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Zusammenfassung

Das Standardmodell der Teilchenphysik hat sich als verlässliche Theorie bewährt, um Wech-
selwirkungen elementarer Teilchen zu beschreiben. Jedoch sind viele Fragen bezüglich des
Higgs-Sektors und der zugehörigen elektroschwachen Symmetriebrechung weiterhin unbeant-
wortet, obwohl (oder gerade weil) ein leichtes Higgs-Boson entdeckt wurde. Die Streuamplitu-
de zweier schwacher Vektorbosonen ist im Standardmodell zusätzlich durch den Higgs-Boson
Austausch unterdrückt. Daher können selbst geringe Beiträge neuer Physik zu großen Ab-
weichungen des Vektorboson-Streuprozesses führen. Um mögliche Abweichungen durch neue
Physik modellunabhängig zu analysieren, können höherdimensionale Operatoren einer effek-
tiven Feldtheorie verwendet werden.

In dieser Doktorarbeit wird ein kompletter Satz von Dimension sechs und acht Operatoren,
welche den Streuprozess zweier Vektorbosonen direkt beeinflussen, systematisch aufgestellt
und diskutiert. Unter der Annahme, dass die neue Physik des Higgs/Goldstoneboson Sek-
tors im Hochenergielimes vom Fermionen- und Eichsektor entkoppelt, wird der Einfluss des
Dimension sechs Operators LHD und der Dimension acht Operatoren LS;0 und LS;1 auf
den Vektorboson Streuprozess separat untersucht. Eine Betrachtung mithilfe konventioneller
effektiver Feldtheorie wird jedoch die Unitarität der Streumatrix ab einer gewissen Energie
verletzen. Um eine Analyse der Dimension acht Operatoren konsistent mit quantenmecha-
nischen Grundsätzen durchzuführen, wird das T-matrix Unitarisierungsverfahren entwickelt.
Da dieses Schema theoretische Vorhersagen, welche nicht die Unitarität verletzen, invariant
lässt, kann dieses Unitarisierungsverfahren präventiv zu jedem beliebiges Modell eingesetzt
werden.

Die effektive Feldtheorie wird zusätzlich um generische Resonanzen, die an den Higgs/Gold-
stoneboson Sektor koppeln, erweitert und zwar den Isoskalar-Skalar, den Isoskalar-Tensor,
den Isotensor-Skalar und den Isotensor-Tensor. Im Falle der Tensorresonanzen wird der
Stückelberg-Formalismus benutzt, um die einzelnen Freiheitsgrade des Tensors und deren
Einfluss auf die Vektorboson-Streuamplitude separat zu untersuchen. Bei einem Vergleich
mit der effektiven Theorie bei niedrigen Energien, wo die Resonanzen ausintegriert sind,
zeigt sich die Notwendigkeit der Einführung dieser zusätzlichen Freiheitsgrade. Für verschie-

iii



dene Parametersätze werden die Verteilungen der Streuung zweier Vektorboson am Large
Hadron Collider bei einer Schwerpunktsenergie von

p
s D 14TeV mit Hilfe des Monte-Carlo

Generators WHIZARD berechnet.

Im Rahmen der Doktorarbeit werden die Resonanzmodelle und die besprochenen Operatoren
in der effektiven Feldtheorie inklusive der T-matrix Unitarisierungsverfahren in WHIZARD

implementiert. Mit den WHIZARD Modellen SSC 2, SSC AltT und SM ul werden somit
Werkzeuge für eine phänomenologische Analyse neuer Physik im Goldstoneboson/Higgs-
Sektors bereit gestellt, um Vektorboson-Streuprozesse zu untersuchen.
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Abstract

The Standard Model of particle physics has proved itself as a reliable theory to describe
interactions of elementary particles. However, many questions concerning the Higgs sector
and the associated electroweak symmetry breaking are still open, even after (or because)
a light Higgs boson has been discovered. The 2 ! 2 scattering amplitude of weak vector
bosons is suppressed in the Standard Model due to the Higgs boson exchange. Therefore,
weak vector boson scattering processes are very sensitive to additional contributions beyond
the Standard Model. Possible new physics deviations can be studied model-independently
by higher dimensional operators within the effective field theory framework.

In this thesis, a complete set of dimension six and eight operators are discussed for vector
boson scattering processes. Assuming a scenario where new physics in the Higgs/Goldstone
boson decouples from the fermion-sector and the gauge-sector in the high energy limit, the
impact of the dimension six operator LHD and dimension eight operators LS;0 and LS;1 to
vector boson scattering processes can be studied separately for complete processes at particle
colliders. However, a conventional effective field theory analysis will violate the S-matrix
unitarity above a certain energy limit. The direct T-matrix scheme is developed to allow a
study of effective field theory operators consistent with basic quantum-mechanical principles
in the complete energy reach of current and future colliders. Additionally, this scheme can
be used preventively for any model, because it leaves theoretical predictions invariant, which
already satisfies unitarity.

The effective field theory approach is further extended by allowing additional generic reso-
nances coupling to the Higgs/Goldstone boson sector, namely the isoscalar-scalar, isoscalar-
tensor, isotensor-scalar and isotensor-tensor. In particular, the Stückelberg formalism is used
to investigate the impact of the tensor degree of freedoms, separately. The necessity of these
additional resonance, especially for weakly coupled resonances, are manifest by comparing
vector boson scattering distributions of the resonance model and of the corresponding effective
field theory operators, where the resonance is integrated out. For different parameter sets,
the distributions of vector boson scattering processes for the large hadron collider at center
of mass energy of

p
s D 14TeV are calculated with the Monte-Carlo generator WHIZARD.
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As part of this thesis, the resonance model and the effective field operators including the
T-matrix unitarization scheme are implemented in WHIZARD. With the WHIZARD models
SSC 2, SSC AltT and SM ul, a tool-set is provided to study new physic in the Goldstone
boson/Higgs sector within complete experimental analysis at the large hadron collider or
other future colliders.
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Chapter 1

Introduction

The Standard Model of particle physics has proven to be a very successful quantum field
theory for describing processes on an elementary level. Three of four known forces, the
electromagnetic, the weak and the strong forces, are described by the Standard Model. These
forces are mediated by gauge bosons, the photon 
 for the electromagnetic force, the vector
boson W ˙ and Z for the weak force and the gluons for the strong force. Their interactions
are formulated within the gauge symmetry group

SU.3/C � SU.2/L � U.1/Y : (1.1)

In addition to bosons, the Standard Model describes fermions as the elementary components
of matter. The gauge group quantum numbers and representations of the three flavor
generations of quark field U D .u; c; t/, D D .d; s; b/, and lepton fields eE D .e; �; �/,
N D

�
�e; ��; ��

�
are listed in Table 1.1. Whereas, the gauge bosons transform according to

the adjoint representation of their associated gauge group and are singlets under the other
gauge groups.

To formulate a Lagrangian for the theory which is invariant under local transformations
of the Standard Model gauge group (1.1), it is necessary that all particles are massless
due to the chiral nature of the particle representations. However, a scheme to introduce
massive particles into a gauge theory was first proposed in [1–3]. In particular, an additional
elementary scalar particle, the Higgs boson, with non-vanishing vacuum expectation value
was added to the Standard Model. Its vacuum expectation value spontaneously breaks the
electroweak symmetry group SU.2/L � U.1/Y to the electromagnetic U.1/em and generates
masses for all charged fermions and the weak vector bosons W ˙ and Z.

Although, the Higgs plays an important role in the Standard Model, its mass was unknown
for a long time. Even its existence was not proved. A positive result for the Higgs boson
search was achieved only three year ago in 2012; the experiments ATLAS [4] and CMS [5] at
the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) announced the discovery
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1. Introduction

field SU.3/C SU.2/L U.1/Y

Q D

�
UL
DL

�
3 2 C1=6

L D

�
NLeEL
�

1 2 �1=2

UR N3 1 C2=3

DR
N3 1 �1=3eER 1 1 +1

Table 1.1.: The representation of the strong SU.3/C and weak SU.2/L for the fermion fields
and their hypercharge U.1/Y .

C C
H

D O .1/

O
�
E4
�

O
�
E4
�„ ƒ‚ …

O.E2/

O
�
E2
�

Figure 1.1.: Vector boson (W ˙; Z ) scattering: Higgs contribution cancels E2 energy depen-
dence of both gauge boson self interaction diagrams.

of a Higgs-like resonance with a mass of 125 GeV. It has to be a boson, because it was
discovered in the photon-photon and two weak vector boson decay channels. More detailed
experimental studies of the spin of the new resonance favor the Standard Model assumption
that the new resonance has spin zero [6, 7]. Therefore, this resonance can be identified as
the weakly interacting scalar Higgs boson predicted by the Standard Model.

Further insights into the Higgs boson properties and its role in a fundamental theory can
be achieved by studying the quasi-elastic scattering of two weak gauge bosons. The Higgs
contribution is crucial for the tree level Standard Model amplitude for this process. Without
the Higgs, the vector boson scattering amplitude at high energies would be dominated by the
scattering of the longitudinal weak vector bosons W ˙ and Z, which are associated with the
Goldstone bosons of the broken electroweak symmetry. Each weak gauge boson self interaction
diagram shown in Figure 1.1 will rise with the energy as E4. Summing over all vector boson
self interaction contributions will cancel the leading energy dependence, but will leave an
amplitude proportional to E2=v2 at leading order, where v is the electroweak energy scale
v D 246 GeV. Therefore, the electroweak interaction would become strong in the TeV range.
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Figure 1.2.: pp ! W CW Cjj at
p
s D 14TeV.

Differential cross section as function of the invariant mass of the final state on-
shell Ws calculated with WHIZARD using vector boson fusion cuts:
Mjj > 500 GeV; �yjj > 2:4; p

j
T > 20 GeV; j�j j > 4:5.

However, the Standard Model Higgs contribution to the Goldstone scattering amplitude
induces an exact cancellation of the rising energy behavior and leads to an asymptotically
small tree level amplitude proportional to m2

h
=v2 D 0:25. In other words, the Higgs exchange

suppresses the longitudinal vector boson scattering amplitude, and instead of a strongly
interacting model, the Standard Model describes a weakly interacting Higgs sector.

At the LHC, the Standard Model like vector boson scattering of two vector bosons was
experimentally confirmed in proton-proton collisions just recently [8, 9]. Due to its small
cross section, as shown in Figure 1.2, the sensitivity for vector boson scattering is not very
high at the LHC. Further upgrades for the LHC and future linear colliders, including the
International Linear Collider, will improve the accuracy and energy reach of the measurement
[10].

Because the contribution of longitudinally polarized weak vector bosons is highly suppressed,
the complete vector boson scattering amplitude is dominated by the transverse degrees of
freedom of the gauge boson W ˙ and Z. Therefore, the longitudinal channel is sensitive to a
possible excess, which could be caused by new physics in the electroweak breaking sector.

In this thesis, a tool set is introduced to execute a phenomenological study for full vector
boson scattering processes at particle colliders. Starting point is the discussion of suitable
representations of the electroweak breaking sector and the definition of the corresponding
Lagrangian in Chapter 2. With a chosen representation, a complete basis of effective field

3



1. Introduction

theory operators is then defined in Chapter 3, which parameterizes the low energy behavior
of possible new physics contributions without knowledge of the full theory. Considering
fundamental mathematical properties of the scattering matrix and difficulties of separating
low-energy from high-energy scattering observables at hadron colliders, the phenomenologi-
cal description of vector boson scattering processes should smoothly interpolate low-energy
behavior and any possible high-energy asymptotic. For a meaningful analysis of the experi-
mental data, searching for new physics contributions, the parameterized high-energy behavior
has to be consistent with the universal principles of quantum physics. As it will be discussed
at the end of Chapter 3, a naive low energy effective field theory analysis will not fulfill this
demand. Instead, a framework, namely the direct T-matrix unitarization, is presented in
Chapter 4, which will accompany any generic model to provide an interpolation between
low-energy effects and the high energy behavior. As part of this thesis, the T-matrix uni-
tarization scheme is implemented in the Monte Carlo generator WHIZARD[11, 12] for vector
boson scattering processes in the presence of a light Higgs. WHIZARD can then generate
events, which can be used in phenomenological studies of realistic scattering processes with
fermions as external probes of off-shell vector bosons. In Chapter 4, an extended approach
for modeling new physics contributions in vector boson scattering is introduced by including
generic resonances. Finally, a conclusion is presented at the end of this thesis.

4



Chapter 2

Representations of the Standard Model

The theoretical description of weak particle interactions starts with the specification of a
Lagrangian which includes the particle content and their interactions. There is some freedom
of choice in the definition of a Lagrangian. These choices are only of mathematical nature
and will not affect experimental observables such as cross sections. Nevertheless, the use of
a particular representation can be more or less beneficial for the calculation and discussion
of those observables.

A model which describes the spontaneous breaking of the electroweak symmetry does not
necessarily need an elementary Higgs. Instead, the breaking of the electroweak symmetry
group can originate from strongly interacting physics in analogy to chiral symmetry breaking
by vacuum condensates in quantum chromodynamics (QCD). A scalar Higgs boson can
then be additionally added as an electroweak singlet to the Lagrangian. It is therefore
formally separated from the Goldstone boson sector in contrary to the usual Standard Model
representation, where it is embedded with the Goldstone bosons in a linear representation as
Higgs doublet. This linear representation is favorable to describe a weakly interacting Higgs
sector.

Both representations, the nonlinear and the linear Higgs doublet, have some beneficial fea-
tures for the analysis of vector boson scattering. In this thesis, the linear Higgs matrix
representation is introduced to combine these advantageous features into one representation,
which is particularly suited to analyze weak vector boson scattering processes.

Some basic definitions for the electroweak gauge theory will be given in this chapter. Three
different representation, the nonlinear and the linear Higgs doublet representation and the
linear Higgs matrix representation are considered. The parts of the Lagrangian which directly
contribute to the vector boson scattering process will be discussed as well. The fermionic
sector and the strong interaction have no leading order impact on vector boson scattering
and will therefore not be reviewed. Descriptions of these can be found in many textbooks of
quantum field theory, for example [13, 14].
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2. Representations of the Standard Model

2.1. Basic Definitions

Interactions of weak vector bosons are described by the electroweak SU.2/L � U.1/Y gauge
group. The generators in the fundamental representation of the SU.2/L are given by the Pauli-
matrices �i (i D 1; 2; 3) and the hypercharge Y represents the UY .1/ generator. Furthermore,
the interaction of each gauge group is described by gauge fields, W �

i and B� for SU.2/L
and U.1/Y , respectively. A simplification of the notation is achieved by introducing the
definitions

W�
� W

�
i

�i

2
; (2.1a)

B� �
Y

2
B�: (2.1b)

For a gauge theory the Lagrangian has to be invariant under local gauge transformations.
These gauge transformations, VL for SU.2/L and VY for U.1/Y , are defined by arbitrary,
smooth complex functions of space-time ˛i .x/ and ˇ .x/ as

VL.x/ D exp
�
�i˛i.x/

�i

2

�
D 1 � i˛i.x/

�i

2
CO.˛2i /; (2.2a)

VY .x/ D exp

�
�i
Y

2
ˇ.x/

�
D 1 � i

Y

2
ˇ.x/CO.ˇ2/: (2.2b)

To fulfill gauge invariance the covariant derivative, instead of the usual partial derivative,
has to be used. Within this definition a first choice arises. In line with the definition in
the Monte Carlo generator WHIZARD [15] (see Appendix (C.2.1) for details) the covariant-
derivative-sign-convention ’–’ (“CD–”) is chosen, i.e.

D�W D @
�
� igW�; (2.3a)

D�B D @
�
� ig0B�; (2.3b)

D� D @� � igW�
� ig0B�: (2.3c)

The formulation of gauge invariant kinetic terms for gauge bosons is simplified by introducing
the field strength tensors

W��
� W

��
i

�i

2
D C

i

g

�
D�W ;D

�
W

�
D
�
@�W �

k � @
�W

�

k
C g"ijkW

�
i W

�
j

� �k
2

D @�W� � @�W� � ig
�
W�;W�

�
; (2.4a)

B�� �
Y

2
B�� D C

i

g0

�
D�B ;D

�
B

�
D
Y

2
.@�B� � @�B�/

D @�B� � @�B�: (2.4b)

Therefore, a minimal Lagrangian for the gauge bosons can now be written as

Lkin D�
1

2
tr
�
W��W

��
�
�
1

2
tr
�
B��B

��
�
: (2.5)
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2.2. Nonlinear Realization of Electroweak Symmetry Breaking

Besides the kinetic terms for the gauge bosons W i and B, the Lagrangian (2.5) also contains
triple and quartic gauge boson self interactions.

Experimental results show that the non-zero mass eigenstates of W and B, i.e. the weak
vector bosons W ˙ and Z, have different masses. However, mass terms for the weak vector
bosons are not included in (2.5). The easiest way to write down mass terms for for W ˙ and
Z is to simply add a mass term of the form

Lmass D m
2
ZZ�Z

�
Cm2WW

C
� W

�� ; (2.6)

but these terms break the SU.2/L�U.1/Y gauge symmetry explicitly and violate the demand
that the Lagrangian should be invariant under gauge transformations (2.2).

A way to solve this dilemma has been found with the Higgs mechanism for the electroweak
theory [1–3, 16–19]. Only the ground state of the theory breaks the symmetry, but the
Lagrangian itself maintains the electroweak symmetry. The electromagnetic and weak in-
teractions can be described correctly by an unified electroweak symmetry at high energies,
which is spontaneously broken at the electroweak energy scale v. This has the advantage,
that less free parameters are needed for the theoretical description and the renormalizability
of the theory with massive vector bosons is guaranteed [20]. Spontaneous symmetry breaking
of the electroweak symmetry group

SU.2/L � U.1/Y ! U.1/em (2.7)

gives rise to three Goldstone bosons wi . These are massless spin zero fields and mix with
the gauge fields W i and B. Diagonalizing this mixing, mass eigenstates can be found, where
the Goldstone bosons are absorbed by the gauge bosons and become the longitudinal degree
of freedom of the massive mass eigenstates W ˙ and Z.

The mechanism originally proposed by Higgs uses a scalar field acquiring a vacuum expec-
tation value [1]. Nevertheless, a gauge invariant Lagrangian can also be written down with
a very heavy or non-elementary Higgs field. A nonlinear realization of the Higgs sector is
necessary for this scenario.

2.2. Nonlinear Realization of Electroweak Symmetry

Breaking

Nonlinear representations have been originally introduced in particle physics for chiral sym-
metry breaking [21], where the chiral symmetry is broken by the strong dynamics of quantum
chromodynamics.

Possible scenarios of electroweak symmetry breaking by a heavy Higgs or a new strong
interacting sector (non-elementary Higgs) analogous to chiral symmetry breaking have been
investigated. For these cases a nonlinear realization of the electroweak breaking sector has
been introduced [22, 23]. If the Higgs is heavy, it can be decoupled from the Goldstone boson
sector and integrated out.
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2. Representations of the Standard Model

2.2.1. The Goldstone Boson Sector

The Goldstone boson sector is represented by an auxiliary dimensionless field

U D U

�
w1

v
�1;

w2

v
�2;

w3

v
�3
�
: (2.8)

It is a nonlinear function of all three electroweak Goldstone bosons wi and can be represented
as a unitary 2 � 2-matrix. The associated electroweak breaking scale v for the Goldstone
bosons is explicitly contained in the definition (2.8). Under the gauge transformation (2.2)
the field U transforms as

U.wi.x//! VL.x/
�U.wi.x//VY .x/: (2.9)

A possible and convenient nonlinear representation of the Goldstone boson sector is the
exponential representation [24, 25]

U .x/ D exp

�
�i
wi.x/

v
� i
�
: (2.10)

This representation is used for arbitrary, strongly interacting models within a chiral La-
grangian. However, many different representations are used in the literature. For example,
another nonlinear representation is

U .x/ D

r
1 �

wi.x/wi.x/

v2
C i

wi.x/

v
� i ; (2.11)

which is used after integrating out a heavy strongly interacting Higgs within a linear repre-
sentation of the Higgs sector in [22].

To formulate the interaction of the auxiliary field in a more general approach, the auxiliary
field U is extended to the field U0 by including non-unitary 2� 2-matrices. This field couples
to the gauge bosons through the covariant derivative

D�U � @�U � igW�U : � ig0UB� (2.12)

The covariant derivative is needed for a gauge invariant formulation of the kinetic term

LU;kin D
v2

4
tr
h�
D�U

0
��
D�U0

i
: (2.13)

To generate mass terms with the kinetic term for the weak vector bosons, the operator

tr
h
U0�U0

i
has to receive a nonzero vacuum expectation value. This is achieved by adding

the potential

LU;pot D
1

4
�

�
v2

4
tr
h
U0
�
U0
i
�
�2

�

�2
; (2.14)
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2.3. The Linear Matrix Representation

which is invariant under SU.2/Y �U.1/L. Therefore, a nonzero vacuum expectation value is
generated for the composite operator�

1

2
tr
h
U0
�
.x/U0.x/

i�
D 1: (2.15)

The field U0 is normalized in such a way, that it will give rise to the correct masses of the W ˙

and Z gauge bosons 1. Additionally, the equation (2.15) results in an infinite degeneracy of
equivalent ground states for U0 [26]. A convenient choice for the ground state to obtain the
spontaneous breaking of the electroweak symmetry group to the electromagnetic U.1/em is˝

U0.x/
˛
D 1 ; for x !1: (2.16)

However, there is an additional degree of freedom in the fluctuation of the composite fieldD
1
2
tr
h
U0�.x/U0.x/

iE
. This degree of freedom can be represented by introducing an additional

particle, the Higgs boson.

2.2.2. Introduction of the Higgs

Contrary to the scenarios with non or heavy Higgs, a scalar resonance with mass of the same
order of W and Z mass has been detected in 2012 [4, 5]. Therefore, a light Higgs boson has
to be included. The most generic way to introduce the Higgs boson h into the model is by
rewriting the Goldstone boson sector as

U0 �

 
1C

1X
iD1

fh;i

�
h

v

�i!
U ; (2.17)

with independent couplings fh;i and U�U D 1. Without fine-tuned Higgs couplings in (2.17),
the amplitude of weak vector boson scattering is dominated by longitudinal vector boson
scattering and will rise with the center of mass energy s=v2. Therefore, the validity of
the theory is restricted to a cut-off scale �c � 4�f , whereas no cut-off scale is present in
the linear Higgs-realization. This representation automatically provides the correct Higgs
coupling strength, that will suppress the V V ! V V amplitude at high energies [27], where
V represents the weak gauge bosons W ˙ and Z.

2.3. The Linear Matrix Representation

The Higgs can be directly included into the auxiliary field U0. In this case, the field U0 can
be represented by the linear form

U0 D �i
wi

v
� i C

h

v
1 : (2.18)

1This will be discussed in more detail for the linear Higgs matrix representation in Section 2.3
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2. Representations of the Standard Model

To distinguish the nonlinear representation and linear representation, a linear 2 � 2 field
containing the massless Goldstone bosons w˙ D

�
w1 � iw2

�
=
p
2, w3 and the scalar Higgs h

is introduced to represent the Higgs sector

H �
1

2

�
v C h � iw3 �i

p
2wC

�i
p
2w� v C hC iw3

�
: (2.19)

This new field has similar properties as the auxiliary field U0, but its mass dimension is
one. Furthermore, the matrix representation (2.19) transforms like the auxiliary field U in
equation (2.9), namely

H.x/! VL.x/
�H.x/VY .x/: (2.20)

In the definition (2.19) the Higgs h is explicitly expanded around its vacuum expectation
value. The expectation value originates from the potential 2

LH;pot D ��
2tr
�
H�H

�
C
�

2

�
tr
�
H�H

��2
; (2.21)

where the values of the parameters �2 and � will be set to give the necessary potential for
spontaneous symmetry breaking of the electroweak group. Therefore, the expectation value
is set to the electroweak scale v. Vector boson masses are then generated by the kinetic term
of the Higgs field

LH;kin D tr
h�
D�H

��
D�H

i
: (2.22)

Within the covariant derivative of the Higgs

D�H D @�H � igW�H � ig0HB�; (2.23)

the operator Y is defined as

HY � �H�3: (2.24)

The vector bosons interact with the vacuum expectation value due to the coupling by the
covariant derivative (2.23) of the Higgs matrix field in (2.22). These interactions lead to
mass terms for the weak vector bosons,

Lmass D
1

2

v2

4

�
g2
�
W1� � iW2�

� �
W
�
1 C iW �

2

�
C
�
gW3� � g

0B�
� �
gW

�
3 � g

0B�
��
: (2.25)

It is obvious that they mix in the electroweak basis of the gauge bosons. A diagonalized
basis can be found by introducing the Weinberg angle �w as

cw � cos.�w/ D
gp

g2 C g02
and sw � sin.�w/ D

g0p
g2 C g02

: (2.26)

2 Note that terms proportional to tr
h�
H�H

�2i
can decomposed to tr

�
H�H

�2
by (A.6).
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2.3. The Linear Matrix Representation

The mass eigenstates are identified with the weak vector bosons W ˙ and Z, and can be
written as a linear combination of W �

i and B�,

W ˙� D
1
p
2

�
W�1 � iW�2

�
; (2.27a)

Z� D cwW3� � swB�: (2.27b)

Additionally, there is one orthogonal and massless eigenstate remaining, the photon

A� D swW3� C cwB�; (2.27c)

which represents the gauge boson of the unbroken Uem.1/. To get a closer look at the
electromagnetic interactions, the relations (2.27) are inverted

W1� D
1
p
2

�
W C� CW

�
�

�
; (2.28a)

W2� D
i
p
2

�
W C� �W

�
�

�
; (2.28b)

W3� D swA� C cwZ�; (2.28c)

B� D cwA� � swA�: (2.28d)

Combining equations (2.28) and (2.3) the covariant derivative can be rewritten as

D� D @� � i
g
p
2

�
W C� �

C
CW �� �

�
�
� iZ�

�
cwg

�3

2
� swg

0
Y

2

�
� iswgA�

�
�3

2
C
Y

2

� (2.29)

with �˙ D 1
2
.�1 ˙ i�2/. Representing the covariant derivative in the mass eigenstate basis

gives a better insight into interactions of the physical particles W ˙; Z and 
 . One can easily
read off the electromagnetic coupling e and its generator, the charge operator Q,

e D swg; (2.30)

Q D
�3 C Y

2
: (2.31)

As mentioned above, the focus of this thesis lies on the Higgs sector, which will be investigated
using vector boson scattering. All Standard Model interactions for vector boson scattering
are described by the Lagrangian

Lmin D�
1

2
tr
�
W��W

��
�
�
1

2
tr
�
B��B

��
�

C tr
h�
D�H

��
D�H

i
C �2tr

�
H�H

�
�
�

2

�
tr
�
H�H

��2
:

(2.32)

The coupling strengths are given by the parameters �2; �; g and g0. There are some theoretical
constraints for these parameters, especially for the Higgs potential parameters �2 and �. The
relation �2 > 0 has to be fulfilled to get a non-zero local minimum for the potential, which
will break the electroweak symmetry spontaneously. Furthermore, � has to be positive to
guarantee vacuum stability.
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2. Representations of the Standard Model

2.3.1. Tree-level Normalization

The couplings in (2.32) should be represented by physical parameters to get a better under-
standing of their scaling and interpretation. This is done by an expression of these parameters
in terms of physical quantities, like the masses of the weak vector bosons mW and mZ, the
Higgs mass mh and the electroweak scale v. The normalization will only include tree level con-
tributions. Higher order corrections result in a renormalization of those couplings and fields.
They are important for a precise calculation of the electroweak parameters [28]. However,
for simplicity they will be neglected in this thesis.

The Lagrangian (2.32) contains three degrees of freedom, which are related directly to gauge
symmetry breaking. By choosing a particular gauge called unitary gauge, the massless
Goldstone bosons can be decoupled [29, 30]. Therefore, the Goldstone boson fields can be
omitted in this gauge.

The Higgs matrix field becomes diagonal

H D
1

2

�
v C h 0

0 v C h

�
: (2.33)

Because the Operator �3 commutes with the diagonal Higgs matrix field, the covariant
derivate (2.23) can be simplified to

D�H D

�
@� � ig

�
1
p
2

�
W C� �

C
CW �� �

�
�
C

1

cw
Z�

�3

2

��
H: (2.34)

The Higgs matrix field does not interact with the photon field in unitary gauge, because it
is not charged. Using the mass eigenstate basis defined in (2.29), the Lagrangian (2.32) can
be rewritten as

Lmin D�
1

2
tr
�
W��W

��
�
�
1

2
tr
�
B��B

��
�

C
1

2
@�h@

�h �
g2

4
.hC v/2W �� W

C�
�
g2

8c2w
.hC v/2Z�Z

�

�
H 4�

8
� v�H 3

�
�

8
H 2

�
3v2 � 4

�2

�

�
� v

�

2
H

�
v2 �

�2

�

�
�
�v2

8

�
v2 � 4

�2

�

�
:

(2.35)

The parameters �;�; g2 and cw will be fixed by the physical masses of the bosons mW , mZ
and mh and the coefficients of the related kinetic terms cdH , cdW , cdB using the Lagrangian

Lfix DcdW tr
�
W��W

��
�
C cdBtr

�
B��B

��
�

C cdh@�h@
�hCm2WW

�
� W

C�
C
1

2
m2ZZ�Z

�

�
1

2
m2hh

2
C cthH:

(2.36)
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2.3. The Linear Matrix Representation

To fulfill the standard propagator definitions, the coefficients of kinetic terms have to be
cdH D �cdW D �cdB D

1
2
. A change in these coefficients would lead to different mass

definitions. Additionally, the vacuum expectation value for the physical Higgs h should
vanish, i.e. cth D 0. Comparing equations (2.35) and (2.36) results in the coefficient
relations,

0 D v2 � 2
�2

�
; (2.37a)

m2h D
�

4

�
3v2 � 4

�2

�

�
; (2.37b)

m2W D
g2v2

4
; (2.37c)

m2Z D
g2v2

4c2w
: (2.37d)

The parameters �; �; g and g0 can be traded for physical parameters by equations (2.37) and
become functions of mh; mW ; mZ and v,

� D 4
m2
h

v2
; (2.38a)

�2 D 2m2h ; (2.38b)

g2 D
4m2W
v2

; (2.38c)

c2w D
m2W
m2Z

(2.38d)

g0
2
D 4

m2Z �m
2
W

v2
: (2.38e)

The Z mass is heavier than the W mass, because of the contribution of the B-boson coupling
to the Higgs vacuum expectation value, which is proportional to g0. This results in a small
deviation between mW D 80:385˙ 0:015 GeV and mZ D 91:1876˙ 0:0021 GeV [31], which
is parametrized in the Standard Model by the Weinberg angle �w . Additional contributions
to the mass difference of the weak vector bosons beyond leading order of the Standard Model
are described by the O�-paramter,

O� �
m2W
c2wm

2
Z

: (2.39)

The Standard Model prediction, including radiative correction, is O�SM D 1:01031˙ 0:00011
and experimental data does not suggest significant deviations from this prediction [31],

O�exp

O�SM
D 1:00040˙ 0:00024: (2.40)

Therefore, new physics contributions to O� are strongly constrained. The next section will
explain how to suppress any deviation of the Standard Model O�-parameter by introducing
an additional approximate symmetry.
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2. Representations of the Standard Model

2.3.2. Custodial Symmetry

The effective operator, that models beyond Standard Model deviations from the O�-parameter,
is defined in nonlinear theories [23, 32] as

Lˇ 0 D �ˇ0
v2

8
tr
h
U�
�3

2
D�U

i
tr
h
U�
�3

2
D�U

i
: (2.41)

This term will only contribute to the two point function of the Z-boson and has to be
suppressed to agree with experimental data. Extending the electroweak symmetry SU.2/L �
U.1/Y to a chiral symmetry SU.2/L � SU.2/R will forbid this term entirely [33]. Gauge
bosons are then singlets under SU.2/R and the auxiliary field in the nonlinear representation
and the Higgs matrix field will transform as

U.x/! V
�
L .x/U.x/VR.x/ ; (2.42a)

H.x/! V
�
L .x/H.x/VR.x/ ; (2.42b)

with SU.2/ gauge transformations

VL.x/ D exp
�
�i˛i.x/

�i

2

�
D 1 � i˛i.x/

�i

2
CO.˛2i / ; (2.43a)

VR.x/ D exp
�
�iˇi.x/

�i

2

�
D 1 � iˇi.x/

�i

2
CO.ˇ2i / : (2.43b)

The vacuum expectation value of the Higgs breaks the chiral symmetry to the custodial
symmetry group

SU.2/L � SU.2/R ! SU.2/C : (2.44)

The custodial symmetry group prevents deviations from the O�-parameter beyond Standard
Model. Only the U.1/Y gauge field B contributes to SU.2/C breaking in the gauge boson
sector of the Standard Model. These contribution are proportional to

s2w D
m2Z �m

2
W

m2Z
: (2.45)

This is very small compared to deviations in the fermion sector, where the top-quark is
two orders of magnitude heavier than the bottom quark. Fermion masses originate from
the Yukawa terms, which strongly violate custodial symmetry. An introduction of custodial
symmetry in this sector is unnecessary, because even the Standard Model terms do not
conserve this symmetry.

However, the custodial symmetry will prove to be advantageous in the case of modeling
generic new physics effects to high energy vector boson scattering. This is one of the reasons
for introducing the Higgs matrix representation and not using the linear Higgs doublet repre-
sentation. The implicit custodial breaking property of the linear Higgs doublet representation
is manifest in the relation

H D
�
Q�; �

�
D
�
Q�; 0
�
C .0; �/ D H

1

2
.1C �3/CH

1

2
.1 � �3/ : (2.46)
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2.3. The Linear Matrix Representation

Using the doublet presentation for higher dimensional operators introduces SU.2/C violating
terms implicitly, whereas SU.2/C breaking is manifest in the Higgs matrix representation
by inserting the operator �3 between two Higgs fields H. As examples serves the operator
analogue to (2.41),

LF;ˇ D F 0ˇ tr
h
H�
�3

2
D�H

i
tr
h
H�
�3

2
D�H

i
: (2.47)

It can be easily seen, that the Lagrangian (2.47) is not invariant under the custodial sym-
metry (2.42). Furthermore, the effective operator LF;ˇ has dimension six in the linear
representation3 and is therefore naturally suppressed by an unknown scale �2. This scale is
included in the coupling F 0

ˇ
of(2.47), which has mass dimension �2.

A systematic discussion of effective field theory operators for vector boson scattering is given
in the next chapter. The custodial symmetry is helpful to categorize the effective field theory
operator basis.

3This is also true for the linear Higgs doublet representation.
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Chapter 3

Effective Quantum Field Theories

Contributions from physics beyond the Standard Model can be experimentally constrained in
two ways. The usual approach is to take a complete model with new particle content beyond
the Standard Model and calculate its contributions to experimental observables. However,
it is a tedious work to execute the whole calculation sequence from Feynman rules over the
Monte Carlo integration to the final data analysis for every new physics model.

Alternatively, one can quantify deviation from the Standard Model using effective couplings,
which describe low-energy effects from possible new particles. The Lagrangian has to be
defined as generic as possible to model every possible new physics effect. In [34] this is done
for triple gauge couplings1

LWWV D �e
h
igA1

�
W C

��
W ��A� �W C

�
A�W ���

�
C i�AW

C
� W

�
� A

��

C i
�A

m2W
W C��W

��
�A

��
� gA4W

C
� W

�
� .@

�A� C @�A�/

C gA5 "
����

�
W C�

�
@�W

�
�

�
A�
�
C i Q�AW

C
� W

�
�
QA��

C i
Q�A

m2W
W C��W

��
�
QA��
i

�
cwe

sw

h
igZ1

�
W C

��
W ��Z� �W C

�
Z�W ���

�
C i�ZW

C
� W

�
� Z

��

C i
�Z

m2W
W C��W

��
�Z

��
� gZ4 W

C
� W

�
� .@

�Z� C @�Z�/

C gZ5 "
����

�
W C�

�
@�W

�
�

�
Z�
�
C i Q�ZW

C
� W

�
�
QZ��

C i
Q�Z

m2W
W C��W

��
�
QZ��
i
;

(3.1)

1The Bjorken-Drell convention with "0123 D �"
0123 D C1 is used.
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3. Effective Quantum Field Theories

with the abbreviations X�� D @�X� � @�X� and QX�� D
1
2
"����X

�� for vector bosons X D˚
W �; W C; A;Z

	
. The couplings are characterized by independently C - and P -conserving

parameters gA1 ; g
Z
1 ; �A; �Z; �A; �Z and C - or P -violating parameters gA4 ; g

Z
4 ; g

A
5 ; g

Z
5 ; Q�A; Q�Z;

Q�A; Q�Z. Three couplings g
A
1 D 1 and g

A
4 D g

A
5 D 0 have to be fixed to satisfy electromagnetic

gauge invariance. However (3.1) is not as generic as possible, additional extra derivatives can
be added to all operators. Another representation of effective vertices in momentum space is
introduced in [34], which shows the Lorentz structure of the anomalous couplings explicitly.

Writing down effective couplings like in the Lagrangian (3.1) will in general not respect the
electroweak SU.2/L�U.1/Y gauge group, and it is not eased to calculate radiative corrections
within this framework. Another approach should be chosen, which does not have these issues.
Furthermore, additional features can be added, that a model-independent approach to search
for new physic effects should fulfill. A list of desirable feature has been given in [35]:

� Any extension of the Standard Model should satisfy the S-matrix axioms of unitary,
analyticity, etc.

� The symmetries of the Standard Model, namely Lorentz invariance and SU.3/C �
SU.2/L � U.1/Y gauge symmetry, should be respected.

� It should be possible to recover the Standard Model in an appropriate limit.

� The extended theory should be general enough to capture any physics beyond the
Standard Model, but [might] give some guidance as to the most likely place to see the
effects of new physics.

� It should be possible to calculate radiative corrections at any order in the Standard
Model interactions in the extended theory.

� It should be possible to calculate radiative corrections to any order in the new interac-
tions of the extended theory.

All of these features are fulfilled by an effective quantum field theory. A power counting
procedure in effective field theories provides a guidance where new physics is most likely
to be be discovered. The choice of representation automatically implies a power counting.
A linear representation would favor new physic effects of a weakly interacting Higgs sector,
whereas a nonlinear representation advocates new Higgs interactions which originate from a
strongly interacting sector.

Two different types of effective field theories can be distinguished, top-down effective field
theories and bottom-up effective field theories. The first approach starts with a full theory
and then effective operators are calculated in a certain energy limes. For example heavy
degree of freedoms can be integrated out, matching the full theory to a low energy effective
field theory [36]. This can be useful to get better insights into the model by separating long
distance effects from short distance effects.

The bottom up approach can be used, even if the underlying new physics is unknown. Starting
point is the minimal Lagrangian Lmin and it will be extended by additional effective operators.
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3.1. Example: Fermi Theory

They are suppressed by some power of a high energy mass scale �,

LEFT D Lmin C

X
i

ci

�ni
Oi ; (3.2)

with an unknown coupling ci . Operator contributions can in general originate from different
new physics sources, therefore the related suppressing mass scales can vary for each operator
Oi .

3.1. Example: Fermi Theory

In 1933, Enrico Fermi described the ˇ-decay without knowledge of the weak vector bosons
W and Z [37, 38]. Therefore, the Fermi theory can be formulated as an effective field theory
for the weak interaction.

In this section, the Fermi theory is used as an example to explain the procedure of a bottom-
up effective field theory. In contrast to the detailed discussion in [26], quark fields and the
chiral structure of fermions are neglected. The starting point is the minimal Lagrangian of
quantum electrodynamics

LQED D Nl i =Dl C N�l i =D�l �
1

4
A��A��; (3.3)

where charged lepton fields l D e; �; � and neutrino fields �l D �e; ��; �� are introduced
as massless fermions for simplicity. Furthermore, the convention =D D D�


� with Dirac
matrices 
� as defined in (A.11) is used. To describe all possible new physics interactions,
the quantum electrodynamic Lagrangian has to be extended by the most general additional
terms. The leading order contributions to the effective field theory expansion are a priori
dimension five operators with independent couplings �l l 0 and �l l 0 ,

L5 D �l l 0 Nl���A��l 0 C �l l 0 N�l���A���0l : (3.4)

These couplings have mass dimension �1, so they are suppressed by some high energy
scale and contain all possible flavor combinations. Additional radiative correction to the
electromagnetic interaction will only contribute to flavor conserving couplings � and �, since
flavor changing effects cannot originate from the U.1/em. Therefore, the observation of flavor
changing processes indicates automatically new physics beyond quantum electrodynamics.

Additionally, the next order of operators has also to be included, because they contain
contributions, which are not loop suppressed. These dimension six operators describe effective
four fermion couplings

L6 D
X
fDl;�l

sijkl
�
Nf if j

� �
Nf kf l

�
C vijkl

�
Nf i
�f

j
� �
Nf k
�f l

�
: (3.5)
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W±/Z
()

Fermi

Figure 3.1.: Matching the effective quartic fermion vertex of the Fermi theory to the full
theory with weak vector bosons.

Again, to be general, the couplings v and s with mass dimension �2 are a priori independent
for all possible lepton combinations. For simplicity, some Dirac structures which are discussed
in [26] are omitted.

Using the operators defined in (3.5) and (3.4) as a low energy effective field theory extension
of quantum electrodynamics, possible experimental deviations can be quantitatively related.
Experimental observations from flavor physics shows, that the dimension six operators can
be formulated as a sum of products of charged and neutral currents

L6 D �4
p
2GF

�
2JC� J

��
C J 0�J

�0
�
: (3.6)

Omitting the neutral currents, the interactions of the charged currents can be written as
Fermi interactions

LFermi D �2
p
2GF Œ N�l


�l �
�
N�l 0


�l 0
��
C h:c: : (3.7)

The reduced number of independent parameters and the current-current structure of (3.7) in
comparison to (3.5) lead to the assumption, that an underlying symmetry is present. This
symmetry was identified as the weak interaction, which was then included in the Standard
Model of electroweak interactions [17–19].

The effective field theory operators are the low energy contribution of a weak vector boson
exchange as pictured in Figure 3.1. Matching the weak interactions contribution to the Fermi
interaction operator within a top-down effective field theory approach will give the relation
of the Fermi constant to the electroweak scale

GF D
1
p
2v2

: (3.8)

3.2. Effective Field Theory Operator Bases

Different bottom-up effective field theories bases have been introduced to analyze the elec-
troweak symmetry breaking sector. They can be categorized in terms of the representations
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3.2. Effective Field Theory Operator Bases

chosen for the Higgs, which are introduced in Chapter 2. Further subcategories arise depend-
ing on the assumed underlying new physics, which influence the power counting procedure
used for the operators.

New strongly interacting physics was assumed in the case of the nonlinear realization of
the Goldstone-boson sector without a light Higgs as described in Section 2.2. These new
contributions to vector boson scattering are modeled by a set of effective field operators in a
bottom-up approach. To build a complete basis, two additional abbreviations are introduced

V� D U .D�U/� (3.9a)

T D U�3U�; (3.9b)

where the field V represents the longitudinal degrees of freedoms and the operator T models
additional SU.2/C breaking contributions. Using the operators V and T, the field strength
tensors W�� and B��, and the auxiliary Field U a complete effective operator set for boson
scattering can be constructed to lowest order [22, 23, 32],

L˛1 D ˛1gg
0tr
�
UB��U

�W��
�
; L˛6 D ˛6tr

�
V�V�

�
tr ŒTV�� tr ŒTV�� ;

L˛2 D i˛2g
0tr
�
UB��U

�ŒV�;V��
�
; L˛7 D ˛7tr

�
V�V

�
�
tr ŒTV�� tr ŒTV

�� ;

L˛3 D ˛3itr
�
W��ŒV

�;V��
�
; L˛8 D 1

4
˛8tr

�
TW��

�
tr ŒTW��� ;

L˛4 D ˛4tr
�
V�V�

�
tr ŒV�V�� ; L˛9 D i

2
˛9tr

�
TW��

�
tr ŒTŒV�;V��� ;

L˛5 D ˛5tr
�
V�V

�
�
tr ŒV�V

�� ; L˛10 D ˛10
1
2

�
tr
�
TV�

�
tr ŒTV��

�2
;

L˛11 D ˛11g"
����tr

�
TV�

�
tr
�
V�W��

�
; Lˇ 0 D ˇ0

v2

4
tr
�
TV�

�
tr ŒTV�� :

(3.10)

Besides the operator Lˇ 0 , which is of mass dimension two, the operators of (3.10) have all
canonical dimension four. The terms Lˇ 0 , L˛6 : : :L˛11 have to be additionally suppressed,
because of their custodial symmetry violating nature. To estimate the contribution strength
of the operators in a nonlinear effective field theory, the naive dimensional analysis method
was introduced in [39–41].

Another approach to model physics without knowledge of the exact Higgs boson properties
is to formulate an effective field theory below the electroweak symmetry scale. Then the
operators need to be invariant under the local electromagnetic Uem.1/ only. Additionally,
the global custodial SU.2/C is introduced to forbid contributions to the O�-parameter. A
complete basis was examined in [42, 43] to analyze generic quartic gauge couplings. The LEP
II studies of anomalous contributions to the WW 

 -vertex and ZZ

 -vertex in [44, 45]
used the two operators

L0 D � e2

16��2
a0A��A

���!W �

�!
W �; (3.11a)

Lc D � e2

16��2
acA��A

���!W ��!W � (3.11b)
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with an unknown new physics energy scale � and

�!
W � D

0B@
1
p
2

�
W C� CW

�
�

�
i
p
2

�
W C� �W

�
�

�
1
cw
Z�

1CA : (3.12)

In recent LHC studies by CMS [46], the anomalous couplings, a0 and ac have been constrained
experimentally. A transformation to convert the measured constraints in the basis (3.11)
directly to constraints of the operators in the nonlinear representation (3.10) can be formu-
lated [47]. However, the nonlinear basis respects the full chiral symmetry group and therefore
implies different dependencies between the gauge bosons and their couplings on lowest order.

After the Higgs discovery, a scalar boson has to be included in the effective field theory.
Unless the theory is used at energies much below the Higgs mass, bounds on effective field
theory operators of Higgs-less models are not valid. Because no critical deviations from the
Standard Model prediction have been experimentally discovered, the electroweak symmetry
should be considered as a fundamental symmetry. In other words, it is conserved at energies
above the electroweak scale v � 246 GeV and should therefore be respected when defining
an effective field theory. Furthermore, using the complete gauge group reduces the number
of parameters and guarantees the renormalizability of the effective field theory. A most
generic way to extend the operators of the nonlinear realization is to add a Higgs scalar
in (3.10) analogously to (2.17). A complete discussion of a nonlinear basis including a Higgs
scalar with boson and fermion operators is given in [48]. This basis is often advertised, when
one assumes an underlying model that includes the Higgs as a pseudo-Goldstone boson. In
some models it originates from a strongly interaction sector at energy scales above � & 4�v .
In contrary to the Standard Model, the Higgs couplings are independent and additional
parameters are present at leading order in the effective field theory. Chiral dimensional
analysis was introduced in [49] as power counting procedure for a strongly interacting Higgs
sector. In this scenario, the new physic scale is defined as � D 4�f � 4�v. Taking the
decoupling limit of the Higgs ( v

f
! 0) will reproduce the operators belonging to the effective

field theory basis within a linear Higgs, the strongly interacting light Higgs (SILH) basis,
which is presented in [50].

When a weakly interacting Standard Model like Higgs sector is assumed, a linear realization is
preferable. The Higgs couplings are then fixed at leading order, because the Higgs is embedded
in the Goldstone boson sector. Anomalous Higgs couplings will enter first at higher orders in
the effective field theory expansion. Compared to the nonlinear representation, the numbers
of parameters to describe the couplings of the lowest dimension operators is therefore smaller.
Furthermore, a simple canonical dimensional analysis can be used for the power counting
of the operators. First contributions of new physics could be generated by dimension six
operators in an effective field approach, which originate mainly from integrating out loop
corrections of heavy new particles. An analysis of the complete dimension six basis within
the linear Higgs doublet realization was conducted in [51]. The basis consists of 16 operators,
which contribute to anomalous gauge and Higgs couplings, 29 operators which consists of four
fermion fields and 35 mixed operators which have only two fermion fields. In total this sums
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3.2. Effective Field Theory Operator Bases

up to 80 operators. A more relevant study [52] showed that many of the operators with two
fermion fields are redundant and the full basis can be reduced to 59 independent operators.
The list of the complete set of independent dimension six operators only containing bosons is

OW D �ijkW i �
� W

j �
� W

k �
� ; OeW D �ijk eW i �

�W
j �
� W

k �
� ;

O˚ D
�
˚�˚

�3
; O˚@2 D

�
˚�˚

�
@2
�
˚�˚

�
;

O˚D D
�
˚�D�˚

�� �
˚�D�˚

�
; O˚B D

�
˚�˚

�
B��B

��;

O˚W D
�
˚�˚

�
W i

��W
i ��; O

˚eW D
�
˚�˚

� eW i
��W

i ��;

O˚WB D
�
˚�� i˚

�
W i

��B
��; O

˚eWB D �
˚�� i˚

� eW i
��B

��:

(3.13)

Here, following [52], the convention ’CD+’ is used for the covariant derivative

D�˚ D

�
@� C igW i

�

� i

2
C i

g0

2
B�

�
˚; (3.14a)

W i
�� D @�W

i
� � @�W

i
� � g"

ijkW j
�W

k
� ; (3.14b)

B i�� D @�B
i
� � @�B

i
�: (3.14c)

The dimension six operators in (3.13) will affect the anomalous triple gauge couplings (3.1)
as described in [53, 54]. When converting constraints from anomalous couplings to effective
field theory operators the linear combinations of all operators have to be considered.

Operators contributing to anomalous quartic, but not triple gauge couplings, can originate
from tree level new physics contributions [55]. These cannot be modeled by dimension
six operators, and therefore dimension eight operators are needed. However, a full study
regarding a complete and minimal dimension eight operator basis has not yet been published.
The set of dimension eight operators introduced in [56] is a first step to build a minimal
dimension eight basis. In particular, the building blocks in (3.14) are used to write down
all possible combinations for an operator set. A revised list, where some linear dependent
operators are already dropped, is given in [57] and listed in Appendix A.5. A linear relation of
the quartic gauge couplings (3.11) to an incomplete set of electroweak symmetry conserving
operators is introduced in [58]. Recent experimental studies, e.g. in [46], used this incomplete
conversion to set limits on the dimension eight operators. Respecting the complete operator
list, the conversion for the WW 

 -vertex and the ZZ

 -vertex for anomalous couplings
ac and a0 to couplings fM;l for l D 0; 1; 2; 3; 4; 5; 7 of operators, defined in the appendix
in (A.64), can be derived

a0

�2
1

g2v2
�

1

�4

�
fM;0 C

fM;2

2
� fM;4

�
; (3.15a)

ac

�2
1

g2v2
�

1

�4

�
�fM;1 �

fM;3

2
�
fM;5

2
C
fM;7

2

�
: (3.15b)

The different sign in front of fM;4 and fM;5 for the WW 

 -vertex (upper) and the ZZ

 -
vertex (lower) arise, because the effective operators (3.15) respects custodial symmetry, while
the operators OM;4 and OM;5 do not. A first conversion, which still includes the redundant
operator OM;6, is given in [57]. After building up a full effective Lagrangian, the operators
are checked for linear dependencies to find the minimal operator set.
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3. Effective Quantum Field Theories

3.2.1. Minimizing the Operator Set

Mainly two techniques are used to reduce the operator set of the effective field theory:
Employing the equations of motion and field redefinitions leave the S -matrix invariant and
change only intermediate mathematical quantities [59, 60]. Therefore, the operators with two
derivatives acting on one field can be rewritten as interaction terms. Equations of motion
for effective field operators of dimension nC 4 that are used to study linear dependencies of
operators of the same or lower dimension can be neglected, because they are proportional to
terms with an additional suppression factor of 1=�n. To reduce the dimension six operator set,
the equations of motion for vector boson scattering are deduced from the minimal Lagrangian
(2.32) only

�
D2H

�
D ��2HC �tr

�
H�H

�
H; (3.16a)�

D2H
��
D ��2H� C �tr

�
H�H

�
H�; (3.16b)

D�W
��
�
�
DW� ;W

��
�
D �i

g

2

�
H .D�H/� �D�HH�

�
; (3.16c)

D�B
��
� @�B

��
D �i

g0

2

�
.D�H/�H �H�D�H

�
: (3.16d)

The fermion currents are omitted here. Further details of the calculation are shown in
Appendix A.4.3. With the equation of motion, all operators, which include a double derivative
acting on the Higgs field or a derivative acting on a field strength tensor, are redundant. To
reduce the operator set even more, other reduction procedures have to be used. A basic set
of techniques for the reduction of an operator basis is listed in the analysis of anomalous
triple gauge couplings of dimension 8 operators given in [61]:

� Equation of motion (3.16) and field redefinitions;

� Integration by part;

� Bianchi identities

D�eW�� D 0 D D�eB��I (3.17)

� Jacobi identities

D�W�� CD�W�� CD�W�� D 0 D D�B�� CD�B�� CD�B��I (3.18)

� Using the definition of field strength tensors in (2.4): the commutator of two covariant
derivatives is a linear combination of field strength tensors.

It is noted in [62] that field redefinitions are necessary to eliminate redundant operators
at higher order calculations in 1=� by showing explicitly the impact of renormalization
group evolution to a redundant basis. Additional arbitrary parameters would appear in the
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3.3. Dimension Six Operators

anomalous dimension matrix, which describes the operator evolution and mixing due to loop
corrections.

Next-to-leading order corrections to the effective field theory basis with a linear Higgs doublet
realization are discussed in [62–65]. Using gauge symmetry and minimal flavor violation,
operator mixing is suppressed by weak couplings and loop factors [66]. Therefore, the full
effective field theory model decomposes at energies E with � > E � v into the left- and
right-handed fermion sector, the gauge boson sector and the Goldstone boson sector. Hence,
higher dimensional operators containing fermions can be neglected in the discussion of the
effective field theory basis for vector boson scattering.

3.3. Dimension Six Operators

The starting point of the bottom up effective field theory is the minimal Lagrangian (2.32)
using the Higgs matrix representation. The dimension six operator basis is then build up
systematically with the building blocks W��, B��, D� and H. Additionally, the operators
have to be invariant under the SU.2/L�SU.2/R symmetry group of the minimal Lagrangian.
A manifest SU.2/C breaking term corresponding to T can be included in the operators, but
it will increase the dimensionality of the operator as described in Section 2.3.2. Therefore,
these operators are additionally suppressed and will be neglected. Only breaking of the
custodial symmetry proportional to the hypercharge gauge field B� is allowed. Furthermore,
C and/or P violating operators are omitted for the time being. Their construction is similar
and they can be added later. Combining all possible combinations results in the first set of
a dimension six operator basis:

L0WWW D�ig3F 0WWW tr
�
W��W

��W�
�

�
; (3.19a)

L0W D igF 0W tr
h�
D�H

��
W�� .D�H/

i
; (3.19b)

L0B D ig0F 0B tr
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�
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�
i
; (3.19c)

L0WB D�gg0F 0WB tr
�
H�W��HB��

�
; (3.19d)

L0HW D �g2F 0HW tr
�
H�H

�
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�
W��W

��
�
; (3.19e)

L0HB D�g0
2
F 0HB tr
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H�H

�
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�
B��B

��
�
; (3.19f)

L0HD D F 0HD tr
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i
; (3.19g)
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��
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.D�H/�H

i
; (3.19h)

L0HD00 D F 0HD00 tr
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D�H

��
tr
�
H� .D�H/

�
; (3.19i)

L0HD000 D F 0HD000 tr
h�
D�H

��
H
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h
.D�H/�H

i
; (3.19j)

L0H@ DF 0H@ @�
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H�H
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�
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�
H�H
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; (3.19k)

L0HHH DF 0HHH tr
�
H�H

�
tr
�
H�H

�
tr
�
H�H

�
: (3.19l)
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All operators are accompanied by an effective coupling, which is suppressed by a new physics
scale F � 1=TeV2. Assuming weakly coupled new physics, the couplings g and g0 accompany
their appropriate field strength tensors. Operators including terms like D2H, D�W

�� and
@�B

�� have already been removed in (3.19). They are linearly dependent to the ones in (3.19)
due to the equations of motion of the minimal Lagrangian (3.16) (see Appendix A.4.3 for
details). As explicit example, an operator containing D2H is reduced via equations of
motion (A.53a) to a term proportional to the Standard Model quartic coupling of the Higgs
and the dimension 6 operator L0HHH

tr
�
H�H

�
tr
�
H�D2H

�
D ��2tr

�
H�H

�2
C �tr

�
H�H

�3
: (3.20)

A partial derivative acting on the gauge singlet tr
�
H�H

�
yields

@�tr
�
H�H

�
D tr

h�
D�H

��
H
i
C tr

�
H�
�
D�H

��
(3.21)

and thus will not contribute to the anomalous gauge couplings. This is also true for the
terms on the right hand side of (3.21). In unitary gauge, the operators L0HD0 , L0HD00 and
L0HD000 only contribute to anomalous Higgs couplings.

Terms in (3.19) including two Higgs fields and two derivative are linearly dependent. Ap-
plying (3.21) and integration by parts on LHD000 , it can be related to L0HD0 , L0HD and the
reducible term of (3.20)
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:

(3.22)

This proofs the redundancy of LHD000 . These steps can be repeated analogously to show the
linear dependence of the terms L0HD00 and L0

H@
.

For operators containing field strength tensors like L0W and L0B another approach is used.
Exploiting the total derivative

@�tr
�
H�W�� .D�H/

�
Dtr

h�
D�H

��
W�� .D�H/

i
C tr

�
H�
�
D�W

��
�
.D�H/

�
C tr

�
H�W��

�
D�D�H

��
;

(3.23)

L0W can be related to operators with two covariant derivatives acting on one field. The second
operator can be written as a sum of L0HD and L0HD0 with the equation of motion (3.16) of
the field strength tensor. The third operator in (3.23) can be written as a function of L0HW
and L0WB using the antisymmetry of the field strength tensor and its definition (2.4)
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2g0
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�
:

(3.24)
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The operator L0W can therefore be expressed as a linear combination of L0HD, L0HD0 , L0HW
and L0WB . Analogously L0B is a linear function of L0HD, L0HD0 , L0HB and L0WB .
Taking all these linear dependencies into account, the operator set (3.19) can be reduced to
the independent operator set

L0WWW D�ig3F 0WWW tr
�
W��W

��W�
�

�
; (3.25a)

L0WB D�gg0F 0WB tr
�
H�W��HB��
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; (3.25d)
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H�H

�
: (3.25g)

3.3.1. Basis Redefinition

All operators (3.25) beside L0WWW give contribution to physical parameters defined in Sec-
tion 2.3.1, because of the non-zero vacuum expectation value of the Higgs. They affect
Standard Model masses or kinetic terms directly. To normalize these parameters to their
physical values a renormalization procedure is needed, if the operator set (3.25) is used. The
renormalization procedure can be simplified by redefining these operator in such a way, that
the operator contributions to the corresponding standard parameters are minimal. The oper-
ators in L0HW , L0HB , L0HD and L0HHH give rise to deviations to Standard Model parameters
directly proportional to the dimension four operators due to their tr

�
H�H

�
building block.

Dimension four operators can therefore directly used as counter terms. Equivalently, the
building blocks can be redefined by subtracting their vacuum expectation value [67]

tr
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4

�
: (3.26)

This redefinition does not affect LHD0 , which influences the kinematic term of the Higgs. The

only dimension four operator which contributes to the Higgs propagator is tr
h�
D�H

�2
D�H

i
.

Using the kinetic energy term of the Higgs results in a redefined operator

L0HD0 D F 0HD0
�
tr
�
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D�H
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tr
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.D�H/�H

i
�
v2

2
tr
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D�H

�
D�H

��
: (3.27)

The Lagrangian (3.27) will change vector boson masses, but a renormalization of the Higgs
field, which would affect all Higgs couplings, is not needed. Additional couplings of at
least one Higgs to two weak vector bosons similar to LHD are also introduced by the linear
combination L0HD0 . Combining these anomalous couplings into one operator can be achieved
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with the linear transformation

LHD0 D FHD0
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Dealing with the SU.2/C violating operator L0WB turns out to be more problematic. It
includes terms, which will result in a mixing of the Standard Model eigenstates basis of the
vector bosons Z and A

L0WB !
F 0WBv

2

4
tr
�
W��B

��
�
: (3.29)

The mixing can be dealt with modifying the Lagrangian L0WB by adding a term proportional
to the kinetic Lagrangian of the B field
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�
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Instead of a mixing, the redefined operator (3.30) yields an expression, which affects the
two-point function of the Z and photon field
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�
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�
@�A� � @�A�

�2
� g0

2 �
@�Z� � @�Z�

�2�
: (3.31)

A renormalization of the boson fields Z and A is needed to guarantee the invariance of the
kinetic term

Z� !
1

1 � g 02v2

4
FWB

Z�; (3.32a)

A� !
1

1C g2v2

4
FWB

A�: (3.32b)

The redefinition of the boson fields (3.32) influences every coupling to these bosons. Further-
more, it contributes to the Z boson mass and therefore to the O�-parameter as well.
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With the redefinitions (3.26),(3.30) and (3.28) the complete dimension six basis of C and P
conserving parameters from (3.25) can be rewritten as
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; (3.33a)
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LHHH D FHHH tr
hbH�Hi tr hbH�Hi tr hbH�Hi : (3.33g)

A list of vertices, which are affected by the dimension six operator basis (3.33), is shown in
Table 3.1. Vector boson scattering receives no tree level contribution from LHD0 and LHHH ,
because they are not contributing to anomalous gauge couplings or to HV V couplings (see
Table 3.1 (a) and (b)). The only operator affecting longitudinal weak vector boson scattering
is LHD due to HV V couplings.

Other operators contributing directly to longitudinal vector boson scattering without involv-
ing extra Higgs fields start to appear at dimension eight.

3.4. Dimension Eight Operator set

There are many possibilities to construct dimension eight operators, which conserve C , P
and only break custodial SUC .2/ proportionally to B�� . The operators can be categorized in
the number of fields they consist of to systematically build up a complete set. In particular,
the classes are distinguishable in the number of field strength tensor, covariant derivatives
and Higgs fields. An even number of Higgs fields is necessary to guarantee gauge invariance.
Furthermore, the amount of covariant derivatives has to be equal or lower than the quantity
of Higgs fields, because integration by parts and equations of motion (3.16) can be used
to relate them to a linear combination of operators with less derivatives. Following this
criterion, the operator basis can be separated in eight different classes shown in Table 3.2.
In case of the linear Higgs doublet representation, only categories with an equal number of
covariant derivatives and Higgs fields are used for the dimension eight operators in [56]. The
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WWZ WWA WWWW WWZZ WWZA WWAA

LWWW X X X X X X
LWB X X – – – –

(a) Anomalous gauge couplings.

HWW HZZ HZA HAA

LWB – X X X
LHW X X X X
LHB – X X X
LHD X X – –

(b) Anomalous coupling of Higgs to two gauge
bosons.

HHH HHHH

LHD X X
LHD0 X X
LHHH X X

(c) Anomalous Higgs self couplings.

HWWZ HWWA HHWW HHZZ HHZA HHAA

LWB X X – X X X
LHW X X X X X X
LHB – – – X X X
LHD – – X X – –
LHD0 – – X X – –

(d) Anomalous quartic couplings involving Higgs and gauge bosons.

Table 3.1.: List of vertices which receive contributions from the dimension six operator basis
defined in (3.33) up to four particle interactions.

complete list of this set is shown in the Appendix A.5 and is separated into operators, which
only affect longitudinal vertices (S), transversal vertices (T ) and mixed vertices (M ). To
ease the comparison between the Higgs doublet and Higgs matrix representation, the same
labeling is used while creating a dimension eight operator set for the complete Higgs matrix
representation.

For a detailed discussion of a minimal dimension eight operator basis all non-redundant di-
mension six operators have to be included when using equation of motion or field redefinitions
for an operators basis reduction. However, a full analysis is beyond the scope of this thesis,
but applying insights from Section 3.3 a set of redundant dimension eight operators can
already be eliminated. Additionally, the linear redundancy of an operator set can also be
checked by comparing Feynman rules of the operators for each affected vertex. This way may
not seem mathematical satisfactory and may be insufficient to find a minimal operator set.
However, if the Feynman rules of a subset of every operator show the same linear dependency
for every affected vertex, the operators cannot be distinguished on S-matrix level and are
therefore redundant. To calculate the Feynman Rules, the Mathematica package FeynRules
[68] is used2.

The list of independent operators with an unequal number of Higgs fields and derivatives,

2To check of linear redundancies of an operator subset only vertices up to four fields are included, because
a vertex with five or more fields will not contribute to the tree level amplitude of vector boson scattering.
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3.4. Dimension Eight Operator set

aaaaaa
nx

nD 0 2 4

4 .4; 0; 0/ � T

3 .3; 2; 0/

2 .2; 4; 0/ .2; 2; 2/ �M

1 .1; 4; 2/

0 .0; 8; 0/ .0; 6; 2/ .0; 4; 4/ � S

Table 3.2.: List of possible classes for dimension eight operators, categorized by the number
of field strength tensor nX , Higgs fields nH and covariant derivatives nD in the
tuple .nX ; nH ; nD/

includes seven operators, which can be related to the dimension 6 basis (3.33)

L.3;2;0/;0 D �ig3F.3;2;0/;0 tr
hbH�Hi tr �W��W

��W�
�

�
; (3.34a)

L.3;2;0/;1 D�ig2g0F.3;2;0/;1 tr
�
H�W��W

��HB��
�
; (3.34b)

L.2;4;0/;0 D �g2F.2;4;0/;0 tr
hbH�Hi tr hbH�Hi tr �W��W

��
�
; (3.34c)

L.2;4;0/;1 D �g0
2
F.2;4;0/;1 tr

hbH�Hi tr hbH�Hi tr �B��B��� ; (3.34d)

L.2;4;0/;2 D �gg0F.2;4;0/;1 tr
hbH�Hi tr �H�W��HB��

�
; (3.34e)

L.1;4;2/;0 D igF.1;4;2/;2 tr
h�
D�H

��
H
i
tr
�
H�W�� .D�H/

�
; (3.34f)

L.1;4;2/;1 D igF.1;4;2/;3 tr
h�
D�H

��
H
i
tr
�
.D�H/B

��H�
�
; (3.34g)

L.0;8;0/;0 D F.0;8;0/;0 tr
hbH�Hi tr hbH�Hi tr hbH�Hi tr hbH�Hi ; (3.34h)

L.0;6;2/;0 D F.0;6;2/;0 tr
hbH�Hi tr hbH�Hi tr h�D�H��D�Hi ; (3.34i)

L.0;6;2/;1 D F.0;6;2/;1 tr
hbH�Hi tr h.D�H/�Hi tr �H� �D�H�� : (3.34j)

Two additional Higgs matrix fields are added to the dimension six operator by multiply-
ing (3.33) with (3.26). These dimension eight operators have a similar coupling structure as
their corresponding dimension six operators with one or two additional Higgs fields. There-
fore, the operators listed in (3.34) would have an additional Higgs loop suppression, when
contributing to vector boson scattering, and are not relevant to a study of leading order
vector boson scattering.
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3. Effective Quantum Field Theories

Because the field strength tensor represents the coupling to transversal gauge boson modes,
all contributions to transversal vector boson scattering are described by operators with four
field strength tensors

LT;0 D g4FT;0tr
�
W��W

��
�
tr
h
W˛ˇW

˛ˇ
i
; (3.35a)

LT;1 D g4FT;1tr
h
W˛�W

�ˇ
i
tr
�
W�ˇW

˛�
�
; (3.35b)

LT;2 D g4FT;2tr
h
W˛�W

�ˇ
i
tr
�
Wˇ�W

�˛
�
; (3.35c)

LT;5 D g4FT;5tr
�
W��W

��
�
tr
h
B˛ˇB

˛ˇ
i
; (3.35d)

LT;6 D g4FT;6tr
h
W˛�W

�ˇ
i
tr
�
B�ˇB

˛�
�
; (3.35e)

LT;7 D g4FT;7tr
h
W˛�W

�ˇ
i
tr
�
Bˇ�B

�˛
�
; (3.35f)

LT;8 Dg04FT;8tr
�
B��B

��
�
tr
h
B˛ˇB

˛ˇ
i
; (3.35g)

LT;9 Dg04FT;9tr
h
B˛�B

�ˇ
i
tr
�
Bˇ�B

�˛
�
: (3.35h)

It should be noted, that the operators LT;8 and LT;9 contribute only to couplings of neutral
vector bosons.

Replacing two field strength tensors with two derivatives and two Higgs fields gives rise to
seven independent dimension 8 operators

LM;0 D �g2FM;0tr
h�
D�H

��
.D�H/

i
tr
�
W��W

��
�
; (3.36a)

LM;1 D �g2FM;1tr
h�
D�H

��
.D�H/

i
tr
�
W��W

��
�
; (3.36b)

LM;2 D�g02FM;2tr
h�
D�H

��
.D�H/

i
tr
�
B��B

��
�
; (3.36c)

LM;3 D�g02FM;3tr
h�
D�H

��
.D�H/

i
tr
�
B��B

��
�
; (3.36d)

LM;4 D�gg0FM;4tr
h�
D�H

��
W�� .D

�H/B��
i
; (3.36e)

LM;5 D�gg0FM;5tr
h�
D�H

��
W�� .D

�H/B��
i
; (3.36f)

LM;7 D �g2FM;7tr
h�
D�H

��
W��W

�� .D�H/
i
: (3.36g)

The operators (3.36) have mixed contributions to transversal and longitudinal modes, repre-
sented by the covariant derivative acting on the Higgs matrix field.

The complete list of independent dimension 8 operators, which affect purely the longitudinal
vector boson scattering contains only two operators

LS;0 DFS;0 tr
h�
D�H

��
D�H

i
tr
h
.D�H/�D�H

i
; (3.37a)

LS;1 DFS;1 tr
h�
D�H

��
D�H

i
tr
h
.D�H/

�D�H
i
: (3.37b)

32



3.5. Vector Boson Scattering at the LHC

The operators in equations (3.34)–(3.37) represent a complete set of dimension eight operators
for vector boson scattering, where some redundant operators are already eliminated. They
could represent the effective coupling of a resonance, which is above the directly experimental
accessible energy region. To study the effect of this operators to physical observables in
collider experiments, an implementation in a Monte Carlo generator is necessary.

3.5. Vector Boson Scattering at the LHC

The Goldstone boson sector can be completely described by longitudinal vector bosons at
high energies using the Goldstone boson equivalence theorem [27, 69–72]. This means, that
the transversal sector decouples completely from the longitudinal in the high-energy limit
[66]. In this thesis the focus lies on operators which affect the Goldstone boson sector only.

Contributing to the coupling of a Higgs to two longitudinal vector bosons, the operator LHD
given in (3.33e) regulates the Higgs exchange in vector boson scattering. The related operator
of dimension eight L.0;6;2/;0, defined in (3.34), describes the coupling of two longitudinal vector
bosons to a Higgs pair. This operator can be neglected, because it will not contribute at
leading order to longitudinal vector boson scattering processes. LS;0 and LS;1 in (3.37) are
the only dimension eight operators which modify quartic couplings of longitudinal vector
bosons. The Feynman rules for the relevant tree-level vector boson scattering vertices are
given in Appendix B.2 for LS;0, LS;1 and LHD. This subset of operators is implemented in
the Monte Carlo generator WHIZARD and is used to study their impact at lepton and proton
colliders[66, 73].

Quasi-elastic vector boson scattering V V ! V V can be investigated with the process

pp ! .V ! ff /C .V ! ff /C jj (3.38)

at proton-proton colliders with two jets j. The light fermions f serve as external probes for
vector bosons in this process. Possible higher dimensional light fermion operators, which
could modify this process, are assumed to be suppressed due to minimal flavor violation.
Because gluons and heavy fermions are not contained in (3.38), the complete fermion sector
can be treated perturbatively.

To enhance the contribution of the partonic process V V ! V V , typical vector boson fusion
cuts are used [8],

pTj > 20 GeV ; (3.39a)ˇ̌
�j
ˇ̌
> 4:5 ; (3.39b)

Mjj > 500 GeV ; (3.39c)

�yjj > 2:4: (3.39d)

The differential cross section of pp ! W CW Cjj is represented in Figure 3.2 as a function
of the invariant mass of final state vector bosons at the design energy of the LHC of 14
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Figure 3.2.: pp ! W CW Cjj , naive EFT results compared to the Standard Model, QCD
contributions are neglected.
Cuts: Mjj > 500 GeV; �yjj > 2:4; p

j
T > 20 GeV; j�j j > 4:5.

TeV. If only the Standard Model Lagrangian is considered, the vector boson scattering cross
section is dominated by transversal gauge boson. Additionally to the higher multiplicity of
transversal polarized vector boson, the impact of longitudinal vector bosons is suppressed.
Besides the cancellation due to the Higgs exchange, the longitudinal production mechanism
is small, because massless fermions only couple via helicity mixing to longitudinal vector
bosons.

The probability that a quark or gluon is emitted from the proton, which is given by the
parton distribution function, will quickly fall with the energy fraction of the parton. Therefore,
the differential cross section of the Standard Model will be suppressed at high energies as
shown in Figure 3.2. Although the dimension six operator contribution will rise with the
invariant mass of the V V system, at couplings of FHD D 30 TeV�2 � .0:18 TeV/�2 the
PDF suppression is still present. However, anomalous quartic gauge couplings of FS;0=1 D
480 TeV�4 � .0:21 TeV/�4, which respect current experimental bounds [8], cancel the proton
PDF suppression and the differential cross section rises with the invariant mass of the vector
boson scattering system. A high energy extrapolation of the Standard Model is impossible
in such an effective field theory [27, 74]. This is a clear hint, that the effective field theory is
used beyond its validity.
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3.6. The Goldstone Boson Scattering Amplitude

3.6. The Goldstone Boson Scattering Amplitude

The energy behavior of the effective field theory operators affecting the longitudinal vector
boson modes will be studied in more detail by discussing the related Goldstone boson scat-
tering amplitudes. In the case of weak boson scattering, the Standard Model amplitudes are
proportional to m2H=.4�v/

2 in the high energy limit [27, 74]. Therefore, the small Standard
Model contribution can be neglected and is treated as zero during the determination of the
energy behavior of the effective field theory operators. To determine the contributions of new
physics operators to the vector boson scattering amplitudes at high energies the Goldstone
boson equivalence theorem is used, and the Goldstone boson amplitudes are evaluated in the
gaugeless limit g! 0, g0 ! 0.

When treating vector boson scattering as a 2! 2 process of massless scalars at high energies,
it is convenient to describe kinematic dependencies using Mandelstam variables

s C t C u D

4X
iD1

m2i ! 0 (3.40a)

s D .k1 C k2/
2
D .k3 C k4/

2 ; (3.40b)

t D .k1 � k3/
2
D .k2 � k4/

2 ; (3.40c)

u D .k1 � k4/
2
D .k2 � k3/

2 ; (3.40d)

with incoming momenta k1; k2, outgoing momenta k3, k4 and their associated massesm2i D k
2
i .

In the massless limit, the scattering angle between k1 and k3 can be written as

cos� D 2
t

s
C 1: (3.41)

The amplitudesA.s; t; u/ are usually displayed as functions of the three Mandelstam variables,
but equation (3.40a) demonstrates a linear dependency of these variables. Therefore, the
amplitudes are a function of two variables only, A.s; t/, A.s; u/ or A.u; t/.
The Feynman rules in the gaugeless limit g! 0, g0 ! 0 for the dimension six and dimension
eight operators are listed in Appendix B.3. They yield the goldstone boson scattering
amplitudes

A.wCwC ! wCwC/ D
1

4
FS;0.2s

2
C t2 C u2/C

1

2
FS;1.t

2
C u2/

�

�
F 2HD

v2

4
C FHD

��
t2

t �m2H
C

u2

u �m2H

�
; (3.42a)

A.wCz ! wCz/ D
1

4
FS;0.s

2
C u2/C

1

2
FS;1t

2
�

�
F 2HD

v2

4
C FHD

�
t2

t �m2H
; (3.42b)

A.wCw� ! wCw�/ D
1

4
FS;0.s

2
C t2 C 2u2/C

1

2
FS;1.s

2
C t2/

�

�
F 2HD

v2

4
C FHD

��
s2

s �m2H
C

t2

t �m2H

�
; (3.42c)
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A.wCw� ! zz/ D
1

4
FS;0.t

2
C u2/C

1

2
FS;1s

2
�

�
F 2HD

v2

4
C FHD

�
s2

s �m2H
; (3.42d)

A.zz ! zz/ D
1

2
.FS;0 C FS;1/ .s

2
C t2 C u2/

�

�
F 2HD

v2

4
C FHD

��
s2

s �m2H
C

t2

t �m2H
C

u2

u �m2H

�
: (3.42e)

For the high energy behavior of a general amplitude A.s; t; u/ a bound was computed in
[75, 76] which is known as the Froissart bound

lim
s!1

A .s; t; u/ D O
�
s .log s/2

�
for fixed t � 0 or u � 0: (3.43)

The dimension eight operators contribution to (3.42) are proportional to s2

�4
and will strongly

violate this bound at high energies s � �. Because the mass scale of new physic � is
unknown, it is impossible to know the exact validity limit of a bottom-up effective field
theory a priori. However, the unitarity condition of the S-matrix can be used to study the
theoretical validity of bottom-up effective field theories.
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Chapter 4

Unitarity

The scattering matrix S plays a fundamental role in quantum field theory. It includes all
information how an incoming state jini at t D �1 evolves in time to an outgoing state jouti
at t D1,

jout; t D1i D Sjin; t D �1i: (4.1)

Furthermore, the S-matrix can be separated into a noninteracting part and an interacting
part represented by the transition operator T

S D 1C iT: (4.2)

A complete discussion of general S -matrix principles can be found in [75, 77]. The focus of
this chapter is the unitarity of the S -matrix, which is related to probability conservation

1 D S�S D 1 � iT� C iTC T�T: (4.3)

This implies the optical theorem for the transition operator

T�T D �i
�
T � T�

�
; (4.4)

which set bounds on amplitudes and can therefore be used to check the liability of an effective
field theory.

Beside the determination of the validity bound of an effective field theory, a unitarization
scheme is introduced in this chapter to allow a theoretical description consistent with the
S-matrix unitarity at all energies. This part of the thesis has been published in [66].

37



4. Unitarity

4.1. Crossing symmetry

Crossing symmetry can be used to relate amplitudes by transforming ingoing particles into
outgoing antiparticles and vice versa. A special case is the 2! 2 scattering of four particles
p1, p2, p3 and p4 with momenta ki , which can be separated into different channels

s � channel W p1.k1/p2.k2/ ! p3.k3/p4.k4/; (4.5a)

Np3.�k3/ Np4.�k4/! Np1.�k1/ Np2.�k2/; (4.5b)

t � channel W p1.k1/ Np3.�k3/! Np2.�k2/p4.k4/; (4.5c)

p2.k2/ Np4.�k4/! Np1.�k1/p3.k3/; (4.5d)

u � channel W p1.k1/ Np4.�k4/! Np2.�k2/p3.k3/; (4.5e)

p2.k2/ Np3.�k3/! Np1.�k1/p4.k4/; (4.5f)

where Npi are the corresponding antiparticles. The channels in (4.5) describe physically non-
overlapping regions of the Mandelstam variables defined in (3.40). In [2] these regions were
analyzed for general 2! 2 processes and can be qualitatively described by the inequalities

s � channel W s > M 2
f and t; u < 0; (4.6a)

t � channel W t > M 2
f and s; u < 0; (4.6b)

u � channel W u > M 2
f and t; s < 0; (4.6c)

where M 2
f is the minimal energy needed to produce the final state particles. In the following,

the abbreviations �.s �M 2
f /, �.t �M

2
f / and �.u�M

2
f / are used to indicate which channel

becomes physical.

As stated in Section 2.3.2, custodial symmetry is conserved at high energies. In this thesis
the SU.2/C quantum number is referred as custodial isospin and can only take the values
I D 0; 1; 2 in the vector boson scattering process. Following an analogous ansatz as [78]
for pion-pion scattering, the quasi-elastic scattering amplitude of two Goldstone bosons wi

.i D 1; 2; 3/ can therefore be written with three independent functions of s, t and u

A˛ˇ
ı.s; t; u/ D A.s; t; u/ı˛ˇı
ı C B.s; t; u/ı˛
ıˇı C C.s; t; u/ı˛ıı
ˇ ; (4.7)

where ˛; ˇ; 
; ı represent the states w1; w2; w3. These states are related to the mass eigen-
states of the weak vector bosons by

jwCwCi D
1

2

�
jw1w1i � jw2w2i � i

�
jw1w2i C jw2w1i

��
; (4.8a)

jwCw�i D
1

2

�
jw1w1i C jw2w2i C i

�
jw1w2i � jw2w1i

��
; (4.8b)

jwCzi D
1
p
2

�
jw1w3i � ijw2w3i

�
; (4.8c)

jzzi D jw3w3i: (4.8d)
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4.1. Crossing symmetry

Processes involving the Higgs field are omitted at first for simplification and will be considered
as corrections later in Section 4.3.2. Inserting (4.8) in (4.7) leads to a decomposition of the
Goldstone amplitudes

A.wCwC ! wCwC/ D B.s; t; u/C C.s; t; u/ ; (4.9a)

A.wCw� ! wCw�/ D A.s; t; u/C B.s; t; u/ (4.9b)

A.wCz ! wCz/ D B.s; t; u/ ; (4.9c)

A.wCw� ! zz/ D A.s; t; u/ ; (4.9d)

:A.zz ! zz/ D A.s; t; u/C B.s; t; u/C C.s; t; u/ : (4.9e)

Here, the amplitudes are formulated in the s-channel. Therefore, the Heaviside step function
�
�
s �M 2

f

�
should be added to (4.9) to point out the choice of channel. Using Heaviside

step functions for the other Mandelstam variables, the amplitudes in (4.9) can be written
including all channels like

A.wCw�wCw�/ D .A.s; t; u/C B.s; t; u//�
�
s �M 2

f

�
C .B.s; t; u/C C.s; t; u//�

�
t �M 2

f

�
(4.10a)

C .A.s; t; u/C C.s; t; u//�
�
u �M 2

f

�
;

A.wCw�zz/ DA.s; t; u/�
�
s �M 2

f

�
C B.s; t; u/�

�
t �M 2

f

�
C C.s; t; u/�

�
u �M 2

f

�
; (4.10b)

A.zzzz/ D ŒA.s; t; u/C B.s; t; u/C C.s; t; u/�

�
�
�
�
s �M 2

f

�
C�

�
t �M 2

f

�
C�

�
u �M 2

f

��
: (4.10c)

Every of these amplitudes has to respect crossing symmetry. Therefore, the amplitudes B
and C can be related to A by interchanging s ! t and u! t , respectively,

B.s; t; u/ D A.t; s; u/; (4.11a)

C.s; t; u/ D A.u; s; t/: (4.11b)

With equations (4.11), the longitudinal vector boson scattering amplitudes can be formulated
as functions of one master amplitude A.s; t; u/

A.wCw�wCw�/ D .A.s; t; u/C A.t; s; u//�
�
s �M 2

f

�
C .A.t; s; u/C A.u; s; t//�

�
t �M 2

f

�
(4.12a)

C .A.s; t; u/C A.u; s; t//�
�
u �M 2

f

�
;

A.wCw�zz/ DA.s; t; u/�
�
s �M 2

f

�
C A.t; s; u/�

�
t �M 2

f

�
C A.u; s; t/�

�
u �M 2

f

�
; (4.12b)

A.zzzz/ D .A.s; t; u/C A.t; s; u/C A.u; s; t//�
�
�
s �M 2

f

�
C�

�
t �M 2

f

�
C�

�
u �M 2

f

��
: (4.12c)

The crossing symmetry is manifest in (4.12). Furthermore, the �-function indicates which
particle poles on the associated physical region can be reached. The particles poles fall into
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Figure 4.1.: Optical Theorem: The imaginary part of a forward scattering amplitude is

equivalent to the sum of all possible intermediate state particle contributions.

two classes: stable particles, which generate a pole on the physical sheet at m2 of the particle,
and unstable particles, where the resonance pole is located on the unphysical Riemann sheet
[79]. This unphysical Riemann sheet can only be reached through a branch cut above a
certain threshold energy Mth in the corresponding physical region, which is related to an
open decay channel of the resonance [80]. To guarantee that the crossing symmetric Breit-
Wigner formulation of a resonance receives only a non-vanishing imaginary contribution in
the resonant channel, an additional �-function multiplies the width � of the particle with
mass m

ABW D
s

s �m2 C im��
�
s �M 2

th

� : (4.13)

4.2. Optical Theorem

Introducing the matrix elements Tf i D hf jTjii between final state hf j and initial state jii
the optical theorem in (4.4) can be written as

�tot D
1

64�2s

Z
d˝

X
f

ˇ̌
Tf i
ˇ̌2
D
2 Im ŒTii.t D 0/�

s
: (4.14)

The derivation for general processes is given in [13]. Figure 4.1 pictures that the optical
theorem associates the total cross section �tot with the imaginary part of the elastic forward
scattering amplitude. To make the angular distribution explicit on the left handed side
of (4.14), the matrix elements can be decomposed into partial waves

Tf i.s; t; u/ D
X
`

.2l C 1/T `
f i.s/P

`.cos�.s; t; u//; (4.15a)

T `
f i.s/ D

1

2

Z 0

�s

dt
2

s
Tf i.s; t; u/P `.cos�.s; t; u//; (4.15b)

with Legendre polynomials P ` (see Appendix A.2 for details) and scattering angle �. Using
the partial wave decomposition (4.15) for the optical theorem (4.14) will result in a relation
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Im [aℓ]

Re [aℓ]

1
2

1
2

Figure 4.2.: Argand circle: A partial wave amplitude satisfying S-matrix unitarity has to lie
on (inside) the circle for elastic (inelastic) scattering processes.

for the angular matrix elementsX
f;`

2l C 1

64�s

ˇ̌̌
T `
f i

ˇ̌̌2
D

X
`

2l C 1

s
Im
h
T `
i i

i
: (4.16)

Expressing (4.16) in terms of angular amplitudes A` .i ! f / D T `
f i
=2 results inX

f;`

2l C 1

32�s
jA` .i ! f /j

2
D

X
`

2l C 1

s
Im ŒA` .i ! i/� : (4.17)

The Froissart bound (3.43) is obtained by a power analysis of the equation (4.17). A more
accurate bound can be derived for the partial waves of elastic scattering processes. In that
case, all off-diagonal amplitudes are zero and the optical theorem simplifies for normalized
amplitudes a D 1

32�
Ai i to

ja`j
2
D Im Œa`� : (4.18)

In case of inelastic amplitudes, the equality sign becomes an inequality. This bound for
elastic and inelastic amplitudes can be graphically described in an Argand diagram by a
circle with radius 1

2
and center i

2
, the Argand circle, (see fig. 4.2)ˇ̌̌̌

a` �
i

2

ˇ̌̌̌
�
1

2
: (4.19)

Only amplitudes which lie on or inside of this circle fulfill the unitarity condition. However,
tree-level amplitudes without a resonance are usually real, because they are only the leading
order expansion of the full amplitude. Therefore, the boundary condition for the real part
of (4.18) is used to check the unitarity of the amplitudes,

jRe .a`/j �
1

2
: (4.20)
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wCwC ! wCwC wCz ! wCz wCw� ! wCw� wCw� ! zz zz ! zz

A0 – – X X X
A1 – X X – X
A2 X X X X X

Table 4.1.: Possible contributions of isospin eigenamplitudes to the vector boson scattering
s-channel processes.

The relation (4.18) becomes exactly equal, if only elastic scattering is allowed. In contrary,
the unitarity bound becomes weaker, if additional inelastic channels open up. The interaction
matrix of vector boson scattering in the mass eigenstate basis (4.21) has also non-diagonal
entries from inelastic channels

TVBS �

0BB@
AwCwC!wCwC 0 0 0

0 AwCz!wCz 0 0

0 0 AwCw�!wCw� AwCw�!zz

0 0 Azz!wCw� Azz!zz

1CCA : (4.21)

4.3. Isospin Eigenamplitude

The custodial SU.2/-symmetry holds at high energies in the high pT region, where no
Coloumb singularities arise. Therefore, the SU.2/-symmetry can be used to diagonalize the
interaction matrix (4.21), and the vector boson scattering amplitudes can be represented as
a function of diagonal s-channel isospin eigenamplitudes AI D AI .s; t; u/ for I D 0; 1; 2. A
detailed description of the isospin eigenbasis is shown in Appendix A.3. The decomposition
to isospin eigenamplitudes in (A.31) can be rewritten in terms of the physical regions

A.wCw�wCw�/ D
�
1

3
A0 C

1

2
A1 C

1

6
A2

�
�
�
s �M 2

f

�
CA2�

�
t �M 2

f

�
C

�
1

3
A0 �

1

2
A1 C

1

6
A2

�
�
�
u �M 2

f

�
; (4.22a)

A.wCw�zz/ D
�
1

3
A0 �

1

3
A2

�
�
�
s �M 2

f

�
C

�
1

2
A1 C

1

2
A2

�
�
�
t �M 2

f

�
C

�
�
1

2
A1 C

1

2
A2

�
�
�
u �M 2

f

�
; (4.22b)

A.zzzz/ D
�
1

3
A0 C

2

3
A2

� �
�
�
s �M 2

f

�
C�

�
t �M 2

f

�
C�

�
u �M 2

f

��
: (4.22c)

An overview of possible channels contributing to certain processes according to equations (4.22)
is given in Table 4.1. That means the isospin of a resonance can be determined by its appear-
ance in the vector boson scattering channels. For example, when a resonance is detected in
the wCwC ! wCwC process, it has to be originated from the isospin-two eigenamplitude.
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4.3. Isospin Eigenamplitude

To satisfy crossing invariance, equations (4.22) and (4.12) have to be compared. This
comparison leads to a relation between isospin eigenamplitudes and the master amplitude
A.s; t; u/

A0 D 3A.s; t; u/C A.t; s; u/C A.u; s; t/ ; (4.23a)

A1 D A.t; s; u/ � A.u; s; t/ ; (4.23b)

A2 D A.t; s; u/C A.u; s; t/ : (4.23c)

4.3.1. Spin-Isospin Eigenamplitudes

The Goldstone boson scattering amplitudes can now be written as functions of isospin-spin
eigenamplitudes AI` by decomposing the isospin amplitudes further in partial waves1 as
defined in (4.15)

A.wCwC ! wCwC/ DA20.s/ � 10A22.s/

C 15A22.s/
t2 C u2

s2
; (4.24a)

A.wCw� ! zz/ D
1

3
.A00.s/ �A20.s// �

10

3
.A02.s/ �A22.s//

C 5 .A02.s/ �A22.s//
t2 C u2

s2
; (4.24b)

A.wCz ! wCz/ D
1

2
A20.s/ � 5A22.s/C

15

2
A22.s/

t2 C u2

s2

�
3

2
A11.s/

t2 � u2

s2
;

A.wCw� ! wCw�/ D
1

6
.2A00.s/CA20.s// �

5

3
.2A02.s/CA22.s//

C

�
5A02.s/C

5

2
A22.s/

�
t2 C u2

s2

�
3

2
A11.s/

t2 � u2

s2
; (4.24c)

A.zz ! zz/ D
1

3
.A00.s/C 2A20.s// �

10

3
.A02.s/C 2A22.s//

C 5 .A02.s/C 2A22.s//
t2 C u2

s2
: (4.24d)

Because all scattering amplitudes in (4.24) are formulated only in the physical region of the
Mandelstam variable s, the factor �

�
s �M 2

th

�
is omitted. When exchanging t $ u in the

amplitudes of equations (4.24), it will also affect the isospin-spin eigenamplitude

A11.s; t; u/ D �A11.s; u; t/: (4.25)

1The angular momenta of the vector boson scattering system is assumed to be zero, therefore only amplitudes
up to ` D 2 will contribute.
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Thus, the crossing invariance of t $ u is apparent. However, the crossing invariance is
not manifest for other exchanges like s $ t . A complete analysis of crossing invariance of
isospin-spin amplitude for pion-pion scattering to study a generic analytical function for the
partial waves is performed in [81–83]. However, in this thesis the isospin-spin eigenamplitudes
are by construction in (4.23) symmetric under crossing .

4.3.2. Including the Higgs

The effective operators LS;0, LS;1 andLHD will also contribute to quartic Higgs self interaction
hh! hh process and to the amplitudes wCw� ! hh, zz ! hh, which can affect the vector
boson scattering cross section via back-scattering. The inclusion of the Higgs contribution
can be achieved by treating z as complex scalar

z ! z C ih: (4.26)

The substitution (4.26) into the isospin-spin formulation of the s-channel scattering ampli-
tudes in (4.24) leads to the amplitudes

A.wCw� ! hh/ D A.zz ! hh/ D
1

3
.A00.s/ �A20.s// �

10

3
.A02.s/ �A22.s//

C 5 .A02.s/ �A22.s//
t2 C u2

s2
; (4.27a)

A.wCh! wCh/ D A.zh! zh/ D
1

2
A20.s/ � 5A22.s/

C
15

2
A22.s/

t2 C u2

s2
(4.27b)

�
3

2
A11.s/

t2 � u2

s2
;

A.hh! hh/ D
1

3
.A00.s/C 2A20.s// �

10

3
.A02.s/C 2A22.s//

C 5 .A02.s/C 2A22.s//
t2 C u2

s2
: (4.27c)

At first sight the amplitudes in (4.27) seem to be incorrect, because they include contributions
of isospin amplitudes A1 and A2. However the custodial SU.2/C is only the subgroup of
the broken chiral SU.2/L � SU.2/R. In presence of a Higgs, the amplitudes should be
characterized in terms of the full SU.2/L � SU.2/R symmetry group instead of the weak
isospin. Therefore, contributions with higher isospin will never occur isolated. A detailed
discussion about this phenomena is given in Section 5.1.2. In this section it is satisfactory
to state, that the amplitudes of the Higgs scattering processes agree with the amplitudes
calculated with the relations in (4.27) for all anomalous operators LHD, LS;0, LS;1.
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4.4. Unitarity Bound for Effective Operators

4.4. Unitarity Bound for Effective Operators

The isospin-spin amplitudes of the effective operators in (3.42) include integrals of non-
resonant particle exchange in the t - and u-channel. To shorten the notation of the logarithmic
terms of the partial wave decomposition the abbreviations Si .s;mh/ introduced in (A.33)
are used for the isospin-spin eigenamplitudes

A00 D
1

6
.7FS;0 C 11FS;1/ s

2

�

�
F 2HD

v2

4
C FHD

��
3s2

s �m2
h

C 2S0 .s;mh/
�
; (4.28a)

A02 D
1

30
.2FS;0 C FS;1/ s

2
�

�
F 2HD

v2

4
C FHD

�
2S2 .s;mh/ ; (4.28b)

A11 D
1

12
.FS;0 � 2FS;1/ s

2
�

�
F 2HD

v2

4
C FHD

�
2S1 .s;mh/ ; (4.28c)

A20 D
1

3
.2FS;0 C FS;1/ s

2
�

�
F 2HD

v2

4
C FHD

�
2S0 .s;mh/ ; (4.28d)

A22 D
1

60
.FS;0 C 2FS;1/ s

2
�

�
F 2HD

v2

4
C FHD

�
2S2 .s;mh/ : (4.28e)

Because the isospin-spin basis is diagonal, every isospin-spin amplitude has to satisfy the
Argand circle condition as defined in (4.18)

s
Re .aI`/

2
C Im

�
aI` �

i

2

�2
�
1

2
: (4.29)

If the couplings FHD, FS;0 and FS;1 are real and the small Higgs width is neglected, the real
bound for the isospin-spin amplitudes (4.20) should be used instead. Depending on the linear
combination of the couplings FHD, FS;0 and FS;1 different isospin-spin channels will give the
strongest limit for the effective field theory description. Additionally, not all isospin-spin
amplitudes affect every vector boson scattering amplitude as described in (4.27). Therefore,
noncontributing isospin-spin amplitudes can be effectively neglected for the effective field
theory limit determination.

In case of the wCwC ! wCwC amplitude the amplitude A20 gives the strongest bound, if
only one effective coupling is nonzero at a time. The corresponding limits for the effective
field theory coupling values plotted in Figure 3.2 (FS;0; FS;1 D 480 TeV

�4, FHD D 30 TeV
�2)
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are given by

p
s �

�
24�

FS;0

� 1
4

. 630 GeV ; (4.30a)

p
s �

�
48�

FS;1

� 1
4

. 750 GeV ; (4.30b)

p
s �

 
16�

F 2HD
v2

4
C FHD

! 1
2

. 1070 GeV: (4.30c)

However, the bounds in (4.30) are not valid for complex amplitudes. The absolute value of the
amplitude can become maximal, when the amplitude is purely imaginary, aI` D i. Therefore,
the absolute value can be used to get a real valued bound on the complex amplitudes

jaI`j � 1: (4.31)

This bound is looser for wCwC ! wCwC scattering than the one represented in (4.30), but
can also be used for complex couplings

p
s �

�
48�

jFS;0j

� 1
4

. 750 GeV; (4.32a)

p
s �

�
96�

jFS;1j

� 1
4

. 890 GeV; (4.32b)

p
s �

0@ 32�ˇ̌̌
F 2HD

v2

4
C FHD

ˇ̌̌
1A 1
2

. 1530 GeV: (4.32c)

4.4.1. Isospin-Spin Amplitudes in WHIZARD

The unitarity bound has to be extended to off-shell vector boson scattering to describe scat-
tering processes like proton-proton collisions at the LHC completely. This is implemented in
the Monte Carlo generator WHIZARD for weak boson and associated Higgs scattering processes.
To calculate the cross section bounds from the Argand circle condition of a process, additional
quartic coupling terms are added as form factor like effective vertices. Starting with the
Goldstone bosons, a Lagragian is defined to model the isospin-spin amplitude from (4.24)
with form factors f .s; t; u/

LeffV D @�1w1@�2w2f
�1�2
�3�4

.s; t; u/@�3w3@
�4w4: (4.33)

Therefore, the contribution of the Lagrangian LeffV is proportional to a linear combination of
the momenta of the four interacting Goldstone bosons. Only three different Lorentz invariant
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combinations are possible, which can be described by the Mandelstam variables and in the
massless limit

.k1 � k2/ .k3 � k4/ D
s2

4
; (4.34a)

.k1 � k3/ .k2 � k4/ D
t2

4
; (4.34b)

.k1 � k4/ .k1 � k4/ D
u2

4
: (4.34c)

The form factors can therefore be determined from isospin-spin amplitudes in (4.24) by
substituting

s2

s2
!

4

s2
g�1�2g�3�4; (4.35a)

t2

s2
!

4

s2
g�1�3g

�2
�4
; (4.35b)

u2

s2
!

4

s2
g�1�4g

�2
�3
: (4.35c)

In contrary to (4.33) the amplitudes are usually determined in unitary gauge within WHIZARD.
To calculate the impact to massive longitudinal vector bosons, the Goldstone boson contri-
bution has to be related to the equivalent longitudinal gauge boson contribution. In other
words, the term D�H has to include equivalent terms in the gaugeless limit and unitary
gauge. Comparing the partial derivative acting on the Goldstone bosons with the associated
term of the longitudinal vector boson within the covariant derivative in (2.34) leads to the
relations

@�w
˙
!

gv

2
W ˙� ; (4.36a)

@�z !
gv

2cw
Z�: (4.36b)
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By combining the relation in (4.35) and (4.36), the Feynman rules of the effective vertices
are formulated for the physical region of the s-channel

W ˙�1W
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˙
�4
W
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4

h
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; (4.37a)
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(4.37d)
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(4.37e)

Scattering processes involving a Higgs boson have a different off-shell extrapolation. Therefore,
the Higgs momentum is included in the Feynman rules for the analogous effective vertices
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given by

W ˙
�1
W �

�2
! hh W � g2v2

��
1

3
.�A00.s/ ��A20.s//

�
10

3
.�A02.s/ ��A22.s//

�
g�1�2 .k3 � k4/

s2

C5 .�A02.s/ ��A22.s//
k
�3
3 k

�2
4 C k

�1
4 k

�2
3

s2

�
; (4.37f)

Z�1Z�2 ! hh W �
g2v2

c2w

��
1

3
.�A00.s/ ��A20.s//

�
10

3
.�A02.s/ ��A22.s//

�
g�1�2 .k3 � k4/

s2

C5 .�A02.s/ ��A22.s//
k
�3
3 k

�2
4 C k

�1
4 k

�2
3

s2

�
; (4.37g)

W ˙
�1
h! W ˙

�3
h W � g2v2

��
1

2
�A20.s/ � 5�A22.s/

�
k
�1
2 k

�3
4

s2

C

�
�
3

2
�A11.s/C

15

2
�A22.s/

�
g�1�3 .k2 � k4/

s2

C

�
3

2
�A11.s/C

15

2
�A22.s/

�
k
�1
4 k

�3
2

s2

�
; (4.37h)

Z�1h! Z�3h W �
g2v2

c2w

��
1

2
�A20.s/ � 5�A22.s/

�
k
�1
2 k

�3
4

s2

C

�
�
3

2
�A11.s/C

15

2
�A22.s/

�
g�1�3 .k2 � k4/

s2

C

�
3

2
�A11.s/C

15

2
�A22.s/

�
k
�1
4 k

�3
2

s2

�
; (4.37i)
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C5 .�A02.s/C 2�A22.s//
.k1 � k4/ .k2 � k3/C .k1 � k4/ .k2 � k3/

s2

�
:

The maximal absolute value each isospin-spin value can have is achieved, when it becomes
purely imaginary (see Figure 4.2)

aI` D i: (4.38)

To transfer this bound onto the cross section, the corresponding counter terms have to be
included in (4.37) and are defined as

�AI` D 32� i �AI`: (4.39)
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Figure 4.3.: pp ! W CW Cjj , naive EFT results that violate unitarity, QCD contribu-
tions neglected. The band describes maximal allowed values, due to unitarity
constraints, for the differential cross section. The lower bound describes the
saturation of A20 and the upper bound describes the simultaneous saturation of
A20 and A22, cf. (4.37).

Cuts: Mjj > 500 GeV; �yjj > 2:4; p
j
T > 20 GeV; j�j j > 4:5.

The WHIZARD implementation of these effective vertices has been included within the file
./omega/src/target_Kmatrix_2.ml belonging to the matrix generator O’MEGA[11]. Addi-
tionally, a new model SM_ul has been added to WHIZARD, where the impact of the bounds of
weak isospin-spin amplitudes to arbitrary cross sections will be individually determined.

The W CW C ! W CW C amplitude is a function of two independent isospin-spin channels as
shown in (4.24). To determine when the cross section of a process involving vector boson
scattering will violate unitarity, all combinations of isospin-spin amplitudes bounds have to be
taken into account. For the proton-proton collision, which includes the W CW C ! W CW C

process, bounds on a combination of A20 and A22 have to be checked. As displayed in
Figure 4.3, it leads to a band where the Argand circle condition is fulfilled. The lower limit
arise from the A20 amplitude only, whereas the higher limit originates from the bound of
simultaneous saturating A20 and A22. Every cross section above the band will not satisfy
the unitarity condition and is unphysical. When a cross section is within the bound, single
isospin spin eigenamplitudes could already break unitarity, but do not necessary have to.

The invariant cross section of the effective operators in Figure 4.3 will violate the A20 bound
at invariant mass energies of the WW -system as calculated in (4.32). The differential cross
section of the dimension six operator stays inside the region, which satisfies unitarity. At
the point, where the dimension six operator could violate unitarity, the simulated numbers

50



4.5. Unitarization

Im [aℓ]

Re [aℓ]

1
2

1
2

(a) Saturation

Im [aℓ]

Re [aℓ]

1
2

1
2

(b) Resonance

Im [aℓ]

Re [aℓ]

1
2

1
2

(c) Inelastic channels

Figure 4.4.: Possible situations for scattering amplitudes respecting the Argand circle.

of events are already too low to be significant in this analysis. This behavior of dimension
six operators was already discovered in [35, 84]. Because the dimension six operators can be
investigated via production and decay process, the effective field theory is mostly used in a
limited energy range.

In contrast, the dimension eight operators can only be studied using scattering processes.
They will always violate unitarity above a certain energy. Except for the rare decayZZ ! 4l

the invariant mass of a general vector boson scattering process cannot be experimentally
reconstructed completely. An energy cut cannot be applied on the data, which would remove
those unphysical events on the generated sample. Therefore, a naive effective field theory
approach cannot be used to study anomalous quartic gauge couplings at high energy colliders.

4.5. Unitarization

The diagonal isospin-spin amplitudes have to stay on the Argand circle as long as no additional
inelastic channels appear. However, the raw amplitudes of the dimension eight operators
will leave the Argand circle at a certain energy. This is obviously the wrong description of
possible new physics effects. The possible behavior of an elastic scattering amplitude can be
put in five categories [66]:

1. The Standard Model case: The amplitude is close to zero, and the imaginary part is
small compared to the real part. Therefore, the amplitude is in a perturbative regime.

2. Strongly interacting regime: The amplitude rises and receives a bigger imaginary part.

3. Saturation: The amplitude asymptotically approaches its maximum absolute value
(fig. 4.4a).

4. The resonant case: The amplitude flips over after saturation (fig. 4.4b).

5. Inelastic case: New inelastic channels open up (fig. 4.4c). The extra channels can be
modeled by an effective form-factor suppression. In case of vector boson scattering
these extra channels can be related to observable multi vector boson production [85, 86].
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4. Unitarity

The physical amplitude has to follow one of these five possibilities. There are different
unitarization prescriptions available to extrapolate the effective field theory beyond its valid
energy regime. They are mostly inspired from the requirement of a full analytic S-matrix.

The Padé-formalism was introduced in [87–89] to reorder a non convergent perturbative series
and was used to study the vector-boson scattering process in the no-Higgs or heavy-Higgs limit
[90–94]. This unitarization model gives rise to additional resonances at higher energy, which
were not included in the effective field theory. Additional resonance generating unitarization
prescriptions are the inverse-amplitude [95–99] and the N/D unitarization scheme [96, 100].
These schemes are mainly used in pion-pion scattering, where the amplitude contains those
resonances in the correct UV completion.

The suppression of unitarity violating amplitudes with an energy dependent form factor is
studied in [101–104]. The form factors are dependent on additional parameters, which are
associated with mixing of new resonances or additional open channels. Therefore, a certain
knowledge of physical contributions is necessary, because it is not a prediction that can be
derived from unitarity [35].

These introduced schemes demand a UV completion of the effective theory, in contrary to the
unitarization scheme, which is presented in the next section. It will saturate the amplitude
without needing additional parameters to give a possible upper limit of the effective field
theory contribution.

4.5.1. K-Matrix Unitarization

Heitler [105] and Schwinger [106] defined the unitary scattering operator S in terms of a
self-adjoint K operator to have a closer relation to the interaction hamiltonian operator

S D
1C iK=2

1 � iK=2
: (4.40)

The K operator is thus the Cayley transform of the S -operator, where a factor 1=2 is added
for later convenience. The corresponding interaction operator T can be evaluated with
relation (4.2) to be

T D
K

1 � iK=2
: (4.41)

This T automatically satisfies the optical theorem (4.4), because the unitarity of S is respected
by the Cayley transformation (4.40). The K-operator in terms of T is obtained by inverting
equation (4.41),

K D 2i
1 � S

1C S
D

T

1C iT=2
: (4.42)

If the theory is perturbatively calculable, the K-matrix can be determined pertubartively
as long as T � 2i is non-singular. It is apparent from (4.42), that K and T are identical to
lowest order.
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Figure 4.5.: Stereographic projection of unitary scattering amplitude on the Argand circle
to the real axis (K-matrix eigenvalue)

The optical theorem for partial waves in (4.17) can be generalized for diagonalizable interac-
tion operators with eigenvalues t D 2a. In this case, every a lies on the Argand circle, which
is displayed in Figure 4.4,

ja � i=2j D 1=2 : (4.43)

The corresponding eigenvalue ak of the Cayley-transform K-matrix can be related to a as
an stereographic projection from the Argand circle onto the real axis

aK D
a

1C ia
: (4.44)

The K-matrix can therefore be understood as the stereographic projection of the transition
matrix T onto the space of Hermitian matrices.

Instead of starting with a unitary scattering matrix and then calculating the Hermitian
operator K, the construction as introduced above was reversed by Gupta and collaborators,
and in subsequent studies [107–111]. In doing so, the Hermitian K-matrix is interpreted as
an incompletely calculated approximation to the true scattering matrix S . The T -matrix is
then determined as a non-perturbative completion of this approximation.

To translate this formalism to the amplitude level the starting point is a diagonalized K-
matrix with its real eigenamplitude aK . The corresponding unitarized amplitudes a that
enters the T -matrix are determined by inverting equation (4.44)

a D
aK

1 � iaK
: (4.45)

This transformation can be pictured as the inverse stereographic projection in Figure 4.5.

For a non-diagonal, but Hermitian K-matrix the inverse stereographic projection of the unita-
rized transition matrix K is defined by formula (4.41). The standard K-matrix unitarization
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4. Unitarity

formalism acts only on the perturbative series of the T -matrix. If the n-th order approxima-
tion T .n/0 of the T -matrix is represented by the eigenamplitude a.n/0 , the corresponding real

K-matrix amplitude a.n/K can be constructed by (4.44)

a
.n/
K D

a
.n/
0

1C ia.n/0
D a

.1/
0 C Re a.2/0 C i.Im a.2/0 � .a

.1/
0 /

2/C : : :

D a
.1/
0 C Re a.2/0 C : : : (4.46)

where a.1/0 is assumed to be real and at lowest order the optical theorem is satisfied by

Im a.2/0 D .a
.1/
0 /

2. If the original perturbation series is correct, the imaginary parts will cancel

at each order. Inserting the truncated perturbation series for a.n/K into equation (4.45) gives
the unitarized amplitude

a.n/ D
a
.1/
0 C Re a.2/0 C : : :

1 � i.a.1/0 C Re a.2/0 C : : :/
: (4.47)

This prescription amounts to a partial resummation of the perturbation series for perturba-
tively calculable, exact scattering matrix. Furthermore, the construction guarantees that the
computed S matrix is unitary, and the perturbation theory is reproduced order by order.

Physical singularities, such as Coulomb singularities should not be handled by an ad-hoc
unitarization scheme. Instead, the charged particle singularities in the scattering matrix
need a proper definition of the asymptotic states of charged particles [112–115]. Therefore,
the Coulomb singularities have to be subtracted before applying the chosen unitarization
prescription to the S-matrix, and then the Coulomb singularities are added together with
appropriate corrections for the asymptotic states.

To summarize the unitarization routine for a given non-unitary perturbative approxima-
tion of the transition matrix T : The corresponding truncated perturbative expansion of
the Hermitian K matrix is constructed by (4.42) and inserted back into the unitarization
formula (4.41), to obtain the corresponding unitarized T matrix. Regardless to which order
the K-matrix in (4.42) is calculated, by inserting an nth order approximation of the S -matrix
will result in a unitary S -matrix to all orders. Contrary, expanding the unitarized S -matrix
to nth order will reproduce the original nth order expression, which is unitary up to terms
of order nC 1.

Example

As a concrete example a non-unitary 2! 2 scattering process with a scalar particle exchange
within the s-channel is chosen. The scalar pole is represented by a J D 0 partial-wave
eigenamplitude

a
.0/
K .s/ D

�

s �m2
: (4.48)
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(a) K-matrix projection: (Pertubartive) construction
of a real ak in the first step.
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(b) Linear Projection: Direct determination of the uni-
tarized a.

Figure 4.6.: Geometrical representation of the K-matrix procedure and the linear projection
starting with a complex amplitude a0.

Using the K-matrix transformation the amplitude becomes

a.0/.s/ D
�

s �m2 � i�
; (4.49)

the Breit-Wigner form of a scalar resonance. Thus, the K-matrix transformation implements
the Dyson resummation of the resonant propagator.

4.5.2. Direct T -Matrix Unitarization I: Linear Projection

The K-matrix procedure as introduced above will lead to an exact reconstruction of the
unitary S -matrix in perturbation theory, but it has the drawback, that the self-adjoint
K-matrix has to be reconstructed as an intermediate step as shown in Figure 4.6a. This
unnecessary detour can become significantly complicated, if the scattering matrix cannot
be diagonalized or if non-perturbative effects need to be considered. Therefore, it would be
more practical to skip this intermediate step and unitarize the T -matrix directly. Then this
framework can be used for arbitrary models of the scattering matrix, which may or may not
admit a perturbative expansion.

Starting on the amplitude level, a generalization of the K-matrix prescription is presented
that operates on the T -matrix directly. The unitarized amplitude a is constructed directly
from the complex approximation to an eigenvalue of the true T -matrix by the same geometric
procedure as before. As pictured in Figure 4.6b, the point a0 is connected with the point i by
a straight line and the resulting intersection with the Argand circle becomes the unitarized
amplitude a

a D
Re a0

1 � ia�0
: (4.50)

There is no need to construct the real amplitude aK . The formula in (4.50) fulfills the
properties that

1. a lies on the Argand circle,
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4. Unitarity

2. real amplitudes a0 reproduce (4.45),

3. amplitudes a0, which already satisfies the Argand-circle condition stay invariant.

This guarantees the invariance of the correct perturbative series, up to higher orders. Never-
theless, the actual expression in (4.50) differs from the standard K-matrix formula in (4.47),
when evaluated in perturbation theory,

a.n/ D
a
.1/
0 C Re a.2/0 C : : :

1 � i.a.1/0 C Re a.2/0 � i Im a.2/0 C : : :/
: (4.51)

Due to the truncation of the necessary intermediate perturbative expansion of the scattering
matrix in the K-matrix formulation, higher orders are treated differently in these two ap-
proaches. The direct unitarization formula in (4.50) does not rely on a perturbative expansion.
It is thus applicable to a more general set of models. In the case of vector-boson scattering
with a light Higgs, the leading term a

.1/
0 is suppressed, which leads to an ill-behaved K-matrix

construction, whereas the modified version in (4.50) does not encounter this problem.

However, other difficulties can arise in the formula in (4.50): If the imaginary part of a0
becomes larger than i, the selected intersection point a appears beyond the fixed point a D i,
on the complex half-plane opposite to the location of a0. As a consequence the model
amplitude with a resonance of the form

a0.s/ D
�0

s �m2 � i�
(4.52)

with �0 > �, would be transformed into an unitarized version that revolves twice around the
Argand circle. Therefore it will split the resonance at m2 into two separate peaks. Although,
this ansatz to describe a resonance is rather pathological, such a behavior is undesirable.
This problem can be avoided by fixing the unitarized amplitude a for Im a0 � 1

a D

8<:
Re a0

1 � ia�0
if Im a0 < 1;

i otherwise :
(4.53)

The transformation in (4.53) is generalized to a unitarization prescription for an scattering
matrix T0, which needs not satisfy the optical theorem. Choosing the scattering operator to
be normal, T �0 T0 D T0T

�
0 , and not having eigenvalues with an imaginary part larger than

one, the unitarization transformation is given by

T D
ReT0

1 � i
2
T
�
0

: (4.54)

If the scattering matrix T0 is non-normal, the operator ordering in the fraction must be

56



4.5. Unitarization

Imz = 1

|z| = ‖ImT0/2‖ + ǫ

∂Σ+

∂Σ−

Im z

Re z

Figure 4.7.: Integration contours used for projecting on the subspaces corresponding to
ImT0=2 < 1 and ImT0=2 > 1 for a bounded operator ImT0=2 in (4.55).

defined, which leads to the following two equivalent formulations

T D
1q

1 � 1
2
ImT0

ReT0
1

1 � i
2
T
�
0

r
1 �

1

2
ImT0;

D

r
1 �

1

2
ImT0

1

1 � i
2
T
�
0

ReT0
1q

1 � 1
2
ImT0

: (4.55)

For any matrix T0 with imaginary part of its eigenvalue satisfying Im .a0/ � 1, the matrix T
from (4.55) is related to a unitary S -matrix. If T0 already respects the optical theorem, it will
stay invariant under the transformation in (4.55). That means also, that the reconstructed
matrix T reproduces the perturbative expansion of T0, if it represents already the correct
pertubartive series of T .

If perturbation expansion is not applicable to T , the matrix has either to be diagonalized, and
the transformation in (4.53) has to be executed afterwards in order to extract eigenvalues with
imaginary part greater than one, or a projection can be used for a well defined transformation
of (4.55). For this purpose, functions of matrices can be defined by their power series
expansion. More generally, a function f W D � C ! C can be associated with another
function Of which maps matrices to matrices with a functional calculus

3f̨ C ˇg D ˛ Of C ˇ Og ; (4.56a)cfg D Of Og ; (4.56b)

1f ı g D Of ı Og : (4.56c)

The Riesz-Dunford functional calculus, which is introduced in [116–119], defines Of .A/ by a
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Figure 4.8.: Geometrical representation of Thales projection.

contour integral encircling the spectrum �.A/

Of .A/ D

Z
@˙ W�.A/�˙

dz

2� i

f .z/

z1 � A
(4.57)

using the fact that the resolvent matrix 1=.z1 � A/ is well defined whenever z 62 �.A/. This
functional calculus can therefore be used unchanged for all bounded operators on a Hilbert
space. An extension to certain classes of unbounded operaters is possible, but not needed
in the present work, because the scattering amplitudes with definite angular momentum
are related to finite dimensional matrices. The functional calculus introduced in (4.57) is
closely associated to the projections on the invariant subspace of A corresponding to a part
˙ � �.A/ of the spectrum

PA;˙ D

Z
@˙

dz

2� i

1

z1 � A
: (4.58)

In particular,using the contours ˙˙ as described in Figure 4.7 to generalize the prescrip-
tion (4.53) for ImT > 2 projections PImT0=2;˙˙ can be defined by

1 D PImT0=2;˙C C PImT0=2;˙� : (4.59)

4.5.3. Direct TMatrix Unitarization II: Thales Projection

Thales’ Theorem in elementary geometry suggests an alternative construction to the inverse
stereographic projection from the real axis to the unitarity circle. Investigating Figure 4.8
reveals that the K matrix amplitude ak coincides with the endpoint of a half-circle that
connects the lower fixed point 0 with the unitary amplitude a. Consequently, for a given,
arbitrary real amplitude a0 D ak, the Thales projection to a unitarized amplitude a is defined
as the intersection point of the Argand circle and the half-circle that connects 0 and aK . The
Thales circle is characterized by its intersection aK with the real axis and has its center on
the positive real axis. Its points obeysˇ̌̌

a �
aK

2

ˇ̌̌
D
aK

2
: (4.60)
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4.6. Physical Process

Therefore, the projection of a real amplitude a0 on the Argand circle coincides with the
K-matrix description

a D
aK

1 � iaK
: (4.61)

When starting with a complex amplitude a0, the corresponding ak is determined from the
condition, that both amplitudes have to be on the same Thales circle defined in (4.60)

1

aK
D

Re .a0/

ja0j
2
D Re

�
1

a0

�
: (4.62)

There is no perurbative expansion necessary in this step. Furthermore, the intermediate
calculation of the real amplitude aK can be skipped by inserting (4.62) directly in (4.61),
which leads to a unitarization formula for an arbitrary complex amplitude

a D
1

Re
�
1
a0

�
� i
: (4.63)

The corresponding prescription for the complete interaction matrix T , regardless of its
perturbative expansion, is formulated analogously to one for the amplitudes in (4.63)

T .T0/ D
1

Re
�
T0
�1
�
�

i
2
1
: (4.64)

In this case, an ordering prescription of the fraction is obviously not needed for the Thales
projection. In Appendix A.4, it is proven in detail that the transformation in (4.64) leads to
a unitary S matrix. Furthermore, it is shown that interaction matrices, which already satisfy
the optical theorem stay invariant under the transformation (4.64).

This construction avoids the undesirable behaviors for a non-unitary amplitude above the
Argand circle; the unitarized version of a single resonance is again a single resonance. However,
this transformation encounters other drawbacks as it is not analytic in the vicinity of a0 D 0.
This disadvantage can be ignored, because the unitarization is only necessary for amplitudes,
which violate the unitarity of the S -matrix and therefore clearly have a0 ¤ 0.

4.6. Physical Process

The Thales projection is chosen as the unitarization procedure to be implemented for weak
boson scattering processes in the Monte-Carlo event generator WHIZARD[11, 12, 15] to numeri-
cally compute unitarized cross sections and generate corresponding event samples at colliders.
The unitarization prescription is projected on the isospin-spin eigenamplitudes, because they
provide a diagonal eigenbasis of the weak vector boson scattering process. Analogously to
the implementation of the isospin-spin bounds in Section 4.4.1, the unitarization for full
processes is implemented by including Feynman rules for the s-channel that correspond to
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Figure 4.9.: Geometrical representation: stereographic projection vs Thales projection.

the energy-dependent counterterm operators2. The counterterms are calculated as shown
in (4.37) from the unitarized isospin amplitudes

�AI` D OAI` �AI`; (4.65)

where OAI` is the T -matrix transformed amplitude and fulfills the unitary condition. Up
to the perturbative order that the scattering process is implemented, there is no difference
between the T -matrix and K -matrix unitarization prescriptions. A difference would show
up for higher-order or model-specific amplitudes that initially contain an imaginary part.

4.6.1. Numerical Results: On-Shell

The unitarized differential cross section of the vector boson scattering process within a proton-
proton collision, pp ! V Vjj with jets j and weak vector bosons V , for the parameters
FHD; FS;0; FS;1 is calculated for the LHC configuration with

p
s D 14 TeV. Standard cuts

for the dijet invariant mass Mjj > 500 GeV, the jet pseudorapidity distance �yjj > 2:4,
a minimal jet transverse momentum of pT > 20 GeV and a minimal (and opposite) jet
rapidity of j�j j < 4:5 are applied. The results are shown in Figure 4.10 for the distinct
final states W CW C, W CW �, W CZ, and ZZ taken to be on-shell. Comparing to the
distributions in Figure 3.2, the plots clearly indicate that the naively calculated numbers
with anomalous couplings and no unitarization (fig. 3.2) overshoot the more realistic T -matrix
results (fig. 4.10a). The non-unitarized results rise with the invariant mass of the vector
boson scattering system, whereas the unitarized results in Figure 4.10a have a kink at the
calculated boundary energies for A20 (see eq. (4.32)). This kink originates from the T -matrix
saturation prescription of the A20 amplitude. Furthermore, the effect of the dimension-eight
operators (blue/red) is more pronounced for the chosen parameters than the effect of the
anomalous Higgs coupling due to the dimension-six operator (green). In all channels, the

2Note, that it is not possible to use an automated tool for Feynman rules to include these rules here (like
e.g. via the FeynRules interface for WHIZARD [120]), as one also needs a prescription to single out the
s-channels.
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Figure 4.10.: pp ! V Vjj , unitarized differential cross sections,
(QCD contributions neglected).

Cuts: Mjj > 500 GeV; �yjj > 2:4; p
j
T > 20 GeV; j�j j < 4:5.

unitarized graphs have the same high energy behavior as the differential cross section of the
Standard Model. They fall off with energy at the same rate, but are bigger by approximately
one order of magnitude. A pure effective field theory description can be only meaningful, if
it lies between the Standard Model curve and the saturated limit.

4.6.2. Numerical Results: Full Processes

For a full process simulation including W CW C-scattering at the LHC, the vector bosons will
decay and the final state consists of six fermions, namely two forward jets and the decay
products of the vector bosons

pp ! eC�C�e��jj: (4.66)
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This process includes the vector boson scattering process and the complete irreducible back-
ground. The events have been generated with the WHIZARD event generator [15] in version
2.2 on the basis of the complete tree-level amplitude that connects the initial and final state.
In Figure 4.11 the distribution of different observables for an unweighted partonic event
sample that corresponds to 1 ab�1 at the nominal LHC energy of 14 TeV. Standard vector
boson fusion cuts (listed in the caption of Figure 4.11) are used to suppress some background
processes.

The observables shown in Figure 4.11 are the scalar sum of transverse momentum and the
azimuthal distance of the charged lepton pair. It is manifest, that both observables are
sensitive to the chosen values of the anomalous couplings. There is a significant difference
between the Standard Model prediction (blue) and the prediction with nonzero operator
coefficient and unitarization (red).The unphysical results that would be generated without
unitarization (yellow/light) are also displayed for reference. If these non-unitarized samples
were used to determine the experimental bounds for the dimension six and eight operators,
they would be stronger constrained. More importantly, the results would be incorrect,
and therefore possible new physic contributions would be falsely excluded. The T -matrix
prescription ensures, that the computed results do not overshoot the limits. It does not have
any further physical interpretation, but gives an upper limit, up to which an effective theory
approach would be applicable.
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Figure 4.11.: pp! eC�C�e��jj;
p
s D 14TeV;L D 1000 fb�1

Cuts: Mjj > 500 GeV; �yjj > 2:4; p
j
T > 20GeV; j�j j < 4:5; p

`
T > 20GeV
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Chapter 5

Resonances

The saturization of an amplitude by the T -matrix description can be interpreted as a reso-
nance at infinity. However, the high energy behavior of the amplitude differs from a resonance
with finite mass. In the Argand circle picture of an elastic amplitude shown in Figure 5.1, the
resonance amplitude will circle around the Argand circle. It will reach the highest absolute
value at an energy equal to the mass of the corresponding new physics resonance. If the
energy is not sufficient to access this point, only the rise of the amplitude is experimental
measurable. In this case, the resonance description coincides with the description of the
dimension eight operators like LS;0 and LS;1. Therefore, the origin of such dimension eight
operators could be the Taylor expansion of a heavy resonance. As an example, a Higgs like
scalar resonance can be expanded in terms of its heavy mass

s2

s �M 2
!

s2

M 2
CO

�
1

M 4

�
: (5.1)

Im [aℓ]

Re [aℓ]

1
2

1
2

Figure 5.1.: A resonance circles around the Argand-circle.

65



5. Resonances

At low energies compared to the particle mass, it is reasonable to use the effective field
theory approach to describe an unknown new physics contribution. However, if the particle
mass lies within the experimental reach of energy the typical bump of the resonance will
not be described by the effective field theory approach. As described in Chapters 3 and 4,
the effective field theory operators will break unitarity at high energies, because the Taylor
expansion like in (5.1) will break down. The generic T -matrix unitarization scheme is then
needed to reformulate the theoretical prediction, that is consistent at all energies. Beyond
the resonance, the correct high energy behavior of an additional scalar resonance would be
similar to a dimension six operator

s2

s �M 2
! s CM 2

CO
�
1

s

�
: (5.2)

Therefore, the unitarity bound is shifted to higher energies from the bound of corresponding
dimension eight operators. Modeling possible new physics degrees of freedom as generic
resonances could be more feasible when their mass lies within the energy reach of the experi-
ments.

In this chapter, the effective field theory approach to investigate new physics will be extended
by a new set of generic resonances, which affect the vector boson scattering process. New
resonances can appear as elementary particles and therefore interact weakly, or as strongly
interacting resonances similar to mesons in quantum chromodynamics. Both scenarios will
be covered by allowing a generic coupling of the resonance to the gauge and Higgs-Goldstone
sectors [73]. As a first step, only couplings to the Higgs-Goldstone boson sector are assumed
in this thesis. Thus, the calculation can be performed mainly in the gaugeless limit, where the
gauge sector vanishes. Additionally, only partial derivatives instead of covariant derivatives
acting on the resonance are considered, because the additional contribution of the covariant
derivative would only lead to higher order corrections to a resonance propagating in the weak
boson scattering process.

Because the Standard Model should be obtained as the low energy limit of this extension by
new resonances, their interactions will be described by currents of canonical dimension four in
an effective field theory approach to the Standard Model. Similar to dimension six operators,
the theoretical description can become ill-defined at high energies again. Therefore, the
T -matrix framework has to be used to avoid an unphysical prescription in this asymptotic
regime.

A publication of this part of the thesis is in preparation [121].

5.1. Quantum Numbers

Additional resonances can be categorized according to their spin and gauge quantum numbers.
As in Chapter 3, new degrees of freedom are introduced, which couple only to the Higgs
sector, neglecting interactions to light fermion currents. In the asymptotic limit of high
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masses, these are represented as dimension eight operators LS;0 and LS;1. Therefore, only
color singlets which conserve charge-conjugation and parity are considered. In the following,
the new resonances will be distinguished in terms of their spin and gauge quantum numbers,
which will be referred to as isospin.

5.1.1. Spin

Starting with integer spin particles in the final state, only integer spin resonances are allowed.
There are two possibilities for even-spin resonances in vector boson scattering: scalar and
tensor resonances. Because even-spin fields switch the fermion helicity, only even-spin fields
with Higgs doublet like quantum numbers couple directly to fermion currents. An example
for a scalar extension of the Standard Model with these fields are two or multi Higgs doublet
models. However, only resonances which couple directly to the Higgs sector are investigated
in this thesis. To guarantee this behavior, the resonances must have quantum numbers
different from the Higgs-doublet.

Resonances with odd spin in vector boson scattering, namely vector resonances, are also
possible and have been studied extensively in the literature. Most studies about a vector
resonance � in Higgs-less models are outdated in the presence of a light scalar Higgs, but the
basic principles are the same. A vector-like resonance coupled to the Higgs sector will mix
with the electroweak gauge bosons of the Standard Model. After diagonalization, heavy vector
resonances mostly develop couplings to all fermions of the Standard Model, in particular to
light fermions. Therefore, the vector resonances have a different phenomenology from the
scalar and tensor resonances and are neglected in a first approach.

The case of a tensor resonance requires special consideration. While renormalizable weakly
interacting theories cannot include elementary tensor particles, it is nevertheless possible to
set up an effective theory which contains a tensor particle and remains weakly interacting
over a considerable range of energies. This has been observed in the context of gravity in
extra dimensions [122–124], where massive tensor particles arise in the low energy effective
theory. Additionally, a method was introduced to receive further insights in the effective
field theory properties of a massive graviton by restoring its gauge invariance [125]. In the
detailed review about massive gravity, this is called Stückelberg trick [126].

Massive gravitons provide a very specific pattern of couplings to the Higgs doublet, gauge
bosons and fermions. In this thesis, a more generic model where such relations are absent
is introduced. Due to the construction of a Stückelberg type Lagrangian, a controlled
high-energy behavior of the genuine tensor resonance can be separated from unrelated higher-
dimensional operators that become asymptotically relevant.

5.1.2. Isospin

Scalar and tensor degrees of freedom are similar in their possible couplings to Standard
Model particles. In addition to the spin, these even-spin resonances can be categorized
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5. Resonances

in their electroweak quantum number. Resonances in vector boson scattering have been
categorized for Higgs-less models in terms of the custodial SU.2/C multiplets, namely the
weak isospin. In a Higgs-less scenario, the electroweak symmetry breaking is caused by
a strongly interacting sector with an electroweak breaking scale of �s D 4�v � 3 TeV.
Vector boson scattering would therefore only be measured below this scale, where only the
(approximate) low-energy SU.2/C symmetry applies. This is not the case in the observed
light Higgs scenario (see Section 4.3.2). Data from vector boson scattering can be accessed
at TeV energies, which are above the masses of the physical Higgs and the electroweak
gauge bosons. Therefore, the unbroken high-energy symmetry has to be considered for
the theoretical description. Neglecting hypercharge, this is SU.2/L � SU.2/R. The new
resonance coupled to the Standard Model Higgs sector have to be categorized in terms of
SU.2/L � SU.2/R multiplets.

Resonances of even-spin with couplings to Higgs-Goldstone pairs, must therefore reside in
the decomposition of

�
1
2
; 1
2

�
˝
�
1
2
; 1
2

�
. This representation corresponds to a H˝H� term in

an effective interaction operator. There are only two possibilities:

1. .0; 0/: a neutral singlet (isoscalar), or

2. .1; 1/: a 3 � 3 matrix, which contains nine components. This multiplet decomposes
into an isotensor with five components, an isovector with three components, and an
isoscalar with one component after electroweak symmetry breaking. In terms of the
SU.2/L � U.1/Y subgroup, the nonet is represented as a complex SU.2/L triplet with
a doubly charged component and a real SU.2/L triplet, as described in [127]. The
relative mass splitting between these states is of order .MW =M/2, where M is the
average resonance mass. Assuming M �MW , this splitting can be ignored. Therefore,
the nonet contains degenerate resonance components.

Due to the existence of the light Higgs, the analogy between spin and isospin cannot be used,
because tensor states have just five physical degrees of freedom, but an isotensor will never
occur by itself. For any given resonance multiplet in a vector boson scattering, the chiral
symmetry relates Goldstone pairs with Higgs pairs, i.e. the ZZ and HH pairs.

In this thesis, a scalar and a tensor resonances with SU.2/L � SU.2/R quantum numbers
.0; 0/ in addition to scalar and tensor .1; 1/ resonances are considered. For brevity of notation,
.0; 0/ will be still denoted as isoscalar and the .1; 1/ as isotensor, which is always accompanied
by additional isovector and isoscalar components.

5.2. Isoscalar-Scalar Resonances

A new massive spin-zero isoscalar state � might appear as another Higgs boson. For example
a Higgs singlet � can couple via the operator tr

�
H�H

�
�2, and a Higgs doublet H0 can interact

via tr
�
H�H0

�2
and tr

�
H�H

�
tr
�
H0�H0

�
. However, these terms will only contribute to Higgs

mixing and self-interactions, but not directly to vector boson scattering. If another light scalar
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5.2. Isoscalar-Scalar Resonances

particle beside the Standard Model Higgs is present, the Standard Model cannot be obtained
in the low energy limit and would contradict the effective field theory formalism. The observed
Higgs boson is therefore the only light scalar which saturates the vector boson coupling in
the dimension four part of the Lagrangian. To model an additional scalar resonance � with
mass m� in the vector boson scattering process, it has to be coupled to a current J� which
contains two Higgs-field derivatives D�H. Therefore, the interaction can be describe with an
effective dimension-five operator

L� D �
1

2
�
�
m2� C @

2
�
� C �J� ; (5.3a)

where J� D F�tr
h�
D�H

��
D�H

i
; (5.3b)

with effective coupling F� which is suppressed by the new physics scale �. However, new
Higgses may eventually appear also in vector boson scattering process after diagonalization
of a renormalizable extension of the Standard Model Higgs sector. In this case, the couplings
are power suppressed equivalent to the effective field theory formalism due to the Higgs
decoupling theorem [128–130]. Therefore, the renormalizable (possibly weakly interacting)
case is a special case that is included in the general effective field theory framework. In
particular, this applies to Higgs sector extensions by singlets and doublets, as long as the
additional scalars can be considered heavy in the sense of the effective field theory formalism.

5.2.1. Goldstone Boson Amplitudes

Additional contributions to the weak boson scattering process arise due to the generic scalar
resonance described by the Lagrangian (5.3). Using the corresponding Feynman rules derived
in Appendix B.3, the Goldstone boson amplitudes are given in the gaugeless limit by

A�

�
w˙w˙ ! w˙w˙

�
D �

1

4
F�

2

�
t2

t �m2�
C

u2

u �m2�

�
; (5.4a)

A�

�
w˙z ! w˙z

�
A�

�
hw˙ ! hw˙

�
A� .hz ! hz/

9>=>; D �14F�2 t2

t �m2�
; (5.4b)

A�

�
w˙w� ! w˙w�

�
D �

1

4
F�

2

�
s2

s �m2�
C

t2

t �m2�

�
; (5.4c)

A�

�
w˙w� ! zz

�
A�

�
hh! w˙w�

�
A� .hh! zz/

9>=>; D �14F�2 s2

s �m2�
; (5.4d)

A� .zz ! zz/

A� .hh! hh/

)
D �

1

4
F�

2

�
s2

s �m2�
C

t2

t �m2�
C

u2

u �m2�

�
: (5.4e)
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However, these amplitudes cannot be used in a numerical calculation, because they have a
singularity at s; t; u D m2� . Therefore, the resonance should be formulated as Breit-Wigner
resonance by adding an imaginary term proportional to the width �� in the denominator

1

s �m2�
!

1

s �m2� C i��m�� .s/
; (5.5a)

1

t �m2�
!

1

t �m2� C i��m�� .t/
; (5.5b)

1

u �m2�
!

1

u �m2� C i��m�� .u/
; (5.5c)

where the � function has to be added, because of the analytical S -matrix features which has
been discussed in Section 4.1. The width �� of the scalar resonance is related to its mass
and coupling

�� .m�/ D

Z
d˝

ˇ̌
Ep
ˇ̌

32�2m2�

�
jM�!wCw�j

2
C
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2
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2

�
D

m3�
32�

F 2� ; (5.6)

with
ˇ̌
Ep
ˇ̌
D

m�
2
. Now, the master amplitude A

�
w˙w� ! zz

�
in (5.4) will get an imaginary

part when approaching the resonance. The isospin spin amplitude A00 should be saturated
in a valid theoretical description at the resonance-mass (see fig. 5.1), i.e. this amplitude
becomes purely imaginary.

5.2.2. Effective Field Theory Matching

If the mass of the scalar is similar to the Higgs mass, the behavior of the resonance is
equivalent to the dimension six operator LHD (see eq. (3.42))

F� D

q
F 2HDv

2 C 4FHD ; (5.7a)

FHD D �
2

v2

 
1˙

r
v2

4
F 2� C 1

!
: (5.7b)

Especially, this is true for the high energy limit. Therefore, a combination of FHD and F�
can be chosen such, that a possible unitarity violation of the dimension six operator LHD
is canceled. If the pole of the scalar is beyond the energy reach, it can be integrated out
and matched to higher dimensional operators in the low-energy effective field theory. The
matching algorithm is displayed schematically for a generic even-spin resonance ˚ with mass
m˚ and parameter z coupling to a current J

L˚ D z
�
˚
�
m2˚ CDD

�
˚ C 2˚J

�
: (5.8)
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Integrating out ˚ results in the effective Lagrangian

Leff
˚ D �

z

m2˚
JJ C

z

m4˚
J.DD/J CO.m�6˚ / : (5.9)

In case of a scalar resonance � , the four weak boson fields will be truncated which yields an
anomalous quartic gauge coupling

Leff
� D

F 2�
2m2�

tr
h�
D�H

��
D�H

i
tr
h
.D�H/

�D�H
i
: (5.10)

This anomalous coupling can be matched to a dimension eight operator LS;1 (see eq. (3.37))
with an effective coupling of

FS;1 D
F 2�
2m2�

: (5.11)

5.2.3. Isospin-Spin Amplitudes

Analogously to the dimension eight and six operators, the contribution induced by a generic
scalar resonance can violate the unitarity of the S -matrix. To avoid an unphysical theory
description, the unitarization framework, namely the T -matrix scheme, which has been
introduced in Chapter 4, is applied. Similar to the effective field theory approach described
in Section 4.4.1 the counter terms corresponding to isospin-spin eigenamplitudes have to be
calculated. For this purpose, the Goldstone boson scattering amplitudes (5.4) are decomposed
in the isospin-spin eigenbasis

A00 D F
2
�

�
�
3

4

s2

s �m2� C im���
�
1

2
S0 .s;m�/

�
; (5.12a)

A02 D �
1

2
F 2� S2 .s;m�/ ; (5.12b)

A11 D �
1

2
F 2� S1 .s;m�/ ; (5.12c)

A13 D �
1

2
F 2� S3 .s;m�/ ; (5.12d)

A20 D �
1

2
F 2� S0 .s;m�/ ; (5.12e)

A22 D �
1

2
F 2� S2 .s;m�/ ; (5.12f)

where the functions Si .s;m�/ are defined in the Appendix A.3.2. The resonance part of the
eigenamplitude A00 could also be formulated without a width �� . Therefore, the amplitude
would posses a pol at its mass on the real axis and would violate unitarity near the pol. The
T -matrix scheme would act as Dyson resummation (see eq. (4.49)) and would transform the
on-shell scattering amplitude automatically in the correct Breit-Wigner form. However, for
a well behaved numerical calculation, the width has to be included in the Breit-Wigner form
of the resonance.
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5.3. Isoscalar-Tensor Resonances

The massive spin-two particle has five degrees of freedom, which can be represented by five
component fields corresponding to an irreducible representation in the rest frame of the
physical spin-two particle. No interacting model which posses an ultraviolet completion for
a generic spin-two particle has been developed, yet. The main issue while modeling such a
relativistic quantum field theory is to ensure a complete Hilbert space and a unitary scattering
matrix. However, a massive spin-two particle can be embedded in an effective field theory
approach to the Standard Model. Therefore, a generic spin two particle is introduced as
relativistic extra field to the Standard Model in a Lagrangian formalism. These fields are
coupled to currents build from Standard Model fields in a Lorentz- and gauge-invariant way.

Contrary to the spin-zero scenario, where the particle has only a single component, the
spin-two case has five independent components in the appropriate Lorentz representation. A
relativistic spin-two particle is represented by a symmetric Lorentz tensor with a priori ten
components that mix under Lorentz transformations. The Lorentz symmetry is represented
by the symmetry group SU.2/ � SU.2/ and is broken down to the diagonal SU.2/ algebra,
the spin, in the rest frame of the tensor. In particular, the Lorentz decuplet decomposes into
the irreducible spin states like

symmetric Lorentz tensor! spin states .2/C .1/C .0/C .0/ : (5.13)

Looking at the symmetric rest-frame of the polarization tensor "��, the irreducible parts
correspond to one traceless spin-two component "ij , one spin-one component "0i , and two
spin-zero components "00 and

P
"i i . Under the full Lorentz group, the polarization tensor "��

can be reduced to six degrees of freedom, particularly into the traceless tensor and the scalar
which represents the trace. However, in the presence of interactions it is not straightforward
to maintain this decomposition for off-shell amplitudes [131].

The extra degrees of freedom of a tensor with momentum k and mass mf can be eliminated
on-shell, k D m2

f
, by demanding the conditions

k�"
��
D 0 ; (5.14a)

"�� D 0 : (5.14b)

Thus, the independent degrees of freedom are reduced from ten to five. Using the real,
symmetric and mutually orthogonal polarization tensors "��

�
the propagator for a single

tensor can be written as [132]

G
��;��

f
.k/ D

i
P
� N"

��

�
"
��

�

k2 �m2
f
C i�

C non-resonant : (5.15)

The non-resonant part has to vanish when k is on-shell. Explicitly summing over the five
polarization tensors leads to a unique solution for the resonant part of the propagator [133]

G
�1�2;�1�2
f

D i
P �1�2�1�2.k;mf /

k2 �m2
f
C i�

C non-resonant ; (5.16)
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where the projection operator of spin two can be written in terms of the spin-one projection
operators

P �1�2�1�2.k;mf / D
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.k;mf / "
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P �1�2.k;mf /P
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(5.17)

which are given by

P ��.k;mf / D
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: (5.18)

A propagator with a vanishing non-resonant part follows from the well-known free Fierz-Pauli
Lagrangian for the tensor field f �� [134, 135]
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(5.19)

This Lagrangian enforces conditions which are related to (5.14) on the symmetric spin-two
field

@�@�f
��
D 0; (5.20a)

@�f
��
D 0; (5.20b)

f �� D 0 : (5.20c)

Without the non-resonant terms, the tensor has more than five off-shell degrees of freedom
and the propagator describes not a pure tensor. Additional different combinations of factors
k� are included in the propagator (5.16) which projects out the proper spin-two part of the
pole. At lower energies s D k2, these factors vanish more rapidly than the g�� terms. In an
effective field theory approach, this can be interpreted as the coupling to operators of higher
dimensions. However, beyond the resonance, they could eventually rise more rapidly and
therefore potentially provide the dominant part that enters the unitarization prescription.

5.3.1. Stückelberg Formulation

The additional momentum factors in the spin-two propagator represent the mismatch between
the on-shell SO.3/ and off-shell Lorentz-group representations in a relativistic description.
This is in analogy with a massive spin-one boson, which in the relativistic case acquires an
extra zero component. To investigate the impact of these extra degrees of freedom for an
spin-two field in an actual calculation, they have to be identified and separated first.
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Analogously to the decomposition of the symmetric tensor field, an arbitrary symmetric polar-
ization tensor "�� can be written in terms of five polarization tensors "��

f
, three polarization

vectors "�A and two polarization scalars "� and "�
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f
C
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m
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"� C g
��"� : (5.21)

Using the on-shell conditions for the polarization tensor "��
f

(5.14) and the constraint
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f
, the vector and scalar polarizations "A, "� , "� are given by con-
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This decomposition yields a naturally extension for off-shell amplitudes. Using the pre-
scription (5.22) will remove the k� factors of the tensor propagator (5.16), but introduces
additional vector and scalar fields including their respective propagators. To extend the
on-shell relations of the polarization degrees of freedom (5.22) off-shell, the interactions of
the vector and scalar fields must be precisely related to the original tensor interactions. In
field theory, a gauge symmetry can be introduced to automatically enforce such relations.
The power-counting in the resulting Feynman rules will be explicit, in analogy with the ’t
Hooft-Feynman gauge of an ordinary gauge theory.

In the Lagrangian formalism, the Fierz-Pauli Lagrangian is related to the minimal single-field
spin-two propagator. However, the propagators correspond to the pure tensor components
only on-shell. To show explicitly the off-shell mixing of all ten degrees of freedom of a
massive symmetric spin-two field, the Stückelberg mechanism is used [126]. This algorithm
introduces additional fields and extra gauge symmetries simultaneously in the Lagrangian
formalism [136–138]. Due to these extra gauge symmetries, the new degrees of freedom are
redundant and the total number of observable degrees of freedom is not changed. Following
the Stückelberg mechanism, the degrees of freedom which are eliminated on-shell by the
conditions (5.20) can be shown explicit. The f 0� components are separated from the tensor
to the Stückelberg vector A� like

f �� D f 0�� C
1

mf
@�A� C

1

mf
@�A� : (5.23)

Analogously to the original Stückelberg algorithm for an abelian vector, the A0 component
which corresponds to f 00 is extracted by introducing the scalar �f ,

A� D A
�

f
C
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mf
@��f : (5.24)
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Finally, another Stückelberg scalar �f represents the trace of the massive tensor

f 0�� D f
��

f
C g���f : (5.25)

This scheme guarantees that the interactions of the new fields in the Lagrangian are correctly
related to the original interactions of the tensor field. The resulting Lagrangian exhibits
several gauge symmetries that reflect the redundancy of the Stückelberg fields
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(5.26)

Choosing unitary gauge, where all Stückelberg fields vanish, recovers the Fierz-Pauli La-
grangian. The scheme simplifies slightly since both scalars are related to the original tensor,
so their interactions are not independent and the gauge can be fixed by

�f D ��f : (5.27)

Adjusted by partial integration, the minimal Stückelberg Lagrangian is [139]
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(5.28)

For perturbative calculations, four additional gauge symmetries have to be fixed up to residual
gauge transformations �.x/ which decouple on-shell, i.e. satisfying the harmonic condition
.@2 C m2/� D 0. The Lagrangian (5.28) is already formulated in such a way, that the
interaction terms between the different fields are grouped together. Choosing the linear
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gauge fixing terms
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results in the diagonalized Lagrangian
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where the fields are renormalized by A�
f
! A

�

f
=
p
2 and �f ! �f =

p
6). The corresponding

scalar, vector and tensor degrees of freedom decouple from each other, but have a different
coupling behavior to the effective current. If taking the massless limit mf ! 0 in (5.31),
the current J ��

f
has to be conserved, i.e. @�J

��

f
D 0 . Otherwise the scalar and vector

contributions proportional to 1=mf become singular and the theory description breaks down.
In this case the vector decouples completely and only the scalar corresponding to the trace
and the tensor itself will affect the weak boson scattering amplitude. Note that, in this thesis,
only heavy resonance are investigated, because the Standard Model should be obtained in
the low energy limit. Therefore, the currents J ��

f
receive a priori no further restrictions and

all degrees of freedom could contribute to the weak vector boson scattering processes.

The kinetic terms of the pure tensor, vector and scalar lead to to their corresponding canonical
propagators1
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1For a complete formulation at the quantum level, the gauge-fixed Lagrangian has to be embedded in a
BRST formalism. Introducing appropriate Fadeev-Popov ghosts and auxiliary Nakanishi-Lautrup fields,
the classical action can be rendered BRST invariant. The quantum effective action with resonance
exchange is then defined as the solution to a Slavnov-Taylor equation, to all orders in the electroweak
perturbative expansion. The gauge-fixing terms become BRST variations, which do not contribute to
physical amplitudes, and the Stückelberg fields combine with the ghosts and auxiliary fields to BRST
quartets that can be consistently eliminated from the Hilbert space. This procedure is shown in detail
in [140] .
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As desired, these propagators do not contain any momentum factors. This is advantageous in
a Monte-Carlo calculation for physical processes, where in a generic momentum configuration
all bosons are off-shell.

The Stückelberg formulation and the Fierz-Pauli Lagrangian are equivalent descriptions of
a massive spin-two particle and result in identical on-shell amplitudes. Differences between
those two approaches are manifest in the formulation for massive vector bosons, where the
Stückelberg approach reproduces the usual reformulation as a spontaneously broken gauge
theory. Although this is mathematically equivalent to the original model [141], a conceptual
difference arises, when the accessible energy in a process exceeds the resonance mass within an
effective field theory framework. In the gauge theory version, there is no higher dimensional
operator with a 1=M coefficient. Any additional effects would come with a new cutoff 1=�.
Scattering amplitudes are bounded beyond the resonance as long as � is considered large.
This is contrary in the formulation with massive gauge bosons, where k�=M terms are
included in the propagator and could be naively estimated as order one in terms of power
counting. These require the inclusion of a whole series of operators with 1=M factors. Thus,
the model becomes strongly interacting by definition and looses predictivity. A possible
weak interaction can only be described with fine-tuned cancellations between terms. Turning
this argument around, if a vector boson is observed to interact weakly over a significant
range of energies above its mass, it is natural to describe it as a gauge boson of some gauge
symmetry. Analogously, only the Stückelberg approach provides a natural description for a
weakly interacting tensor resonance over a significant range of scales above its mass.

In this thesis, the Stückelberg Lagrangian is therefore used as the basis of a tensor effective
field theory with a minimum set of free parameters. Additional interactions which do not
contribute to the resonance can be described with further free parameters. These unrelated
new physics effects can be modeled by additional higher dimensional operators.

5.3.2. Currents

The lowest dimensional effective coupling of the isoscalar-tensor resonance to Goldstone
boson/Higgs sector is described by a current which consists of two terms
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; (5.33)

where the coupling Ff already contains the 1=� suppression. An additional independent
coupling only to the trace of the tensor with the coefficient cf is introduced in the second
term. Because the trace of the tensor vanishes on-shell, the second term belongs to the
non-resonant continuum and can be replaced by an higher dimensional effective field theory
operator. For cf D 1, the current J ��

f
becomes traceless and decouples completely from the

trace of the tensor. To investigate the effect of the second term further, the coefficient cf is
left undetermined.

The tensor-field coupling then reads in Fierz-Pauli formulation (5.19)

f��J
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f
; (5.34)

77



5. Resonances

and in the Stückelberg formulation (5.31)
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In the second formalism, the momentum factors in the Fierz-Pauli tensor propagator (5.16)
have been converted to derivatives acting on the current. They are explicitly associated
with the vector and scalar degrees of freedom. Besides the scalar coupling to the trace of
the current, the vector and scalar couplings can be associated with dimension five and six
operators, respectively. Thus, the formally dominant high-energy (s !1) behavior of the
amplitude is given by the exchange of the Stückelberg vector and scalar. These contributions
will only vanish, if the current is conserved. However, evaluating the divergence using (2.4)
and the equations of motion (A.53a) reveals that the current J �� is not conserved, even in
the absence of electroweak symmetry breaking
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(5.36)

Besides the term proportional to
�
cf � 2

�
all non vanishing terms of the derivatives contain at

least three fields and therefore do not contribute to the V V ! V V process at high energies,
where the electroweak symmetry is conserved. After electroweak symmetry breaking the Higgs
fields receives a vacuum expectation value v and the divergence of the current contains terms
with just two particles. In combination with g; g0 and �, these new terms are proportional
to the the masses of W , Z and the Higgs. They describe the interaction of the Stückelberg
vector coupling to a longitudinal and a transversal vector boson, which are accompanied by a
factor 1=mf . In the limit of a heavy resonance, the Stückelberg terms are thus parametrically
suppressed and become only relevant for energies significantly beyond the resonance mass.
Conversely, if the resonance mass is similar to the electroweak scale, the Stückelberg terms
are significant.

The contributions of the Stückelberg scalar related to double derivative acting on the current

78



5.3. Isoscalar-Tensor Resonances

possess an energy behavior analogue to the Stückelberg vector
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(5.37)

Again, by choosing cf D 2 the double derivative acting on the current will only induce terms
to weak boson/Higgs scattering after spontaneous electroweak symmetry breaking. These
terms are therefore proportional to higher powers of the electroweak breaking scale v. Similar
to (5.36), these contributions to the coupling of the scalar are suppressed by 1=m2

f
. Thus

the scalar couplings to two longitudinal or two transversal vector bosons described by the
double derivative of the current can be neglected for heavy tensor resonances in the high
energy limit.

5.3.3. On-shell Amplitudes

The contributions from (5.36) and (5.37) proportional to the masses mW , mZ and mh of
the scattered bosons would be automatically neglected in the gaugeless limit. Additional
terms are expected for on-shell vector boson scattering amplitudes by the scalar and vector
degrees of freedom in the Stückelberg parametrization. Contrary to the scalar resonance, the
on-shell amplitudes have to be calculated for longitudinal vector bosons in unitary gauge for
a complete discussion. A complete set of Feynman rules for the Stückelberg parametrization
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in unitary gauge is given in Appendix B.2. Starting with the tensor degrees of freedom, the
W CW � ! ZZ scattering amplitudes reads
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with P2 Œcos.�/� D
1
2

�
3 .cos�/2 � 1

�
. Every term not proportional to s2 can be neglected

in the high energy limit. The amplitude then coincides with the gaugeless limit regardless
of the parameter cf and the mass of the tensor resonance. Although the amplitude has a
dependence on the scattering angle �, its rise with the energy is comparable to a scalar
resonance. Deviating behavior in the rise of the amplitude for longitudinal vector boson
scattering is first introduced by the vector parametrization of the tensor resonance
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The numerators grow with s3 unlike the amplitude of the tensor part. This growth is caused
by the last term of (5.36), which includes three partial derivatives acting on the Higgs field.
By choosing cf D 2 this rise of the amplitude vanishes. Furthermore, the vector contribution
converges to a constant value in the high energy limit and can be neglected as it would be
automatically in the gaugeless limit for cf D 2.

Due to the coupling of the scalar part of the resonance to the current trace and the double
derivative of the current (5.37), the longitudinal on-shell scattering amplitude contains mixing
terms of these couplings
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Terms proportional to 1=m4
f
originate from the double derivative acting on the current J ��

f
,

terms without a suppression by m2
f
arise due to the coupling to the trace of the current, and

the remaining terms suppressed by 1=m2
f
indicate mixing between these two contributions.

The parameter cf has to be set to two again to avoid an unphysical behavior from the factor
s4 in the numerator. This would be even worse than in the vector case (5.39). Analogously to
the tensor contribution, the remainder of the numerator will rise with s2, but some terms are
proportional to powers of v2=m2

f
. These terms will be completely neglected, if the amplitude

is calculated in the gaugeless limit for Goldstone boson scattering with Feynman rules given
in Appendix B.3
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with P2 .s; t; u/ D
�
3
�
t2 C u2

�
� 2s2

�
=s2. An approximation of the longitudinal scattering

amplitude with the Goldstone boson scattering amplitude, namely the Goldstone boson
equivalence theorem, is therefore only valid for small ratios m2Z=m

2
f
.

Due to the coupling to the derivatives of the scalar and vector degrees of freedom, also
amplitudes in channels with transversal polarization rise with the energy of the vector boson
scattering system. A full list of these channels in the high energy limit is displayed in Table
5.1. It is manifest that all channels which include at least one transversal polarized vector
boson are suppressed by m2W =m

2
f
due to the coupling of the vector and/or scalar degrees of

freedom. In case of a heavy tensor resonance, all channels beside the purely longitudinal
polarized channel can be neglected regardless of the choice of cf . Therefore, a calculation
within the gaugeless limit is sufficient to estimate the high energy behavior for heavy tensor
resonances.
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Table 5.1.: High energy limit of the W CW � ! ZZ amplitude for each polarization channel
that rises with energy due to a isoscalar-tensor resonance.
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5.3.4. Goldstone Boson Amplitudes

Choosing cf D 2, the amplitude will rise asymptotically proportional to s=m2
f
only, because

the remaining s2 term cancels partially with the denominator. Qualitatively, this is similar
to a scalar resonance. Assuming a heavy tensor resonance, the high-energy behavior of
the amplitude for all weak boson/Higgs channels is given by the Goldstone boson/Higgs
amplitudes in the gaugeless limit without having to account for transversal gauge bosons
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For a correct numerical calculation, Breit-Wigner propagators with an additional term
Cimf �f�

�
p2
�
in the denominator are used analogously to (5.5). When determining the

matrix element of the decay of a tensor resonance, a factor 1=5 has to be added for summing
over the five possible physical polarization states
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5.3.5. Effective Field Theory Matching

In the case of a heavy resonance beyond experimental reach, only the rise of the resonance
can be measured. This rise can be modeled analogously to the scalar resonance by higher
dimensional operators. However, dimension ten and twelve operators would also be needed to
describe the couplings to derivatives (5.36) and double derivatives (5.37) of the tensor current.
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As discussed above, all of these contributions are additionally suppressed by higher powers of
mf when choosing cf D 2. In this case, only the contributions of the scalar coupling to the
trace of the current and the tensor coupling to the current have to be accounted for. Using
the formulation (5.9) for both scalar and tensor, the effective Lagrangian with the tensor
resonance integrated out reads
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The latter term originates from the scalar contribution coupling to the trace of the current
J
��

f
and the ghost contributions of the tensor trace. Using equation (5.45), the tensor

resonance can be matched in the low energy limit to an effective field theory parameterized
by the dimension eight operators LS;0 and LS;1 defined in (3.37) with
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The tensor resonance will eventually violate unitarity at a certain energy regardless of the
choice of cf , and the T -matrix unitarization as described in section (4.5) is necessary to receive
a theoretical valid description at high energies. However, the allowed values of resonance
masses are restricted such that the Stückelberg terms discussed above remain numerically
small within some finite energy range. Outside this range, the Higgs-Goldstone sector cannot
be separated from the theory, and the vector boson scattering amplitudes are sensitive to
unknown strong interactions that involve all channels of longitudinal, transversal, and Higgs
exchange simultaneously. A different implementation of the T -matrix unitarization scheme
(4.64) is necessary in that situation.
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5.3.6. Isospin-Spin Amplitudes

In this thesis, contributions which influence only the Higgs-Goldstone sector are examined.
Analogously, to the unitarization of the effective field theory, a projection of the T -matrix
algorithm onto the isospin-spin eigenamplitudes can be used. The Goldstone boson scattering
amplitude (5.41) is used for the decomposition into isospin-spin eigenamplitudes for the spin
two resonance
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Using the implementation via isospin-spin eigenamplitudes in the gaugeless limit (see Section
4.4.1) for the T -matrix scheme will not guarantee unitarity for all energies. The longitudinal
on-shell amplitude (5.40) of the scalar degrees of freedom would still rise due to the double
derivative contributions (5.37) like a scalar resonance with the coupling
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For the generalization to arbitrary 2! 2 scattering processes involving gauge/Higgs bosons
with mass mi , the parameter mwhz is introduced
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The high energy behavior of the scalar will violate the unitarity of the S-matrix eventually. As
discussed in Section 4.4, the isospin-spin eigenamplitudes are constrained by (4.31). Taking
the leading high energy terms into account, the eigenamplitudes A00 and A20 of a scalar
resonance (5.12) give the strongest bound
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Rewriting the coupling Ff in terms of the width of the tensor using (5.44), the tensor
description in the T -matrix implementation as described in Section 4.4.1 is only valid up to
invariant masses of the boson scattering system of
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In case of a broad tensor resonance with mass mf D 1TeV and a width of �f D 0:5TeV, the
theoretical description can only be used up to an invariant mass of

p
s � 5TeV for quasi-

elastic Higgs-Higgs scattering. The description for a weak vector boson scattering process
with an exchange of a 1TeV tensor resonance and a more realistic width of �f D 0:1TeV
does not break down until an invariant WW -mass of � 15:6TeV. Thus, the T -matrix
implementation using the gaugless Goldstone boson scattering amplitudes is sufficient for a
study of heavy tensor resonances (mf & 1 TeV) within the reach of a 14 TeV proton-proton
collider.

5.4. Isotensor-Scalar Resonances

The couplings of the isotensor-scalar are analogously to the isoscalar-scalar case introduced in
Section 5.2 assumed to couple only to the Goldstone boson/Higgs sector via two Higgs-field
derivatives D�H. However, the resonance with chiral SU.2/L � SU.2/R quantum numbers
.1; 1/ has nine degrees of freedom. In the chiral representation, these nine degrees of freedom
can be represented as the tensor ˚ab with the indices a; b 2 f1; 2; 3g. Hence, the Lagrangian
describing the a isotensor resonance in the Goldstone/Higgs boson sector can be written as

L˚ D
1

2
@�˚

ab@�˚
ab
�
m2˚
2
˚ab˚ab C J ab˚ ˚ab ; (5.52)
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where the current has a SU.2/L and a SU.2/R index

J ab˚ D F�tr
h�
D�H

��
�aD�H�b

i
: (5.53)

Analogously to the isoscalar case, the coupling F� is suppressed by a new physics scale �.
To expose the coupling structure to the Goldstone/Higgs boson sector, the current can be
expanded in the gaugeless limit
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(5.54)

Here, the decomposition into isotensor, isovector and isoscalar is already manifest. The
first term proportional to ıab couples to the isoscalar. A pair of Higgs bosons interact only
with the isoscalar degrees of freedom, whereas the second term contains a mixing of the
Higgs and the Goldstone boson. Its proportionality to the Levi-Civita symbol indicates the
coupling to an isovector. The third term involves only Goldstone bosons and is associated
with the coupling to an isotensor. The coupling of the isoscalar to two Goldstone bosons
could also be reformulated analogously to the spin two case as a coupling to the isotensor
trace. Without the Higgs, four degrees of freedom of the nonet will vanish, namely the
isoscalar and the isovector. Therefore, the resonance with quantum number .1; 1/ can be
represented completely by an isotensor [142].

The resonance ˚ab can be formulated in a basis of tensor products of SU.2/ generators which
are related to the decomposition

1˝ 1 D 2C 1C 0 ; (5.55)

where the associated orthonormal eigenvectors are evaluated via Clebsch-Gordon decomposi-
tion. Using this basis, the resonance ˚ab is rewritten in terms of its SU.2/C components

˚ab ! ˚t C ˚v C ˚s (5.56)
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v ; (5.57b)

˚s D �s�s : (5.57c)

A complete definition of the isospin basis �t , �v and �s is given in the Appendix A.1. All
nine degrees of freedom are identified as unique particles, which do not mix with each other
due to orthogonality. An equivalent Lagrangian to (5.52) can now be formulated in terms of
the SU.2/C basis
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5. Resonances

In absence of the Higgs boson, the coefficient of the second term is chosen in such a way,
that the trace of the current vanishes. In this scenario, the isovector and isoscalar degrees of
freedom decouple from the model and only the isotensor is needed to describe this resonance.
However, including a Higgs the Lagrangian (5.58) guarantees the amplitude relation between
the Higgs and Goldstone bosons introduced in Section 4.3.

5.4.1. Goldstone Boson Amplitudes

The crossing relations are manifest in the scattering amplitudes for the Goldstone/Higgs
boson, which are determined in the gaugeless limit via the Feynman rules given in the
Appendix B.3
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The width ���.s/ has to be added in the denominator for an s-channel exchange via the
resonance analogously to (5.5). Besides the degenerated mass of isotensor, isovector and
isoscalar, also the width of all nine particles is the same
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5.4. Isotensor-Scalar Resonances

5.4.2. Effective Field Theory Matching

Analogously to the isoscalar case, an isotensor with a high mass can be described by the
dimension eight operators LS;0 and LS;1. Determining the impact to these effective field
operators is a cross-check of the correct formulation for the Lagrangian (5.58). Integrating
out the isotensor resonance in the chiral representation gives contributions proportional to
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: (5.61)

In the SU.2/C eigenbasis, all nine particles are integrated out explicitly and result in the
effective Lagrangian
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Both approaches yield the same matching coefficients for the low energy effective theory
operators LS;0 and LS;1 (see eq. (3.37))
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5.4.3. Isospin-Spin Amplitudes

Contrary to the isoscalar resonance (5.12), the isotensor resonance has two isospin-spin
channels with a resonant contribution. Besides the expected singular behavior in the A20

channel, the accompanied non-vanishing isoscalar causes a resonant behavior in the A00

amplitude
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5. Resonances

Due to this unique characteristic, the isotensor particle provides resonant contributions to
every vector boson scattering channel, and can be clearly distinguished from an isoscalar
resonance.

5.5. Isotensor-Tensor Resonances

To formulate a consistent interaction of the spin two resonance with chiral SU.2/L�SU.2/R
quantum numbers .1; 1/, the insights from the isoscalar-tensor (Section 5.3) and from the
isotensor-scalar (Section 5.4) are combined. Each of the five tensor degrees of freedom has
nine degrees of freedom associated with the SU.2/L � SU.2/R symmetry group. These 45
components are parameterized by the tensor field Xab

�� with Lorentz indices � and � and
isospin indices a; b 2 f1; 2; 3g. Analogously to the isoscalar-tensor resonance, the kinematic
properties of the spin two resonance are defined via the Fierz-Pauli Lagrangian
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The current J ab��X represents the coupling of the isotensor tensor to the Higgs/Goldstone
boson sector. Additionally to the isoscalar-tensor current definition (5.33), the current has a
SU.2/L and a SU.2/R index
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with an arbitrary parameter cX corresponding to cf . Consistent with the other resonances,
the coupling FX has mass dimension �1 and is suppressed by a new physics scale �. By
expanding the first part of the current within the gaugeless limit, it is manifest, that the
coupling structure of the isotensor-tensor to the Goldstone/Higgs boson sector is similar to
the isotensor-scalar resonance
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(5.67)

Here, the decomposition of the coupling structure into an isoscalar part proportional to ıab,
an isovector part highlighted by "abi and an isotensor part is manifest. Analogously to the
isotensor-scalar, the isotensor-tensor resonance can be rewritten into its SU.2/C components

Xab
! Xt CXv CXs ; (5.68)
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with the nine single components
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Due to the orthogonality property of the isospin basis, these nine degrees of freedom can
be identified as unique tensor particles, which do not mix with each other. Rewriting the
interaction Lagrangian (5.65) within the isospin SU.2/C basis leads to the decomposition
into isoscalar(s), isovector(v) and isotensor(t)
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The coefficient of the last term of the current is chosen in such a way, that the relations
between the Higgs and Goldstone bosons introduced in Section 4.3 are guaranteed. In a
Higgs-less scenario, this coefficient can be chosen such, that the current becomes traceless.
Analogously to the scalar resonance, the isovector and isoscalar components would decouple
and the interaction can be described with a pure isotensor resonance.

In analogy to the isoscalar-tensor, the spin two degrees of freedom can be decomposed via
the Stückelberg formalism into a scalar (�i), vector (Ai) and tensor (Xi) component
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5. Resonances

with i D fs; v; tg. In this representation all reducible 81 degrees of freedom of an isotensor-
tensor resonance are shown. The properties of the additional Stückelberg components were
thoroughly analyzed in Section 5.3 and can be analogously transfered to the isotensor-tensor
resonance.

5.5.1. Goldstone Boson Amplitudes

Starting with the Goldstone boson scattering ww ! zz amplitude in the gaugeless limit for
arbitrary cX , the contributions of the scalar degrees of freedom are identified by their 1=m2X
suppression
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The Feynman rules used in the calculation are given in Appendix B.3. As discussed in Section
5.3, the parameter cX is set to cX D 2 to avoid these divergent terms proportional to s3 and
s2. Thus, the isotensor-tensor resonance rises only proportional to s similar to the dimension
six operator. The scattering amplitudes for all Goldstone/Higgs boson scattering channels
read
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Equivalent to the other resonances a width �X�.s/ has to be added in the denominators
for the s-channel exchange as described in (5.5). Besides the degenerated mass of isotensor,
isovector and isoscalar, the widths of all nine tensor fields coincide to
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The amplitudes calculated in the gaugeless limit represent the high energy behavior only
for heavy isotensor-tensor resonances. The corresponding on-shell vector boson scattering
amplitude calculated with Feynman rules given in (B.2) possess additional contributions
proportional to s and the masses of the involved particles
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5. Resonances

with mass mwhz.mx/ as defined in (5.49). These extra contributions are caused by the scalar
degrees of freedom, which couples to the double derivative of the current as shown in the
Stückelberg formalism (5.71). Neglecting small terms proportional to the mass difference
jmW �mZj, the deviation from the gaugeless limit can be described by an isotensor-scalar
resonance with the coupling strength
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5.5.2. Effective Field Theory Matching

The effects to the dimension eight operators LS;0 and LS;1 by integrating out the resonance
are calculated analogously to the isotensor-scalar resonance. Using both definitions of the
current (5.53) and (5.70) the results can be cross checked. It is important to consider the
contributions of the Lorentz trace of the scalar degrees of freedom and the tensor ghost field,
namely the trace of the tensor. The contributions can be easily determined within the chiral
representation
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In the SU.2/C , representation all nine tensor fields have to be integrated out
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Both approaches coincide and result in the matching coefficients

FS;0 D
F 2X
24m2X

; (5.79a)

FS;1 D �
7F 2X
24m2X

: (5.79b)

5.5.3. Isospin-Spin Amplitudes

Contrary to the isoscalar resonance (5.47), the isotensor resonance has two isospin-spin
channels with a resonance contribution. Beside the expected singular behavior in the A22
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channel, the accompanied non-vanishing isoscalar causes a resonant behavior in the A02

amplitude
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Due to this unique characteristic, the isotensor particle provides resonant contributions to
every vector boson scattering channel, and can be clearly distinguished from an isoscalar
resonance. However, even with the unitarization scheme describe in Section 4.4.1, the
unitarity of a tensor resonance is not guaranteed, because of terms rising with the energy
proportional to the masses of the weak bosons. The high energy behavior after unitarization is
described by an isotensor-scalar resonance with a determined coupling in (5.76). By studying
the unitarity bound of the isospin eigenamplitudes (5.64), the validity of the isotensor-tensor
description is constrained by

p
s .

s
1

30

mx

�x

m2X
mwhz

: (5.81)

This bound is stronger than the corresponding one of the isoscalar-tensor resonance (5.51)
and the mass of the isotensor resonance needs to be higher in comparison to the isoscalar
resonance. For example, a mass of mX D 1:4TeV and width of �X D 140GeV is necessary
for an isotensor-tensor resonance description which is valid up to

p
s D 12:5TeV, whereas a

isoscalar-tensor resonance with a mf D 1TeV and �f D 100GeV provides a valid description
up to

p
s D 15:7TeV for vector boson scattering processes.
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� � f X

FS;0
1
2

2 15 5

FS;1 – -1
2

-5 -35

Table 5.2.: Relation of resonance width � and mass m to the corresponding dimension eight
operator coefficients in the low-energy effective field theory, for all resonance types
considered in this thesis. The factors listed in the table have to be multiplied by
32��=m5.

5.6. Physical Processes

For experimental studies, it is insufficient to consider just the contributions of isoscalar-
scalar, isoscalar-tensor, isotensor-scalar and isotensor-tensor resonances to on-shell vector
boson scattering processes. To provide a tool to investigate the impact of these resonances in
physical processes, new models were implemented into WHIZARD as part of this thesis. Details
about these models and their implementation are given in Appendix C.3. The unitarity of
the S-matrix in presence of these resonances without altering the physical content of the
model is ensured by applying the T -matrix unitarization as described in Section 4.4.1.

Using the Monte-Carlo integration and event generation package WHIZARD the partonic
amplitudes can be convoluted with the parton structure functions to compute complete
processes including QCD contributions and all irreducible background for the generated
final-state partons, not restricted to on-shell final states of W=Z. Furthermore, partons can
be showered and hadronized, to produce realistic exclusive event samples.

In this section, some examples for vector boson scattering processes in the presence of
resonances for complete events at the LHC will be discussed using WHIZARD 2.2.8 r7332
(trunk). Proton-proton induced scattering processes with on-shell vector bosons final states
and complete partonic final states will be considered

pp ! V Vjj ; (5.82)

where V denotes either W ˙ or Z, and jj are two quark-final states, which are detected as
jets in forward direction. In proton-proton collisions at 14TeV, suitable vector boson fusion
cuts enhance the signal-to-background ratio for the subprocess V V ! V V significantly,
analogously to Section 4.6. The vector boson scattering subprocess obtains contributions
from resonance exchange and is affected by unitarization in the limit of high invariant masses
of the vector boson scattering system.

Each resonance � , �, f and X is parameterized by its mass m and its coupling F . Using
equations (5.6), (5.44), (5.60) and (5.74) the coupling F is substituted by the width as an
experimentally detectable quantity. The physical process in a presence of an actual resonance
will also be compared with a matched low energy effective field theory, where the resonances
are integrated out. Matching coefficients are given in equations (5.11), (5.46), (5.63) and
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(5.79). Combining these equations, the relation between the mass and width of the resonance
and the dimension eight coefficients FS;0 and FS;1 are obtained and listed in Table 5.2.

5.6.1. Numerical Results: On-shell

The study of on-shell vector boson scattering gives first insights into the physical features
of the resonance model. In the following, particular parameter sets are chosen, where one
resonance at a time is added to the Standard Model contributions, namely an isoscalar-scalar,
an isoscalar-tensor, an isotensor-scalar or an isotensor-tensor. All extra higher-dimensional
operator coefficients are set to zero. By varying the resonance parameters within reasonable
limits, an overview of the expected phenomenology for this generic resonance model will be
obtained.

Distributions of the processes will be plotted as function of the invariant mass of the final
state vector-boson pair system, which is the energy scale of the actual vector boson scattering
process. Standard vector boson fusion cuts for the dijet invariant mass Mjj > 500 GeV, the
jet pseudorapidity distance �yjj > 2:4, a minimal jet transverse momentum of pT > 20 GeV
and a minimal (and opposite) jet rapidity of j�j j < 4:5 are applied to enhance the signal
for proton-proton collisions at

p
s D 14 TeV. Final states W CW C and ZZ are especially

interesting. The latter is the golden channel of vector boson scattering, because the ZZ
invariant mass can be reconstructed from the leptonic Z decays. This is not possible for the
W CW C final state, but the corresponding same-sign lepton channel has a good signal-to-
background ratio. The vector-boson decay branching ratios have not been included in the
following on-shell distributions.

Each invariant-mass plot contains the following distributions: the pure Standard Model
(black curve), the unitarized resonance model (blue curve) and the unitarized matched low-
energy effective field theory (red curve) predictions. Additionally, the unitarity bounds for
the appropriate partial wave, extrapolated off-shell by the same algorithm, is displayed as
a dashed curve (black). For illustrative purposes, each unitarized case is accompanied by
the numerical results of the effective field theory without unitarization (red, dashed) and the
resonance with correct width but no further unitarization (blue, dashed).
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Isoscalar-Scalar

The simplest case is a isoscalar-scalar resonance. This is a single isolated resonance, as it
could arise e.g. as the extra scalar particle in a singlet-doublet Higgs model or as a low-energy
signal of a strongly interacting Higgs sector that is neutral under the SM gauge group.

In Figures 5.2a and 5.2b, a moderate mass of m� D 800 GeV with a rather narrow width of
�� D 80 GeV corresponding to a weak coupling is selected. The isolated resonance generates
a clear peak in the ZZ channel, while the W CW C channel is barely affected. In the effective
field theory approach, the resonance would correspond to a small coefficient FS;1, which is
two orders of magnitude below the current LHC run I limit [8]. Therefore, the effective field
theory is not useful in this case, but the resonance should be detectable with a sufficient
luminosity.

Turning to a stronger coupling, the corresponding distributions in the ZZ channel for
m� D 650 GeV and �� D 260 GeV are shown in Figure 5.2c.

In this case, the corresponding effective field theory parameters are within the range that
should become accessible at LHC run II. The effective field theory curve (red) appears
correctly as the low-energy Taylor expansion of the resonance curve (blue). However, the
energy region, where the effective field theory starts to deviate from the Standard Model,
already coincides with the resonance peak region. Therefore, a unitarized effective field theory
would predict an underestimated amount of events. Beyond the resonance, the effective field
theory cannot describe the fall of the curve approaching the Standard Model prediction
(black) from above.

Additionally, without unitarization the scalar resonance with a strong coupling would violate
unitarity beyond the Breit-Wigner approximation with constant width (blue-dashed curve).
This is even worse for the naive effective field theory prediction without unitarization (red-
dashed). It is obvious, that this curve heavily overestimates the possible number of events,
which is approximately displayed by the unitarity limit (black-dashed) for A00.
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Figure 5.2.: Differential cross sections of an isoscalar-scalar resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: limit of saturation of A20 .W

CW C/ / A00 .ZZ/.

Cuts: Mjj > 500 GeV; ��jj > 2:4; p
j
T > 20 GeV; j�j j > 4:5.
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Isoscalar-Tensor

The tensor resonance has a stronger impact on the low-energy effective field theory than
the scalar resonance of equal width (see Table 5.2 ). In Figure 5.3, the invariant mass
distribution of tensor resonance with mass mf D 1 TeV and width �f D 100 GeV and of a
strong interacting tensor resonance of mf D 1:2 TeV and width �f D 480 GeV is shown.

Even at energies below the mass of the tensor, the resonance starts to deviate visibly from
the Standard Model. The deviation of the Standard Model is also manifest in the effective
field energy approach, because it coincides with the tensor resonance in a wide energy region.
However, the excess at the peak in the ZZ channel is sizable and would be neglected. Beyond
the resonance, unitarization is essential in the tensor case.

In the W CW C final state, the enhancement due to a t-channel exchange of the tensor
resonance, is well described by the corresponding unitarized effective field theory. There is
no large deviation between the tensor model and the effective field theory, because W CW C

is not resonant for the tensor. As in the scalar case, the models without unitarization do not
provide a useful phenomenological description.

For a heavy isoscalar-tensor resonance with a strong coupling, the mass mf D 1:2 TeV and
width �f D 480 GeV is chosen to provide the same �=m ratio as the isoscalar-scalar case in
Figure 5.2c. Furthermore, this choice of parameters will not violate the unitarity bound of
the additional couplings of the scalar degrees of freedom (5.51), which is not considered in the
unitarization scheme. The resonance peak in Figure 5.3c appears as a broad enhancement
at low and high energies and excesses the unitarity limit of the A02 amplitude, because of
the non-unitarized scalar contribution in the isospin-spin 00 channel. Although the actual
resonance curve shows a nontrivial threshold structure due to the interplay of all contributing
partial waves, the effective field theory approximation is rather accurate in this case. In
both models a unitarization scheme is necessary. However, the prediction for such a strong
coupling is uncertain in any case.
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Figure 5.3.: Differential cross sections of an isoscalar-tensor resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: limit of saturation of A22 .W

CW C/ / A02 .ZZ/.

Cuts: Mjj > 500 GeV; ��jj > 2:4; p
j
T > 20 GeV; j�j j > 4:5.
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Isotensor-Scalar

The isotensor-scalar contains resonances in all vector boson scattering channels. As illus-
trated in Figure 5.4a for the W CW C channel and Figure 5.4b for the the ZZ channel, the
distributions of an isotensor-scalar with mass m� D 800 GeV and width �� D 80 GeV have
a clear peak at the resonance in both channels.

Analogously to the isoscalar-scalar resonance, the effective field theory is not sensitive at
energies below the mass of the resonance. Due to the nine scalar degrees of freedom with
degenerate masses, the peak of the distribution is rather pronounced. The peak’s value
is slightly below (W CW C) and above (ZZ) the appropriate unitarity limit, because of
additional t-channel exchanges in each channel. Even the non-unitarized resonance amplitudes
do not violate unitarity and coincide with solid blue curves of the isotensor resonance with
additional unitarization. However, in case of the effective field theory approach a unitarization
description is necessary as it violates the unitarity bound of A22 for the W

CW C channel and
A02 for the ZZ channel.

Contrary to the weakly interacting scenario, a non-unitarized low lying and strongly inter-
acting isotensor-scalar with mass of m� D 650GeV and width �� D 260GeV violates the
A20 slightly above the resonance as illustrated in Figure 5.4c. Therefore, a unitarization is
needed for this strongly interacting resonance. The low energy effective field theory approach
does only coincide in the unitarized case at high energies, because the eigenamplitudes of
the isotensor-scalar as well as the dimension eight operators are already saturated through
the T -matrix formalism. Although the coupling strength of the matched effective field the-
ory operators are within current bounds of LHC run I, the corresponding isotensor-scalar
resonance would have probably been detected.
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(a) pp ! W CW Cjj , weakly coupled isotensor-scalar
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Figure 5.4.: Differential cross sections of an isotensor-scalar resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: limit of saturation of A20 .W

CW C/ / A00 .ZZ/.

Cuts: Mjj > 500 GeV; ��jj > 2:4; p
j
T > 20 GeV; j�j j > 4:5.
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Isotensor-Tensor

Similarly to the isotensor-scalar, every vector boson scattering channel receives a resonant
contribution from the isotensor-tensor multiplet. The W CW C and ZZ channel distributions
of the isotensor-tensor resonance with mass mX D 1400GeV and width �X D 140GeV are
plotted in Figures 5.5a and 5.5b, respectively. Due to the bound of equation (5.81), the mass
of the isotensor-tensor has to be chosen slightly higher than the mass of the isoscalar-tensor
in Figure 5.3 when leaving the ratio width and mass invariant.

The effective field theory with the dimension eight operators coincides with the onset of
the isotensor-tensor peak. Starting slightly below the resonance, the resonant cross section
deviates from the effective field theory description. Analogously to the isotensor-scalar,
the very distinctive peak of the isotensor-tensor is not captured by the dimension eight
operators. In the W CW C- channel, even the non-unitarized resonance contribution stays
within the unitarity bound of A22. Contrary to the isotensor-scalar, the isotensor-tensor
needs unitarization for the ZZ final state due to the large tensor contributions in the t - and
u�channel. The non-unitarized amplitudes violate the A02 unitarity already below the mass
of the resonance. Even the resonance peak is hardly visible. The unitarized resonance curve
shows a peak, although it is slightly above the unitarity bound.

In a strongly interacting scenario (�X D 720GeV ), the unitarized isotensor-tensor resonance
peaks below its actual mass at mX D 1800GeV. This peak originates from the already
saturated eigenamplitudes, which then falls due to the suppression of the parton distribution
functions at high energies. Besides the resonance peak, the low energy effective field theory
coincides with the isotensor-tensor for both unitarized and non-unitarized results.
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Figure 5.5.: Differential cross sections of an isotensor-tensor resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: limit of saturation of A22 .W

CW C/ / A02 .ZZ/.

Cuts: Mjj > 500 GeV; ��jj > 2:4; p
j
T > 20 GeV; j�j j > 4:5.
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5.6.2. Numerical Results: Full Processes

The actual analysis of the LHC data will have to exploit cross sections and distributions for
the complete final state which consists of the two jets and the decay products of the vector
bosons. A full analysis is beyond the scope of this thesis. To proof the applicability of the
introduced methods, an example for a tensor resonance in the ZZ channel with its decay
into four leptons, namely eCe��C��, is discussed.

The invariant mass of the four charged lepton final state can be easily determined, but it has
a low leptonic branching ratio. For the simulation the high-luminosity mode of the LHC with
integrated luminosity of 3 ab�1 is assumed. The result should considerably improve when
additionally final states like leptonic WW and hadronic final states are taken into account.

The simulation generates event samples for the complete process with all Feynman graphs.
There is no restriction that resonant vector bosons are the only origin for final-state leptons.
To reduce the background, additional invariant mass cuts for eCe� and �C�� are introduced
between 80GeV and 100GeV to identify Z boson candidates. In Figure 5.6, various dis-
tributions for the Standard Model (blue) and a resonance model with a single unitarized
isoscalar-tensor (red) are displayed.

As expected, the resonance withm D 1 TeV and � D 100 GeV appears in the invariant mass
distribution of Figure 5.6. Additionally, the tensor resonance deviates from the Standard
Model at high values of the scalar sum transversal momenta pT of the vector boson candidates.
Due to the favored coupling of the tensor resonance to longitudinal vector bosons, a deviation
from the Standard Model arises also in the observable ���, the decay angle of �� in the rest
frame of the reconstructed muon Z-boson candidate. This parameter set is at the margin of
observability. The situation will be improved, if resonances with lower mass, larger coupling
or in a higher isospin representation are considered and other analysis channels are added.
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Figure 5.6.: pp ! eCe��C��jj at
p
s D 14TeV with luminosity of 3000 fb�1

with isoscalar-tensor at mf D 1000 GeV and �f=100 GeV

Cuts: Mjj > 500 GeV; ��jj > 2:4; pjT > 20 GeV; j�j j > 4:5; 100 GeV >

MeCe� > 80 GeV; 100 GeV > M�C�� > 80 GeV.
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The discovery of a light Higgs boson completed the predicted particle content of the Standard
Model and started a new era of experimental studies at the LHC and future colliders, namely
the study of the Higgs sector. Vector boson scattering processes are suited to investigate the
Higgs sector, because the weakly coupled Standard Model contributions are suppressed by
the light Higgs exchange. Therefore, this process is very sensitive to additional new physics
effects.

The bottom-up effective field theory formalism provides a model independent framework
to quantify new physics contributions in vector boson scattering processes. In case of the
Higgs/Goldstone boson sector, the electroweak symmetry SU.2/L � U.1/Y can be extended
to the chiral symmetry group SU.2/L � SU.2/R to suppress additional contributions to the
O� parameter. A set of CP invariant dimension six and dimension eight operators relevant for
vector boson scattering in the Higgs matrix representation has been introduced in Chapter 3.
Redundant dimension six operators have been removed from the set to built a minimal
dimension six operator basis. Assuming a scenario where new physics in the Higgs/Goldstone
boson sector decouples from the fermion and gauge sector in the high energy limit, the
impact of the the dimension six operator LHD and dimension eight operators LS;0 and LS;1
to vector boson scattering processes can be studied separately for complete processes at
particle colliders.

However, it has been shown in Chapter 4, that a naive effective field theory study for the
dimension eight operators within the sensitivity level of run I at the LHC does not respect
basic quantum field theory principles. In particular, it violates the unitarity of the S-matrix.
Strong unitarity bounds can be calculated by analyzing effective theory contributions to the
isospin-spin amplitudes of vector boson scattering. An exclusion of high invariant masses of
the vector boson scattering system, where the effective field theory violates unitarity, is not
viable due to the impossibility of experimental energy reconstruction for some final states.
Furthermore, the interesting high energy region for possible new physic contribution would
be automatically neglected. To provide a consistent description at high energies matching the
low energy effective field theory, the direct T-matrix scheme has been introduced in Chapter 4.
This framework can be used for any model and will project invalid, non-unitary theoretical
descriptions to unitary ones. It has to be considered that the T-matrix unitarization is
an arbitrary scheme to restore unitarity of a broken theory model and does not necessary
predict the true high energy behavior. As a result, this introduces a model dependence.
However, in the valid region of the effective field theory, the T-matrix projection leaves
the theoretical prediction invariant and can always be used as a preventive procedure. In
particular, the Thales projection T-matrix scheme has been implemented in the Monte-Carlo
package WHIZARD for longitudinal vector boson/Higgs scattering as described in Section 4.4.1.

Extending the effective field theory by operators with additional resonances allows a more de-
tailed analysis of new physics contributions. Assuming resonances only affect the gauge/Higgs
boson sector directly, four resonances have been distinguished by their quantum numbers of
the chiral symmetry group SU.2/L�SU.2/R and their spin. All four resonances, namely the
isoscalar-scalar � , the isoscalar-tensor f , the isotensor-scalar � and the isotensor-tensor X ,
have been discussed in Chapter 5. Each resonance is parameterized by its coupling and its
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mass. To avoid an overestimation of the event rates in the high-energy region, the T-matrix
unitarization scheme, which can also be used for complex amplitudes, is applied for longitu-
dinal vector boson/Higgs scattering. These resonance models can describe the contributions
due to the decoupling limit of multi-Higgs models and certain aspects of massive-graviton
models.

In detail, the isoscalar-tensor resonance introduced here does not coincide with the tensor
resonance state in massive-graviton models as discussed in the literature. Contrary to
these models, the generic tensor considered in this thesis couples mainly to the Higgs sector
and therefore to longitudinal vector bosons. Depending on the mass and coupling of the
generic tensor, additional interactions of an off-shell tensor to vector bosons arise. Using
the Stückelberg procedure, these couplings can be identified with the vector and scalar
degree of freedom of the off-shell tensor resonance. It is manifest, that these non-resonant
contributions to vector boson scattering processes are suppressed by the mass of the tensor
resonance mW =mf . Terms proportional to mW are automatically neglected in the gaugeless
limit and are therefore not considered in the implemented WHIZARD T-matrix unitarization.
However, the description does not violate unitarity for heavy tensors with mf � 1TeV in
proton-proton collisions with center of mass energy

p
s D 14TeV (see (5.51)).

Generic resonances including the T-matrix unitarization have also been implemented into
the Monte-Carlo package WHIZARD as part of this thesis. Details of the implementation and
descriptions of the models can be found in Appendix C.3. Exemplary differential cross section
for all resonances have been calculated separately with WHIZARD for proton-proton collisions
at the LHC and compared with contributions of matched low effective field theory operators,
where the resonance has been integrated out. If the resonance is in the reachable energy
range of the LHC, the resonance approach is preferable, because the effective field theory can
only describe the rise of the resonance. The effective field theory description is insufficient in
case of a weakly coupled scalar resonance, where only a deviation from the standard model
can be seen at the resonance. However, in case of a strong interacting resonance, the effective
field theory coincides sufficiently with the resonance model. In addition to the the pure
effective field theory approach the data should also be analyzed using the resonance model.
Furthermore, the numerical results of the full processes at the LHC show that resonances
could be detected at the LHC within a certain range of mass and coupling values.

In conclusion, this thesis introduced a complete and consistent framework to study new
physics in the Higgs sector related to vector boson scattering processes. Additionally, tools
for further phenomenological studies at the LHC or other future colliders are provided with
the models SSC 2, SSC AltT and SM ul, which have been implemented in the public available
Monte-Carlo generator WHIZARD during this thesis.
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Chapter A

Mathematical Definitions

A.1. SU(2) Algebra

The generators of the fundamental Isospin-SU.2/ representations are the Pauli-matrices
�1; �2; �3. Their 2 � 2 matrix representation reads

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1

�
: (A.1)

With the product of two generators obeying

�i�j D ıij1C i"ijk�k (A.2)

("123 D C1) one can easily calculate the commutator relation�
�i ; �j

�
D 2i"ijk�k; (A.3)

the anti-commutator ˚
�i ; �j

	
D 2ıij1 (A.4)

and the trace of two Pauli matrices

tr
�
�i�j

�
D 2ıij : (A.5)

The traces of products with more Pauli matrices are then given by

tr
�
�i�j �k

�
D 2i"ijk; (A.6a)

tr
�
�i�j �k�l

�
D 2

�
ıij ıkl � ıikıjl C ıilıjk

�
: (A.6b)
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The following rules for the 3-dimensional Levi-Civita-Tensor are useful

"ijk"lmn D

ˇ̌̌̌
ˇ̌ıil ıim ıin
ıjl ıjm ıjn
ıkl ıkm ıkn

ˇ̌̌̌
ˇ̌

Dıilıjmıkn C ıimıjnıkl C ıinıjlıkm

� ıinıjmıkl � ıimıjlıkn � ıilıjnıkm; (A.7a)

"ijk"imn D

ˇ̌̌̌
ˇ̌1 0 0

0 ıjm ıjn
0 ıkm ıkn

ˇ̌̌̌
ˇ̌

Dıjmıkn � ıjnıkm; (A.7b)

"ijk"ijn D2ıkn; (A.7c)

"ijk"imn"kno D
�
ıimıjnıkl C ıinıjlıkm � ıinıjmıkl � ıilıjnıkm

�
"kno: (A.7d)

Furthermore, the abbreviations

�˙ D
1

2
.�1 ˙ i�2/ ; (A.8a)

�C D

�
0 1

0 0

�
; �� D

�
0 0

1 0

�
(A.8b)

with the commutator relations

1

2

�
�3; �

C
�
D �C; (A.9a)

1

2
Œ�3; �

�� D ���; (A.9b)�
�C; ��

�
D �3 (A.9c)

are used.

Dirac Matrices

The Dirac matrices are defined according to the anti commutation relations

f
�; 
�g D 2g��: (A.10)

In the chiral basis they can be written as


 i D

�
0 � i

�� i 0

�
; for i D 1; 2; 3


0 D

�
0 1

1 0

�
; 
5 D

�
1 0

0 1

�
:

(A.11)
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Tensor Product

The tensor products of Pauli matrices for the isospin quintet �t the isospin singlet �v and
the isospin scalar �s are defined as

�CCt D �C ˝ �C; (A.12a)

�Ct D
1

2

�
�C ˝ �3 C �3 ˝ �C

�
; (A.12b)

�0t D
1
p
6

�
�3 ˝ �3 � �C ˝ �� � �� ˝ �C

�
; (A.12c)

��t D
1

2

�
�� ˝ �3 C �3 ˝ ��

�
; (A.12d)

���t D �� ˝ �� ; (A.12e)

�Cv D
i

2

�
�C ˝ �3 � �3 ˝ �C

�
; (A.12f)

�0v D
i
p
2

�
�C ˝ �� � �� ˝ �C

�
; (A.12g)

��v D �
i

2

�
�� ˝ �3 � �3 ˝ ��

�
; (A.12h)

�s D
1

2
p
3

�
�3 ˝ �3 C 2�C ˝ �� C 2�� ˝ �C

�
; (A.12i)

where the Pauli matrix for the isospin singlet is related to

�aa � �a ˝ �a D 2
p
3�s : (A.13)

Here, the Einstein summation convention is implied to sum over the tensor product of the
Pauli matrices (a D 1; 2; 3). All nonzero traces of products of two tensor products are
normalized

tr
�
�CCt ���t

�
D tr

�
�Ct �

�
t

�
D tr

�
�0t �

0
t

�
D tr

�
�Cv �

�
v

�
D tr

�
�0v �

0
v

�
D tr Œ�s�s� D 1 : (A.14)

Combining the properties of the tensor product of generic 2 � 2- matrices A;B;C;D

.A˝ B/ .C ˝D/ (A.15)

with the definition of the trace

tr ŒA˝ B� D tr ŒA� tr ŒB� (A.16)

yields

tr Œ.A˝ B/ .C ˝D/� D tr ŒAC � tr ŒBD� : (A.17)

This reduces the trace of an isospin singlet to

tr Œ.A˝ B/ �aa� D 2tr ŒAB� � tr ŒA� tr ŒB� : (A.18)

Multiplying the two Pauli matrices related to the isospin singlet leads to

�aa�bb D 3 .1˝ 1/ � 2�aa: (A.19)
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A.2. Legendre Polynomials

Legendre Polynomials P ` fulfill the properties

P `.1/ D 1; (A.20a)Z 1

�1

dxP `.x/P `
0

.x/ D
2

2l C 1
ı``
0

: (A.20b)

Using the Rodrigues’ Formula,

P `.x/ D
1

2``Š

d `

dx`

�
.x2 � 1/n

�
(A.21)

the Legendre Polynomials are explicitly calculated up to ` D 3 in the massless limit cos� D
2 t
s
C 1 D �

�
2u
s
C 1

�
,

P 0 .cos�/ D 1 D P 0 .s; t; u/ ; (A.22a)

P 1 .cos�/ D cos� D 2
t

s
C 1 D P 1 .s; t; u/ ; (A.22b)

P 2 .cos�/ D
1

2

�
3 .cos�/2 � 1

�
D 6

t2

s2
C 6

t

s
C 1 D P 2 .s; t; u/ ; (A.22c)

P 3 .cos�/ D
1

2

�
5 .cos�/3 � 3 .cos�/

�
D 20

t3

s3
C 30

t2

s2
C 12

t

s
C 1 D P 3 .s; t; u/ : (A.22d)

Interchanging u and t can be described by the relation

P ` .s; t; u/ D .�1/` P ` .s; u; t/ : (A.23)

A.3. Isospin Basis

The Goldstone bosons w˙; z form an isospin triplet. It is convenient to describe the states
jw˙i; jzi with isospin quantum numbers (I;m). Following [143] the antiparticle state of an
isospin state is defined as

jI;mi D �I .�1/
I�mC jI;�mi (A.24)

with the charge-conjugation operator C and a phase �I . To fulfill the requirement, that the
isospin state is its own antiparticle

jI;mi D jI;mi; (A.25)

the phase is fixed to

�I D �1; (A.26)
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and the charge conjugation operator is defined as

C jw˙i D C
1
p
2

�
jw1i � ijw2i

�
D

1
p
2

�
jw1i ˙ ijw2i

�
D jw�i:

(A.27)

Combinings equations (A.27) and (A.24) leads to the relations

jw�i D j1;�1i; (A.28a)

jwCi D �j1;C1i (A.28b)

A.3.1. Iso-Spin Eigenamplitudes of VBS

The vector boson scattering amplitudes can be realized as 1˝1 iso-spin amplitudes in (A.28)

A.wCw� ! zz/ D�h1; 1I 1;�1jT j1; 0I 1; 0i (A.29a)

A.zz ! zz/ D h1; 0I 1; 0jT j1; 0I 1; 0i (A.29b)

A.wCw� ! wCw�/ D h1; 1I 1;�1jT j1; 1I 1;�1i (A.29c)

A.wCz ! wCz/ D h1; 1I 1; 0jT j1; 1I 1; 0i (A.29d)

A.wCwC ! wCwC/ D h1; 1I 1; 1jT j1; 1I 1; 1i (A.29e)

With help of the Clebsch-Gordon decomposition the amplitude A.wCw� ! zz/ can be
written as a function of iso-spin eigen-amplitudes AI

A.wCw� ! zz/ D �h1;�1jTj0; 0i

D

X
ImI ;KmK

h1;�1jI;mI ihI;mI jTjK;mKihK;mK j0; 0i

D
1

3
A.I D 0;mI D 0/ �

1

3
A.I D 2;mI D 0/:

(A.30)

Decomposing amplitudes in (A.29) analogously leads to

A.wCw� ! zz/ D
1

3
A0 �

1

3
A2; (A.31a)

A.zz ! zz/ D
1

3
A0 C

2

3
A2; (A.31b)

A.wCw� ! wCw�/ D
1

3
A0 C

1

2
A1 C

1

6
A2; (A.31c)

A.wCz ! wCz/ D
1

2
A1 C

1

2
A2; (A.31d)

A.wCwC ! wCwC/ D A2: (A.31e)
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A.3.2. Integrals in Isospin-Spin Eigenamplitudes

If the isospin amplitude includes a particle exchange in the t - or u-channel the integral for
the partial wave decomposition is defined in [142] by

S`
�
s;m2

�
D

Z 0

�s

dt

s

t2

t �m2
P0.t; s; u/P`.s; t; u/; (A.32a)

P`
�
s;m2

�
D

Z 0

�s

dt

s

t2

t �m2
P1.t; s; u/P`.s; t; u/; (A.32b)

D`
�
s;m2

�
D

Z 0

�s

dt

s

t2

t �m2
P2.t; s; u/P`.s; t; u/: (A.32c)

The corresponding integrals over u2

u�m2
are equivalent to the integrals in (A.32) multiplied by

an additional factor .�1/` because of (A.23). Explicitly calculating (A.32) gives

S0 .s;m/ Dm2 C
m4

s
log

�
m2

s Cm2

�
�
s

2
; (A.33a)

S1 .s;m/ D2
m4

s
C
m4

s2

�
2m2 C s

�
log

�
m2

s Cm2

�
C
s

6
; (A.33b)

S2 .s;m/ D
m4

s2

�
6m2 C 3s

�
C
m4

s3

�
6m4 C 6m2s C s2

�
log

�
m2

s Cm2

�
; (A.33c)

P0 .s;m/ D1C
m2 C 2s

s
log

�
m2

s Cm2

�
; (A.33d)

P1 .s;m/ D
m2 C 2s

s2

�
2s C

�
2m2 C s

�
log

�
m2

s Cm2

��
; (A.33e)

D0 .s;m/ Dm2 C
11

2
s C

1

s

�
m4 C 6m2s C 6s2

�
log

�
m2

s Cm2

�
; (A.33f)

D1 .s;m/ D2
m4

s
C 12m2 C

73

6
s

C
1

s2

�
2m2 C s

� �
m4 C 6m2s C 6s2

�
log

�
m2

s Cm2

�
: (A.33g)

A.4. Details on T-Matrix Unitarization

Additional details and proofs about the generalization of the K-matrix unitarization scheme
to both introduced direct T -matrix unitarization schemes, the linear projection and the
Thales projection, are given in this part of the appendix.
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A.4.1. Non-Hermitian K-Matrix

If the initial T0-matrix is not Hermitian, a transformation of a suitable K 0 has be found that
leads to a unitarized T -matrix using the prescription in (4.41)

T D
K 0

1 � iK 0=2
: (A.34)

The most straightforward approach is to neglect the imaginary parts

K 0 D ReT0 D
T0 C T

�
0

2
: (A.35)

Whereas, the interpretation of the Cayley transform as an inverse stereographic projection
suggests a less drastic approach, which retains the imaginary part. Considering the fam-
ily fT�g of T0-matrices that have the same projection from a center i1

T�

2
� i1 D �

�
T0

2
� i1

�
� (A.36)

with a positive �� D � > 0. The unique self adjoint member K 0 2 fT�g of this family has to
satisfy

K 0 D .K 0/� : (A.37)

As long as ImT0=2 < 1, there is a unique solution with a converging power series expansion1

� D
1q

1 � 1
2
ImT0

; (A.39a)

K 0 D �.ReT0/� : (A.39b)

Reinserting equation (A.39) back into (4.41) leads to a unitarization prescription for complex
T0

T D �.ReT0/
1

1 � i
2
T
�
0

��1 D ��1
1

1 � i
2
T
�
0

.ReT0/� : (A.40)

For normal T0 the operators ReT0, ImT0, T0 and T
�
0 commutes and the unitarity transfor-

mation simplifies to

T D
ReT0

1 � i
2
T
�
0

D
ReT0

1 � i
2
ReT0 �

1
2
ImT0

: (A.41)

This prescription is the direct linear T-matrix unitarization and does not need the intermediate
step of calculating the K-matrix within a perturbative expansion.

1The Riesz-Dunford functional calculus [116–119] is used to construct projectors on subspaces corresponding
to parts of the spectrum of ImK=2

P˙ D

Z
@˙

dz

2� i

1

z1 � 1
2
ImT0

; (A.38)

where ˙ contains the desired part of the spectrum of ImK=2.
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A.4.2. Properties of T-matrix unitarized operators

The scattering operators S are unitary, when the interaction matrix T satisfies the optical
theorem

T �T D �i
�
T � T �

�
: (A.42)

Furthermore, it is requested, that the transformations have to be idempotent, so that they
leave interaction operators invariant, which do not break S -matrix unitarity

T .T .T0// D T .T0/ : (A.43)

Linear Projection

To proof that direct T -matrix transformation by an inverse stereographic projection for
normal T fulfills the unitarity and idempotency, the transformation in (4.41) is rewritten to

T .T0/ D
ReT0

1 � i
2
T
�
0

D
ReT0

1C 1
4
T0T

�
0

�
1C

i

2
T0

�
: (A.44)

Then it is easy to proof, that the linear projection unitarization prescription, satisfies unitarity

SS� D 1 � 2Im .T /C TT�

D 1 �
.ReT0/

2

1C 1
4
T0T

�
0

C
.ReT0/

2

1C 1
4
T0T

�
0

D 1 ;
(A.45)

and the T -transformation is idempotent

T .T .T0// D
ReT .T0/

1 � i
2
T .T0/�

D

ReT0

1C 1
4
T0T

�
0

�
1 � 1

2
ImT0

�
1 � i

2

ReT0

�
1� i

2
T
�
0

�
�
1� i

2
T
�
0

�
.1C i

2
T0/

D
ReT0

1C 1
4
T0T

�
0

�
1C

i

2
T0

�
D T .T0/ :

(A.46)

Thales Projection

Analogue to the linear projection the T -operation from (4.64) is rewritten to

T .T0/ D
1

Re
�
1
T0

�
�

i
2
1
D

1

Re
�
1
T0

�2
C

1
4
1

�
Re

�
1

T0

�
C

i

2
1

�
: (A.47)

122



A.4. Details on T-Matrix Unitarization

With the latter definition the unitarity of the S -operator is proven by

SS� D 1 � 2Im .T /C TT�

D 1 �
1

Re
�
1
T0

�2
C

1
4
1

C
1

Re
�
1
T0

�2
C

1
4
1

D 1 : (A.48)

The Thales projection leaves interaction operators invariant, which already satisfy the optical
theorem

T .T .T0// D
1

Re
�

1
T .T0/

�
�

i
2
1
D

1

Re
�
Re
�
1
T0

�
�

i
2
1
�
�

i
2
1

D
1

Re
�
1
T0

�
�

i
2
1
D T .T0/ :

(A.49)

A.4.3. Equations of Motions

Using the derivatives of two general dimension two matrices A and B in the index notation

@tr ŒAB�

@B
D
@Aa

b
Bba

@Bc
d

(A.50)

D Adc D A
T ; (A.51)

the equations of motions for the fields H, H�, W� and B� can be calculated. Using the
Euler-Lagrangian for the minimal vector boson scattering Lagrangian (2.32)

@�
@Lmin

@.@�H�/
D
@Lmin

@H�
; (A.52a)

@�
@Lmin

@.@�H/
D
@Lmin

@H
(A.52b)

results in the relations �
D2H

�
D ��2HC �tr

�
H�H

�
H; (A.53a)�

D2H
��
D ��2H� C �tr

�
H�H

�
H�: (A.53b)

Determining the equations of motions for the gauge fields is more complex. The equation for
the gauge fields

@�
@Lmin

@.@�W�/
�
@Lmin

@W�
D 0; (A.54)

can be split up in a a part proportional to the field strength W�� and in a part proportional
to the covariant derivative acting on the Higgs field D�H. To calculate the contribution of
the Euler-Lagrangian of (A.54) for W��, the simplification

tr

�
A˛ˇ@

� @W˛ˇ

@.@�W�/

�
� tr

�
A˛ˇ

@W˛ˇ

@W�

�
(A.55)
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with a general operator A�� is used. Calculating the first part of (A.55) gives

tr

�
A˛ˇ

�
@W˛ˇ

@W�

��T
D

 
tr

"
A˛ˇ

@
�
�ig

�
W˛;Wˇ

��
@W�

#!T

D �i
g

2

 
tr

�
A˛ˇ

@

@W�

�
W˛Wˇ

CWˇA˛ˇW
˛

�A˛ˇW
ˇW˛

�W˛A˛ˇW
ˇ
�i�T

D �ig
��
A�� � A��

�
W�
�W�

�
A�� � A��

��
D
�
igW�; A�� � A��

�
(A.56)

and the second part of (A.54) can be simplified to 
@�
@tr

�
A˛ˇW

˛ˇ
�

@.@�W�/

!T
D

 
@�
@tr

�
A˛ˇ

�
@˛Wˇ � @ˇW˛

��
@.@�W�/

!T
D @�

�
A�� � A��

�
: (A.57)

Combining the equations (A.56) and (A.57) reduces (A.55) to

tr

�
A˛ˇ@

� @W˛ˇ

@.@�W�/

�
� tr

�
A˛ˇ

@W˛ˇ

@W�

�
D
�
D�W ; A�� � A��

�
(A.58)

The contribution of a general A˛ proportional to D˛H to the equation of motion is easily
calculated to be�

tr

�
A˛
@D˛H

@W�

��T
D

�
tr

�
A˛
@ .�igW˛H/

@W�

��T
D �igHA�; (A.59a) 

tr

"
A˛
@ .D˛H/�

@W�

#!T
D

 
tr

"
A˛
@
�
igH�W˛

�
@W�

#!T
D igA�H

�: (A.59b)

Using equations (A.58)and (A.59) the equation of motion for the gauge bosons for the minimal
Lagrangian (2.32) can be calculated (the procedure for B is analogous):

D�W
��
�
�
DW� ;W

��
�
D �i

g

2

�
H .D�H/� �D�HH�

�
; (A.60a)

D�B
��
� @�B

��
D �i

g0

2

�
.D�H/�H �H�D�H

�
: (A.60b)

A.5. Dimension eight Operators in Eboli-Basis

A revised dimension 8 operators basis [57] of [56] is listed in this section.

124



A.5. Dimension eight Operators in Eboli-Basis

A.5.1. Definitions

The convention ’CD+’ is chosen for the covariant derivative

D�˚ � @�˚ C i
g0

2
B�˚ C igW

i
�

� i

2
˚; (A.61)

and effects the coupling of the longitudinal mode of the gauge bosons. The field strength
tensors of the SU.2/I (W i

�) and U.1/Y (B�) contribute to the transversal coupling of the
gauge fields

W�� D
i

2
g�I .@�W

i
� � @�W

i
� C g�ijkW

j
�W

k
� / ;

B�� D
i

2
g0.@�B� � @�B�/ : (A.62a)

In the following the Dimension 8 operators are separated in longitudinal, transversal and
mixed contribution, which will refer to the building blocks used.

A.5.2. Operators containing only longitudinal couplings

OS;0 D

h�
D�˚

��
D�˚

i
�

h
.D�˚/

�
D�˚

i
; (A.63a)

OS;1 D

h�
D�˚

��
D�˚

i
�

h
.D�˚/

�D�˚
i
: (A.63b)

A.5.3. Operators containing mixed couplings

OM0 D Tr
�
W��W

��
�
�

h�
Dˇ˚

��
Dˇ˚

i
; (A.64a)

OM1 D Tr
h
W��W

�ˇ
i
�

h�
Dˇ˚

��
D�˚

i
; (A.64b)

OM2 D
�
B��B

��
�
�

h�
Dˇ˚

��
Dˇ˚

i
; (A.64c)

OM3 D

h
B��B

�ˇ
i
�

h�
Dˇ˚

��
D�˚

i
; (A.64d)

OM4 D

h�
D�˚

��
Wˇ�D

�˚
i
� Bˇ� ; (A.64e)

OM5 D

h�
D�˚

��
Wˇ�D

�˚
i
� Bˇ� ; (A.64f)

OM6 D

h�
D�˚

��
Wˇ�W

ˇ�D�˚
i
; (A.64g)

OM7 D

h�
D�˚

��
Wˇ�W

ˇ�D�˚
i
: (A.64h)

Note, that the operator OM6 is linearly dependent to the operator OM0 and can be neglected.
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A.5.4. Operators containing only transversal couplings
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Chapter B

Feynman-Rules

The Feynman rules which are used to calculate the vector boson scattering amplitudes are
summarized in this appendix. Focusing only on weak vector boson scattering, the Feynman
rules are determined from the Lagrangian, where gluons, photons and fermions are omitted.

B.1. Lagrangian

All Lagrangians are defined within the Higgs matrix realization which was introduced in
Chapter 2. The Standard Model interactions is given by
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: (B.1)

Dimension six and eight operators affecting only the Higgs/Goldstone boson sector are
discussed in Chapter 3 and are given by
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B. Feynman-Rules

In the gaugeless limit .g; g0 ! 0/, they can be rewritten into
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As an extension to model generic new physics, additional resonances are introduced. The
scalar � and the tensor f �� represent singlets of the chiral symmetry group, whereas ˚ has
the quantum numbers 1˝ 1 under SU.2/L�SU.2/R. ˚ is referred as isotensor for historical
reasons, but it actually includes an isovector ˚v and isoscalar ˚s besides the isotensor ˚t .
Also the Fierz-Pauli tensor f can be reformulated into a tensor ff , a vector Af and a scalar
�f such, that canonical propagators can be used for each degree of freedoms instead of the
complicated tensor propagator
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where the projection operator of spin two can be written in terms of the spin-one projection
operator,
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B.1. Lagrangian

The couplings of the formally separated tensor resonances ff , Af and �f to vector boson
scattering are related to each other. This is manifest in the Lagrangian for the resonances
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with the Higgs/Goldstone boson current
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B. Feynman-Rules
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B.2. Unitary Gauge

The Feynman rules in unitary gauge of the Lagrangian (B.6) are listed in this section. Only
the relevant vertices for the vector boson scattering process are shown. In other words,
vertices with more than four fields for effective operators and more than three fields for
resonances are neglected.
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B. Feynman-Rules
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Lf in Stückelberg formalism
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B.3. Gaugeless Limit

B.3. Gaugeless Limit

The gaugeless limit is suited to calculate the high energy behavior of new physics in the
Higgs/Goldstone boson sector, because the subleading transversal polarizations are neglected.
All vertices involving Higgs and Goldstone bosons are listed in this section.
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B.3. Gaugeless Limit
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Lf in Stückelberg formalism
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B. Feynman-Rules
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B.4. Conversion

This sections contains the conversion of the discussed effective field operators LS and LHD
to other bases.

B.4.1. LS

The conversion from Eboli representation (see Appendix A.5) to matrix representation has
to be carried out for every vertex separately, because the Higgs doublet realization does not
conserve SU.2/C as the Higgs matrix representation.

� for WWWW-vertex:

FS;0 D 2
fS;0

�4
; (B.28a)

FS;0 C 2FS;1 D 2
fS;1

�4
; (B.28b)

� for WWZZ-vertex:
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; (B.28d)

� for ZZZZ-vertex:

FS;0 C FS;1 D
fS;0 C fS;1

�4
: (B.28e)
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B.4. Conversion

In contrary, the coefficients ˛4 and ˛5 of the Appelquist basis (see eq. (3.10)) can be related
to FS;0 and FS;1 for weak vector boson scattering processes via

FS;0bD16˛4
v4
; (B.29a)

FS;1bD16˛5
v4
: (B.29b)

This conversion is only valid, if the Higgs contributions of LS;0 and LS;1 can be neglected.

By redefining the operators OS of the Eboli basis as in [144]
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the coupling coefficients can be expressed in terms of coefficients of LS;0 and LS;1 in the
Higgs Matrix realization

FS;0 D
f 0S;0

�4
; (B.31a)
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�4
: (B.31b)

LHD

The total contribution of the operator LHD to the vector boson scattering amplitude can be
separated into a new physics only part and and part which mixes with the Standard Model
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0BB@F 2HD v24„ ƒ‚ …
onlyNP

C FHD„ ƒ‚ …
SM&NPmixing

1CCA : (B.32)

The effect of the dimension six operator is equivalent to an additional scalar resonance with
the mass of the Standard model Higgs boson. Thus, the coupling FHD can be related to the
scalar coupling F�

F� D

q
F 2HDv

2 C 4FHD (B.33a)
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Chapter C

WHIZARD Implementation

New models including the T-matrix unitarization scheme via the Thales projection for the
effective field theory operators LS;0, LS;1 and the resonances �; f and � are implemented
into the Monte-Carlo generator WHIZARD for off-shell vector boson scattering processes as
described in Section 4.4.1.

In this appendix, the WHIZARD models, which were implemented as part of this thesis, are
introduced. Furthermore, the functional principle of WHIZARD and O’MEGA is explained
using the Standard Model as an example. Finally, exemplary parts of the resonance model
and T-matrix implementation are given. All files, which are necessary for a generic model
implementation in WHIZARD are discussed. The file paths mentioned in this appendix are
given relative to the main WHIZARD folder. Therefore, the resonance model implementation
can be also used as a guide to implement further models into WHIZARD.

Model SM-Higgs
Resonance

Implementation
Effective Field Theory

Representation

NoH rx – Form factor Non-linear
SM rx X Form factor Non-linear
AltH – Fields Non-linear
SSC X Fields Non-linear
SSC 2 X Fields Higgs-matrix (linear)

SSC AltT X Fields Higgs-matrix (linear)

Table C.1.: Overview of new physics models implemented into WHIZARD 2.2.6 to study vector
boson scattering processes.
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C. WHIZARD Implementation

C.1. Models

An overview of the available models in WHIZARD, in which the unitarization method for the
vector boson scattering processes are included, is given in Table C.1.

The model SM rx is based on the previous SM km model. Here, the old K-matrix unita-
rization scheme of [142] is replaced with the new T-matrix unitarization scheme introduced
in Section 4.4.1. During this thesis, the impact of resonances to vector boson scattering
processes were introduced directly as physical fields in the model SSC. This was necessary
to properly describe the tensor resonance with its contribution to transversal vector boson
scattering processes. The ansatz via the form factor implementation into the longitudinal
quartic vector boson scattering vertex is not sufficient. New physics contributions of the
models SM rx, SSC and the related no Standard Higgs models NoH rx and AltH are formu-
lated in the non-linear basis (3.10). Due to the linear Higgs-matrix representation, additional
interactions involving at least one Higgs are introduced (see Chapter 3 and 5). The model
SSC 2 can be used to simulate these interaction within the discussed T-matrix unitarization
(see Section 4.4.1). Its parameters can be set via the WHIZARD script language SINDARIN.
An overview of the relevant commands is given in Table C.2a. An extension of the model
SSC 2 is the model SSC AltT. It can be used to analyze the single tensor contributions in the
Stückelberg formalism (5.31) and introduces additional Sindarin parameters (see Table C.2b).
Additionally, the model SM ul is implemented to project the isospin-spin bound to other
observables like differential cross sections (see Table C.2c for Sindarin paramters).

The introduced models were created as part of this thesis and are included into WHIZARD

since release version 2.2.6. Minor correction to the isotensor scalar resonance and isotensor
tensor are implemented into the WHIZARD 2.2.8 trunk r7308 and r7332, respectively. These
will be available in the next official release WHIZARD 2.2.8.
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C.1. Models

Parameters
Default
value

Description

fs0 0 Coupling strength of dimension eight operator LS;0 in TeV�4

fs1 0 Coupling strength of dimension eight operator LS;1 in TeV�4

gkm s 0 Coupling strength of isoscalar scalar resonance in TeV�1

gkm p 0 Coupling strength of isotensor scalar resonance in TeV�1

gkm f 0 Coupling strength of isoscalar tensor resonance in TeV�1

gkm t 0 Coupling strength of isotensor tensor resonance in TeV�1

cf 2 Arbitrary coupling parameter for isoscalar tensor

mkm s 1010 mass of isoscalar scalar resonance in GeV
mkm p 1010 mass of isotensor scalar resonance in GeV
mkm f 1010 mass of isoscalar tensor resonance in GeV
mkm t 1010 mass of isoscalar tensor resonance in GeV

wkm s 0 width of isoscalar scalar resonance in GeV
wkm p 0 width of isotensor scalar resonance in GeV
wkm f 0 width of isoscalar tensor resonance in GeV
wkm t 0 width of isoscalar tensor resonance in GeV

fkm 1 Flag to enable T-matrix unitarization (0:off, 1:on)

wres 1
Flag to set the width to Breit-Wigner width
(0:off, 1:on, only if corresponding width = 0)

(a) Sindarin parameters of the WHIZARD model SSC 2.

Parameters Default value Description

alt tt 1 Flag for tensor-tensor (0:off, 1:on)
alt tv 1 Flag for tensor-vector (0:off, 1:on)
alt ts 1 Flag for tensor-scalar (trace) (0:off, 1:on)
alt ts2 1 Flag for tensor-scalar (derivatives) (0:off, 1:on)

(b) Additional Sindarin parameters of the WHIZARD model SSC AltT for the Stückelberg degrees of freedom.

Parameters Default value Description

isa 00 0 Saturation of A00 (0:off, 1:on)
isa 02 0 Saturation of A02 (0:off, 1:on)
isa 11 0 Saturation of A11 (0:off, 1:on)
isa 20 0 Saturation of A20 (0:off, 1:on)
isa 22 0 Saturation of A22 (0:off, 1:on)

fkm 1
Flag to enable isospin spin saturation;
0:off, 1:on

(c) Sindarin parameters of the WHIZARD model SM ul.

Table C.2.: Sindarin parameters of introduced WHIZARD models.
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C. WHIZARD Implementation

C.2. The Standard Model in WHIZARD/O’MEGA

The scattering amplitude generation of the Monte Carlo generator WHIZARD and its matrix
element generator O’MEGA will be shortly described in this section. As example serves the
determination of the sign convention for the covariant derivative. Therefore, the WHIZARD

implementation of the triple weak gauge coupling has to be investigated.

In OMEGA, which is written in OCaml, the allowed vertices and its structure of the Standard
Model are defined in ./src/omega/src/modellib\_SM.ml :

l et tgc ( ( g1 , g2 , g3 ) , t , c ) = ( (G g1 , G g2 , G g3 ) , t , c )

l et s t anda rd t r i p l e g aug e =
L i s t .map tgc

[ ( (Ga, Wm, Wp) , Gauge Gauge Gauge 1 , I Q W ) ;
( (Z , Wm, Wp) , Gauge Gauge Gauge 1 , I G ZWW) ;
( (Gl , Gl , Gl ) , Gauge Gauge Gauge 1 , I Gs ) ]

. . .

j I Q W �> ” iqw” j I G ZWW �> ”igzww”
. . .

The list tgc has three entries: the coupled fields, the lorentz structure of the coupling and
its coupling constant. These are introduced in the WHIZARD file ./src/models/parameters.
SM.f90 written in gfortran:

par%cw = par ar ray (23)
par%sw = par ar ray (24)
par%ee = par ar ray (25)

. . .

e = par%ee
sinthw = par%sw
sin2thw = par%sw��2
costhw = par%cw

. . .

qw = e
iqw = (0 ,1)�qw
gzww = g � costhw
igzww = (0 ,1)�gzww
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C.2. The Standard Model in WHIZARD/O’MEGA

These parameters are accessible by the user via WHIZARD’s own script language SINDARIN.
The parameters are defined with its initial values in ./share/models/SM.mdl:

parameter GF = 1.16639E�5 # Fermi constant
parameter mZ = 91.1882 # Z�boson mass
parameter mW = 80.419 # W�boson mass

. . .

de r ived v = 1 / sq r t ( s q r t ( 2 . ) � GF)# v ( Higgs vev )
der ived cw = mW / mZ # cos ( theta�W)
der ived sw = sq r t (1�cw��2) # s i n ( theta�W)
der ived ee = 2 � sw � mW / v # em�coup l ing (GF scheme )

As mentioned at the beginning the Lorentz structure of the couplings is given in the OMEGA
file ./src/omega/src/targets.ml:

j Gauge Gauge Gauge c o e f f �>
l et c = format coup l ing c o e f f c in
begin match f u s i on with
j (F23 jF31 jF12 ) �>

p r i n t f ” g gg(%s ,%s ,%s ,%s ,%s ) ” c wf1 p1 wf2 p2
j (F32 jF13 jF21 ) �>

p r i n t f ” g gg(%s ,%s ,%s ,%s ,%s ) ” c wf2 p2 wf1 p1
end

The function g_gg contains the prescription, how two fuse two incoming gauge bosons to an
outgoing vector boson

Aa;�.k1 C k2/ D� ig
�
.k
�
1 � k

�
2 /A

a1.k1/ � A
a2.k2/

C .2k2 C k1/ � A
a1.k1/A

a2;�.k2/

� Aa1;�.k1/A
a2.k2/ � .2k1 C k2/

�
: (C.1)

This means, it includes the Lorentz structure of the triple gauge vertex and is defined in
./src/omega/src/omegalib.nw

<<Implementation of coup l ings>>=
pure function g gg (g , a1 , k1 , a2 , k2 ) r e s u l t ( a )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g
type ( vec to r ) , i n t en t ( in ) : : a1 , a2
type (momentum) , i n t en t ( in ) : : k1 , k2
type ( vec to r ) : : a
a = (0 , �1) � g � ( ( k1 � k2 ) � ( a1 � a2 ) &

+ ((2� k2 + k1 ) � a1 ) � a2 � a1 � ((2� k1 + k2 ) � a2 ) )
end function g gg
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C. WHIZARD Implementation

To determine the final sign of the vertex, it has to be considered that OMEGA will add one i
for every propagator and vertex in the function in ./src/omega/src/targets.ml

l et p r i n t b r ak e t s d i c t i ona ry amplitude =
l et name = f l avo r s symbo l ( f l a v o r s amplitude ) in
p r i n t f ” %s = 0” name ; n l ( ) ;
L i s t . i t e r ( p r i n t b r ak e t amplitude d i c t i ona ry name)
(F . braket s amplitude ) ;

l et n = L i s t . l ength (F . e x t e r n a l s amplitude ) in
i f n mod 2 = 0 then begin

p r i n t f ” @[<2>%s =@, � %s ! %d ve r t i c e s , %d propagators ”
name name (n � 2) (n � 3 ) ; n l ( )

end else begin
p r i n t f ” ! %s = %s ! %d ve r t i c e s , %d propagators ”

name name (n � 2) (n � 3 ) ; n l ( )
end ;

l et s = F . symmetry amplitude in
i f s > 1 then

p r i n t f ” @[<2>%s =@, %s@ , / sq r t (%d . 0 %s ) ! symmetry f a c t o r ”
name name s ! kind

else
p r i n t f ” ! un i t symmetry f a c t o r ” ;

n l ( )

C.2.1. Comparison

Considering all the function described earlier the fusion prescriptions of W CW � ! Z and
W CW � ! 
 can be represented as the analytical expression

A�.k� C kC/ D�i � iqw
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C.kC/

C .2kC C k�/ �W
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a2;�.kC/

� Aa1;�.k�/W
C.kC/ � .2k� C kC/

�
D Ce

�
.k�� � k

�
C/W

�.k�/ �W
C.kC/

C .2kC C k�/ �W
�.k�/A

a2;�.kC/

� Aa1;�.k�/W
C.kC/ � .2k� C kC/

�
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(C.2a)
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C.3. Resonance Model Implementation

The corresponding Feynman rules of Standard Model are given by

A�1W
�
�2
W C�3 W ie

��
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g�1�2 C
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C
�
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�
g�2�3

�
(C.3a)

Z�1W
�
�2
W C�3 W icwg

��
k1�3 � k2�3

�
g�1�2 C

�
k3�2 � k1�2

�
g�1�3

C
�
k2�1 � k3�1

�
g�2�3

�
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Using these rules the fusion prescriptions for the Feynman rules can be derived

A�.k1/ Die
�
ŒW � �W C�.k�1� � k

�
C/C Œ.2kC C k�/ �W

��W C�

� Œ.2k� C k�/ �W
C�W ��

�
; (C.4a)

Z�.k1/ Dicwg
�
ŒW � �W C�.k�1� � k

�
C/C Œ.2kC C k�/ �W

��W C�

� Œ.2k� C k�/ �W
C�W ��

�
: (C.4b)

After multiplying another i to (C.2), it coincides with (C.4). Therefore the convention chosen
for the WHIZARD implementation coincides with ”CD-”.

C.3. Resonance Model Implementation

The theoretical foundations of the resonances, namely isoscalar scalar � , isoscalar tensor
f , isotensor scalar �, isotensor tensor X and of the dimension eight operators LS given in
Chapter 5 and Chapter 3, respectively. New Lorentz structures have to be implemented in
O’MEGA to ensure the correct description of the coupling of these resonance and anomalous
vertices to physical vector bosons using unitary gauge (see Appendix B.2). Furthermore, the
new particles have to be included into WHIZARD.

C.3.1. New Lorentz Structures

New Lorentz structures are defined in the file ./omega/src/omegalib.nw of O’MEGA. For
example, the following Lorentz structure is needed for the isoscalar tensor couplings,

C��;��
�
cf
�
D g��g�� C g��g�� �

cf

2
g��g�� : (C.5)
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C. WHIZARD Implementation

O’MEGA needs truncation rules representing the latter coupling of a tensor T with two vectors
V1; V2

T�� D C��;��V
�
1 V

�
2

D V1�V2� C V1�V2� �
cf

2
V
�
1 V2�

) T D V1 ˝ V2 C V2 ˝ V1 �
cf

2
V1 � V2 ; (C.6a)

V1� D C��;��T
��V

�
2

D T��V
�
2 C T��V

�
2 �

cf

2
T �� V

�
2

) V1 D
�
T C T T

�
V1 �

cf

2
tr Œg��T � V1 : (C.6b)

These truncation rules are implemented via following code in
./omega/src/omegalib.nw:

@ n s e c t i o n fTensor Coupl ings g
<<Dec la ra t i on of coup l ings>>=
pub l i c : : t2 vv , v t2v , t 2 vv c f , v t 2v c f , &

t2 vv 1 , v t2v 1 , t2 vv t , v t 2v t
. . .
@
<<Implementation of coup l ings>>=

pure function t 2 v v c f ( g , l c f , v1 , v2 ) r e s u l t ( t )
complex ( kind=de f au l t ) , i n t en t ( in ) : : g , l c f
complex ( kind=de f au l t ) : : tmp s
type ( vec to r ) , i n t en t ( in ) : : v1 , v2
type ( t enso r ) : : tmp
type ( t enso r ) : : t met r i c , t
t me t r i c%t = 0
t me t r i c%t (0 , 0 ) = 1 .0 d e f a u l t
t me t r i c%t (1 , 1 ) = � 1 .0 d e f a u l t
t me t r i c%t (2 , 2 ) = � 1 .0 d e f a u l t
t me t r i c%t (3 , 3 ) = � 1 .0 d e f a u l t
tmp s = v1 � v2
t%t = � ( g /2 .0 d e f a u l t ) � tmp s � t me t r i c%t

end function t 2 v v c f
@
<<Implementation of coup l ings>>=

pure function v t 2 v c f ( g , l c f , t , v ) r e s u l t ( tv )
complex ( kind=de f au l t ) , i n t en t ( in ) : : g , l c f
type ( t enso r ) , i n t en t ( in ) : : t
type ( vec to r ) , i n t en t ( in ) : : v
type ( vec to r ) : : tv , tmp tv
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C.3. Resonance Model Implementation

tmp tv = ( t%t (0 ,0)� t%t (1 ,1)� t%t (2 ,2)� t%t (3 , 3 ) ) � v
tv = � ( g /2 .0 d e f a u l t ) � tmp tv

end function v t 2 v c f
@
. . .

To include Tensor couplings to two Higgs, following functions are necessary

T�� D g �
�
k1�k2� C k1�k2�

�
�1 .k1/ �1 .k2/ ; (C.7a)
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�
1 k

�
2 C T��k

�
2 k

�
1

�
�2 .k2/ ; (C.7b)

T�� D �
g

2
g��k

�
1k2��1 .k1/ �2 .k2/ ; (C.7c)

�1.k1/ D �
g

2
T �� .k1 � k2/ �2.k2/ : (C.7d)

<<Implementation of coup l ings>>=
pure function t2 ph i2 ( g , phi1 , k1 , phi2 , k2 ) r e s u l t ( t )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi1 , phi2
type (momentum) , i n t en t ( in ) : : k1 , k2
type ( t enso r ) : : t
type ( t enso r ) : : tmp
tmp = k1 . tprod . k2
t%t = g � (tmp%t + transpose (tmp%t ) ) � phi1 � phi2

end function t2 ph i2
@
<<Implementation of coup l ings>>=
pure function ph i t 2ph i ( g , t , kt , phi2 , k2 ) r e s u l t ( phi1 )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi2
type ( t enso r ) , i n t en t ( in ) : : t
type (momentum) , i n t en t ( in ) : : kt , k2
type (momentum) : : k1
complex ( kind=de f au l t ) : : phi1
type ( t enso r ) : : tmp
k1 = �kt � k2
tmp%t = t%t + transpose ( t%t )
phi1 = g � ( (tmp � k2 ) � k1 ) � phi2

end function ph i t 2ph i
@
<<Implementation of coup l ings>>=
pure function t 2 p h i 2 c f ( g , phi1 , k1 , phi2 , k2 ) r e s u l t ( t )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi1 , phi2
complex ( kind=de f au l t ) : : tmp s
type (momentum) , i n t en t ( in ) : : k1 , k2
type ( t enso r ) : : t met r i c , t

149



C. WHIZARD Implementation

t me t r i c%t = 0
t me t r i c%t (0 , 0 ) = 1 .0 d e f a u l t
t me t r i c%t (1 , 1 ) = � 1 .0 d e f a u l t
t me t r i c%t (2 , 2 ) = � 1 .0 d e f a u l t
t me t r i c%t (3 , 3 ) = � 1 .0 d e f a u l t
tmp s = ( k1 � k2 ) � phi1 � phi2
t%t = � ( g /2 .0 d e f a u l t ) � tmp s � t me t r i c%t

end function t 2 p h i 2 c f
@
<<Implementation of coup l ings>>=
pure function ph i t 2 ph i c f ( g , t , kt , phi2 , k2 ) r e s u l t ( phi1 )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi2
type ( t enso r ) , i n t en t ( in ) : : t
type (momentum) , i n t en t ( in ) : : kt , k2
type (momentum) : : k1
complex ( kind=de f au l t ) : : tmp ts , phi1
k1 = � kt � k2
tmp ts = ( t%t (0 ,0)� t%t (1 ,1)� t%t (2 ,2)� t%t (3 , 3 ) )
phi1 = � ( g /2 .0 d e f a u l t ) � tmp ts � ( k1 � k2 ) � phi2

end function ph i t 2 ph i c f
@

Due to the Higgs matrix representation, new Lorentz structure are introduced for the two
Higgs, two vector bosons anomalous vertex: Dim8_Scalar2_Vector2_1

�2.k2/ D ..k1 � V1/ .k2 � V2/C .k1 � V1/ .k1 � V2// �1.k1/ ; (C.8a)

V
�
2 D

�
k
�
1 .k2 � V1/C k

�
2 .k1 � V1/

�
�1.k1/�2.k2/ ; (C.8b)

and Dim8_Scalar2_Vector2_2:

�2.k2/ D .k1 � k2/ .V1 � V2/ �1.k1/ (C.9a)

V
�
2 D V

�
1 .k1 � k2/ �1�2 : (C.9b)

The quartic Higgs vertex is defined by the coupling Dim8_Scalar4

�.k1/ D

"
.k1 � k2/ .k3 � k4/C .k1 � k3/ .k2 � k4/

C .k1 � k4/ .k2 � k3/

#
�2.k2/�3.k3/�4.k4/ (C.10)

. . .
@ n s e c t i o n f Scalar2�Vector2 Dim�8 Coupl ings g
<<Dec la ra t i on of coup l ings>>=
pub l i c : : ph i ph i2v 1 , v phi2v 1 , ph i ph i2v 2 , v ph i2v 2
@
<<Implementation of coup l ings>>=
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pure function ph i ph i2v 1 (g , phi1 , k1 , v1 , k v1 , v2 , k v2 )
r e s u l t ( phi2 )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi1
type (momentum) , i n t en t ( in ) : : k1 , k v1 , k v2
type (momentum) : : k2
type ( vec to r ) , i n t en t ( in ) : : v1 , v2
complex ( kind=de f au l t ) : : phi2
k2 = � k1 � k v1 � k v2
phi2 = g � phi1 � &

( ( k1 � v1 ) � ( k2 � v2 ) + ( k1 � v2 ) � ( k2 � v1 ) )
end function ph i ph i2v 1
@
<<Implementation of coup l ings>>=
pure function v phi2v 1 (g , phi1 , k1 , phi2 , k2 , v1 ) r e s u l t ( v2 )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi1 , phi2
type (momentum) , i n t en t ( in ) : : k1 , k2
type ( vec to r ) , i n t en t ( in ) : : v1
type ( vec to r ) : : v2
v2 = g � phi1 � phi2 � &

( k1 � ( k2 � v1 ) + k2 � ( k1 � v1 ) )
end function v phi2v 1
@
<<Implementation of coup l ings>>=
pure function ph i ph i2v 2 (g , phi1 , k1 , v1 , k v1 , v2 , k v2 )

r e s u l t ( phi2 )
complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi1
type (momentum) , i n t en t ( in ) : : k1 , k v1 , k v2
type ( vec to r ) , i n t en t ( in ) : : v1 , v2
type (momentum) : : k2
complex ( kind=de f au l t ) : : phi2
k2 = � k1 � k v1 � k v2
phi2 = g � phi1 � ( k1 � k2 ) � ( v1 � v2 )

end function ph i ph i2v 2
@
<<Implementation of coup l ings>>=
pure function v phi2v 2 (g , phi1 , k1 , phi2 , k2 , v1 ) r e s u l t ( v2 )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi1 , phi2
type (momentum) , i n t en t ( in ) : : k1 , k2
type ( vec to r ) , i n t en t ( in ) : : v1
type ( vec to r ) : : v2
v2 = g � phi1 � phi2 � &

( k1 � k2 ) � v1
end function v phi2v 2
@ n s e c t i o n f Sca la r4 Dim�8 Coupl ings g
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<<Dec la ra t i on of coup l ings>>=
pub l i c : : s dim8s3
@
<<Implementation of coup l ings>>=
pure function s dim8s3 (g , phi2 , k2 , phi3 , k3 , phi4 , k4 )

r e s u l t ( phi1 )
complex ( kind=de f au l t ) , i n t en t ( in ) : : g , phi2 , phi3 , phi4
type (momentum) , i n t en t ( in ) : : k2 , k3 , k4
type (momentum) : : k1
complex ( kind=de f au l t ) : : phi1
k1 = � k2 � k3 � k4
phi1 = ( ( k1 � k2 ) � ( k3 � k4 ) + ( k1 � k3 ) � ( k2 � k4 ) &

+ ( k1 � k4 ) � ( k2 � k3 ) ) � phi2 � phi3 � phi4
end function s dim8s3
. . .

Furthermore, the coupling of two Higgs to the isoscalar scalar resonance is included

�1.k1/ D .k2 � k3/�2.k2/�3.k3/ : (C.11)

@ n s e c t i o n f Sca la r3 Dim�5 Coupl ings g
<<Dec la ra t i on of coup l ings>>=
pub l i c : : phi dim5s2
@
<<Implementation of coup l ings>>=
pure function phi dim5s2 (g , phi2 , k2 , phi3 , k3 ) r e s u l t ( phi1 )

complex ( kind=de f au l t ) , i n t en t ( in ) : : g
type (momentum) , i n t en t ( in ) : : k2 , k3
complex ( kind=de f au l t ) , i n t en t ( in ) : : phi2 , phi3
complex ( kind=de f au l t ) : : phi1
phi1 = g � phi2 � phi3 � ( k2 � k3 )

end function phi dim5s2

Necessary Initializations and Definitions

The next step is to define the initialization and color factors of the Lorentz structure according
to the function Tensor_2_Vector_Vector_cf. Three files have to be changed. First /omega/
src/targets.ml, because corresponding functions are not included into the virtual machine
of WHIZARD:

. . .
j Tenso r 2 Vec to r Vec to r c f �>

f a i l w i t h ” p r i n t c u r r e n t : V3 : not implemented”
. . .
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Possible color factorization rules have to be included into /omega/src/colorize.ml:

j Tenso r 2 Vec to r Vec to r c f c �>
Tenso r 2 Vec to r Vec to r c f ( x � c )

Finally, /omega/src/coupling.mli has to be changed for a correct initialization and LATEX
documentation:

. . .
j Tenso r 2 Vec to r Vec to r c f of i n t (� %

$Tˆfnmunnu g (V f1 ,nmugV f2 ,nnu g + V f1 ,nnu gV f2 ,nmug
� n f r a c f c f g f2 g g fnmu,nnu gV 1ˆn rho V f2 ,n rho g )$ �)

. . .

The rest of the couplings have also to be implemented analogously into these three files.
Starting with ./omega/src/targets.ml:

j Dim5 Sca lar Sca lar2 �>

f a i l w i t h ” p r i n t c u r r e n t : V3 : not implemented”
. . .
j Tenso r 2 Sca l a r S ca l a r �>

f a i l w i t h ” p r i n t c u r r e n t : V3 : not implemented”
j Ten s o r 2 S c a l a r S c a l a r c f �>

f a i l w i t h ” p r i n t c u r r e n t : V3 : not implemented”
. . .
j Dim8 Scalar2 Vector2 1 �>

f a i l w i t h ” p r i n t c u r r e n t : V4 : not implemented”
j Dim8 Scalar2 Vector2 2 �>

f a i l w i t h ” p r i n t c u r r e n t : V4 : not implemented”
j Dim8 Scalar4 �>

f a i l w i t h ” p r i n t c u r r e n t : V4 : not implemented”
. . .
j Dim5 Sca lar Sca lar2 c o e f f�>

l et c = format coup l ing c o e f f c in
begin match f u s i on with
j (F23 jF32 ) �> p r i n t f ” phi dim5s2(%s , %s ,%s , %s , %s ) ”

c wf1 p1 wf2 p2
j (F12 jF13 ) �> l et p12 = Pr i n t f . s p r i n t f ”(�%s�%s ) ” p1 p2 in

p r i n t f ” phi dim5s2(%s ,%s ,%s ,%s ,%s ) ” c wf1 p12 wf2 p2
j (F21 jF31 ) �> l et p12 = Pr i n t f . s p r i n t f ”(�%s�%s ) ” p1 p2 in

p r i n t f ” phi dim5s2(%s ,%s ,%s ,%s ,%s ) ” c wf1 p1 wf2 p12
end

. . .
j Tenso r 2 Sca l a r S ca l a r c o e f f�>

l et c = format coup l ing c o e f f c in
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begin match f u s i on with
j (F23 jF32 ) �> p r i n t f ” t2 ph i2(%s ,%s ,%s ,%s , %s ) ”

c wf1 p1 wf2 p2
j (F12 jF13 ) �> p r i n t f ” ph i t 2ph i (%s ,%s ,%s ,%s ,%s ) ”

c wf1 p1 wf2 p2
j (F21 jF31 ) �> p r i n t f ” ph i t 2ph i (%s ,%s ,%s ,%s ,%s ) ”

c wf2 p2 wf1 p1
end

. . .
j Ten s o r 2 S c a l a r S c a l a r c f c o e f f�>

l et c = format coup l ing c o e f f c in
begin match f u s i on with
j (F23 jF32 ) �> p r i n t f ” t 2 p h i 2 c f (%s ,%s ,%s ,%s , %s ) ”

c wf1 p1 wf2 p2
j (F12 jF13 ) �> p r i n t f ” p h i t 2 ph i c f (%s ,%s ,%s ,%s ,%s ) ”

c wf1 p1 wf2 p2
j (F21 jF31 ) �> p r i n t f ” p h i t 2 ph i c f (%s ,%s ,%s ,%s ,%s ) ”

c wf2 p2 wf1 p1
end

. . .
j Dim8 Scalar2 Vector2 1 c o e f f �>

l et c = format coup l ing c o e f f c in
begin match f u s i on with
j F134 j F143 j F234 j F243 �>

p r i n t f ” ph i ph iv2 1(%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf1 p1 wf2 p2 wf3 p3

j F314 j F413 j F324 j F423 �>
p r i n t f ” ph i ph iv2 1(%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”

c wf2 p2 wf1 p1 wf3 p3
j F341 j F431 j F342 j F432 �>

p r i n t f ” ph i ph iv2 1(%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf3 p3 wf2 p2 wf1 p1

j F312 j F321 j F412 j F421 �>
p r i n t f ” v ph i2v 1(%s ,%s ,%s ,%s ,%s ,%s ) ”

c wf3 p3 wf2 p2 wf1
j F231 j F132 j F241 j F142 �>

p r i n t f ” v ph i2v 1(%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf1 p1 wf3 p3 wf2

j F123 j F213 j F124 j F214 �>
p r i n t f ” v ph i2v 1(%s ,%s ,%s ,%s ,%s ,%s ) ”

c wf1 p1 wf2 p2 wf3
end

j Dim8 Scalar2 Vector2 2 c o e f f �>
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l et c = format coup l ing c o e f f c in
begin match f u s i on with
j F134 j F143 j F234 j F243 �>

p r i n t f ” ph i ph iv2 2(%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf1 p1 wf2 p2 wf3 p3

j F314 j F413 j F324 j F423 �>
p r i n t f ” ph i ph iv2 2(%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”

c wf2 p2 wf1 p1 wf3 p3
j F341 j F431 j F342 j F432 �>

p r i n t f ” ph i ph iv2 2(%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf3 p3 wf2 p2 wf1 p1

j F312 j F321 j F412 j F421 �>
p r i n t f ” v ph i2v 2(%s ,%s ,%s ,%s ,%s ,%s ) ”

c wf3 p3 wf2 p2 wf1
j F231 j F132 j F241 j F142 �>

p r i n t f ” v ph i2v 2(%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf1 p1 wf3 p3 wf2

j F123 j F213 j F124 j F214 �>
p r i n t f ” v ph i2v 2(%s ,%s ,%s ,%s ,%s ,%s ) ”

c wf1 p1 wf2 p2 wf3
end

j Dim8 Scalar4 c o e f f �>
l et c = format coup l ing c o e f f c in

begin match f u s i on with
j F134 j F143 j F234 j F243 j F314 j F413 j F324 j F423
j F341 j F431 j F342 j F432 j F312 j F321 j F412 j F421
j F231 j F132 j F241 j F142 j F123 j F213 j F124 j F214 �>

p r i n t f ” s dim8s3 (%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”
c wf1 p1 wf2 p2 wf3 p3

end

and in ./omega/src/colorize.ml:

l et mult vertex3 x = function
. . .
j Dim5 Sca lar Sca lar2 c �>

Dim5 Sca lar Sca lar2 (x � c )
. . .
j Tenso r 2 Sca l a r S ca l a r c �>

Tenso r 2 Sca l a r S ca l a r ( x � c )
j Ten s o r 2 S c a l a r S c a l a r c f c �>

Ten s o r 2 S c a l a r S c a l a r c f ( x � c )
. . .

l et mult vertex4 x = function
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. . .
j Dim8 Scalar2 Vector2 1 c �>

Dim8 Scalar2 Vector2 1 (x � c )
j Dim8 Scalar2 Vector2 2 c �>

Dim8 Scalar2 Vector2 1 (x � c )
j Dim8 Scalar4 c �>

Dim8 Scalar4 (x � c )
. . .

and finally /omega/src/coupling.mli:

j Dim5 Sca lar Sca lar2 of i n t (� %
$n ph i 1 n p a r t i a l nmu n ph i 2 n p a r t i a l ˆnmu n ph i 3$ �)

. . .
j Tenso r 2 Sca l a r S ca l a r of i n t (� %

$Tˆfnmunnu g (n p a r t i a l fnmugn ph i 1 n p a r t i a l fnnu gn ph i 2 + %
n p a r t i a l fnnu gn ph i 1 n p a r t i a l fnmugn ph i 2 )$ �)

j Ten s o r 2 S c a l a r S c a l a r c f of i n t (� %
$Tˆfnmunnu g ( � n f r a c f c f g f2 g g fnmu,nnu g %
n p a r t i a l fn rho gn ph i 1 n p a r t i a l fn rho gn ph i 2 )$ �)

. . .
type ’ a ver tex4 =
. . .
j Dim8 Scalar2 Vector2 1 of i n t
j Dim8 Scalar2 Vector2 2 of i n t
j Dim8 Scalar4 of i n t

. . .

C.3.2. Model Implementation

The file ./omega/src/modellib_BSM.ml includes definitions of physics models beyond the
Standard Model. Here, only the necessary parts for the generic tensor coupling in dependence
of cf and additional Higgs couplings are listed. For future modularity, additional flags are
introduced for these model. The flags have to be initialized in ./omega/src/modellib_BSM.

mli:

. . .
module type SSC f lags =

s i g
va l h i g g s t r i a n g l e : boolcd
va l higgs hmm : bool
va l t r ip l e anom : bool
va l quart ic anom : bool
va l higgs anom : bool
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va l k matr ix : bool
va l ckm present : bool
va l top anom : bool
va l top anom 4f : bool
va l c f a r b i t r a r y : bool
va l h igg s mat r ix : bool

end

module SSC kmatrix : SSC f lags

module SSC kmatrix 2 : SSC f lags
. . .

module type SSC f lags =
s i g

va l h i g g s t r i a n g l e : bool
va l higgs hmm : bool
va l t r ip l e anom : bool
va l quart ic anom : bool
va l higgs anom : bool
va l k matr ix : bool
va l ckm present : bool
va l top anom : bool
va l top anom 4f : bool
va l c f a r b i t r a r y : bool
va l h igg s mat r ix : bool

end
. . .
module SSC kmatrix 2 : SSC f lags =

s t r u c t
l et h i g g s t r i a n g l e = f a l s e
l et higgs hmm = f a l s e
l et t r ip l e anom = f a l s e
l et quart ic anom = true
l et higgs anom = f a l s e
l et k matr ix = true
l et ckm present = f a l s e
l et top anom = f a l s e
l et top anom 4f = f a l s e
l et c f a r b i t r a r y = true
l et h iggs mat r ix = true

end
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The final implementation of the couplings is done in ./omega/src/modellib_BSM.ml. Here,
the truncation rules for the couplings including their strength are defined:

. . .
type constant =

. . .
j FS0HHWW j FS0 HHZZ
j FS1HHWW j FS1 HHZZ
. . .
j G SZZ T j G SSZZ j G SHH
. . .
j GFWW j G FZZ j GFWWCF j G FZZ CF
j GFWWT j G FZZ T j G FHH j G FHH CF
j GTNWW j G TNZZ j GTWZ j GTWW
j GTNWWCF j G TNZZ CF j G TWZ CF j GTWWCF
. . .
j FS H4

. . .
l et rsigma3h =

[ ( (O Rsigma , O H, O H) , Dim5 Sca lar Sca lar2 1 , G FHH) ]
. . .

l et r f 3 c f =
[ ( (O Rf , G Wp, G Wm) , Tensor 2 Vector Vector 1 , GFWW) ;

( (O Rf , G Z , G Z) , Tensor 2 Vector Vector 1 , G FZZ ) ;
( (O Rf , G Wp, G Wm) , Tenso r 2 Vec to r Vec to r c f 1 , G FWWCF) ;
( (O Rf , G Z , G Z) , Tenso r 2 Vec to r Vec to r c f 1 , G FZZ CF) ]

. . .
l et r f 3h =

[ ( (O Rf , O H, O H) , Ten so r 2 Sca l a r S ca l a r 1 , G FHH) ;
( (O Rf , O H, O H) , T en s o r 2 S c a l a r S c a l a r c f 1 , G FHH CF) ]

. . .
l et r t 3 c f =

[ ( (O Rtn , G Wp, G Wm) , Tensor 2 Vector Vector 1 , GTNWW) ;
( (O Rtn , G Z , G Z) , Tensor 2 Vector Vector 1 , G TNZZ) ;
( (O Rtp , G Z , G Wm) , Tensor 2 Vector Vector 1 , GTWZ) ;
( (O Rtpp , G Wm, G Wm) , Tensor 2 Vector Vector 1 , GTWW) ;
( (O Rtm, G Wp, G Z) , Tensor 2 Vector Vector 1 , GTWZ) ;
( (O Rtmm, G Wp, G Wp) , Tensor 2 Vector Vector 1 , GTWW) ;
( (O Rtn , G Wp, G Wm) , Tenso r 2 Vec to r Vec to r c f 1 ,

GTNWWCF) ;
( (O Rtn , G Z , G Z) , Tenso r 2 Vec to r Vec to r c f 1 ,

G TNZZ CF) ;
( (O Rtp , G Z , G Wm) , Tenso r 2 Vec to r Vec to r c f 1 ,

G TWZ CF) ;
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( (O Rtpp , G Wm, G Wm) , Tenso r 2 Vec to r Vec to r c f 1 ,
GTWWCF) ;

( (O Rtm, G Wp, G Z) , Tenso r 2 Vec to r Vec to r c f 1 ,
G TWZ CF) ;

( (O Rtmm, G Wp, G Wp) , Tenso r 2 Vec to r Vec to r c f 1 ,
GTWWCF) ]

. . .
l et dim8 gauge higgs4 =

[ (O H, O H, G Wp, G Wm) , Dim8 Scalar2 Vector2 1 1 , FS0HHWW;
(O H, O H, G Z , G Z) , Dim8 Scalar2 Vector2 1 1 , FS0 HHZZ ;
(O H, O H, G Wp, G Wm) , Dim8 Scalar2 Vector2 2 1 , FS1HHWW;
(O H, O H, G Z , G Z) , Dim8 Scalar2 Vector2 2 1 , FS1 HHZZ ]

. . .
l et f s h i g g s 4 =

[ (O H, O H, O H, O H) , Dim8 Scalar4 1 , FS H4 ]
. . .

l et gauge h iggs4 =
( i f Flags . higgs anom then

s tandard gauge h iggs4 @ anomalous gauge higgs4
else

s tandard gauge h iggs ) @
( i f Flags . h igg s mat r ix then

( d im8 gauge higgs4 )
else

[ ] )
. . .
l et higgs4 =

( i f Flags . higgs anom then
s tandard h iggs4 @ anomalous higgs4

else
s tandard h iggs4 ) @

( i f Flags . h i gg s mat r ix then
( f s h i g g s 4 )

else
[ ] )

. . .
l et v e r t i c e s 3 =

. . .
( i f Flags . c f a r b i t r a r y then

( r f 3 c f @ r t 3 c f )
else

( r f 3 @ rt3 ) )
r f 3 t @
( i f Flags . h igg s mat r ix then
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( rsigma3h @ r f3h )
else

[ ] ) @
. . .
l et constant symbol = function

. . .
j FS0HHWW �> ”fs0hhww” j FS0 HHZZ �> ” f s0hhzz ”
j FS1HHWW �> ”fs1hhww” j FS1 HHZZ �> ” f s1hhzz ”
j FS H4 �> ” f sh4 ”

. . .
j G SHH �> ”gshh”

. . .
j GFWWCF �> ”gfwwcf” j G FZZ CF �> ” g f z z c f ”
j G FHH �> ”gfhh” j G FHH CF �> ” g fhhc f ”
j GFWWT �> ”gfwwt” j G FZZ T �> ” g f z z t ”
j GTNWW �> ”gtnww” j G TNZZ �> ” gtnzz ”
j GTNWWCF �> ”gtnwwcf” j G TNZZ CF �> ” g tnz z c f ”
j GTWZ �> ”gtwz” j GTWW �> ”gtww”
j G TWZ CF �> ” gtwzcf ” j GTWWCF �> ”gtwwcf”

. . .
. . .

C.3.3. Defining a particular Model: SSC 2

For the unitarizized description of the new resonances and additional dimension eight Higgs
couplings (linear representation), the model SSC_2 is introduced into WHIZARD and O’MEGA.
Starting with its initialization using the correct flags in the earlier defined Modellib_BSM,
the file ./omega/src/omega_SSC_2.ml has to be creating with the content:

. . .
module O = Omega .Make( Fusion . Mixed23 ) ( Targets . Fortran )

(Modellib BSM .SSC(Modellib BSM . SSC kmatrix 2 ) )
l et = O. main ( )
. . .

and included in the makefile ./omega/src/Makefile.sources:

. . .
omega SSC 2 . ml n

. . .

The file share/models/SSC\_2.mdl includes all parameters which are accessible by SIN-
DARIN code. As example, the anomalous quartic couplings FS;0 and FS;1 can be changed by
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parameters s0 and s1. Additionally, possible vertices have to be included, e.g. the coupling
of the scalar to two Higgs. The flag eft_h is introduced to switch off the couplings to Higgs
for comparison with the old model within the non-linear representation.

The discussed extensions are included in share/models/SSC\_2.mdl by:

. . .
parameter s0 = 0 # Co e f f i c i e n t of LS0
parameter s1 = 0 # Co e f f i c i e n t of LS1
. . .
parameter c f = 2 # Arbi t rary c o e f f i c i e n t

# for t en so r coup l ing s
parameter e f t h = 1 # Switch for EFT coup l ing s

# to Higgs
. . .
#Sigma � Higgs
ver tex Rsigma H H
. . .
#Sigma � Higgs
ver tex Rf H H

This file has to be added in ./share/Makefile.am for the compilation of WHIZARD.

All parameters of the new SSC_2 model , included coupling strength of each vertex, are
defined in in the file ./src/models/parameters.SSC\_2.f90, which has to be included in
src/models/Makefile.am:

libmodels la SOURCES = n
. . .
parameters . SSC 2 . f90 n
. . .

nodist execmod HEADERS = n
. . .
pa ramete r s s s c 2 . $ (FCMODULE EXT) n
. . .

## The mismatch of f i l enames and
## module names r e qu i r e s a l o t of r e p e t i t i o n :

. . .
pa ramete r s s s c . $ (FCMODULE EXT) : parameters . SSC 2 . l o
@:

The new flags and couplings for the new physic couplings, e.g. the dimension eight Higgs
coupling, are defined in src/models/parameters.SSC_2.f90:
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pr i va t e
complex ( d e f au l t ) , pub l i c :

. . .
gfwwcf , g f z z c f , &
gtnww , gtnzz , gtwz , gtww , &
gtnwwcf , g tnzzc f , gtwzcf , gtwwcf , &
fs0hhww , fs0hhzz , fs1hhww , fs1hh , fsh4 , &
gshh , gfhh , g fhhc f

. . .
subrout ine import f rom whizard ( par ar ray )

. . .
r e a l ( d e f au l t ) , dimension (68 ) , i n t en t ( in ) : : pa r a r ray
. . .
r e a l ( d e f au l t ) : : c f
r e a l ( d e f au l t ) : : e f t h
. . .
par%c f = par ar ray (63)
par%e f t h = par ar ray (64)
. . .
gkm(13) = par%c f
gkm(14) = par%e f t h
. . .
g c f = gkm(13)
. . .
gshh = � gkm(1) � gkm(14)
. . .
gfww = gkm(4) � mass (24) � g / 2
gfwwcf = gfww � gc f
g f z z = gkm(4) � mass (23) � g / costhw / 2
g f z z c f = g f z z � gc f
gfhh = � gkm(4) / 2 .0 d e f a u l t � gkm(14)
g fhhc f = gfhh � gc f
gfwwt = gkm(9) � g��3 / mass (24) / (32 . 0 � PI )
g f z z t = gkm(9) � g��3 / costhw��3 / mass (23) / (32 . 0 � PI )
gtnww = � gkm(5) � mass (24) � g / 4 / sq r t ( 3 . 0 d e f a u l t )
gtnwwcf = gtnww � gc f
gtnzz = gkm(5) � mass (23) � g / costhw / 2 / sq r t ( 3 . 0 d e f a u l t )
g tn z z c f = gtnzz � gc f
gtwz = gkm(5) � mass (23) � g / 4
gtwzcf = gtwz � gc f
gtww = gkm(5) � mass (24) � g / 2 / sq r t ( 2 . 0 d e f a u l t )
gtwwcf = gtww � gc f
. . .
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fs0hhww = � g �� 2 � vev �� 2 / 4 � f s 0 � gkm(14)
fs1hhww = � g �� 2 � vev �� 2 / 2 � f s 1 � gkm(14)
f s0hhzz = � g �� 2 / costhw��2 � vev �� 2 / 4 � f s 0 � gkm(14)
f s1hhzz = � g �� 2 / costhw��2 � vev �� 2 / 2 � f s 1 � gkm(14)
f sh4 = 2 .0 d e f a u l t � ( f s 0 + f s 1 ) � gkm(14)

Additionally, the parameter file has to be included in ./synchronize.sh. Then all necessary
changes to implement the new SSC_2 model are executed and the model can be used in
WHIZARD.

C.4. Unitarization

The Thales-projection T -matrix algorithm is implemented in WHIZARD as part of this thesis.
To achieve the correct unitarity prescription of longitudinal vector boson scattering amplitudes
counter-terms are added for s-channel vertices. In this section, the implementation of the
WWHH-vertex is introduced as representative for all weak boson scattering vertices. The
unitarization counter terms are introduces as form factors which are calculated in ./omega/

src/targets_Kmatrix_2.ml. An example, how the calculation of the form factors is defined,
is given in the next subsection for the WWHH -vertex. Here, the implementation of such an
calculation scheme in O’MEGA is described.

The file ./omega/src/targets_Kmatrix_2.ml has to be included in
./omega/src/Makefile.sources:

. . .
OMEGATARGETLIBML = n

targets Kmatr ix . ml n
ta rge t s Kmatr ix 2 . ml n

. . .

To enable the T-matrix unitarization method for the model SSC 2, it has to be activated in
./src/me_methods/me_methods.nw:

s e l e c t case ( char ( wr i t e r%model name ) )
case ( ”SM rx” , ”SM ul” , ”SSC” , ”NoH rx” , ”AltH” )

kmat r i x s t r i ng = ” �t a r g e t : kmatr ix wr i t e ”
case ( ”SSC 2” )

kmat r i x s t r i ng = ” �t a r g e t : kmat r i x 2 wr i t e ”
case d e f au l t

kmat r i x s t r i ng = ””
end s e l e c t

Furthermore, this method has to be added into ./omega/src/targets.ml:
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. . .
l et km write = r e f f a l s e
l et km pure = r e f f a l s e
l et km 2 write = r e f f a l s e
l et km 2 pure = r e f f a l s e
. . .
” kmatr ix wr i t e ” , Arg . Set km write ,

” wr i t e K matrix f unc t i on s ” ;
” kmat r ix 2 wr i t e ” , Arg . Set km 2 write ,

” wr i t e K matrix 2 f unc t i on s ” ;
” kmatr ix wr i t e pure ” , Arg . Set km pure ,

” wr i t e K matrix pure f unc t i on s ” ;
” kmat r i x 2 wr i t e pure ” , Arg . Set km 2 pure ,

” wr i t e Kmatrix2pure f unc t i on s ” ;
. . .
i f ! km write j j ! km pure then

( Targets Kmatrix . Fortran . p r i n t ! km pure ) ;
i f ! km 2 write j j ! km 2 pure then

( Targets Kmatr ix 2 . Fortran . p r i n t ! km 2 pure ) ;
. . .

Finally, a file ./omega/src/targets_Kmatrix_2.mli has to be created, with the content:

module Fortran : s i g va l p r i n t : bool �> uni t end

C.4.1. Unitarization for WWHH-Vertex

Introducing the form factors dalhz s, dalhz t and dalhz u, which include the contribution
of the unitarized operators and resonances with their couplings gkm and masses mkm, the
counter term for the vertex H.p1/H.p2/Z�.p3/Z�.p4/ in the s-channel implemented as

dalhz s.gkm;mkm; p3 C p4/p
�
1p2�g

��

Cdalhz t.gkm;mkm; p3 C p4/p
�
1 p

�
2

Cdalhz u.gkm;mkm; p3 C p4/p
�
1p

�
2 :

(C.12)

All functions have to be implemented via the file ./omega/src/targets.ml to O’MEGA:

j Scalar2 Vector2 K Matr ix ms �>

f a i l w i t h ” p r i n t c u r r e n t : V4 : K Matrix not implemented”
. . .

l et p r i n t s c a l a r 2 v e c t o r 2 km c pa pb wf1 wf2 wf3
p1 p2 p3 p123 fu s i on ( c o e f f , c on t r a c t i on ) =
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match cont rac t i on , f u s i on with
j C 12 34 , (F123 j F213 j F124 j F214 )
j C 13 42 , (F132 j F312 j F134 j F314 )
j C 14 23 , (F142 j F412 j F143 j F413 ) �>

p r i n t f ”(%s%s%s+%s ))�(% s�%s)�(%s�%s)�%s”
( f o rma t c o e f f c o e f f ) c pa pb p1 p2 wf1 wf2 wf3

j C 12 34 , (F134 j F143 j F234 j F243 )
j C 13 42 , (F124 j F142 j F324 j F342 )
j C 14 23 , (F123 j F132 j F423 j F432 ) �>

p r i n t f ”(%s%s%s+%s ))�(% s�%s)�(%s�%s)�%s”
( f o rma t c o e f f c o e f f ) c pa pb p1 p123 wf2 wf3 wf1

j C 12 34 , (F132 j F231 j F142 j F241 )
j C 13 42 , (F123 j F321 j F143 j F341 )
j C 14 23 , (F124 j F421 j F134 j F431 ) �>

p r i n t f ”(%s%s%s+%s ))�(% s�%s)�(%s�%s)�%s”
( f o rma t c o e f f c o e f f ) c pa pb p1 p3 wf1 wf3 wf2

j C 12 34 , (F312 j F321 j F412 j F421 )
j C 13 42 , (F213 j F231 j F431 j F413 )
j C 14 23 , (F214 j F241 j F314 j F341 ) �>

p r i n t f ”(%s%s%s+%s ))�(% s�%s)�(%s�%s)�%s”
( f o rma t c o e f f c o e f f ) c pa pb p2 p3 wf2 wf3 wf1

j C 12 34 , (F314 j F413 j F324 j F423 )
j C 13 42 , (F214 j F412 j F234 j F432 )
j C 14 23 , (F213 j F312 j F243 j F342 ) �>

p r i n t f ”(%s%s%s+%s ))�(% s�%s)�(%s�%s)�%s”
( f o rma t c o e f f c o e f f ) c pa pb p2 p123 wf1 wf3 wf2

j C 12 34 , (F341 j F431 j F342 j F432 )
j C 13 42 , (F241 j F421 j F243 j F423 )
j C 14 23 , (F231 j F321 j F234 j F324 ) �>

p r i n t f ”(%s%s%s+%s ))�(% s�%s)�(%s�%s)�%s”
( f o rma t c o e f f c o e f f ) c pa pb p3 p123 wf1 wf2 wf3

l et pr in t add s ca l a r 2 ve c t o r 2 km c pa pb wf1 wf2 wf3
p1 p2 p3 p123 fu s i on ( c o e f f , c on t r a c t i on ) =
p r i n t f ”@ + ” ;
p r i n t s c a l a r 2 v e c t o r 2 km c pa pb wf1 wf2 wf3
p1 p2 p3 p123 fu s i on ( c o e f f , c on t r a c t i on )

. . .
j Scalar2 Vector2 K Matr ix ms ( d i sc , c on t r a c t i on s ) �>

l et p123 = Pr i n t f . s p r i n t f ”(�%s�%s�%s ) ” p1 p2 p3 in
let pa , pb =

begin match disc , f u s i on with
j 3 , (F143 j F413 j F142 j F412 j F321 j F231 j F324 j F234 ) �> ( p1 , p2 )
j 3 , (F314 j F341 j F214 j F241 j F132 j F123 j F432 j F423 ) �> ( p2 , p3 )
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j 3 , (F134 j F431 j F124 j F421 j F312 j F213 j F342 j F243 ) �> ( p1 , p3 )
j , ( F341 j F431 j F342 j F432 j F123 j F213 j F124 j F214 ) �> ( p1 , p2 )
j , ( F134 j F143 j F234 j F243 j F312 j F321 j F412 j F421 ) �> ( p2 , p3 )
j , ( F314 j F413 j F324 j F423 j F132 j F231 j F142 j F241 ) �> ( p1 , p3 )
end in

begin match c on t r a c t i on s with
j [ ] �> i n v a l i d a r g

”Targets . p r i n t c u r r e n t : Sca lar2 Vector4 K Matr ix ms [ ] ”
j head : : t a i l �>

p r i n t f ” ( ” ;
p r i n t s c a l a r 2 v e c t o r 2 km

c pa pb wf1 wf2 wf3 p1 p2 p3 p123 fu s i on head ;
L i s t . i t e r ( p r i n t add s ca l a r 2 ve c t o r 2 km

c pa pb wf1 wf2 wf3 p1 p2 p3 p123 fu s i on )
t a i l ;

p r i n t f ” ) ”
end

and have to be also defined in ./omega/src/colorize.ml:

j Scalar2 Vector2 K Matr ix ms ( c , c h 2 l i s t ) �>
Scalar2 Vector2 K Matr ix ms ( ( x � c ) , c h 2 l i s t )

and omega/src/coupling.mli:

j Scalar2 Vector2 K Matr ix ms of i n t � ( i n t � cont rac t4 ) l i s t

To ensure that the vertices are only inserted in the s-channel, a procedure will check if s is
in the physical region:

j V4 ( Scalar2 Vector2 K Matr ix ms ( d i sc , ) , fu s ion , ) �>
l et s12 , s23 , s13 =

begin match PT. t o l i s t momenta with
j [ q1 ; q2 ; q3 ] �> (P. S ca t t e r i ng . t ime l i k e (P. add q1 q2 ) ,

P . S ca t t e r i ng . t ime l i k e (P. add q2 q3 ) ,
P . S ca t t e r i ng . t ime l i k e (P. add q1 q3 ) )

j �> r a i s e PT. Mismatched ar ity
end in

begin match disc , s12 , s23 , s13 , f u s i on with
j 0 , true , f a l s e , f a l s e ,

( F341 j F431 j F342 j F432 j F123 j F213 j F124 j F214 )
j 0 , f a l s e , true , f a l s e ,

( F134 j F143 j F234 j F243 j F312 j F321 j F412 j F421 )
j 0 , f a l s e , f a l s e , true ,

( F314 j F413 j F324 j F423 j F132 j F231 j F142 j F241 ) �>
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t rue
j 1 , true , f a l s e , f a l s e , ( F341 j F431 j F342 j F432 )
j 1 , f a l s e , true , f a l s e , ( F134 j F143 j F234 j F243 )
j 1 , f a l s e , f a l s e , true , (F314 j F413 j F324 j F423 ) �>

t rue
j 2 , true , f a l s e , f a l s e , ( F123 j F213 j F124 j F214 )
j 2 , f a l s e , true , f a l s e , ( F312 j F321 j F412 j F421 )
j 2 , f a l s e , f a l s e , true , (F132 j F231 j F142 j F241 ) �>

t rue
j 3 , true , f a l s e , f a l s e ,

( F143 j F413 j F142 j F412 j F321 j F231 j F324 j F234 )
j 3 , f a l s e , true , f a l s e ,

( F314 j F341 j F214 j F241 j F132 j F123 j F432 j F423 )
j 3 , f a l s e , f a l s e , true ,

( F134 j F431 j F124 j F421 j F312 j F213 j F342 j F243 ) �>
t rue

j �> f a l s e
end

Contraction rules for the HHVV coupling have to be inserted in ./omega/src/modellib_BSM:

l et k mat r i x 2 s ca l a r 2gauge =
i f Flags . k matr ix then

i f Flags . h i gg s mat r ix then
[ ( (O H,O H,G Z ,G Z) , Scalar2 Vector2 K Matr ix ms

(0 , [ ( 1 , C 12 34 ) ] ) , D Alpha HHZZ S ) ;
( (O H,O H,G Wp,G Wm) , Scalar2 Vector2 K Matr ix ms

(0 , [ ( 1 , C 12 34 ) ] ) , D Alpha HHWW S) ;
( (O H,G Z ,O H,G Z) , Scalar2 Vector2 K Matr ix ms

(0 , [ ( 1 , C 13 42 ) ] ) , D Alpha HHZZ T ) ;
( (O H,G Wp,O H,G Wm) , Scalar2 Vector2 K Matr ix ms

(0 , [ ( 1 , C 13 42 ) ] ) , D Alpha HHWW T) ;
( (O H,G Z ,G Z ,O H) , Scalar2 Vector2 K Matr ix ms

(0 , [ ( 1 , C 14 23 ) ] ) , D Alpha HHZZ T ) ;
( (O H,G Wp,G Wm,O H) , Scalar2 Vector2 K Matr ix ms

(0 , [ ( 1 , C 14 23 ) ] ) , D Alpha HHWW T) ]
else

[ ]
else

[ ]
. . .

l et gauge h iggs4 =
( i f Flags . higgs anom then

s tandard gauge h iggs4 @ anomalous gauge higgs4
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else
s tandard gauge h iggs4 ) @

( i f Flags . h i gg s mat r ix then
( d im8 gauge higgs4 @ k mat r i x 2 s ca l a r 2gauge )

else
[ ] )

Additionally, the form factors of the counter terms are calculated in ./omega/src/targets_

Kmatrix_2.ml:

p r i n t f ”%s func t i on dalhw s ( cc ,m, k ) r e s u l t ( a lhw s ) ” pure ; n l ( ) ;
p r i n t f ” type (momentum) , i n t en t ( in ) : : k” ; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 1 4 ) , i n t en t ( in ) : : cc ”

; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 5 ) , i n t en t ( in ) : : m”

; n l ( ) ;
p r i n t f ” complex ( kind=de f au l t ) : : a lhw s ” ; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) : : s ” ; n l ( ) ;
p r i n t f ” s = k�k” ; n l ( ) ;
p r i n t f ” a lhw s = � 8 .0 d e f a u l t � cc (14) � g��2/vev��2 � &”

; n l ( ) ;
p r i n t f ” ( ( da00 ( cc , s ,m) &” ; n l ( ) ;
p r i n t f ” � da20 ( cc , s ,m))/24 &” ; n l ( ) ;
p r i n t f ” � 5�( da02 ( cc , s ,m) � da22 ( cc , s ,m) )/12 ) ”

; n l ( ) ;
p r i n t f ”end func t i on dalhw s ” ; n l ( ) ;
n l ( ) ;
p r i n t f ”%s func t i on dalhw t ( cc ,m, k ) r e s u l t ( a lhw t ) ” pure ; n l ( ) ;
p r i n t f ” type (momentum) , i n t en t ( in ) : : k” ; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 1 4 ) , i n t en t ( in ) : : cc ”

; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 5 ) , i n t en t ( in ) : : m”

; n l ( ) ;
p r i n t f ” complex ( kind=de f au l t ) : : a lhw t ” ; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) : : s ” ; n l ( ) ;
p r i n t f ” s = k�k” ; n l ( ) ;
p r i n t f ” a lhw t = � 10 .0 d e f a u l t � cc (14) � g��2/ vev��2 � &”

; n l ( ) ;
p r i n t f ” ( da02 ( cc , s ,m) � &” ; n l ( ) ;
p r i n t f ” da22 ( cc , s ,m) ) / 4 . 0 d e f a u l t ” ; n l ( ) ;
p r i n t f ”end func t i on dalhw t ” ; n l ( ) ;
n l ( ) ;
p r i n t f ”%s func t i on da lh z s ( cc ,m, k ) r e s u l t ( a l h z s ) ” pure ; n l ( ) ;
p r i n t f ” type (momentum) , i n t en t ( in ) : : k” ; n l ( ) ;
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p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 1 4 ) , i n t en t ( in ) : : cc ”
; n l ( ) ;

p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 5 ) , i n t en t ( in ) : : m”
; n l ( ) ;

p r i n t f ” complex ( kind=de f au l t ) : : a l h z s ” ; n l ( ) ;
p r i n t f ” a l h z s = dalhw s ( cc ,m, k ) / costhw��2” ; n l ( ) ;
p r i n t f ”end func t i on da lh z s ” ; n l ( ) ;
n l ( ) ;
p r i n t f ”%s func t i on da lh z t ( cc ,m, k ) r e s u l t ( a l h z t ) ” pure ; n l ( ) ;
p r i n t f ” type (momentum) , i n t en t ( in ) : : k” ; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 1 4 ) , i n t en t ( in ) : : cc ”

; n l ( ) ;
p r i n t f ” r e a l ( kind=de f au l t ) , dimension ( 1 : 5 ) , i n t en t ( in ) : : m”

; n l ( ) ;
p r i n t f ” complex ( kind=de f au l t ) : : a l h z t ” ; n l ( ) ;
p r i n t f ” a l h z t = dalhw t ( cc ,m, k ) / costhw��2” ; n l ( ) ;
p r i n t f ”end func t i on da lh z t ” ; n l ( ) ;
n l ( ) ;
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