-06 1.0326 3.7481e-08 1.0363

20 3.2849e-04 1.0089 4.8747e-06 1.0136 7.6227e-08 1.0164 1.2290e-09 1.0182

30 1.4736e-04 1.0059 1.4568e-06 1.0090 1.5201e-08 1.0109 1.6369e-10 1.0122

40 8.3262e-05 1.0044 6.1698e-07 1.0068 4.8296e-09 1.0082 3.9026e-11 1.0091

50 5.3429e-05 1.0035 3.1660e-07 1.0054 1.9827e-09 1.0066 1.2820e-11 1.0073

Table 1. The errors   and the global effectivity indices for Example 7.1 on uniform meshes having  = 5, 10, 20, 30,

40, 50 elements using ,  = 1 to 4.
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algorithm refines in the vicinity of the endpoint  = 5 with coarser meshes for increasing
polynomial degree . Furthermore, we observe that, when  is closer to 0, we get more uniform
refinement near the portion with high approximation error. When  is near 1, we get less
uniform refinement near the portion with high approximation error. We also observed that,
both for  = 0.2 and  = 0.9, the optimal convergence rates are achieved asymptotically and
that the global effectivity indices converge to unity with increasing polynomial degree .
Furthermore, we tested our adaptive algorithm on other problems and observed similar
conclusions. These results are not included to save space.

Figure 5. , ℎ, and final meshes for Example 7.2 with  = − 20 using ,  = 1 to 4, and 𝀵𝀵𝀵𝀵𝀵𝀵 = 10−2.

Figure 6. u, uh, and final meshes for Example 7.2 with β = −1 using Pp, p = 1 to 4, and Tol = 10−2.
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Figure 7. u, uh, and final meshes for Example 7.2 with β = −20 using Pp, p = 1 to 4, and Tol = 10−2.

8. Concluding remarks

In this chapter, we presented a detailed analysis of the original discontinuous Galerkin (DG)
finite element method for the approximation of initial-value problems (IVPs) for nonlinear
ordinary differential equations (ODEs). We proved several optimal error estimates and
superconvergence results. In particular, we showed that the DG solution converges to the true
solution with order  + 1, when the space of piecewise polynomials of degree  is used. We
further proved the (2 + 1)th superconvergence rate at the downwind points. Moreover, we
proved that the DG solution is (hp+2) superconvergent toward a particular projection of the
exact solution. We used these results and showed that the leading term of the DG error is
proportional to the ( + 1) degree right Radau polynomial. This result allowed us to construct
computationally simple, efficient, and asymptotically exact a posteriori error estimator. It is
obtained by solving a local residual problem with no boundary condition on each element.
Furthermore, we proved that the proposed a posteriori error estimator converges to the actual

error in the 2 norm. The order of convergence is proved to be  + 2. All proofs are valid for

regular meshes and for  polynomials with  𑩥𑩥 1. Finally, we presented a local adaptive
procedure that makes use of our local a posteriori error estimate. Future work includes the study
of superconvergence of DG method for nonlinear boundary-value problems.

Abbreviations

Symbols

AMR Adaptive mesh refinement
DG Discontinuous Galerkin
FEM, FEMs Finite element method, finite element methods
IVP, IVPs Initial-value problem, initial-value problems
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ODE, ODEs Ordinary differential equation, ordinary differential equations
PDE, PDEs Partial differential equation, partial differential equations
RKDG Runge‐Kutta discontinuous Galerkinℝ Set of real numbersℝ Real ‐dimensional vector space(, ), [, ] 𑨈𑨈 𑨈𑨈 ℝ:  < 𑨈𑨈 <  , 𑨈𑨈 𑨈𑨈 ℝ:  𑩤𑩤 𑨈𑨈 𑩤𑩤 () Set of all functions continuous on () Set of all functions having  continuous derivatives on ∞() Space of functions infinitely differentiable on  Typical vector in ℝ of the form  = [1, 2, …, ]𝀵𝀵𝀵𝀵 Kronecker symbol′, ′′ First and second derivatives of  with respect to () th derivative of  with respect to 

“big oh” asymptotic bound𑨈𑨈 −  = (hm) The sequence 𑨈𑨈  converges to  with order 1 Lipschitz constant𝀵𝀵 Interval [𝀵𝀵 𝀵 1, 𝀵𝀵], 𝀵𝀵 = 1,…,ℎ𝀵𝀵 Length of interval 𝀵𝀵, ℎ𝀵𝀵 = 𝀵𝀵 − 𝀵𝀵 𝀵 1ℎ Maximum of ℎ𝀵𝀵, ℎ = max1 𑩤𑩤 𑩤𑩤 𑩤𑩤 ℎ𝀵𝀵(𝀵𝀵−) Left limit of the function  at the point 𝀵𝀵(𝀵𝀵+) Right limit of the function  at the point 𝀵𝀵[](𝀵𝀵) Jump of  at the point 𝀵𝀵 Degree of a polynomial (integer)(𝀵𝀵) Set of all polynomials of degree no more than  on 𝀵𝀵ℎ Finite element space of polynomials of degree at most  in the interval 𝀵𝀵∀ For all(, )𝀵𝀵 2 inner product of  and  on the interval 𝀵𝀵, (, )𝀵𝀵 = ∫𝀵𝀵()()𝀵𝀵 0,𝀵𝀵 and  𝀵𝀵 Standard 2‐norm of  on 𝀵𝀵
 0, and  2‐norm of  on  = ∪𝀵𝀵 = 1 𝀵𝀵 ∞, 𝀵𝀵,  ∞ Standard ∞‐norm of  on 𝀵𝀵 and , respectively
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() Sobolev space () =  : ∫ |()() 2𝀵𝀵 < ∞, 0 ≤  ≤ 
 ,  Norm of () ,  ()-seminorm of  on  ,  and   ()-seminorm of  on ℎ± Gauss-Radau projections of  onto ℎ, 1, 2, etc Generic positive constants independent of ℎ() Exact solution at time ℎ() DG solution at time ℎ() ℎ() = ℎ(−) True error,  =  − ℎ Projection error,  =  − ℎ− Error  = ℎ − ℎ−.(),  = 0, 1, …,  th degree Legendre polynomial on [ − 1,1](),  = 0, 1, …,  th degree right Radau polynomial on [ − 1,1], (),  = 0, 1, …,  th degree Legendre polynomial on , (),  = 0, 1, …,  th degree right Radau polynomial on , (),  = 0, 1, …,  th degree monic Radau polynomial on ,  = 0, 1, …,  Roots of  + 1(), ,  = 0, 1, …,  Roots of  + 1,()𝀵𝀵 Interpolant, interpolates () at , ,  = 0, 1, …, ,𝀵𝀵 Interpolant, interpolates () at , ,  = 0, 1, …, , and at an additional point   in 

with   ≠ , ,  = 0, 1, …,   − 𝀵𝀵()  + 1,(), where  is the coefficient of  + 1 in the ( + 1) degree polynomial 𝀵𝀵  + 𝀵𝀵 − ℎ, 𝀵𝀵 Global effectivity index, 𝀵𝀵 =  − 1𝀵𝀵𝀵𝀵𝀵𝀵, 𝀵𝀵𝀵𝀵𝀵𝀵 Tolerance, maximum bound on the number of interval * Maximum error at Radau points * Maximum error at the downwind points
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Abstract

In this chapter, a finite element formulation is proposed to study the natural frequencies
of double-walled carbon nanotubes modeled as, both, local and nonlocal Euler-Bernoulli
beams, coupled with van der Waals interaction forces. The formulation uses Galerkin-
weighted residual approach and employs Hermite cubic polynomial function to derive
the  linear  eigenvalue  problem.  Natural  frequencies  are  found  for  clamped-free,
clamped-clamped and simply supported-simply supported boundary conditions. The
results are in good agreement with the formulations found in the literature. The effect
of nonlocal factor on the natural frequencies of the system is found out by comparing
local  and nonlocal  results.  Additionally,  the universality of  the proposed model is
proven by application to a double-elastic Euler-Bernoulli beam. This formulation paves
way for Finite Element Method (FEM) analysis of multi-walled CNTs—either locally or
nonlocally.

Keywords: carbon nanotubes, Euler-Bernoulli beam, DWCNTs, finite element analy-
sis, nonlocal continuum mechanics, vibrations

1. Introduction

Carbon nanotubes are tubules of carbon, in the dimensional range of nanometre (in the order
of 10e−9 m), with atoms arranged in a way that gives them exceptional properties. The high
aspect ratio, the ratio of length to its diameter, and chirality are the factors that contribute to
the same. Carbon nanotubes are classified as single- and multi-walled depending on the
number of tubes held concentrically. A considerable amount of research has been dedicated
to the study of mechanical properties of both these types using experimental or theoretical
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methods. Theoretical methods involve the representation of C─C bonds as is, conveniently
named as atomistic modelling methods, or as continuous structures such as bar, beam and
shell. The latter is usually employed to study the vibrational properties as the use of atomistic
models require comparatively large computational time and effort, and are often accurate for
a particular time period in the loading cycle. The laws of continuum structures have been
found to be at the nanometre scale as well [1].

Continuum structures, by definition, consider the model to be continuous and ignore the inter-
atomic forces. Eringen and Edelen [2] and Eringen [3, 4] proposed a model that would connect
the lattice mechanics with the continuum mechanics, named as nonlocal continuum mechan-
ics. This is achieved by introducing nonlocal factors in the governing equations [5]. As will be
seen in the following sections, the introduction of these nonlocal factors have shown improved
description of the model. Peddieson et al. [6] extended the nonlocal continuum models to
nanotechnology and hence paved the way for these theoretical models to represent the
properties of nanomaterials with greater accuracy.

Finite element methods have been employed for analysis of continuum structures since 1950s,
as the numerical technique is very adaptable in terms of complex geometries and boundary
conditions. The method involves the division of the structure into number of ‘elements’ and
using appropriate interpolations functions to express the approximate solutions. The eigen-
value problem hence achieved is solved for system’s natural frequencies and mode shapes.

The study of vibrations of carbon nanotubes, modeled as continuum models has gained
considerable attention with beams and shells being used extensively. The elastic model has
been presented by Ru [7] to study the column buckling of multi-walled carbon nanotubes,
where the adjacent tubes were presented to be interacting through van der Waals interaction
forces. Ru [8] also studied the transverse vibrations of single- and multi-walled carbon
nanotubes by considering them as Euler-Bernoulli beams. Sufficient attention was given to the
effect of van der Waals interaction forces on the vibrational frequency. Yoon et al. [9] studied
the non-coaxial vibrational modes of multi-walled carbon nanotubes embedded in an elastic
medium and deduced that the concentric geometry of carbon nanotubes will be distorted at
ultrahigh frequencies. Nonlinear free vibrations of multi-walled carbon nanotubes embedded
in an elastic medium were studied by Fu et al. [10]. The relation between nonlinear free
vibration frequency, stiffness of the surrounding medium and van der Waals interaction forces
was discussed and amplitude curves presented. Vibrational characteristic analysis of double-
walled carbon nanotube (DWCNT) with simply supported boundary condition using multiple
Euler-Bernoulli beam model was investigated by Natsuki et al. [11]. It was seen that the
amplitudes of inner and outer tubes are non-coaxial and in opposite direction. Natsuki also
studied DWCNTs embedded in elastic medium, represented by Winkler spring model, for free
supported boundary condition [12] and DWCNTs with different lengths for inner and outer
tubes [13]. Xu et al. [14] studied the vibrations of DWCNTs with nonlinear van der Waals
interaction forces and concluded that it does not affect the coaxial free vibrations. Elishakoff
and Pentaras [15, 16] studied the natural frequencies of DWCNTs and TWCNTs using
approximate methods, like Bubnov-Galerkin and Petrov-Galerkin and exact solutions. The
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coupling between the concentric tubes is considered as van der Waals interaction forces, in
both the cases.

Nonlocal continuum mechanics approach has also been used extensively in the recent years.
Constitutive relations of nonlocal elasticity to be used in analysis of carbon nanotubes for Euler-
Bernoulli, Timoshenko beams and cylindrical shells were presented by Wang and Wang [17].
Extensive attention was given to the shear stress and strain relation for the Timoshenko beams.
Wang [18] also studied the wave propagation in carbon nanotubes using nonlocal Euler-
Bernoulli and nonlocal Timoshenko beams and concentrated on the effect of nonlocal factor
on the mechanical behaviour of carbon nanotubes. Yoon et al. [19] also performed a similar
study concluded that the rotary inertia and shear deformation play a significant role when the
measured natural frequency is much closer to the critical frequency. One more such study was
performed by Wang and Varadan [20], who developed explicit frequency solutions for both
single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotube (DWCNTs)
on the basis of nonlocal continuum mechanics and employed both the beam theories. The ratio
of local and nonlocal frequencies is used to study the effect of nonlocal factor. Arash and Wang
[21] reviewed various studies on the nonlocal continuum theory for carbon nanotubes and
graphene sheets. They also compared the nonlocal models to the local equivalents. Reddy [22]
reformulated governing equations, based on nonlocal theory, and presented analytical
solutions for bending, buckling and vibrations of Euler-Bernoulli, Timoshenko, Reddy and
Levinson beams. Further, Reddy and Pang [23] also presented the governing equations of
Euler-Bernoulli and Timoshenko beams, based on nonlocal theory, specifically for carbon
nanotubes and used these equations to study the vibrations, buckling and static bending.
Murmu and Pradhan [24] employed the differential quadrature (DQ) method to study the
thermo-mechanical vibration of SWCNT embedded in an elastic medium, represented as
Winkler-type elastic foundation, using nonlocal elasticity theory. It was found that the
difference between local and nonlocal frequencies is particularly high for low temperature
changes. Narendar et al. [25] studied the wave propagation in SWCNTs, under magnetic field,
using nonlocal Euler-Bernoulli beam theory. De Rosa and Lippiello [26] analysed the free
vibration of DWCNTs, modeled as nonlocal Euler-Bernoulli beams, using cell-discretization
method (CDM) and a semi-analytical Rayleigh-Schmidt method. A rare study of forced
vibrations of carbon nanotubes was performed by Karaoglu and Aydogyu [27] using both local
and nonlocal Euler-Bernoulli beam models, for both SWCNTs and DWCNTs. Khosrozadeh
and Hajabasi [28] studied the free vibrations of DWCNTs embedded in an elastic medium with
nonlinear interlayer van der Waals interaction forces using nonlocal Euler-Bernoulli beam
model. Fang et al. [29] performed a similar study for DWCNTs embedded in elastic medium
considering it to be Winkler model.

Timoshenko models have also been used extensively as it considers the rotational inertia and
transverse shear. Wang et al. [30] considered it and studied the free vibration of MWCNTs
using differential quadrature (DQ) method to solve the governing equations. It is seen that the
frequencies are over-predicted by Euler-Bernoulli model when the aspect ratio is small. Yang
et al. [31] studied the nonlinear free vibration of SWCNT with the von Karman geometric
nonlinearity considering them as nonlocal Timoshenko beams. Nonlinear free vibration of
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embedded DWCNTs modeled as nonlocal Timoshenko beams was presented by Ke et al. [32]
where again differential quadrature (DQ) technique was employed, and the surrounding
elastic medium was represented by spring-based Winkler model. Pradhan [33] presented a
finite element model using nonlocal Timoshenko beams and Galerkin weighted residual
technique. The buckling of carbon nanotubes using Timoshenko model was studied by Zhang
et al. [34], and various studies on buckling were extensively reviewed by Wang et al. [35] and
Shima [36].

A theory similar to nonlocal theory was presented by Park and Gao [37] using modified couple
stress theory where internal material length parameter is considered and a variational model
is presented basing on minimum total energy potential for Euler-Bernoulli beam model. It
found a relation between deflections and beam thickness. Another nonlocal theory, for
nanobeams, was presented by Thai [38] in which the governing equations were derived using
Hamilton’s principle and analytical solutions were presented. The results were found to be
comparable to Timoshenko and Reddy beam theories even though the formulation is similar
to that of Euler-Bernoulli theory. A generalized nonlocal beam theory, to study properties of
nanobeams, was presented by Aydogdu [39]. Various beam models were studied as a special
case of this beam theory for simply supported nanobeams, and the numerical results were
found to be stand valid. Lu et al. [40] compared various nonlocal beam models that are used
for carbon nanotubes and made some interesting observations.

Various variational techniques have also been employed with nonlocal theories to study the
vibrational behaviour of carbon nanotubes. Adali [41] employed a semi-inverse method and
presented one such model. Alshorbagy et al. [42] developed a nonlocal finite element for static
analysis of nanobeams. Eltaher et al. [43] analysed the vibrations of nonlocal Euler-Bernoulli
nanobeams using finite element method. A similar study was performed by Phadikar and
Pradhan [44], where finite element analysis of nanoplates and nanobeams was presented. All
these models are found to be efficient for SWCNTs. Ansari and Hemmatnezhad [45] studied
the nonlinear vibrations of MWCNTs embedded in an elastic medium using variational
iteration method. A finite element analysis of embedded Timoshenko beam was also per-
formed by Hemmatnezhad and Ansari [46], where carbon nanotubes were modeled as
nonlocal beam using statically exact shape functions to achieve an eigenvalue problem.
Shakouri et al. [47] studied the transverse vibrations of DWCNTs modeled as nonlocal Euler-
Bernoulli beams using Galerkin method. Dinçkal [48], more recently, proposed a finite element
model that uses exact dynamic shape functions (trigonometric in nature) to form the frequency-
dependant dynamic stiffness matrix and hence study the free vibrations of carbon nanotubes,
modeled as both nonlocal Euler-Bernoulli and Timoshenko beams. Ehteshami and Hajabasi
[49] and Zhang et al. [50] performed an analytical study and presented exact solutions for
finding natural frequencies of DWCNTs modeled as nonlocal Euler-Bernoulli beams. The
results of both these studies have been considered as benchmark to verify the results obtained
in the current study. This chapter exploits the generality of the FEM technique to obtain the
natural frequencies of DWCNTs, coupled with van der Waals interaction forces. The model
has been proposed and applied to both local (classical) Euler-Bernoulli and nonlocal Euler-
Bernoulli beam cases. The results are compared with the values presented in the literature.

Perusal of the Finite Element Method72



embedded DWCNTs modeled as nonlocal Timoshenko beams was presented by Ke et al. [32]
where again differential quadrature (DQ) technique was employed, and the surrounding
elastic medium was represented by spring-based Winkler model. Pradhan [33] presented a
finite element model using nonlocal Timoshenko beams and Galerkin weighted residual
technique. The buckling of carbon nanotubes using Timoshenko model was studied by Zhang
et al. [34], and various studies on buckling were extensively reviewed by Wang et al. [35] and
Shima [36].

A theory similar to nonlocal theory was presented by Park and Gao [37] using modified couple
stress theory where internal material length parameter is considered and a variational model
is presented basing on minimum total energy potential for Euler-Bernoulli beam model. It
found a relation between deflections and beam thickness. Another nonlocal theory, for
nanobeams, was presented by Thai [38] in which the governing equations were derived using
Hamilton’s principle and analytical solutions were presented. The results were found to be
comparable to Timoshenko and Reddy beam theories even though the formulation is similar
to that of Euler-Bernoulli theory. A generalized nonlocal beam theory, to study properties of
nanobeams, was presented by Aydogdu [39]. Various beam models were studied as a special
case of this beam theory for simply supported nanobeams, and the numerical results were
found to be stand valid. Lu et al. [40] compared various nonlocal beam models that are used
for carbon nanotubes and made some interesting observations.

Various variational techniques have also been employed with nonlocal theories to study the
vibrational behaviour of carbon nanotubes. Adali [41] employed a semi-inverse method and
presented one such model. Alshorbagy et al. [42] developed a nonlocal finite element for static
analysis of nanobeams. Eltaher et al. [43] analysed the vibrations of nonlocal Euler-Bernoulli
nanobeams using finite element method. A similar study was performed by Phadikar and
Pradhan [44], where finite element analysis of nanoplates and nanobeams was presented. All
these models are found to be efficient for SWCNTs. Ansari and Hemmatnezhad [45] studied
the nonlinear vibrations of MWCNTs embedded in an elastic medium using variational
iteration method. A finite element analysis of embedded Timoshenko beam was also per-
formed by Hemmatnezhad and Ansari [46], where carbon nanotubes were modeled as
nonlocal beam using statically exact shape functions to achieve an eigenvalue problem.
Shakouri et al. [47] studied the transverse vibrations of DWCNTs modeled as nonlocal Euler-
Bernoulli beams using Galerkin method. Dinçkal [48], more recently, proposed a finite element
model that uses exact dynamic shape functions (trigonometric in nature) to form the frequency-
dependant dynamic stiffness matrix and hence study the free vibrations of carbon nanotubes,
modeled as both nonlocal Euler-Bernoulli and Timoshenko beams. Ehteshami and Hajabasi
[49] and Zhang et al. [50] performed an analytical study and presented exact solutions for
finding natural frequencies of DWCNTs modeled as nonlocal Euler-Bernoulli beams. The
results of both these studies have been considered as benchmark to verify the results obtained
in the current study. This chapter exploits the generality of the FEM technique to obtain the
natural frequencies of DWCNTs, coupled with van der Waals interaction forces. The model
has been proposed and applied to both local (classical) Euler-Bernoulli and nonlocal Euler-
Bernoulli beam cases. The results are compared with the values presented in the literature.

Perusal of the Finite Element Method72

2. Formulation

This section gives the formulation for the proposed models. Section 2.1 would present the
formulation for local Euler-Bernoulli beam and Section 2.2 for nonlocal Euler-Bernoulli beam.
As will be seen ahead, the formulation uses Galerkin weighted residual method and Hermite
cubic polynomial functions, in both the cases in interest of generality.

2.1. DWCNTs based on local Euler-Bernoulli beam

Euler-Bernoulli beam, also known as the classical beam, is known to efficiently represent a
carbon nanotube, in the case when the aspect ratio (/ ratio) is sufficiently high. The governing
equation for an Euler-Bernoulli beam is given by [51]:

( )''''EIw Aw p xr+ =&& (1)

where 𝀵𝀵𝀵𝀵 is the bending rigidity,  is the displacement,  is the mass density,  is the cross-
sectional area, and the derivatives of transverse displacement with respect to beam length and
time are represented by prime (′) and a dot (.), respectively. Ru [8] used the multiple beam
model to derive the governing equations for DWCNTs. It is taken as two single-walled carbon
nanotubes coupled by an interaction force, represented by van der Waal’s coefficient, which is
estimated as:
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where  and  are the van der Waal’s radius and Lennard-Jones potential’s well depth,  = 0.142
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The governing equations for a DWCNT are [8]:
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where the subscripts 1, 2 for , , , ,  represent the inner and outer tubes, respectively. Simple
harmonic motion is assumed, i.e.,  ,  = 𝀵𝀵𝀵𝀵 is assumed to remove time dependency
from Eq. (5) and 𝀵𝀵 = 1, 2 to represent inner and outer carbon nanotube, respectively, and 𝀵𝀵 and represent the circular frequency and time. Using simple harmonic motion in governing
equations modifies them as:
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Following Galerkin weighted residual method, weight functions are introduced as 𝀵𝀵1, 2 and
the transverse displacements continue to be represented by 1, 2. The weighted-integral form
of the governing equations is given as:
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The weak integral form of the governing equations is eliminated by performing integration by
parts, twice on Eq. (7), as given below:
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Following Galerkin weighted residual method, weight functions are introduced as 𝀵𝀵1, 2 and
the transverse displacements continue to be represented by 1, 2. The weighted-integral form
of the governing equations is given as:

( )( )

( )( )

'''' 2
1 1 1 1 1 1 1 1 2 1

0

'''' 2
2 2 2 2 2 2 2 2 1 2

0

0

0

L
k

L
k

W E I W W c A W W cW W dx

W E I W W c A W W cW W dx

d r w d d

d r w d d

= + - - =

= + - - =

ò

ò
(7)

The weak integral form of the governing equations is eliminated by performing integration by
parts, twice on Eq. (7), as given below:

( )( )'' '' 2 ''''
2 2 2 2 2 2 2 2 2 1 2 2 2 2 0

0

[( ) ]
L

k LW E I W W c A W W cW W dx E I W Wd r w d d d= + - - +ò
'' '

2 2 2 0
( )

L
E I W Wdé ù- ë û 0=

Perusal of the Finite Element Method74

( )( )'' '' 2 '''
2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 0[( ) ]k LW E I W W c A W W cW W dx E I W Wd r w d d d= + - - +

0
'' '

2 2 2 0[( ) ]

L

LE I W Wd-

ò
0=

(8)

The boundary terms in Eq. (8) which vanish with the application of system boundary condi-
tions, represent the shear force and moment of the beams are given by  = ′′′ and = ′′ and remain similar to those of a classical Euler-Bernoulli beam. The domain length
of the DWCNT is now discretized with four nodes and two Degrees of Freedom (DOF) per
node (one transverse displacement and one slope per node) such that:
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The present work uses Hermite type polynomial approximations to derive the finite element
formulation such that the interpolation function is given as:
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1
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where ()  is a row vector of cubic shape functions, of the beam elements given by:
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2.2. DWCNTs based on nonlocal Euler-Bernoulli beam

The concept of nonlocality, which is accounted for with the introduction of a nonlocal or a
small scale factor was extended to the field of nanotechnology by Peddieson et al. [6] where
the author applied it to Euler-Bernoulli beam model. The small scale effect or the nonlocal
parameter is given as  = 0 to consider the stress at one point of the system as the function
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of strain at all points of the system. This is achieved with 0 being the material constant (to be

determined for each material) and  being the length of C─C bond. Subsequently, researchers
like Ehteshami and Hajabasi [49], Zhang et al. [50] and Wang and Varadan [20] developed the
model for DWCNTs using nonlocal Euler-Bernoulli beam model. The derivation of governing
equations requires the classic Hooke’s law for uniaxial stress state to be modified, taking
nonlocal elasticity into consideration, as:

( )
2

2
0 2e a E

x
ss e¶

- =
¶

(12)

with  and  being axial stress and strain, respectively. The equations of motion, perpendicular
to x axis, are given by:
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where  is the mass density of material,  is the cross-sectional area,  is deflection of the beam
and  and  denotes the bending moment and shear force, respectively. Using these in the
moment equilibrium conditions, results in the governing equation for nonlocal Euler-Bernoulli
beam, given as:
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For nonlocal DWCNTs, the governing equations are derived to be [20, 49, 50]:
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The solution of the equations is in the form  ,  = 𝀵𝀵𝀵𝀵, similar to the local Euler-Bernoulli
formulation. The time dependency is removed by considering the transverse displacement
with respect to time as circular frequency, 𝀵𝀵2:
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To maintain uniformity in mathematical modelling with the formulation proposed for local
Euler-Bernoulli model, Galerkin weighted residual model is used for FEM, with 𝀵𝀵𝀵𝀵 taken as
weighted residual. The weak integral form of governing equations takes the form:
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Integration by parts is performed on the above set of equations once, and the weak form
vanishes with the application of system boundary conditions,
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The resulting internal shear forces for both the beams are given as:
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and the resultant bending moments are given as:
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Integration by parts is performed once again on the first terms in Eq. (18) and after rearranging
for clarity, the following set of equations is obtained:
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Using Hermite cubic polynomial functions, given in Eq. (11), the finite element model is
developed. The element mass and stiffness matrices for both the local and nonlocal scenarios
are explicitly presented in the Appendix A. An FEM code in MATLAB solves the linear
eigenvalue problem which is given as:

( )2det 0K Mw- = (22)

where  represents global stiffness matrix and  represents the global mass matrix, respec-
tively, and is achieved after assembly. Table 1 gives the element matrices  and , which are

to be assembled to form the global matrices for both local and nonlocal cases.

Local Euler-Bernoulli beam Nonlocal Euler-Bernoulli beam = 1 + 3 −4−3 2 + 4  = 1 + 3 + 5 − 4 + 6− 3 + 5 2 + 4 + 6
 = 1 00 2  = 1 +3 00 2 +4
Table 1. Elemental matrices for local and nonlocal DWCNTs modeled as Euler-Bernoulli beams.
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where  represents global stiffness matrix and  represents the global mass matrix, respec-
tively, and is achieved after assembly. Table 1 gives the element matrices  and , which are

to be assembled to form the global matrices for both local and nonlocal cases.
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3. Results and discussion

The robustness and generality of proposed FEM model is demonstrated by its application to
a double-elastic Euler-Bernoulli beam and then to carbon nanotubes modeled as Euler-
Bernoulli beam, both locally and nonlocally. Natural frequencies are calculated for clamped-
free, clamped-clamped and simply supported-simply supported boundary conditions. The
parameters of the local double elastic Euler-Bernoulli beam are taken as:

3 2 2 2
1 2 1 2 1 2

4 4
1 2

1 1 1 m 2 m
1 m 2 m 10; 0.1 1 m

kg m E E N m A A
I I c L

r r
m

= = = = = =
= = = = =

Boundary conditions [14] Present study Error percentage
C─F 3.52 3.52 0.01
C─C 22.37 22.37 0
S─S 9.87 9.87 0

Table 2. Non-dimentionalized natural frequencies of a local double-elastic Euler-Bernoulli beam.

These parameters are so selected that the double beam replicates the geometry of carbon
nanotubes, i.e., both are concentric and are coupled with an interaction forces between the
walls. The natural frequencies of the double-elastic system, in this chapter, are normalized
using  = 𝀵𝀵2 𝀵𝀵𝀵𝀵/𝀵𝀵𝀵𝀵 where 𝀵𝀵 = 𝀵𝀵1 + 𝀵𝀵2 and 𝀵𝀵 = 𝀵𝀵1 + 𝀵𝀵2. The values presented by the proposed
model converge at about five elements, but the data tabulated, for all cases, are taken for 10
elements, unless mentioned otherwise. The non-dimentionalized natural frequencies for three
classic boundary conditions are given in Table 2.

Boundary conditions [50] Present study Error percentage
C─F 3.45 3.44 −0.54
C─C 20.23 21.10 4.38
S─S 9.42 9.42 0

Table 3. Non-dimentionalized natural frequencies of a nonlocal double-elastic Euler-Bernoulli beam.

The percentage error has been calculated by ((approximate−exact)/exact) × 100 in this study.
These values are compared to the first natural frequency obtained using the analytical solutions
found in Xu et al. The values are in good agreement and hence the proposed model is found
to be efficient to find the natural frequencies of local double-elastic Euler-Bernoulli beam. The
applicability of the proposed nonlocal model is demonstrated by the values in Table 3. It is to
be noted that the values are presented for a single value nonlocal factor, where  = 0.1, and it
can be confirmed that  = 0 would give the same values as presented in Table 1 as that would
reduce the nonlocal formulation to local one. The values presented in Table 1 are compared
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to the values obtained using the beam parameters in analytical solutions provided by Zhang
et al. [50]. It can be seen the error percentages are small hence validating the proposed model.

Table 4 gives the error percentage between local and nonlocal double-elastic Euler-Bernoulli
beam when / = 10. This error helps to measure the effect of nonlocal factor on the natural
frequencies of double-elastic Euler-Bernoulli beams. It is seen that the values obtained using
nonlocal model is less than that obtained using local double-elastic Euler-Bernoulli model. This
can be attributed to the presence of a nonlocal factor that considers the strain at one point to
be function of all the points in the body.

Boundary conditions Local Nonlocal Error percentage

C─F 3.52 3.44 2.25

C─C 22.37 21.10 5.65

S─S 9.87 9.42 4.60

Table 4. Error percentage between natural frequencies of local and nonlocal double-elastic Euler-Bernoulli beam.

It is concluded that a novel double-elastic Euler-Bernoulli beam FEM model has been pro-
posed, and its veracity established for both local and nonlocal cases, the same model will now
be applied to carbon nanotubes with the parameters used in Xu et al. [14] and Elishakoff and
Pentaras [15], given below:

3
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2, 2,

2.3 g/cm 1 Tpa
71.11 GPa 0.82; 0.142 nm

(inner radius, inner tube) 0.18 nm (outer radius, inner tube) 0.52 nm
(inner radius, outer tube) 0.53 nm (outer radius, outer tube) 0.87 nm
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Boundary conditions [14] Present study Error percentage
C─F 0.16 0.16 0.01

C─C 1.06 1.06 0

S─S 4.67 4.67 0

Table 5. Natural frequencies of a local DWCNTs modeled as Euler-Bernoulli beam (1012 rads/s).

The natural frequencies of a local DWCNT, modeled as Euler-Bernoulli beams, are presented
in Table 5. The nonlocal factor  is introduced as a product of material constant and charac-
teristic length. Zhang et al. calculated the material constant as the ratio of local result to nonlocal
result for axial buckling strain of SWCNT and arrived at a value 0 ≈ 0.82, and the characteristic

length is taken to be the length of C─C bond i.e.,  = 0.142 nm. The natural frequencies
calculated using the proposed model are compared to the values obtained using the analytical
formulation presented in Xu et al. [14]. The error percentages in Table 5 confirm that the
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The natural frequencies of a local DWCNT, modeled as Euler-Bernoulli beams, are presented
in Table 5. The nonlocal factor  is introduced as a product of material constant and charac-
teristic length. Zhang et al. calculated the material constant as the ratio of local result to nonlocal
result for axial buckling strain of SWCNT and arrived at a value 0 ≈ 0.82, and the characteristic

length is taken to be the length of C─C bond i.e.,  = 0.142 nm. The natural frequencies
calculated using the proposed model are compared to the values obtained using the analytical
formulation presented in Xu et al. [14]. The error percentages in Table 5 confirm that the
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proposed formulation holds valid even at nanoscale level. Further, negative error percentage
denotes that the values obtained using the present FEM model are a little higher than those
presented by Ehteshami and Hajabasi [49] (see Table 6).

Boundary conditions [49] [50] Present study Error percentage 1 Error percentage 2

C─F 0.166 0.16 0.16 0 0.01

C─C 1.06 1.06 1.06 −0.04 0.04

S─S 0.467 0.46 0.46 −0.03 0

Table 6. Natural frequencies of a nonlocal DWCNT modeled as Euler-Bernoulli beam (1012 rads/s).

Boundary conditions Local Nonlocal Error percentage

C─F 0.16 0.16 0.02

C─C 1.06 1.06 0.04

S─S 0.46 0.46 0.03

Table 7. Error percentage between natural frequencies of local and nonlocal DWCNTs modeled as Euler-Bernoulli
beam (1012 rads/s).

1 / Local Nonlocal Error percentage

C─F 20 0.41 0.41 0

C─C 2.65 2.65 0.01

S─S 1.17 1.17 0

C─F 40 0.10 0.10 0

C─C 0.66 0.66 0

S─S 0.29 0.29 0

C─F 60 0.04 0.04 0

C─C 0.29 0.29 0

S─S 0.13 0.13 0

C─F 80 0.02 0.02 0

C─C 0.16 0.16 0

S─S 0.07 0.07 0

Table 8. Error percentage between natural frequencies of local and nonlocal DWCNTs modeled as Euler-Bernoulli
beam with different / ratios (1012 rads/s).

Employing the FEM model proposed in Section 1.2, the natural frequencies of nonlocal
DWCNTs modeled as Euler-Bernoulli beam are given in Table 6. The natural frequencies thus
obtained are compared to the values obtained using the analytical formulations given by
Ehteshami and Hajabasi [49] Zhang et al. [50]. The error percentages, between present study
and these two studies, are presented as error percentage 1 and 2, respectively. The effect of
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nonlocal factor on the natural frequencies is best understood when the error percentage
between local results and nonlocal results are compared, presented in Table 7. It will be noted
that the error percentage is very small compared to the error percentage reported in Table 4.
This difference is attributed to the value of nonlocal factor—the double-elastic beam model
considers it to be between 1 and 2 and DWCNTs have it in the order of e−10, to be exact1.1644e − 10. It is also seen (Table 8) that as / ratio is increased, the natural frequency and
the error percentage, between local and nonlocal results, decrease, i.e., as the aspect ratio
increases, the effect of nonlocal factor decreases.

It is noted that though many tables in this chapter may have identical values in the columns
that are being compared, the indicated percentage error is a nonzero number, or on the
contrary, the columns being compared might not have identical values, but the indicated error
percentage is zero. A justification for these values stems from the large magnitude of the
numbers reported. For the sake of uniformity, we have rounded off the numbers to 2 decimal
points.

4. Conclusion

This chapter proposed FEM formulations to find the natural frequencies of DWCNTs modeled
as, both, local and nonlocal Euler-Bernoulli beams, coupled with van der Waals interaction
forces. It uses Galerkin weighted residual approach and Hermite cubic polynomial functions
to form the stiffness and mass matrices. The formulation is applied to double-elastic Euler-
Bernoulli beam and to DWCNTs, to check its generality. The natural frequencies thus obtained
are in agreement with those of the formulations found in the literature. It is seen that as the/ ratio of the system increases, the difference between local and nonlocal formulations
reduces. It has also been observed that difference between local and nonlocal system is
dependent on the magnitude of the nonlocal factor considered. These formulations would let
researchers apply FEM to multi-walled CNTs in order to better understand their behaviour.

Nomenclature

, length of the C─C bond, cross-sectional area, van der Waal’s interaction coefficient, Young’s Modulus, second area moment of inertia, bending moment, shape functions
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, time, shear force, lateral displacement, amplitude, length of the beam𝀵𝀵, weighting function, nonlocal factor, mass density, circular frequency0, material constant

Appendix A. Element matrices

1 =
12113 6112 −12113 6112411 −6112 211

𝀵𝀵𝀵𝀵𝀵𝀵 12113 −6112411

11111212
3 =

156420 22420 54420 −1342042420 13420 −32420𝀵𝀵𝀵𝀵𝀵𝀵 156420 −2242042420

11111212

2 =
12223 6222 −12223 6222422 −6222 222

𝀵𝀵𝀵𝀵𝀵𝀵 12223 −6222422

21212222
4 =

156420 22420 54420 −1342042420 13420 −32420𝀵𝀵𝀵𝀵𝀵𝀵 156420 −2242042420

21212222
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5 =
625 210 −625 2102215 −210 −230𝀵𝀵𝀵𝀵𝀵𝀵 625 −2102215

11111212
6 =

625 210 −625 2102215 −210 −230𝀵𝀵𝀵𝀵𝀵𝀵 625 −2102215

21212222

𝀵𝀵1 =
156𝀵𝀵1420 222𝀵𝀵1420 54𝀵𝀵1420 −132𝀵𝀵142043𝀵𝀵1420 132𝀵𝀵1420 −33𝀵𝀵1420

𝀵𝀵𝀵𝀵𝀵𝀵 156𝀵𝀵1420 −222𝀵𝀵142043𝀵𝀵1420

11111212
𝀵𝀵3 =

62𝀵𝀵15 2𝀵𝀵110 −62𝀵𝀵15 2𝀵𝀵11022𝀵𝀵115 −2𝀵𝀵110 −2𝀵𝀵130
𝀵𝀵𝀵𝀵𝀵𝀵 62𝀵𝀵15 −2𝀵𝀵11022𝀵𝀵115

11111212

𝀵𝀵2 =
156𝀵𝀵2420 222𝀵𝀵2420 54𝀵𝀵2420 −132𝀵𝀵242043𝀵𝀵2420 132𝀵𝀵2420 −33𝀵𝀵2420

𝀵𝀵𝀵𝀵𝀵𝀵 156𝀵𝀵2420 −222𝀵𝀵242043𝀵𝀵2420

21212222
𝀵𝀵4 =

62𝀵𝀵25 2𝀵𝀵210 −62𝀵𝀵25 2𝀵𝀵21022𝀵𝀵215 −2𝀵𝀵210 −2𝀵𝀵230
𝀵𝀵𝀵𝀵𝀵𝀵 62𝀵𝀵25 −2𝀵𝀵21022𝀵𝀵215

21212222
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Abstract

In this chapter, the critical stress transfer factors of interface material have been studied
under tensile  loading.  The polypropylene (PP)  short  fiber  was embedded into the
polypropylene co-ethylene (PPE) cylindrical interface first and then into the matrix
material. Modified interface PPE material with lower elastic constant value than matrix
material was used in our study. In this chapter, interface parameters affecting the stress
transfer mechanism have been investigated. Finite element analysis (FEA) package
(Ansys) has been used in the numerical  modeling by using representative volume
element (RVE). Tensile load was applied on one side of the composite cylinder as the
other side of the composite is fixed. The critical stress-strain distributions are deter-
mined and presented by curves and tables for different fiber and interface diameters.
For verification, the equivalent elastic material constants have been compared with the
analytical solution and the results have been appropriate.

Keywords: FEA, representative volume element, fiber composite, stress transfer, inter-
face, polymer

1. Introduction

There was considerable work on the determination of equivalent elastic constants of fiber-
reinforced composites in the literature survey. The methods used in these studies can be
summarized as follows: (i) numerical methods: finite difference and finite element method; (ii)
analytical methods: semi-empirical Halpin-Tsai equation, rule of mixtures (ROM); and (iii)
experimental studies in macro-, micro-, and nanoscales.
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In the literature survey, studies proposing finite difference modeling and equivalent elastic
properties of fiber composite structures were calculated in the consideration of the effect of
fiber modulus  and aspect ratio /  [1–6]. These studies were performed on the represen-

tative models according to both the multiple and single-fiber-reinforced material composi-
tions.

Finite element method (FEM) is one of the most useful numerical methods in engineering
problem-solving. Other methods such as the sublevel numerical procedures were addition-
ally developed and used with FEM in solution phases. One of the main methods used was
representative volume element (RVE) that used to predict the mechanical properties of uni-
directional fiber composites. By using finite element analysis of RVE, effective elastic mod-
ulii of the composite were determined [7]. Experimental studies were also performed to
support the numerical results [8]. Two-dimensional (unit cell method) and three-dimen-
sional finite element analysis (FEA) with RVE was performed, and results were compared
with the results of experimental studies in the literature [9–23]. Researchers often used the
following FE commercial codes: ABAQUS [11, 12, 16, 19], ANSYS [17, 20], NASTRAN [13],
and ALGOR-FEAS [9]. The numerically obtained results were compared and discussed
with the analytical [2, 5, 14, 15, 21, 23] and experimental data in the literature survey [10,
14, 15, 18].

The aim of this study was to determine the stress and strain distributions in fiber, matrix, and
fiber-matrix-interface in discontinuous fiber-matrix composite by using FEA. Each of the FE
model consists of a polypropylene co-ethylene (PPE) matrix which contains a polypropylene
fiber (PP) in it. In this study, 18 models were used and nine of them had also an interface
volume. In this research, following six main concepts were presented by examining the single
short fiber cylindrical bar within the matrix material under tensile loading for mechanical
response.

1. By using RVE, testing the effectiveness of the finite element modeling procedures on the
results, that is, mesh element types, meshing, definition and implementation of the
boundary conditions, application of the tensile loading.

2. Considering the different volume fractions, testing the effectiveness of the various volume
fraction of the fiber on the stress transfer mechanism from matrix to fiber material.

3. In terms of three-dimensional analysis, to investigate the influence of definition and
modeling of interface volume between fiber and matrix in 3D.

4. In terms of three-dimensional analysis, examining the effects of fiber surface area on the
stress transfer mechanism.

5. Establishing the explanations and curves for clarification the stress and strain localization
at the ends of the fiber.

6. Calculating the equivalent elastic constant E1.
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2. The fiber-reinforced composite material with interface volume:
modeling by representative volume element (RVE) method

Cylindrical RVE was used to represent the matrix and fiber all together. The different ma-
terial properties of fiber, matrix, and interface were selected. The elastic constants of the
polymer material were expressed as  = 1.05 GPa,  = 0.33,  = 4.5 GPa,  = 0.2, = 0.1 ×  = 0.105 GPa [4],  = 0.33. Here, , , , , ,  reflected the Young’s

modulus and Poisson’s ratio of the matrix, fiber, and interface materials, respectively.
While the fiber material was composed of elastic polyethylene (PE), the matrix and inter-
face materials were composed of bilinear material (PPE). The thickness  of the interface

region was defined as  = 0.025. Here,  was the diameter of the fiber. The shear modu-

lus of the interface region was defined as  = 0.1  [4]. In 3D composite modeling

steps, nine different geometrical properties were used with variable thickness , diameter, and fiber volume fraction  as shown in Table 1. According to these different geomet-

ric values, fiber composite RVE was modeled by FEM and the stress-strain transmission
conditions from fiber to interface and stress transfer from interface to matrix of the three
types of materials were examined.

Fiber interface thickness m Fiber diameter  m  Fiber volume fraction %  

Rule of mixtures (L = ℓ),1 GPa
1 40 4.98 1.222

1.125 45 5.87 1.283

1.25 50 6.75 1.283

1.375 55 7.63 1.313

1.5 60 8.51 1.344

1.625 65 9.37 1.373

1.75 70 10.22 1.403

1.875 75 11.06 1.432

2 80 11.87 1.459

Table 1. PPE/PP single-fiber-matrix modeling according to the various interface geometric properties and analytical
results of continuous  = ℓ  fiber-matrix composite.

Fiber volume fraction values and the size of the material models were obtained by using the
following equation [13];

2

24f
dV

L S
p

=
l

(1)
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Here, ℓ, , and  correspond to the fiber spacing, fiber length, and longitudinal fiber spacing,
respectively, as shown in Figure 1.

Figure 1. 2D geometrical parameters of the matrix/interface/fiber combination of PPE/PP microcomposite.

Figure 2. One of the typical geometrical descriptions of the polymer composite (matrix/interface/fiber, d = 50 μm) and
generated volume numbers.

Figure 3. Two different RVE fiber composite geometries and applied displacement boundary conditions: (a) fiber, inter-
face, and matrix combination; (b) fiber and matrix combination.

By rotating the 2D model 360° around the Y′-axis, 3D material models were obtained as
shown in Figure 2. Cylindrical geometry was divided into two segments and one segment was
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used to demonstrate the results (Figures 2 and 3). In general, the cylindrical geometry was
defined in cylindrical coordinates , ,  . In Ansys, modeling , ,   Cartesian coordinate axes
refers to the , ,   in the cylindrical coordinate system. However, in this study, all of the results
and Ansys code screen outputs were demonstrated only on the x-y plane of the projected
surface for one half of the cylindrical geometry.

2.1. Analytical formulation.

The aim of the micromechanical approaches was to determine the equivalent elastic constants
of composite material considering individual elastic constants constituting the composite
material. The equivalent elastic constants 1, 2, 12, 12  of the fiber-reinforced-composite

have been determined analytically in terms of the relative volume fractions ,   and elastic

constants , , , , ,   of fiber and matrix. It may be mentioned two basic analytical

approaches in micromechanics of continuous fiber-matrix composite materials in obtaining
the equivalent elastic constants. The first one was the rule of mixtures (ROM), and the second
one was the Halpin-Tsai semi-empirical model [24, 25]. The first model “rule of mixtures”
defined as the mathematical expressions that give the elastic properties of the continuous fiber
composite material in terms of original material properties, volume fiber fraction, and
arrangement of its constituents: (a) the apparent Young’s modulus in the same direction as the
fibers (1) (Eq. (2)), (b) the apparent Young’s modulus in the direction perpendicular to the

fibers (2) (Eq. (3)), (c) the major Poisson’s ratio (12) (Eq. (4)), and (d) the in-plane shear

modulus (12) of a lamina (Eq. (5)). Rule of mixtures (ROM) equations have been listed and

shown as the formulas below:

( )1 1f f m fE E V E V= + - (2)

2
f m

m f f m

E E
E

V E V E
=

+
(3)

( )12 1f f m fV Vn n n= + - (4)

12
m f

m f f m

G G
G

V G V G
=

+
(5)

The second model “Halpin-Tsai” included the expressions obtained by curve fitting as: (a) the
apparent Young’s modulus in the same direction as the fibers (1) (Eq. (6)), (b) the apparent

Micromechanical Analysis of Polymer Fiber Composites under Tensile Loading by Finite Element Method
http://dx.doi.org/10.5772/65002

93



Young’s modulus in the direction perpendicular to the fibers (2) (Eq. (7)), (c) the major

Poisson’s ratio (12) (Eq. (8)), and (d) the in-plane shear modulus (12) (Eq. (9)) of a single layer

of layered composite “ply.” These related equations have been listed and shown below:

1 f f m mE E V E V= + (6)

2
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1
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f m

fm f

m

E
V EE

EE V
E

xh
h

h
x

é ù
-ê úé ù+ ë û= =ê ú

- é ùê úë û +ê ú
ë û

(7)

12 f f m mV Vn n n= + (8)
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The reinforcing factor (), measuring reinforcement of the composite, is variable depending
on the fiber geometry, packing geometry, and loading condition. It is a measure of reinforce-
ment of the composite. The values of  have been obtained by comparing the Eqs. (7) and (8)
with exact elasticity solutions, and corresponding curve fitting results. The generalized
Hooke’s law equation is as follows:

i ij jCs e= (10)

In this equation,  is the stress vector, 𝀵𝀵 is the stiffness matrix, and  is the strain vector

components. In functional form, 𝀵𝀵 has been represented by Eq. (11) in terms of the elastic

properties of the fiber, matrix, relative volume fractions of fiber and matrix.

( ), , , , ,ij ij f f f m m mC C E V E Vn n= (11)

In most literature studies, the basic analytical approaches have been presented without taking
into account the adhesion of the interface across the end faces of the fibers and the stress
concentration effects at the fiber ends [2, 26, 27].
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3. Finite element modeling of short fiber in microcomposite and analyses
results

In the literature survey, a detailed examination on fiber-reinforced polymer matrix composites
was observed in determining the most suitable fiber-matrix combination model. In the
literature, different studies were found about tension/compression and shear loading to the
different modeling types of fiber/interface/matrix combinations, and in these studies, the
strength of the applied tensile/compression and shear loading types have been investigated.
In this research, the stress transfer mechanism and equivalent elastic constants of short fiber
composites were tried to be obtained by using new modeling. In FE modeling, the design
criteria were as follows: the dimensions of fiber and matrix, the material types of fiber and
matrix, the dimensions and material types of interface volume and the application of the tensile
load. In the first stage of the study, a single short fiber was studied with ANSYS code in
determining the optimum interface thickness by comparing the results obtained. In this step,
two different models were tested. The first one was fiber-matrix microcomposite with inter-
face (Figure 3a); the second model was fiber-matrix microcomposite without interface (Figure
3b). In the second stage of the study, the effects of interface volumes on the values of stress
distributions around the tip points of the fiber were attempted to explain. In the calculation of
the single-fiber modeling, nine different interface thicknesses  and nine different fiber

diameters  were used  = 0.025 , ( = 40, 45,…, 80 m). In this study, the interface volume
was defined around all of the faces of the fiber. In the literature, the studies were performed
by defining the interface surface or volume along the longitudinal surface (Figure 3).

Fiber diameter m Number of mesh elements

and nodes in the fiber-

interface-matrix model

(SHELL93)

Elastic constant1 GPa  (fiber-

interface-matrix

model)

Number of mesh

elements and nodes in

the fiber-matrix model

(SHELL93)

Elastic constant1 GPa  (fiber-

matrix model)

40 31,776/93,823 1.472 2271/6680 1.054

45 16,520/48,859 1.465 2475/7238 1.056

50 11,503/33,926 1.459 2474/7237 1.057

55 33,190/98,585 1.449 2543/7438 1.081

60 33,155/98,478 1.446 2559/7486 1.063

65 21,104/62,686 1.415 2957/8668 1.066

70 14,298/42,267 1.428 2998/8795 1.065

75 15,029/44,458 1.441 3103/9110 1.035

80 15,604/46,171 1.411 3229/9480 1.047

Table 2. The used geometric parameters, mesh elements, node numbers, and obtained elastic constants of

discontinuous  fiber-matrix microcomposite.
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In this study, the short single-fiber composite polymer (PPE/PP) material was modeled in
microlevel by finite element method (FEM). Single-fiber arrangement in matrix under the axial
loading was adequate to explain the overall characteristics of the fiber composite structures.
SHELL93 as ANSYS element type was used. This element has 6 degree of freedom per node, , , , ,  . The generated FE models for nine different geometries have different total

number of mesh elements and node numbers. Exact number of elements and nodes corre-
sponding to the composite models has been summarized in Table 2.

Composite model consists of three volume sections representing the fiber matrix and interface
(Figure 4). The first boundary condition of the model was applied by fixing one end of the
geometry, and this was performed by setting the 6 degree of freedom of each node to zero
(BC_1).

The second boundary condition of the model was related with the loading condition. The
second end of the composite cylinder was pulled with a constant load. The loading magnitude
applied to the nodes was  = 0.1 N. In this application, because of the unsymmetrical meshing
system, the resultant deformation of the bar was obtained as unsymmetrical. In order to
overcome this difficulty, second boundary condition was applied to the second end of the

cylinder. On this face along the loading application thickness or level 𝀵𝀵𝀵𝀵𝀵𝀵 , the “unit dis-

placement”  = 0.1 m was adopted to each node to obtain the symmetric displacement

condition over the whole body 1 m ≤ 𝀵𝀵𝀵𝀵𝀵𝀵 ≤ 2 m  (BC_2) (Figure 3). The stress concentra-

tion regions were developed between the fiber and matrix at the sharp edge corners as shown
in Figures 5–8. Fiber-matrix model showed higher stress concentrations than fiber-matrix-
interface model. In order to give more explanation to the developing stress distributions on
these faces, the third boundary condition was applied (BC_3). The previously defined first-
and second-type boundary conditions were applied over the extremely large sections of the

body 20 m ≤ 𝀵𝀵𝀵𝀵𝀵𝀵 ≤ 26 m , and new stress distribution results were obtained (Figures 9 and

10).

Figure 4. FEA meshing with SHELL93 element (a) RVE of fiber cylindrical composite model, (b) fiber, (c) matrix, and
(d) interface.
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Figure 5. Stress () distribution on the matrix section obtained from FEA nodal solution without interface region

( = 40 m).

Figure 6. Stress () distribution on the matrix section obtained from FEA element solution without interface region

( = 40 m).

Figure 7. Stress () intensity on the matrix section obtained from FEA element solution without interface region

( = 40 m).
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Figure 8. Stress () intensity developing on the matrix section (a) with interface region, (b) without interface region

( = 80 m).

Figure 9. FE results for the BC_2,   stress localization which is parallel to the applied displacement loading  and

generated around the sharp corners of the fiber–matrix model without interface region ( = 80 m).

Figures 5–7 have been represented the  distribution developing within the composite model

in matrix segment with noninterface case for the fiber diameter  = 40 m [2]. The stress
distributions were defined for both nodal and elemental solutions. The developing stress
localizations appeared around the tip sections of the fiber in matrix. The developing maximum
stress distributions were intensified around the fiber end sections. At the same region around
the neighborhood sections of the fiber segment, stress levels reached to relatively lower stress
localizations in comparison with maximum. This stress distribution was wide spread around
the maximum stress localization in a definite region. Normal stress value reached to their
secondarily largest value around the middle section of the fiber in matrix material. Addition-
ally, nodal solution curves gave better results than elemental solution. In nodal solution, stress
localizations appeared in a narrower region with longer segments. In finite element analysis,
element solutions were obtained by Gauss quadrature integration points. Nodal solution
results were determined at the coordinates of the nodal points by interpolation functions.
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Figure 9. FE results for the BC_2,   stress localization which is parallel to the applied displacement loading  and
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Gauss integration points have been defined at the inner section of the elements which were
not coincided with nodal coordinates. These element solutions were obtained by using the
interpolating functions in the curvilinear coordinate system. Element types varied according
to the interpolation functions used. In the generated composite models, the generated total
number of elements, nodes, and the obtained results were listed in Table 2. When the number
of elements increased, the most correct results were obtained. For these processes, high-
capacity computer systems were required. Stress distributions developing on the fiber and
matrix sections without interface volume were presented in Figures 11 and 12. In these figures,
stress localizations were developed on both matrix and fiber surfaces.

Figure 10. FE results for the BC_3,   stress localization on the (a) matrix and (b) fiber which are parallel to the ap-

plied displacement loading  and generated above the sharp corners of the fiber–matrix model without interface re-

gion ( = 75μm ).
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Figure 11. FEA stress   distribution developing on the matrix section of the fiber-matrix model without interface

region ( = 80 m).

Figure 12. Stress () distribution on the fiber section obtained from the FEA without interface region ( = 80 m).

As the fiber diameter decreased, the stress distributions collected at the end surface of the
cylindrical fiber material grown locally. When the stress localizations reduced in the inter-
face region between matrix and fiber at the same time, higher stresses in fiber section has
emerged. As it has shown by Figures 13 and 14, in the polymer fiber model with an interface

region, the maximum stress value was  = 0.952 × 10−6 N/m2, and in the polymer fiber

model without interface, maximum stress developing on the fiber was equal to = 0.732 × 10−6 N/m2  = 40 m . On the other hand, in the model with an interface, ma-

trix sections near to the fiber had the value  = 0.265 × 10−6 N/m2, and in the noninterface

model, stress value was  = 0.429 × 10−6 N/m2 (Figures 15 and 16)  = 40 m .
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Figure 13. FEA stress   distribution developing on the fiber section of the fiber-matrix model without interface re-

gion ( = 40 m).

Figure 14. FEA () distribution developing on the fiber section of the fiber-matrix model with interface region

( = 40 m).

Figure 15. Stress   distribution developing on the matrix section of the fiber-matrix model with interface

( = 40 m).
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Figure 16. Stress   distribution developing on the matrix section of the fiber-matrix model without interface

( = 40 m).

When the models were analyzed in terms of interface thicknesses, in the models with thicker
interface, the stress was found to be more. The interface region with the largest diameter had
the largest stress  and Von Mises stress 2 distributions relative to the smallest one. These

were equal to  = 0.130 × 10−5 N/m2 (Figure 17) and 2 = 0.132 × 10−5 N/m2 (Figure 18)

for  = 40 m and  = 0.08967 N/m2 (Figure 19) and 2 = 0.233 × 10−5 N/m2 (Figure 20)

for  = 80 m. Having studied the Figures 21 and 22, it was seen that the maximum stress
distributions are developed at the tip corner sections of the interface geometries. Nodal

solution results of  = 0.149 × 10−5 N/m2 for  = 40 m and  = 0.154 × 10−5 N/m2 for = 80 m were obtained.

Figure 17. FEA   distribution developing on the interface section of the fiber–matrix model ( = 40 m).
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Figure 17. FEA   distribution developing on the interface section of the fiber–matrix model ( = 40 m).
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Figure 18. FEA Von Mises 2  distribution developing on the interface section ( = 40 m).

Figure 19. Stress () distribution on the interface section obtained from FEA nodal solution ( = 80 m).

Figure 20. Von Mises 2  stress distribution on the interface section obtained from FEA nodal solution

( = 80 m).
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Figure 21. Stress intensity on the interface section ( = 40 m).

Figure 22. Stress intensity on the interface section ( = 80 m).

For nine different interface geometries, FEA results were represented by curves. These curves
included the results for the fiber diameters between 40 and 80 m, and corresponding thick-
nesses were  = 0.025 40 = 1,…,  = 0.025 80 = 2 (Table 1). The overall stress-strain distri-

butions developed in the composite were affected by the thicknesses of the interface region,
and these were proportional to the fiber diameter. As it has shown by Figure 23, the largest
interface stresses were developed in the models with the diameters  = 40 m and  = 55 m.

As the interface grew in diameter, the interface stresses became diminished from 6.9 × 10−7
to 5.5 × 10−7 N/m2. Figure 23 presents the suddenly changed stress intensity values at the tip
points of the fiber. Shear stress distributions 𝀵𝀵𝀵𝀵 and 𝀵𝀵𝀵𝀵 along the main axis ′ (Figure 2) were

shown with curves. In Figures 24 and 25, shear stresses were found to be changed suddenly
around the corner sections of the fiber end portion. The largest shearing stresses in fiber-
reinforced microcomposites have been developed with the largest diameters. In summary,
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Figure 23. FEA results for  stress distributions on nine different interface regions of the fiber-matrix (RVE) under

tensile load.

Figure 24. Comparison of stress 𝀵𝀵  distributions along the main y-axis of the fiber composite in microscale for the

fiber diameters  = 40 m and  = 80 m.

Micromechanical Analysis of Polymer Fiber Composites under Tensile Loading by Finite Element Method
http://dx.doi.org/10.5772/65002

105



Figure 25. Comparison of stress 𝀵𝀵𝀵𝀵  distributions along the main y-axis of the fiber composite in microscale for the

fiber diameters  = 40 m and  = 80 m.

10 2
max

5.8 10 N/ m 40 mxy dt -= ´ m = m (12)

10 2
max

3.5 10 N/ m 80 mxy dt -= ´ m = m (13)

9 2
max

3.0 10 N/ m 40 myz dt -= ´ m = m (14)

9 2
max

0.5 10 N/ m 80 myz dt -= ´ m = m (15)

The stress-strain 𝀵𝀵 − 𝀵𝀵 curves were plotted in FE models for diameters  = 40 m, = 70 m, and  = 80 m. These are presented in Figure 26. From the slopes of these curves,
the elastic constant values parallel to the fiber and loading direction 1  were obtained and

results are listed in Table 2 for both fiber-matrix and fiber-interface-matrix models. These
models have provided an opinion to the resultant data for 1 . FE model for the short fiber

composite without interface case gave the value as 1 𝀵𝀵𝀵𝀵𝀵𝀵 = 1.058 GPa, and for the short fiber

composite with interface case, it was 1 𝀵𝀵𝀵𝀵𝀵𝀵 = 1.446 GPa.
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Figure 26. Stress-strain curves of FE-RVE models for fiber diameters  = 40 m,  = 75 m and  = 80 m.

Figure 27. Comparison of stress distributions   obtained from the interface segment of the RVE-FE model

( = 75 m): (a) fiber with interface, (b) interface, (c) fiber without interface.

Figure 27 presented the comparison of  distribution for (a) fiber without interface, (b)
interface, and (c) fiber with interface regions. As it has shown in the curve for  = 75 m, fiber
with interface and also interface region stresses were near to each other in magnitudes5.7 × 10−7 N/m2. In case, fiber without interface showed the  distribution around5.2 × 10−7 N/m2. The difference between them was equal to 0.5 × 10−7 N/m2.

4. Discussion and conclusion

The effectiveness of the imposed interface volume and its geometric properties on the homo-
geneously distributed stress components in the polymer type fiber composites have been
shown in this study by using finite element method.
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The results obtained from this study were summarized as below::

1. The developing stress concentrations at the fiber-interface and interface-matrix common
surfaces showed that the increase in fiber content was inversely proportional to the
reduction in stress values.

2. Fiber volume fraction range from 4.98 to 11.87 was examined. Although the generated
number of elements was different in the FE modeling of fiber composite structures, the
obtained results of analysis were converged to the definite values. In the examined fiber
volume fractions, the numerically calculated elastic constant values changed in small
degree. The distribution of all values obtained from FEM was calculated in terms of
polynomials, so that all resultant values were followed the polynomial properties.

3. In the FE modeling, the thickness of the interface region was changed in proportional to
the fiber diameter and then obtained resultant elastic constant remained in a stable range.
The total changes for fiber-interface-matrix and fiber-matrix models were obtained as0.046 and 0.061 GPa mutually.

4. The application of the mechanical load per node  = 0.1 × 10−4 N  gave the elastic
constants 1.39 and 1.18 GPa for fiber and matrix sections of the  = 80 m microcomposite
by Ansys code FE analysis. While the applied load affected the entire combined structure,
some portions of the stress were transferred to the other sections of the composite body.
Therefore, the original individual material properties of the composite material could not
be measured after loading stage.

5. The maximum developing stress distribution was seen on the composite fiber section
while the maximum developing y-displacement  was developed on the composite

matrix section.

6. The generated mesh system was not symmetric in composite cylinder transverse cross
sections. The developing displacement distribution  on the composite fiber section showed

symmetric configuration in the center of the main axis  = 0.1 × 10−4  (Figure 28). The
developing displacement distribution  in the composite matrix section localized at the end

portions of the matrix portion of the cylinder.

7. In the analysis, the fiber in the matrix material was moved along the y-axis under tensile
loading. The fiber material was deformed by the help of stress transmission from matrix
to fiber. The role of the difference in Young’s modulus and Poisson’s ratio of the fiber and
matrix material on deformation analysis should be considered (Figure 29).

8. In this study, it was determined that the fiber content of fiber/interface/matrix composition
was significant in the stress distribution in all PPE/PP composite models and this was
confirmed by using FEA. With less fiber content (Vf%), stress concentration at the fiber-
matrix interface was found to be larger.

Perusal of the Finite Element Method108



The results obtained from this study were summarized as below::

1. The developing stress concentrations at the fiber-interface and interface-matrix common
surfaces showed that the increase in fiber content was inversely proportional to the
reduction in stress values.

2. Fiber volume fraction range from 4.98 to 11.87 was examined. Although the generated
number of elements was different in the FE modeling of fiber composite structures, the
obtained results of analysis were converged to the definite values. In the examined fiber
volume fractions, the numerically calculated elastic constant values changed in small
degree. The distribution of all values obtained from FEM was calculated in terms of
polynomials, so that all resultant values were followed the polynomial properties.

3. In the FE modeling, the thickness of the interface region was changed in proportional to
the fiber diameter and then obtained resultant elastic constant remained in a stable range.
The total changes for fiber-interface-matrix and fiber-matrix models were obtained as0.046 and 0.061 GPa mutually.

4. The application of the mechanical load per node  = 0.1 × 10−4 N  gave the elastic
constants 1.39 and 1.18 GPa for fiber and matrix sections of the  = 80 m microcomposite
by Ansys code FE analysis. While the applied load affected the entire combined structure,
some portions of the stress were transferred to the other sections of the composite body.
Therefore, the original individual material properties of the composite material could not
be measured after loading stage.

5. The maximum developing stress distribution was seen on the composite fiber section
while the maximum developing y-displacement  was developed on the composite

matrix section.

6. The generated mesh system was not symmetric in composite cylinder transverse cross
sections. The developing displacement distribution  on the composite fiber section showed

symmetric configuration in the center of the main axis  = 0.1 × 10−4  (Figure 28). The
developing displacement distribution  in the composite matrix section localized at the end

portions of the matrix portion of the cylinder.

7. In the analysis, the fiber in the matrix material was moved along the y-axis under tensile
loading. The fiber material was deformed by the help of stress transmission from matrix
to fiber. The role of the difference in Young’s modulus and Poisson’s ratio of the fiber and
matrix material on deformation analysis should be considered (Figure 29).

8. In this study, it was determined that the fiber content of fiber/interface/matrix composition
was significant in the stress distribution in all PPE/PP composite models and this was
confirmed by using FEA. With less fiber content (Vf%), stress concentration at the fiber-
matrix interface was found to be larger.

Perusal of the Finite Element Method108

9. When three layers of the composite compared, the fiber material carried higher stresses
than the interface and the interface material carried higher stresses than the matrix. This

was displayed as 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 ≥ int𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 ≥ 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 .

10. According to our study, when high fiber content in the matrix material was present, the
matrix material decreased and the stress transfer mechanism in this case was broken
(Table 2).

11. In our analysis work, the obtained results of stress distributions were applied for all
models of discontinuous fiber embedded into the matrix material. The stress distribution
results obtained from discontinuous fiber were compared with continuous fiber analytical
results for the commercial engineering applications (Tables 1 and 2).

12. In this research, the end-face effect of the fiber was considered by placing interface in the
ends.

Figure 28. Comparison of stress distributions   obtained from the cross section of the RVE FE model for mechani-

cal load ( = 80 m): (a) fiber without interface volume 1, (b) fiber without interface volume 2.

Figure 29. Comparison of displacement distributions (deformed/undeformed shapes) of the fiber obtained from the
cross section of the RVE FE model ( = 80 m): (a) fiber without interface volume 1, (b) fiber without interface vol-
ume 2 (force loading 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵/𝀵𝀵𝀵𝀵𝀵𝀵 = 0.1 N).
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Three main conclusions obtained from this research were evaluated for the values of the matrix/
fiber diameters and their effect on the equivalent elastic constant.

The first conclusion was presented by the comparison curve that plotted by the “linear
trendline curve” representing the average differences between two FE models. The relative
percentage change of the equivalent elastic constant value 1 in the two main models was

decreased as the diameter increased proportionally (Table 2 and Figure 30). Adding the
interface with the small diameter fiber into the cylinder strengthens the composite structure.

The second conclusion was described in the fiber-matrix models. The diameter of the fiber
increased from 40 to 55 m in an order. As a result of this application, the equivalent elastic
constant of the composite cylinder 1 was increased from 1.054 to 1.081 GPa in proportion. The

decrease in elastic modulus value 1 was obtained from 1.063 to 1.047 GPa in a nonlinear

manner for the diameter ranges from 60 to 80 μm.

%

Figure 30. Comparison 1 between fiber-matrix and fiber-interface-matrix FE models.

The third conclusion was explained for the fiber-interface-matrix model. As the diameter
increased from 40 to 65 μm, the equivalent elastic constant 1 of the microcomposite decreased

from 1.472 to 1.415 GPa linearly. However, the decrease in elastic modulus value 1 between

the diameters 70 and 80 μm was obtained as 1.428 and 1.411 GPa in a nonlinear manner.

These results explained us that within the limits of 4.98–9.37% fiber volume fraction, propor-
tionally increased interface volume caused the linearly decreasing elastic modulus value 1.

Within the same limits, the fiber-matrix microcomposite had a linearly increasing value. The
interface volume worked as a brake in the composite system. The interface volume reduced
the stresses passing from matrix to fiber, and this region worked as a damper in a spring-
damper mechanical system. For the fiber volume, fraction ranges from 1022 to 11.87%, the
interface volume caused a nonlinear decreasing in the equivalent elastic modulus values, and
similarly, the fiber-matrix microcomposite had a decreasing value as nonlinear.
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In other words, the physical meaning of the fiber matrix interaction behaviors was dependent
on the interface volume. Interface volume caused a general linearity between the dimensions
of the fiber, matrix, and the calculated equivalent elastic constant value (Table 1).

As a future work,, the effects of dimensional properties of composite models obtained in this
study can be introduced into semi-empirical model (Halpin-Tsai) based on elasticity equations
by curve fitting.
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Nomenclature

Symbols

𝀵𝀵𝀵𝀵 elastic constants matrix N/m2 diameter of the fiber m1, 1 𝀵𝀵𝀵𝀵𝀵𝀵 equivalent Young’s modulus and average equivalent Young’s modulus parallel to fiber directionN/m22 Young’s modulus perpendicular to the fiber N/m2,, 𝀵𝀵 Young’s modulus of fiber, matrix, and interface materials N/m2,, 𝀵𝀵 Shear modulus of fiber, matrix, and interface materials N/m212 in-plane shear modulus N/m2 length of the fiber m length of the matrix m force loading  diameter of cylindrical matrix segment m𝀵𝀵 thickness of the interface tubular volume m𝀵𝀵𝀵𝀵𝀵𝀵 loaded thickness of the composite cylinder m displacement type loading m
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,,  displacements parallel to the , ,  directions in an order m, fiber and matrix volume fractions

Greek symbols
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Abstract

In this chapter, we present numerical examples of an estimation of shallow water flow
based on Kalman filter  finite  element method (Kalman filter  FEM).  Shallow water
equations  are  adopted  as  the  governing  equations.  The  Galerkin  method,  using
triangular elements, is employed to discretize the governing equation in space, and the
selective lumping method is used to discretize time. We describe the influence on the
numerical results of setting the observation points.

Keywords: Kalman filter FEM, shallow water equation, Galerkin method, selective
lumping method

1. Introduction

Conventionally, shallow water flow analysis based on the FEM has been carried out to
investigate the marine environment, specifically coastal drift sand, storm surges, tsunamis,
and so on [1, 2]. However, the computed results are rarely close to the observed values if the
appropriate governing equation is not employed, the appropriate discretization technique is
not applied to the governing equation, or the boundary conditions are not defined appropri‐
ately. This has prompted a great deal of inverse analysis in recent years, aiming to obtain flow
fields that more closely approach the observed values. Boundary control analysis is one of
these inverse analytic techniques, in which an unknown boundary condition is numerically
determined by iterative computation such that the computed water elevation homes in on the
target value or the observed value [3, 4]. Deterministic methods such as the adjoint variable or

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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Here,  and p indicate the estimation value for the state variable and estimation error. From
Figure 1, it is found that the estimation value is expressed as a summation of the true value
and the estimation error, and the observation value is expressed by the summation of the true
value and the observation error. Based on this concept, our formulation of the Kalman filter is
shown below.

3. Discretization of the governing equation

The shallow water equations, shown below, are employed as the governing equations.

, 0i iu gh+ =& (3)

, 0i ihuh+ =& (4)

where ui, η, g, and h indicate flow velocity component for the x and y directions, water elevation,
gravitational acceleration, and water depth, respectively. The Galerkin method and the
selective lumping method are applied to discretize the governing equation. The discretized
governing equation is written as Eq. (5) and is represented by Eq. (6),
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1ˆ ˆ{ } [ ]{ }n nAf f+ = (6)

where Δ, ℎ, [Si], [M], and   denote the time increment, the mean water depth, the matrix for
the pressure, the consistent mass matrix, and diagonal mass matrix, respectively.   is
represented by Eq. (7) by using the lumping parameter e(0 ≤ e ≤ 1).   indicates the estimation
value.

[ ] (1 )[ ] [ ]M e M e M= - +% (7)

The system equation in the Kalman filter is obtained by adding the vector represented by the
multiplication of the driving matrix [Γ] and the system noise vector {g} and is shown as Eq.
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sensitivity equation methods are commonly employed. On the other hand, the stochastic
approach has also been adopted, in which estimation of the flow field is employed using a
Kalman filter. Removal of the noise data from the observed values and the flow field estimation
are also performed. Conventionally, flow fields are estimated using Kalman filter FEM, and
this method is applied to the practical coastal model [5, 6]. However, the effect of boundary
conditions on the estimated flow field has not been investigated. This prompted us to research
and describe in detail in this chapter the formulation of Kalman filter FEM and numerical
experiments for flow estimation when changing the positions of observation points [7].

2. Concept of state estimation

In the Kalman filter, system and observation equations are employed. Eqs. (1) and (2) are
sample equations:

1n n na qf f+ = + (1)

1 1 1f+ + += +n n nz r (2)

where ϕ, z, a, q, and r indicate the true value of the state variable, the observation value, the
constant coefficient, the system, and the observation noise, respectively. n denotes the number
of time steps. Figure 1 shows relationship between the observation and the estimation values.

Figure 1. Diagram of the relationship between the observation and the estimation values.
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(8). Here, the vector {ø} indicates the vector of true value. The observation equation shown in
Eq. (9) is also introduced. The vectors {z} and {r} and the matrix [H] denote the observation
value and the observation noise vectors and the observation matrix.

1{ } [ ]{ } [ ]{ }n n nA qf f+ = + G (8)

1 1 1{ } [ ]{ } { }n n nz H rf+ + += + (9)

4. Derivation of computational equations in the Kalman filter FEM

The process of modification of the estimation vector   is referred to as “assimilation,” and
the estimation vector before and after assimilation is expressed by “(−)” and “(+)” marks,
respectively. First of all, it is assumed that the estimated value after assimilation is expressed
by the observation value and the estimated value before assimilation, and that the estimated
value after assimilation, i.e., the optimal estimated vector, is expressed by Eq. (10).

1 1 1 1 1
( ) 1 2 ( ){ } [ ]{ } [ˆ ]{ ˆ }n n n n nK z Kf f+ + + + +
+ -= + (10)

where 1 + 1  and 2 + 1  indicate arbitrary matrices. In addition, the optimal estimated

vector ( + ) + 1  is expressed by true value  + 1  and estimation error ( + ) + 1  as shown in

Eq. (11).

$ 1 1 1
( ) ( ){ } { } { }
n n npf f

+ + +
+ += + (11)

Consequently, Eq. (12) is obtained from Eqs. (9), (10), and (11).
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Here, we consider the expected value for Eq. (12) in time. In addition, the expected value for

vectors  + 1 , ( + ) + 1  and ( − ) + 1  in time is assumed to be zero, and Eq. (12) is represented

as Eq. (13).
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1 1 1
2 1([ ] [ ][ ] [ ]) { } {0}n n nK K H I f+ + ++ - á ñ = (13)

where [I] denotes the unit matrix, and  + 1  indicates the expected value of  + 1  in

time. Because of  + 1 ≠ 0 , the following relation equation is obtained (see Eq. (14)).

1 1
2 1[ ] [ ][ ] [ ] [0]n nK K H I+ ++ - = (14)

Substituting Eq. (14) for Eq. (10), Eq. (15) is obtained.

$ $ $1 1 11 1
( ) ( ) ( )1{ } { } [ ]({ } [ ]{ })
n n nn nK z Hf f f

+ + ++ +
+ - -= + - (15)

where 1 + 1  is referred to as the Kalman gain matrix.

Next, let us consider the Kalman gain matrix 1 + 1  so as to minimize the trace norm of the

error covariance matrix after assimilation. The estimation vector is represented by Eq. (16).

$ 11 1
( )( ){ } { } { }
nn np f f

++ +
++ = - (16)

Eq. (17) is obtained by substituting Eq. (15) with Eq. (16), and substituting Eq. (9) with the
obtained equation.
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Here, the error covariance matrix after assimilation ( + ) + 1 , i.e., the predicted error covariance

matrix, is expressed by the expected value of the error covariance matrix as shown in Eq. (18).

1 1 1
( ) ( ) ( )[ ] { }{ }n n n TP p p+ + +
+ + += á ñ (18)

Also, in calculating Eq. (18), it is assumed that the expected value of the covariance matrix of
the observation error and the estimation error before assimilation is a zero vector (see Eq. (19)).
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( ){ }{ } [0]n n Tr p+ +
-á ñ = (19)

Consequently, the predicted error covariance matrix can be expressed, such as in Eq. (20),
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where  + 1  is the observation error covariance matrix, and is represented by + 1  + 1  . Here, let us consider the Kalman gain matrix 1 + 1  so as to minimize the

trace norm of the predicted error covariance matrix such as ∂∂ 1 + 1 tr ( + ) + 1 = 0. Conse‐

quently, we can obtain the equation for calculating the Kalman gain matrix, as shown in Eq.
(21).
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In addition, Eq. (20) is represented by Eq. (22) taking Eq. (21) into account.

1 1 1 1
( ) ( ) 1 ( )[ ] [ ] [ ][ ][ ]n n n nP P K H P+ + + +
+ - -= - (22)

Next, let us consider the computation of the estimated error covariance matrix before assimi‐

lation ( − ) + 1 , i.e., the estimated error covariance matrix. First of all, Eq. (6) is represented as

Eq. (23) based on the consideration expressed in Eq. (11).

1 1
( ) ( ){ } { } [ ]({ } { })n n n np A pf f+ +
- -+ = + (23)

Subtracting Eq. (8) from Eq. (23) gives us Eq. (24).

1
( ) ( ){ } [ ]{ } [ ]{ }n n np A p q+
- += - G (24)

Here, the estimated error covariance matrix ( − ) + 1  is also represented by the expected value

of the error covariance matrix, as shown in Eq. (25).
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Considering the relation equations ( + )   = 0  and  ( + )  = 0  in the calcula‐

tion in Eq. (25) allows Eq. (26) to be derived.

1 1
( ) ( )[ ] [ ][ ][ ] [ ][ ][ ]n n T n TP A P A Q+ +
- += + G G (26)

where   is the system error covariance matrix and is represented by  + 1  + 1  .

5. Computational algorithm based on the Kalman filter FEM

If the matrices [A], [Q], and [R] are steady coefficient matrices, the computational algo‐
rithm can be divided into two parts: the computations of the Kalman gain matrix and the
estimated value in time. The computational algorithm for the Kalman filter FEM is shown
below.

5.1. Computation of Kalman gain matrix

1. Set input data: [A], ( + )0 , ( + )0 , [Γ], [Q], [R], ε, (n = 0 ∼ imax)

2. Calculation of estimated error covariance matrix: ( − ) =  ( + )   +    
3. Calculation of Kalman gain matrix: 1 = ( − )    ( + )   +  −1
4. Calculation of predicted error covariance matrix: ( + ) = ( − ) − 1  ( − )
5.

Check of convergence: if 𝀵𝀵𝀵𝀵 ( + ) + 1 − ( + ) ( + ) + 1 − ( + )  ≤  then go to Step

6, else go to Step 2.

5.2. Computation of estimated value in time

6. Calculation of estimated value: ( − ) + 1 =  ( + )
7. Calculation of optimal estimated value: ( + ) + 1 = ( − ) + 1 + 1  + 1 −  ( − ) + 1
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1 1
( ){ }{ } [0]n n Tr p+ +
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Consequently, the predicted error covariance matrix can be expressed, such as in Eq. (20),
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6. Numerical example 1

Figures 2 and 3, respectively, show the computational model and the position of observation
points in the computation using the Kalman filter FEM. The estimation of shallow water flow
was carried out based on the Kalman filter FEM. Table 1 shows the computational conditions.
In this study, we simulated the observed data from the shallow water flow analysis based on
the FEM. The boundary condition for the water elevation is given by η(t) = sin (t) on the left‐
hand side of the open channel, and the artificial observed data is obtained by summation of
the numerical result and observation noise, i.e., the white noise. In the computation of the
Kalman filter FEM shown in this section, the inflow boundary condition is ignored, and the
artificial observation data flow velocities ux, uy, and water elevation η, i.e., the computational
result by the FEM, are given at the observation points.

Figure 2. Computational model.

Figure 3. Numerical examples.
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Time increment 𝀵𝀵𝀵𝀵, s 0.001

Time steps 2000

Number of nodes 153

Number of elements 200

Gravitational acceleration g, m/s2 9.8

Lumping parameter e 0.8

Initial of estimated error covariance ( + )0 1.0

Initial of estimated value ( + )0 0

Convergence determination constant ε 0.01

Table 1. Computational conditions.

The computational results are shown below. Figures 4 and 5 show the convergence criterion
expressed by the Frobenius norm. The equation for the Frobenius norm is shown in Step 5 of
the flowchart in Section 4. It is seen that the convergence criterion monotonically decreases
and converges. Figures 6 and 7 show the time history of water elevation at (x, y) = (5.0 m, 0.4
m) in Case A and Case B, respectively. It is found that the observation noise can be removed
in both cases. Figures 8 and 9 show the distribution of water elevation on line y = 0.4 m in Case
A and Case B, respectively. From Figures 8 and 9, it can be seen that if the observation point
is not set at the upstream side in the channel, the distribution of the water elevation cannot be
appropriately obtained. Conversely, from the result of Case A, it can be said that the distribu‐
tion of water elevation can be correctly obtained if the position of the observation point is
appropriately given in the computational model. Figures 10 and 11 show the distribution of
flow velocity u and v and water elevation η at T = 2.0 s. It can be seen that water elevation on
the upstream side in Case B is not appropriately obtained in comparison with the result of
Case A. Therefore, from this numerical example, it can be said that it is necessary to set the
observation points uniformly in the computational domain.

Figure 4. Convergence criterion in Case A.
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Figure 5. Convergence criterion in Case B.

Figure 6. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case A.

Figure 7. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case B.
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Figure 8. Distribution of water elevation on line y = 0.4 m in Case A.

Figure 9. Distribution of water elevation on line y = 0.4 m in Case B.

Figure 10. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case A.
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Figure 5. Convergence criterion in Case B.

Figure 6. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case A.

Figure 7. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case B.
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Figure 11. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case B.

7. Numerical example 2

In this section, the numerical experiment is carried out with the inflow boundary conditions
given in Case B, shown in the previous section. An image diagram of the numerical example
is shown in Figure 12. The inflow boundary condition is given by η(t) = sin (t). The computa‐
tional conditions in this section are the same as in Table 1. As the computational result,
Figure 13 shows the convergence criterion expressed by the Frobenius norm. It can be seen
that the convergence criterion decreases and converges monotonically. Figure 14 shows the
time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case C. It is found that the observation
noise can be removed. Figure 15 shows the distribution of water elevation on line y = 0.4 m in
Case C. From Figure 15, it is found that the distribution of the water elevation can be appro‐
priately obtained in comparison with the result shown in Figure 9. In addition, Figure 16 shows
the distribution of flow velocity u and v and water elevation η at T = 2.0 s. It is seen that water
elevation on the upstream side can be more accurately obtained than with the result for Case
B. Therefore, from this numerical experiment, it is necessary to give the boundary conditions
if the computation of the flow field estimation is carried out based on the Kalman filter FEM,
and the observation point cannot be uniformly given.

Figure 12. Numerical example.
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Figure 13. Convergence criterion in Case C.

Figure 14. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case C.

Figure 15. Distribution of water elevation on line y = 0.4 m in Case C.
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Figure 11. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case B.
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Figure 16. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case C.

8. Comparison of estimation accuracy in Cases A, B, and C

Based on the estimation result at (x, y) = (5.0 m, 0.4 m) shown in Figures 6, 7, and 14, the
numerical accuracy is investigated by comparison of data between the true and the estimated
values in each case. The L2 norm with respect to the difference between the true and the
estimated values in each case is shown in Table 2.

Case Number of observation points Inflow boundary condition L2 norm

Case A 10 Not given 1.899

Case B 5 (only downstream side) Not given 4.161

Case C 5 (only downstream side) Given 2.463

Table 2. Comparison of L2 norm.

A comparison of the results in Cases A and B shows that it is necessary to set the observation
points uniformly in the computational domain to obtain a highly accurate estimation result.
In addition, when comparing the results in Case B and Case C, it is found that the estimation
accuracy increases if the inflow boundary condition is taken into account.
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9. Conclusions

In this study, flow field estimation analysis in an open channel was carried out based on the
Kalman filter FEM. The shallow water equations were employed as the governing equations,
and the Galerkin and the selective lumping methods were used to discretize the governing
equation in space and time, respectively. In the numerical experiments, the observed value is
created by adding white noise to the simulation result in the open channel model. The
following conclusions were obtained from this study.

• The observation noise can be removed from the observed value by using Kalman filter FEM.

• When the observation points are set only on the downstream side of an open channel, the
estimated water elevation on the upstream side is almost constant.

• If the inflow boundary condition is given in the case where the observation points are
positioned only on the downstream side of an open channel, the distribution of the water
elevation can be appropriately obtained, including the upstream side in the open channel.

Nomenclature

ui: flow velocity component for x and y directions

η: water elevation

g: gravitational acceleration

h: water depth

Δt: time incrementℎ: mean water depth

[Si]: pressure matrix

[M]: consistent mass matrix : diagonal mass matrix

e: lumping parameter : estimation value vector

[Γ]: driving matrix

{q}: system noise vector

{ø}: true value vector

{z}: observation value vector

{r}: observation noise vector

[A]: state transition matrix

[H]: observation matrix

Estimation of Shallow Water Flow Based on Kalman Filter FEM
http://dx.doi.org/10.5772/64595

129

Figure 16. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case C.

8. Comparison of estimation accuracy in Cases A, B, and C

Based on the estimation result at (x, y) = (5.0 m, 0.4 m) shown in Figures 6, 7, and 14, the
numerical accuracy is investigated by comparison of data between the true and the estimated
values in each case. The L2 norm with respect to the difference between the true and the
estimated values in each case is shown in Table 2.

Case Number of observation points Inflow boundary condition L2 norm

Case A 10 Not given 1.899

Case B 5 (only downstream side) Not given 4.161

Case C 5 (only downstream side) Given 2.463

Table 2. Comparison of L2 norm.

A comparison of the results in Cases A and B shows that it is necessary to set the observation
points uniformly in the computational domain to obtain a highly accurate estimation result.
In addition, when comparing the results in Case B and Case C, it is found that the estimation
accuracy increases if the inflow boundary condition is taken into account.
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{p}: estimation error vector

[K1]: Kalman gain matrix

[P]: estimated error covariance matrix

[Q]: system error covariance matrix

[R]: observation error covariance matrix
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Abstract

In this chapter, we analyse non-uniform bending of single-layer cell tissues—epithelia,
surrounding organs throughout the body. Dimensionally reduced model is suggested,
which is equivalent to membranes with bending stiffness: the total elastic energy of the
tissue is a combination of stretching and bending energies. The energy, suggested in this
chapter,  is  a  piecewise  function,  the  branches  of  which  correspond  to  a  specific
deformation regime: compression, pure bending and stretch.

Under specific  assumptions on a  single  cell,  such as  all  cells  are  identical,  elastic,
homogeneous, have the shape of a hexagonal prism, are linked to each other by pure
elastic junctions, and so on, tissues of different shapes are analysed using finite element
discretization.  The deformation of  initially  flat,  cylindrical  and spherical  tissues  is
visualized to reproduce similar deformations in real epithelial tissues observed during
experiments.

Keywords: morphogenesis, embryonic tissue, adherens junctions, relaxation, quasi-
convex energy densities, isometric deformations, short maps, tissue mechanics, Γ-con-
vergence, lower semi-continuity, hexagonal elements

1. Introduction

Morphogenesis, the evolutionary process of shape and structure development of organisms
or their parts, is driven by certain types of cell shape changes or, in other words, deformations.
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One type of such deformations is the apical constriction—visible shrinkage of the apical side
of cells, leading to bending of epithelia—cell sheets, which surround organs throughout the
body. First occurring at early stages of embryogenesis, the apical constriction results initially
flat epithelia to be bent obtaining three-dimensional form, which, depending on physiological
context and morphogenetic stage, leads to different consequences. It has been first hypothe-
sized in [1] that in various developmental systems the apical constriction may drive the
bending of epithelia. Using bulky mechanical construction, the hypothesis of Rhumbler is first
practically tested in [2]. The testing mechanism consists of 13 identical bars (cell walls) that are
kept apart by means of stiff tubes connecting their centres (cell kernels), and are held in a row
by rubber bands connecting their ends (cell membrane). In the first stage, the rubber bands at
both sides are stretched equally and the mechanism is in straight equilibrium. Shortening the
rubber bands at, for instance, the upper side uniformly in each segment (cell), the mechanism
is bent on the side of the greater tension, as it could be expected. Thus, Rhumbler’s hypothesis
could take place.

A more illustrative, computer model for verifying Rhumbler’s hypothesis is suggested in [3],
where bars and bands are replaced by virtual cells. Prescribing certain mechanical properties
to the cell membrane and cytoplasmic components, and assuming that as a result of deforma-
tions the volume of a single cell is preserved, which is implicitly done by Rhumbler and Lewis,
a model of cuboidal epithelia folding is suggested, based on the local behaviour of individual
cells. The model is demonstrated on the example of ventral furrow formation in Drosophila. A
sequence of cells in the form of a cylindrical shell, representing the cross section of ventral
furrow, is deformed such that apical constriction occurs in its lower row of cells. Increasing
the applied stresses, different steps of the furrow formation are illustrated. Figure 1 expresses
how much Odell’s model is close to the real microscopic picture [4].

Figure 1. Ventral furrow formation in Drosophila according to [3] (upper) and [4] (lower).

Perusal of the Finite Element Method136



Much is known about the causes of the apical constriction, but some issues still remain
unexplored [5–8]. The most studied causes include contraction of actin filaments—fibrous
network localized at the cortex of the cell, by interacting with motor protein myosin—the most
known converter of chemical energy into mechanical work. Under influence of myosin, actin
fibres contract leading to shrinkage of the cell in the area of their localization [9, 10]. The
contraction size and principal direction of the fibres, that is, the microscopical deformation of
a single cell, mainly depend on the tissue type: actin-myosin network contraction may deform
columnar (occurring, for instance, in digestive tract and female reproductive system) or cuboid
(resp. in kidney tubules) cells into trapezoidal-, wedge- or bottle-shaped cells. The deformation
size strongly depends also on the emplacement of deforming cells: cells with different
placement are constricted differently, so that macroscopically one observes localized wrinkles
(see Figure 2).

Figure 2. Apical constriction of ventral furrow at different times [10].

Because of the mechanical nature of cell shape change, in particular, apical constriction, its
theoretical study first of all must rely on mechanical principles and constitutive laws. In early
mechanical models, the tissue is modelled as a continuum material, so that the position and
behaviour of individual cells are unimportant, that is, only macroscopic deformation of the
tissue is studied. Moreover, the height of the cells (viz. the thickness of the tissue) is supposed
to be negligible with respect to other measures, such that the deformation of the tissue can be
described in terms of its mid-surface. In such models, the actin network is not explicitly
accounted and the contraction forces are modelled as a force term acting on the outer surface
of the epithelium. The actin network is explicitly accounted in [11], where thin elastic shell
model based on linear Cauchy relations is derived to describe apical constriction in initially
non-flat epithelia. The model is tested to simulate apical constriction in initially flat, cylindrical
and spherical tissues. Ventral furrow formation in Drosophila is simulated (see Figure 3), and
it becomes evident from comparison of Figures 1 and 3 that the model, being three-dimen-
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sional, is in good correspondence with that from [3]: Figure 1 corresponds to cross section of
cylindrical shell from Figure 3. However, it does not involve the behaviour of individual cells
and describes only macroscopic deformation. For further introduction into other mechanical
models, we refer to [11–26].

Figure 3. Ventral furrow formation in Drosophila according to [11].

The physical and geometrical characteristics of individual cells are taken into account by
mechanical model suggested in [27] describing three-dimensional deformations of cell sheet.
Both actin-myosin network contractile tensions and cell-cell adhesion stresses are involved to
contribute in epithelial tissue bending. Prescribing specific mechanical characteristics to
cytoplasmic components and to the kernel, the effective energy of a cell, which is assumed to
be a hexagonal prism with constant volume, is expressed in terms of its basal length. As a result
of simulations, it is particularly established that when adhesion stresses, distributed on lateral
sides of the cell, are large enough, the effective energy has two local minima, that is, there are
two equilibrium cell shapes. More particular, depending on position, cell shape may be
discontinuously transited from squamous to columnar forms. Figure 4 shows that there is a
whole domain in the plane of lateral adhesion and actin-myosin tensions for which the effective
energy has two local minima.

Figure 4. Epithelial cell aspect ratio as a bistable phenomenon [27]:  is the contractile force and  is the actin-myo-

sin tension.
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In mathematical terms, it means that the total energy of the tissue is not lower semi-continu-
ous, which implies that there is no convergence of its minimizers, and, therefore, it becomes
impossible to derive real deformation of the tissue [28, 29]. To be more illustrative, consider a
membrane, that is, a tissue without bending stiffness, which is compressed by boundary
stresses. The only way that the membrane can accommodate a compressed state is due to
wrinkling [30]. Wrinkles may occur more and more finely, so the limiting deformation will be
smooth, but evidently it will not minimize the membrane energy.

To overcome such difficulties, the membrane energy density is usually substituted by its quasi-
convex envelope [28], which ensures the lower semi-continuity of its total energy. In calculus of
variations, there are several ways to construct or even compute convex envelopes for func-
tionals, depending on first- and second-order derivatives [28, 31–36].

Another possibility for incorporating the lack of lower semi-continuity of membrane energy
functionals is accounting the bending stiffness of the membrane and adding to the energy the
bending contribution [37]. So, it is established in [33, 34] that the total energy of a membrane
with some bending stiffness and thickness ℎ, that is, the functional

[ ] [ ] [ ]3= m bE hE h E+r r r (1)

of deformation  consisting of membrane () and bending () contributions is lower semi-

continuous for arbitrary  as far as  is lower semi-continuous. Explicit forms for  and as well as sufficient conditions on material constants for which  (and therefore ) is lower

semi-continuous are derived ibid. Such materials are called stable.

However, the most rigorous and general approach seems to be the derivation of low-order
energies from general three-dimensional non-linear elasticity by means of -convergence. The
concept was originally developed by De Giorgi, see [29]. It turns out that the -limit of three-
dimensional elastic energy functional, when the thickness of the body goes to zero, is always
lower semi-continuous and since most commonly used two-dimensional energy functionals,
that is, membrane energy, pure bending (Kirchhoff) energy and higher-order terms (von
Kármán–like energies), are already derived as such limits (see Section 3), it becomes possible
to analyze real deformations of particular tissues.

By suggested improvements, it is supposed to get rid of disadvantages of previous models and
take into account the fact that the total energy of the tissue can have two local minima. Thus,
we are intended

• to account the height of each individual cell, so the model is fully three-dimensional,

• to pick up strongly localized internal forces to model the phenomenon of apical constriction
more precisely,

• to introduce stretching and bending contributions into the total elastic energy of the
epithelial tissue, thus making the model more realistic and convenient not only for quali-
tative but also for quantitative analysis,
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• to use the quasi-convexification of the total energy, so the real three-dimensional deforma-
tions of the epithelial tissues can be identified as minimizers of the total energy by a gradient
flow technique.

The former allows making simplified toolboxes for analysing three-dimensional deformations
of epithelial tissues. The rough diagram of the improved model looks like in Figure 5, so that
the characteristics of each individual cell are important, as well as the actin belt is explicitly
involved in the model.

Figure 5. Diagrams of a single-cell layer: cross section (left) and 3D shape (right).

The chapter is organized as follows: In Section 2, some preliminary definitions and main
notations are brought to make the chapter independent of outer sources. In Section 3, known
results from -convergent energies are shortly described. In Section 4, the quasi-convex
envelope of membrane energy densities of general form is derived explicitly and sufficient
conditions for their convexity are derived. Moreover, a specific energy is suggested for different
deformation regimes that fully satisfies the needs of basic mechanical theory suggestion.
Finally, in Section 5 main results of finite element analysis of tissues of particular initial shapes
(flat, cylindrical, spherical) are discussed. Overall conclusion completes the body of the
chapter.

2. Preliminaries

We begin with the definition of concepts used throughout the paper, which and much more
on this topic can be found in [28, 29].

There are different concepts of convexity in higher dimensions, such as quasi-, poly-, rank-one
and separately convexity. Here, we use all but poly-convexity, so it is of no use to enlarge the
chapter by its definition.

Definition 1 (quasi-convexity). A function  is said to be quasi-convex if
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1( ) ( ( )) ,
( )

W W d
m W

£ + Ñ
W òG G r x x (2)

for every bounded open set Ω, for every  and for every 

Definition 2 (rank-one convexity). A function  is said to be rank-one convex
if

( ) (1 ) ( ) ( ),W W Wq q q+ £ - + +G F G G F (3)

for every 𑨈𑨈 𑨈𑨈 [0, 1],  with rank  = 1.

Definition 3 (separately convexity). A function  is said to be separately convex
if

( )1 1 1, , , , , ,i i i NW x x x x x- +K K (4)

is convex for every  = 1,…, and for every fixed 

In other words, a function  is separately convex if it is convex on every
line parallel to a coordinate axis.

In general, convexity implies quasi-convexity, which implies rank-one convexity, and finally
rank-one convexity implies separately convexity.

The quasi-convexity notion is generalized by Meyers [38] for functionals depending on higher-
order derivatives. We refer to [32, 35, 36] for practical use of the definition.

Definition 4 (k-quasi convexity). A function  is said to be 𑨒𑨒 𑨒𑨒quasi-
convex if

0
1( ) ( ( )) ,
( )

kW W d
m W

£ + Ñ
W òG G r x x (5)

for every open-bounded set Ω, for every  and for every 

In particular, 2-quasi-convex functions, which we use here, are the restriction of quasi-convex
functions to symmetric matrices [39] (in the case of 𑨒𑨒-quasi convexity, see [40]).

We widely use the quasi-convex envelope of () or apparent energy density, (), which can

be defined in terms of deformations of the form () =  + 0() with  constant,

 and 0() = 0 on the boundary ∂Ω [41, 42]:
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chapter.

2. Preliminaries

We begin with the definition of concepts used throughout the paper, which and much more
on this topic can be found in [28, 29].
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=00

1( ) = ( ) .inf
( )qW W d

m ¶W
W

+ Ñ
W òr

G G r x (6)

It is evident that for any  and when  = 0,  = 0 as well.

Deformation is always denoted by  with open-bounded  We introduce the
first and second fundamental forms of a deformation 

( )
2

, =1,2

= , = ,T

i j i j
x x

ì ü¶ï ïÑ Ñ ×í ý
¶ ¶ï ïî þ

rI r r II n (7)

respectively, in which  is the unit of the outer normal to Ω. The first
fundamental form quantitatively characterizes the stretch or compression of the membrane,
while the second fundamental form characterizes its curvature.

Definition 5. Energy density function  is called frame indifferent if for all rotations3 ∈ SO(3)
( ) ( )3 = .W WR G G (8)

If for all 2 ∈ SO(2),
( ) ( )2 = ,W WGR G (9)

then it is called isotropic.

In other words, frame indifferent energy densities are invariant against three-dimensional
rotations before a deformation is applied and that isotropic energy densities are invariant
against two-dimensional rotations after a deformation is applied.

Definition 6 (short (-short) deformation). A deformation  is called short (-short) if ∇ ≤ Id2 × 2 (≤ Id2 × 2) a.e. in Ω.

Definition 7 (isometric deformation). A deformation  is called isometric if  ∇ = Id2 × 2
a.e. on Ω.

Short deformations result compressive stresses, while isometric deformations do not allow
stretching or compression. The case  𑩥𑩥 Id2 × 2 corresponds to tensile or, in general, non-

compressive stresses. It is known that for non-compressive stresses, the membrane energy
density function is already quasi-convex [41, 42].
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3. -convergence and -limits of three-dimensional non-linear elastic
energy

Rigorous derivation of two-dimensional energy functionals for thin bodies from three-
dimensional functionals is of particular interest. There are several ways for dimension
reduction, such as asymptotic expansion, Γ-convergence technique, and so on (for general
survey, see [43]). In [44], a hierarchy of plate models is derived as Γ-limit of three-dimensional
elastic energy functional when the thickness of the body ℎ 0. It turns out that the scaling of
external force in ℎ plays an important role for Γ-limit derivation. Suppose a body occupies the

domain Ω × −ℎ2,ℎ2 , and the applied forces  active on the outer surface of the body

satisfy

(10)

and

[ ] [ ] ( )1 1,
2 2

1= =h
hE E W d

h æ öW´ -ç ÷
è ø

Ñòr r r x (11)

denotes the rescaled elastic energy of the body, with

1 2 3

1 2 3

1= , , .h x x h x
æ ö¶ ¶ ¶

Ñ ç ÷
¶ ¶ ¶è ø

r r rr (12)

The total energy of the body will be

[ ] [ ] ( )( )
1 1,
2 2

E =  .h h hE dæ öW´ -ç ÷
è ø

- ×òr r f rx x (13)

The Γ-limit

[ ]
0

1
lim h

h
E

hb
®

G - r (14)

for 𑩥𑩥 𑩥𑩥 0 will provide constitutive mechanical models to analyse deformed three-dimensional
shape of initially flat thin bodies.

We combine the results of [44–48] in Theorem 1.
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compressive stresses. It is known that for non-compressive stresses, the membrane energy
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Theorem 1. Let the stored energy density function is frame indifferent and satisfy

= 0 on SO(3),W (15)

( ) ( )2dist ,SO(3) , > 0,W c c³F F (16)

and in a neighbourhood of SO(3), 𑨈𑨈 𑨈𑨈 𑨈𑨈2.

Then

(i) (Membrane theory [45]). Suppose  =  = 0 and

( ) ( ) ( )1 ,  ,  2, > 0.p pW C W c C p c£ + ³ - ³F F F F (17)

Then  is a -minimizing sequence, that is, if

[ ]
0

1 E inf E = 0,limsup h h

h hb
®

é ù-ë ûr (18)

then  (for a subsequence). The limiting deformation  is
independent of 3 and minimizes

[ ] ( )0
0E = qW d

W
é ùÑ - ×ë ûòr r f r x (19)

among all . For derivation of 𑨈𑨈 from given 𑨈𑨈 see Section 4 subsequently.

(ii) (Constrained membrane theory [46]). Suppose that 0 <  < 53  and  = . Then  and

every -minimizing sequence (ℎ) has a subsequence with  in .
The limit  is independent of 3 and minimizes

[ ] [ ]0E = da W
- ×òr f r x (20)

among all short deformations .

(iii) (Non-linear bending theory [47]). Suppose  =  = 2. Then infℎ ≤ 𑨈𑨈ℎ2 and if (ℎ) is a -

minimizing sequence then there is strong convergence (ℎ)  in  (for a subsequence). The
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limiting deformation  is isometric, independent of 3, belongs to  and

minimizes

[ ] ( )0
2 2

1E =
24

Q d
W

é ù- ×ê úë ûòr II f r x (21)

among all isometric deformations , which belong to  The non-linear strain
satisfies

( ) ( )( ) ( )
3 min 3

1 Id sym ,
Th h x a e

h
é ùÑ Ñ - ® + Äê úë û

r r II (22)

where 2 sym  =  + , min is the solution of

( ) ( ) ( )
Id=0
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2 3 3 3 3 23R
= , = .min
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Î
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In all cases, there is convergence of energy, that is,

[ ]( ) 0 0

0 0

1 1E = inf E = E = min E .lim limh h h

h hh h a ab b
® ®

é ùë ûr r (24)

For  > 0, the limiting deformation  is not only isometric but is close to a rigid motion. For

that reason in [44], for deformation  the deformation

( )( ) ( ) ( ) ( )=
Th h h hc-r R r% (25)

with (ℎ) ∈ SO(3) and  is introduced and the averaged in-plane and out-of-plane
displacements

( ) ( ) ( )
( )1 1
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are rescaled by
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= 0 on SO(3),W (15)

( ) ( )2dist ,SO(3) , > 0,W c c³F F (16)

and in a neighbourhood of SO(3), 𑨈𑨈 𑨈𑨈 𑨈𑨈2.

Then

(i) (Membrane theory [45]). Suppose  =  = 0 and

( ) ( ) ( )1 ,  ,  2, > 0.p pW C W c C p c£ + ³ - ³F F F F (17)

Then  is a -minimizing sequence, that is, if

[ ]
0

1 E inf E = 0,limsup h h

h hb
®

é ù-ë ûr (18)

then  (for a subsequence). The limiting deformation  is
independent of 3 and minimizes

[ ] ( )0
0E = qW d

W
é ùÑ - ×ë ûòr r f r x (19)

among all . For derivation of 𑨈𑨈 from given 𑨈𑨈 see Section 4 subsequently.

(ii) (Constrained membrane theory [46]). Suppose that 0 <  < 53  and  = . Then  and

every -minimizing sequence (ℎ) has a subsequence with  in .
The limit  is independent of 3 and minimizes

[ ] [ ]0E = da W
- ×òr f r x (20)

among all short deformations .

(iii) (Non-linear bending theory [47]). Suppose  =  = 2. Then infℎ ≤ 𑨈𑨈ℎ2 and if (ℎ) is a -

minimizing sequence then there is strong convergence (ℎ)  in  (for a subsequence). The

Perusal of the Finite Element Method144



( ) ( ) ( ) ( )1 1= , = ,h h h h

h hg du U v V (27)

respectively.

Then, we have

Theorem 2. (iv) (Linearized isometry constraint). Suppose 2 <  < 3 and set  = 2 𑨒𑨒 2, = 2( 𑨒𑨒 2), 2 = . If 2 <  < 52 , suppose in addition that Ω is simply connected. Then,𑨒𑨒ℎ ≤ infℎ ≤ 0. If (ℎ) is a -minimizing sequence then there exist constant (ℎ) ∈ SO(3) and c(h)
∈ ℝ3 such that

( ) ,h ®R R (28)

(29)

(30)

( ) = 0.TÑ + Ñ +Ñ ÄÑu u v v (31)

Moreover, the pair ,  minimizes the functional

( ) ( )2
2 33 3

1E , = ,
24

vK
lin Q d

W

é ùÑ - ×ê úë ûòv R v R f v x (32)

subject to det∇2 = 0.

(v) (von Kármán theory). Suppose that  = 3 and set  = 4,  = 2,  = 1. Then  and

for a subsequence of a -minimizing sequence, (1) and (2) hold and the limit triple ,,  minimizes
von Kármán functional

( ) ( ) ( )2
2 2

33 3

1 1 1E , , =
2 2 24

 .

TvK Q Q d

d

W

W

é ùæ öé ùÑ + Ñ +Ñ ÄÑ + Ñ -ç ÷ê úë ûè øë û

- ×

ò

ò

u v R u u v v v

R f v

x

x
(33)
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(vi) (Linearized von Kármán theory). Suppose  > 3 and set  = 2 𑨒𑨒 2,  =  𑨒𑨒 1 and  =  𑨒𑨒 2. Then𑨒𑨒ℎ ≤ inf εℎ ≤ 0 and for a sequence of a -minimizing sequence. (2) holds with  = 0 and the pair,  minimizes the linearized von Kármán functional

( ) ( )2
2 33 3

1, = .
24

e
W

é ùÑ - ×ê úë ûòv R v R f vvK Q dx (34)

Moreover, the non-linear strain satisfies

( )
1
2( ) ( )

1

1 Id sym .
Th h

h hh a-

æ ö
é ùç ÷Ñ Ñ - ®ê úë ûç ÷
è ø

r r G (35)

In all cases, we have convergence of the rescaled energy  to the minimum of the limit

functional . Moreover, for 3 ≡0 we have 33 = 1 or 𑨒𑨒1.

Remark 1. (i) Practically, Theorems 1 and 2 establish -convergence and give the -limits of three-

dimensional non-linear energy functional in the range  𑨈𑨈 0,53 ∪ 2,∞ . The range  𑨈𑨈 53,2  remains

unexplored.

(ii) Even in the case  = 53 , it is still possible to find a sequence (ℎ) for which the functional 

is bounded when ℎ 0. The limiting deformations  are composed of finitely many affine isometries

separated by sharp folds and are called origami deformations [46]. It is proved ibid that the class of

origami deformations is the closure of the class of short deformations with respect to the uniform

convergence.

(iii) In particular, when  =  = 2, for isotropic homogeneous bodies we obtain

( ) 2 2
2

2= 2 tr ,
2

Q l mm
l m
×

+
+

II II II (36)

in which  and  are Lamé constants, coinciding with plate energy derived by Kirchhoff much earlier in

[49].
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( ) ( ) ( ) ( )1 1= , = ,h h h h

h hg du U v V (27)

respectively.

Then, we have

Theorem 2. (iv) (Linearized isometry constraint). Suppose 2 <  < 3 and set  = 2 𑨒𑨒 2, = 2( 𑨒𑨒 2), 2 = . If 2 <  < 52 , suppose in addition that Ω is simply connected. Then,𑨒𑨒ℎ ≤ infℎ ≤ 0. If (ℎ) is a -minimizing sequence then there exist constant (ℎ) ∈ SO(3) and c(h)
∈ ℝ3 such that

( ) ,h ®R R (28)

(29)

(30)

( ) = 0.TÑ + Ñ +Ñ ÄÑu u v v (31)

Moreover, the pair ,  minimizes the functional

( ) ( )2
2 33 3

1E , = ,
24

vK
lin Q d

W

é ùÑ - ×ê úë ûòv R v R f v x (32)

subject to det∇2 = 0.

(v) (von Kármán theory). Suppose that  = 3 and set  = 4,  = 2,  = 1. Then  and

for a subsequence of a -minimizing sequence, (1) and (2) hold and the limit triple ,,  minimizes
von Kármán functional

( ) ( ) ( )2
2 2

33 3

1 1 1E , , =
2 2 24

 .

TvK Q Q d

d

W
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é ùæ öé ùÑ + Ñ +Ñ ÄÑ + Ñ -ç ÷ê úë ûè øë û

- ×

ò

ò

u v R u u v v v

R f v

x

x
(33)
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4. Relaxation of epithelial elastic energy by Pipkin’s procedure and by
adding the bending contribution

As was mentioned in Section 1, there are two ways to relax the epithelial elastic energy. The
first way is to relax the stretching energy for deformation regimes corresponding to compres-
sive stresses. For that reason, Pipkin‘s procedure [41] seems to be the most common tool.

Suppose that the stretching energy density function  =  ∇  is frame indifferent, isotropic
and positive except the cases

1 0 0
= 0 1 and = 0 , 1 < R,

0 0 0 0

d
d d

æ ö æ ö
ç ÷ ç ÷Ñ Ñ Îç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

r r (37)

where it turns to zero, that is, attains its minimum. On elastic energies with two minima, see
[50]. This assumption is motivated by bistability of cell shapes during apical constriction (see
Figure 4).

We restrict attention to deformations  with

1

2

0
= 0 ,

0 0

s
s

æ ö
ç ÷Ñ ç ÷
ç ÷
è ø

r (38)

and denote  ∇ : = (1,2). Here  = ,  𑨈𑨈 1; 2 , are the principal stretches, the

squares of which are the eigenvalues of the first fundamental form. Therefore

( ) ( )( ) ( ) ( )( )2
1,2

1= tr 2det .
2

l é ùÑ Ñ ± Ñ - Ñê úë û
r I r I r I r (39)

In view of frame indifference of , and thence, , we conclude that( ± 1, ± 2) = (1,2).
From quasi-convexity of , in particular, follows its rank-one convexity, therefore since the

matrix
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11

11

0
A = 0 0 , 0,

0 0

d
d

æ ö
ç ÷ ¹ç ÷
ç ÷
è ø

(40)

is rank one, we have

therefore  is convex with respect to 1. Repeating the argument when

22 22

0 0
A = 0 , 0,

0 0
d d

æ ö
ç ÷ ¹ç ÷
ç ÷
è ø

(41)

we see that (1,2) is separately convex.

Under assumptions made, we have (1,2) = 0 if 1 = 2 = 1 and 1 = 2 = . Since  > 1
and 0 ≤  are convex along lines parallel to 1 = 0 and 2 = 0, therefore  = 0 on edges

connecting the vertexes ±, ±   in the 12 plane. Repeating the argument, we conclude that = 0 inside the square Ω0 = 1,2 ; 1 ≤ , 2 ≤  . So, for -short maps  ≡ 0.

Since (1,2) is even and convex in 2, it will attain its minimum with respect to 2 only

when 2 = 0. Denote by 0(1) = min2 (1,2) when 1 > . Suppose that 0(1) is the largest

value of 2 for which (1,0) = 0(1), 1 > . The convexity of  in 2 implies that(1,2) = 0(1) for 2 ≤ 0(1), 1 > . In the same way, using the symmetry of  in its

arguments, we will arrive at (1,2) = 0(2) for 1 ≤ 0(2), 2 > . Evidently, for the rest

of deformation regimes, is convex.

If we denote by Ω1 = 1,2 ; 1 > , 2 ≤ 0(1)  and Ω2 = 1,2 ; 1 ≤ 0(2), 2 >  , the

ranges of principal stretches, corresponding to uniaxial tensions in directions of those stretches,
respectively [51], we finally arrive at

0
0

1 1
1 2 0

2 2

1 2

0,  in ,
( ), in ,

( , ) =
( ), in ,

( , ), else.

q

W
W

W
W

l
l l

l
l l

Wì
ï Wï
í Wï
ïî

%
%

%
%

(42)
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4. Relaxation of epithelial elastic energy by Pipkin’s procedure and by
adding the bending contribution

As was mentioned in Section 1, there are two ways to relax the epithelial elastic energy. The
first way is to relax the stretching energy for deformation regimes corresponding to compres-
sive stresses. For that reason, Pipkin‘s procedure [41] seems to be the most common tool.

Suppose that the stretching energy density function  =  ∇  is frame indifferent, isotropic
and positive except the cases

1 0 0
= 0 1 and = 0 , 1 < R,

0 0 0 0

d
d d

æ ö æ ö
ç ÷ ç ÷Ñ Ñ Îç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

r r (37)

where it turns to zero, that is, attains its minimum. On elastic energies with two minima, see
[50]. This assumption is motivated by bistability of cell shapes during apical constriction (see
Figure 4).

We restrict attention to deformations  with

1

2

0
= 0 ,

0 0

s
s

æ ö
ç ÷Ñ ç ÷
ç ÷
è ø

r (38)

and denote  ∇ : = (1,2). Here  = ,  𑨈𑨈 1; 2 , are the principal stretches, the

squares of which are the eigenvalues of the first fundamental form. Therefore

( ) ( )( ) ( ) ( )( )2
1,2

1= tr 2det .
2

l é ùÑ Ñ ± Ñ - Ñê úë û
r I r I r I r (39)

In view of frame indifference of , and thence, , we conclude that( ± 1, ± 2) = (1,2).
From quasi-convexity of , in particular, follows its rank-one convexity, therefore since the

matrix
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Besides opportunity of explicit relaxation, in [41] the derivation of criteria for convexity and
quasi-convexity is described. In view of rank-one convexity,  satisfies Legendre-Hadamard

inequality from which it follows

1 2 11 220, 0, 0, 0,q q q qW W W W³ ³ ³ ³% % % % (43)

11 22 12 11 22 120, , .q q q q q qG W W W H G W W W H G³ - ³ - + ³ - -% % % % % % (44)

For convexity of  in corresponding domain instead of the last two equalities, the stronger

conditions

( )211 22 12 0, | |,q q qW W W G H- ³ ³% % % (45)

must be satisfied. Above

2 1 2 1 2
1 2 2 1

2 2 2 2
1 2 1 2

= , = , = , = .q q q q q qj jk
q q

j j k

W W W W W W
W W G H

l l l l
l l l l l l l

¶ ¶ - -

¶ ¶ ¶ - -

% % % % % %
% % (46)

The other way is the adding of pure bending contribution to the elastic energy of the tissue.
Since actin-myosin network contraction leads to compressive or non-stretching stresses, we
have to incorporate the elastic energy mainly for such deformations. According to Section 3
for non-stretching stresses, we have

i. (short deformations and compressive stresses)

( )

0

1 5= 0  in the range  0, ,lim
3

h

h
E

hb b
®

é öG - Î ÷êë ø
(47)

ii. (isometric deformations, neither stretch nor compressive stresses)

( )
20

1 = .lim h
b

h
E E

h®
G - (48)

The deformation regime 𑩥𑩥𑩥𑩥Id corresponding to tensile stresses leads to   , which is already

lower semi-continuous. In the case of uniaxial tension, there is no bending and the energy
expression will look like the middle rows of  (42). Thence, the total energy might be given

as follows:
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(49)

We assume that the tissue is homogeneous and isotropic, so according to Remark 1

( ) 2 2
2

2= 2 tr .
2

Q l mm
l m
×

+
+

II II II (50)

Furthermore, the membrane energy density function we take in the following form [52, 53]:

( ) ( ) ( )2
1 1 2 1= 3 3 ,W I Ig gÑ - + -r (51)

which is valid for large deformations of incompressible hyper-elastic membranes. Above,1 = tr  is the first strain invariant, 1 > 0 and 2 > 0 are material parameters, evaluated
experimentally in [53]. For a neo–Hookean material 21 =  and 22 = , in which  is the shear
modulus and  is the bulk modulus.  and 0 are determined according to the procedure
described above. For that reason, 1 must be represented in terms of the principal stretches 1
and 2 as follows:

( ) 2 2 2 2 2
1 1 2 1 2 3 1 2 2 2

1 2

1, = = ,I l l l l l l l
l l

+ + + + (52)

in which the incompressibility condition 123 = 1 is taken into account.

For any fixed 1 > 1 (uniaxial tension in the first principal direction), the corresponding 1,2  attains its minimum with respect to 2 at the maximal positive root of

( )
( )2 1 2 122 2

2 1 2

1= 2 1 2 3 = 0.W Il g g
l l l

æ ö¶ ç ÷- é + - ùë ûç ÷¶ +è ø

%
(53)
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Besides opportunity of explicit relaxation, in [41] the derivation of criteria for convexity and
quasi-convexity is described. In view of rank-one convexity,  satisfies Legendre-Hadamard

inequality from which it follows

1 2 11 220, 0, 0, 0,q q q qW W W W³ ³ ³ ³% % % % (43)

11 22 12 11 22 120, , .q q q q q qG W W W H G W W W H G³ - ³ - + ³ - -% % % % % % (44)

For convexity of  in corresponding domain instead of the last two equalities, the stronger

conditions

( )211 22 12 0, | |,q q qW W W G H- ³ ³% % % (45)

must be satisfied. Above

2 1 2 1 2
1 2 2 1

2 2 2 2
1 2 1 2

= , = , = , = .q q q q q qj jk
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j j k

W W W W W W
W W G H

l l l l
l l l l l l l

¶ ¶ - -
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% % % % % %
% % (46)

The other way is the adding of pure bending contribution to the elastic energy of the tissue.
Since actin-myosin network contraction leads to compressive or non-stretching stresses, we
have to incorporate the elastic energy mainly for such deformations. According to Section 3
for non-stretching stresses, we have

i. (short deformations and compressive stresses)

( )

0

1 5= 0  in the range  0, ,lim
3

h

h
E

hb b
®

é öG - Î ÷êë ø
(47)

ii. (isometric deformations, neither stretch nor compressive stresses)

( )
20

1 = .lim h
b

h
E E

h®
G - (48)

The deformation regime 𑩥𑩥𑩥𑩥Id corresponding to tensile stresses leads to   , which is already

lower semi-continuous. In the case of uniaxial tension, there is no bending and the energy
expression will look like the middle rows of  (42). Thence, the total energy might be given

as follows:
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Since in the uniaxial tension regime 12 + 22 > 1, we finally get

0
1

1

1( ) .l l
l

= (54)

Then,

0 3 3
1 1 1 1 1 2 1 12

1

1( ) ( 3 2) [ ( 3 2)].W l l l g l g l l
l

= - + + - + (55)

The correspondent tension is defined by

0 3
31 1

1 1 1 1 2 1 13
1 1

( ) 1( ) 2 [ 2 ( 3 2)].W l lt l g l g l l
l l

¶ -
= = + - +

¶
(56)

Since  is obviously symmetric in its arguments, in the case of uniaxial tension in the second
principal direction, we would have

0 3 3
2 2 2 1 2 2 2 22

2

1( ) ( 3 2)[ ( 3 2)],W l l l g l g l l
l

= - + + - + (57)

and

0 3
32 2

2 2 1 2 2 2 23
2 2

( ) 1( ) 2 [ 2 ( 3 2)].W l lt l g l g l l
l l

¶ -
= = + - +

¶ (58)

It is evident, that when we substitute 1 = 1 in the first case and 2 = 1 in the second case, we
arrive at undeformed configuration of the membrane, so the relaxed energy is fully consistent.

Forces driving tissue deformation are strongly localized and in general are compressive. Force must possess those properties.
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5. Finite element analysis of three-dimensional shape of some characteristic
deformations of tissues during morphogenesis

In this section, we summarize main results of finite element analysis of a single layer tissue
model, the elastic energy of which is given by

[ ] [ ] [ ]3= m bE hE h E+r r r (59)

in which  and  are defined in Eqs. (49)–(51). Since the discretization procedure is stand-

ard, we omit the details and bring only the main results.

In Figure 6, we bring the model of a single-cell (element) and cell-cell junction (in red). All
structures (plate and shell) considered in this section entirely consist of such cell groups. In
all tissues considered below, the height of a cell ℎ = 4 and ℎ = 200, in which  is its side
and  is the diameter of actin fibres. The ratio of Young‘s moduli of a cell and actin fibres isact = 3cell, and of actin fibres and cell-cell links act = 1.5link.

We consider

i. initially flat rectangular plate (Figure 7 (left)),

ii. cylindrical shell (Figure 9 (left)),

iii. spherical shell (Figure 11 (left)).

Figure 6. Single-cell model (left) and adherens junction model (right): diagonals of the top hexagon imitate actin fibres,
red areas between cells imitate junction bonds.
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Since in the uniaxial tension regime 12 + 22 > 1, we finally get

0
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= (54)

Then,

0 3 3
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1( ) ( 3 2) [ ( 3 2)].W l l l g l g l l
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= - + + - + (55)

The correspondent tension is defined by
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Since  is obviously symmetric in its arguments, in the case of uniaxial tension in the second
principal direction, we would have

0 3 3
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1( ) ( 3 2)[ ( 3 2)],W l l l g l g l l
l

= - + + - + (57)

and

0 3
32 2

2 2 1 2 2 2 23
2 2

( ) 1( ) 2 [ 2 ( 3 2)].W l lt l g l g l l
l l

¶ -
= = + - +

¶ (58)

It is evident, that when we substitute 1 = 1 in the first case and 2 = 1 in the second case, we
arrive at undeformed configuration of the membrane, so the relaxed energy is fully consistent.

Forces driving tissue deformation are strongly localized and in general are compressive. Force must possess those properties.
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Figure 7. Apical constriction of initially flat tissue. It consists from 5050 elements or cells and has 529,245 DOFs.

Figure 8. von Mises stress distribution in deformed configurations.

Figure 9. Apical constriction of initially cylindrical tissue. It consists from 5975 elements or cells and has 621,375 DOFs.

Figure 10. von Mises stress distribution in deformed configurations.
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Figure 11. Apical constriction of initially spherical tissue. It consists from 3126 elements or cells and has 325,245 DOFs.

Elements of the middle part of the rectangular tissue are compressed in apical sides to imitate
apical constriction in cells. Increasing the compressing stresses, the tissue is bent and a blaster-
shaped pattern is formed as shown in Figure 7 (right). The quantitative picture of the stresses
arising in the tissue is drawn in Figure 8.

Figure 12. von Mises stress distribution in deformed configurations.

Next, we consider a cylindrical shell to imitate ventral furrow (generally all tubular patterns)
formation. Elements of the top part of the cylinder are constrained in the apical sides by
compressing the links standing for apical fibres (see Figure 9). Increasing the compressing
stresses, the ventral furrow formation is simulated similar to stages presented in Figure 1. The
quantitative picture of the stresses arising in the tissue is drawn in Figure 10.

Finally, a spherical shell is simulated. Cells at the top of a semi-sphere are constrained in apical
sides and depending on values of compressing stresses various stages of blastopore formation
in archenteron can be described (see Figure 11 (right)). The quantitative picture of the stresses
arising in the tissue is drawn in Figure 12.

6. Conclusions

Analysis based on lower semi-continuous energy functionals reveals real three-dimensional
deformations of soft epithelial tissues. Having different forms for different deformation
regimes, such as compressive stresses (short deformations), uniaxial tensions collinear to
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Figure 7. Apical constriction of initially flat tissue. It consists from 5050 elements or cells and has 529,245 DOFs.

Figure 8. von Mises stress distribution in deformed configurations.

Figure 9. Apical constriction of initially cylindrical tissue. It consists from 5975 elements or cells and has 621,375 DOFs.

Figure 10. von Mises stress distribution in deformed configurations.
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principal directions of the first fundamental form, no stretching or pure bending stresses
(isometric deformations) and stretching stresses (large deformations), the resulting total
energy is lower semi-continuous, so the existence of its minimizers, that is, real deformations,
is ensured. Particular energy density functions are chosen and the explicit form of the total
energy functional is obtained, thereby the discretization is made easy.

On the basis of obtained energy functional, a three-dimensional discretized model of epithelial
tissues undergoing combined stretching and bending deformations is constructed. Discreti-
zation elements correspond to single cells forming the tissue. Actin fibres and cell-cell adhesion
links, mainly contributing on the tissue energy, are explicitly embedded in elements. Defor-
mations characteristic to specific embryonic tissues (ventral furrow, neutral tube, neurosphere)
observed earlier are described quantitatively increasing contractile stresses in fibres.
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Nomenclature

⋅ Inner (dot) product,  Lamé coefficients1, 2 Principal stretchesℎ Rescaled three-dimensional total energy(Ω) Measure of bounded open set Ω∇ Gradient (nabla) operator
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Ω Midsurface of the epitheliumrank  Rank of the matrix F⊗ Tensor product

dist Usual distance in three-dimensional Euclidean space

d Diameter of actin fibres

E Three-dimensional elastic energy Bending energyℎ Rescaled three-dimensional elastic energy Membrane energy𝀵𝀵𝀵𝀵𝀵𝀵 Young’s modulus of actin fibres𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 Young’s modulus of a cell𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 Young’s modulus of cell-cell links

h Thickness of the epithelium or a single cell

r Side of a single cell

W Membrane energy density function The quasi-convex envelope of W

II The second fundamental form associated with deformation r

I The first fundamental form associated with deformation r

n Unit normal vector

r
Deformation acting from ℝ2 to ℝ3Id2 × 2 2 × 2 identity matrix

SO(3) The group of all rotations about the origin of three-dimensional Euclidean space
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principal directions of the first fundamental form, no stretching or pure bending stresses
(isometric deformations) and stretching stresses (large deformations), the resulting total
energy is lower semi-continuous, so the existence of its minimizers, that is, real deformations,
is ensured. Particular energy density functions are chosen and the explicit form of the total
energy functional is obtained, thereby the discretization is made easy.

On the basis of obtained energy functional, a three-dimensional discretized model of epithelial
tissues undergoing combined stretching and bending deformations is constructed. Discreti-
zation elements correspond to single cells forming the tissue. Actin fibres and cell-cell adhesion
links, mainly contributing on the tissue energy, are explicitly embedded in elements. Defor-
mations characteristic to specific embryonic tissues (ventral furrow, neutral tube, neurosphere)
observed earlier are described quantitatively increasing contractile stresses in fibres.
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Abstract

When a thin film of soft elastic material comes in contact with an external surface, contact
instability triggered by interaction forces, such as van der Waals, engenders topologi‐
cally functionalized surfaces. Innumerable technological applications such as adhesives;
microelecromechanical systems (MEMS), and nanoelectromechanical systems (NEMS)
demand understanding of  the physics  behind the mechanical  contact,  relationship
between the morphologies, and detachment forces in such films. Indentation tests are
important  experimental  approach  toward  this;  there  also  exist  many  simulation
procedures  to  model  the  mechanical  contact.  Both  atomistic  level  and  analytical
continuum simulations are computationally expensive and are restricted by the domain
geometries that can be handled by them. Polymeric films also particularly demonstrate
a  rich  variety  of  nonlinear  behavior  that  cannot  be  adequately  captured  by  the
aforementioned methods. In this chapter we show how finite element techniques can
be utilized in crack opening and in contact‐instability problems.

Keywords: ABAQUS, thin films, patterned substrate, VDLOAD, contact instability

1. Introduction

In nature, there are several examples such as lotus leaves, peacock’s feathers, butterfly wings,
gecko feet, and moths’ eyes where meso‐nano‐scaled physical patterns on the surface impart
characteristic properties such as hydrophobicity, structural color, adhesiveness, and optical
properties, which are absent otherwise, to the surfaces. To engineer such surfaces artificially
and to fabricate such features, there are mainly two most commonly used approaches: one a
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top‐down approach and the other a bottom‐up approach. The top‐down approach consists of
the various lithographic techniques such as electron beam lithography, dip‐pen lithography,
embossing lithography, laser lithography [1], laser photoablation [2], ion implantation [3],
micromachining [4], etc. The bottom‐up approach, on the other hand, consists of self‐assembly
of molecules to produce bigger building blocks to a growing structure as in chemical vapor
deposition [5].  While  the self‐assembly procedure involves numerous steps,  lithographic
methods such as dip‐pen lithography, which are used for creating patterns on hard silicon
surfaces, are time‐consuming, involve great cost and may not at all be suitable to create patterns
on soft surfaces such as polymers. Self‐organization methods, on the other hand, are for bulk
production of desired structures involving lower cost and therefore are more potentially
applicable fabrication techniques on soft surfaces. In self‐organization technique, materials such
as polymeric films, which have highly tunable mechanical properties, can be used to obtain a
desired mesoscopic structure due to the influence of internal or external forces. The mechanical
and interaction properties of these films can be controlled by the amount of cross‐linker added
during the synthesis step itself. The instabilities during self‐organization can be harnessed to
engineer desired periodic arrangements of sub‐micron features in technological applications
such as in flexible electronics [6],  optoelectronics [7],  functional  coatings [8],  sensors [9],
microfluidic  devices,  microelecromechanical  systems (MEMS) and nanoelectromechanical
systems (NEMS) [10], pressure‐sensitive adhesives [11], high‐efficiency light‐emitting diodes,
thin‐film transistors, etc. Thus, these thin films are model‐mesoscopic systems for understanding
physical phenomena such as tunable adhesion, adhesion debonding, pattern formation, wetting
dewetting and friction at soft interfaces, etc.

When a thin elastic film (shear modulus of <1 MPa) is brought in contact proximity of an
external contactor, it forms miniaturized surface patterns because of a competition between
the destabilizing interaction forces between the film and the contactor and the restoring elastic
forces present in the bulk of the elastic film. The wavelengths of instabilities scale as 4 h in the
case of peeling geometry [12–14] (whereas glass slide rests on a rigidly bonded film in
cantilever configuration) and application of normal force at the end of the glass slide leads to
well‐defined one‐dimensional (1D) finger‐like patterns at the crack opening and 3 h in the case
of adhesive geometry [15–26]. In the adhesive‐contact geometry, the free surface of the film in
contact proximity with an external contactor spontaneously roughens to form a two‐dimen‐
sional (2D) labyrinthic pattern when the stiffness of the attractive forces due to van der Waals
(VDW) interactions (arising because of the contactor) exceeds the elastic stiffness of the film.
This pattern remained unchanged in experiments either when the upper glass slide was
silanized with a chemisorbed layer of fluorinated monochlorodecyl silane [15] or when the
interactions were switched to electrostatic ones [21, 24, 25]. In recent past, much effort has been
devoted to understand how further miniaturization of length scales and hence enhanced
functional properties can be made technologically feasible in these already short wavelength
exhibiting adhesive soft elastic thin films in contact geometry. From a fabrication point of view,
the smallest patterns realized till date at such soft interfaces are ~ 0.1 h and are obtained with
elastic bilayers when the surface energies of the films are very low and the top film is considered
to be much thinner and of very small shear modulus compared to the bottom film [27, 28]. But
pattern formation in elastic bilayers through squeezing modes of instabilities has the disad‐
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vantage of delaminating at the film-film interface. To alleviate this problem, one has found that
films cast on patterned substrates can give rise to surface patterns, which are at length scales
that are about an order of magnitude less than that found in films cast on flat substrates [29–31].

Apart from direct experiments, these systems are well analyzed both theoretically and
numerically. In both cases, atomistic scale models can be considered but are computationally
expensive and are restricted by the domain geometries that can be handled by them. For elastic
films, linear stability analysis is generally carried out to understand the critical length scales
at the incipience of instability by perturbing Navier’s equations with bifurcation modes and
obtaining the nontrivial solutions [16, 17]. In nonlinear analysis [18–20], on the other hand, it
is possible to find the surface morphology by trying to find the equilibrium displacements that
minimize the total energy, which is composed of the interaction, and the elastic energies.
Finding the optimized Fourier coefficients, which define the top surface, with the help of
conjugate-gradient method, does this. However, for elastic films cast on generally patterned
substrates the obtained equations show highly nonlinear behavior, which cannot be solved by
the simplistic analytical methods or even by the energy-minimizing schemes developed for
the base case. On top of these, polymeric films particularly demonstrate a rich variety of
nonlinear behavior ranging from viscoelasticity to plasticity that cannot be adequately
captured by the aforementioned methods. Finite element analysis (FEA) methods can be used
to alleviate these problems. FEA methods have been used extensively in recent years to study
crack opening, crack propagation [32–34], delamination [35], film instability over soft sub-
strates, and bifurcation analysis of elastic contact instability [36–39].

In this chapter we show how to implement cohesive-zone modeling (CZM) for simple shear
and normal modes of crack opening in the finite element software and how to simulate contact
instability and adhesion debonding in soft thin films cast on complex geometries.

2. Cohesive-zone modeling

Most of the failures in engineering structures are the result of cracks that are preexisting
(during production) or the cracks that are formed in service. Continuum mechanics calcula-
tions fail to handle such cracks and these are handled by fracture mechanics, which primarily
studies resistance of a material to fracture. When a crack is formed, stress is usually not
transmitted between the two “virtual” surfaces that form the following crack formation. We
can consider a cohesive zone, of zero thickness, to bridge these two virtual surfaces and it can
be suggested that fracture happens when material strength in this zone decays. The basic
premise for cohesive-zone model is that infinite stresses (stress singularity) at crack tip are
unrealistic. Dugdale [40] and Barenblatt [41] developed the first models to address this
shortcoming and model brittle fracture. Their models divide the crack tip into stress-free region
and cohesively stressed regions. More than a decade later, Hillerborg [42] was the first one to
use finite element analysis for cohesive-zone modeling of brittle fracture. Tvergaard’s [43–44]
modification to Dugdale and Barenblatt’s model ensured that continuum elements remain
intact in the cohesive model. It is their first decohesion model where traction is dependent on

Simulating Contact Instability in Soft Thin Films through Finite Element Techniques
http://dx.doi.org/10.5772/65357

165

top‐down approach and the other a bottom‐up approach. The top‐down approach consists of
the various lithographic techniques such as electron beam lithography, dip‐pen lithography,
embossing lithography, laser lithography [1], laser photoablation [2], ion implantation [3],
micromachining [4], etc. The bottom‐up approach, on the other hand, consists of self‐assembly
of molecules to produce bigger building blocks to a growing structure as in chemical vapor
deposition [5].  While  the self‐assembly procedure involves numerous steps,  lithographic
methods such as dip‐pen lithography, which are used for creating patterns on hard silicon
surfaces, are time‐consuming, involve great cost and may not at all be suitable to create patterns
on soft surfaces such as polymers. Self‐organization methods, on the other hand, are for bulk
production of desired structures involving lower cost and therefore are more potentially
applicable fabrication techniques on soft surfaces. In self‐organization technique, materials such
as polymeric films, which have highly tunable mechanical properties, can be used to obtain a
desired mesoscopic structure due to the influence of internal or external forces. The mechanical
and interaction properties of these films can be controlled by the amount of cross‐linker added
during the synthesis step itself. The instabilities during self‐organization can be harnessed to
engineer desired periodic arrangements of sub‐micron features in technological applications
such as in flexible electronics [6],  optoelectronics [7],  functional  coatings [8],  sensors [9],
microfluidic  devices,  microelecromechanical  systems (MEMS) and nanoelectromechanical
systems (NEMS) [10], pressure‐sensitive adhesives [11], high‐efficiency light‐emitting diodes,
thin‐film transistors, etc. Thus, these thin films are model‐mesoscopic systems for understanding
physical phenomena such as tunable adhesion, adhesion debonding, pattern formation, wetting
dewetting and friction at soft interfaces, etc.

When a thin elastic film (shear modulus of <1 MPa) is brought in contact proximity of an
external contactor, it forms miniaturized surface patterns because of a competition between
the destabilizing interaction forces between the film and the contactor and the restoring elastic
forces present in the bulk of the elastic film. The wavelengths of instabilities scale as 4 h in the
case of peeling geometry [12–14] (whereas glass slide rests on a rigidly bonded film in
cantilever configuration) and application of normal force at the end of the glass slide leads to
well‐defined one‐dimensional (1D) finger‐like patterns at the crack opening and 3 h in the case
of adhesive geometry [15–26]. In the adhesive‐contact geometry, the free surface of the film in
contact proximity with an external contactor spontaneously roughens to form a two‐dimen‐
sional (2D) labyrinthic pattern when the stiffness of the attractive forces due to van der Waals
(VDW) interactions (arising because of the contactor) exceeds the elastic stiffness of the film.
This pattern remained unchanged in experiments either when the upper glass slide was
silanized with a chemisorbed layer of fluorinated monochlorodecyl silane [15] or when the
interactions were switched to electrostatic ones [21, 24, 25]. In recent past, much effort has been
devoted to understand how further miniaturization of length scales and hence enhanced
functional properties can be made technologically feasible in these already short wavelength
exhibiting adhesive soft elastic thin films in contact geometry. From a fabrication point of view,
the smallest patterns realized till date at such soft interfaces are ~ 0.1 h and are obtained with
elastic bilayers when the surface energies of the films are very low and the top film is considered
to be much thinner and of very small shear modulus compared to the bottom film [27, 28]. But
pattern formation in elastic bilayers through squeezing modes of instabilities has the disad‐
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both normal and tangential separation, whereas in Barenblatt’s model, it is dependent on the
distance from the crack tip. They do this by defining the cohesive elements between the
continuum elements such that damage initiation is characterized by opening of the cohesive
elements (and governed by some material law) and at failure these elements lose their stiffness,
resulting in the continuum elements disjointing from each other. This model is also called the
cohesive‐zone model or damage zone model (DZM). The initiation and evolution of the
damage are defined according to material‐softening law/cohesive law/bridging law/traction‐
separation law (TSL). TSL can be defined based on the properties of the cohesive zone. Traction‐
separation laws are not universal, and these are not physical laws to characterize fracture at
bonded interfaces. Rather, they are highly material dependent. We can define the TSLs in many
ways but all separation laws have one thing in common: they all suggest that the traction
initially increases with separation and beyond a critical separation distance it diminishes to
zero (material softening) at which point these cohesive surfaces detach from each other and a
real crack tip is defined.

For implementing TSL in CZM, two constitutive relations are considered: one for the contin‐
uum or the “bulk behavior” of the blocks and another for the gap between the surfaces that is
defined by the traction‐displacement relationships. If the cohesive zone is a thin adhesive layer
bonding the blocks, we can define the TSL as the traction at this interface with respect to the
separation at the interface. In the modeling by commercial finite element software ABAQUS,
the cohesive zone is represented by a single layer of elements that connect the two blocks/
surfaces and is constrained by one of the blocks as can be seen from Figure 1. Each element on
the surface of one block is “tied” with its corresponding neighboring element in the other block
through a series of “inelastic springs” which govern the interaction between these two surfaces.
This tie constraint prevents the propagation of singular modes in deformation that can arise
due to lack of membrane stiffness. The debonding/crack‐opening process is akin to the failure
of these springs.

Figure 1. Meshing with tie constraints for cohesive elements in ABAQUS.

2.1. Cohesive zone implementation in ABAQUS with an example problem

To show the implementation of cohesive zone model with traction‐separation law in ABAQUS,
we have provided an example problem [43] below. In this, we study the propagation of a crack
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in a material block. A debonding model is taken from Tvergaard’s work [43] and is described
in brief below. This model does not consist of a debonding potential, but is designed to address
the effect of fiber debonding from a metal‐matrix composite on the tensile properties (as this
requires one to consider both normal and tangential separations in the debonding). For this,
first, a function F(λ) was chosen such that
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For a monotonically increasing value of  the tractions are  =    and  =   . Here,

the normal and tangential tractions are  and  respectively, normal and tangential displace‐

ments are  and   respectively, δ and δ are the maximum separation distances in normal

and traction modes, respectively. Here, we have considered that the two virtual surfaces that
form after a crack growth are of unit dimension. For solving this, we have developed our own
code using MATLAB and ABAQUS. MATLAB is excellent to call external commands to run
the PYTHON scripts for generating the input files for ABAQUS.

ABAQUS has vast libraries of constitutive material models but this library is neither a complete
one nor a completely flexible one. However, fortunately, user‐defined constitutive material
models can be implemented in ABAQUS through either UMAT or VUMAT. UMAT is an
implicit time integration method (used with ABAQUS/Standard) and it requires the material
stiffness matrix as input for forming the consistent Jacobian (C), which is also called algorithmic
tangential stiffness or ATS, of the nonlinear equations. For linearly elastic materials, it is defined
as
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(3)

where 𝀵𝀵𝀵𝀵 is the increment in Cauchy stress and 𝀵𝀵𝀵𝀵 is the increment in strain.

VUMAT, on the other hand, uses explicit time integration and hence does not require Jacobian
matrix. It is implemented in ABAQUS/Explicit and is easier to write. In the case of cohesive
zone modeling, we can include element failure and progressive damage failure in the VUMAT
subroutine. The VUMAT subroutine consists of the strain decomposition of the total strain into
elastic (computed from a linear elastic or hyperelastic constitutive model) and plastic compo‐
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both normal and tangential separation, whereas in Barenblatt’s model, it is dependent on the
distance from the crack tip. They do this by defining the cohesive elements between the
continuum elements such that damage initiation is characterized by opening of the cohesive
elements (and governed by some material law) and at failure these elements lose their stiffness,
resulting in the continuum elements disjointing from each other. This model is also called the
cohesive‐zone model or damage zone model (DZM). The initiation and evolution of the
damage are defined according to material‐softening law/cohesive law/bridging law/traction‐
separation law (TSL). TSL can be defined based on the properties of the cohesive zone. Traction‐
separation laws are not universal, and these are not physical laws to characterize fracture at
bonded interfaces. Rather, they are highly material dependent. We can define the TSLs in many
ways but all separation laws have one thing in common: they all suggest that the traction
initially increases with separation and beyond a critical separation distance it diminishes to
zero (material softening) at which point these cohesive surfaces detach from each other and a
real crack tip is defined.

For implementing TSL in CZM, two constitutive relations are considered: one for the contin‐
uum or the “bulk behavior” of the blocks and another for the gap between the surfaces that is
defined by the traction‐displacement relationships. If the cohesive zone is a thin adhesive layer
bonding the blocks, we can define the TSL as the traction at this interface with respect to the
separation at the interface. In the modeling by commercial finite element software ABAQUS,
the cohesive zone is represented by a single layer of elements that connect the two blocks/
surfaces and is constrained by one of the blocks as can be seen from Figure 1. Each element on
the surface of one block is “tied” with its corresponding neighboring element in the other block
through a series of “inelastic springs” which govern the interaction between these two surfaces.
This tie constraint prevents the propagation of singular modes in deformation that can arise
due to lack of membrane stiffness. The debonding/crack‐opening process is akin to the failure
of these springs.

Figure 1. Meshing with tie constraints for cohesive elements in ABAQUS.

2.1. Cohesive zone implementation in ABAQUS with an example problem

To show the implementation of cohesive zone model with traction‐separation law in ABAQUS,
we have provided an example problem [43] below. In this, we study the propagation of a crack
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nents and flow rule to define the material’s plastic behavior. A sample of the input file
(filename.inp) and VUMAT subroutine (vumat.f) are annotated and provided at the end of
this section. These are run in ABAQUS through the following command:

abaqus job=filename.inp user=vumat.f

There are a minimum of five parameters that have to be prescribed for the CZM. They are as
follows:

1. Cohesive strength (Tn and Tt, the peak values of the traction‐separation curve).

2. Cohesive energy (area under the traction‐separation curve).

3. Characteristic length (un and ut, usually the separation value corresponding to the cohesive
strength).

Cohesive strength (related to yield stress) and cohesive energy signify the maximum resistance
to fracture and dissipation following material separation, respectively. For the cohesive zone
modeling with traction‐separation law, we need to specify the initial elastic stiffness (K).

Figure 2. Cohesive zone model (CZM) in ABAQUS. Loads and boundary conditions for the case of purely normal trac‐
tion (Tt= 0).

Figure 3. Normal traction (Tn) versus separation (un) obtained after CZM in ABAQUS.

We cannot use the exact value of the material’s Young’s modulus (E) for this as this stiffness
here refers to a “penalty stiffness,” that is, we are free to choose a value that is necessary to
prevent interpenetration of the surfaces and for the convergence of our model. One rule of
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thumb is to take a value of K that is equal to E/h (h is the cohesive layer thickness). Hence, K
can be taken to be a very large value as the cohesive elements are considered to be a layer of
zero thickness. Also, for simplification, identical values of K are taken for the crack‐opening
mode (mode I) and crack‐shearing modes (mode II). The chosen damage initiation and damage
evolution criteria affect how these two modes of crack opening interact with each other.

The variables we output (stress, strain, etc.) depend on the kind of problems being modeled
by the cohesive elements. This is indicated in the .inp file itself in the definition of the section
properties by specifying the response type required. The stress components are as follows:11—Direct membrane stress22—Direct through‐thickness stress12—Transverse shear stress

Figure 4. Cohesive zone model (CZM) in ABAQUS. Loads and boundary conditions shown for the case of purely shear
traction (Tn= 0).

Figure 5. Tangential traction (Tt) versus shear separation (ut) obtained from CZM in ABAQUS.

During a purely normal crack opening ( = 0), according to our TSL, the normal traction 
initially increases with the normal separation , reaches a maximum value max and reduces

Simulating Contact Instability in Soft Thin Films through Finite Element Techniques
http://dx.doi.org/10.5772/65357

169

nents and flow rule to define the material’s plastic behavior. A sample of the input file
(filename.inp) and VUMAT subroutine (vumat.f) are annotated and provided at the end of
this section. These are run in ABAQUS through the following command:

abaqus job=filename.inp user=vumat.f

There are a minimum of five parameters that have to be prescribed for the CZM. They are as
follows:

1. Cohesive strength (Tn and Tt, the peak values of the traction‐separation curve).

2. Cohesive energy (area under the traction‐separation curve).

3. Characteristic length (un and ut, usually the separation value corresponding to the cohesive
strength).

Cohesive strength (related to yield stress) and cohesive energy signify the maximum resistance
to fracture and dissipation following material separation, respectively. For the cohesive zone
modeling with traction‐separation law, we need to specify the initial elastic stiffness (K).

Figure 2. Cohesive zone model (CZM) in ABAQUS. Loads and boundary conditions for the case of purely normal trac‐
tion (Tt= 0).

Figure 3. Normal traction (Tn) versus separation (un) obtained after CZM in ABAQUS.

We cannot use the exact value of the material’s Young’s modulus (E) for this as this stiffness
here refers to a “penalty stiffness,” that is, we are free to choose a value that is necessary to
prevent interpenetration of the surfaces and for the convergence of our model. One rule of
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to 0 when  =  that is, when the final separation occurs (see Figures 2 and 3). Similarly,

during a purely shear crack opening ( = 0), the shear traction  initially increases with

tangential separation , reaches a maximum value 𝀵𝀵𝀵𝀵max and then at  =  the final

separation occurs (see Figures 4 and 5). The negative values in Figure 5 indicate compressive
stresses.

2.2. Writing ABAQUS .inp file and VUMAT subroutine

2.2.1. Snippet of input file

Snippet of input file (filename.inp) containing the geometry, meshing, material parameters,
and output variables

*Heading

** Job name: cohesive‐zone Model name: Model‐1

** Generated by: Abaqus/CAE 6.9‐1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** PARTS

*Part, name=Part‐1

*End Part

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Part‐1‐1, part=Part‐1 ***(two unit blocks/surfaces, each with 4 nodes)

*Node

⋮

*Element, type=CPE4R***(4 noded continuum plane-strain elements for the blocks)

⋮

*Element, type=COH2D4 ***(4 noded cohesive elements for the cohesive zone)

⋮

*Nset, nset=_PickedSeti, internal, generate

⋮
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*Elset, elset=_PickedSeti, internal

⋮
** Section: Section‐1

*Solid Section, elset=_PickedSeti, material=steel

,

** Section: Section‐2

*Cohesive Section, elset=_PickedSeti, material=coh, response=TRACTION SEPARATION
***(specifying response as TRACTION SEPARATION to implement TSL)

*End Instance

**

⋮
*Surface, type=ELEMENT, name=_PickedSurf21, internal

__PickedSurf21_S3, S3

*End Assembly

*Amplitude, name=Amp‐1 ***(time dependent loading conditions)

0., 0., 0.5, 0.5, 1., 1.

t=0 amp_at_t=0 t=0.5 amp_at_t=0.5 t=1 amp_at_t=1

**

** MATERIALS

**

*Material, name=coh ***(cohesive zone parameters)

*User material, Constants = 5 ***(user defined subroutine with 5 parameters)

200.0,0.25,0.25,1.0,0.5 * * * (𝀵𝀵𝀵𝀵𝀵𝀵, , ,   .   these are read through props( ) matrix in vumat.f)

*Density

5.4e‐7

*Depvar

7, ***(number of solution-dependent variables SDVs)

*Initial conditions, type=solution

Part‐1‐1._PickedSet4,0.0,0.0,0,0.0,0.0,0.0,0.0 ***(initial values of the 7 SDVs)

*Material, name=material‐1 ***(material properties of the continuum surfaces)
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to 0 when  =  that is, when the final separation occurs (see Figures 2 and 3). Similarly,

during a purely shear crack opening ( = 0), the shear traction  initially increases with

tangential separation , reaches a maximum value 𝀵𝀵𝀵𝀵max and then at  =  the final

separation occurs (see Figures 4 and 5). The negative values in Figure 5 indicate compressive
stresses.

2.2. Writing ABAQUS .inp file and VUMAT subroutine

2.2.1. Snippet of input file

Snippet of input file (filename.inp) containing the geometry, meshing, material parameters,
and output variables

*Heading

** Job name: cohesive‐zone Model name: Model‐1

** Generated by: Abaqus/CAE 6.9‐1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** PARTS

*Part, name=Part‐1

*End Part

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Part‐1‐1, part=Part‐1 ***(two unit blocks/surfaces, each with 4 nodes)

*Node

⋮

*Element, type=CPE4R***(4 noded continuum plane-strain elements for the blocks)

⋮

*Element, type=COH2D4 ***(4 noded cohesive elements for the cohesive zone)

⋮

*Nset, nset=_PickedSeti, internal, generate

⋮
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*Density

7.8e‐06,

*Elastic

2.5e+8, 0.25***(Young’s modulus E and Poisson’s ratio of Material-1)

** ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐*

** STEP: Step‐1

**

*Step, name=Step‐1

*Dynamic, Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi‐Automatic

** Whole Model

*Fixed Mass Scaling, factor=50.

**

** BOUNDARY CONDITIONS

**

** Name: BC‐2 Type: Displacement/Rotation

*Boundary

_PickedSet17, 2, 2

** Name: BC‐3 Type: Displacement/Rotation

*Boundary

_PickedSet18, 1, 1

** Name: BC‐4 Type: Displacement/Rotation

*Boundary, amplitude=Amp‐1

_PickedSet19, 2, 2, 1.

**

** LOADS

**
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** Name: Load‐1 Type: Pressure

*Dsload, amplitude=Amp‐3

_PickedSurf21, P,50. ***(Surface-2 of and permitted to have maximum displacement 0.5 in x-
direction i.e. =0.5)

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F‐Output‐2

**

*Output, field,op=new,number interval=50

*Node Output

RF, U ***(output variables at the nodes: reaction forces and displacements)

*Element Output, directions=YES

S, SDV ***(output variables over the elements: stresses and SDVs which are defined in the .f
file of VUMAT)

**

** FIELD OUTPUT: F‐Output‐1

**

*Output, field, variable=PRESELECT

**

** HISTORY OUTPUT: H‐Output‐1

**

*Output, history, variable=PRESELECT

*End Step

2.2.2. Snippet of vumat.f subroutine

The headers of this subroutine are common to every VUMAT and can be obtained from
ABAQUS documentation. We have listed below only portions of the user‐defined calculations
for the properties.
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*Density

7.8e‐06,

*Elastic

2.5e+8, 0.25***(Young’s modulus E and Poisson’s ratio of Material-1)

** ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐*

** STEP: Step‐1

**

*Step, name=Step‐1

*Dynamic, Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi‐Automatic

** Whole Model

*Fixed Mass Scaling, factor=50.

**

** BOUNDARY CONDITIONS

**

** Name: BC‐2 Type: Displacement/Rotation

*Boundary

_PickedSet17, 2, 2

** Name: BC‐3 Type: Displacement/Rotation

*Boundary

_PickedSet18, 1, 1

** Name: BC‐4 Type: Displacement/Rotation

*Boundary, amplitude=Amp‐1

_PickedSet19, 2, 2, 1.

**

** LOADS

**
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! Reading material properties specified in abaqus input file through props() array𝀵𝀵𝀵𝀵𝀵𝀵= props(1) ! max nominal stress at which damage is initiated= props(2) ! max normal displacement at which the material fails and Tn=0 = props(3) ! max tangential displacement at which the material fails and Tt=0

 = props(4) !parameter in  =  
mu = props(5)

do ii = 1,nblock

! Reading the old state variables or SDVs. = stateOld(ii,1) ! normal displacement = stateOld(ii,2) !tangential displacement

counter = stateOld(ii,3) = stateOld(ii,4)!tangential traction = stateOld(ii,5)!normal traction

! Reading the strain Increments.

! In VUMAT shear components are stored as tensor components and not as engineering
components.

! so Δ will be twice of tensorial shear strain.Δ = strainInc(ii,1)Δ = 2.0*strainInc(ii,2)

!Depending on pure normal traction or pure shear traction or mixed mode of debonding,
calculate the following:
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! stress update

stressNew(ii,1) = stressOld(ii,1)+ 

stressNew(ii,2) = stressOld(ii,2)+ 

! state variable update

stateNew(ii,1) = stateOld(ii,1) + 

stateNew(ii,2) = stateOld(ii,2) + 

stateNew(ii,3) = stateOld(ii,3) + 1

stateNew(ii,4) = 

stateNew(ii,5) = 

enddo

return

end

3. Elastic contact instability through FEM simulations

Figure 6A and B shows the schematic setup of a soft incompressible initially stress‐free elastic
film of shear modulus   <1 MPa, mean thickness h, and lateral length L. It is cast over a rough
substrate. To demonstrate the effect of roughness here, we have chosen a substrate with a
uniform sawtooth profile characterized by its amplitude ℎ and wavelength  = / where 
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! Reading material properties specified in abaqus input file through props() array𝀵𝀵𝀵𝀵𝀵𝀵= props(1) ! max nominal stress at which damage is initiated= props(2) ! max normal displacement at which the material fails and Tn=0 = props(3) ! max tangential displacement at which the material fails and Tt=0

 = props(4) !parameter in  =  
mu = props(5)

do ii = 1,nblock

! Reading the old state variables or SDVs. = stateOld(ii,1) ! normal displacement = stateOld(ii,2) !tangential displacement

counter = stateOld(ii,3) = stateOld(ii,4)!tangential traction = stateOld(ii,5)!normal traction

! Reading the strain Increments.

! In VUMAT shear components are stored as tensor components and not as engineering
components.

! so Δ will be twice of tensorial shear strain.Δ = strainInc(ii,1)Δ = 2.0*strainInc(ii,2)

!Depending on pure normal traction or pure shear traction or mixed mode of debonding,
calculate the following:
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is the number of substrate troughs or crests. In the asymptotic case when ℎ 0 or / ∞,
we get the classical case of a smooth substrate, though in real systems it is almost impossible
to come across a substrate that is atomistically smooth and almost all surfaces have inherent
roughness. Again in real situations mechanical/thermal noises and vibrations almost always
disturb the film surface at the air interface. To incorporate them for numerical simulations, the
film surface is perturbed by sinusoidal disturbances having different frequencies and random
amplitudes of the order of 10−3 nm. The mean distance from the free surface of the film and the
contactor is termed the gap distance and is represented by the symbol d (refer to Figure 6A).
In simulations, the contactor, as in experiments, is brought near the film surface from a finite
distance at an approach velocity    ( 1   𝀵𝀵/) maintained below the critical distance where

the instabilities first initiate (adhesion) for around ~15 s. This is necessary to allow the film to
have sufficient time to arrange itself under the interplay of imposed force and elasticity of the
film. Once the patterns get mature, the debonding phase is started. In the debonding phase,
the contactor is pulled off at different velocities (debonding: ). The contactor positions at

different times can be visualized from Figure 6B. The thickness of the film considered for the
simulations is 500 nm and length L of the film considered is 8ℎ. The β is varied from 0.1 to 0.7
and n is varied from 1 to 12 (for L = 8h) in the simulations. Though in reality the film is three‐
dimensional (3D) as shown in Figure 6A, for ease of computation the simulations are carried
out considering a plane‐strain model (as because of normal traction from the contactor the
displacements can be considered to be confined in the plane of the paper) and a 2D geometry
as shown in Figure 6B has been mostly considered. To understand the morphology in greater
detail, 3D simulations are also carried out in certain cases with the 3D geometry.

Figure 6. Schematic diagram of an elastic thin film case on a (A) 3D sawtooth and (B) 2D sawtooth‐patterned substrate
and in contact proximity to an external contactor. The position of the contactor at different time is also shown.

If one considers an infinitesimal control volume inside the elastic film, a force balance will give
rise to the following governing thin‐film (Navier’s) equation:
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where,  = 𝀵𝀵𝀵𝀵 +  ∇  + ∇    is the stress developed inside the film,   is the displacement

vector, p is the pressure across the film, and I is the identity matrix. The second term,   ,
represents the body force (per unit volume) that the film experiences because of the contactor.
The equation as can be seen is a partial differential equation in the unknown   and does not
yield an analytical solution in the case when the substrate is patterned or when the film material
displays geometric or material nonlinearity. A numerical solution can, however, be obtained
when the differential equation is discretized by considering a trial/shape function for the
displacement and converted into a set of algebraic equations. In the Galerkin finite element
formulation, the residual obtained because of the trial function can now be minimized in a
weighted fashion according to

( ). 0f ds f
W

Ñ + W =ò
rr

(5)

where Ω is the discretized domain inside the film and Φ is the shape function. The desired
discretization and subsequent simulations to realize the film deformation and morphology
due to influence of the external contactor are carried out with the help of the commercial finite
element software ABAQUS

3.1. Geometry and mesh creation

To mimic the physical geometry and to simulate several cases of substrates (having varying
frequency and amplitudes) and to incorporate different perturbation conditions at the film-
contactor interface, the graphical user interface in the software proves to be difficult. Python
scripting was used instead to generate the multitude of geometries. For the film’s lateral edges
and the substrate boundary, straight lines are used, while for achieving the perturbed top
surface cubic splines are fitted to get a continuous line out of the random sinusoidal fluctuations
at the film-contactor interface. Meshing forms an integral part of the preprocessing steps,
which helps in discretizing the geometry. The accuracy that can be obtained from any finite
element analysis is directly related to the finite element mesh that is used. Generally, for the
large deformations in 2D, eight node elements are used but those are computationally
intensive. In 2D as discussed earlier for the present scenario one can consider a plain-strain
condition, therefore, continuum plain-strain 4 node-reduced integration elements (CPE4R) are
used in 2D. For 3D geometry, continuum three-dimensional eight-node-reduced integration
(C3D8R) elements are used. To circumvent the problem of artificial stiffness due to shear
locking that can arise due to four node elements, a large number of elements are used while
maintaining the aspect ratio of the elements close to 1, which also helps in avoiding problems
associated with skewness. Further, for the large deformation problem, reduced integration
elements are shown to be successfully implemented without impacting the results and reduce
the computational load. On the top of the film, the force is much higher and decreases
drastically with depth in the film due to the highly nonlinear dependence of force on distance.
Thus, it becomes necessary to have high density of mesh toward the top of the film. The
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is the number of substrate troughs or crests. In the asymptotic case when ℎ 0 or / ∞,
we get the classical case of a smooth substrate, though in real systems it is almost impossible
to come across a substrate that is atomistically smooth and almost all surfaces have inherent
roughness. Again in real situations mechanical/thermal noises and vibrations almost always
disturb the film surface at the air interface. To incorporate them for numerical simulations, the
film surface is perturbed by sinusoidal disturbances having different frequencies and random
amplitudes of the order of 10−3 nm. The mean distance from the free surface of the film and the
contactor is termed the gap distance and is represented by the symbol d (refer to Figure 6A).
In simulations, the contactor, as in experiments, is brought near the film surface from a finite
distance at an approach velocity    ( 1   𝀵𝀵/) maintained below the critical distance where

the instabilities first initiate (adhesion) for around ~15 s. This is necessary to allow the film to
have sufficient time to arrange itself under the interplay of imposed force and elasticity of the
film. Once the patterns get mature, the debonding phase is started. In the debonding phase,
the contactor is pulled off at different velocities (debonding: ). The contactor positions at

different times can be visualized from Figure 6B. The thickness of the film considered for the
simulations is 500 nm and length L of the film considered is 8ℎ. The β is varied from 0.1 to 0.7
and n is varied from 1 to 12 (for L = 8h) in the simulations. Though in reality the film is three‐
dimensional (3D) as shown in Figure 6A, for ease of computation the simulations are carried
out considering a plane‐strain model (as because of normal traction from the contactor the
displacements can be considered to be confined in the plane of the paper) and a 2D geometry
as shown in Figure 6B has been mostly considered. To understand the morphology in greater
detail, 3D simulations are also carried out in certain cases with the 3D geometry.

Figure 6. Schematic diagram of an elastic thin film case on a (A) 3D sawtooth and (B) 2D sawtooth‐patterned substrate
and in contact proximity to an external contactor. The position of the contactor at different time is also shown.

If one considers an infinitesimal control volume inside the elastic film, a force balance will give
rise to the following governing thin‐film (Navier’s) equation:
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geometry of the film in case of a smooth substrate is seeded with a bias ratio to have smaller
elements toward the top as shown in Figure 7A and B (for 2D and 3D geometries, respectively).
For sawtooth profile, the geometry is divided into two blocks. The top block has similar seeding
as in case of smooth substrate and the bottom is meshed as shown in Figure 7C and D (for 2D
and 3D geometries, respectively). Since the force applied depends on the amplitude of
substrate roughness as well, the meshed geometry is tested with the grid independence test
for every case and the finalized meshes are then chosen.

Figure 7. The meshing done inside the film geometry for (A)&(B) a planar substrate, (C)&(D) for a sawtooth substrate,
respectively. Figures on the left and right represent meshing in 2D and 3D respectively.

3.2. Boundary conditions

To imitate the rigid boundary conditions of the base in the simulations, the bottom edge of the
film is pinned to the substrate and movement toward either direction is restricted with the
help of an Encastre boundary condition. To incorporate periodic boundary conditions on the
lateral sides of the film, x‐symmetric boundary conditions are applied.

3.3. Force calculations

As discussed earlier, so far the failure at the interfaces was captured via a cohesive zone model.
In the model, the contactor (a rigid body) and the elastic film were considered to be in intimate
contact separated only by a very thin layer of cohesive zone. In the cohesive zone, a traction‐
separation law (inbuilt in ABAQUS) is defined in such a way that the traction initially increases
with separation and beyond a critical separation distance it diminishes to zero (material
softening) at which point these cohesive surfaces detach from each other. The energy release
rate at debonding is given by the area under the curve. The problem with the method is except
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for the energy all the other parameters are not well characterized and the traction‐separation
law is not based on any physical law. Also, while the model is good for peeling/debonding
experiments and almost always considers the initial stage as one where the rigid contactor and
the film is in intimate contact, it fails to capture the essential morphologies at critical separation
distance.

Thus, to capture both the adhesion and debonding of an elastic film due to the interaction
between the film and the contactor, a body‐force approach has been considered, where each
node in the film experiences a varying magnitude body force depending on its relative position
with the contactor. The most generic interaction between two different materials when it comes
in contact proximity is given by van der Waals type of potential. The attractive potential of
VDW prevalent between two atoms or molecules separated at a distance r can be described as
[45]

( ) 6Ψ /r M r= - (6)

where M is the coefficient of attraction. However, a molecule in the film experiences attraction
from all the molecules in the contactor. Thus, if one considers a ring‐like element in the
contactor as shown in Figure 8A, the total number of atoms/molecules present in the ring
will be 2𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵1𝀵𝀵𝀵𝀵2 where 𝀵𝀵 denotes the number density of atoms/molecules of the contactor.

Hence, the total effective potential that a molecule in the film will experience due to a contactor
that is semi‐infinitely thick is laterally unbounded and is situated at a surface‐to‐surface
separation distance of D which is given by
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If the single molecule of the film is now replaced by a solid body of unit volume having number
density of atoms/molecules 𝀵𝀵, the body force that the elastic film will experience is given by
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where A is known as the Hamaker constant and has the value of 10−19 J for the present
simulations. In the simulations, the above body‐force term is modified and a born‐repulsion
term is also added to avoid extremely high forces at total contact such that
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geometry of the film in case of a smooth substrate is seeded with a bias ratio to have smaller
elements toward the top as shown in Figure 7A and B (for 2D and 3D geometries, respectively).
For sawtooth profile, the geometry is divided into two blocks. The top block has similar seeding
as in case of smooth substrate and the bottom is meshed as shown in Figure 7C and D (for 2D
and 3D geometries, respectively). Since the force applied depends on the amplitude of
substrate roughness as well, the meshed geometry is tested with the grid independence test
for every case and the finalized meshes are then chosen.

Figure 7. The meshing done inside the film geometry for (A)&(B) a planar substrate, (C)&(D) for a sawtooth substrate,
respectively. Figures on the left and right represent meshing in 2D and 3D respectively.

3.2. Boundary conditions

To imitate the rigid boundary conditions of the base in the simulations, the bottom edge of the
film is pinned to the substrate and movement toward either direction is restricted with the
help of an Encastre boundary condition. To incorporate periodic boundary conditions on the
lateral sides of the film, x‐symmetric boundary conditions are applied.

3.3. Force calculations

As discussed earlier, so far the failure at the interfaces was captured via a cohesive zone model.
In the model, the contactor (a rigid body) and the elastic film were considered to be in intimate
contact separated only by a very thin layer of cohesive zone. In the cohesive zone, a traction‐
separation law (inbuilt in ABAQUS) is defined in such a way that the traction initially increases
with separation and beyond a critical separation distance it diminishes to zero (material
softening) at which point these cohesive surfaces detach from each other. The energy release
rate at debonding is given by the area under the curve. The problem with the method is except
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where  = 𝀵𝀵𝀵𝀵6/18 Jm6 (le is an equilibrium distance and has a value of 0.138 nm for the present

case). The nature of the body force can be seen in Figure 8B.

Figure 8. (A) Schematic diagram of the calculation of force between a contactor surface and a molecule inside the elas‐
tic film. (B) It shows the van der Waals body force present between the contacting surface and any nodal point in the
mesh inside the film geometry.

The contactor in the simulations is virtual in nature, and its presence is felt only through
the body‐force term f. Since the contactor position keeps on changing with time (refer to
Figure 6B) so also does the body force. Hence, the gap distance  between a particular node
and the surface of the contactor keeps on changing with time as per the following:

During adhesion:  = initial −  ×  − 2   for 0 ≤ t ≤ 1 where 1 = ( + 1)/
During resting:   = initial −  + 1 − 2   for 1 ≤ t ≤ 2 where   2( + 1)/ + 15
During debonding phase:

( )( ) ( ) ( )initial 2 2 21  For t  tc dD d v t t u tx = - + + ´ - - £ (10)

In the above set of equations,  initial denotes the initial gap distance, 2   the normal position

of the particular node at time t,  the critical distance at which the film begins to experience

substantial force due to the contactor and starts deforming. Its value can be roughly estimated
analytically from linear stability analysis on sinusoidal substrates according to [30]
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In VDLOAD subroutine of ABAQUS, the body force for a particular node is thus calculated
according to
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The morphological evolution of the film due to the presence of the contactor is thus dependant
on the dynamic contactor position and thus is a time‐dependent problem. The solution is
obtained by marching forward in time using an explicit scheme such that the body force
calculated at a particular time t is given by
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x -

¶ ¶
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¶ ¶ (13)

3.4. Structure of VDLOAD subroutine

The headers of this subroutine are common to every VDLOAD and can be obtained from
ABAQUS documentation. We have listed below only portions of the user‐defined load
subroutine

*** Declare new variables used (if any)

*** Declare the values of contactor approach velocity, retracting velocity, van der Waals
potential/force parameters, initial separation distance, cutoff distance

do k = 1, nblock

u2= curCoords (k,2) *** curCoords(k,1) and curCoords(k,2) represent the updated coordi-
nates in x1 and x2 direction respectively)

** Calculate gap distance according to Eq. 10

*** Calculate forces according to Eq. 12

** Calculate force update according to Eq. 13 and input the magnitude in the array value (k),
which is the prescribed ABAQUS declared array to contain forces

end do

The FE results displaying the effect of the substrate roughness on the morphologies formed,
the work of adhesion exhibited, are discussed next in “Results” section.

3.5. Results

Linear stability analysis performed with the help of a single Fourier mode [16, 17] and energy‐
minimizing nonlinear analysis [18–20] has already been able to identify the nontrivial bifur‐
cation modes for which instability is possible. For critical conditions at which instability first
initiates, it has been observed that the critical wave length  λ  2.96 h  is at par with the exper‐
imental observations. In FEM to obtain the critical wave mode, the geometry is created with
the help of a series of cosine waves having random amplitudes and frequencies in the vicinity
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where  = 𝀵𝀵𝀵𝀵6/18 Jm6 (le is an equilibrium distance and has a value of 0.138 nm for the present

case). The nature of the body force can be seen in Figure 8B.

Figure 8. (A) Schematic diagram of the calculation of force between a contactor surface and a molecule inside the elas‐
tic film. (B) It shows the van der Waals body force present between the contacting surface and any nodal point in the
mesh inside the film geometry.

The contactor in the simulations is virtual in nature, and its presence is felt only through
the body‐force term f. Since the contactor position keeps on changing with time (refer to
Figure 6B) so also does the body force. Hence, the gap distance  between a particular node
and the surface of the contactor keeps on changing with time as per the following:

During adhesion:  = initial −  ×  − 2   for 0 ≤ t ≤ 1 where 1 = ( + 1)/
During resting:   = initial −  + 1 − 2   for 1 ≤ t ≤ 2 where   2( + 1)/ + 15
During debonding phase:
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In the above set of equations,  initial denotes the initial gap distance, 2   the normal position

of the particular node at time t,  the critical distance at which the film begins to experience

substantial force due to the contactor and starts deforming. Its value can be roughly estimated
analytically from linear stability analysis on sinusoidal substrates according to [30]
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In VDLOAD subroutine of ABAQUS, the body force for a particular node is thus calculated
according to
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of a mean value j. When the particular geometries are simulated using VDLOAD, only in the
adhesive branch, the displacements at the corner‐most node, which has the highest amplitude
(because of the cosine nature of the waves), is tracked. The displacement of the node thus
obtained at any generic time near critical separation distance is plotted against the average
wave modes in Figure 9A. It can be seen that the curve has a bell shape indicating that near a
particular mean surface wave mode the deformation of the surface is highest. This marks the
dominant wave mode, whose value matches with those from Linear stability analysis (LSA)
and experiments involving flat substrates.

Figure 9. (A) The displacement of the top‐most corner node of the film for different perturbed film surfaces at a partic‐
ular time near critical. The dominant wave mode is ~3 for flat substrate. (B) The dominant wave mode and the wave‐
length for different substrate amplitude averaged over the substrate wavelength. With increased roughness in
substrate miniaturization of the surface patterns occurs.

Figure 10. The trajectory of the corner‐most point with time.

To study whether the substrate roughness has any influence on the emerging surface patterns,
similar studies have been conducted for sawtooth‐profiled substrates having different
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substrate parameters of  and n. The results reveal that though the substrate wavelengths have
negligible effect, the substrate amplitudes have a profound influence on the emerging
wavelengths. The surface wave mode/wave lengths are found to be an increasing/decreasing
function of the substrate amplitude averaged over the different substrate wave modes
considered, indicating that the patterned substrates do engender miniaturized length scales
as can be seen from Figure 9B.

The displacement profile of the corner node at different time is shown in Figure 10. It can be
seen that at initial time t = 0 since the initial gap is much greater than the critical value, the
film surface remains planar with zero displacement. Near critical distance (near 1), the dis‐

placements start to have nonzero values and at  just greater than   1 when the contactor is

in resting position the film comes in total contact. The node continues to be in contact with
the contactor even in the debonding phase when the contactor is pulled up and it gets de‐
tached only at snap‐off distance dsnap. The trajectory of the corner node arising due to dif‐

ferent debonding velocity is found to be different in the debonding phase. It can be seen
that the snap‐off also occurs at different times. Though the snap‐off time tsnap for the lower

velocity is found to be highest, the snap‐off distance dsnap = vd × tsnap is in reverse order 30,  16, 5,  10, 6.6 nm   showing that in case of lower debonding velocity the detachment oc‐
curs at the lowest snap‐off distance.

Figure 11. (A1‐E1) Morphologies at different contactor positions. (A2‐E2) Stresses in the film at different contactor po‐
sitions for a film cast on a sawtooth‐profiled substrate of amplitude  = 0.1 and  = 4.
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of a mean value j. When the particular geometries are simulated using VDLOAD, only in the
adhesive branch, the displacements at the corner‐most node, which has the highest amplitude
(because of the cosine nature of the waves), is tracked. The displacement of the node thus
obtained at any generic time near critical separation distance is plotted against the average
wave modes in Figure 9A. It can be seen that the curve has a bell shape indicating that near a
particular mean surface wave mode the deformation of the surface is highest. This marks the
dominant wave mode, whose value matches with those from Linear stability analysis (LSA)
and experiments involving flat substrates.
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similar studies have been conducted for sawtooth‐profiled substrates having different
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In ABAQUS, not only a single node but the whole evolution of the film can be traced
throughout adhesion‐debonding. In Figure 11, the labels A1‐E1 indicate the morphologies
and A2‐E2 the stress profiles that develop across a film cast on a sawtooth‐profiled substrate
(of amplitude  = 0.1 and  = 4) for the different contactor positions. In the inset, a contactor
displacement graph is provided for easy understanding of the positions. At position A1
where the contactor is just near critical distance the surface is seen to begin destabilizing
where the structures formed have very less asperities. At stage B1, the film surface comes in
physical contact with the contactor and the top surface takes the shape of columns bridging
the gap with intervening cavities (which form the dispersed phase). At C1, the end of rest‐
ing phase, the columnar structures mature to form continuous ridges, which upon with‐
drawal to D1 shrinks in size due to peeling from the edges. Continuous peeling ultimately
gives rise to isolated columns (which now forming the dispersed phase) as shown in E1
leading to snap‐off. Thus, from adhesion to debonding, the morphologies at the surface go
through a phase inversion. The corresponding stress profiles can be seen from Figure 11 A2‐
E2. It can be seen that the stresses lie concentrated at the column edges. Thus, more number
or greater width of columns (B2 and C2) are seen to have higher stresses at the edges which
are responsible for subsequent peeling and stress release as seen in Figure 11 D2 and E2.

Figure 12. Contour plots of the work of adhesion (J/m2) for different substrate parameters for a film cast on a rough
(sawtooth‐profiled) substrate. (A) For debonding velocity  = 0.125   𝀵𝀵/. (B) For debonding velocity, = 0.25   𝀵𝀵/.

The sum of the stresses across the total top surface area is a signature of the forces re‐
quired by the contactor to pull the film up to a certain pull‐off distance. The area under the
force displacement curve from the beginning of debonding phase to snap‐off yields the
work of adhesion, which is required to separate the two surfaces of the film and the con‐
tactor. Figure 12 reveals the work of adhesion exhibited by films cast on substrates having
various degrees of roughness. It can be seen vividly that while the effect of the wavelength
of the substrate is negligible, the higher the substrate amplitude, more is the substrate
roughness more is the work of adhesion and better is the performance of the elastic film as
an adherent. The work of adhesion is also seen to be a function of the debonding velocity.
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For a higher debonding velocity (Figure 12B), it can be seen that the work of adhesion is
also high (compared to Figure 12A). The fact is intuitive considering in band‐aids when we
pull at higher velocity higher adhesiveness is felt compared to that felt at lower velocities
[46].

4. Conclusions

Opening of crack surfaces through traction‐separation laws in cohesive‐zone modeling is
demonstrated for cohesive blocks. In the case of adhesion‐debonding of elastic films, simula‐
tions are performed for topologically rough substrates to demonstrate the ability of the method
to resolve complex geometries, which these analytical methods are incapable of. At incipience
of instability when the film surface is perturbed by random fluctuations at the vicinity of
prescribed wavelengths, the displacements made by those contacting surface nodes are found
highest near the dominant wavelength. These dominant perturbations grow into columnar
structures at contact. A thorough FE study reveals that film cast on rough substrate is ideal for
fabrication of features/columns at miniaturized length scales and exhibits high work of
adhesion. Thus, these films can act as better adhesives and can produce enhanced functional
surfaces.

Nomenclature

F Function related to traction

λ Nondimensional parameter related to displacements

σmax Maximum value of normal traction

Tn The normal traction

Tt The tangential traction

α Ratio of maximum values of normal to shear traction

C Algorithmic tangential stiffness

Δσ Increment in Cauchy stress

Δε Increment in strain

K Elastic stiffness

E Young’s modulus

σ11 Direct membrane stress

σ22 Direct through‐thickness stress

σ12 Transverse shear stress

μ Shear modulus

h Mean film thickness
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In ABAQUS, not only a single node but the whole evolution of the film can be traced
throughout adhesion‐debonding. In Figure 11, the labels A1‐E1 indicate the morphologies
and A2‐E2 the stress profiles that develop across a film cast on a sawtooth‐profiled substrate
(of amplitude  = 0.1 and  = 4) for the different contactor positions. In the inset, a contactor
displacement graph is provided for easy understanding of the positions. At position A1
where the contactor is just near critical distance the surface is seen to begin destabilizing
where the structures formed have very less asperities. At stage B1, the film surface comes in
physical contact with the contactor and the top surface takes the shape of columns bridging
the gap with intervening cavities (which form the dispersed phase). At C1, the end of rest‐
ing phase, the columnar structures mature to form continuous ridges, which upon with‐
drawal to D1 shrinks in size due to peeling from the edges. Continuous peeling ultimately
gives rise to isolated columns (which now forming the dispersed phase) as shown in E1
leading to snap‐off. Thus, from adhesion to debonding, the morphologies at the surface go
through a phase inversion. The corresponding stress profiles can be seen from Figure 11 A2‐
E2. It can be seen that the stresses lie concentrated at the column edges. Thus, more number
or greater width of columns (B2 and C2) are seen to have higher stresses at the edges which
are responsible for subsequent peeling and stress release as seen in Figure 11 D2 and E2.

Figure 12. Contour plots of the work of adhesion (J/m2) for different substrate parameters for a film cast on a rough
(sawtooth‐profiled) substrate. (A) For debonding velocity  = 0.125   𝀵𝀵/. (B) For debonding velocity, = 0.25   𝀵𝀵/.

The sum of the stresses across the total top surface area is a signature of the forces re‐
quired by the contactor to pull the film up to a certain pull‐off distance. The area under the
force displacement curve from the beginning of debonding phase to snap‐off yields the
work of adhesion, which is required to separate the two surfaces of the film and the con‐
tactor. Figure 12 reveals the work of adhesion exhibited by films cast on substrates having
various degrees of roughness. It can be seen vividly that while the effect of the wavelength
of the substrate is negligible, the higher the substrate amplitude, more is the substrate
roughness more is the work of adhesion and better is the performance of the elastic film as
an adherent. The work of adhesion is also seen to be a function of the debonding velocity.
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L Lateral length

β Nondimensional substrate amplitude

λs Substrate wavelength

n Substrate wave mode

d Film‐contactor gap distance

va Approach velocity

vd Debonding velocity Stress tensor in the film Displacement vector

P Pressure across the film

I The identity matrix  Body force (per unit volume)

Ω The discretized domain inside the film

Φ The shape function

x1‐x2 Cartesian coordinate system

Ψ Attractive van der Waals potential

r Separation distance between two atoms or molecules

M The coefficient of attraction

ρc The number density of atoms/molecules of the contactor

D Surface‐to‐surface separation distance of D

w Modified interaction potential

ρf The number density of atoms/molecules of the film

A The Hamaker constant

B Born‐repulsion coefficient

le An equilibrium distance

ξ Gap distance between a particular node and the surface of the contactor

Dintial The initial gap distance

t Time

t2 Adhesive phase end time

t2 Resting phase end time of contactor

dc Critical gap distance

u2 Normal displacement

λ Surface wavelength
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Abstract

Defects of the mandible occur after trauma or resection after infection or tumours. There
have  been  many  methods  espoused,  but  many  methods  can  fail  especially  if  the
biomechanics of the mandible is not considered fully. As the only moveable, load-
bearing bone of the skull, the mandible is subject to loads and stresses unique to it due
to its shape, location and function. This chapter reviews the basic knowledge of the
mandible necessary to perform finite element analysis, the challenges and then reviews
several  studies  that  have been done.  The authors’  personal  research is  detailed to
illustrate how finite element analysis can be used to look at potential failure of a new
method for mandibular reconstruction and implant evaluation.

Keywords: mandible reconstruction, finite element analysis, potential failure

1. Introduction

The lower jaw or mandible is the only load bearing, moveable bone of the skull. Defects in the
lower jaw or mandible can happen as a result of trauma, infection or after a resection for
pathology, which can be benign or malignant. The field of medicine or surgery has never been
able  to  satisfactorily  reconstruct  a  mandible  after  the  original  tissue  has  been gone.  An
unrepaired defect in the mandible, depending on the location of the defect would lead to (1)
constriction of the remaining tissue around the defect leading to a malocclusion due to the
pull of the muscles, (2) collapse of the arches leading to inability to eat and function and (3)
difficulty swallowing or even breathing especially when lying flat due to loss of attachment
of the tongue, sometimes leading to aspiration or asphyxiation.
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2. Methods for mandibular reconstruction

There have been many methods advocated for reconstruction of the mandible, most of which
have never fully considered the biomechanical forces acting on the mandible both in the short
and long term. These methods have been “tried”, most times with catastrophic results. Among
the methods for mandibular reconstruction advocated are:

1) Soft tissue flap

2) Autogenous bone blocks

3) Mandibular reconstruction/bridging plate

4) Cancellous bone in titanium mesh

5) Vascularized free flap

6) Newer methods like the endoprosthesis or alloplastic replacement

7) Tissue engineered bone scaffold

The current gold standard is still the vascularized free flap, which needs a long operation time
and harvest of tissue from another part of the body [1, 2].

This brings the question of “what is the ideal method of mandibular reconstruction?” to the
fore.

2.1. Ideal method

The ideal method of mandibular reconstruction would:

1) Reconstruct the missing soft tissue and bone

2) Allow replacement of teeth

3) Not need a long surgery

4) Easy to learn without needing extensive training and skills that are hard to learn

5) Not need to take tissue from another part of the body

6) Cost effective

7) Not need prolonged hospitalization and recovery

8) Allow the patient to eat and function early or immediately

9) Be able to withstand the forces of biting and chewing permanently or for a long time

No such ideal method exists.

2.2. Challenges to mandibular reconstruction

The challenges to replacing a section of the mandible lie in its form and function as well as its
unique location in the body. Any hardware (plates and screws) used to fix the mandible would
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undergo unique stresses not seen in other parts of the body. There is a non-axial load in that
the long axis of the teeth is about perpendicular to the long axis of the mandible. The overlying
tissue in the mouth is thin; any break in the soft tissue could lead to exposure of the hardware
to the bacteria and saliva in the mouth, leading to the formation of biofilms. Ingestion of hot
and cold food and liquids can cause expansion and contraction of the hardware, which is
dissimilar to that of the underlying bone.

3. Mandibular biomechanics

The biomechanics of the mandible has not been very well studied. Mandibular biomechanics
can be studied with finite element analysis, strain gauges or photoelastic models. Finite
element analysis allows study of the forces throughout an entire structure but is limited to
static forces. An understanding of the anatomy and biomechanics of the intact mandible is
necessary prior to looking at how to conduct a finite element analysis of the mandible.

3.1. Anatomy of the mandible

The mandible is a U-shaped bone, connected at the temporomandibular joints at both ends to
the skull. It consists of a corpus (body), the symphysis, which connects both right and left at
the midline, the alveolar bone, which supports the teeth, the ramus with the condylar as well
as the coronoid processes (Figure 1).

Figure 1. Schema showing the gross anatomy of the mandible.
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The teeth are connected to the alveolar bone by periodontal ligaments, which act as a gom-
phosis (allowing minute movement). These ligaments are inserted into the bone on one end
and into the cementum of the teeth.

The muscular attachments can be divided into three groups:

1) Muscles of mastication—medial pterygoid, lateral pterygoid, masseter and temporalis;
only the lateral pterygoid muscle assist in opening the mandible, the rest closes the
mandible.

2) Suprahyoid muscles that assist in some opening of the mouth and swallowing—mylo-
hyoid, hyoglossus, genioglossus, digastric muscles.

3) Muscles of facial expression that insert into the mandible—buccinators, depressor anguli
oris, mentalis.

The outer surface of the mandible consists of dense cortical bone, the thickness of which varies.
In certain areas, there is only cortical bone throughout. The alveolar processes and in the
middle of the mandibular body and part of the ramus consist of cancellous bone (bone
marrow). There is a nerve coursing through the mandible in a canal, which usually does not
play a role in terms of biomechanics.

The attachment of the mandible to the skull consists of the attachments of the muscles of
mastication and the temporomandibular joint. The temporomandibular joint consists of two
joint spaces, the superior and inferior joint spaces, surrounded by a capsule consisting of elastic
collagen fibres and divided by the articular cartilage, which is a fibrocartilage. The movement
of the joint consists of two distinct movements, which are Phase I (rotation) about a hinge for
the first 20 mm followed by Phase 2 (translation), which is affected mainly by the action of the
lateral pterygoid muscle pulling the entire condyle to the front and out of the glenoid fossa
onto the part of the zygomatic process of the temporal bone. The forward movement of the
condyle is limited somewhat by a protrusion called the articular eminence.

3.2. Biomechanics of the intact mandible

The mandible functions as a Class III lever. During function, there is a zone of tension on the
alveolar part of the mandible and a zone of compression on the lower border. Studies by Meyer
[3, 4] showed bone deformation in the mandibular condyle region, with tensile stress along
the anterior ramus as well as along the sigmoid notch area and compressive stress along the
posterior ramus border. This suggested that there is a tendency of the mandible to straighten
during function. This somewhat simplistic model holds true when there is bilateral and equal
function and bite forces (Figure 2).

Upon contraction of the muscles of mastication, the mandible is bent in a sagittal plane; this is
produced by the vertical component of the muscle forces, the joint reaction forces and the
reaction forces from chewing motions. During asymmetrical loading (biting on one side), the
largest shear forces happen between the bite force and the muscle force on the working side
(the biting side) and between the muscle force and joint force on the balancing side (non-biting
side). This produces then a converse load distribution with a zone of tension on the lower
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border and a zone of compression on the alveolar portion in the working side and vice versa
on the balancing side. This means that during incisal biting (biting on the front teeth), there is
an equal amount of sagittal bending on both sides but a different deformation on the working
and balancing sides during molar biting [5–7].

Figure 2. Zones of tension and compression in the mandible.

There is also a tendency for narrowing of the mandibular arch from parasagittal and transverse
deformation upon clenching and incisal biting. This is caused by bilateral torsion of both
mandibular bodies and bending at the symphyseal region leading to compression at the
superior margin of the symphysis and tension at the inferior margin.

Hylander showed that the mandibular symphysis undergoes three distinct patterns of stress
and deformation, that is, corporal rotation (relative outward rotation of both halves of the
mandible), medial convergence (change in mandibular width during function) and dorso-
ventral shear (movement of both mandibular halves relative to one another in the vertical
plane) [8] (Figure 3).

There is also some difference in the deformation between the outer (buccal) surface of the
mandible and the inner (lingual) surface. Lateral transverse bending occurs and the bending
moment increases from back to front during the late power stroke of biting/clenching. The
maximum magnitude of the bending occurs near the symphysis. This bending produces
compressive stresses at the buccal cortex and tensile stress at the lingual cortex. The deforma-
tion has been calculated to be as large as 0.6 mm in a simulated molar bite of 526N using finite
element analysis [6]. The mandible deformed in a helical pattern upwards and towards the
working side, with regions of high tensile stress (15–25 MPa) from the coronoid process and
ramus towards the lingual side of the symphysis. The highest value of compressive stress (15–
25 MPa) was at the bite point and bilateral sigmoid notches, at the working side angle and in
an area from the posterior surface of the balancing side ramus running to the lower border of
the body till the symphysis. This then runs up to the buccal side from the inferior until the bite
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only the lateral pterygoid muscle assist in opening the mandible, the rest closes the
mandible.

2) Suprahyoid muscles that assist in some opening of the mouth and swallowing—mylo-
hyoid, hyoglossus, genioglossus, digastric muscles.

3) Muscles of facial expression that insert into the mandible—buccinators, depressor anguli
oris, mentalis.

The outer surface of the mandible consists of dense cortical bone, the thickness of which varies.
In certain areas, there is only cortical bone throughout. The alveolar processes and in the
middle of the mandibular body and part of the ramus consist of cancellous bone (bone
marrow). There is a nerve coursing through the mandible in a canal, which usually does not
play a role in terms of biomechanics.

The attachment of the mandible to the skull consists of the attachments of the muscles of
mastication and the temporomandibular joint. The temporomandibular joint consists of two
joint spaces, the superior and inferior joint spaces, surrounded by a capsule consisting of elastic
collagen fibres and divided by the articular cartilage, which is a fibrocartilage. The movement
of the joint consists of two distinct movements, which are Phase I (rotation) about a hinge for
the first 20 mm followed by Phase 2 (translation), which is affected mainly by the action of the
lateral pterygoid muscle pulling the entire condyle to the front and out of the glenoid fossa
onto the part of the zygomatic process of the temporal bone. The forward movement of the
condyle is limited somewhat by a protrusion called the articular eminence.

3.2. Biomechanics of the intact mandible

The mandible functions as a Class III lever. During function, there is a zone of tension on the
alveolar part of the mandible and a zone of compression on the lower border. Studies by Meyer
[3, 4] showed bone deformation in the mandibular condyle region, with tensile stress along
the anterior ramus as well as along the sigmoid notch area and compressive stress along the
posterior ramus border. This suggested that there is a tendency of the mandible to straighten
during function. This somewhat simplistic model holds true when there is bilateral and equal
function and bite forces (Figure 2).

Upon contraction of the muscles of mastication, the mandible is bent in a sagittal plane; this is
produced by the vertical component of the muscle forces, the joint reaction forces and the
reaction forces from chewing motions. During asymmetrical loading (biting on one side), the
largest shear forces happen between the bite force and the muscle force on the working side
(the biting side) and between the muscle force and joint force on the balancing side (non-biting
side). This produces then a converse load distribution with a zone of tension on the lower
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point. Overall, the shear stresses were larger on the working side with the exception of the
balancing side condyle (peak shear stress of 25 MPa). In a nutshell, this means that the mandible
changes in dimensions during function as a result of its shape and muscle pull with the greatest
change in dimension and deformation in the midline.

What does all this information mean and what is the practical application? It means that
application of any hardware to the mandible must take into account these forces and change
in dimension. This has led to the creation of Champy’s ideal lines of internal fixation for fixation
of a mandibular fracture [9] (Figure 4). Placement of bone plates and screws in the area between
the zones of tension and zones of compression will tend neutralize the forces and stabilize the
bony fragments enough for healing. This however uses the principle of cross bracing and load
sharing, that is, using inter-fragmentary bone friction to help stabilize the bony segments.

Figure 3. (A) Tendency for mandible to straighten as well as undergo torsion. (B) Forces acting about the midline of the
mandible. CR – corporal rotation; MC – medial convergence; DVS – dorso-ventral shear.
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In comminuted fractures or in a segmental mandibular defect, the principle of load sharing
cannot be applied. We are then dependent on using load bearing bone plates, which means
the material strength of the plate is the only thing keeping the mandibular segments together.
The method of fixation of the bone plate to the bone also plays a factor.

Figure 4. Champy’s lines for ideal internal fixation – placement of bone plates along these lines will stabilize the bone
fragments enough for healing of fractures.

4. Finite element model of the mandible

A very accurate finite element model is practically impossible to create due to the complex
anatomy of the mandible. A true to accurate model that takes everything into account would
need several supercomputers. Assumptions will have to be made to simplify the model and
reduce the need for computing power.

Several authors have created finite element models of the mandible, each with different levels
of complexity [10, 11]. Following are the steps taken to create an accurate finite element model
[12].

4.1. Creation of a 3D mesh

The information about the external shaped of the mandible is needed to be able to create a
mesh to input into the FEA software. Several possible methods that have been used to get the
geometry of the mandible:
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1) Digital creation of 3D model—not accurate representation of the anatomical detail. The
question then arises: “At what level of intricacy would there be detriment to the level of
accuracy?” Is it necessary to recreate all the intricacies (concavities, canals)?

2) Conversion of digitized slices or sections of a human mandible into a whole 3D structure
[13].

3) Computer tomographic (CT) scans of a human mandible or mandibular equivalent and
conversion of the radiographic images in Digitised Communication in Medicine (DICOM)
format into a 3D structure in Standard Tessellation Language (STL). This information is
then meshed with any number of software programs. This is the most popular method.
Some authors have also used the cone beam CT, which is another way to get the CT images
with a cone beam instead of a fan beam. This tends to produce many sharp triangles, which
need to be simplified prior to mesh creation.

Once the 3D geometry has been obtained, it is subdivided into a finite, large number of
geometrically simplified elements, connected together at the nodes. The mesh is a contiguous
collection of these simple-shaped elements. Most FE software have automated mesh genera-
tion features, creating relatively dense meshes, which can be refined in different regions.

4.2. Input of material properties and boundary conditions

The material properties of the elements, namely the elastic modulus and Poisson’s ratio must
be defined. Since the mandible consists of cortical and cancellous bone together with the teeth,
several assumptions need to be made to simplify the model further. It is well known that bone
is anisotropic in different dimensions. For purposes of simplifying the calculations, most
authors have tended to assume that bone is isotropic and that the mandible is purely cortical
bone. Any teeth present, which in real life would have periodontal ligaments and allows
minute movements would tend to be assumed to be ankylosed to the bone, that is, fused to
the bone. The teeth are composed of enamel on the outer surface of the crown followed by
dentine and the pulp (a hollow cavity which contains the nerve fibres and blood supply). The
outer surface of the root is covered by cementum. All these tissues have different material
properties. The values for the material properties are have already been determined by studies.
Some errors abound when it comes to the values of the cancellous bone. Most studies have
tended to remove a block of cancellous bone and then subject the block to mechanical testing
to ascertain its material properties. There is evidence to suggest that this is not entirely accurate.
Misch et al. (1999) showed that the presence of cortical bone increases the elastic modulus of
cancellous bone [14]. When the cortical bone was present, the elastic modulus ranged from
24.9 to 240 MPa (mean 96.2 MPa). When cancellous bone only was tested, the elastic modulus
reduced dramatically (3.5–125.6 MPa). This means that the values from the literature for
cancellous bone are not accurate.

Boundary conditions are important to prevent movement of the individual units so that the
model can be loaded and deformed as a rigid structure, allowing computations to be per-
formed. It can be divided into essential boundary conditions (displacement constraints to
anchor the model and the non-essential boundary conditions or loading conditions, which are
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the forces to be applied to the model). Decisions will need to be made also about the insertion
of the muscle forces and the force of each muscle. Some muscles like the masseter have three
distinct types of fibres with different vectors. Most of these values are already in the literature.

4.3. Solution

With all the information, the completed model is then solved to obtain the displacements and
the resulting stress and strains. In biomechanical models, what is most often sought is
information on the stresses and strains, as the force is usually known.

The external forces {F} and the mechanical properties/geometry {K} are used to solve the nodal
displacements {D}. With the nodal displacements known, the displacement fields are then
interpolated from the nodal values using standard interpolating polynomial functions. The
strain distribution is the differentiation of the displacement field yields and the stress distri-
bution is then determined mathematically.

4.4. Validation and interpretation

Validation can be performed by evaluating the precision and accuracy of the model. Precision,
defined as how close the model’s results are to the exact solution to the biomechanical model,
can be ascertained by conducting a convergence test where meshes of different refinements
are created and the strains/stresses at specific locations are compared. Most reported studies
have tended to use precision studies as a measure of validation as it is difficult to affix strain
gauges to the human subject to test for accuracy for ethical and practical purposes.

5. Finite element analysis of the various mandibular reconstruction
methods

There have been very few finite element analysis conducted on reconstructed mandibles,
mainly due to this being a field that is not very well understood by the people who operate in
this area. In the field of orthopaedics, the biomechanics of the limbs has been well studied and
there are numerous studies using finite element analysis. This section reviews the few studies
that have been conducted followed by the authors’ own studies. By necessity, it is impractical
to go into very much detail for each study. We will concentrate on two studies in detail at the
end of this section.

5.1. Marginal resection of the mandible

Marginal resection of the mandible is performed for tumours that affect the alveolar process
of the mandible but does not extend to the mandibular basal bone. One of the complications
that can occur is fracture of the remaining portion of the mandible, usually from the corners
of the resection where areas of stress concentration occur (Figure 5).

The Role of Finite Element Analysis in Studying Potential Failure of Mandibular Reconstruction Methods
http://dx.doi.org/10.5772/64890

199

1) Digital creation of 3D model—not accurate representation of the anatomical detail. The
question then arises: “At what level of intricacy would there be detriment to the level of
accuracy?” Is it necessary to recreate all the intricacies (concavities, canals)?

2) Conversion of digitized slices or sections of a human mandible into a whole 3D structure
[13].

3) Computer tomographic (CT) scans of a human mandible or mandibular equivalent and
conversion of the radiographic images in Digitised Communication in Medicine (DICOM)
format into a 3D structure in Standard Tessellation Language (STL). This information is
then meshed with any number of software programs. This is the most popular method.
Some authors have also used the cone beam CT, which is another way to get the CT images
with a cone beam instead of a fan beam. This tends to produce many sharp triangles, which
need to be simplified prior to mesh creation.

Once the 3D geometry has been obtained, it is subdivided into a finite, large number of
geometrically simplified elements, connected together at the nodes. The mesh is a contiguous
collection of these simple-shaped elements. Most FE software have automated mesh genera-
tion features, creating relatively dense meshes, which can be refined in different regions.

4.2. Input of material properties and boundary conditions

The material properties of the elements, namely the elastic modulus and Poisson’s ratio must
be defined. Since the mandible consists of cortical and cancellous bone together with the teeth,
several assumptions need to be made to simplify the model further. It is well known that bone
is anisotropic in different dimensions. For purposes of simplifying the calculations, most
authors have tended to assume that bone is isotropic and that the mandible is purely cortical
bone. Any teeth present, which in real life would have periodontal ligaments and allows
minute movements would tend to be assumed to be ankylosed to the bone, that is, fused to
the bone. The teeth are composed of enamel on the outer surface of the crown followed by
dentine and the pulp (a hollow cavity which contains the nerve fibres and blood supply). The
outer surface of the root is covered by cementum. All these tissues have different material
properties. The values for the material properties are have already been determined by studies.
Some errors abound when it comes to the values of the cancellous bone. Most studies have
tended to remove a block of cancellous bone and then subject the block to mechanical testing
to ascertain its material properties. There is evidence to suggest that this is not entirely accurate.
Misch et al. (1999) showed that the presence of cortical bone increases the elastic modulus of
cancellous bone [14]. When the cortical bone was present, the elastic modulus ranged from
24.9 to 240 MPa (mean 96.2 MPa). When cancellous bone only was tested, the elastic modulus
reduced dramatically (3.5–125.6 MPa). This means that the values from the literature for
cancellous bone are not accurate.

Boundary conditions are important to prevent movement of the individual units so that the
model can be loaded and deformed as a rigid structure, allowing computations to be per-
formed. It can be divided into essential boundary conditions (displacement constraints to
anchor the model and the non-essential boundary conditions or loading conditions, which are

Perusal of the Finite Element Method198



Figure 5. Marginal resection of the alveolar portion of the mandible, leaving the basal bone intact.

Wittkampf et al. [13] conducted studies on prevention of mandible fracture after a marginal
resection of the mandible. The authors sectioned a human mandible, photographed the slices
and digitized it. Marginal resections of different radii were placed in digitally and the areas of
maximum stress concentrations in the corner of the resections were compared. It was found
that an enlarge radius of resection at the corners offered the best resistance to minimize fracture
after resection.

5.2. Reconstruction plates for bridging mandibular defects

Reconstruction plates alone are sometime used to bridge a defect to maintain the space and
contours of the jaw in patients in poor health or with advanced tumours. A patient might not
be fit for a long surgery or it might not be worthwhile to subject a patient to a long surgery if
the prognosis is poor. Sometimes also the reconstruction plate is placed together with bone
grafts, which is then subject to other considerations in terms of biomechanics (Figure 6).

The most common complications in using a reconstruction plate to bridge a defect are plate
fracture, sometimes after a few years, loosening of the screws and exposure of the plate
(dehiscence) either in the mouth or through the skin.

For pure mandibular bridging plates alone, the size and location of the defect and whether the
defect crosses the midline (symphysis region) plays a large role in terms of complications [11,
15]. Recall the earlier section where it was shown that the midline is subject to many different
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forces of tension, compression and torsion with changes in dimensions. The masticatory loads
on the plates cause vertical discrepancies that can lead to bone resorption and screw loosening.
Arden et al. [16] reported that defects larger than 5 cm of bone length are associated with a
high complication rate as high as 81% when plates alone are used to repair lateral defects.

Martola et al. [17] hypothesized that residual stresses from bending a stiff plate (sometimes
repeatedly) to adapt to the jaw contour can be a main reason for plate fracture. This makes
sense from a material science point of view, in that repeated bending of a metal results in work
hardening of the metal, sometime with creation of small micro-cracks which may affect the
mean stress in fatigue loading.

Figure 6. (A) Reconstruction plate bridging a defect in the anterior. (B) Fracture of the reconstruction plate, a common
complication. Indicated by arrow.
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Kimura et al. [18] investigated the most suitable method in dispersing stresses around the
screws in plate fixation to the remnant mandible after a resection of the mandible. The authors
took CT scans of dry human mandibles and created eight digital edentulous (no teeth)
mandible models. Defects were created on the models in the front (midline) and lateral areas
and the plates were drawn onto the defects with different screw configurations. A dental
implant was drawn into the opposing (contralateral) side of the defect. The material properties
(based on reported data) of all the components in the model were defined: cancellous bone,
cortical bone and titanium. A maximum bite force of 300 N in a vertical load pattern was chosen
and used. In the analysis, the stresses were concentrated around the implant, the screw closest
to the defect on both sides (crucial screw) and the plate on the non-loaded side. Defects in the
midline (central defects) placed greater maximum stress on the screws. If three screws were
placed for lateral defects, there was greater stress on the crucial screws, which could have been
due to bowing of the plate.

A partially dentate mandible of a cadaveric male was used to create a model with defect in the
front and back. The authors (Schuller-Gotzburg et al, [19]) studied the effects and change in
bone stress after caudal and buccal placement of placing a bridging plate. In this study, bridging
plate alone in a conventional placement, bone grafts fixed with small miniplates to the remnant
mandible and also placement of a bridging plate in a caudal and then buccal location for the
reconstruction. The load was 50 N on the right mandibular second premolar. The conclusion
was that there would be a better biomechanical advantage and lesser stress with the plate in a
caudal position.

Knoll et al. [20] investigated replacement of angle defects with a standard 2.7 mm reconstruc-
tion plate with a linear screw configuration. An edentulous finite element mandible model was
created; a defect placed in the right angle with a virtual bone plate placed and the model was
loaded with 135 N of force in the front. The model showed that the stresses were far in excess
of the material strength of titanium and cortical bone. This result showed that there was a high
possibility of plate fracture, bone loss and screw loosening. The recommendation was to
redesign the plate to allow screw placement in a triangular or square configuration to further
maximize the interface between bone and plate.

5.3. Vascularized free flaps

Vascularized free flaps are flaps of soft tissue and bone, harvested from another part of the
body with its own arterial blood supply and venous drainage. The flaps are then placed into
the part of the body that needs it, connected to the local blood supply and then fixed to the
surrounding bone and soft tissue. For defects of the mandible, the two most common flaps
used are the fibula and iliac crest free flaps. This is still the gold standard after a resection.

Tie et al. [21] constructed finite element models to study which flaps, the fibula or iliac crest
free flaps would be best biomechanically to replace a segment of the mandible. The authors
scanned the mandible, iliac crest and fibula of a healthy 30-year old volunteer and used the
images to create a finite element model of the mandible. Defects were created in the anterior
and lateral mandible; the outlines of the defects outlined and extracted using the software and
the volume of the fibula and iliac crest made to fit the defects. The stress distribution for the
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iliac crest was found to be similar to that of the intact mandible. The fibula reconstruction,
however, had greater stresses (compressive and tensile) at the grafted bone with the maximum
stress at the interface between native and grafted bone. The increased binding or interface
between the iliac crest and native bone contributed towards better transmission of the bite
forces. Their conclusion is that for smaller defects, the iliac crest would be better due to the
above findings. As the fibula has greater length, it would be more suitable for larger defects.

5.4. Endoprosthesis/customized implant

An endoprosthesis is an implant, mostly titanium that is placed to replace a defect in the line
of the remaining bone stumps. It is usually attached to the bone stumps with a stem, which is
usually cemented or press fit. This concept has been used in orthopaedics in the long bones
with great success for decades [22–25].

The concept of using an endoprosthesis for mandibular replacement was introduced by
Tideman, initially as proof of concept and with several animal studies [26–28]. The decision
was made to look into the mandibular endoprosthesis as a modular format rather than
customized. The reasons for this were as follows:

1) Parts machined in large quantities are cheaper.

2) Customized implants require time for manufacture and are more expensive. Between the
time from the scanning of the patient to the time it takes to design and manufacture as
well as transport time, it may take a few weeks; this might have allowed time for the lesion
if it is cancerous to grow larger in size and thus rendering the customized fit potentially
inaccurate.

3) A stock endoprosthesis, which comes in different lengths and can be assembled in
modules, allow variations and more flexibility during the surgery to adapt to defect length
changes.

The modular endoprosthesis has been used, again with great success in the field of orthopae-
dics and musculoskeletal surgery.

The difference between the long limbs and the mandible has already been discussed previ-
ously. There is also the addition of the curvature of the mandible in the anterior region, which
varies between individuals, making it difficult for a stock endoprosthesis.

Nevertheless, the animal experiments, which largely were conducted in the monkey model
yielded interesting results. There were two designs: (1) the mandibular body replacement and
(2) the condyle replacement. The condyle replacement had no problems with loosening and
infection. The body replacement design had persistent problems with loosening between the
module connections, causing infection and loosening. The cemented stems had no problems;
however, a decision was made to investigate the biomechanical forces that acted on the entire
reconstruction for the body replacement design [29].

The design of the endoprosthesis was changed as follows [30]:

The Role of Finite Element Analysis in Studying Potential Failure of Mandibular Reconstruction Methods
http://dx.doi.org/10.5772/64890

203

Kimura et al. [18] investigated the most suitable method in dispersing stresses around the
screws in plate fixation to the remnant mandible after a resection of the mandible. The authors
took CT scans of dry human mandibles and created eight digital edentulous (no teeth)
mandible models. Defects were created on the models in the front (midline) and lateral areas
and the plates were drawn onto the defects with different screw configurations. A dental
implant was drawn into the opposing (contralateral) side of the defect. The material properties
(based on reported data) of all the components in the model were defined: cancellous bone,
cortical bone and titanium. A maximum bite force of 300 N in a vertical load pattern was chosen
and used. In the analysis, the stresses were concentrated around the implant, the screw closest
to the defect on both sides (crucial screw) and the plate on the non-loaded side. Defects in the
midline (central defects) placed greater maximum stress on the screws. If three screws were
placed for lateral defects, there was greater stress on the crucial screws, which could have been
due to bowing of the plate.

A partially dentate mandible of a cadaveric male was used to create a model with defect in the
front and back. The authors (Schuller-Gotzburg et al, [19]) studied the effects and change in
bone stress after caudal and buccal placement of placing a bridging plate. In this study, bridging
plate alone in a conventional placement, bone grafts fixed with small miniplates to the remnant
mandible and also placement of a bridging plate in a caudal and then buccal location for the
reconstruction. The load was 50 N on the right mandibular second premolar. The conclusion
was that there would be a better biomechanical advantage and lesser stress with the plate in a
caudal position.

Knoll et al. [20] investigated replacement of angle defects with a standard 2.7 mm reconstruc-
tion plate with a linear screw configuration. An edentulous finite element mandible model was
created; a defect placed in the right angle with a virtual bone plate placed and the model was
loaded with 135 N of force in the front. The model showed that the stresses were far in excess
of the material strength of titanium and cortical bone. This result showed that there was a high
possibility of plate fracture, bone loss and screw loosening. The recommendation was to
redesign the plate to allow screw placement in a triangular or square configuration to further
maximize the interface between bone and plate.

5.3. Vascularized free flaps

Vascularized free flaps are flaps of soft tissue and bone, harvested from another part of the
body with its own arterial blood supply and venous drainage. The flaps are then placed into
the part of the body that needs it, connected to the local blood supply and then fixed to the
surrounding bone and soft tissue. For defects of the mandible, the two most common flaps
used are the fibula and iliac crest free flaps. This is still the gold standard after a resection.

Tie et al. [21] constructed finite element models to study which flaps, the fibula or iliac crest
free flaps would be best biomechanically to replace a segment of the mandible. The authors
scanned the mandible, iliac crest and fibula of a healthy 30-year old volunteer and used the
images to create a finite element model of the mandible. Defects were created in the anterior
and lateral mandible; the outlines of the defects outlined and extracted using the software and
the volume of the fibula and iliac crest made to fit the defects. The stress distribution for the

Perusal of the Finite Element Method202



1) The stem was changed from cemented to screw retained, which was to be screwed into
the marrow part of the mandible.

2) The module connection was changed to a male and female part in a dovetail fashion, which
was connected by a screw. A slight movement of 0.1 mm was designed as s tress breaker
between the connection of the male and female part.

This new design was then tested for the following aims prior to any animal or human testing:

1) Experimental evaluation of the new design to look at fatigue performance and failure
patterns by mechanical testing. The entire setup was also investigated with a finite element
analysis to see if the model correctly predicted the site of failure in the mechanical testing.

2) Finite element analysis of the new design in a simulated human mandible under certain
conditions. The defect was then to be made bigger and the stem length was to be changed
in length to see what happens to the stress distribution to better predict the ability of the
reconstruction to withstand failure (if the stress in any part is more than the material
strength of the material) and also the location of failure.

The new endoprosthesis design was made to fit the dimensions of a human mandible and
underwent mechanical testing in a jig, mounted on a synthetic mandible, which had similar
elastic properties to cortical bone. The methods of mechanical testing depend on the question
asked. It can range from simple three-point bending test, compressive and tensile strength to
complex tests for load to failure or fatigue loading. The dimensions of the assembled endo-
prosthesis were 18-mm stem length with 4-mm diameter and body dimensions of 15-mm
length, 16-mm high and 8.5-mm thick (Figure 7).

Figure 7. The endoprosthesis consisted of two screwed stems, which connected to each other in a dovetail. This was
locked together by a central screw, which is inserted from the top.

Static testing revealed a tendency for the screw stem to pull out of the substrate of the synthetic
mandible. Cyclic testing was then performed for up to 500,000 cycles. This revealed a tendency
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for the endoprosthesis to fail with fracture or bending at the superior surface of the stem but
with no loosening of the module connection, which had plagued the earlier animal experi-
ments.

The line drawings of the endoprosthesis from the manufacturer were imported into Abaqus
v6.10 (Simulia, Dassault Systemes, France). The stems were modelled as smooth cylinders to
simplify calculations. Rectangular cuboids were modelled as the synthetic mandibles and
bores made for stem insertion. The stems of the endoprosthesis were perfectly tied to the bores
of the holes as well as the central connection screw. The cuboids were assigned the elastic
properties of cortical bone and meshed with linear tetrahedral elements. It was assumed that
the bone was isotropic. A bolt load of 10 N was applied to simulate tightening of the central
screw. A downward force of 150 N (calculated at 80% of average static load to failure of 185
N, this was the maximum force used for the fatigue testing) was loaded on to one end of the
reconstruction while the other end was given fixed boundary conditions. The load was kept
constant to identify peak stresses, which lead to fatigue failure (Figure 8).

Figure 8. (A) Rendering of endoprosthesis mounted in bone blocks. (B) Von Mises stress distribution.
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in length to see what happens to the stress distribution to better predict the ability of the
reconstruction to withstand failure (if the stress in any part is more than the material
strength of the material) and also the location of failure.

The new endoprosthesis design was made to fit the dimensions of a human mandible and
underwent mechanical testing in a jig, mounted on a synthetic mandible, which had similar
elastic properties to cortical bone. The methods of mechanical testing depend on the question
asked. It can range from simple three-point bending test, compressive and tensile strength to
complex tests for load to failure or fatigue loading. The dimensions of the assembled endo-
prosthesis were 18-mm stem length with 4-mm diameter and body dimensions of 15-mm
length, 16-mm high and 8.5-mm thick (Figure 7).

Figure 7. The endoprosthesis consisted of two screwed stems, which connected to each other in a dovetail. This was
locked together by a central screw, which is inserted from the top.

Static testing revealed a tendency for the screw stem to pull out of the substrate of the synthetic
mandible. Cyclic testing was then performed for up to 500,000 cycles. This revealed a tendency
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The finite element analysis of the setup showed areas of high stresses accumulating in the
screw hole of the connection screw as well as on the superior surface of the stems. The von
Mises stress recorded a maximum of 188.838 MPa, which is way below the strength of titanium
alloy at 897 MPa. This corresponds well with the results of the fatigue testing with had failure
of crack lines in the same areas. The conclusion of this bench top experiment was that although
the forces are way below the material strength of titanium, micro-cracks as well as areas of
stress concentrations from the indentation of the screw threads can lead to eventual failure
over a long time of loading at a much lower load level. The connection problem of the modules
seemed to have been solved.

A human-sized mandible synthetic was scanned with a cone beam CT scan to get the geomet-
rical information of the mandible [31]. A synthetic mandible was used due to biohazard
concerns. Due to the nature of the cone beam CT, using the DICOM information without
alteration tended to produce a mesh with a lot of sharp, irregular and thin triangles. This was
re-meshed with 3-Matics (Materialise, Belgium) into linear tetrahedrons. The mesh was dense
enough to justify the use of linear elements to save on computational resources. The teeth were
also removed digitally as it does not contribute structurally to the mandible.

The endoprosthesis was modelled as previously described above (termed Case I) and then the
stem length was shortened (Case II) followed by Case III where the length of the body was
doubled to 30 mm (Figure 9).

Figure 9. Endoprosthesis in mandible model.

A standardized defect as well as boreholes was created to fit the dimensions of Case I, II and
III on the right side of the mandible using Abaqus. The model was assumed to be made up of
only cortical bone, the bone was assumed to be isotropic and the values and vectors of the
muscle pull as well as the joint reaction forces were taken from the literature. The boreholes
and stems were assumed to be bonded just like the previous FEM study of the experimental
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setup. Case I was used as the model for the standard endoprosthesis design, Case II and III
were used as models for looking at the effects of a decrease in stem length as well as an increase
in defect length, respectively. A 300 N load was applied directly in the incisor region. Several
studies from the literature have supported our assumptions to be relatively accurate while
saving on computational resources. As a form of validation, a convergence check was con-
ducted on a mandible with quadratic elements, which gave a finer mesh. The differences were
less than 10%.

The analysis was conducted and divided into three separate parts:

1) Stress in the endoprosthesis

2) Stress in the mandible

3) Deflection of the mandible

(1) Stress in the endoprosthesis

Under the prescribed loading conditions, the intact mandible bent upwards almost equally
on both sides. As this model was not totally symmetrical, there were minute differences on
both sides. With a defect in place, reconstructed with an endoprosthesis, the mandible became
less stiff, causing the left intact side to arch less than the right reconstructed side. This led to
the mandible shifting to the left by 0.354 mm. There was a tendency for the endoprosthesis
to bend outwards. There was little difference between Case I and II, which led to the
conclusion that a case could be put forward for a shorter stem to reduce the amount of
hardware needed. A longer/larger defect, as in Case III led to a tendency for separation at the
module connection, leading to a possibility for eventual loosening of the connection screw in
the long term. Although there was a tendency for separation at the module connection, the
stresses in the connection screw were all below 100 MPA, below the material strength of
titanium. The stress distribution for Case I and II was similar, but with slightly larger
magnitudes in Case II. In Case III, however, since it was a larger defect, the endoprosthesis
tended to bend more at the stem, although, again, the stresses were below the strength of
titanium at 898 MPa (Figures 10–12).

(2) Stress in the mandible

With regard to the stresses within the mandible, areas of stress concentration were in the left
condyle (due to unequal deflection of the mandible from torsional stress), lower border of the
mandibular body close to the abutment with the endoprosthesis and top edge of the hole in
the stumps. There tended to be a pull out tendency of the stem from the holes, as experienced
in the experimental setup. This was worse in Case II and III, with the peak stress exceeding
the material strength of cortical bone at 85 MPa. The condyles were restricted from moving in
this model, while in real life, there would certainly be movements that could dissipate stress;
thus there is some mitigation factor in vivo. Whether this would be true could only be answered
in animal experimental models.
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(3) Deflection of the mandible

Deflection of the mandible was measured with respect to an x-y-z axis in three dimensions at
points of interest. Since the boundary conditions were applied to the incisors and condyles,
this caused any deflection to show up in the body of the mandible. The greatest displacement
for Case I was 0.638 mm, for Case II 0.8 mm and III 0.608 mm.

The conclusions drawn from the study were that the modular endoprosthesis in its current
dimensions should be adequate for small defects. Altering the stem dimensions by shortening
it showed a slight increase in magnitude but no significant alteration to the stress distribution.
A larger defect, however, would be more difficult to reconstruct and more studies needed to
be done.

This work was followed by Pinheiro and Alves [32] who performed a finite element analysis
for an endoprosthesis that was not modular and comprised of a solid component, which was
customized. This was a feasibility study in which the authors removed the screw stem
component and designed a stem that looks to be press fit. The endoprosthesis performed well
based on the finite element study. There was no tendency for separation of the module due to
the entire prosthesis being a solid framework and the stress distribution as well as the
displacement field were very similar to that of the intact mandible and yet did not exceed the
material strength of titanium.

Figure 10. Case I Von Mises stress distribution.
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Figure 11. Case II Von Mises stress distribution. The stem length has been halved.

Figure 12. Case III Von Mises stress distribution. The defect length has been doubled.
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6. Conclusion

Finite element analysis is a good method to analyse solid mechanics. It has been used exten-
sively in studying the forces in the long limbs as well as the bone plates and the pattern of bone
resorption and formation. In the field of head and neck surgery, there are much fewer studies.
A number of studies have been recently published as surgeons notice problems with their
methods of reconstruction. We have looked at some of the studies and although not exhaustive,
it should serve as an illustration to how it is used to look at potential failure of mandibular
reconstruction.

Author details

Raymond C.W. Wong*, John S.P. Loh and I. Islam

*Address all correspondence to: raginwcw@yahoo.com

Discipline of Oral and Maxillofacial Surgery, National University Hospital, National
University of Singapore, Singapore

References

[1] Wong RC, Tideman H, Kin L, Merkx MA: Biomechanics of mandibular reconstruction:
a review. Int. J. Oral Maxillofac. Surg. 2010; 39: 313–319.

[2] Goh BT, Lee S, Tideman H, Stoelinga PJ: Mandibular reconstruction in adults: a review.
Int. J. Oral Maxillofac. Surg. 2008; 37: 597–605.

[3] Meyer C, Kahn JL, Boutemi P, Wilk A: Photoelastic analysis of bone deformation in the
region of the mandibular condyle during mastication. J. Craniomaxillofac. Surg. 2002;
30: 160–169.

[4] Meyer C, Sehir L, Boutemi P: Experimental evaluation of three osteosynthesis devices
used for stabilizing condylar fractures of the mandible. J. Craniomaxillofac. Surg. 2006;
34: 173–181.

[5] Korioth TW, Hannam AG: Deformation of the human mandible during simulated tooth
clenching. J. Dent. Res. 1994; 73: 56–66.

[6] Korioth TW, Romilly DP, Hannam AG: Three dimensional finite element stress analysis
of the dentate human mandible. Am. J. Phy. Anthropol. 1992; 88: 69–96.

[7] Van Eijden TMGJ: Biomechanics of the mandible. Crit. Rev. Oral Biol. Med. 2000; 11:
123–136.

Perusal of the Finite Element Method210



[8] Hylander WL: Stress and strain in the mandibular symphysis of primates: a test of
competing hypotheses. Am. J. Phys. Anthropol. 1984; 64: 1–46.

[9] Champy M, Lodde JP, Schmitt R: Mandibular osteosynthesis by miniature screwed
plates via a buccal approach. J. Oral Maxillofac. Surg. 1978; 6: 14–21.

[10] Choi AH, Ben-Nissan B, Conway RC: Three-dimensional modelling and finite element
analysis of the human mandible during clenching. Aust. Dent. J. 2005; 5: 42–48

[11] Curtis DA, Plesh O, Hannam AG, Sharma A, Curtis TA: Modeling of jaw biomechanics
in the reconstructed mandibulectomy patient. J. Prosthet. Dent. 1999; 81: 167–173.

[12] Wong RC, Tideman H, Merkx MAW, Jansen J, Goh SM, Liao K: Review of biomechanical
models used in studying the biomechanics of reconstructed mandibles. Int. J. Oral
Maxillofac. Surg. 2011; 40: 393–400.

[13] Wittkampf ARM, Starmans FJM: Prevention of mandibular fractures by using con-
structional design principles. I. Computer simulation of human mandibular strength
after segmental resections. Int. J. Oral Maxillofac. Surg. 1995; 24: 306–310.

[14] Misch CE, Qu ZM, Bidez MW: Mechanical properties of trabecular bone in the human
mandible: implications for dental implant treatment planning and surgical placement.
J. Oral Maxillofac. Surg. 1999; 57: 700–706.

[15] Markwardt J, Pfeifer G, Eckelt U, Reitemeier B: Analysis of complications after recon-
struction of bone defects involving complete mandibular resection using finite element
modelling. Onkologie. 2007; 30: 121–126.

[16] Arden RL, Rachel JD, Marks SC, Dang K: Volume-length impact of lateral jaw resections
on complication rates. Arch. Otolaryngol. Head Neck Surg. 1999; 125: 68–72.

[17] Martola M, Lindqvist C, Hanninen H, Al-Sukhun J: Fracture of titanium plates used
for mandibular reconstruction following ablative tumour surgery. J. Biomed. Mater.
Res. B Appl. Biomater. 2007; 80: 345–352.

[18] Kimura A, Nagasao T, Kaneko T, Tamaki T, Miyamoto J, Nakajima T: Adequate fixation
of plates for stability during mandibular reconstruction. J. Craniomaxillofac. Surg. 2006;
34: 193–200.

[19] Schuller-Gotzburg P, Pleschberger M, Rammerstorfer FG, Krenkel C: 3D-FEM and
histomorphology of mandibular reconstruction with the titanium functionally dynam-
ic bridging plate. Int. J. Oral Maxillofac. Surg. 2009; 38: 1298–1305.

[20] Knoll WD, Gaida A, Maurer P: Analysis of mechanical stress in reconstruction plates
for bridging mandibular angle defects. J. Craniomaxillofac. Surg. 2006; 34: 201–209.

[21] Tie Y, Wang DM, Ji Tong, Wang CT, Zhang CP: Three-dimensional finite element
analysis investigating the biomechanical effects of human mandibular reconstruction
with Autogenous bone grafts. J. Craniomaxillfac. Surg. 2006; 34: 290–298.

The Role of Finite Element Analysis in Studying Potential Failure of Mandibular Reconstruction Methods
http://dx.doi.org/10.5772/64890

211

6. Conclusion

Finite element analysis is a good method to analyse solid mechanics. It has been used exten-
sively in studying the forces in the long limbs as well as the bone plates and the pattern of bone
resorption and formation. In the field of head and neck surgery, there are much fewer studies.
A number of studies have been recently published as surgeons notice problems with their
methods of reconstruction. We have looked at some of the studies and although not exhaustive,
it should serve as an illustration to how it is used to look at potential failure of mandibular
reconstruction.

Author details

Raymond C.W. Wong*, John S.P. Loh and I. Islam

*Address all correspondence to: raginwcw@yahoo.com

Discipline of Oral and Maxillofacial Surgery, National University Hospital, National
University of Singapore, Singapore

References

[1] Wong RC, Tideman H, Kin L, Merkx MA: Biomechanics of mandibular reconstruction:
a review. Int. J. Oral Maxillofac. Surg. 2010; 39: 313–319.

[2] Goh BT, Lee S, Tideman H, Stoelinga PJ: Mandibular reconstruction in adults: a review.
Int. J. Oral Maxillofac. Surg. 2008; 37: 597–605.

[3] Meyer C, Kahn JL, Boutemi P, Wilk A: Photoelastic analysis of bone deformation in the
region of the mandibular condyle during mastication. J. Craniomaxillofac. Surg. 2002;
30: 160–169.

[4] Meyer C, Sehir L, Boutemi P: Experimental evaluation of three osteosynthesis devices
used for stabilizing condylar fractures of the mandible. J. Craniomaxillofac. Surg. 2006;
34: 173–181.

[5] Korioth TW, Hannam AG: Deformation of the human mandible during simulated tooth
clenching. J. Dent. Res. 1994; 73: 56–66.

[6] Korioth TW, Romilly DP, Hannam AG: Three dimensional finite element stress analysis
of the dentate human mandible. Am. J. Phy. Anthropol. 1992; 88: 69–96.

[7] Van Eijden TMGJ: Biomechanics of the mandible. Crit. Rev. Oral Biol. Med. 2000; 11:
123–136.

Perusal of the Finite Element Method210



[22] Callaghan JJ, Albright JC, Goetz DD, Olejniczak JP, Johnston RC: Charnley total hip
arthroplasty with cement: minimum twenty-five year follow-up. J. Bone Joint Surg. Am.
2000; 82: 487–497.

[23] Charnley J: The reaction of bone to self-curing acrylic cement: a long-term histological
study in man. J. Bone Joint Surg. Br. 1970; 52: 340–353.

[24] Henshaw R, Malawer M: Musculoskeletal Cancer Surgery: Treatment of Sarcomas and
Allied Diseases: A Review of Endoprosthetic Reconstruction During Limb-sparing
Surgery. Kluwer Academic Publishers 2001; 381–401.

[25] Huiskes R: Biomechanics of artificial joint fixation. Basic Orthopaedic Biomechanics.
In: Van C Mowe and Wilson Hayes (Eds.). Raven Press Ltd, New York 1991; 375–437.

[26] Tideman H, Lee S: The TL endoprosthesis for mandibular reconstruction: a metallic yet
biological approach (abstract). Asian J. Oral Maxillofac. Surg. 2006; 18: 5.

[27] Lee S, Goh BT, Tideman H, Stoelinga PJW: Modular endoprosthesis for mandibular
reconstruction: a preliminary animal study. Int. J. Oral Maxillofac. Surg. 2008; 37: 935–
942.

[28] Lee S, Goh BT, Tideman H, Stoelinga PJW, Jansen J: Modular endoprosthesis for
mandibular reconstruction: a clinical, micro-computed, tomographic and histologic
evaluation in 8 macaca fascicularis. Int. J. Oral Maxillofac. Surg. 2009; 38: 40–47.

[29] Wong RC, Lee S, Tideman S, Merkx MAW, Jansen J, Liao K: Effect of replacement of
mandibular defects with a modular endoprosthesis on bone mineral density in a
monkey model. Int. J. Oral Maxillofac. Surg. 2011; 40: 633–639.

[30] Wong RC, Tideman H, Merkx MAW, Jansen J, Goh SM: The mandibular modular
endoprosthesis for body replacement. Part 1: mechanical testing of the reconstruction.
J. Craniomaxillofac. Surg. 2012; 40 (8): e479–486.

[31] Wong RC, Tideman H, Merkx, MAW, Jansen J, Goh SM: The modular endoprosthesis
for mandibular body replacement. Part 2: finite element analysis of the reconstruction.
J. Craniomaxillofac. Surg. 2012; 40(8): e487–497.

[32] Pinheiro M, Alves JL: The feasibility of a custom-made endoprosthesis in mandibular
reconstruction: implant design and finite element analysis. J. Craniomaxillofac. Surg.
2015; 43: 2116–2128

Perusal of the Finite Element Method212



Chapter 9

Evaluation of Adaptive Bone Remodeling after Total

Hip Arthroplasty Using Finite Element Analysis

Yutaka Inaba, Hiroyuki Ike, Masatoshi Oba and

Tomoyuki Saito

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65031

Provisional chapter

Evaluation of Adaptive Bone Remodeling after Total Hip

Arthroplasty Using Finite Element Analysis

Yutaka Inaba, Hiroyuki Ike, Masatoshi Oba and

Tomoyuki Saito

Additional information is available at the end of the chapter

Abstract

We compared equivalent stress and strain energy density (SED) to bone mineral density
(BMD) in the femur after  total  hip arthroplasty (THA) using subject-specific finite
element analysis (FEA). Equivalent stress and BMD were maintained in the distal femur
after THA, whereas both decreased in the proximal femur. A significant correlation was
observed between the rates of changes in BMD and equivalent stress before and after
THA. Therefore, FEA can predict adaptive bone remodeling after mechanical loading
changes. Additionally, we evaluated the effects of two different types of stem geometries
(Zweymüller-type stem and fit-and-fill-type stem) on load distribution and BMD using
the same method. Equivalent stress and BMD in the medial side of the proximal femur
were significantly lower with the Zweymüller-type stem than with the fit-and-fill-type
stem. Therefore, FEA can assess the effects of stem geometry on bone remodeling after
THA. Moreover, we evaluated the effects of bone geometry on load distribution and
BMD after  THA.  Equivalent  stress  in  the  medial  side  of  the  proximal  femur  was
significantly lower in the stovepipe model implanted with large tapered wedge-type
stems than in the champagne flute and intermediate models, and there was a significant
loss of BMD in the stovepipe model. Therefore, a large tapered wedge-type stem and
stovepipe femur may be associated with significant proximal BMD loss.

Keywords: finite element analysis, dual-energy X-ray absorptiometry, bone remodel-
ing, hip, arthroplasty
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1. Introduction

Periprosthetic bone loss, i.e., a decrease in bone mineral density (BMD) around an implant,
is a major concern following total hip arthroplasty (THA) [1, 2]. Severe periprosthetic bone
loss  may  contribute  to  aseptic  loosening  of  the  prosthesis  or  the  risk  of  periprosthetic
fracture [3] and presents serious problems if revision surgery becomes necessary [4]. Several
studies  have  reported  that  BMD decreases  following THA,  particularly  in  the  proximal
femur [5, 6]. Most changes in BMD occur during the first postoperative year, and subse-
quently,  BMD  is  maintained  [7–9].  This  phenomenon  is  considered  to  be  an  adaptive
remodeling  response  of  the  bone  structure  to  alter  its  stress  environment  owing to  the
presence of an implant. Therefore, mechanical stress may be associated with the patterns of
BMD changes. In particular, in cementless THA, an optimal fit of the stem into the meta-
physeal region of the femur has been reported to lead to a reduction in periprosthetic bone
loss [10].

Wolff [11] proposed that trabecular bone in the proximal femur adapts to external mechanical
loads. This structural change is caused by bone remodeling, which couples bone resorption by
osteoclasts and bone formation by osteoblasts [12]. It is generally accepted that bone tissue can
detect and respond to its mechanical environment, but the exact mechanical signal that drives
remodeling remains controversial [13]. Various biomechanical parameters have been investi-
gated to determine the remodeling stimulus. Huiskes et al. [14] examined whether strain
energy density (SED) controls bone remodeling. Carter et al. [15] examined stress, and Stulpner
et al. [16] examined equivalent strain as signals for remodeling. Adachi et al. [17] proposed
that the driving force of remodeling is the local nonuniformity of the scalar function of stress.
The existence of various theories indicates that the mechanism of bone remodeling is not well
understood.

Subject-specific finite element (FE) models based on geometry and mechanical properties
derived from computed tomography (CT) scans have been described in several studies [18–
20]. Furthermore, relationships between results of subject-specific finite element analysis (FEA)
and bone density have been investigated previously. Cody et al. [21] performed subject-specific
FEA and bone density measurements for predicting the fracture load of the femur. Tawara et
al. [22] evaluated vertebral strength using subject-specific FEA and BMD. We previously
examined the usefulness of subject-specific FEA, which was validated by BMD changes, after
THA. We found that equivalent stress through subject-specific FEA correlated with BMD
changes before and after THA [23]. The distribution of mechanical loads within the femur after
THA might be influenced by the stem geometry and the femur structure. Our previous results
suggest that subject-specific FEA could be used to evaluate the effects of stem and femoral
geometry on adaptive bone remodeling after THA [24].

This chapter initially provides general information on subject-specific FEA and then
presents a brief overview of our work regarding adaptive bone remodeling after THA.
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2. Finite element analysis

2.1. Finite element analysis and bone mineral density

It is difficult to assess the stress and strain distributions throughout the entire bone using
simplified mathematical models or implanted prostheses or through experiments with
cadaveric tissue. An alternative approach to analyze bone mechanics is the FE method, which
can accommodate large intersubject variations in bone geometry and material properties [25].
When the ability to perform three-dimensional FE contact analysis is available, subject-specific
geometry should be analyzed. This provides the opportunity to examine normal populations
of individuals and populations with specific injuries or other pathologies. Ultimately, patient-
specific modeling might be used in surgical planning and large-scale studies of treatment
efficacy [26]. As mentioned above, we investigated the relationships between the FEA results
and BMD. Several previous studies have described the application of FEA for investigating
bone-remodeling patterns around implants. However, most of these were not subject-specific
models. Weinans et al. [27] reported that subject-specific FE models might be useful for
explaining variations in bone adaptation responsiveness among different subjects.

Figure 1. Diagrams of (a) collarless VerSys Fiber Metal MidCoat, (b) SL-PLUS, and (c) Accolade TMZF stems. (a) Col-
larless VerSys Fiber Metal MidCoat (Zimmer Inc., Warsaw, IN) is a fit-and-fill-type stem composed of titanium alloy
with fiber-metal porous coating at the proximal region. (b) SL-PLUS (Smith & Nephew Inc., Memphis, TN) is a Zwey-
müller-type stem composed of titanium alloy with a dual taper, rectangular, and trochanteric wing design. (c) Acco-
lade TMZF stem (Stryker Orthopaedics, Mahwah, NJ) is a cementless tapered wedge-type stem composed of beta
titanium alloy with a proximal hydroxyapatite-coated porous surface and a distal smooth-finished surface.
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1. Introduction

Periprosthetic bone loss, i.e., a decrease in bone mineral density (BMD) around an implant,
is a major concern following total hip arthroplasty (THA) [1, 2]. Severe periprosthetic bone
loss  may  contribute  to  aseptic  loosening  of  the  prosthesis  or  the  risk  of  periprosthetic
fracture [3] and presents serious problems if revision surgery becomes necessary [4]. Several
studies  have  reported  that  BMD decreases  following THA,  particularly  in  the  proximal
femur [5, 6]. Most changes in BMD occur during the first postoperative year, and subse-
quently,  BMD  is  maintained  [7–9].  This  phenomenon  is  considered  to  be  an  adaptive
remodeling  response  of  the  bone  structure  to  alter  its  stress  environment  owing to  the
presence of an implant. Therefore, mechanical stress may be associated with the patterns of
BMD changes. In particular, in cementless THA, an optimal fit of the stem into the meta-
physeal region of the femur has been reported to lead to a reduction in periprosthetic bone
loss [10].

Wolff [11] proposed that trabecular bone in the proximal femur adapts to external mechanical
loads. This structural change is caused by bone remodeling, which couples bone resorption by
osteoclasts and bone formation by osteoblasts [12]. It is generally accepted that bone tissue can
detect and respond to its mechanical environment, but the exact mechanical signal that drives
remodeling remains controversial [13]. Various biomechanical parameters have been investi-
gated to determine the remodeling stimulus. Huiskes et al. [14] examined whether strain
energy density (SED) controls bone remodeling. Carter et al. [15] examined stress, and Stulpner
et al. [16] examined equivalent strain as signals for remodeling. Adachi et al. [17] proposed
that the driving force of remodeling is the local nonuniformity of the scalar function of stress.
The existence of various theories indicates that the mechanism of bone remodeling is not well
understood.

Subject-specific finite element (FE) models based on geometry and mechanical properties
derived from computed tomography (CT) scans have been described in several studies [18–
20]. Furthermore, relationships between results of subject-specific finite element analysis (FEA)
and bone density have been investigated previously. Cody et al. [21] performed subject-specific
FEA and bone density measurements for predicting the fracture load of the femur. Tawara et
al. [22] evaluated vertebral strength using subject-specific FEA and BMD. We previously
examined the usefulness of subject-specific FEA, which was validated by BMD changes, after
THA. We found that equivalent stress through subject-specific FEA correlated with BMD
changes before and after THA [23]. The distribution of mechanical loads within the femur after
THA might be influenced by the stem geometry and the femur structure. Our previous results
suggest that subject-specific FEA could be used to evaluate the effects of stem and femoral
geometry on adaptive bone remodeling after THA [24].

This chapter initially provides general information on subject-specific FEA and then
presents a brief overview of our work regarding adaptive bone remodeling after THA.
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We investigated 24 patients (16 women and 8 men) who underwent primary cementless THA
using the same fit-and-fill type of prosthesis (collarless VerSys Fiber Metal MidCoat, Zimmer
Inc., Warsaw, IN) (Figure 1). Collarless VerSys Fiber Metal MidCoat is a stem composed of
titanium alloy with a fiber-metal porous coating at the proximal region. Patients were excluded
from the study if they were receiving systemic estrogen, vitamin D, or bisphosphonate for
osteoporosis. The mean patient age at surgery was 63 years (range, 44–82 years). After surgery,
all patients were allowed to use a wheelchair, with full weight bearing, on postoperative day
1, and gait exercise was performed as soon as possible [23]. BMD was assessed with dual-
energy X-ray absorptiometry (DEXA) using the Hologic Discovery system (Hologic Inc.,
Waltham, MA). Baseline DEXA measurements were performed 1 week after surgery as
reference, and subsequent measurements were performed at 3, 6, and 12 months postopera-
tively. Patients were placed in the supine position, and the affected leg was maintained in 20 °
internal rotation to minimize measurement errors. DEXA measurements were performed
using the “array prosthetic” mode, which excludes metal from analysis of the regions of
interest (ROIs). ROIs were defined according to Gruen’s system [28]. The pixel size was 1.1 ×
0.56 mm.

Figure 2. Finite element mesh of the femur. Three-dimensional FE models are constructed using 1- to 4-mm tetrahedral
elements for the trabecular and inner cortical bone. The outer surface of the cortical bone is represented with three no-
dal-point shell elements having a thickness of 0.3 mm.

CT scans of the femurs of all patients were performed pre- and postoperatively (1 week after
surgery). The scanner settings were approximately 140 kV and 300 mA, with a slice thickness
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of 2 mm, pixel resolution of 512 × 512, and voxel size of 0.70 × 0.70 × 2 mm. Three-dimensional
FE models of the femur and stem were constructed according to pre- and postoperative CT
data using the Mechanical Finder ver. 6.0 software (Research Center of Computational
Mechanics Inc., Tokyo, Japan). This software creates FE models after considering individual
bone shape and density distribution [29]. We used a global threshold algorithm for determining
the bone area with a threshold of 200 mg/cm3 and with manual correction if necessary. We
applied a closing algorithm in addition to the global threshold algorithm for determining the
bone area when the density was extremely low [29]. In addition, the global threshold algorithm
was applied to determine the stem area with a threshold of 2,000 Hounsfield units. We used 1
to 4 mm tetrahedral elements to construct three-dimensional FE models for the trabecular and
inner cortical bone. The outer surface of the cortical bone was represented with three nodal-
point shell elements having a thickness of 0.3 mm (Figure 2). The FE models of the femur
consisted of approximately 600,000 elements in addition to 200,000 elements for the stem. Bone
density was determined according to CT density values, using a calibration equation (Table 1).
Additionally, the elastic modulus of the bone was determined according to bone density values,
using the equations proposed by Keyak et al. [18, 30] and Keller [31] (Table 1). Poisson’s ratio
of the bone was assumed to be 0.40. The stem was an isotropic titanium alloy, and it had an
elastic modulus of 109.0 GPa and a Poisson’s ratio of 0.28. The models assumed a completely
bonded interface between the stem and bone. The models were restrained at the distal end of
the femoral shaft, and loads were applied to the femoral head and greater trochanter. We
applied a load of 2400 N to the surface of the femoral head at an angle of 15° to the femoral
axis and applied a load of 1200 N to the greater trochanter at an angle of 20° [32, 33]. Linear
FEA was performed. Equivalent stress and SED were analyzed in ROIs 1–7 and were compared
with the DEXA data.

Bone density Elastic modulus (MPa)

ρ = 0 0.001

0 < ρ ≤ 0.27 33,900ρ2.20

0.27 < ρ < 0.6 5307ρ + 469

0.6 ≤ ρ 10,200ρ2.01

 g cm3 = H . U . + 1.4246 × 0.001 1.508 H . U . > − 1= 0.0 H . U . ≤ − 1
H.U. represents CT density values in Hounsfield Units. The elastic modulus of the bone is determined according to
computed tomography density values, using the equations proposed by Keyak et al. [18, 30] and Keller [31].

Table 1. Equations used for calculating the elastic modulus of the bone.

Changes in the BMD of the femur during the first postoperative year are shown in Figure 3.
BMD was maintained in ROIs 3, 4, 5, and 6, whereas it significantly decreased in ROIs 1, 2, and
7 by 19, 11, and 27%, respectively, 12 months after THA. The changes in BMD noted in this
study were similar to those reported in other studies [34, 35].
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We investigated 24 patients (16 women and 8 men) who underwent primary cementless THA
using the same fit-and-fill type of prosthesis (collarless VerSys Fiber Metal MidCoat, Zimmer
Inc., Warsaw, IN) (Figure 1). Collarless VerSys Fiber Metal MidCoat is a stem composed of
titanium alloy with a fiber-metal porous coating at the proximal region. Patients were excluded
from the study if they were receiving systemic estrogen, vitamin D, or bisphosphonate for
osteoporosis. The mean patient age at surgery was 63 years (range, 44–82 years). After surgery,
all patients were allowed to use a wheelchair, with full weight bearing, on postoperative day
1, and gait exercise was performed as soon as possible [23]. BMD was assessed with dual-
energy X-ray absorptiometry (DEXA) using the Hologic Discovery system (Hologic Inc.,
Waltham, MA). Baseline DEXA measurements were performed 1 week after surgery as
reference, and subsequent measurements were performed at 3, 6, and 12 months postopera-
tively. Patients were placed in the supine position, and the affected leg was maintained in 20 °
internal rotation to minimize measurement errors. DEXA measurements were performed
using the “array prosthetic” mode, which excludes metal from analysis of the regions of
interest (ROIs). ROIs were defined according to Gruen’s system [28]. The pixel size was 1.1 ×
0.56 mm.

Figure 2. Finite element mesh of the femur. Three-dimensional FE models are constructed using 1- to 4-mm tetrahedral
elements for the trabecular and inner cortical bone. The outer surface of the cortical bone is represented with three no-
dal-point shell elements having a thickness of 0.3 mm.

CT scans of the femurs of all patients were performed pre- and postoperatively (1 week after
surgery). The scanner settings were approximately 140 kV and 300 mA, with a slice thickness
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Figure 3. The median percentage change in bone mineral density (BMD) after surgery with the fit-and-fill-type stem.
The periprosthetic BMDs at 3, 6, and 12 months after total hip arthroplasty (THA) are expressed as percentage changes
from the baseline BMD measured at 1 week after surgery. BMD is maintained 12 months after THA in regions of inter-
est (ROIs) 3, 4, 5, and 6, whereas it has significantly decreased by 19, 11, and 27% in ROIs 1, 2, and 7, respectively,
12 months after THA (*p< 0.05).

The pre- and postoperative equivalent stress and SED are shown in Figure 4. The equivalent
stress and SED were maintained in ROIs 3, 4, and 5, whereas both decreased in ROIs 1, 2, 6,
and 7 after THA (Figure 5). The lowest values of equivalent stress, SED, and relative BMD were
observed in ROI 7 (p < 0.05). There was a relatively strong correlation between equivalent stress
and BMD changes (R = 0.426, p < 0.01), whereas there was a weak correlation between SED and
BMD changes (R = 0.183, p = 0.053) (Figure 6).

Figure 4. Distributions of equivalent stress and strain energy density (SED) in the femur. Equivalent stress and SED are
maintained in the distal femur after total hip arthroplasty, whereas both decreased in the proximal femur.
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Figure 5. Strain energy density (SED), equivalent stress, and bone mineral density (BMD) 12 months after total hip ar-
throplasty. In ROI 7, equivalent stress, SED, and relative BMD show the lowest values of all regions examined.

Figure 6. Scatter plots of the relationships (a) between bone mineral density (BMD) and equivalent stress and (b) be-
tween BMD and strain energy density (SED). The periprosthetic BMD at 12 months after total hip arthroplasty (THA)
is expressed as the percentage change from the baseline BMD measured at 1 week after surgery. Postoperative equiva-
lent stress and SED are expressed as percentage changes from the preoperative values. (a) Equivalent stress has a rela-
tively strong correlation with the changes in BMD (R = 0.426, p < 0.01). (b) SED has a weak correlation with the changes
in BMD (R = 0.183, p = 0.053).

Periprosthetic BMD loss may be related to changes in the mechanical loading environment.
The purpose of this study was to investigate the relationships between periprosthetic BMD
loss and changes in the mechanical loading environment after cementless THA according to
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Figure 3. The median percentage change in bone mineral density (BMD) after surgery with the fit-and-fill-type stem.
The periprosthetic BMDs at 3, 6, and 12 months after total hip arthroplasty (THA) are expressed as percentage changes
from the baseline BMD measured at 1 week after surgery. BMD is maintained 12 months after THA in regions of inter-
est (ROIs) 3, 4, 5, and 6, whereas it has significantly decreased by 19, 11, and 27% in ROIs 1, 2, and 7, respectively,
12 months after THA (*p< 0.05).

The pre- and postoperative equivalent stress and SED are shown in Figure 4. The equivalent
stress and SED were maintained in ROIs 3, 4, and 5, whereas both decreased in ROIs 1, 2, 6,
and 7 after THA (Figure 5). The lowest values of equivalent stress, SED, and relative BMD were
observed in ROI 7 (p < 0.05). There was a relatively strong correlation between equivalent stress
and BMD changes (R = 0.426, p < 0.01), whereas there was a weak correlation between SED and
BMD changes (R = 0.183, p = 0.053) (Figure 6).

Figure 4. Distributions of equivalent stress and strain energy density (SED) in the femur. Equivalent stress and SED are
maintained in the distal femur after total hip arthroplasty, whereas both decreased in the proximal femur.
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subject-specific FEA. This subject-specific FEA exhibited a significant correlation between
BMD changes and equivalent stress. After THA, the stress load is transferred to the distal femur
through the stem rather than to the periprosthetic bone owing to the high elastic modulus of
the stem [36, 37]. Therefore, equivalent stress in the proximal femur may decrease after stem
implantation. These results are consistent with those of previous studies [20, 33]. We investi-
gated the effect of a porous-coated titanium-alloy fit-and-fill-type stem on bone remodeling
after THA. Although this implant is designed to achieve proximal fixation, equivalent stress
and BMD decreased postoperatively at the proximal femur. These results indicate that load
transmission to the proximal femur may not be sufficient for maintaining BMD.

The present study demonstrated that equivalent stress correlates with BMD changes in the
femur 12 months after THA. In this study, CT scans were performed from all patients pre- and
postoperatively, and subject-specific FE models were constructed to investigate bone hetero-
geneity by using the equations proposed by Keyak et al. [18, 30] and Keller [31]. Our results
suggest that the rate of changes in equivalent stress could be an important factor for BMD
changes.

The strain-adaptive bone-remodeling theory has been used to simulate BMD changes after
THA; Huiskes et al. [14] reported that the SED distribution indicates the regions where
resorption and apposition are expected. However, other studies have reported that bone
remodeling can be better predicted with stress parameters than with strain parameters.
Simulation results and clinical data have shown that there is a positive correlation between
average equivalent stress and BMD [38, 39]. Therefore, controversy still exists with regard to
whether equivalent stress or SED is an appropriate parameter for evaluating bone remodeling.
Our results suggest that a decrease in equivalent stress caused a decrease in BMD in the
proximal femur after THA.

2.2. Effects of stem geometry

A number of factors, such as geometry, roughness and coating of the stem, technique of
preparation, and bone quality, influence initial stability or primary fixation. Femoral stems
with various geometries are currently in use. The implant shape has been shown to determine
cortical contact and initial stability [40]. Our recent study showed that differences in stem
design could affect the postoperative BMD loss of the proximal femur [41]. We studied the
effects of stem geometry on BMD changes and equivalent stress in the femur after THA.

We investigated 20 patients who underwent primary cementless THA for osteoarthritis or
osteonecrosis of the hip. Of these patients, 10 underwent THA with a Zweymüller-type stem
(SL-PLUS; Smith & Nephew Inc.), and the other 10 underwent THA with a fit-and-fill-type
stem (collarless VerSys Fiber Metal MidCoat; Zimmer Inc.) (Figure 1). The mean age of the
patients at the time of THA was 63 years (range, 54–72 years) in the Zweymüller-type stem
group and 64 years (range, 57–69 years) in the fit-and-fill-type stem group. There was no
significant difference in age between the two groups. In the Zweymüller-type stem group, all
patients were diagnosed with osteoarthritis, while in the fit-and-fill-type stem group, eight
patients were diagnosed with osteoarthritis, and two were diagnosed with osteonecrosis. We
compared equivalent stress and BMD between the two groups.
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In the preoperative models, no significant differences in equivalent stress were observed
between the two groups. In the postoperative models, maximum equivalent stress was
observed in ROI 4, and minimum equivalent stress was observed in ROI 1 in both groups. In
ROI 4, equivalent stress was significantly higher in the Zweymüller-type stem group than in
the fit-and-fill-type stem group (p < 0.05). On the other hand, in ROI 7, equivalent stress was
significantly higher in the fit-and-fill-type stem group than in the Zweymüller-type stem group
(p < 0.05) (Figure 7).

Figure 7. Comparison of equivalent stress between the fit-and-fill-type stem and Zweymüller-type stem groups. The
equivalent stress in ROI 4 is higher, and the stress in ROI 7 is lower in the Zweymüller-type stem group than in the fit-
and-fill-type stem group *p< 0.05.

Changes in the BMD of the femur during the first postoperative year are shown in Figure 8.
In both the Zweymüller-type stem and fit-and-fill-type stem groups, BMD decreased in ROIs
2, 6, and 7, whereas BMD was maintained in ROIs 3, 4, and 5. In ROIs 6 and 7, BMD was
significantly lower in the Zweymüller-type stem group than in the fit-and-fill-type stem group
(p < 0.05). In ROI 1, the fit-and-fill-type stem group showed a continuous decrease in BMD for
12 months after surgery, while the Zweymüller-type stem group showed a decrease in BMD
up to 6 months after surgery and then showed an increase 12 months after surgery. In ROI 4,
BMD was significantly lower in the fit-and-fill-type stem group than in the Zweymüller-type
stem group at 3 months after surgery (p < 0.05); however, there were no differences in BMD
between the two groups at 6 months or 12 months after surgery [24].

Stress at the proximal femur was lower, and stress at the distal femur was higher in the
Zweymüller-type stem group than in the fit-and-fill-type stem group. BMD at the proximal
femur was significantly lower in the Zweymüller-type stem group than in the fit-and-fill-type
stem group (p < 0.05). The FEA results and postoperative BMD changes in the femur suggest
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subject-specific FEA. This subject-specific FEA exhibited a significant correlation between
BMD changes and equivalent stress. After THA, the stress load is transferred to the distal femur
through the stem rather than to the periprosthetic bone owing to the high elastic modulus of
the stem [36, 37]. Therefore, equivalent stress in the proximal femur may decrease after stem
implantation. These results are consistent with those of previous studies [20, 33]. We investi-
gated the effect of a porous-coated titanium-alloy fit-and-fill-type stem on bone remodeling
after THA. Although this implant is designed to achieve proximal fixation, equivalent stress
and BMD decreased postoperatively at the proximal femur. These results indicate that load
transmission to the proximal femur may not be sufficient for maintaining BMD.

The present study demonstrated that equivalent stress correlates with BMD changes in the
femur 12 months after THA. In this study, CT scans were performed from all patients pre- and
postoperatively, and subject-specific FE models were constructed to investigate bone hetero-
geneity by using the equations proposed by Keyak et al. [18, 30] and Keller [31]. Our results
suggest that the rate of changes in equivalent stress could be an important factor for BMD
changes.

The strain-adaptive bone-remodeling theory has been used to simulate BMD changes after
THA; Huiskes et al. [14] reported that the SED distribution indicates the regions where
resorption and apposition are expected. However, other studies have reported that bone
remodeling can be better predicted with stress parameters than with strain parameters.
Simulation results and clinical data have shown that there is a positive correlation between
average equivalent stress and BMD [38, 39]. Therefore, controversy still exists with regard to
whether equivalent stress or SED is an appropriate parameter for evaluating bone remodeling.
Our results suggest that a decrease in equivalent stress caused a decrease in BMD in the
proximal femur after THA.

2.2. Effects of stem geometry

A number of factors, such as geometry, roughness and coating of the stem, technique of
preparation, and bone quality, influence initial stability or primary fixation. Femoral stems
with various geometries are currently in use. The implant shape has been shown to determine
cortical contact and initial stability [40]. Our recent study showed that differences in stem
design could affect the postoperative BMD loss of the proximal femur [41]. We studied the
effects of stem geometry on BMD changes and equivalent stress in the femur after THA.

We investigated 20 patients who underwent primary cementless THA for osteoarthritis or
osteonecrosis of the hip. Of these patients, 10 underwent THA with a Zweymüller-type stem
(SL-PLUS; Smith & Nephew Inc.), and the other 10 underwent THA with a fit-and-fill-type
stem (collarless VerSys Fiber Metal MidCoat; Zimmer Inc.) (Figure 1). The mean age of the
patients at the time of THA was 63 years (range, 54–72 years) in the Zweymüller-type stem
group and 64 years (range, 57–69 years) in the fit-and-fill-type stem group. There was no
significant difference in age between the two groups. In the Zweymüller-type stem group, all
patients were diagnosed with osteoarthritis, while in the fit-and-fill-type stem group, eight
patients were diagnosed with osteoarthritis, and two were diagnosed with osteonecrosis. We
compared equivalent stress and BMD between the two groups.
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that implantation of the Zweymüller-type stem leads to insufficient load transmission to the
proximal femur and may be associated with proximal BMD loss. These findings indicate that
subject-specific FEA can assess the effects of stem geometry on adaptive bone remodeling after
THA.

Figure 8. Median percentage change in bone mineral density (BMD) after surgery in the fit-and-fill-type stem and
Zweymüller-type stem groups. The periprosthetic BMDs at 3, 6, and 12 months after surgery are expressed as percent-
age changes from the baseline BMD measured at 1 week after surgery (*p< 0.05).

2.3. Effects of bone geometry

Noble et al. [42] demonstrated the femoral anatomy variations in the mediolateral and
anteroposterior dimensions and the need for multiple stem designs to achieve a close fit. Close
adaptation of the prosthesis to the bone geometry is required to achieve optimal primary
stability and secondary biologic fixation [43]. We studied the effects of bone geometry on BMD
changes and equivalent stress in the femur after THA.

We investigated 20 patients who underwent THA using the Accolade TMZF stem (Stryker
Orthopaedics) after reviewing the preoperative anterior-posterior hip radiographs of 90
consecutive patients who had undergone THA using the Accolade TMZF stem (Figure 1). The
width of the proximal femoral canal on the operated side was measured from preoperative
anterior-posterior hip radiographs, and Noble’s canal flare index (CFI) was calculated for each
patient [42]. Based on Noble’s classification, the femurs were divided into the following three
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groups of femoral canal shapes: champagne flute (CFI ≥ 4.7), intermediate (CFI 3–4.7), and
stovepipe (CFI < 3). Among the 20 study femurs, 7 had a champagne flute canal shape, 5 had
a stovepipe shape, and 8 had an intermediate canal shape. The 8 femurs with an intermediate
canal shape were randomly selected from among the remaining 78 hips with an intermediate
canal shape to balance the groups for analysis.

The mean percentage changes in equivalent stress in each ROI between the pre- and postop-
erative femur models were calculated from the FEA results, and they are plotted in Figure 9.
Between-group differences in the pattern of postoperative changes in equivalent stress were
identified, and specific differences were observed in ROIs 6 (p = 0.01) and 7 (p = 0.02). Post hoc
analysis indicated that the decrease in equivalent stress in ROI 6 was significantly greater in
the stovepipe group (−63.8%) than in the champagne flute group (−38.8%) and intermediate
group (−47.2%) (p = 0.01). Additionally, the decrease in equivalent stress in ROI 7 was signifi-
cantly greater in the stovepipe group (−70.9%) than in the champagne flute group (−53.7%) and
intermediate group (−51.4%) (p = 0.03).

Figure 9. Comparison of the relative percentage changes in equivalent stress between the pre- and postoperative femur
models for the three femoral canal shape groups. Postoperative relative percentage changes in equivalent stress in each
region of interest compared to that of the preoperative models. Dots in the box plot show the outliers (*p = 0.02, **p =
0.01).

BMD changes in the femurs during the first postoperative year are shown in Figure 10.
Significant between-group differences in BMD were evident in ROIs 6 (p = 0.01) and 7 (p = 0.04).
In ROI 6, a marked decrease in BMD was identified only in the stovepipe group during the
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that implantation of the Zweymüller-type stem leads to insufficient load transmission to the
proximal femur and may be associated with proximal BMD loss. These findings indicate that
subject-specific FEA can assess the effects of stem geometry on adaptive bone remodeling after
THA.

Figure 8. Median percentage change in bone mineral density (BMD) after surgery in the fit-and-fill-type stem and
Zweymüller-type stem groups. The periprosthetic BMDs at 3, 6, and 12 months after surgery are expressed as percent-
age changes from the baseline BMD measured at 1 week after surgery (*p< 0.05).

2.3. Effects of bone geometry

Noble et al. [42] demonstrated the femoral anatomy variations in the mediolateral and
anteroposterior dimensions and the need for multiple stem designs to achieve a close fit. Close
adaptation of the prosthesis to the bone geometry is required to achieve optimal primary
stability and secondary biologic fixation [43]. We studied the effects of bone geometry on BMD
changes and equivalent stress in the femur after THA.

We investigated 20 patients who underwent THA using the Accolade TMZF stem (Stryker
Orthopaedics) after reviewing the preoperative anterior-posterior hip radiographs of 90
consecutive patients who had undergone THA using the Accolade TMZF stem (Figure 1). The
width of the proximal femoral canal on the operated side was measured from preoperative
anterior-posterior hip radiographs, and Noble’s canal flare index (CFI) was calculated for each
patient [42]. Based on Noble’s classification, the femurs were divided into the following three
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first postoperative year; the ROI 6 BMD showed a significantly higher decrease in the stovepipe
group (−14.3%) than in the champagne flute group (−1.4%) and intermediate group (+3.6%) (p
= 0.01). A postoperative decrease in ROI 7 BMD was evident in all the groups during the first
postoperative year (champagne flute group, −23.1%; intermediate group, −22.7%; and stove-
pipe group, −36.5%). Additionally, the ROI 7 BMD showed a significantly higher decrease in
the stovepipe group than in the other two groups (p = 0.045). BMDs in ROIs 1 and 2 were
relatively lower in the stovepipe group than in the champagne flute and stovepipe groups
during the first postoperative year; however, the differences were not significant.

Figure 10. Comparison of bone mineral density (BMD) in the three femoral canal shape groups. The periprosthetic
BMDs at 3, 6, and 12 months after surgery are expressed as percentage changes from the baseline BMD measured at
1 week after surgery (*p = 0.04, **p = 0.01).

The percentage changes in equivalent stress in each ROI were positively correlated with the
postoperative BMD changes (Figure 11). A significant correlation was observed between
equivalent stress and BMD changes (p < 0.01), and the adjusted R2 value showed that the
percentage changes in equivalent stress (adjusted R2 = 0.79) could predict the postoperative
BMD changes in our simulation model.
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Figure 11. Scatter plot illustrating the relationship between the percentage changes in equivalent stress and postopera-
tive bone mineral density (BMD). The 21 points plotted in this scatter plot display the average relative percentage
changes in equivalent stress (finite element analysis results) and BMD for the three femoral canal shape groups. A
significant correlation is observed between equivalent stress and BMD changes (adjusted R2 = 0.79, p < 0.01).

The FEA results and postoperative BMD changes of the femur suggest that the combination
of a large, tapered wedge-type stem and stovepipe femur may be associated with proximal
BMD loss. Our simulation-based outcomes predicted a stronger stress-shielding effect in the
stovepipe femur group than in the other groups. These results indicate that subject-specific
FEA can assess the effects of bone geometry on adaptive bone remodeling after THA.

The present studies have limitations. First, the interface condition between the stem and the
femur in the FEA model was assumed to be fully bonded. Consideration of the surface
properties of the implant and degree of stem fixation would be useful for constructing realistic
models. Second, the maximum length of the tetrahedral elements (4 mm) was relatively large,
and therefore the elements might straddle the boundary between the cortical and cancellous
area in the FE models. Therefore, the elastic modulus of the elements straddling the boundary
would contain some errors.
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first postoperative year; the ROI 6 BMD showed a significantly higher decrease in the stovepipe
group (−14.3%) than in the champagne flute group (−1.4%) and intermediate group (+3.6%) (p
= 0.01). A postoperative decrease in ROI 7 BMD was evident in all the groups during the first
postoperative year (champagne flute group, −23.1%; intermediate group, −22.7%; and stove-
pipe group, −36.5%). Additionally, the ROI 7 BMD showed a significantly higher decrease in
the stovepipe group than in the other two groups (p = 0.045). BMDs in ROIs 1 and 2 were
relatively lower in the stovepipe group than in the champagne flute and stovepipe groups
during the first postoperative year; however, the differences were not significant.

Figure 10. Comparison of bone mineral density (BMD) in the three femoral canal shape groups. The periprosthetic
BMDs at 3, 6, and 12 months after surgery are expressed as percentage changes from the baseline BMD measured at
1 week after surgery (*p = 0.04, **p = 0.01).

The percentage changes in equivalent stress in each ROI were positively correlated with the
postoperative BMD changes (Figure 11). A significant correlation was observed between
equivalent stress and BMD changes (p < 0.01), and the adjusted R2 value showed that the
percentage changes in equivalent stress (adjusted R2 = 0.79) could predict the postoperative
BMD changes in our simulation model.
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3. Summary

We focused on equivalent stress as a mechanical parameter associated with adaptive bone
remodeling and found that equivalent stress changes were positively correlated with postop-
erative BMD changes in the femur. BMD and equivalent stress were maintained in the distal
femur and decreased in the proximal femur after THA. Thus, the proposed subject-specific
FEA is useful for evaluating adaptive bone remodeling after THA and could predict BMD
changes after THA. Furthermore, subject-specific FEA can be used to evaluate the effects of
stem geometry and bone geometry on bone remodeling and can help in the understanding of
the altered mechanical environment after THA.
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We focused on equivalent stress as a mechanical parameter associated with adaptive bone
remodeling and found that equivalent stress changes were positively correlated with postop-
erative BMD changes in the femur. BMD and equivalent stress were maintained in the distal
femur and decreased in the proximal femur after THA. Thus, the proposed subject-specific
FEA is useful for evaluating adaptive bone remodeling after THA and could predict BMD
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Abstract

This chapter is devoted to the study of behavior of functional loadings for implant
prosthetics rehabilitation by finite elements method (FEM). It  presents a numerical
calculation of stress, displacement, and strain in implant and surrounding bone, which
is used to assess risk factors from a biomechanical point. The masticatory forces are
simulated by axial and/or non-axial loads, and they are responsible for the biomechan-
ical  response of  the  bone-tissue-implant-crown system.  This  chapter  represents  an
analysis of this response in view of highlighting the factors involved in implant stability
and success. The safety factor for different loading cases is calculated as well. A good
agreement with other study results and clinical studies is obtained.

Keywords: finite elements methods, implant prosthodontics, biomechanics, stress dis-
tribution, numerical solutions

1. Introduction

This chapter presents a study of the biomechanical behavior of dental implant prosthodontics
in a mandible under masticatory loads using numerical models made by the finite elements
method (FEM). This method is widely used in the study of dental implants and has proven very
useful in analyzing the distribution of strains and stress in the entire bone tissue, implant, and
crown structure [1].

These studies are equally relevant in achieving optimal design of the implant, in osseointe-
gration study, in oral rehabilitation study by developing various loading and orientation
versions of the implant, and so on [2].
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Numerical analysis of implants is useful for doctors in a deeper and thorough understanding
of the characteristics of the state of stress and strain in the bone structure to ensure success of
implants [3].

FEM is a numerical method developed by engineers and substantiated by mathematicians to
find approximate solutions to complex structure problems. This method is also successfully
used in medicine for biological structures and, in particular, in dentistry.

The method consists of dividing (mesh) the problem structure domain in smaller areas (finite
element) connected by nodes, called mesh; finding the solution to these subdomains, finite
elements (FEs), considering both loads (forces, pressures, etc.) applied to the structure
boundary, as well as the boundary conditions and finally assembling these elementary
solutions for finding global solutions.

FEM is considered by many specialists as one of the most common numerical methods for
structural analysis. Regardless of their type and complexity, FEM is used in industry and
science, taking increasingly greater scale in medicine and, certainly, its usefulness being quite
rigorously outlined in dentistry and all of its specialties [4].

The large variety of types of finite elements, of loads that can be taken into consideration, of
material modes of behavior (linear or non-linear), of the application regime (static, elastic, or
dynamic), of the types of analysis (structural response, modal analysis, fatigue, fracture,
optimization, etc.) gives the method and, therefore, the user the possibility to carry out an
accurate calculation for any problem, with results as close as possible to reality [5].

FEM possibilities are closely linked to the performance of programs and computers. Currently,
software products of analysis by FEM are made, which, under increasingly high hard per-
formance, enables the possibility that the size or difficulty of the problem to be solved to no
longer constitutes an insurmountable obstacle.

Correctly solving the structure analysis problems by FEM is based primarily on creating a
numerical model as suitable as possible; this model should be based on the correct under-
standing of the problem to be solved and equally on the knowledge of the theoretical foun-
dations of the method.

The great versatility and efficiency of FEM determined its utilization in areas as highly diverse
as mechanical structures, fluids, thermal processes, and recently in areas of medicine such as
orthopedics, stress flow, dental medicine, and so on.

Therefore, FEM is currently one of the most powerful tools for investigating many phenomena
of the most complex and highly diverse areas.

The FEM uses as a starting point an integral model of the phenomenon under consideration
[6, 7]. It applies separately for a series of small parts of a continuous structure obtained by the
meshing process, known as finite elements, connected to each other at points called nodes [8].
These finite elements must be designed so that their ensemble reconstructs as closely as
possible the actual analyzed structure. In principle, these connections must be designed as to
allow a numerical convergence to the exact solution when the structure is discretized in finite
elements with dimensions increasingly reduced.
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1.1. Finite elements analysis steps

Finite elements analysis of a structure should take the following steps [6–8]:

1. Dividing analysis area in finite elements (mesh)

Meshing a structure means that it is subdivided in a seldom number of finite elements or in a
numerical integration point mesh, interconnected in their exterior nodes. During this opera-
tion, the types of finite elements to be used will be chosen and their distribution among the
meshed area is established, resulting in their number, size, and form.

Meshing is done by computer. The finite element type is defined by several characteristics,
such as dimension (one-, two-, three-dimensional), the number of the element’s nodes, the
associated approximation functions, and others. Choosing the finite element is of great
importance for the necessary of internal memory, for the required calculation effort of the
computer, and for results quality.

In case of two-dimensional structures, for modeling, triangular or quadrilateral finite elements
can be used; the triangular elements ensure better opportunities in terms of contours geometry
approximation, while quadrilateral elements accurately reproduce the distribution of stress.
It is appropriate to use the elements as close as possible of the equilateral triangle or square.
The use of very obtuse triangles or rectangle angles is not recommended, with too elongated
elements. Similarly, in three-dimensional structures, tetrahedral or parallelepipedic types of
finite elements can be used.

The starting point for the mathematical construction of various finite elements methods is
represented by respecting the following principles:

• considering approximations based on the use of simple elements for which we have
provided a solution;

• increasing accuracy of the calculation by refining the mesh.

1.2. Effect of meshing on the numerical results

Calculation results (displacements strain and stress), which are obtained by FEM, are depend-
ent of the meshing choosing. For this reason, there are situations, especially in the case of
complicated geometries when the problem addressed with these methods should be investi-
gated in several meshing variants and subsequently sorting out the results [8].

On the other hand, the effect of errors increases with the number of elements used. Numerical
errors are due to truncation, rounding, and of input data errors.

To study the influence of meshing, the most common method is to halve the mesh and compare
it, and if the results are negligible, the analysis is considered acceptable. To effectively achieve
more accurate results by successive refining of the finite elements mesh, the following criteria
must be considered:

• Each previous mesh should be reflected in the new one;
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Therefore, FEM is currently one of the most powerful tools for investigating many phenomena
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The FEM uses as a starting point an integral model of the phenomenon under consideration
[6, 7]. It applies separately for a series of small parts of a continuous structure obtained by the
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possible the actual analyzed structure. In principle, these connections must be designed as to
allow a numerical convergence to the exact solution when the structure is discretized in finite
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• Each point of the structure must always be found in a finite element;

• The approximation function (type of element) should remain the same when passing from
one element to another.

Nevertheless, it must be noted that from a certain number of finite elements, results can no
longer be improved by increasing their number, and changing the type of finite element used
becomes compulsory.

The model obtained by meshing the structure into finite elements must meet the following
requirements:

– to represent with sufficient fidelity the actual behavior of the structure;

– to allow easy generation of results (displacements, strains, stress);

– to not involve an excessively high labor for input data preparation or results processing and
hence a very long work time for the computer and a great part of its memory.

Some of these requirements are becoming less restrictive following the improvement of
software and technical performance of computers.

It should be emphasized that computer programs are capable of performing automatic
meshing, being able to perform even an automatic refinement of meshing in areas where there
are large gradients of stresses (strains).

2. Establishment of finite element equations (elemental equations)

Material behavior within a finite element is described by finite element equations called
elemental equations. These form a system of equations of the element. Basic equations can be
derived directly on a variational way, through, for example, residues method (Galerkin) or by
the energy balance method.

3. Assembling the elemental equations in the equations system of the structure

The whole structure behavior is modeled by assembling systems of finite elements equations
in the system of structure equations, which physically means that the structure balance is
conditioned by the balance of finite elements. The assembly requires that in the common nodes
of the elements, the unknown function or functions to have the same value.

4. Implementation of boundary conditions and solving the system of the structure equations

The equations system obtained from implementing appropriate boundary conditions suitable
for the problem under consideration is solved by one of the common procedures, for example,
by Gauss elimination or by Cholesky method, and so on, obtaining function values in nodes.
These are called primary or first-order unknowns.
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5. Performing additional calculations to determine the secondary unknowns

In some problems, after finding the primary unknowns, the analysis closes. In other problems,
however, knowing only the primary unknown is not sufficient, the analysis must proceed with
the determination of the secondary unknowns. These are higher-order derivatives of the
primary unknowns. Thus, for example, in dental implants analysis, primary unknowns are
the nodal displacements. With their help, in this step, secondary unknowns are determined,
represented by strains and stress [6, 8].

2. Material and method

2.1. The use of FEM in dental implants studies

FEM is very useful in the study of dental implants because it determines stress, strain, and
displacement both in the implant, crown, as well as in the bone tissue. This calculation plays
a crucial role both in the optimal design of implants [9] and in determining the factors that
control the whole process of post-implant osseointegration [3].

In recent years, studies that are based on the use of FEM in oral implantology became very
numerous and are dedicated either to oral rehabilitation or to analysis of the state of stress in
and around the implant in the peri-implant bone (cortical and trabecular bone). We can
mention works that use two-dimensional (2D) representations of the implant and mandible or
maxilla and consider a geometry of the implant-bone system and axial-symmetric loads [10]
or numerous three-dimensional (3D) studies [11], which model the bone geometry or loads
application in a proper way. On the other hand, there are studies that consider a more realistic
modeling of mastication, namely cyclical dynamic loads directed in an occlusal angle [12].

The importance of FEM numerical analysis in the study of dental implants involves several
aspects. The method is equally useful both for clinicians, by investigating alternative treat-
ments, and for dental implants producers [13]. They can change the macro-design according
to clinical benefits. The purpose of improving the design and use of dental implants is
represented by the bone absorption as reduced as possible in the region around the implant,
certain micro-displacement of the blunt, a better distribution of the loading on the implant
structures [14]. All these properties are often related to the biomechanical behavior and should
be investigated not only in clinical trials but also in FEM studies [2].

A new design of dental implants and materials must be subjected to thorough investigation
and compared to traditional structures. FEM analysis allows the comparison of old and new
treatment modelings, taking into account the limitations and deeper understanding of the
applicability areas [15].

FEM studies are not generally designed for clinicians without the help of engineers. Typically,
clinicians have limited knowledge of modeling and simulation using computers and therefore
they need the help of engineers. Therefore, collaboration between a clinician and an engineer
in this field is very useful. The clinician should devote too much time to acquire adequate
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• Each point of the structure must always be found in a finite element;

• The approximation function (type of element) should remain the same when passing from
one element to another.

Nevertheless, it must be noted that from a certain number of finite elements, results can no
longer be improved by increasing their number, and changing the type of finite element used
becomes compulsory.

The model obtained by meshing the structure into finite elements must meet the following
requirements:

– to represent with sufficient fidelity the actual behavior of the structure;

– to allow easy generation of results (displacements, strains, stress);

– to not involve an excessively high labor for input data preparation or results processing and
hence a very long work time for the computer and a great part of its memory.

Some of these requirements are becoming less restrictive following the improvement of
software and technical performance of computers.

It should be emphasized that computer programs are capable of performing automatic
meshing, being able to perform even an automatic refinement of meshing in areas where there
are large gradients of stresses (strains).

2. Establishment of finite element equations (elemental equations)

Material behavior within a finite element is described by finite element equations called
elemental equations. These form a system of equations of the element. Basic equations can be
derived directly on a variational way, through, for example, residues method (Galerkin) or by
the energy balance method.

3. Assembling the elemental equations in the equations system of the structure

The whole structure behavior is modeled by assembling systems of finite elements equations
in the system of structure equations, which physically means that the structure balance is
conditioned by the balance of finite elements. The assembly requires that in the common nodes
of the elements, the unknown function or functions to have the same value.

4. Implementation of boundary conditions and solving the system of the structure equations

The equations system obtained from implementing appropriate boundary conditions suitable
for the problem under consideration is solved by one of the common procedures, for example,
by Gauss elimination or by Cholesky method, and so on, obtaining function values in nodes.
These are called primary or first-order unknowns.
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knowledge on techniques of computational for the preparation and development of a numer-
ical model implementation. However, the clinician must manage the study and provide
necessary directions and indications concerning the dental implant parts, bone physiology,
masticatory forces, the implant bonds with the bone, generally, the dental implantology matter.
Also, the clinician should make every effort to maintain contact with the engineer to achieve
effective assessment and adaptation of the numerical model [16].

The number of elements and nodes can be increased to achieve a more detailed modeling. But
this can be time consuming, which could hinder the development of the model and complicate
the computational calculations. Therefore, the engineer must clearly understand the purpose
of the study, the boundaries, the limitations that can be applied to the model, and the number
of elements can be increased only in the area of interest, therefore in the vicinity of the implant.

The difficulties in finite element modeling in dental implants study are linked on one hand to
the assignment of material properties for biological materials: cortical bone, trabecular bone,
gingiva; on modeling of loads that act on the bone-tissue-implant structure [17], and also on
the actual faithful realization of the geometric model of the implant, which can be extremely
laborious in the case of accurate modeling [11, 18].

As previously mentioned, 3D models are widely used. Given the nature of applied loads,
unbalance of loads, and of geometric structures involved as well as their complexity, 2D models
are unsatisfactory, 3D models being rather preferred [13, 19]. 2D models [20] cannot simulate
the behavior of real structures as realistic as 3D models, so, the latest research focuses on 3D
models [3]. The present paper continues the modern trends of recent years of using detailed
3D models that are much closer to reality both in geometric modeling accuracy loads appli-
cation and in boundary conditions.

This is the case of the present study, which consists of the calculation and analysis of the state
of stress and strain and displacement of the implant and its interaction with the mandibular
bone.

In implants cases, the most critical area is that in which there is maximum stress concentration
[9]. This is the neck of the implant and the surrounding area, namely the cervical edge
(marginal bone) [18]. Therefore, this area should be kept as intact as possible in order to
maintain a structural and functional bone-implant interface [21].

2.2. Numerical analysis program

Modeling and simulation of dental implants behavior are made using Solid Works program
regarding the geometric model development to simulate the implant and bone-tissue structure
and Cosmos program for numerical solving of the obtained scheme [22].

Cosmos program is one of the best professional programs of FEM analysis of the continuum
mechanics. This program was used in the version of its integration into the Solid Works product
—one of the most powerful media of structure modeling—thus ensuring an efficient and
accessible interface, both during data preprocessing and during the post-processing of
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obtained results using graphs, isocurves, isosurfaces to represent the values of the studied
entities fields, and so on.

Since implementing the geometry model of dental implant, crown, and bone tissue requires
special preprocessing resources, SolidWorks software was used. The geometric model made
with this program was exported and used for the Cosmos program calculations.

The present study analyzes the insertion of a dental implant in a section of the mandible,
focusing primarily on highlighting and predicting areas of stress concentration both in the
trabecular bone and in the cortical bone for different clinical situations and loads caused by
mastication. These areas are the most vulnerable areas, where potential failures, fractures, or
damage structure may occur.

2.3. The geometric model of the dental implant

2.3.1. General considerations

The first step of finite element modeling is to provide implant-crown-bone-tissue structure by
creating a geometric model. The next step is choosing materials for structural components [23,
24]. Their properties are available in SolidWorks materials library and studies based on
experimental determinations [19, 25].

In our case, the analysis model is static and materials are considered elastic. We indicate the
material constants for the different materials involved in the modeled structure, such as Young
elasticity module (E), Poisson coefficient (ν), the density, tensile strength, and yield strength.
The third step is the application of restrictions related to boundary conditions and then
applying the loads to simulate the mastication forces in the considered problem.

Both the geometric model and the complete finite elements model of the implant components
and of the bone tissue were performed with great accuracy, considering the construction and
functional details (radius of fillet, fillets, releases, and contact) for the results to be as close to
reality as possible. All of this can be seen in Figures 1–12.

2.3.2. Geometric model components

The case of a structure consisting of a 13.5-mm long implant, with a diameter of 3.8 mm with
two threaded zones (fine step and big step) placed in a section of the mandible with extension
of about 20 mm from the implant axis as shown in Figures 1(a) and 1(b), was considered [26].

The geometric model consists on one hand of the biological material, mandibular part, which
comprises the cancellous bone, cortical bone, and gingiva tissue, and on the other hand of the
implant, prosthetic blunt, and crown. The implant is usually made of titanium alloy and crown
of ceramic [27]. In the studied Denti implant case, the blunt is made of magnesium alloy
(Figure 1b).
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knowledge on techniques of computational for the preparation and development of a numer-
ical model implementation. However, the clinician must manage the study and provide
necessary directions and indications concerning the dental implant parts, bone physiology,
masticatory forces, the implant bonds with the bone, generally, the dental implantology matter.
Also, the clinician should make every effort to maintain contact with the engineer to achieve
effective assessment and adaptation of the numerical model [16].

The number of elements and nodes can be increased to achieve a more detailed modeling. But
this can be time consuming, which could hinder the development of the model and complicate
the computational calculations. Therefore, the engineer must clearly understand the purpose
of the study, the boundaries, the limitations that can be applied to the model, and the number
of elements can be increased only in the area of interest, therefore in the vicinity of the implant.

The difficulties in finite element modeling in dental implants study are linked on one hand to
the assignment of material properties for biological materials: cortical bone, trabecular bone,
gingiva; on modeling of loads that act on the bone-tissue-implant structure [17], and also on
the actual faithful realization of the geometric model of the implant, which can be extremely
laborious in the case of accurate modeling [11, 18].

As previously mentioned, 3D models are widely used. Given the nature of applied loads,
unbalance of loads, and of geometric structures involved as well as their complexity, 2D models
are unsatisfactory, 3D models being rather preferred [13, 19]. 2D models [20] cannot simulate
the behavior of real structures as realistic as 3D models, so, the latest research focuses on 3D
models [3]. The present paper continues the modern trends of recent years of using detailed
3D models that are much closer to reality both in geometric modeling accuracy loads appli-
cation and in boundary conditions.

This is the case of the present study, which consists of the calculation and analysis of the state
of stress and strain and displacement of the implant and its interaction with the mandibular
bone.

In implants cases, the most critical area is that in which there is maximum stress concentration
[9]. This is the neck of the implant and the surrounding area, namely the cervical edge
(marginal bone) [18]. Therefore, this area should be kept as intact as possible in order to
maintain a structural and functional bone-implant interface [21].

2.2. Numerical analysis program

Modeling and simulation of dental implants behavior are made using Solid Works program
regarding the geometric model development to simulate the implant and bone-tissue structure
and Cosmos program for numerical solving of the obtained scheme [22].

Cosmos program is one of the best professional programs of FEM analysis of the continuum
mechanics. This program was used in the version of its integration into the Solid Works product
—one of the most powerful media of structure modeling—thus ensuring an efficient and
accessible interface, both during data preprocessing and during the post-processing of
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Figure 1. Geometric model: (a) overview and (b) section.

The geometric model of the bone tissue may also be considered in a simpler geometrical shape,
for example, in the form of a cylinder, which comprises a layer of trabecular bone lined both
in the upper and in the lower sides by a thinner layer of cortical bone, as shown in Figure 2(a).
The geometric model of the bone tissue could be simplified by considering a geometric shape
in the form of a cylinder, but which contains a layer of trabecular bone bounded only at the
top by a thinner layer of cortical bone, as shown in Figure 2(b), which represents bone
constituents who contact the implant.

Figure 2. Geometric model, bone tissue, simplified bone versions, with the implant and the crown inserted: (a) trabecu-
lar bone placed between two cortical bone disks (marked in red); (b) trabecular bone superior bounded by a disk of
cortical bone (marked in red).

For structures shown in Figures 1(a,b) and 2(a,b), various calculations by applying appropriate
boundary conditions and some axial and lateral loads between 100 and 400 N have been carried
out, which are simulating the masticatory forces [28].

Calculations revealed no significant differences either in values obtained for stress, strains, and
displacements, or in their localization which is why it can be considered for subsequent
calculations the simpler geometry of the bone tissue as shown in Figure 2(a,b). As the time of
creating the geometric model and the running time is much lower in simplified geometry,
considering a simplified geometry model is useful for quick guidance calculations, which allow
running many cases, with variation of the different factors taken into account, for example,
different values, localizations, and positions of the loading forces (simulating masticatory
forces), types of material with different values of the material constants, and so on.

Perusal of the Finite Element Method238



For problems that require highly accurate calculations in areas of interest, it is preferable to
chose a geometry as close to reality as possible.

The analyzed structure components are implants, crown, and mandible portion. All these
components were created by a computer and were used in the finite element calculation [26,
29].

2.3.2.1. Implant

It is cone-shaped with two threaded zones (see Figure 3).

Figure 3. The geometric model of the implant.

The interior of the implant (see Figure 4) allows installation without a threaded zone of the
intermediate part (blunt) (see Figure 5) and at the top has a hexagonal bore for mounting with
an Allen key in the mandible. The thread of the inner part is used to assemble the implant with
the prosthetic blunt by a titanium screw M2 (see Figure 6).

Figure 4. Longitudinal section through the geometric model of the implant where implant system parts can be ob-
served.
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Figure 1. Geometric model: (a) overview and (b) section.

The geometric model of the bone tissue may also be considered in a simpler geometrical shape,
for example, in the form of a cylinder, which comprises a layer of trabecular bone lined both
in the upper and in the lower sides by a thinner layer of cortical bone, as shown in Figure 2(a).
The geometric model of the bone tissue could be simplified by considering a geometric shape
in the form of a cylinder, but which contains a layer of trabecular bone bounded only at the
top by a thinner layer of cortical bone, as shown in Figure 2(b), which represents bone
constituents who contact the implant.

Figure 2. Geometric model, bone tissue, simplified bone versions, with the implant and the crown inserted: (a) trabecu-
lar bone placed between two cortical bone disks (marked in red); (b) trabecular bone superior bounded by a disk of
cortical bone (marked in red).

For structures shown in Figures 1(a,b) and 2(a,b), various calculations by applying appropriate
boundary conditions and some axial and lateral loads between 100 and 400 N have been carried
out, which are simulating the masticatory forces [28].

Calculations revealed no significant differences either in values obtained for stress, strains, and
displacements, or in their localization which is why it can be considered for subsequent
calculations the simpler geometry of the bone tissue as shown in Figure 2(a,b). As the time of
creating the geometric model and the running time is much lower in simplified geometry,
considering a simplified geometry model is useful for quick guidance calculations, which allow
running many cases, with variation of the different factors taken into account, for example,
different values, localizations, and positions of the loading forces (simulating masticatory
forces), types of material with different values of the material constants, and so on.
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Figure 5. Geometric model of abutment.

Figure 6. Geometric model of screw.

2.3.2.2. Crown

This component is made from ceramic and has been modeled by a geometric shape as close to
the real one as possible (Figure 7).

Figure 7. Geometric model of crown in section.
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2.3.2.3. Bone tissue

This is the portion of the mandible around the implant at a distance from it which does not
influence the stress and strain of the studied ensemble.

Adoption of the mandible portion size was based on the Saint-Venant’s principle (the new
distribution of forces produces appreciable differences in stress in the area of application, but
remain with no effect or insignificant effect at large distances from the place of forces appli-
cation) and by preliminary numerical simulations which confirmed the correct choice of size
[30].

Modeling the mandible portion took into account the different structure of the bone portion
(cortical and trabecular) by assigning suitable material properties in respective areas (see
Figure 8) [17].

Figure 8. Geometric model of bone as a piece of mandible, in section: cancellous bone portion bordered by the upper
and lower thinner layers of cortical bone.

For example, in the case of simplified modeling of the bone tissue in a cylindrical shape, the
cortical bone is shown in Figure 9 and the trabecular bone is shown in Figure 10.

Figure 9. The geometric model of the cortical bone component in the simplified version in the form of a cylinder. The
implant thread with a small step can be seen.
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Figure 5. Geometric model of abutment.

Figure 6. Geometric model of screw.

2.3.2.2. Crown

This component is made from ceramic and has been modeled by a geometric shape as close to
the real one as possible (Figure 7).

Figure 7. Geometric model of crown in section.
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Figure 10. Geometric model of cancellous bone component in the form of a simplified cylinder version. The implant
thread with a large step can be seen.

For the same example, the whole geometric model, consisting of the trabecular bone side,
cortical bone, implant, and crown, is shown in Figure 11, and a complete section in Figure 12.

Figure 11. The geometric model of the assembly, the visible portion in the image is represented by compact bone (a),
trabecular bone (b), and crown (c).

Figure 12. The longitudinal section of the system, composed of bone portions represented by compact bone, trabecular
bone, the implant (d) fixed along the two portions of bone, the clamping screw (e), blunt (f), and crown.

All components were modeled respecting all elements and technical details (threads, taper-
ings, releases, etc.).

The assembly was designed to transmit the mastication force from the crown to blunt and then
to the upper part of the implant; mastication force transmission mechanism does not intervene
in any threaded part [31].
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2.4. The dental implant finite elements model

2.4.1. The finite elements

3D finite elements model used for the study of an implant in a mandible portion was built
using SolidWorks software and uses tetrahedral elements both in the implant and in the bone.
In the following, we represent one meshing option that easily allows viewing of the considered
details.

The FE model is made of several parts corresponding to implant components, as shown in
Figures 13 (FE model of the implant) and 14 (FE model of implant-crown assembly) [26].

Figure 13. FE model of implant and abutment.

Figure 14. FE model of implant-crown assembly.

Figures 15 and 16 represent a complete FE model of the implant and mandibular portion,
respectively, complete FE model for the implant and mandibular cylindrical portion.

Figure 15. Complete FE model of crown, implant, and mandible portion.
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Figure 10. Geometric model of cancellous bone component in the form of a simplified cylinder version. The implant
thread with a large step can be seen.

For the same example, the whole geometric model, consisting of the trabecular bone side,
cortical bone, implant, and crown, is shown in Figure 11, and a complete section in Figure 12.

Figure 11. The geometric model of the assembly, the visible portion in the image is represented by compact bone (a),
trabecular bone (b), and crown (c).

Figure 12. The longitudinal section of the system, composed of bone portions represented by compact bone, trabecular
bone, the implant (d) fixed along the two portions of bone, the clamping screw (e), blunt (f), and crown.

All components were modeled respecting all elements and technical details (threads, taper-
ings, releases, etc.).

The assembly was designed to transmit the mastication force from the crown to blunt and then
to the upper part of the implant; mastication force transmission mechanism does not intervene
in any threaded part [31].
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Figure 16. Simplified FE model (cylindrical mandible portion, implant, crown).

Usually, when a problem is to be modeled, first, simple models are created, beginning with
the geometry for a quick development, calculation, and running, considering different
scenarios (e.g., loading size, localization of loading application, etc.). Further, more compli-
cated models are created, in order to bring it as close as possible to reality. The main difference
between the two models is the easy way to construct, to handle, to run for a much shorter time,
and so on, the simpler one. But the complete model offers more accurate information, especially
the localizations of critical zones, despite the difficulty of its construction and a longer running
time.

The features of present numerical studies obtained on the two models, full (portion of
mandible) and simplified (cylindrical), are presented in Table 1.

Information about the mesh Full model Simplified model

Element size 0.4 mm 0.4 mm

Tolerance 0.02 mm 0.02 mm

Number of elements 216904 165382

Number of nodes 318030 243874

Meshing time (hh; mm; ss): 00:07:44 00:01:18

Table 1. Mesh information.

The large number of finite elements relative to the size of the implant is explained by the
existence of fine threads in the structural elements. Meshing fineness appeared as a need for
a closer-to-reality modeling of constructive forms of great finesse, as threads, releases, and so
on.

2.4.2. Material models and their characteristics

In this paragraph, the material types and the characteristics of the material are presented for
each component, namely the bone tissue (composed of trabecular bone and cortical bone),
implant, and crown.
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No. Component name Material Weight Amount

1 Crown Ceramics 0.000223658 kg 9.72426 × 10−008 m3

2 Prosthetic blunt Magnesium alloy 8.17675 × 10−005 kg 4.08837 × 10−008 m3

3 Trabecular bone Trabecular bone 0.00162148 kg 1.08099 × 10−006 m3

4 Cortical bone Mandibular cortical bone 0.000677504 kg 3.38752 × 10−007 m3

5 Implant 3.8 × 11.5 Titanium alloy Al- 4VS Ti6 0.000436557 kg 9.85725 × 10−008 m3

6 Screw Titanium alloy Al- 4VS Ti6 0.000172112 kg 3.88621 × 10−008 m3

Table 2. Data on the used materials.

Ceramics (crown)

Constant name Value Units

Elastic module 2.2059 × 10+011 N/m2

Poisson coefficient 0.22

Shear modulus 9.0407 × 10+010 N/m2

Density 2300 kg/m3

Traction resistance 1.7234 × 10+008 N/m2

Yield strength 5.5149 × 10+008 N/m2

Thermal expansion coefficient 1.08 × 10−005 /Kelvin

Thermal conductivity 1.4949 W/(m.K)

Specific heat 877.96 J/(kg. K)

Table 3. Material constants used for ceramics.

Magnesium alloy (prosthetic abutment)

Constant name Value Units

Elastic module 4.2 × 10+010 N/m2

Poisson coefficient 0.33

Shear modulus 7.7 × 10+010 N/m2

Density 2000 kg/m3

Tensile strength 4.2 × 10+008 N/m2

Yield strength 1 × 10+008 N/m2

Thermal expansion coefficient 1.5 × 10−005 /Kelvin

Thermal conductivity 24 W/(m.K)

Specific heat 590 J/(kg. K)

Table 4. Material constants used for magnesium alloy.

These data are provided in [1, 32, 33] and by the technical presentation of implants used in the
calculation. They were used as input to perform the numerical calculations.
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Figure 16. Simplified FE model (cylindrical mandible portion, implant, crown).

Usually, when a problem is to be modeled, first, simple models are created, beginning with
the geometry for a quick development, calculation, and running, considering different
scenarios (e.g., loading size, localization of loading application, etc.). Further, more compli-
cated models are created, in order to bring it as close as possible to reality. The main difference
between the two models is the easy way to construct, to handle, to run for a much shorter time,
and so on, the simpler one. But the complete model offers more accurate information, especially
the localizations of critical zones, despite the difficulty of its construction and a longer running
time.

The features of present numerical studies obtained on the two models, full (portion of
mandible) and simplified (cylindrical), are presented in Table 1.

Information about the mesh Full model Simplified model

Element size 0.4 mm 0.4 mm

Tolerance 0.02 mm 0.02 mm

Number of elements 216904 165382

Number of nodes 318030 243874

Meshing time (hh; mm; ss): 00:07:44 00:01:18

Table 1. Mesh information.

The large number of finite elements relative to the size of the implant is explained by the
existence of fine threads in the structural elements. Meshing fineness appeared as a need for
a closer-to-reality modeling of constructive forms of great finesse, as threads, releases, and so
on.

2.4.2. Material models and their characteristics

In this paragraph, the material types and the characteristics of the material are presented for
each component, namely the bone tissue (composed of trabecular bone and cortical bone),
implant, and crown.
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For an easier presentation, data are summarized in tables as follows: type of material for each
component, mass, and volume are shown in Table 2, and in Tables 3–7 are represented
characteristics of material that is used, respectively, for crown, for intermediate piece of
implant, implant, trabecular bone, and cortical bone.

Titanium alloy (implant and the screw)

Constant name Value Units

Elastic module 1.048 × 10+011 N/m2

Poisson coefficient 0.31

Shear modulus 4.1024 × 10+010 N/m2

Density 4428.8 kg/m3

Tensile strength 8.2737 × 10+008 N/m2

Yield strength 1.05 × 10+009 N/m2

Thermal expansion coefficient 9 × 10−006 /Kelvin

Thermal conductivity 6.7 W/(m.K)

Specific heat 586.04 J/(kg.K)

Hardening factor
(0.0–1.0; 0.0=isotropic; 1.0=kinematic)

0.85

Table 5. Material constants used for titanium alloy.

Trabecular bone (mandible portion)

Constant name Value Units

Elastic module 1.8 × 10+008 N/m2

Poisson coefficient 0.3

Density 1500 kg/m3

Tensile strength 2 × 10+007 N/m2

Yield strength 1.8 × 10+007 N/m2

Table 6. Material constants used for trabecular bone.

Cortical bone (mandible portion)

Constant name Value Units

Elastic module 1.8 × 10+010 N/m2

Poisson Coefficient 0.25

Density 2000 kg/m3

Tensile strength 1.5 × 10+008 N/m2

Yield strength 1.3 × 10+008 N/m2

Table 7. Material constants used for cortical bone (mandible portion).
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2.4.3. Contact modeling

In this analysis, we considered a model as close to real conditions as possible. In this regard,
we paid special attention to the modeling of contact.

Contact zones are the threaded portions of the implant, mandibular segment, and screw.
Contact phenomenon in these areas is modeled by special finite elements—contact elements,
according to the actual behavior [33].

The contact model was used between adjacent surfaces of the threaded zones without allowing
them for interpenetrating. In this way, up to seven pairs of contact surfaces were defined.

This contact modeling corresponds to a complete osseointegration, which corresponds to a
period of implant analysis of more than 6 months after its insertion.

2.5. Boundary conditions

In general, structural analysis, boundary conditions are set in displacements and/or forces in
those regions where these entities of the structure are considered to be known [6, 8].

These regions are considered restricted to remain fixed (if they have null displacements
and/or rotations) during the numerical simulation or they may have non-zero values for
specified displacements and/or rotations.

Non-zero displacement restrictions should be placed on boundaries of model for maintaining
the balance of the solution.

Also, restrictions should be placed in nodes that are away from the region of interest, in our
case, in the vicinity of the implant. This is in order to prevent overlapping of the stress or strain
field associated with the reaction forces to the bone-implant interface.

The models created with FEM presented in this study (Figure 17, complete model; Figure 18,
cylindrical section of a simplified model), the lateral faces of bone tissue and the lower ones,
were considered without moving, namely fixed (displacements, nodes are blocked on those
faces in all directions).

Figure 17. Boundary conditions for FE model (green arrows).
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For an easier presentation, data are summarized in tables as follows: type of material for each
component, mass, and volume are shown in Table 2, and in Tables 3–7 are represented
characteristics of material that is used, respectively, for crown, for intermediate piece of
implant, implant, trabecular bone, and cortical bone.

Titanium alloy (implant and the screw)

Constant name Value Units

Elastic module 1.048 × 10+011 N/m2

Poisson coefficient 0.31

Shear modulus 4.1024 × 10+010 N/m2

Density 4428.8 kg/m3

Tensile strength 8.2737 × 10+008 N/m2

Yield strength 1.05 × 10+009 N/m2

Thermal expansion coefficient 9 × 10−006 /Kelvin

Thermal conductivity 6.7 W/(m.K)

Specific heat 586.04 J/(kg.K)

Hardening factor
(0.0–1.0; 0.0=isotropic; 1.0=kinematic)

0.85

Table 5. Material constants used for titanium alloy.

Trabecular bone (mandible portion)

Constant name Value Units

Elastic module 1.8 × 10+008 N/m2

Poisson coefficient 0.3

Density 1500 kg/m3

Tensile strength 2 × 10+007 N/m2

Yield strength 1.8 × 10+007 N/m2

Table 6. Material constants used for trabecular bone.

Cortical bone (mandible portion)

Constant name Value Units

Elastic module 1.8 × 10+010 N/m2

Poisson Coefficient 0.25

Density 2000 kg/m3

Tensile strength 1.5 × 10+008 N/m2

Yield strength 1.3 × 10+008 N/m2

Table 7. Material constants used for cortical bone (mandible portion).
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Figure 18. Boundary conditions for the simplified FE model (green arrows).

2.6. Load application

Loosing marginal bone in the peri-implantation region may be a result of excessive occlusal
forces [34]. To determine and understand this correlation, intensive research, including
engineering principles, biomechanical relationships of living tissues, and mechanical proper-
ties of bone around the implant, is necessary.

In this context, the loads setting in an FE model is an important part of the study. Each
component of the model is contributing to the final analysis after loading. In other words, from
beginning to end, all FE analysis steps contribute to the ability to extrapolate masticatory forces
in the area around the implant and prosthesis.

Masticatory forces can be forces of compression, traction, bending, and shear. Compressive
forces try to push materials into each other, the traction forces pull them apart, separate entities
and shear forces cause slides. Most detrimental forces that can increase stress around the bone-
implant interface and prosthesis are traction and shear. These forces tend to damage the
integrity of the material and cause stress concentration [2, 34].

In general, the prosthesis-implant ensemble adapts to compressive forces. Under effective
mastication, repetitive model of cyclical forces transmitted via dental implant causes load of
the peri-implant bone. This generates a stress around the ridge and prosthesis. However,
random cyclic forces of mastication are not easily simulated. Therefore, most FE studies use
axial and/or non-axial forces [35].

Non-axial loadings generate a distinctive stress particularly in the cortical bone ridge. So, for
a realistic simulation it is necessary to use a combination of vertical and/or oblique (axial and
non-axial) forces. As mentioned, oblique loads are more destructive for the peri-implant bone
region and clinically disruptive for the prosthesis.

Masticatory force size can be variable depending on age, sex, and para-functional habits, and
can vary from anterior to posterior [36]. Loadings simulating mastication forces generate stress
concentrations that must be evaluated.

The loadings applied in the present study were provided by own experimental determinations
(maximum values of masticatory forces women/men) and by information analysis from other
studies [37–39]. In this study, we used both axial and non-axial loads. More precisely, more
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sets of static loads were considered, namely axial loads, non-axial (Figure 19); axial and non-
axial (Figure 20), applied to the crown.

Figure 19. Non-axial load application (arrows indicate the application direction).

Figure 20. Axial and non-axial load application (arrows indicate the application direction).

3. Results of FEM analysis of some clinical situations of implant
prosthodontics rehabilitations

3.1. Analysis of states of stress, strain, and displacement in the implant and in the bone
tissue

Under the action of mastication forces, stress concentration increases in the prosthesis and
bone. The stress is a representation of internal forces which are acting within a deformable
body; it is a measure of the average force per unit of surface within the internal body where
forces act. These internal forces occur in response to the application of external loadings on
the considered body. Internal resistance after applying external loads cannot be measured.
Therefore, a simple method is to measure the forces applied to the cross section.

The FEM analysis of dental implants usually calculated von Mises stress (equivalent stress), a
scalar quantity (number) characterizing stress size. This is very important in formulating the
criteria of damage, plasticity, strength, and so on. This analysis is used to assess the effect of
load forces on the region in the vicinity of dental implant or crown [34].

There is the convention that specifies that positive values of stress mean traction stress, while
negative values of stress mean compressive stress.
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Figure 18. Boundary conditions for the simplified FE model (green arrows).

2.6. Load application

Loosing marginal bone in the peri-implantation region may be a result of excessive occlusal
forces [34]. To determine and understand this correlation, intensive research, including
engineering principles, biomechanical relationships of living tissues, and mechanical proper-
ties of bone around the implant, is necessary.

In this context, the loads setting in an FE model is an important part of the study. Each
component of the model is contributing to the final analysis after loading. In other words, from
beginning to end, all FE analysis steps contribute to the ability to extrapolate masticatory forces
in the area around the implant and prosthesis.

Masticatory forces can be forces of compression, traction, bending, and shear. Compressive
forces try to push materials into each other, the traction forces pull them apart, separate entities
and shear forces cause slides. Most detrimental forces that can increase stress around the bone-
implant interface and prosthesis are traction and shear. These forces tend to damage the
integrity of the material and cause stress concentration [2, 34].

In general, the prosthesis-implant ensemble adapts to compressive forces. Under effective
mastication, repetitive model of cyclical forces transmitted via dental implant causes load of
the peri-implant bone. This generates a stress around the ridge and prosthesis. However,
random cyclic forces of mastication are not easily simulated. Therefore, most FE studies use
axial and/or non-axial forces [35].

Non-axial loadings generate a distinctive stress particularly in the cortical bone ridge. So, for
a realistic simulation it is necessary to use a combination of vertical and/or oblique (axial and
non-axial) forces. As mentioned, oblique loads are more destructive for the peri-implant bone
region and clinically disruptive for the prosthesis.

Masticatory force size can be variable depending on age, sex, and para-functional habits, and
can vary from anterior to posterior [36]. Loadings simulating mastication forces generate stress
concentrations that must be evaluated.

The loadings applied in the present study were provided by own experimental determinations
(maximum values of masticatory forces women/men) and by information analysis from other
studies [37–39]. In this study, we used both axial and non-axial loads. More precisely, more
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FEM numerical calculation results are shown as diagrams in which different colors signify
areas of physical quantities considered of equal value, the minimum value areas to areas with
maximum values. In Figures 21–23, the red-colored areas represent critical areas and blue-
colored areas represent areas with the least loading.

Figure 21. von Mises stress field in the longitudinal plane section for axial force.

Figure 22. Displacement field in the longitudinal plane section for axial force.

Figure 23. Equivalent strain field in the longitudinal plane section for axial force.
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In our analysis, loads that simulate axial and non-axial type masticatory forces were consid-
ered, with a range between 20 and 140 N.

In Figures 21–23, the most favorable areas are those with minimum values of stress, strain, and
displacement, while areas with the greatest damage, high risk are characterized by higher
values.

We will present the most important results regarding the distribution of the following entities
of the study: von Mises stress field, displacement field, strain field, the safety factor (SF) for
axial loadings, non-axial loadings, and axial and non-axial loading simultaneously applied.

3.1.1. Axial loadings

When axial loadings are applied, the results concerning the stress field distribution for the
entire structure are shown in Figure 21, the displacement field in Figure 22, and the strain field
in Figure 23.

For example, Figure 21 confirms the correctness of dimensions adopted for mandibular bone
by the fact that stress in marginal areas of it is practically null.

Figures 21–23 show fields symmetry due to the application of axial loads and they were
obtained for a load value of 100 N.

We note that the case of axial loads is an ideal case, in reality this case is combined with non-
axial loads.

3.1.2. Non-axial loadings

For non-axial loadings, we present the results for the von Mises stress field (Figure 24),
displacement field (Figure 25), and strain field (Figure 26).

Figure 24. Von Mises stress field in longitudinal plane section for non-axial loadings.
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FEM numerical calculation results are shown as diagrams in which different colors signify
areas of physical quantities considered of equal value, the minimum value areas to areas with
maximum values. In Figures 21–23, the red-colored areas represent critical areas and blue-
colored areas represent areas with the least loading.

Figure 21. von Mises stress field in the longitudinal plane section for axial force.

Figure 22. Displacement field in the longitudinal plane section for axial force.

Figure 23. Equivalent strain field in the longitudinal plane section for axial force.
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Figure 25. Displacement field in longitudinal plane section.

Figure 26. Strain field in longitudinal plane section for non-axial loadings for non-axial loadings.

Figures 24–26 confirm instead the asymmetry for stress, strain, and displacement fields due
to the application of non-axial forces. Results from the figures presented here are obtained for
a non-axial load of 120 N and represent the distribution of von Mises field stress, displacements,
and strains of the entire bone-implant-crown system.

The distribution of these quantities—stress, displacements, and strains—is more suggestive if
we consider their distribution separately only for bone tissue or for implant.

Figure 27. Von Mises stress in the bone tissue.
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Thus, we present the results for the bone tissue: the von Mises stress distribution in Figure 27,
displacements distribution in Figure 28; for implant: the von Mises stress distribution in
Figure 29 and von Mises stress distribution of the implant in the longitudinal section in
Figure 30.

Figure 28. Displacements in the bone tissue.

Figure 29. Von Mises stress in the implant.

Figure 30. Von Mises stress in the longitudinal plane section of the implant.

From the results shown in Figures 27 and 28, it is observed that to obtain large displacements
and stresses, which may become critical in the upper cortical bone of the implant neck, it is
necessary to apply non-axial forces in the opposite direction.
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Figure 25. Displacement field in longitudinal plane section.

Figure 26. Strain field in longitudinal plane section for non-axial loadings for non-axial loadings.

Figures 24–26 confirm instead the asymmetry for stress, strain, and displacement fields due
to the application of non-axial forces. Results from the figures presented here are obtained for
a non-axial load of 120 N and represent the distribution of von Mises field stress, displacements,
and strains of the entire bone-implant-crown system.

The distribution of these quantities—stress, displacements, and strains—is more suggestive if
we consider their distribution separately only for bone tissue or for implant.

Figure 27. Von Mises stress in the bone tissue.
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3.1.3. Axial and non-axial loadings applied simultaneously

A more realistic simulation of masticatory forces can be achieved by the simultaneous
applications of axial (120 N) and non-axial loadings (20 N) (Figure 31). This case of application
of forces is closer to the actual situation [26].

Figure 31. The simultaneous application of axial and non-axial forces.

In this case, for instance, the displacement distribution for the whole bone-implant-crown
system is presented in Figure 32, while Figure 33 shows the distribution of displacements only
in the bone tissue.

Figure 32. Displacements in the case of application of axial and non-axial loads in the whole system.

Figure 33. Displacements in the case of application of axial and non-axial loads in bone tissue.
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The comparison of these results with those obtained in the previous paragraph is very useful,
as they allow an analysis concerning the localizations on which the forces are acting on. It
appears that, for example, the maximum von Mises stress if only non-axial loads in Section
3.1.2 is 5.197 × 108 Pa, unlike the calculations in this paragraph, the maximum value of von
Mises stress is 1.288 × 108 Pa. This fact is due to modeling of the masticatory forces which are
applied over a larger area, case in which there is lower concentration (case of Section 3.1.3). If
the application forces surface is smaller, then the maximum stress concentration is higher (case
of Section 3.1.2).

The stress is directly proportional to the force and inversely proportional to the surface area
on which the force is applied. It is important to determine the surface area on which the loads
are applied, as that fact influences considerably the calculation of maximum stress magnitude.
For example, the area of the occlusal surface on which the rehabilitation is carried out is less
than 4 mm, so that the amount of stress in much rehabilitation is in the range of MPa [40].

3.2. Safety factor determination

The CosmosWorks program has a section destined for determining the distribution of the
factor of safety (FOS) or safety factor as a ratio between allowable stress limit values and actual
stress values obtained by FEM calculation [22]. If SF < 1, the stress level is higher than the
material limit and the structure is likely to fail [22].

Images are suggestive and may indicate the need for constructive appropriate solutions to
eliminate dangerous areas that have a low safety factor.

Figures 34 and 35 present safety factor distributions for implant determined by the von Mises
method and Tresca, respectively, in the case of axial loading, and in Figures 36 and 37, the
safety factor distributions for implant, determined by the von Mises and Tresca method in the
case of non-axial loads, respectively.

Figure 34. Safety factor distributions in the longitudinal section, von Mises criterion, axial load.
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3.1.3. Axial and non-axial loadings applied simultaneously

A more realistic simulation of masticatory forces can be achieved by the simultaneous
applications of axial (120 N) and non-axial loadings (20 N) (Figure 31). This case of application
of forces is closer to the actual situation [26].

Figure 31. The simultaneous application of axial and non-axial forces.

In this case, for instance, the displacement distribution for the whole bone-implant-crown
system is presented in Figure 32, while Figure 33 shows the distribution of displacements only
in the bone tissue.

Figure 32. Displacements in the case of application of axial and non-axial loads in the whole system.

Figure 33. Displacements in the case of application of axial and non-axial loads in bone tissue.
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Figure 35. Safety factor distributions in the longitudinal section, Tresca criterion, axial load.

Figure 36. SF distribution in longitudinal section, the von Mises criterion, non-axial loads.

Figure 37. SF distribution in longitudinal section, the criterion Tresca, non-axial loads.
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From these figures, the obtained results show that the most strained zone is the contact area
of the crown and fine thread parts from the cortical bone area (red-colored areas in Figures 34
and 35). Between the two alternative calculations, there are small differences, both in terms of
factor value and in terms of its distribution.

A suggestive description of the SF distribution can be achieved by considering the bone tissue
only (Figure 38).

Figure 38. SF distribution in the bone tissue, Tresca criteria for non-axial loads.

From the obtained results of Figures 36, 37 and 38, asymmetry is observed due to the non-axial
forces application, and also an area with very low safety factor in cervical bone area adjacent
to the implant neck, on opposite application of oblique force.

4. Discussions

3D FEM analysis is very efficient for assessing the biomechanical behavior of a structure made
of bone, implant, and crown under various loading conditions. In the past four decades,
numerous studies have shown that FEM applied in dentistry is a very successful method used
to investigate critical issues related to stress distribution [41]. Using detailed 3D models may
be extremely useful in understanding the critical issues related to choosing the rehabilitation
and application of procedures.

Results of a FEM analysis cannot be implemented directly in clinical situations, but it can
design a model so as to simulate a real situation as well as possible [42]. Some limitations of
the study using FEM are, however, the adoption of simplifications and assumptions.

FEM analysis should be interpreted with care. In most cases, the numerical studies of oral
implantology use isotropic material, and not orthotropic, or anisotropic, as would be plausible
[43].

On the other hand, the model by FEM is a static situation at a moment of loading application
and not an actual clinical situation. In reality, structure loading is rather dynamic and cyclical.
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Figure 35. Safety factor distributions in the longitudinal section, Tresca criterion, axial load.

Figure 36. SF distribution in longitudinal section, the von Mises criterion, non-axial loads.

Figure 37. SF distribution in longitudinal section, the criterion Tresca, non-axial loads.
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Materials used in various branches of dentistry are supposed isotropic, homogeneous, and
elastic, and so remain after loadings, which do not reflect the real situation [43, 44]. For
example, periodontal ligament has non-linear mechanical properties and bone tissue is
heterogeneous. The numerical results obtained should be more precise and rigorous if the
material would be considered anisotropic and inhomogeneous, but they would lead to
complex mathematical calculations on one hand, but more difficult, it would require more
complicated laboratory experiments to determine material constants, especially for materials
of living tissue type [45].

The results obtained by FEM use von Mises plasticity criterion, which is used in engineering
rather for ductile material, for which the compression stress is equal to the traction stress as
steel and aluminum. By contrast, brittle materials such as ceramics, cements, or composites
resins had a compressive strength value significantly greater than the tensile strength [7].

The structure response is different under the action of asymmetric loads. When the structure
is loaded compressively, no significant displacements occur due to higher compressive
strength. The situation is different when loading is asymmetrical and when traction stress
occurs. When a further lateral load is applied, traction stress is generated in areas with higher
values than when vertical loads are applied in the same areas [43].

An increase in load does not cause a change in the stress distribution, only an increase in values.
A loading that a structure is subjected can cause micro-cracks in certain parts of the structure,
but not an immediate rupture [36].

Most dental breaks of used materials are caused by traction stress. A prevention of this
phenomenon can be avoided by adjusting the occlusal surfaces. Masticatory forces vary
between 11 and 150 N, while the maximum value of force is 200 N anterior, 350 N posterior,
and 1000 N in bruxism [46, 47].

New developments in computer technology and modeling techniques make FEM a reliable
and accurate approach in dealing with biomechanical applications.

In clinical practice, it may be considered that as these applications are being made by computer,
assumptions and critical limitations can clearly affect the application of these results on a real
scenario. Another aspect of the analysis by FEM is overemphasis results, due to the simplifi-
cation applied to simulation models.

Although usually an advanced computing technology is used to obtain numerical results, there
are many factors that affect clinical features such as macro- and micro-design, material
properties, loading conditions, and boundary conditions.

Consequently, correlating the obtained FEM results with preclinical and clinical studies of long
duration can help to validate results obtained by numerical simulations.

Note that several versions of meshing were created, to a fineness of it that does not lead to
errors in the solution 3.5% higher than similar studies conducted by other authors [3].

Loading simulations must be as realistic as possible, containing simultaneous axial forces and
non-axial [26, 29].

Perusal of the Finite Element Method258



Results from our FEM analysis are consistent with data from the literature for similar models
[48, 49]. Regarding optimizing dental implants, the following can be mentioned [50, 51]:

– Placing the implant should be done with caution so this would be as much as possible in the
cortical bone area, as strain and stress values in the trabecular bone zone is very small, they
may cause atrophy in the surrounding area.

– The neck of the implant should be long enough so that it departs from the soft tissue and any
implant adherence has no effect on the mucous membrane. Any inflammation of the soft tissue
and/or marginal bone resorption can jeopardize the stability of the implant.

– The neck of the implants should be quite robust, since the maximum stress concentrations
occur in the neck of the implant. If the implant is not quite strong in this region, it can affect
the integrity of the implant.

– There is a high risk of overload in the mesial and distal areas. This should be considered in
patients where there is a narrow ridge of bone.

– Since loading does not necessarily mean it has overcome bone resistance, continuous loading
more likely causes fatigue damage (micro-cracks in bone, marginal bone resorption). From a
mechanical point of view, the presence of bone defects seems disadvantageous due to lack of
bone support. Instead, the peri-implant bone stresses and strains are not only depending on
the in vivo loading but also determined by bone quality (mechanical properties of bone) and
amount (thickness of the cortical bone, density of the trabecular bone), periodontal state, oral
hygiene, and other factors that may play an important role in marginal bone remodeling.

5. Conclusions

The present study constitutes a FEM calculation of stress, displacement, and strain in implant
and surrounding bone, which is used to assess risk factors from a biomechanical point.

FEM studies have certain advantages over clinical studies, preclinical, and in vitro. First,
patients are in no way affected by the application of new materials and new treatment that
have not been previously tested. In the biomedical field, FEM is an important tool because it
avoids the need for a traditional specimen, instead using a mathematical model that eliminates
the need for a large number of teeth. FEM analysis helps in preparing the design, indicates the
right materials, or a combination therefore to be used in various load conditions to reduce
material consumption and/or failure of the clinical practice.

FEM analyses are useful for clinicians, although they require additional time to work, but they
are a useful tool in predicting the implant choosing: type, shape, size. We believe that in the
future, it will develop further, being available and accessible to a large number of doctors.

FEM simulations can be extended in numerous directions, such as parametric studies for the
key factors involved in the analysis of the success/failure of the dental implant treatments; the
analysis of the implant prostheses: bridges on the implants, connected crowns, and individual
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Materials used in various branches of dentistry are supposed isotropic, homogeneous, and
elastic, and so remain after loadings, which do not reflect the real situation [43, 44]. For
example, periodontal ligament has non-linear mechanical properties and bone tissue is
heterogeneous. The numerical results obtained should be more precise and rigorous if the
material would be considered anisotropic and inhomogeneous, but they would lead to
complex mathematical calculations on one hand, but more difficult, it would require more
complicated laboratory experiments to determine material constants, especially for materials
of living tissue type [45].

The results obtained by FEM use von Mises plasticity criterion, which is used in engineering
rather for ductile material, for which the compression stress is equal to the traction stress as
steel and aluminum. By contrast, brittle materials such as ceramics, cements, or composites
resins had a compressive strength value significantly greater than the tensile strength [7].

The structure response is different under the action of asymmetric loads. When the structure
is loaded compressively, no significant displacements occur due to higher compressive
strength. The situation is different when loading is asymmetrical and when traction stress
occurs. When a further lateral load is applied, traction stress is generated in areas with higher
values than when vertical loads are applied in the same areas [43].

An increase in load does not cause a change in the stress distribution, only an increase in values.
A loading that a structure is subjected can cause micro-cracks in certain parts of the structure,
but not an immediate rupture [36].

Most dental breaks of used materials are caused by traction stress. A prevention of this
phenomenon can be avoided by adjusting the occlusal surfaces. Masticatory forces vary
between 11 and 150 N, while the maximum value of force is 200 N anterior, 350 N posterior,
and 1000 N in bruxism [46, 47].

New developments in computer technology and modeling techniques make FEM a reliable
and accurate approach in dealing with biomechanical applications.

In clinical practice, it may be considered that as these applications are being made by computer,
assumptions and critical limitations can clearly affect the application of these results on a real
scenario. Another aspect of the analysis by FEM is overemphasis results, due to the simplifi-
cation applied to simulation models.

Although usually an advanced computing technology is used to obtain numerical results, there
are many factors that affect clinical features such as macro- and micro-design, material
properties, loading conditions, and boundary conditions.

Consequently, correlating the obtained FEM results with preclinical and clinical studies of long
duration can help to validate results obtained by numerical simulations.

Note that several versions of meshing were created, to a fineness of it that does not lead to
errors in the solution 3.5% higher than similar studies conducted by other authors [3].

Loading simulations must be as realistic as possible, containing simultaneous axial forces and
non-axial [26, 29].
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crowns on the implants, in order to formulate exclusion criteria regarding the success of one
of the therapeutic alternatives; comparative analysis of the various models of implants in terms
of their stability and highlighting the factors involved in it.
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of their stability and highlighting the factors involved in it.
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