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Abstract

The aim of this thesis is to deepen the understanding of correlations between particles

in quantum mechanical systems. It focuses on finding relationships between the cor-

relations among different parts of the system, as well as revealing their limitations in

multi-qubit states.

In particular, new answers to the quantum marginal problem are found, i.e., the ques-

tion of whether knowledge of the subsystems of certain particle numbers allows fixing

a global quantum state uniquely. Among other things, it is shown that in many cases,

certain sets of two-particle reduced states determine a joint four-particle state uniquely.

Furthermore, it is shown that the set of correlations in multi-qubit states naturally de-

composes into an odd and an even component, where often one component uniquely

fixes the other. This finding is consequently applied to the problem of entanglement

detection and the characterization of ground states of Hamiltonians.

In the second part of the thesis, interrelations between correlation quantifiers of degree

two, known as Sector lengths, are established and connected to quantum mechanical

properties of states. It is shown that Sector lengths are helpful for the detection of

entanglement, and that they are subject to monogamy-like constraints, limiting the

amount of concurrent correlations between different particles. Consequently, it is

investigated which additional information for the task of entanglement detection is

yielded by higher-order invariants, in particular higher moments of the distribution

of correlation measurements.

The third part considers the problem of entanglement detection in experimentally lim-

ited scenarios: It analyses the capabilities of entanglement detection having access to

expectation values of two product observables only. In systems of restricted dimen-

sionality, necessary and sufficient criteria to be useful for such tasks are developed for

pairs of such observables.

The last chapter extends the scope of the thesis via a theoretical assessment of quantum

memories. As important building blocks for future applications of quantum mechan-

ics, like quantum computers and quantum communication, these memory devices

need to store quantum states faithfully for the corresponding task. In order to being

able to characterize this property of quantum memories sufficiently, abstract criteria

for memory performance measures are developed. Consequently, three such mea-

sures based on the coherence of quantum states are defined and their properties are

determined.



Zusammenfassung

Das Ziel dieser Dissertation ist es, das Verständnis quantenmechanischer Korrelatio-

nen zu vertiefen, indem Abhängigkeiten zwischen und Beschränkungen von Korrela-

tionen unterschiedlicher Teile von Mehrteilchenzuständen gefunden werden.

Um dieses Ziel zu erreichen, wird zunächst das Quantenmarginalienproblem unter-

sucht. Dieses beschäftigt sich mit der Frage, ob die Kenntnis der Zustände physikali-

scher Subsysteme ausreicht, um den globalen Zustand eindeutig zu bestimmen. Hier

wird unter anderem gezeigt, dass bestimmte Zweiteilchen-Subsysteme einen gemein-

samen Vierteilchen-Zustand eindeutig bestimmen. Anschließend wird das Marginali-

enproblem verallgemeinert und gezeigt, dass die Menge aller Korellationen in Syste-

men mehrerer Qubits auf natürliche Weise in zwei Komponenten zerfällt; die Menge

der Korrelationen zwischen einer ungeraden, und solchen zwischen einer geraden

Anzahl von Teilchen. In vielen Fällen wird die eine Komponente durch die andere

eindeutig bestimmt. Schließlich werden Anwendungen zur Verschränkungsdetektie-

rung und Charakterisierung von Grundzuständen aufgezeigt.

Im zweiten Teil der Dissertation werden Sektorlängen als geeignete Größen zur Cha-

rakterisierung der Korrelationsstärke zwischen verschiedenen Zahlen von Teilchen

eingeführt und mit den quantenmechanischen Eigenschaften des Systems in Verbin-

dung gebracht. Insbesondere wird aufgezeigt, dass Sektorlängen für die Verschrän-

kungsdetektion geeignet sind und monogamieartiger Beschränkungen unterliegen,

die die gleichzeitige Korrelation verschiedener Teile des Systems einschränken. Dar-

aufhin wird untersucht, inwiefern Verteilungen von Korrelationsmessungen als Invari-

anten höheren Grades dabei helfen können, Verschränkungseigenschaften von Quan-

tensystemen zu charakterisieren.

Der dritte Teil beschäftigt sich mit der Detektion von Verschränkung trotz einge-

schränkter experimenteller Möglichkeiten. Hier wird untersucht, in welchen Fällen

die Kenntnis von Erwartungswerten zweier Produkt-Observablen ausreichen kann,

um Verschränkung nachzuweisen. Schließlich werden in Systemen beschränkter Di-

mension notwendige und hinreichende Kriterien für die Nützlichkeit eines solchen

Observablenpaares gefunden.

Im letzten Kapitel wird der Blick auf die theoretische Charakterisierung von Quan-

tenspeichern gerichtet. Solche Speicher sind wichtige Bestandteile künftiger Anwen-

dungsgebiete wie Quantenrechnern und Quantenkommunikation, und müssen als

solche in der Lage sein, Quantenzustände originalgetreu zu speichern. Um die Leis-

tung solcher Quantensysteme ausreichend beurteilen zu können, werden abstrakte



Kriterien für Qualitätsmaße von Quantenspeichern entwickelt. Anschließend werden

drei solche Maße definiert und deren Eigenschaften untersucht.
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1 Introduction

”It’s a warm summer evening in ancient Greece...“

Dr. Sheldon Cooper

Throughout the history of science, the observation of correlations has been a driv-

ing force to gain insight into the underlying laws of physics. To mention only a

few early examples, Archimedes’ principle was derived from noticing correlations be-

tween the density of objects and displaced liquid, and heliocentrism was proposed as

a simple model to explain correlations between the celestial orbits of the planets [1].

The list continues to the times of modern physics: the detection of missing correla-

tions between the intensity of light and the energy of electrons in experiments on the

photoelectric effect pushed the development of quantum theory [2], and correlations

between temperature deviations in the cosmic microwave background are deeply con-

nected to fundamental parameters of cosmic models, like the age of the universe and

the relative amount of dark matter and dark energy [3].

These examples make clear that a fundamental comprehension of correlations lies at

the heart of the cognitive process associated with theoretical physics. This thesis is

concerned with deepening this understanding in the context of quantum mechanics.

Quantum mechanics was developed following a number of observations that could

not be sufficiently explained classically, like the frequency dependence of the intensity

of a black-body radiator [4] and the already mentioned energy spectrum of electrons

emitted through the photoelectric effect [2]. Even though these findings could be

explained phenomenologically by introducing the notion of quanta in the early twen-

tieth century, it was not until 1925 that a concise mathematical theory of quantum

mechanics was developed [5].

The rapid derivation of the uncertainty principle [6], stating that certain observables

cannot be measured with great precision at the same time lead to the formulation of

the Copenhagen interpretation of quantum mechanics, a fundamental shift of para-

digm that is popular until today. It states that physical objects do not have defined

physical properties until they are measured. The ambiguity of what exactly defines

a measurement process is a question at the boundary of physics and philosophy and

still a source of vivid discussions in the physics community.
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1. Introduction

In contrast, most physicists agree that studying correlations between observables is an

impartial way of describing the striking phenomena predicted by quantum mechan-

ics. One of these is the existence of non-local correlations between far apart particles,

known as entanglement and fundamentally different from correlations that are present

in classical systems. It allows for an observer to measure a property of one part of an

entangled system, and, by the Copenhagen interpretation, fix this property in the same

process not only for the part at hand but for the whole entangled system, indepen-

dent from where in the universe it is located. It is a common misunderstanding that

entanglement would allow for faster-than-light communication: In order to become

entangled, the two systems have to interact physically, i.e., be in causal contact before,

and it is not possible to transmit information faster than the speed of light with the

help of entanglement.

Nevertheless, entanglement enables applications as quantum teleportation and quan-

tum cryptography, as well as advanced computation schemes in quantum computers.

While the first two applications are of interest in the context of secure communication,

as they allow for an uninterceptable key exchange, the latter application is of great

interest due to the ability of quantum computers to solve problems that are intractable

on classical computers, as the simulation of quantum systems or prime factorization,

The recurrent theme of this thesis is to understand the capabilities, but also the lim-

itations of the correlations present in quantum systems. While the set of admissible

quantum correlations is larger than the set of classical correlations, this additional

freedom is also the source of many possible dependencies between the properties of

different parts of quantum mechanical states. We study these relations in the first two

scientific chapters of this thesis: In Chapter 3 we consider the question of what one can

learn about a composite quantum system from the knowledge of correlations between

subsystems of certain sizes, a question relevant for secure communication, the char-

acterization of ground states of Hamiltonians and quantum chemistry. In Chapter 4,

we generalize the same question to larger sets of correlations, not only those of certain

subsystems. As it turns out, the correlations of systems of multiple particles with two

internal degrees of freedom, called qubits, factorize naturally into two components,

where one component often completely determines the other.

Chapter 5 is concerned with quantifying the size of correlations in quantum systems.

To that end, we introduce a measure of correlation strength for different sizes of sub-

systems, called sector lengths, and show that knowledge of these sizes allows inferring

many of the non-local properties of quantum states.
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We then turn to more practically relevant topics in Chapter 6, where we consider the

question of how one can maximize the inferred information about systems from cor-

relation measurements. As it turns out, knowledge of the distribution of expectation

values yields access to more properties of the state than expectation values alone.

As entanglement is a key resource for many applications of quantum mechanics, we

tackle the problem of determining the minimal experimental requirements that allow

for entanglement detection in Chapter 7. Finally, we put the focus on practical imple-

mentations of basic building blocks of quantum computers in Chapter 8: We explain

why quantum memories are important for quantum computation and communica-

tion and how one can evaluate their performance using coherence, another kind of

non-classical property of quantum mechanics.

The chapters are written such that they can be understood independently from one

another, even though we highlight the many connections between the topics in the

text. The common mathematical foundation needed to understand the chapters is

developed in Chapter 2. In order to guide the impatient reader, we display a list of

prerequisites, i.e., a collection of sections from Chapter 2 necessary to understand the

following text, at the beginning of each chapter.
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2 Mathematical toolbox

2.1 Introduction

We begin by explaining the basic concepts of quantum mechanics and build our set of

tools upon it. To that end, we will introduce the axioms of quantum mechanics and

review the notion of pure and mixed quantum states. For the latter, we will introduce

a very expedient basis, called the Bloch basis, that is used throughout this thesis in

order to describe correlations in multi-qubit states.

After introducing the notion of marginal states, which correspond to states of sub-

systems of a global state, we will introduce the concept of entanglement, which is,

apart from coherence, probably the most important non-classical feature of quantum

mechanics. After stating the definition, we will introduce useful measures of entan-

glement and review prominent results about the monogamy of entanglement, which

states that even though quantum mechanics allows for entanglement, it also limits it

in interesting ways.

Next, we introduce quantum channels as an important tool to describe physical ma-

nipulations of states. Mathematically speaking, they correspond to mappings between

states even if applied to only parts of a global state. Quantum channels will be of im-

portance when we look at quantum memories in Chapter 8.

An important quantum informational quantity is the entropy of a system. We intro-

duce two different entropies, the von Neumann entropy as a generalization of the

usual Shannon entropy to quantum states, and, as an approximation, the easier to

compute linear entropy, and highlight the differences between the two quantities.

Consequently, we have a look at coherence as a quantifier of superposition, the second

important non-classical feature of quantum mechanics and finally introduce the con-

cept of semidefinite programs, a class of optimization problems that are ubiquitous

in quantum information and in some cases allow for analytical statements about the

existence and optimality of solutions.
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2. Mathematical toolbox

2.2 Quantum mechanics and quantum states

The theory of quantum mechanics is based upon a number of axioms that define the

mathematical structure as well as the notion of measurement processes. Here, we

follow the outline given in [7]:

— The state of a system is given by a vector in a Hilbert space.

Throughout this thesis, we are concerned with finite-dimensional systems. For these,

the Hilbert space H is given by Cd where d denotes the dimension of the system.

Vectors in this space are usually denoted by |ψ〉, called ket-vector. The hermitian

adjoint of |ψ〉 is denoted by |ψ〉† = 〈ψ|, called bra-vector. We assume pure states

to be vectors that are normalized according to the usual inner product (|ψ〉, |φ〉) :=

〈ψ|φ〉, that is, 〈ψ|ψ〉 = 1. Furthermore, vectors differing by only a complex phase

are considered equivalent pure states. Technically, this means that the set of states

corresponds to the projective space CPd−1. Finally, we denote the canonical basis of

Cd by |0〉, |1〉, . . . , |d− 1〉.

While each isolated physical system is always in a pure state, it might be unknown

in which state it is exactly. As an example, consider a photon that is emitted from

a light bulb. The photon is polarized in a certain direction relative to a given basis,

thus its state is described by a normalized vector of the form a|H〉+ b|V〉, where |H〉
and |V〉 denote horizontally and vertically polarized photons, respectively. However,

this direction is random for each emitted photon. This is why we use mixed states to

capture this classical randomness. A mixed state (sometimes called density matrix) ρ

is a convex combination of projectors onto pure states, or

ρ =
r

∑
i=1

pi|ψi〉〈ψi|, (2.1)

where pi > 0, ∑i pi = 1. The vectors |ψi〉 can be chosen to be orthonormal, in which

case the number of addends, r, denotes the rank of the state.

It sometimes makes sense to treat pure states as operators as well by switching from

the vector representation |ψ〉 to the operator representation |ψ〉〈ψ|. Then, the set of

all mixed and pure states is given by the set of all positive semidefinite hermitian

operators of trace one, i.e.,

ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0. (2.2)

Here, positive semidefinite means that the eigenvalues of the matrix representation

are non-negative.
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2.2. Quantum mechanics and quantum states

— The time evolution of a pure state is given by the Schrödinger equation.

Let H denote the Hamiltonian of the system, i.e., a hermitian operator governing the

interactions. Then a pure state evolves according to the Schrödinger equation via

ih̄∂t|ψ(t)〉 = i∂t|ψ(t)〉 = H|ψ(t)〉, (2.3)

where we use natural units here and in the following such that h̄ = 1. If the Hamilto-

nian is not explicitly time dependent, one can formally write

|ψ(t)〉 = e−iHt|ψ(0)〉 (2.4)

for some initial state |ψ(0)〉.

— Observables are represented by hermitian matrices on the Hilbert space.

Each observable A can be written in a spectral decomposition,

A =
K

∑
i=1

αi|ai〉〈ai|. (2.5)

The possible outcomes of a measurement of A are given by the eigenvalues αi. If the

system is in the state ρ prior to the measurement, the probability of obtaining αi is

given by 〈ai|ρ|ai〉. Therefore, the expectation value of the measurement is given by

〈A〉 = ∑i αi〈ai|ρ|ai〉 = Tr(ρA). After the measurement, the state is in an eigenstate of

A corresponding to the measurement result αi.

Measurements in an eigenbasis of an observable are called projective measurements.

More generally, however, one can also consider projective measurements on a larger

system, consisting of the original system and an environment. This leads to the notion

of POVMs (positive operator valued measures). Instead of a set of projections to the

eigenvectors of an observable, one obtains a set of N positive observables {Ek}N
k=1,

called effects, that sum to the identity, i.e.,

N

∑
k=1

Ek = 1. (2.6)

Such a generalized measurement yields the outcome k with probability

pk = Tr(ρEk). (2.7)

As each effect Ek is hermitian and positive, it can be decomposed into measurement

operators Ai, such that Ek = A†
k Ak, although the Ak are not uniquely determined,
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2. Mathematical toolbox

except for the case of projective measurements. Given a decomposition into measure-

ment operators, the post-measurement state after obtaining outcome k is given by

ρk =
AkρA†

k
pk

. (2.8)

The case of projective measurements is recovered by choosing Ek = |ψk〉〈ψk| as the

projectors onto the eigenvectors of the observable.

In the case of projective measurements, a direct consequence of the projection onto

eigenstates during the measurement process is that a state cannot yield certain results

w.r.t. two non-commuting observables, if the state lies in the non-commuting subspace.

This observation leads to famous results like the Heisenberg uncertainty principle [6].

For POVMs, the notion of incompatibility is less straight-forwardly characterized. We

call a set of m POVMs, {{E(1)
k }, . . . , {E(m)

k }} compatible, or jointly measurable, if there

exists a joint measurement POVM {E~k} where~k = (k1, . . . , km) is a vector of individual

measurement results for the corresponding {E(j)
k }, and the marginals of {E~k} yield the

individual measurements, i.e.,

∑
k1

. . . ∑
k j−1

∑
k j+1

. . . ∑
km

E~k = E(j)
k j

(2.9)

for each j = 1, . . . , m.

Finally, we explicitly state another axiom that usually is hidden in the mathematical

formalism:

— The Hilbert space of a composite system is given by the tensor product of the Hilbert spaces

of the individual systems.

The composite system of n systems of dimension d is given by Cd ⊗ . . .⊗ Cd ∼= Cdn
.

We denote the canonical basis of this space by |i1 . . . in〉 = |i1〉 ⊗ . . . ⊗ |in〉, where

ij ∈ {0, . . . , d− 1} for each j.

2.3 Qubits and the Bloch basis

In this thesis, we will be mainly concerned with multi-qubit states, that is, we con-

sider states in a composite system of n two-level systems. In the language of the

previous section, this means d = 2 and the quantum states are called qubit states.

More generally, states consisting of d-level systems are called qudits. For qubit states,

8



2.3. Qubits and the Bloch basis

we introduce a particularly useful basis, called the Bloch basis. We start by introducing

it for a single qubit [7].

A qubit is the smallest quantum mechanical system and has dimension d = 2. A

physical example of such a system would be the spin of an electron, which can be in a

superposition of up, (|0〉) and down (|1〉). Taking into account the normalization and

equivalence under a global phase, the electron’s state can be written as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉. (2.10)

Thus, of the four real dimensions of C2 only two dimensions survive. The set of phys-

ical pure states can be interpreted as the surface of a unit sphere in three dimensions,

called Bloch sphere, with inclination θ and azimuth ϕ. This interpretation becomes

more compelling when considering also mixed states. To that end, we choose as a

basis for the space of 2 by 2 matrices the Pauli matrices, given by

σ0 = 1 =

(
1 0

0 1

)
, σ1 = X =

(
0 1

1 0

)
, σ2 = Y =

(
0 −i

i 0

)
, σ3 = Z =

(
1 0

0 −1

)
.

(2.11)

This is a hermitian, orthogonal basis under the Hilbert-Schmidt inner product, i.e.,

(σi, σj) := Tr(σiσj) = 2δij, called Bloch basis. Furthermore, X, Y and Z are traceless,

and, as σ2
i = 1 for all i, they are unitary matrices, too.

We can now write each mixed state in this basis as

ρ =
1
2
(a0σ0 + a1σ1 + a2σ2 + a3σ3). (2.12)

Imposing the constraints from Eq. (2.2) yields the following: The coefficients ai are

real, as ρ = ρ†; a0 = 1, as Tr(ρ) = 1 and the only non-traceless basis element is σ0.

This also why we choose the normalization of 1/2 in Eq. (2.12). Requiring positivity

of ρ yields a2
1 + a2

2 + a2
3 ≤ 1. This motivates defining the vectors ~a := (a1, a2, a3)T and

~σ := (σ1, σ2, σ3)T, and writing

ρ =
1
2
(1+~a ·~σ). (2.13)

Thus, physical mixed states of single qubits are parameterized by a three-dimensional

vector ~a whose length must not exceed one. This corresponds to points inside of a

three-dimensional unit sphere. Calculating the projector |ψ〉〈ψ| from the vector |ψ〉 in

Eq. (2.10) yields in the Bloch basis a1 = sin θ cos ϕ, a2 = sin θ sin ϕ and a3 = cos θ, i.e.,

exactly the point on the surface of the sphere with inclination θ and azimuth ϕ.

What is more, the basis coefficients ai can be directly measured, as the basis is hermi-

tian: ai = 〈σi〉.

9



2. Mathematical toolbox

Finally, we can augment the single-qubit basis to a multi-qubit one by taking the n-fold

tensor product of all combinations of single-qubit basis matrices σi:

ρ =
1
2n

3

∑
i1,...,in=0

ai1 ...in σi1 ⊗ . . .⊗ σin . (2.14)

The basis elements inherit many of their properties from the single qubit case: The

only element in the basis that is not traceless is the identity, i.e., σ0 ⊗ . . .⊗ σ0 with a

trace of 2n, fixing a0...0 = 1. Furthermore, the basis elements are hermitian and unitary,

and form an orthogonal basis with Tr[(σi1 ⊗ . . .⊗ σin)(σj1 ⊗ . . .⊗ σjn)] = 2nδi1 j1 . . . δin jn .

Imposing ρ = ρ† translates into the constraint that the coefficients ai1 ...in must be real.

They can again be expressed as ai1 ...in = 〈σi1 ⊗ . . . ⊗ σin〉. However, the positivity of

quantum states imposes a plethora of high-degree constraints on the coefficients that

lack a simple geometrical interpretation as in the single-qubit case. In fact, some

interesting features of quantum mechanics, like monogamy of entanglement and the

findings of Chapter 5 are due to this positivity constraint.

Note further that the basis elements σi1 ⊗ . . .⊗ σin occurring in the Bloch decomposi-

tion have a certain number of identity matrices in them, meaning that they act trivially

on the corresponding qubit. Therefore, we define the weight of a basis element as the

number of nontrivial (meaning non-identity) Pauli matrices in it, or mathematically

wt(σi1 ⊗ . . .⊗ σin) := |{j|ij 6= 0}|. (2.15)

It will be useful later on to group the terms of a state ρ given in the Bloch decomposi-

tion in Eq. (2.14) according to their weight. We define

Pk(ρ) :=
3

∑
i1,...,in=0

wt(σi1⊗...⊗σin )=k

ai1 ...in σi1 ⊗ . . .⊗ σin , (2.16)

such that

ρ =
1
2n

n

∑
k=0

Pk(ρ). (2.17)

The only term of weight 0 consists of identities only, with the prefactor fixed by the

unit trace of the state. Thus P0(ρ) = σ0 ⊗ . . .⊗ σ0 = 12n×2n , which is why we usually

write this term explicitly: ρ = 1
2n [1+ ∑n

k=1 Pk(ρ)]. If the state under consideration is

clear from the context, we simply write Pk.

10



2.4. Marginal states

A particularly useful quantity will be the square of the Hilbert-Schmidt norm of the

operators Pk, which are called sector lengths [8]:

Ak(ρ) :=
1
2n Tr[Pk(ρ)

2]. (2.18)

Note, that we call Ak a length, even though it is the square of the norm. The sector

length Ak captures the amount of k-partite correlations in the state and is useful to

describe the properties of a state for two reasons: First of all, by definition, they

are invariant under local unitary rotations (LU-invariant), i.e., changes of the local

basis. Second of all, using the Löwner-Heinz theorem, one can show that they are

convex, i.e., Ak(∑i piρi) ≤ ∑i pi Ak(ρi) [9]. This also implies that the extremal values

are realized by pure states.

One important LU-invariant of a state is its purity, Tr(ρ2). This quantity equal to one

for pure states and minimal for maximally mixed states of dimension d, ρ = 1
d1d⊗d,

taking a value of 1
d . Note that from Eq. (2.17) it follows directly that

Tr(ρ2) =
1
2n [1 +

n

∑
k=1

Ak(ρ)]. (2.19)

2.4 Marginal states

Consider a global state of n particles of dimension d each. Sometimes, one is interested

in the subsystem of k < n of the parties only. For example, the global state could

be consisting of an experimentally accessible part of k parties and an inaccessible

environment of n− k parties, or one is limited in the lab to measurements on at most

k different parties at the same time. In these cases, one is interested in the marginal,

or reduced state, of the k parties only. The state of this subsystem is also a proper

quantum state, and it is obtained from the global state by taking the partial trace over

the inaccessible subsystems. Mathematically speaking, we denote by ρ the global state

of the n-partite system. Let S ⊂ {1, . . . , n} be a subset of the parties of cardinality

k, and S̄ = {1, . . . , n} \ S its complement. Then the k-body marginal of parties S is

defined via

ρS := TrS̄(ρ). (2.20)

Here, TrS̄ denotes the partial trace that maps operators on HS ⊗HS̄ linearly onto op-

erators on HS via TrS̄(AS ⊗ AS̄) = Tr(AS̄)AS for all operators AS on HS and operators

AS̄ on HS̄.
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2.4.1 The marginal problem

The quantum marginal problem consists of several existence and compatibility ques-

tions related to the marginal states of quantum systems. It is best understood looking

at its classical analogon: Shining parallel light under a certain angle on an opaque

three-dimensional object creates a shadow (a projection) of the object. The classical

marginal problem is now the following uniqueness question: Having a set of shad-

ows and their corresponding angles, does this data allow to uniquely reconstruct the

bulk object? It is easy to see that in this very general example, uniqueness of a recon-

structed object can almost never be ensured, as one can always carve out a hole in the

bulk object without changing any projection.

A second question related to the marginal problem is very similar: Given the shadows

only, does there exist a compatible bulk object, i.e., an object that produces exactly

the shadows at hand. Interestingly, the classical answer to this problem is almost

always yes [10]. This allows for example for the construction of digital sundials, that

produce the image of a digital clock showing the correct time, depending on the angle

of incidence of the sunlight.

The answers to the analogous quantum marginal questions are different but highly

relevant in many scenarios. Before we state known results there, we rephrase the set

of questions mathematically. Note that we give a more physically motivated list of

applications of the quantum marginal at the beginning of Chapter 3.

2.4.2 Mathematical description

Consider a quantum system of n parties, and a set of subsystems S = {Si}, where

each Si ⊂ {1, . . . , n}. Associated to each subsystem, we have a quantum state ρSi

living on that system.

Following the notation of Ref. [11], we define the joining set of the set of states {ρSi}:

Definition 2.1. The mixed joining set MS of a set of marginal states {ρSi | Si ∈ S}
denotes the set of compatible n-partite states, i.e.,

MS ({ρSi}) := {ρ | ∀i TrS̄i
(ρ) = ρSi}. (2.21)

The pure joining set denotes the set of compatible pure n-partite states;

Mp
S := {ρ ∈ MS | ρ2 = ρ}. (2.22)

12



2.4. Marginal states

If S consists of all subsystems of size k, i.e., S = {S ⊂ {1, . . . , n} | |S| = k}, then we

denote the joining set simply byMk.

With this definition, we are in position to pose the two marginal problems, namely the

uniqueness and the compatibility problem, mathematically [12]:

Definition 2.2. A pure n-partite state |ψ〉 is called

• k-uniquely determined among all states (k-UDA), if there exists no other (mixed)

state ρ with the same k-body marginals: |Mk| = 1;

• k-uniquely determined among pure states (k-UDP), if there exists no other pure

state ρ with the same k-body marginals: |Mp
k | = 1.

Here, the joining sets are formed w.r.t. the k-body marginals of |ψ〉.

Clearly, k-UDA implies k-UDP, but the converse is not true [13].

While the sets in the uniqueness problem are known to contain at least one element,

namely the original state |ψ〉, this is unknown in the case of the compatibility question

[14, 15]:

Definition 2.3. A set of marginal states {ρSi | Si ∈ S} is called compatible, (sometimes

called n-representable in the context of fermionic systems), w.r.t. S , if there exists a

pure joining global n-partite state: |Mp
S ({ρSi})| > 0.

The compatibility problem has been shown to be QMA-complete [16, 17]. QMA-

completeness is the quantum analog to NP-completeness, meaning that a) the problem

is in QMA (there exists a quantum verifier that can be convinced of the right answer

in polynomial time with high probability), and b) every problem in QMA can be

reduced to the problem at hand [17]. Just like NP-complete problems, QMA-complete

problems are considered very hard to solve, even with the help of quantum computers.

2.4.3 Previous results

The marginal problem, and in particular the question of uniqueness, was subject to

intense study before. The compatibility question was posed first in the context of

fermionic systems and their two-body reduced states [18]. This restricted scenario

was finally solved [19]. Similar compatibility problems in non-fermionic systems have

consequently been investigated as well [14, 20, 21].
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The question of uniqueness was analyzed in detail first by Linden, Popescu and Woot-

ters, who showed that almost all pure three-qubit states are determined among all

mixed states by their two-body marginals [22]. In this context, almost all means that

the statement is true for all states but a subset of measure zero. Later, Diósi showed

that two of the three two-body marginals suffice to characterize uniquely a pure three-

particle state among all other pure states [23]. In two major steps, it was then first

shown that in qubit systems, the marginals of a certain fraction of roughly two-thirds

of the parties suffice for uniquely fixing almost all quantum states [24]. Finally, this

result has been improved and extended to higher dimensional systems: it was shown

that almost all states of n qudits are uniquely determined by certain sets of reduced

states of just more than half of the parties, whereas the reduced states of fewer than

half of the parties are not sufficient [25]. Note that the marginals of a state are de-

termined by the lower-order correlations. Thus, uniqueness can be interpreted as the

higher-order correlations being determined by the lower-order ones.

2.5 Entanglement

We already noted that multipartite states live on the tensor product space of the in-

dividual parties. As the dimension of the product space is given by the product of

the individual dimensions, this means that there is space for many more states than

just the possible combinations of the individual (local) states. This is in contrast to the

classical world: If we consider a classical system, like a pixel on a computer screen,

then its state can be described by three real numbers, namely the red, the green and

the blue intensity. The state of two such pixels could then be described by six num-

bers. In the quantum world, however, the joint system would be nine-dimensional,

leaving space for three extra dimensions.

2.5.1 Bipartite entanglement

Let us consider the simplest case of a pure two-partite system. We call its state |ψ〉
separable or product, if it can be written as [26]

|ψ〉 = |φA〉 ⊗ |φB〉, (2.23)

where |φA/B〉 are pure single-particle states. Separable states are the analog to the

classical states in the example above. An example of such a state of two qubits would

be the state |00〉 = |0〉 ⊗ |0〉. However, not all states can be written in that form.

For example, the state |Φ+〉 = 1√
2
(|00〉 + |11〉) cannot be decomposed, as a simple
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2.5. Entanglement

calculation with an ansatz |φA〉 = a|0〉+ b|1〉, |φB〉 = c|0〉+ d|1〉 shows, as then ac =

bd = 1√
2
, whereas ad = bc = 0, leading to a contradiction. Non-separable pure states

like |Φ+〉 are called entangled [26].

In order to check whether a given bipartite pure state is entangled, one can use the

Schmidt decomposition [27]: We can write each state in the canonical basis as

|ψ〉 =
d−1

∑
i,j=0

aij|ij〉. (2.24)

The complex valued coefficients aij define a d× d-dimensional matrix A, that we can

write as A = UΣV using the singular value decomposition, where U and V are unitary

matrices and Σ is a diagonal matrix with non-negative numbers
√

λ0, . . . ,
√

λd−1 on

its diagonal. Thus, we can write

|ψ〉 =
d−1

∑
i,j,k=0

uik
√

λkvkj|ij〉 (2.25)

=
d−1

∑
k=0

√
λk

(
d−1

∑
i=0

uik|i〉
)(

d−1

∑
j=0

vkj|j〉
)

(2.26)

≡
d−1

∑
k=0

√
λk|k〉A ⊗ |k〉B, (2.27)

where |k〉A = ∑d−1
i=0 uik|i〉 and |k〉B = ∑d−1

j=0 vkj|j〉 are called the local Schmidt basis of

party A and B, respectively, and form orthonormal bases due to the properties of the

unitary matrices U and V. The numbers
√

λk are called Schmidt coefficients of |ψ〉.
The number of non-vanishing Schmidt coefficients is called the Schmidt rank of |ψ〉.
The state is a product state, iff it has Schmidt rank one [27]. If, however, the Schmidt

rank is equal to d and all Schmidt coefficients are equal, the state is called maximally

entangled.

For mixed states, the notion of entanglement is a bit more involved. Apart from

product states ρ = ρA ⊗ ρB, also classical convex mixtures of product states, i.e.,

ρsep =
r

∑
i=1

piρ
(i)
A ⊗ ρ

(i)
B , (2.28)

need to be considered as separable states [26]. However, it is much more complicated

to decide whether a mixed state is entangled or not, and there are necessary and

sufficient criteria only in some special cases. In fact, deciding whether a given state is

separable or not, is NP-hard [28].
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Figure 2.1: The convex set of all tripartite states and the subsets of biseparable and
fully separable states. The dotted line corresponds to states of vanishing expectation

value w.r.t. the witness observable W1 and the optimal W2, respectively.

A simple necessary criterion is the PPT (positive partial transpose) criterion: We define

the partial transpose map via its action on the canonical operator basis element |ij〉〈kl|
via

|ij〉〈kl|TB = |il〉〈kj|. (2.29)

As this map is linear, its effect on separable states of the form in Eq. (2.28) is given by

ρTB
sep =

r

∑
i=1

piρ
(i)
A ⊗ (ρ

(i)
B )T, (2.30)

which is still positive, as (ρ
(i)
B )T is again a state. If, however, the state is not separa-

ble, the partial transpose might map it to something which is not positive anymore,

proving that it is entangled.

The PPT criterion is very powerful, as it is necessary and sufficient for qubit-qubit

and qubit-qutrit states. In larger-dimensional systems, however, there exist entangled

states with positive partial transpose [26].

2.5.2 Multipartite entanglement

If we want to generalize the notion of entanglement to the multipartite scenario, we

need to consider different kinds of entanglement, which are displayed in Fig. 2.1. In

particular, a bipartite state of parties A, B and C is called fully separable, iff it can be
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decomposed in terms of three products [26], i.e.,

ρABC = ∑
i

piρ
(i)
A ⊗ ρ

(i)
B ⊗ ρ

(i)
C . (2.31)

However, it could be the case that the state is not fully separable, but instead entangled

between party B and C, while being separable between A and systems B and C. In

this case, the state can be decomposed as

ρABC = ∑
i

piρ
(i)
A ⊗ ρ

(i)
BC, (2.32)

in which case we call it biseparable w.r.t. the biseparation A|BC.

Convex combinations of biseparable states from any of the three different biseparabi-

lity-classes are called biseparable [26]. Note that these can be mixtures of biseparable

states w.r.t. different partitions as well, forming a convex subset in the whole convex

state space, indicated by the dashed boundary in Fig. 2.1. Finally, states which are not

biseparable are called genuinely multipartite entangled, or GME in short [26].

This concept can be generalized easily to more than three parties, yielding even more

different entanglement types.

2.5.3 Entanglement measures

In the multipartite scenario, there is no unique notion of maximal entanglement any-

more. Instead, there exist different methods to quantify the entanglement in such

states, each of which giving rise to different sets of maximally entangled states. In this

thesis, we are going to use two different entanglement measures as well as the method

of entanglement witnesses in order to quantify multipartite entanglement.

An entanglement measure E is a map that assigns a numerical value to a state, exhibit-

ing a set of properties. These properties are not uniquely defined in the literature, here

we follow the definition of [29]. For a discussion about the different definitions, see

for example [7].

Definition 2.4. We call a map E a (mixed-state) entanglement measure, if it fulfills the

following:

E1 If ρ is separable, E(ρ) = 0.

E2 E(ρ) should be invariant under a local change of basis, i.e., E(UA⊗UB . . . ρU†
A⊗

U†
B . . .) = E(ρ) for all unitary maps UA, UB, . . ..
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E3 E should not increase under any local operation assisted by classical communi-

cation (a set of operations called LOCC), that is, E[Λ(ρ)] ≤ E(ρ) for all LOCC

operations Λ.

E4 E should be convex, i.e., E(∑i piρi) ≤ ∑i piE(ρi).

E5 E should be extensive, which means that E(ρ⊗n) = nE(ρ).

E6 E should be subadditive, meaning that E(ρ⊗ σ) ≤ E(ρ) + E(σ).

If a map E fulfills only E2 and E3, it is called an entanglement monotone [7].

Sometimes, entanglement measures are defined for pure states only, in which case the

convexity property is dropped. Nevertheless, one can sometimes lift it to a mixed-state

entanglement measure by using the convex roof construction [30]. To a mixed state ρ,

it assigns the value

E(ρ) = min
ρ=∑i pi |ψi〉〈ψi |

∑
i

piE(|ψi〉), (2.33)

where the minimization is taken over all pure state decompositions of ρ. This construc-

tion has the advantage that the quantity is convex by construction, and oftentimes it

is straight-forward to see whether the other properties are inherited from the measure

for pure states. However, it is a difficult task to perform the minimization analytically,

except for some special choices of E for pure states, as in the case of the concurrence

discussed below.

For our purposes, a particularly useful entanglement measure for qubits is the bi-

partite concurrence [31, 32] and one of its multipartite generalizations, the so-called

n-concurrence, sometimes called θ-concurrence [29].

In order to define it, we define a useful map for quantum states, called universal state

inversion.

Definition 2.5. The universal state inversion of an n-qubit state ρ is given by

ρ̃ = Y⊗nρTY⊗n, (2.34)

where Y is the Pauli matrix σ2. In terms of the Bloch decomposition in Eq. (2.17), the

state ρ = 1
2n ∑k Pk is mapped to

ρ̃ =
1
2n

n

∑
k=0

(−1)kPk. (2.35)

Indeed, the action of the map is to flip the sign of all nontrivial Pauli matrices. Inter-

estingly, this map is positive, meaning that ρ̃ ≥ 0 if ρ ≥ 0 [33]. Furthermore, it maps
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pure states to pure states, where it maps |ψ〉 to |ψ̃〉 = (iY)⊗nK|ψ〉 = (iY)⊗n|ψ?〉, where

K denotes the anti-unitary complex conjugation operation, performed in the canonical

basis, and |ψ?〉 denotes the complex conjugate of |ψ〉.

Applying this map twice on the level of mixed states yields the original state again.

However, on the level of pure states,

| ˜̃ψ〉 = Y⊗nKY⊗nK|ψ〉 (2.36)

= (−1)nY⊗nY⊗nK2|ψ〉 (2.37)

= (−1)n|ψ〉. (2.38)

As a consequence, it induces a relative phase if n is odd. Therefore, by the property of

anti-unitary operations, 〈ψ|ψ̃〉 = 〈ψ̃| ˜̃ψ〉? = 〈 ˜̃ψ|ψ̃〉 = (−1)n〈ψ|ψ̃〉. Thus, 〈ψ|ψ̃〉 = 0 if n

is odd, meaning that universal state inversion maps states to orthogonal states.

This feature can be used in the context of entanglement detection. If we have a two-

qubit product state |ψ〉 = |φ1〉 ⊗ |φ2〉, then |〈ψ|ψ̃〉| = |〈φ1|φ̃1〉〈φ2|φ̃2〉| = 0. For non-

product states, however, the magnitude of the overlap can be anything between 0 and

1. This motivates the definition of the concurrence [32]:

Definition 2.6. The concurrence C of a pure two-qubit state |ψ〉 is given by

C(|ψ〉) := |〈ψ|ψ̃〉|. (2.39)

The concurrence is one of the few measures where the convex roof construction in

Eq. (2.33) can be performed analytically. One obtains for the concurrence of a mixed

two-qubit state ρ,

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (2.40)

where λ1 to λ4 denote, in decreasing order, the real eigenvalues of the operator√√
ρρ̃
√

ρ.

The value of the concurrence is between 0 and 1. It assigns 0 to separable states and

1 to the maximally entangled state |Φ+〉 := 1√
2
(|00〉 + |11〉) and all states that are

equivalent to |Φ+〉 under local unitary transformations, i.e., the Bell states

|Φ±〉 = 1√
2
(|00〉 ± |11〉), (2.41)

|Ψ±〉 = 1√
2
(|01〉 ± |10〉). (2.42)
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There are several ways to generalize the concurrence to more than two parties. In this

thesis, we will make use of one such generalization, called n-concurrence [29]. It is

defined completely analogous to the two-qubit case:

Definition 2.7. The n-concurrence Cn of an n-qubit state |ψ〉 where n is even, is given

by

Cn(|ψ〉) := |〈ψ|ψ̃〉|. (2.43)

For mixed states, Cn is given by the convex roof construction in Eq. (2.33).

Note that this definition makes sense only for an even number of qubits, as otherwise

Cn(ρ) = 0 for all states as discussed above. The n-concurrence assigns 0 to fully sepa-

rable states, but not necessarily to biseparable ones. Furthermore, it assigns maximal

entanglement to many different states, including the n-partite GHZ state, defined as

|GHZn〉 =
1√
2
(|0〉⊗n + |1〉⊗n), (2.44)

with |GHZ2〉 = |Φ+〉.

2.5.4 Monogamy of entanglement

As mentioned before, the positivity constraint on quantum states gives rise to some

intrinsic limitations to quantum correlations in multipartite systems. One such con-

straint is known as monogamy of entanglement, as it limits the amount of shared

entanglement between one of the parties and the rest.

The first occurrence of these kinds of constraints was found by Coffman, Kundu and

Wootters in Ref. [34]. They showed that for a pure three-qubit state |ψ〉ABC, the squared

concurrence of the two-body marginals fulfill

C2(ρAB) + C2(ρAC) ≤ C2(ρA(BC)). (2.45)

Here, C2(ρ) denotes the square of the concurrence given by Eq. (2.40), and C2(ρA(BC))

denotes the squared concurrence of the state if parties B and C are treated as a single

ququart system. As we have no definition for the concurrence for such systems, we

use the fact that the reduced state ρBC has at most rank 2, if the tripartite state is pure.

This follows immediately from the Schmidt decomposition of the state in Eq. (2.25) for

a cut between party A and parties BC. Thus, we can treat the combined system BC as

an effective qubit state.

Eq. (2.45) can be interpreted as follows: As C2(ρA(BC)) ≤ 1, the entanglement that

is shared between parties A and B, and the entanglement shared between A and C,
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cannot be arbitrarily large, but is mutually exclusive. For instance, if A and B share

a Bell state with C2(ρAB) = 1, then A and C must be completely unentangled with

C2(ρAC) = 0.

This result was later generalized by Osborne and Verstraete to more than three parties

[35], and since then many similar inequalities involving different entanglement quan-

tifiers have been found [36–41]. More generally, it was shown that among correlation

measures, apart from some special cases, only entanglement measures can be strictly

monogamous [42].

Apart from their philosophical relevance, monogamy relations are also useful in the

context of privacy proofs for quantum key distribution protocols. For example, the

security of the Ekert protocol is based on the fact that each eavesdropper that is cor-

related to the communicating parties would reduce the entanglement between their

shared states [43].

2.5.5 Witnesses

The evaluation of entanglement measures for mixed states can be very costly, for

example, if the measure is constructed using the convex roof method and/or cannot

be performed analytically. Additionally, many measures require full knowledge of

the quantum state, which is an unrealistic scenario. This motivates the definition of

entanglement witnesses, which correspond observables with the following properties

[26]:

Definition 2.8. An entanglement witness is an observable W with

• Tr(Wρ) ≥ 0 for all separable states ρ,

• Tr(Wρ) < 0 for at least one entangled state ρ.

Here, the notion separable stands for any kind of separability if ρ is multipartite, i.e.,

it can be fully separable, biseparable, etc.

The idea of entanglement witnesses is the following: The set of separable states forms

a proper convex subset of the set of all states. The trace function defines an in-

ner product on this space, known as the Hilbert-Schmidt inner product, defined via

(A, B)HS := Tr(AB†) for two operators A and B. Thus, the condition Tr(Wρ) = c

defines a hyperplane of constant overlap c between W and C. This is visualized in

Fig. 2.1 by the dotted line. A witness corresponds to an operator such that the hy-

perplane Tr(Wρ) = 0 separates the set of separable states from at least one entangled
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state. This means, that the separable subset is located on one side of the hyperplane

(corresponding to Tr(Wρ) ≥ 0), and that there is at least one state on the other side

(with Tr(Wρ) < 0). States with negative expectation value must then be entangled

and are called detectable by W.

Of course, we cannot expect a single witness to detect all entangled states. Neverthe-

less, as the set of separable states is convex and closed, for each entangled state ρ there

exists an entanglement witness detecting it [44].

Sometimes, an existing witness can be improved by shifting and rotating it, such

that it detects more entangled states than before. For example, one could improve the

witness W1 displayed in Fig. 2.1 by shifting it to W2, which touches the set of separable

states. Mathematically, this corresponds to subtracting a positive observable A from

W1, such that for all states Tr(W2ρ) = Tr((W1− A)ρ) ≤ Tr(W1ρ). If no such observable

A exists, we call W optimal [26].

While evaluating the overlap with a witness is usually easy, constructing the wit-

ness in the first place is not. A common ansatz in order to create witnesses for non-

biseparability is to choose

W = g1− |ψ〉〈ψ|, (2.46)

with some pure state |ψ〉 that is known to be entangled [26]. This ansatz ensures

that there always exists an entangled state, namely |ψ〉, that is detected, as long as

g < 1. The free parameter g must then be optimized in order to ensure positivity on

all separable states. Here, it suffices to optimize over pure product states, as those are

the extremal points of the separable set, i.e.,

g = sup
|φ1〉,|φ2〉

|(〈φ1| ⊗ 〈φ2|)|ψ〉|2. (2.47)

The resulting operator in Eq. (2.46) is a witness, provided that g < 1.

Note, that there exist many other methods to construct witnesses as well [26].

2.6 Quantum channels

Physical transformations among quantum states play an important role in quantum

information processing. These transformation are represented by maps called quan-

tum channels. In principle, they correspond to mappings from the space of operators

on the Hilbert space of one system (the incoming state), to the operator space of an-

other system (the outgoing state), subject to certain constraints, ensuring that states
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are mapped to states, as well as that they correspond the physical manipulations of

the state. We define [7]:

Definition 2.9. A quantum channel M is map between operators on the Hilbert space

Hin to operators on the Hilbert space Hout, s.t.

• states are mapped to states: M(ρ) ≥ 0 if ρ ≥ 0, Tr[M(ρ)] = Tr(ρ) = 1 and

M(ρ)† = M(ρ),

• M is completely positive: For each d-dimensional extension of the space, the

map M⊗ 1d×d is positive as well.

The second condition in this definition is necessary for the map to be physical: If we

apply it to only one part of a multipartite system, we expect the outgoing operator

still to be a state.

Another notion we are going to use is that of a unital channel. Unital channels map

the identity to itself, i.e., M(1) = 1.

An important subclass of quantum channels are entanglement-breaking channels. These

channels completely unentangle the input state from any possible other state. Inci-

dentally, they correspond exactly to channels which can be realized via measure-and-

prepare schemes [45]:

Definition 2.10. A measure-and-prepare (M&P) channel M is a quantum channel that

can be written as

M(ρ) = ∑
k

Tr(Ekρ)ρk, (2.48)

where the Ek form a POVM and the ρk are quantum states.

As the name and the definition indicate, these channels can be realised by measuring

the input state and preparing the output state according to the measurement result.

The notion of M&P channels, or entanglement breaking channels, is important in order

to distinguish good quantum memories from bad ones (see Chapter 8). Ideally, these

memories preserve all quantum properties of the input state by storing a quantum

state faithfully. M&P channels, however, can be realized storing classical data and

they destroy all entanglement of a state.

There are multiple representations of quantum channels. In this thesis, we are going

to make use of two of them, the Kraus representation and the Choi-Jamiołkowski

isomorphism.
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2.6.1 The Kraus representation

A powerful way to describe quantum channels is the Kraus representation. It states

that each completely positive map M from Hilbert space Hin of dimension din to the

Hilbert space Hout of dimension dout can be written as [46, 47]

M(ρ) =
D

∑
k=1

KkρK†
k , (2.49)

where D ≤ dindout and the Kk are dout × din-dimensional matrices satisfying

D

∑
k=1

K†
k Kk ≤ 1. (2.50)

The matrices Kk are called Kraus operators and can always be chosen orthogonal, i.e.,

Tr(K†
i Kj) ∝ δij. The minimal D needed in order to represent the channel is called the

Kraus rank. If the map is also trace preserving (i.e., it is a quantum channel), then

Eq. (2.50) becomes an equality. Unital channels additionally satisfy

D

∑
k=1

KkK†
k = 1. (2.51)

Finally, there is a connection between a measure-and-prepare channel and its Kraus

representation: A channel is M&P iff it can be written using Kraus operators of rank

one only [45].

2.6.2 The Choi-Jamiołkowski isomorphism

The Choi-Jamiołkowski isomorphism connects quantum channels and quantum states.

For a quantum channel M from Hin to Hout, we define the Choi state living on Hin ⊗
Hout as [48–50]

ηM := (1din ⊗M)(|φ+〉〈φ+|), (2.52)

where |φ+〉 = 1√
din

∑din−1
j=0 |jj〉 is a maximally entangled state onHin⊗Hin. The channel

can be reconstructed from ηM via [46]

M(ρ) = din TrA[(ρ
T ⊗ 1dout)ηM]. (2.53)

The properties of the channel map to properties of the Choi state in the following way:

• Tr[M(ρ)] = 1⇔ TrB(ηM) = 1/din,
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• M completely positive⇔ ηM ≥ 0,

• M is unital⇔ TrA(ηM) = 1/din,

• M is M&P⇔ ηM is separable.

This correspondence is a one-to-one mapping between quantum channels and certain

quantum states. The isomorphism is quite powerful, as it allows to study proper-

ties of the channel by looking at the properties of quantum states. For example, the

complete positivity is a rather abstract property of a channel, whereas in the space of

quantum states it corresponds to the usual positivity of a matrix. Furthermore, de-

ciding whether a channel is measure-and-prepare can now be tackled using the tools

developed for deciding whether a state is entangled or not.

2.7 Entropy

One of the most important consequences of the adoption of the theory of quantum

mechanics is the paradigm shift from theories predicting outcomes of measurements

to a theory that predicts only probability distributions of outcomes. As such, quanti-

ties describing properties of these distributions become important for understanding

the properties of the system. One such quantity is the classical Shannon entropy. For

a probability distribution {pi} with ∑i pi = 1, it is defined as [27]

H({pi}) := −∑
i

pi log(pi), (2.54)

where the logarithm is defined w.r.t. base two. The Shannon entropy is closely related

to the amount of uncertainty comprised in the distribution. For a probability distribu-

tion of n different outcomes, the entropy is maximal for uniform distributions where

pi =
1
n , with H = log(n). On the other hand, for a distribution where p1 = 1, pj = 0

for j > 1, the entropy vanishes (here and in the following, we set 0 log(0) = 0 accord-

ing to the limit pj ↘ 0). Incidentally, the Shannon entropy corresponds roughly to the

average number of bits needed to describe the outcome of a random event efficiently:

For a uniform distribution, the best strategy is to just encode the outcome, which is a

number between 1 and n, as a binary number, for which log(n) bits are needed. For

the distribution with p1 = 1, however, no information is needed to be encoded, as the

outcome will always be 1.
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2.7.1 The von Neumann entropy

In quantum mechanics, the analogon to the classical probability distribution is the

density matrix. One can generalize the definition of the Shannon entropy to the notion

of density matrix, yielding the von Neumann entropy S:

SN(ρ) := −Tr[ρ log(ρ)]. (2.55)

The von Neumann entropy corresponds to the Shannon entropy of the eigenvalues

of ρ.

There is a close connection between entanglement and entropies as quantifiers of un-

certainty. This connection becomes apparent, if we consider the example of the maxi-

mally entangled two-qubit Bell state |Φ+〉 again. The marginal state of party A of the

Bell state is the maximally mixed state ρA = 1/2. This can be interpreted as all infor-

mation on the state being embodied in the correlations between the two parties, i.e.,

being non-local, as the single party information reveals nothing about the global state.

This is reflected in the entropy of the reduced state, SN(ρA) = log(2), being maximal.

For product states, on the other hand, the reduced state is pure and SN(ρA) = 0.

It should come to no surprise that this allows for the definition of an entanglement

measure, called entanglement of formation, defined for pure bipartite states as

E f (|ψ〉) := SN[TrB(|ψ〉〈ψ|)], (2.56)

and for mixed states via the convex roof construction in Eq. (2.33).

As mentioned before, there is no unique notion of maximal entanglement for more

than two partite systems. One such notion, however, is based on the entropy argument

given above:

Definition 2.11. A pure n-partite |ψ〉 is called absolutely maximally entangled, if for

each bipartition A|B with A ⊂ {1, . . . , n}, B = {1, . . . , n} \ A and |A| ≤ |B|, the

entropy SN[TrB(|ψ〉〈ψ|)] is maximal, i.e., TrB(|ψ〉〈ψ|) ∝ 1.

To decide whether or not these states exist for given n and internal dimension d, is an

open problem and subject to ongoing research. For a summary of known results, we

refer to [51] and the references therein. A table of known results for different d and n

is provided in Ref. [52].

The von Neumann entropy exhibits some additional properties which makes it useful

for several tasks [27]:
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(Sub-)Additivity SN(ρA ⊗ ρB) = SN(ρA) + SN(ρB) and SN(ρAB) ≤ SN(ρA) + SN(ρB).

Triangle inequality SN(ρAB) ≥ |SN(ρA)− SN(ρB)|.

Concavity SN(∑i piρi) ≥ ∑i piSN(ρi).

Strong subadditivity SN(ρABC) + SN(ρB) ≤ SN(ρAB) + SN(ρBC).

These properties have many important consequences, for which we refer to the litera-

ture [7, 27]. Here, we will only comment on some inferences of the strong subadditiv-

ity property [27]. To that end, we introduce some related quantities.

Definition 2.12. The conditional entropy of a composite quantum state ρAB is given by

SN(A|B) := SN(ρAB)− SN(ρB). (2.57)

The mutual information between systems A and B is given by

IN(A : B) := SN(ρA) + SN(ρB)− SN(ρAB). (2.58)

The interpretation of these two quantities is as follows: The conditional entropy quan-

tifies the uncertainty in the joint state ρAB that is left when the marginal state ρB is

known. The sum SN(ρA) + SN(ρB) contains the information that is bound to A and B

twice. Thus, by subtracting this common entropy, the mutual information between A

and B amounts to only that contribution.

Using these two quantities, we can formulate the main consequences of the strong

subadditivity as follows [27]:

• Knowing more reduces the uncertainty: SN(A|BC) ≤ SN(A|B).

• Loosing a particle reduces mutual information: IN(A : BC) ≥ IN(A : B).

• Local operations reduce mutual information: If ρA′B′ = (1⊗ Λ)(ρAB) for some

quantum channel Λ, then IN(A : B) ≥ IN(A′ : B′).

2.7.2 The linear entropy

While the von Neumann entropy satisfies all desired properties for an uncertainty

quantifier, it is not the only function doing so. Furthermore, it might be hard to

evaluate, as it requires diagonalization of the corresponding density matrix. Therefore,

computationally easier but similar quantities are considered as well. One such choice
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is the linear entropy: It is obtained by expanding the logarithm in the definition of

the von Neumann entropy around pure states and taking just the leading contribution

into account:

Definition 2.13. The linear entropy of a quantum state ρ is defined as

SL(ρ) = 2[1− Tr(ρ2)]. (2.59)

Like the von Neumann entropy, the linear entropy vanishes for pure states and takes

its maximal value for completely mixed states, where it reaches SL(1/d) = 2 d−1
d . The

linear entropy shares many properties with the von Neumann entropy while being

easier to compute. However, it does not obey the strong subadditivity, a counterexam-

ple is given by the three-qubit state ρABC = 1/2⊗ |Φ+〉〈Φ+|.

An interesting connection exists between the linear entropy and the sector lengths

introduced in Eq. (2.18). As the linear entropy is defined via the purity of the state, it

can be expressed as a linear combination of sector lengths. Furthermore, one can find

a one-to-one correspondence between the sector lengths Ak, and the linear entropies

of the marginals of the state. This connection is explored in detail in Chapter 5.

2.8 Coherence

We already introduced entanglement as one of the main non-classical features of quan-

tum mechanics. Another major distinction between classical and quantum physics is

called coherence. In contrast to entanglement, coherence is also a local feature as it de-

scribes the amount of superposition w.r.t. a given (classical) basis present in a quantum

state. For example, a single-qubit realized by the spin of an electron can be in state |0〉
(spin up) or |1〉 (spin down), but also in any linear combination, called superposition,

of these two. Coherence plays an important role in many areas of quantum informa-

tion, including quantum metrology and quantum communication [53]. In contrast to

entanglement, coherence depends on the choice of local basis.

2.8.1 Coherence measures

There are several ways to quantify coherence, each of which should satisfy some nat-

ural assumptions for such a quantifier [54]: First of all, it should assign a value of

zero to incoherent basis states, as well as to their classical mixtures, i.e., the set of all

diagonal density matrices. This convex (and basis dependent) set is denoted by I .
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Second, it should not increase under certain incoherent channels, which map incoher-

ent states to incoherent states. These are channels, where the Kraus operators satisfy

KkIK†
k ⊂ I . There are two types of such operations: Apart from the usual channel

given by M(ρ) = ∑k KkρK†
k , one can also allow for selective operations, which retain

measurement results for the POVM {K†
k Kk} formed from the Kraus operators. In this

case, one obtains the post-measurement state ρk = KkρK†
k /pk(M) with probability

pk(M) = Tr(K†
k Kkρ). In sum, this leads to two conditions for a coherence quantifier C:

C(ρ) ≥ C(M(ρ)) and C(ρ) ≥ ∑k pk(M)C[ρk(M)], meaning that C should not increase

on average for all incoherent channels M.

Finally, C should be convex, i.e., C(∑k pkρk) ≤ ∑k pkC(ρk).

Any quantity satisfying these criteria is called a coherence measure. The abstract criteria

are not concerned with a notion of maximally coherent state. Intuitively, these should

be given by equal superpositions of the basis states with relative phases, i.e.,

|ψ~α〉 = 1√
d

d−1

∑
j=0

eiαj |j〉 (2.60)

where~α = (α0, α1, . . . , αd−1) is a vector of local phases. Indeed, one can show that each

coherence measure is maximized by this set of states [55]. However, some coherence

measures assign this maximal value also to other states, which, depending on the

application, might be disfavored. That is why it is sometimes required that any valid

coherence measure is maximized only by the states in Eq. (2.60) [55]. Indeed, most

of the commonly used coherence measures, including the ones we illuminate in the

following, fulfill this additional property.

2.8.2 The l1-norm of coherence and robustness of coherence

Probably the easiest quantifier obeying the properties for coherence measures is the

l1-norm of coherence:

Definition 2.14. The l1-norm of coherence of a quantum state ρ is given by

Cl1(ρ) := ∑
i 6=j
|ρij|. (2.61)

Intuitively, it quantifies the size of all off-diagonal entries of the density matrix.

While this measure is easy to compute, it lacks a direct physical interpretation. This

is why we introduce another measure, called robustness of coherence [56]:
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Figure 2.2: A visualization of the convex set of incoherent states I as a subset of
all quantum states, and the optimal linear combination of a state ρ and τ from the
definition of the robustness of coherence in Eq. (2.62). The optimization minimizes
the distance from ρ to the incoherent set I along a straight line to a quantum state τ

relative to the distance between ρ and τ.

Definition 2.15. The robustness of coherence of a quantum state ρ is defined as

CR(ρ) := min
τ∈D,s≥0

{
s | ρ + sτ

1 + s
∈ I

}
, (2.62)

where D denotes the set of density matrices.

The robustness of coherence quantifies the distance of the state ρ from the convex set

I . This is visualized in Fig. 2.2.

Both quantifiers, the l1-norm of coherence and the robustness, take values between 0

and d− 1 where d is the dimension of the system.

In contrast to the l1-norm of coherence, the robustness has a direct operational inter-

pretation in a phase discrimination task as follows [56]: Suppose that an initial state

ρ undergoes a unitary evolution w.r.t. Uφ = ∑d−1
j=0 eijφ|j〉〈j|, such that the output state

is given by ρ′ = UφρU†
φ. The phase φ is chosen at random from a set {φk} with

probabilities {pk}. The task is now to prepare an input state ρ and perform a POVM

measurement {Ek} on the output in order to determine the randomly chosen phase

from the output. The success probability for this task depends on the specific instance

(i.e., the chosen set of phases and probabilities), but also on the input state ρ and the

chosen measurement. The latter should be chosen such that the success probability

p?({φk, pk}) is maximal, i.e.,

p?{φk ,pk}(ρ) = max
{Ek}

∑
k

pk Tr(ρ′Ek) (2.63)

The question remains which input states are useful for this task. Incoherent input

states, i.e., diagonal states, are commuting with the diagonal unitary rotation. There-

fore, no reminiscence of the phase is encoded into them, and no measurement can
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reveal any information about the phase. In this case, the best guess is the phase that

is chosen with the highest probability, p?{φk ,pk}(I) = maxk pk.

Indeed, choosing a coherent input state instead yields better success probabilities.

One can show that the maximal success probability for a fixed input state ρ when

optimizing the game instances {φk, pk} and the measurements {Ek}, is given by [56]

pmax(ρ) ≡ max
{φk ,pk}

p?{φk ,pk}(ρ)

p?{φk ,pk}
(I) = 1 + CR(ρ). (2.64)

In other words, the achievable relative advantage over choosing just the phase with

the highest probability, is given by the robustness of coherence of the input state.

2.9 Semidefinite programs

Many problems in the context of quantum information and entanglement detection

can be formulated as optimization problems involving linear and semidefinite con-

straints. Such optimization tasks are called semidefinite programs (SDPs) and received

a lot of attention in mathematical optimization theory [57, 58] (for a comprehensive

overview, see also Ref. [59] and the references given therein). In its most basic form,

an SDP can be written as [60]

min
X

Tr(CX) (2.65)

subject to Tr(AiX) = bi for i = 1, . . . , m,

X ≥ 0,

where the optimization is performed over positive semidefinite symmetric (or her-

mitian) n × n-matrices X. Due to the restriction to the semidefinite domain, these

optimizations form a larger class than linear programs. However, SDPs can still be

efficiently numerically optimized using interior point methods [59].

What makes SDPs so prominent in quantum information is the fact that sometimes

the optimality of a found solution can be proven (within machine precision), and, if

there is no feasible solution at all, its absence can be shown. To that end, we introduce
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the dual form of the SDP (2.65) as

max
y,S

m

∑
i=1

yibi (2.66)

subject to
m

∑
i=1

yi Ai + S = C,

S ≥ 0.

Consequently, we call (2.65) the primal of the SDP. The power of switching to the dual

representation is revealed by the so-called weak duality [60]:

Theorem 2.16. If the primal and the dual of an SDP are feasible (i.e., there exists a solution

satisfying the constraints) with solutions X and (y, S), respectively, then

Tr(CX)−
m

∑
i=1

yibi = Tr(SX) ≥ 0. (2.67)

If equality holds, then X and (y, S) are optimal solutions.

The proof of the theorem is straight-forward and can be found, for example, in

Ref. [61].

The left-hand side of Eq.(2.67) is called duality gap. The theorem shows that if one

finds solutions to the primal and the dual problem such that the duality gap vanishes,

then the found solutions are optimal.

A priori, there is no guarantee that a given SDP converges to the optimal value. How-

ever, there is a range of sufficient conditions for the convergence. The most prominent

one is Slater’s condition, stating that the optimal value is reached if there are feasible

points in the interior of the optimization region [60, 62]:

Theorem 2.17. If there exist feasible solutions X and (y, S) of the primal and the dual of an

SDP such that X > 0 and S > 0, then the primal and the dual attain their optimal values.

As an example, we consider the problem of creating an entanglement witness for a

given bipartite state |ψ〉. As noted in Section 2.5, a good ansatz for such a witness is

given by

W = g1− |ψ〉〈ψ|, (2.68)

with

g = sup
|φ1〉,|φ2〉

|(〈φ1| ⊗ 〈φ2|)|ψ〉|2 (2.69)

= sup
ρ1,ρ2

Tr(ρ1 ⊗ ρ2|ψ〉〈ψ|). (2.70)
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The optimization can be approximated by an SDP. While it is not possible to enforce

the tensor product structure, as this is a quadratic constraint, it is possible to optimize

over the slightly larger set of PPT states:

max
σ

Tr(σ|ψ〉〈ψ|) (2.71)

subject to σ ≥ 0,

Tr(σ) = 1,

σTB ≥ 0.

An optimal value of less than unity yields a suitable value for g in Eq. (2.69).

Another example is that of symmetric extensions [63–65]. For any bipartite separable

state,

ρAB =
k

∑
i=1

pi|ai〉〈ai| ⊗ |bi〉〈bi|, (2.72)

one can define the symmetric extension of order m as

ρABA1 ...Am =
k

∑
i=1

pi|ai〉〈ai| ⊗ |bi〉〈bi| ⊗ |ai〉〈ai| ⊗ . . .⊗ |ai〉〈ai|. (2.73)

This extension fulfills the following properties:

• TrA1 ...Am(ρABA1 ...Am) = ρAB,

• ρABA1...Am is symmetric under exchange of any of the systems A, A1, . . ., Am,

• ρTS
ABA1...Am

≥ 0 for every S ⊂ {A, B, A1, . . . , Am}.

The existence of a symmetric extension of order m is only guaranteed for separable

states, and it can be shown that for each entangled state there exists an order m0

such that a symmetric extension of order larger or equal to m0 does not exist [63, 65].

Whether or not a symmetric extension of fixed order exists can be formulated in terms

of an SDP. As noted above, the non-existence of a feasible solution can be certified in

many cases, yielding a numerical tool that is capable of proving that a given state is

entangled.
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3 The marginal problem

Prerequisites

2.2 Quantum mechanics and quantum states

2.3 Qubits and the Bloch basis

2.4 Marginal states

2.9 Semidefinite programs

3.1 Introduction

The quantum marginal problem is, as noted in Section 2.4, concerned with the follow-

ing two problems:

Is a global quantum state uniquely determined by a set of its marginal states? And,

given a set of marginal states, are they compatible, i.e., does there exist a global state

exhibiting these marginals?

We already introduced a mathematical language suited for tackling these questions

and listed known results about the problem. Before we continue with our results

on how to extend these results for four- and more qudit systems, we motivate the

marginal problem physically by listing applications in the context of ground states of

local Hamiltonians and quantum chemistry. We then look in detail at the connection

between uniquely determined states and ground states. Consequently, we investigate

in detail the four-particle case, for which we show that certain subsets of the two-body

marginals almost always suffice to determine a state among pure states.

Finally, we generalize the results to more particles and list some exceptional states that

are not determined. We conclude with a discussion.

3.2 Motivation

The aforementioned uniqueness question is highly relevant for the characterization of

the ground state space of local Hamiltonians. A k-local Hamiltonian is a hermitian

35



3. The marginal problem

operator H which can be written as

H = ∑
S⊂{1,...,n},
|S|≤k

hS, (3.1)

where each hS acts nontrivially only on the parties in S. As most interactions in

quantum systems are limited in range, many relevant Hamiltonians are of this form

for small k. It is of fundamental interest to decide whether such a Hamiltonian has

a unique ground state. For example, a strategy to prepare certain quantum states

is given by constructing a Hamiltonian with the target state as ground state. This

procedure can only be successful if the target state is the non-degenerate ground state

of the Hamiltonian. In other scenarios, one tries to steer the ground state of an initial

system to the ground state of a final system by adiabatically changing the Hamiltonian.

A criterion for success for such transformations is given by the adiabatic theorem of

quantum mechanics, requiring that at each fixed time there is a finite energy gap

between the ground state and the first excited state [66, 67]. A necessary criterion

for this is that the time evolved Hamiltonian has non-degenerate ground state at each

time step.

Non-degeneracy of ground states of k-local Hamiltonians is closely related to the

before-mentioned uniqueness problem: Given the ground state ρ0 of a k-local Hamil-

tonian H, its energy is given by

E0 = Tr(Hρ0) = ∑
S⊂{1,...,n},
|S|≤k

Tr(ρ0,ShS). (3.2)

It is therefore a function of the k-body marginals of ρ0 only. Thus, if ρ0 the unique

ground state of H then there must not exist any other state with the same k-body

marginals [68, 69]. This we denote as ρ0 being k-uniquely determined among all

states. We will highlight the connection between unique ground states and uniquely

determined states in more detail in Section 3.3.

A second motivation comes from quantum chemistry [18]. There, many relevant prop-

erties of fermionic quantum states can be calculated from two-point functions, derived

from the two-body marginal of the global fermionic quantum state. It is therefore

of fundamental interest to decide whether given two-point data can originate from

a global n-partite state or not [19]. This is known as the n-representability prob-

lem. Also in non-fermionic systems, the compatibility problem has been investigated

[14, 18, 20, 21].
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Finally, the marginal problem is connected to the phenomenon of entanglement. As we

will see below, pure states of two parties are determined by their one-body marginals

only if the state is a product state. Consequently, entangled states can contain correla-

tions among many parties that are lost when having access to the marginals only. This

connection between the properties of the parts and the global quantum state has been

subject to many previous works [70–73].

3.3 Unique ground states and uniquely determined states

Recall from Section 2.4 that we call a state k-UDP (uniquely determined among pure

states) if there is no other pure state exhibiting the same k-body marginals, and k-UDA

(uniquely determined among all states) if there is no other compatible pure or mixed

state.

It is illustrative to explore the connection between ground states of local Hamiltoni-

ans and uniquely determined states in more detail. As mentioned in the motivation

section, every unique ground state of a k-local Hamiltonian must be k-UDA. The con-

verse, however, is not true, and an explicit counterexample of a six-qubit state being

2-UDA, but not a ground state of a 2-local Hamiltonian was found recently [11].

The reason for this discrepancy has geometric origins: Let O denote the set of dn ×
dn hermitian matrices and B ⊂ O the subset of density matrices. Using the Bloch

representation in Eq. (2.17), we define Pk to be the projector to the subspace of O
having up to k-partite correlations only. In the case of qubits, this subspace is spanned

by the multipartite Pauli matrices of weight equal to or less than k.

In the projected space, the k-UDA states are extremal points of the subset Pk(B):

Lemma 3.1. Let |ψ〉 be a state that is k-UDA. Then Pk(|ψ〉〈ψ|) is an extremal point in

Pk(B).

Proof. Assume that Pk(|ψ〉〈ψ|) was not an extremal point. Then it could be written as

Pk(|ψ〉〈ψ|) = pPk(ρ1) + (1− p)Pk(ρ2), (3.3)

where ρ1 and ρ2 are states in B. As |ψ〉 is k-UDA, the inverse image is unique and

pρ1 + (1− p)ρ2 is a valid decomposition of |ψ〉〈ψ| in B. But |ψ〉〈ψ| is a pure state and

therefore ρ1 = ρ2 = |ψ〉〈ψ|.

Now consider a k-local Hamiltonian H, i.e., it lives in Pk(O). As Tr(ρH) yields the

energy of ρ, as well as the Hilbert-Schmidt distance, states with fixed energy E lie on a
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3. The marginal problem

Figure 3.1: The space of all n-partite density matrices projected onto the reduced
space of k-partite and lower correlations only. The extremal and exposed points of
the convex set are displayed in dark red, whereas the two extremal but not exposed
points are displayed in dark blue. These two points cannot be expressed as unique
ground states of k-local Hamiltonians, as every Hamiltonian H with a non-exposed

ground state is at least two-fold degenerate.

hyperplane in Pk(B). States with different energy lie on hyperplanes that are moved

in parallel. For ρ to be the unique ground state of H, it needs to be the only state

minimizing Tr(ρH). Such states are called exposed [74]. Every exposed point is also

an extremal point, but not every extremal point is exposed. This scenario is displayed

in Fig. 3.1, where a convex set with two non-exposed extremal points is shown. This

implies that there might be non-exposed k-UDA states, which can never be unique

ground states of k-local Hamiltonians.

It can be shown, however, that the set of exceptions is quite small. Indeed, the set of

non-exposed extremal points is of measure zero in the set of all extremal points [74].

The fact that the set of counterexamples is quite small can also be seen in the language

of semidefinite programming, introduced in Section 2.9. To that end, we denote the

set of states which are unique ground states of k-local Hamiltonians as k-UGS, and, by

slight abuse of notation, the set of k-UDA states simply by k-UDA. Then we have that

their closures coincide:

Theorem 3.2. k-UGS = k-UDA.

Proof. Deciding whether a fixed state |φ〉 is k-UDA can be cast in terms of the SDP

min
σ

Tr(σ|φ〉〈φ|) (3.4)

subject to σ ≥ 0,

Pk(σ) = Pk(|φ〉〈φ|),
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3.3. Unique ground states and uniquely determined states

the dual problem of which is given by [11]

max
H

Tr(H|φ〉〈φ|) (3.5)

subject to H + |φ〉〈φ| ≥ 0, ,

Pk(H) = H,

H = H†.

Let α and β denote the optimal values of the primal and the dual problem, respec-

tively. Strong duality holds due to Slater’s condition from Theorem 2.17, thus α = β.

The pure state |φ〉〈φ| is k-UDA iff α = 1. Thus, in this case also β = 1 and in prin-

ciple, the optimal H of the dual problem would be a Hamiltonian with |φ〉 being its

unique ground state and having the right marginals. However, the dual optimization

is unbounded and the actual optimal H might be unbounded, too, and therefore never

reachable, leading to counterexamples to the UDA = UGS conjecture. Nevertheless,

we will show that each k-UDA state can be approximated arbitrarily well by k-UGS

states.

Strong duality implies that there is a sequence of Hamiltonians Hn with

fn := −Tr(Hn|φ〉〈φ|)
n→∞−→ 1 (3.6)

and w.l.o.g. we assume fn > 0 (otherwise, we truncate the first sequence elements

that violate this condition). We now show that the ground states |φn〉 of the Hn are

non-degenerate and have a finite gap, from which we conclude that the sequence of

ground states |φn〉 approximates |φ〉.

To that end, assume that the ground state space of Hn was degenerate. Then there

exists a state |ψn〉 in the ground state space that is perpendicular to |φ〉 and has energy

−en := 〈ψn|H|ψn〉 ≤ − fn < 0, (3.7)

as |φ〉 cannot have less energy than the ground state. However, condition (3.6) implies

−en = 〈ψn|(H + |φ〉〈φ|)|ψn〉
!
≥ 0, (3.8)

which is in violation with Eq. (3.7). Thus, all Hn have a non-degenerate ground state.

From this argument also follows that |φn〉 is the only eigenstate of Hn having a negative

expectation value, because otherwise a suitable linear combination of the negative
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energy state and the ground state would be perpendicular to |φ〉, leading to the same

contradiction. Thus, the energy gap of Hn is finite.

Finally, this implies again by Eq. (3.6),

〈φn|(Hn + |φ〉〈φ|)|φn〉 = −en + |〈φ|φn〉|2 ≥ 0, (3.9)

thus

1 ≥ |〈φ|φn〉|2 ≥ en ≥ fn −→ 1. (3.10)

Therefore, the sequence |φn〉 of unique ground states of quasi-local Hamiltonians ap-

proximates |φ〉 and therefore k-UGS = k-UDA.

3.4 The four particle case

In the remainder of this chapter, we investigate the case of four-particle states hav-

ing equal internal dimensions. As mentioned before, unique ground states of k-local

Hamiltonians must be k-UDA. As many relevant interaction Hamiltonians are two-

local, this case is of particular interest. It is known that most three-particle states are

2-UDA [22, 24], while most five-particle states are not [69]. Thus, the only open case

is that of four particles.

We make an important step towards solving this case by showing that generic pure

states of four particles are 2-UDP by certain sets of their two-body marginals. To that

end, we begin by defining precisely what we mean by generic states. We then prove

our main result, first for the case of qubits and subsequently for the general case of

qudits. The theorem is then generalized to generic n-particle states, which can be

shown to be determined in a similar way by certain sets of three of their (n− 2)-body

marginals. Finally, we list some specific examples for the exceptional case of states of

four particles that are not determined by their two-body marginals.

3.4.1 Generic states

Generic states are understood to be states drawn randomly according to the Haar

measure. Here, we adopt a special procedure to obtain such random states in a

Schmidt decomposed form. To that end, consider a four-particle pure state |ψ〉 ∈
HA ⊗HB ⊗HC ⊗HD, where dimHA = dimHB = . . . = d. Using the Schmidt de-

composition from Eq. (2.25) along the bipartition (AB|CD), the state can be written

40



3.4. The four particle case

Figure 3.2: Illustration of two different sets of two-body marginals: a) the set of all
six two-body marginals, b) a set of three two-body marginals that is shown to suffice

to uniquely determine generic pure states.

as

|ψ〉 =
d2

∑
i=1

√
λi|i〉AB ⊗ |i〉CD, (3.11)

where ∑i λi = 1. If the state has full Schmidt rank, i.e., λi 6= 0 for all i, then the sets

|i〉AB and |i〉CD form orthonormal bases in the composite Hilbert spaces HA ⊗HB and

HC ⊗HD, respectively.

Definition 3.3. A generic four-particle pure state is a state |ψ〉 ∈ HA ⊗HB ⊗HC ⊗HD

drawn randomly according to the Haar measure. Writing such state as in Eq. (3.11),

the Schmidt bases and the set of Schmidt coefficients are independent from each other.

The distribution of the Schmidt coefficients is given by [75, 76]

P(λ1, . . . , λ4)dλ1 . . . dλ4 = Nδ

(
1−

4

∑
i=1

λi

)
∏

1≤i<j≤4
(λi − λj)

2dλ1 . . . dλ4 (3.12)

and the Schmidt bases are distributed according to the Haar measure of unitary oper-

ators on the smaller Hilbert spaces.

The mutual independence of the two Schmidt bases and the coefficients can be seen

from the fact that in the Haar measure, for the probability distribution p(|ψ〉) to obtain

state |ψ〉 holds p(|ψ〉) = p(1AB ⊗UCD|ψ〉) = p(UAB ⊗ 1CD|ψ〉).

Generic states as defined above exhibit two other important properties: They have full

Schmidt rank and pairwise distinct Schmidt coefficients. We would like to add that

while the definition above makes use of the Haar measure, we do not explicitly require

it. Any measure with the same independence properties between the two Schmidt

bases and Schmidt coefficients would work as well, as long as the sets of states having

non-full Schmidt rank or degenerate Schmidt coefficients are also of measure zero.
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3.4.2 The case of qubits

To begin with, we investigate the qubit case, where d = 2. Let |ψ〉 = ∑4
i=1
√

λi|i〉AB ⊗
|i〉CD be a generic state in the sense defined above. The two-body marginal of parties

A and B is given by

ρAB = TrCD(|ψ〉〈ψ|) =
4

∑
i=1

λi|i〉〈i|AB (3.13)

and similarly for CD. This is the starting point for the proof of the following theorem.

Theorem 3.4. Almost all four-qubit pure states are uniquely determined among pure states

by the three two-body marginals ρAB, ρCD and ρBD. In particular, this implies that they are

2-UDP.

Proof. Let |ψ〉 be a generic state in the Schmidt decomposed form in Eq. (3.11). We

arrange the Schmidt bases such that the Schmidt coefficients are in decreasing order,

i.e. λi ≥ λi+1. Suppose that there is another pure state |φ〉 which exhibits the same

two-body marginals ρAB and ρCD as |ψ〉. As the λi are pairwise distinct and in de-

creasing order, the Schmidt bases of |φ〉 and |ψ〉 have to coincide up to a phase. Thus,

|φ〉 must be of the form

|φ〉 =
4

∑
i=1

eiϕi
√

λi|i〉AB ⊗ |i〉CD. (3.14)

Therefore, the only degrees of freedom left of |φ〉 are the four phases ϕi.

We now demand that also the marginals of parties B and D coincide, in other words,

TrAC(|ψ〉〈ψ|) = TrAC(|φ〉〈φ|) (but any other marginal would be fine, too):

ρBD =
4

∑
i,j=1

√
λiλj TrAC(|i〉〈j|AB ⊗ |i〉〈j|CD)

!
=

4

∑
i,j=1

ei(ϕi−ϕj)
√

λiλj TrAC(|i〉〈j|AB ⊗ |i〉〈j|CD). (3.15)

The sum runs over operators on the space of parties B and D. For every pair i, j, this

operator is given by

Oij = TrAC(|i〉〈j|AB ⊗ |i〉〈j|CD). (3.16)

The 16 operators Oij span a subspace in the 16-dimensional space of operators onHB⊗
HD. As we will see later, this subspace is only 13-dimensional, thus the operators must

be linearly dependent. Therefore, we cannot simply compare both sides of Eq. (3.15)

term by term to conclude that ϕi = ϕj. Instead, let us interpret the 16 operators Oij
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as vectors in the 16-dimensional operator space. Thus, we are looking for solutions of

the equation
4

∑
i,j=1

(1− ei(ϕi−ϕj))
√

λiλjOij ≡
4

∑
i,j=1

γijOij = 04×4 , (3.17)

where

γij := (1− ei(ϕi−ϕj))
√

λiλj . (3.18)

These are 16 equations, one for every entry of the resulting 4× 4 matrix. We can treat

Eq. (3.17) as a system of linear equations for the γij and look for solutions that can be

written in the specific form in Eq. (3.18). It implies that

γii = 0 , (3.19)

γij = γ̄ji , (3.20)

Therefore, there are effectively six undetermined complex-valued variables γij for 1 ≤
i < j ≤ 4.

Let us now investigate the linear system in Eq. (3.17) in more detail. Note that every

Oij can be written as a product

Oij = TrA(|i〉〈j|AB)⊗ TrC(|i〉〈j|CD) ≡ Qij ⊗ Rij , (3.21)

where Qij = TrA(|i〉〈j|AB), Rij = TrC(|i〉〈j|CD). The matrices Qij and Rij inherit some

properties from the underlying orthonormal bases:

Tr(Qij) = δij ,

Q†
ij = Qji (3.22)

and similarly for Rij.

Using these properties together with Eqs. (3.19) and (3.20), Eq. (3.17) can be written as

∑
i<j

γijQij ⊗ Rij + γ̄ijQ†
ij ⊗ R†

ij
!
= 0 . (3.23)

For i 6= j, Tr(Qij) = Tr(Rij) = 0 and we can write Qij and Rij explicitly as

Qij =

(
q11

ij q12
ij

q21
ij −q11

ij

)
, (3.24)

Rij =

(
r11

ij r12
ij

r21
ij −r11

ij

)
. (3.25)
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Thus,

0 = ∑
i<j

γijQij ⊗ Rij + γ̄ijQ†
ij ⊗ R†

ij

= ∑
i<j

(
γijq11

ij Rij+γ̄ijq̄11
ij R†

ij γijq12
ij Rij+γ̄ijq̄21

ij R†
ij

γijq21
ij Rij+γ̄ijq̄12

ij R†
ij −(γijq11

ij Rij+γ̄ijq̄11
ij R†

ij)

)

=

(
A B

B† −A

)
. (3.26)

Now we treat each submatrix A and B individually. Demanding A = 0 yields

∑
i<j

γijq11
ij Rij = −∑

i<j
γ̄ijq̄11

ij R†
ij , (3.27)

thus ∑i<j γijq11
ij Rij must be skew-hermitian. As Rij has zero trace, we extract the fol-

lowing set of equations:

<(∑
i<j

γijq11
ij r11

ij ) = 0 , (3.28)

∑
i<j

γijq11
ij r12

ij + ∑
i<j

γ̄ijq̄11
ij r̄21

ij = 0 . (3.29)

On the other hand, demanding B = 0 yields

∑
i<j

γijq12
ij r11

ij + ∑
i<j

γ̄ijq̄21
ij r̄11

ij = 0 , (3.30)

∑
i<j

γijq12
ij r12

ij + ∑
i<j

γ̄ijq̄21
ij r̄21

ij = 0 , (3.31)

∑
i<j

γijq12
ij r21

ij + ∑
i<j

γ̄ijq̄21
ij r̄12

ij = 0 . (3.32)

Treating real and imaginary part separately, these are 3 + 6 = 9 real equations for the

six complex values γij.

Before continuing with the proof, we have to ensure that these equations are linearly

independent. This can be checked for by expanding the Schmidt bases |i〉AB and |i〉CD

in terms of the computational basis, i.e.

|i〉AB =
1

∑
a,b=0

µi
ab|ab〉, (3.33)

|i〉CD =
1

∑
c,d=0

νi
cd|cd〉, (3.34)
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where the only dependence among the |i〉AB is

〈i|j〉AB = ∑
a,b

µi
abµ̄

j
ab = δij (3.35)

and similarly for |i〉CD. Expressing the numbers qij in terms of the coefficients µ,

qbb′
ij = ∑

a
µi

abµ̄
j
ab′ , (3.36)

shows that the only dependence among the qij is q11
ij = −q22

ij , which has already been

taken into account. Thus, the numbers q11
ij , q12

ij and q21
ij do not fulfill any additional

constraints. The same is true for the rij. As the orthonormal bases have been chosen

independently and randomly, the qij and rij are also independent of each other.

Returning to the proof, there is a three dimensional (real) solution space for the γij

due to Eqs. (3.28) to (3.32) if we do not impose the constraints (3.18) yet. As γij = 0

for all i, j is certainly a solution, we can parametrize this solution space by

γij =
3

∑
a=1

xava
ij , (3.37)

where the xa are the three real-valued parameters.

Luckily, we have additional constraints at hand as the γij are not independent. Let us

define the normalized variables cij := (λiλj)
−1/2γij. Then

cijcjk = (1− ei(ϕi−ϕj))(1− ei(ϕj−ϕk))

= 1− ei(ϕi−ϕj) − ei(ϕj−ϕk) + ei(ϕi−ϕk)

= cij + cjk − cik , (3.38)

for all i, j, k. This implies also (setting i = k)

|cij|2 = cij + c̄ij . (3.39)

Substituting for cij the solution (3.37) yields for all i < j

3

∑
a,b=1

xaxbva
ijv̄

b
ij =

√
λiλj

3

∑
a=1

xa(va
ij + v̄a

ij). (3.40)

There are six equations for the three variables xa. Taking the four equations for i =

1, j = 1, . . . , 4, yields four independent equations as each equation makes use of a

different, independent Schmidt coefficient λi. Additionally, any of the equations can

be solved for any of the xa and the Schmidt coefficients λi have not been used to obtain
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the solutions in Eq. (3.37). Therefore, only the trivial solution xa = 0 exists, thus

cij = γij = 0 . (3.41)

Consequently, all phases ϕi = ϕ must be equal. Thus |φ〉 = eiϕ|ψ〉 which corresponds

to the same physical state.

The same result is also true for other configurations of known marginals that result

from relabeling the particles.

3.4.3 The case of higher-dimensional systems

The proof can seamlessly be extended to the case of qudits having higher internal

dimension d.

Theorem 3.5. Almost all four-qudit pure states of internal dimension d are uniquely deter-

mined among pure states by the three two-body marginals of particles ρAB, ρCD and ρBD. In

particular, this implies that they are 2-UDP.

Proof. The proof follows exactly the same steps as in the qubit case. The bases of the
subspaces A, B and C, D are then d2-dimensional, thus i and j run from 1 to d2 and
there are d2 free phases [(d2 − 1) if ignoring a global phase]. There are then d2(d2−1)

2
different complex-valued γij with i < j. The Eq. (3.26) consists in this case of d × d
submatrices:

∑
i<j


γijq11

ij Rij + γ̄ij q̄11
ij R†

ij . . . γijq1d
ij Rij + γ̄ij q̄d1

ij Rij
...

. . .
...

γijqd1
ij Rij + γ̄ij q̄1d

ij R†
ij . . .

 = 0 . (3.42)

Again, the lower left submatrices are the adjoints of the upper right ones, thus it

suffices to set the upper right ones to zero. All submatrices on the diagonal must be

skew-hermitian, and the last diagonal matrix can be expressed by the other diagonal

entries due to tracelessness:

• Every off-diagonal submatrix such as γijq12
ij Rij + γ̄ijq̄21

ij R†
ij yields 2(d2 − 1) real

equations, as Rij is a traceless d × d matrix, thus rdd
ij = −r11

ij − . . . − rd−1,d−1
ij .

There are d(d−1)
2 off-diagonal submatrices on the upper right, thus they yield

(d2 − 1)d(d− 1) real equations.

• Every diagonal submatrix is skew-hermitian, which exhibits d+ 2 d(d−1)
2 = d2 real

equations, and traceless, which removes one of the diagonal equations, leaving
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d2 − 1 equations. There are d− 1 diagonal submatrices, yielding a total of (d−
1)(d2 − 1) real equations.

Thus, there is a total of (d− 1)(d2− 1) + d(d− 1)(d2− 1) = (d2− 1)2 (real) equations.

Consequently, the d2(d2−1)
2 complex-valued γij are reduced to 2 d2(d2−1)

2 − (d2 − 1)2 =

d2 − 1 real parameters, which matches again the number of free phases in the ansatz.

From the compatibility equations (3.38), we can choose those with i = 1, j = 1 . . . d2

to obtain a set of d2 independent quadratic equations, as there are by assumption d2

independent Schmidt coefficients. Therefore, the only solution is γij = 0 as in the

qubit case, implying that |φ〉 = eiϕ|ψ〉 for some phase ϕ.

3.5 States of n particles

Even though above theorem is limited to states of four particles, the result sheds some

light on states of more parties.

Corollary 3.6. For n ≥ 4, almost all n-qudit pure states of parties A, B, C, D, E1, . . . En−4

of internal dimension d are uniquely determined among pure states by the three (n− 2)-body

marginals of particles ρABE1 ..., ρCDE1... and ρBDE1.... In particular, this implies that they are

(n− 2)-UDP.

Proof. We denote by E all the parties E1, . . . , En−4. Consider a generic pure n-particle

state |ψ〉 with known (n− 2)-body marginals ρABE, ρACE and ρCDE. From these, one

can obtain the (n − 4)-particle marginal ρE. This allows us to decompose a generic

state into

|ψ〉 =
min(d4,dn−4)

∑
i=1

√
λi|ψi〉 ⊗ |i〉E, (3.43)

where the Schmidt basis |i〉E and Schmidt coefficients λi are determined by ρE and the

Schmidt vectors |ψi〉 on ABCD have yet to be determined. On the one hand, knowing

the (n− 2)-body marginal ρABE allows us to determine all expectation values of the

form

〈ψ|OA ⊗OB ⊗ |i〉〈i|E|ψ〉 = Tr(OA ⊗OB ⊗ |i〉〈i|EρABE) (3.44)

for all i, where OA and OB are some local observables of parties A and B, respectively.

On the other hand, this is equivalent to knowing all expectation values 〈ψi|OA⊗OB|ψi〉
of the pure four-particle constituent |ψi〉, yielding its reduced state ρ

(i)
AB. The same can

be done for parties AC and parties CD. According to Theorem 3.5, this determines
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3. The marginal problem

Figure 3.3: Illustration of the two other possible sets of three two-body marginals:
a) a set of marginals, which clearly does not determine the global state, as ρD is not
fixed. b) a set of marginals to which our proof does not apply. Nevertheless, we have
numerical evidence that these marginals still determine the state uniquely for qubits.

the states |ψi〉 uniquely up to a phase. Thus, the joint state on ABCDE has to have the

form

|ψ′〉 =
min(d4,dn−4)

∑
i=1

eiϕi
√

λi|ψi〉 ⊗ |i〉E. (3.45)

However, from this family only the choice ϕi = ϕj for all i, j is compatible with the

known reduced state ρABE: The reduced state

ρ′ABE = ∑
i,j

ei(ϕi−ϕj)
√

λiλj TrCD(|ψi〉〈ψj|)⊗ |i〉〈j|E (3.46)

can be compared term by term with the known marginal, as the |i〉E are orthogonal.

Therefore, |ψ′〉 = eiϕ|ψ〉 for some phase ϕ and the state is determined again.

It must be stressed that the main statement of this Corollary is the fact that three of

the (n− 2)-body marginals can already suffice to fix the state. The fact that pure states

are (n− 2)-UDP is not surprising, as usually already less knowledge is sufficient to

make a pure state UDA, see Ref. [25] for a discussion.

3.6 States that are not UDP

As the proof above is valid for generic states only, it is natural to ask whether there are

special four-particle states that are not UDP. This is indeed the case. In the following,

we give an incomplete list of undetermined four-particle qubit states. Note that if any

two states |ψ〉 and |φ〉 share the same two-body marginals, then also all local unitary

equivalent states |ψ〉′ = UA ⊗UB ⊗UC ⊗UD|ψ〉 and |φ〉′ = UA ⊗UB ⊗UC ⊗UD|φ〉
share the same marginals. Thus, we restrict ourselves to states |ψ〉 = ∑ αijkl |ijkl〉 of the
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3.6. States that are not UDP

standard form introduced in Ref. [77], where

α0000, α0001, α0010, α0100, α1000 ∈ R ,

α0111, α1011, α1101, α1110 = 0 (3.47)

and all other coefficients being complex. In the following list, the states are always

assumed to be normalized. To shorten the notation, we make use of the W-state

|W4〉 =
1
2
(|0001〉+ |0010〉+ |0100〉+ |1000〉)

and of the Dicke state

|D4
2〉 =

1√
6
(|0011〉+ |0101〉+ |1001〉

+ |0110〉+ |1010〉+ |1100〉).

Due to the standard form, we have in the following a, b ∈ R, while r, s ∈ C. The

claimed properties of the states can directly be computed.

• For fixed a, b and s, the family

|ψ〉 = a|0000〉+ b|W4〉+ seiϕ|1111〉 (3.48)

shares the same two-body marginals for all values of ϕ.

• For the same state with a = 0, b = 2√
6

and s = 1√
3
,

|φ〉 = 1
2
|0000〉+ 1√

2
eiϕ|D4

2〉 −
1
2

e2iϕ|1111〉 (3.49)

shares the same marginals for all values of ϕ.

• For every state

|ψ〉 = a|0000〉+ r|D4
2〉+ s|1111〉, (3.50)

the state

|φ〉 = a|0000〉+ reiϕr |D4
2〉+ seiϕs |1111〉 (3.51)

shares the same marginals if rseiϕs = areiϕr(1− eiϕr) + rseiϕr , which is feasible for

e.g., a = 0.

All of our examples are superpositions of Dicke states and generalized GHZ states.

By a local unitary operation, these examples also include the Dicke state with three

excitations. The examples prove that Theorem 3.4 does not hold for all four-particle

states, but only for generic states.
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3.7 Conclusions

We have shown that generic four-qudit pure states are uniquely determined among

pure states by three of their six different marginals of two parties. Interestingly, from

this, it follows that pure states of an arbitrary number of qudits are determined by cer-

tain subsets of size three of their (n− 2)-body marginals. The proof required knowl-

edge of two marginals of distinct systems, for instance, ρAB and ρCD, in order to fix

the Schmidt decomposition of the compatible state. However, there are two other sets

of three two-body marginals, illustrated in Fig. 3.3. The first one, namely knowledge

of ρAB, ρAC and ρBC, is certainly not sufficient to fix the state, as we do not have any

knowledge of particle D in this case: Every product state ρABC ⊗ ρD with arbitrary

state ρD is compatible. The situation for the second configuration, namely knowledge

of the three marginals ρAB, ρAC and ρAD, is not that clear. In a numerical survey test-

ing random four-qubit states, we could not find pairs of different pure states which

have these coinciding marginals. Thus, we conjecture that any marginal configuration

involving all four parties determines generic states. In any case, knowledge of any

set of four two-body marginals fixes the state, as there are always two marginals of

distinct particle pairs present in these sets.

The question remains which pure four-qubit states are also uniquely determined

among all mixed states by their two-body marginals. The results from Ref. [25] sug-

gest that generic states are not UDA, and Ref. [69] shows that for the case of four

qutrits, there exists a witness detecting states which are not UDA. On the other hand,

in the same reference, a numerical procedure indicated that for generic pure four-qubit

states the compatible mixed states (having the same marginals) are never of full rank.

Clarifying this situation is an interesting problem for further research.
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4 Even and odd correlations

Prerequisites

2.2 Quantum mechanics and quantum states

2.3 Qubits and the Bloch basis

2.5 Entanglement

4.1 Introduction

In the last chapter, we regarded the marginal problem. It can be rephrased as the

question of whether the correlations between many of the particles are determined by

the correlations between restricted subsets of them. In the language of Section 2.3,

this can be stated as follows: For a fixed number k, are the correlations Pk+1, . . . , Pn

(uniquely) determined by the correlations P1, . . . , Pk? It is a natural step to general-

ize this question in the following way: Which subset of the correlations {P1, . . . , Pn}
determines the whole state? This will be the focus of interest in this chapter.

As an example consider a state of three parties, denoted by A, B and C. Three different

contributions to the correlations of the state can be distinguished, which are also de-

picted in Fig. 4.1: First, there are single-body terms, acting on individual parties alone

and determining the single party density matrices. In Section 2.3, we denoted them

as P1. Second, there are two-body correlations acting on the pairs AB, BC, and AC,

denoted by P2. Finally, there are three-body correlations acting on all three particles

ABC, called P3. Thus the question arises: Are these three contributions independent

of each other or is one of them determined by the others?

In this chapter, we present an approach to answering this and more general questions

for multi-qubit systems. We identify two components of the correlations, depending

on the question of whether they act on an odd or even number of particles. We prove

that the even correlations and odd correlations obey strong relations, one component

often completely determining the other one. Besides of the fundamental interest,

these results have several practical applications: We prove that all pure qubit states

with an odd number of qubits are uniquely determined among all mixed states by
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4. Even and odd correlations

Figure 4.1: Visualization of the decomposition of a three-particle state ρ into even
and odd correlations. A state ρ is expanded in Bloch representation as ρ ∝ 1+ P1 +
P2 + . . ., where Pj denotes all terms containing j-body correlations. We prove that the
even correlations Pe are determined by the odd correlations Po for pure states of an

odd number of qubits, so the three qubit state is completely determined by Po.

the odd component of the correlations. This generalizes the findings of the last chap-

ter. In addition, our approach can be used to characterize ground states arising from

Hamiltonians having even or odd interactions only, and the behavior of the correlation

components under time evolution governed by Hamiltonians having odd components

only. Finally, we apply our insights to simplify the task of entanglement detection

in certain scenarios. While the results are obtained mainly for pure states, we finally

generalize some of them to certain families of mixed states.

4.2 The even-odd decomposition

Recall from Section 2.3, that we write multi-qubit states in the Bloch basis, i.e., the

n-fold tensor product of the Pauli basis, as

ρ =
1
2n (1

⊗n +
n

∑
k=1

Pk), (4.1)

where Pk denotes the sum over all contributions acting on exactly k of the parties

non-trivially. We call Pk the k-body correlations of the state, being determined by

the expectation values taken on groups of k particles. As an example, consider the

two-qubit Bell state |Ψ+〉 = (|01〉 + |10〉)/
√

2, for which the corresponding density

operator reads

|Ψ+〉〈Ψ+| = 1
4
(1⊗ 1+ X⊗ X + Y⊗Y− Z⊗ Z), (4.2)

so we have P1 = 0 and P2 = X⊗ X + Y⊗Y− Z⊗ Z.
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4.2. The even-odd decomposition

As our main ansatz, we further group the operators according to the parity of their

weight and define

Pe := ∑
j even,

j 6=0

Pj, Po := ∑
j odd

Pj. (4.3)

Note that P0 = 1⊗n is excluded from Pe. Then we can write states in the even-odd

decomposition (see Fig. 4.1)

ρ =
1
2n (1+ Pe + Po). (4.4)

Here and in the following, we write 1 instead of 1⊗n in order to shorten the notation.

The central result of this chapter will be strong relations between the even and the

odd component, Pe and Po.

Our approach is based on the state inversion map, introduced in Eq. (2.34). On the

level of pure states, the state inversion map can be represented by the anti-unitary

inversion operator F := (iY)⊗nK, where K denotes the complex conjugation in the

default basis [78]. We have that F† = (−1)nF and for pure states we write |ψ̃〉 = F|ψ〉.
It follows that pure states remain pure under the state inversion. Note that for single-

qubit Pauli matrices we have FσiF† = −σi for i 6= 0. Thus, in Bloch decomposition, F

flips the sign of each term that acts on an odd number of parties non-trivially. Starting

from Eq. (4.4), we can also write

ρ̃ =
1
2n (1+ Pe − Po). (4.5)

This allows for an easier representation of the even and odd correlations, namely,

1+ Pe = 2n−1(ρ + ρ̃), Po = 2n−1(ρ− ρ̃). (4.6)

The key observation is that under the state inversion, pure states of an odd number of

qubits are mapped to orthogonal states. This fact was known before [79–83], however,

we give a proof that allows for generalization to qudit systems, for which the statement

is new.

Lemma 4.1. For pure n-qudit states ρ = |ψ〉〈ψ| with n odd we have that

ρρ̃ = 0. (4.7)

Proof. Let ρ = |ψ〉〈ψ| be the pure quantum state and let M ⊂ {1, 2, . . . , n} denote a

subset of the parties. Using the Schmidt decomposition for the bipartition M|M̄, i.e.,

|ψ〉 = ∑
i

√
λi|i〉M ⊗ |i〉M̄, (4.8)
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4. Even and odd correlations

allows to derive the following relation for the reduced state ρM := TrM̄(ρ):

ρ(ρM ⊗ 1M̄) = ∑
i,j

√
λiλ

3
j |i〉〈j|M ⊗ |i〉〈j|M̄ = ρ(1M ⊗ ρM̄). (4.9)

Then, state inversion can be written as an alternating sum over the marginals of the

state [33],

ρ̃ = ∑
M⊂{1,...,n}

(−1)|M|ρM ⊗ 1M̄ (4.10)

= 1− ρA − ρB − . . . + ρAB + . . .± ρ. (4.11)

Note that complementary reductions have the opposite sign since n is odd. Thus,

multiplying this equation with ρ and using Eq. (4.9), every term cancels one of the

others and we have ρρ̃ = 0.

In the qudit case, pure states do not stay pure under the state inversion but are mapped

to positive operators. This generalization is studied in Section 4.6.2.

As we will see, the operator identity in Eq. (4.7) has strong implications on correlations

in pure qubit states. For even n, this result is not true in general. However, there are

certain states like the W-state for n ≥ 4 and in particular graph states of type I [84],

for which the statement still holds, as will be discussed later.

4.3 Results for an odd number of qubits

Throughout this section, we consider pure qubit states of an odd number of parties,

denoted by |ψodd〉. We can directly prove our first main result.

Theorem 4.2. For pure n-qubit states |ψodd〉, written in the even-odd decomposition as in

Eq. (4.4), we have that

(1) the even and odd components of the correlations commute: [Pe, Po] = 0;

(2) the odd correlations uniquely determine the even correlations via

1+ Pe =
1

2n−1 P2
o ; (4.12)
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4.3. Results for an odd number of qubits

(3) the eigenvalues Λ = (λ1, . . . , λ2n) of Pe and Po are given by

Λ(Pe) = (2n−1 − 1, 2n−1 − 1,−1, . . . ,−1),

Λ(Po) = (2n−1,−2n−1, 0, . . . , 0). (4.13)

Proof. We use Eq. (4.6) to write

Po = 2n−1(|ψodd〉〈ψodd| − |ψ̃odd〉〈ψ̃odd|),

1+ Pe = 2n−1(|ψodd〉〈ψodd|+ |ψ̃odd〉〈ψ̃odd|). (4.14)

From Lemma 4.1 it follows that both 1+ Pe and Po are diagonal in the same basis

and commute. The eigenvalues then can be read off. Furthermore, Eq. (4.12) can be

directly verified in the common eigenbasis.

The fact that Pe is given by Po for pure states can be restated in the language of

uniqueness: Pure qubit states of an odd number of parties are uniquely determined

among pure states (UDP) by the odd correlations. Note that we will later show that

they are also determined among all mixed states (UDA) by Po. This leads to the

converse question of whether these states are also determined by the even correlations

Pe. The answer to this question is negative, but the set of compatible states is small.

Corollary 4.3. Given the even correlations Pe of a pure n-qubit state |ψodd〉, the set of admis-

sible odd correlations Po to retrieve a pure state again is a two-parameter family.

Proof. Let ρ = |ψodd〉〈ψodd| and ρ̃ = |ψ̃odd〉〈ψ̃odd|, and write 1+ Pe = 2n−1(ρ + ρ̃).

Thus, the eigenvectors with eigenvalue 2n−1 of 1+ Pe are a superposition of |ψodd〉
and |ψ̃odd〉. Given only Pe, one can choose any of its eigenvectors |η〉 from the two-

dimensional subspace of eigenvalue 2n−1 − 1. As |η̃〉 is orthogonal to |η〉, it follows

that 1+ Pe = 2n−1(|η〉〈η| + |η̃〉〈η̃|). Therefore, every choice of an eigenvector gives

rise to compatible correlations P(r)
o via

P(r)
o = 2n−1(|η〉〈η| − |η̃〉〈η̃|), (4.15)

resulting in the total state ρ = |η〉〈η|. By fixing one of the eigenstates |η〉, one can

parametrize all valid solutions by

P(r)
o (θ, φ) = 2n−1[cos θ(|η〉〈η| − |η̃〉〈η̃|)

+ sin θ(eiφ|η̃〉〈η|+ e−iφ|η〉〈η̃|)] (4.16)

for all real valued θ and φ.

55



4. Even and odd correlations

So far, we have shown that for an odd number of parties, the odd correlations uniquely

determine the state among pure states. It is natural to ask whether a state is deter-

mined also among all states (UDA).

Corollary 4.4. Consider a pure qubit state |ψ〉 of n parties where n is odd. Then the state is

uniquely determined among all mixed states by Po.

Proof. Recall that in the even-odd decomposition, the state reads

|ψ〉〈ψ| = 1
2n (1+ Pe + Po). (4.17)

Suppose there were a mixed state ρ with the same odd correlations. Then we could

write it as a convex sum of pure states,

ρ = ∑
i

pi
1
2n (1+ P(i)

e + P(i)
o ), (4.18)

where ∑i pi = 1 and ∑i piP
(i)
o = Po. From Theorem 4.2 we know that Po has two non-

vanishing eigenvalues λo± = ±2n−1, and the same holds for every P(i)
o as they originate

from pure states. Because the largest eigenvalue of the sum equals the sum of all the

maximal eigenvalues, all P(i)
o must share the same corresponding eigenvector. The

same is true for the smallest eigenvalue. Thus, P(i)
o = P(j)

o for all i, j follows. As the P(i)
e

are uniquely determined by the P(i)
o , they also coincide and therefore ρ = |ψ〉〈ψ|.

This result can be seen as a generalization of the uniqueness question of the marginal

problem. For example, recall that it was shown that almost all three-qubit states are

determined among all states by P1 and P2 [22]. Corollary 4.4 shows that all three-qubit

states are determined among all states by P1 and P3, and, remarkably, this generalizes

to all odd numbers of parties.

An immediate consequence of Corollary 4.4 is that all pure states of an odd number of

parties are unique ground states of odd-body Hamiltonians. More precisely, choosing

H = −Po = 2n−1(|ψ̃odd〉〈ψ̃odd| − |ψodd〉〈ψodd|) yields a specific example of such a

Hamiltonian.

4.4 Results for an even number of qubits

We now turn to the case of even n, and throughout this section, |ψeven〉 denotes a pure

state on an even number of qubits. Although in this case |ψ〉 and |ψ̃〉 do not need to

be perpendicular, one can gain some insight into the even and odd components of the
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correlations. We denote the overlap by |〈ψ̃|ψ〉| = α with a positive number α such

that Tr(ρρ̃) = α2. Note that α coincides with the n-concurrence defined in Eq. (2.43) in

Section 2.5.

For our purpose, we need to distinguish three cases: The case where α = 0, the case

of 0 < α < 1 and that of α = 1.

If α = 0, we recover the case of an odd number of qubits. Examples for such states

are the W-state, |W〉 = (|0 . . . 01〉+ . . . + |10 . . . 0〉)/
√

n, and all completely separable

states. In this case, all the results from the previous sections apply and Po determines

Pe.

If α = 1, |ψ〉 ∝ |ψ̃〉, which means that there are only even correlations present in

|ψ〉 and Po = 0. In this case, the even correlations are not determined by the odd

correlations at all. One prominent example for such a state is the n-party Greenberger-

Horne-Zeilinger (GHZ) state, |GHZ〉 = (|0 . . . 0〉+ |1 . . . 1〉)/
√

2.

If 0 < α < 1, even though the results from the previous section do not apply, the

spectrum of Pe is still rather fixed, leading to the following observation:

Theorem 4.5. Let |ψeven〉 be a pure qubit state with |〈ψeven|ψ̃even〉|2 = α2 6= 0. Write |ψeven〉
in the even-odd decomposition as in Eq. (4.4). Then

(1) the even correlations Pe uniquely determine the odd correlations Po up to a sign,

(2) the family of pure states having the same odd correlations Po as |ψeven〉 is one-dimen-

sional. The even correlations can be parameterized in terms of Po.

Proof. Let ρ = |ψeven〉〈ψeven|. Before proving the statements, we investigate the eigen-

vectors and eigenvalues of Pe and Po. As 1+ Pe = 2n−1(ρ + ρ̃), it must be of rank two

if α 6= 1. Thus, it has two non-vanishing eigenvalues, lying in the span of |ψ〉 and |ψ̃〉.
Calculating

(1+ Pe)|ψ〉 = 2n−1(|ψ〉+ αeiφ|ψ̃〉),

(1+ Pe)|ψ̃〉 = 2n−1(|ψ̃〉+ αe−iφ|ψ〉) (4.19)

yields the two non-vanishing eigenvalues

1 + λe± = 2n−1(1± α) (4.20)

and the corresponding orthonormal eigenvectors

|e±〉 =
1√

2(1± α)
(|ψ〉 ± eiφ|ψ̃〉). (4.21)
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We can also determine the action of Po on these eigenvectors, which reveals that it is

purely off-diagonal in the eigenbasis of Pe,

Po|e±〉 = 2n−1(ρ− ρ̃)|e±〉 = 2n−1
√

1− α2|e∓〉. (4.22)

Thus, the eigenvectors of Po are given by

|o±〉 =
1√
2
(|e+〉 ± |e−〉) (4.23)

and the eigenvalues are given by

λo± = ±2n−1
√

1− α2. (4.24)

We are now in position to prove the claims. Let us prove statement two first:

(2) By assumption, Po is known. The eigenvalues determine the overlap α by Eq. (4.24).

Knowledge of α fixes the eigenvalues of any admissible reconstructed P(r)
e . The ad-

missible eigenvectors of P(r)
e can be obtained from Eq. (4.23) to read

|e±〉 =
1√
2
(|o+〉 ± |o−〉). (4.25)

However, the eigenvectors |o±〉 are only unique up to a phase. Taking into account

this extra phase while omitting a global phase yields

|e±〉 =
1√
2
(|o+〉 ± eiϕ|o−〉). (4.26)

This allows us to write all compatible even correlations as

1+ P(r)
e = (1 + λe+)|e+〉〈e+|+ (1 + λe−)|e−〉〈e−|

= 2n−1(|o+〉〈o+|+ αe−iϕ|o+〉〈o−|

+ |o−〉〈o−|+ αeiϕ|o−〉〈o+|) . (4.27)

This is a one-dimensional space of admissible reconstructed even correlations, param-

eterized by ϕ.

We now show the first statement:

(1) Assume that now Pe is given. Can we uniquely reconstruct in the odd correla-

tions Po from knowledge of Pe? Unfortunately, the eigenvectors |e±〉 are again only
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determined up to a phase. Therefore, every reconstructed operator P(r)
o of the form

P(r)
o = λo+ |o+〉〈o+|+ λ−|o−〉〈o−| (4.28)

= λo+(e
iϕ|e+〉〈e−|+ e−iϕ|e−〉〈e+|) (4.29)

for all ϕ ∈ R would be a valid operator, such that

1
2n (1+ Pe + P(r)

o ) (4.30)

is a pure state again. However, only certain choices of ϕ recreate a Po which exhibits

solely odd correlation in Bloch decomposition. This can be seen as follows: As we will

show at the end of the proof, |e±〉〈e±| can only exhibit even correlations. This means

that |e±〉 are eigenvectors of the inversion operator F introduced above, i.e. F|e±〉 ∝

|e±〉. Recall that for n even, F† = F. Thus, F|e+〉〈e−|F† = eiΛ|e+〉〈e−| for some Λ. The

condition that P(r)
o contains only odd correlations can be written as

P(r)
o + P̃(r)

o = P(r)
o + FP(r)

o F† = 0. (4.31)

Eq. (4.29) translates this to

eiϕ + e−i(ϕ−Λ) = 0, (4.32)

which exhibits exactly two solutions for ϕ. Thus, there are only two possible recon-

structions P(r)
o , corresponding to the original Po and its negation, −Po.

All that is left is to show the used assumption that the eigenvectors |e±〉 exhibit only

even correlations. Note, that this is a special case of Kramers’ theorem [85], stating

that the eigenvectors of a Hamiltonian exhibiting even correlations only is either at

least two-fold degenerate or exhibits itself only even correlations.

The statement can be seen as follows: Let P = λ+|p+〉〈p+| + λ−|p−〉〈p−| be a her-

mitian operator which exhibits only even correlations in the Bloch decomposition,

〈p+|p−| =〉0 and λ− < λ+. We regard P as a Hamiltonian with the unique ground

state |p−〉. As P has even correlations only, FPF† = P. Thus

λ− = Tr(P|p−〉〈p−|) = Tr(FPF†|p−〉〈p−|)

= Tr(PF|p−〉〈p−|F†), (4.33)

as F† = F if n is even. Thus, also F|p−〉 is a ground state of P. As by assumption the

ground state is unique, F|p−〉 ∝ |p−〉 must hold true and therefore, |p−〉〈p−| exhibits

only even correlations. This implies that also |p+〉〈p+| has even correlations only.
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n even and 0 < α < 1 n odd or α = 0
Po given One-dimensional Pe is uniquely

solution space for Pe determined
Pe given ±Po is uniquely de- Two-dimensional

termined up to the sign solution space for Po

Table 4.1: Summary of the relations between the even and odd components of pure
state correlations as derived in Theorems 4.2 and 4.5 and Corollary 4.3. The detailed
relations can be found in the corresponding proofs. Additionally, if n is even and α =
1, the state exhibits only even correlations and given Pe, only Po = 0 is compatible.

All of our results on the relations between even and odd components are summarized

in Table 4.1.

A statement similar to Corollary 4.4 is not true for an even number of parties with

α 6= 0, as the family of mixed states pρ + (1− p)ρ̃ = [1+ Pe + (2p− 1)Po]/2n shares

the same even body correlations, unless α = 1, in which case Po = 0 and the state is

determined.

As a final remark, note that pure states mixed with white noise can be reconstructed

as well from knowledge of Po (Pe) for n odd (n even), as the noise parameter can be

deduced from the eigenvalues of the operators.

4.5 Applications

4.5.1 Ground states of Hamiltonians

Some of the results of this chapter can be related to Kramers’ theorem [85]. Consider a

Hamiltonian that contains even-body interactions only, such as the Ising model with-

out external field [86], or the t-J-model [87–89]. A unique ground state of such a

Hamiltonian must have even correlations only. This, however, is not possible if n is

odd, in which case odd correlations must be present according to Eq. (4.12). Thus,

every ground state of an even-body Hamiltonian must be degenerate if n is odd. On

the other hand, if n is even, then the ground state must belong to the class of even

states, i.e., α = 1. Second, consider Hamiltonians with odd-body interactions only.

The ground-state energy of such Hamiltonians is a function of Po only. Thus, a unique

ground state for n even can only be a state which is determined uniquely by Po, which

are exactly the states perpendicular to their inverted states, i.e., having α = 0 like the

W-state or product states.
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4.5.2 Unitary time evolution

Another application concerns the orbits of certain states under the time evolution

governed by certain Hamiltonians. Here, our approach allows to re-derive and un-

derstand previous results from Ref. [80], where a completely different approach was

used. Consider a Hamiltonian Ho consisting of odd-body interactions only. Then, any

operator P evolves in time as

P(t) = e−iHotPeiHot =
∞

∑
m=0

(−it)m

m!
[Ho, P]m, (4.34)

where [Ho, P]m := [Ho, [Ho, P]m−1] denotes the m-times nested commutator given by

[Ho, P]0 = P.

Now, let us denote the number of particles a tensor product T of Pauli matrices acts

upon non-trivially by wt(T) as defined in Eq. (2.15). For these weights, Lemma 1

from Ref. [90], adapted for the case of commutators, can be used. It states that for the

weight of the commutator of two tensor products S and T one has that:

wt([S, T]) ≡ wt(S) + wt(T) + 1 (mod 2), (4.35)

provided that the commutator does not vanish. This lemma encodes the commutator

rules of the Pauli matrices. Therefore, by linearity, commuting two odd or two even

hermitian operators yields an odd operator, while commuting an even and an odd

operator yields an even operator.

Consider, for example, the three-qubit operators S = X ⊗ Y ⊗ Z + 1 ⊗ 1 ⊗ Y and

T = 1⊗ X ⊗ Z. Then, S has odd and T has even weight. Their commutator is given

by [S, T] = −2iX⊗ Z⊗ 1+ 2i1⊗ X⊗ X, which has even weight.

Thus, if H and P are odd, all the nested commutators in Eq. (4.34) are odd too, and P(t)

stays odd for all times t. On the other hand, if H is odd but P is even, then P(t) remains

even. By Eqs. (4.4) and (4.5), the inverted state ρ̃ evolves as exp(−iHt)ρ̃ exp(iHt) as

well, as the state inversion and the time evolution commute in this case. Therefore,

given a quantum state ρ, the overlap α2 = Tr(ρρ̃) stays constant for all times. This is

also true for mixed states. In that case, the result also holds for the n-concurrence Cn,

given by the convex roof construction for α, as the value of Tr(ρρ̃) stays constant for

any decomposition of ρ into a sum over pure states [91]. In summary, the following

theorem holds:

Theorem 4.6. Any quantum state ρ(t), whose time evolution is governed by an odd-body

interacting Hamiltonian has a constant value of α and Cn.
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4. Even and odd correlations

This result can be useful as follows: Recent experiments enabled the observation of the

spreading of quantum correlations under interacting Hamiltonians for systems out of

thermal equilibrium [92, 93]. Theorem 4.6 shows that large classes of Hamiltonians

preserve certain properties of a quantum state and deviations thereof may be used to

characterize the actually realized Hamiltonian. For instance, Refs. [94, 95] proposed

methods to engineer Hamiltonians with three-qubit interactions only. Experimentally,

the n-concurrence is not easy to measure; however, bounds can be found with simple

methods [96–98]. A simple scheme that detects even-body terms in the Hamiltonian

is the following.

Start with any state |ψ(0)〉 with zero n-concurrence and let it evolve under the Hamil-

tonian in question. We denote by |GHZn〉 the n-partite GHZ state from Eq. (2.44) with

n-concurrence equal to one. After a fixed time t0, the state can be decomposed as

|ψ(t0)〉 =
√

F|GHZn〉+
√

1− F|χ〉 (4.36)

with 〈GHZn|χ〉 = 0. The n-concurrence of the state is given by

Cn(|ψ(t0)〉) = |〈ψ(t0)|ψ̃(t0)〉|

= |F〈GHZn|GHZn〉+ (1− F)〈χ|Y⊗n|χ∗〉

+
√

F(1− F)(〈GHZn|Y⊗n|χ∗〉+ h.c.)|

= |F + (1− F)〈χ|χ̃〉|, (4.37)

as 〈GHZn|Y⊗n|χ∗〉 = 〈GHZn|χ∗〉 = 〈GHZn|χ〉∗ = 0. The right hand side is always

lower bounded by

Cn(|ψ(t)〉) ≥ F− (1− F). (4.38)

If F > 50%, the concurrence is non-zero and even-body interactions must have been

present. Therefore, low-concurrence states cannot approximate the GHZ state under

the time evolution with odd-body Hamiltonians.

Combining this result with the one about ground states of odd-body Hamiltonians,

we obtain the following corollary.

Corollary 4.7. If n is even, it is not possible to produce a GHZ state from a W-state (or

any state with Cn = 0) by unitary or adiabatic time evolution under Hamiltonians with odd

interactions only.
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4.5.3 Entanglement detection

The results of this chapter yield insight into the structure of pure quantum states that

is still subject to ongoing research [99].

Consider a pure state of n qubits with n being odd. Suppose that the odd correla-

tions P1, P3, . . . , Pn−2 are given. If the state is biseparable, there are (n− 1)/2 different

possibilities of biseparation: It could be biseparable along a cut between one qubit

and the other n − 1 qubits, or between two qubits and n − 2, etc., up to (n− 1)/2

qubits and (n + 1)/2 qubits. The first case can be tested for by checking for each party

whether the corresponding one-particle reduced state is pure. This can be done due

to the knowledge of P1. The second case, namely, two qubits vs. n− 2 qubits can be

tested by assuming that the (n− 2)-qubit state is pure and trying to reconstruct the

appropriate even correlations. According to Corollary 4.4, this is only possible if the

state was indeed pure. This procedure can be applied to all other splittings as well.

Thus, the information on genuine multipartite entanglement in pure states is embod-

ied in the odd correlations P1, P3, . . . , Pn−2 already, where no knowledge of the highest

correlations Pn is needed. This is in contrast to the case of mixed states.

4.6 Generalizations

4.6.1 Mixed states

Most of the results obtained so far are only valid for pure quantum states. However,

some of the results can be generalized to mixed states as well. To that end, consider a

(mixed) quantum state ρ of n qubits, written in the even-odd decomposition as

ρ =
1
2n (1+ Pe + Po). (4.39)

We are interested in the subset of states which are orthogonal to their inversion, i.e.,

Tr(ρρ̃) = 0. Examples for such three-qubit states can be found in Section 5.4.3, where

such states are constructed for all admissible sector length configurations.

Note that for positive semidefinite matrices, one can always find positive square roots,

thus Tr(ρρ̃) = Tr(
√

ρ
√

ρ
√

ρ̃
√

ρ̃) = Tr[(
√

ρ
√

ρ̃)(
√

ρ
√

ρ̃)†] = 0. As this expression corre-

sponds to the square of the Hilbert-Schmidt norm of
√

ρ
√

ρ̃, this implies that already
√

ρ
√

ρ̃ = 0 on an operator level and therefore ρρ̃ = 0.
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For mixed states, we do not have the additional constraint ρ2 = ρ at our disposal.

However, expanding ρρ̃ = 0 in the even-odd decomposition yields

(1+ Pe)
2 − (Po)

2 + [Po, Pe] = 0. (4.40)

As the right-hand side is hermitian, the skew-hermitian commutator on the left-hand

side must vanish, as well as the hermitian (1+ Pe)2 − (Po)2. Thus, Pe and Po can be

simultaneously diagonalized. We denote the eigenvectors by |vi〉 and write

Po =
2n

∑
i=1

λo,i|vi〉〈vi|, Pe =
2n

∑
i=1

λe,i|vi〉〈vi|. (4.41)

As (1+ Pe)2 = (Po)2, it holds that λo,i = ±(1 + λe,i) for all i. We have to distinguish

two cases for each i; if λo,i = 0 or λo,i = −(1 + λe,i), then the corresponding eigenvec-

tor |vi〉 belongs to the kernel of ρ, as ρ|vi〉 = 0. If, however, 0 6= λo,j = +(1 + λe,j),

then |vj〉 is an eigenvector of ρ with non-vanishing eigenvalue 1
2n−1 λo,j. For each such

eigenvector we can write

2nρ|vi〉 = (1+ Pe + Po)|vi〉 = 2λo,i|vi〉. (4.42)

If we apply the anti-unitary inversion operator F to this equation, we obtain

(1+ Pe − Po)|ṽi〉 = 0. (4.43)

This means that the inverted state |ṽi〉 belongs to the kernel of ρ as well. This has

interesting consequences, which we summarize in the following corollary.

Corollary 4.8. For an n-qubit state ρ with Tr(ρρ̃) = 0 holds:

1. For each state |ψ〉 in the range of ρ, the state |ψ̃〉 is in the kernel;

2. For each state |ψ〉 in the range of ρ holds 〈ψ̃|ψ〉 = 0.

Proof. We showed the first statement in the text above. In order to prove the second,

we write |ψ〉 = ρ|φ〉 for an appropriate |φ〉. Then

〈ψ̃|ψ〉 = 〈φ̃|ρ̃ρ|φ〉 = 0. (4.44)

Some comments on this result are in order: First of all, it immediately implies that

matrices being orthogonal to their inverted states can be at most of rank 2n−1. Second
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of all, it can help with entanglement detection using the range criterion [100]. It states

that if ρ is a fully separable state, then its range must be spanned by product vectors.

If a product vector |ψ〉 = |a〉 ⊗ . . . is known to be in the range of ρ, then the product

vector |ψ̃〉 = |ã〉 ⊗ . . . cannot be in the range, which might be helpful if one wants

to show that there are not enough product states in the range for them to span the

whole space, thus proving entanglement. Finally, note that the second statement of

Corollary 4.8 is trivial if n is odd.

4.6.2 Higher dimensional systems

While the results obtained before are valid for qubit systems only, some extensions to

higher-dimensional systems are possible, as we will discuss now. The state inversion

map can be generalized to systems of internal dimension d by taking Eq. (4.11) as a

definition (see also the discussion in Ref. [101]):

ρ̃ := ∑
M⊂{1,...,n}

(−1)|M|ρM ⊗ 1M̄. (4.45)

This yields a positive operator [33, 102], which can be normalized to a proper state. In

a higher dimensional Bloch decomposition, the inversion reads

ρ̃ =
(d− 1)n

dn

n

∑
j=0

(
1

1− d

)j

Pj. (4.46)

However, for n > 1 and d > 2 pure states do not stay pure under the state inversion.

Thus, the state inversion cannot be represented as an operator acting on vectors in

Hilbert space anymore, but only as a channel. Nevertheless, this generalization has

recently been used to gain insight into the distribution of entanglement in higher

dimensional many-body systems [101].

4.6.3 Generalized inversions

Another generalization concerns the nature of the inversion operator. Instead of flip-

ping the sign of all non-trivial Pauli operators, one can generalize this to only flipping

certain ones. The most general form of such an operator acting on a single qubit reads

Fα = iC(iα01+
3

∑
i=1

αiσi) (4.47)

where the four dimensional vector ~α is normalized. The choice α = (0, 0, 1, 0)T cor-

responds to the flip considered above (the signs of all Pauli matrices are flipped),
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4. Even and odd correlations

whereas α = (1, 0, 0, 0)T flips just Y (which corresponds to a transposition of the state),

α = (0, 1, 0, 0)T flips Z, and α = (0, 0, 0, 1)T flips X. Other values of ~α correspond to

superpositions of these flips. Indeed, Fα|ψ〉 is a pure state again. For example, setting

α = (0, 0, 0, 1)T allows for a decomposition of states by the number of X appearing in

each term, thus, Pe would consist of all terms with an even number of X. Using this

decomposition, analogous results can be derived with similar uniqueness properties.

4.7 Conclusions

In this chapter, we introduced the decomposition of multipartite qubit states in terms

of even and odd correlations. For pure states, we showed that the even and odd corre-

lations are deeply connected, and often one type of correlations determines the other.

This allowed us to derive several applications, ranging from the unique determination

of a state by its odd correlations to invariants under Hamiltonian time evolution and

entanglement detection.

For future work, it would be highly desirable to generalize the approach to higher-

dimensional systems. Some facts about state inversion are collected in the previous

section, but developing a general theory seems challenging. Furthermore, it may be

very useful if one can extend our theory to a quantitative theory, where the correlations

within some subset of particles are measured with some correlation measure and then

monogamy relations between the different types of correlations are developed. In

part, this procedure is carried out in the next chapter.
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5 Sector lengths

Prerequisites

2.2 Quantum mechanics and quantum states

2.3 Qubits and the Bloch basis

2.5 Entanglement

2.6 Quantum channels

2.7 Entropy

2.9 Semidefinite programs

5.1 Introduction

One of the main messages of the first chapters of this thesis states that correlations in

quantum mechanics are more powerful than classical correlations, nevertheless, they

are constrained in many ways due to the underlying framework, especially the positiv-

ity of quantum states. We saw manifestations of these restrictions in the context of the

marginal problem in Chapter 3, and the even-odd relations in Chapter 4. Furthermore,

these restrictions give rise to the monogamy relations discussed in Section 2.5.4.

A useful concept to describe the correlation structure of quantum states is the so-

called sector length, defined in Eq. (2.18). Roughly said, sector lengths for n-partite

quantum states are quadratic expressions and quantify, for different k ≤ n, the amount

of k-partite correlations in the state. Thus, to any n-qubit state one assigns a tuple

(A1, . . . An) of sector lengths and infers properties of the state based on the sector

length configuration. Sector lengths are, as all correlation measures, invariant under

local unitary transformations [103]. They are expressible in terms of purities of the

reduced states of a system, and as such, they can be experimentally characterized by

randomized measurements on a single copy of the state [104].

Consequently, sector lengths have been used for many purposes, for example, entan-

glement detection [105], deriving monogamy relations [39] and excluding the exis-

tence of certain absolutely maximally entangled states [90]. In the context of quantum

coding theory, sector lengths are known as weight enumerator theory and are used
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to characterize quantum codes [106]. Furthermore, bounds on k-sector lengths with

k < n can be used to find necessary conditions for a set of reduced density matrices

of up to k of the parties to be compatible with a global state and are thus useful in the

context of the representability problem introduced in Section 2.4.

In this chapter we first find exact bounds on individual sectors Ak for k ∈ {2, 3, n}.
Furthermore, we fully classify the set of admissible tuples of sector lengths for two-

and three-qubit states by characterizing all bounds on linear combinations of the sector

lengths. Interestingly, we show that in these cases, the admissible sector lengths form a

convex polytope that can be characterized by few constraints. One of these constraints

can be viewed as a symmetrized version of strong subadditivity (SSA) of the linear

entropy introduced in Section 2.7.

This chapter is structured as follows: First, we will define sector lengths and review

known relations between them. Then, we find tight bounds on the individual sectors

A2, A3 and An in n-qubit states. There, we highlight connections to monogamy of en-

tanglement and apply our results to the representability problem and the problem of

entanglement detection. Next, we extensively study the cases of two and three qubits.

To that end, we describe how to translate between sector lengths, linear entropies and

mutual linear entropies, which are in one-to-one correspondence. We completely char-

acterize the allowed sector length configurations by considering a symmetrized SSA

for linear entropies for three-qubit systems. While it is known that SSA does not hold

in general for the linear entropy [107], we show, using techniques from semidefinite

programming (SDP), that the symmetrized version is true for three qubits.

Finally, have a glance at the four-qubit case. Here, we list examples of corresponding

states for all admissible integer tuples of sector lengths.

5.2 Basic definitions

Consider a quantum state ρ of n qubits. We expand the state in terms of the Bloch

basis, i.e., in terms of tensor products of Pauli matrices, and group the terms according

to the number of non-trivial Pauli matrices in each term as described in Eq. (2.16), i.e.,

ρ =
1
2n (1+ P1 + P2 + . . . + Pn), (5.1)

Here, Pk contains the sum of all terms with k non-trivial Pauli matrices, i.e., terms of

weight k. As ρ is hermitian, the Pk are hermitian as well. Note that the only term that

is not traceless is the unit operator, thus the normalization 2−n is chosen such that

Tr(ρ) = 1.
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As an example, consider again the Greenberger-Horne-Zeilinger (GHZ) state of three

particles, |GHZ〉 = 1√
2
(|000〉+ |111〉). In terms of Pauli operators, the density matrix

reads

ρGHZ =
1
23 (111+ ZZ1+ Z1Z + 1ZZ + XXX− XYY−YXY−YYX). (5.2)

Here and in the following, we skip the tensor product symbol for better readability.

Thus, 1ZZ means 1⊗ Z ⊗ Z. In this example, P1 = 0, P2 = ZZ1+ Z1Z + 1ZZ and

P3 = XXX− XYY−YXY−YYX.

The sector length Ak captures the amount of k-body correlations in a state. We already

defined it in Eq. (2.18) as the normalized square of the Hilbert-Schmidt norm of the

Pk, i.e.,

Ak(ρ) :=
1
2n Tr[Pk(ρ)

2] = ∑
Ξk

Tr[Ξkρ]2, (5.3)

where the sum spans over all Pauli operators Ξk of weight k. Note that A0 = 1 by

normalization. As an example, the GHZ state above has sector length configuration

(A1, A2, A3) = (0, 3, 4). We stress that while we used an explicit choice of a basis to

define the Ai they are invariant under local unitary operations, and as such, they are

independent of the choice of the local basis.

Considering the set of all quantum states of n parties, we are interested in the tuples

(A1, . . . , An) that are attainable. First, we find tight bounds on the individual sectors.

These bounds can always be realised by pure states, as the quantity Ai is convex as

shown in Section 2.3: Ai(ρ) ≤ ∑j pj Ai(|ψj〉) if ρ = ∑j pj|ψj〉〈ψj|. Thus, we start by

listing some basic facts about sector lengths of pure states. In this case, ρ = ρ2 and

therefore ∑n
k=0 Ak = 2n. In fact, the sum of all sector lengths is equal to the purity of

the state up to a factor of 2n.

Additionally, there are many relations among the Ai for pure states: Choosing ρ =

|ψ〉〈ψ| and a subsystem S ⊂ {1, . . . , n}, one can define the reduced state of particles

S, ρS := TrS̄(ρ), where S̄ = {1, . . . , n} \ S. Using the Schmidt decomposition from

Eq. (2.25) between systems S and S̄, one can write the pure state |ψ〉 as

|ψ〉 = ∑
i

√
λi|i〉S ⊗ |i〉S̄. (5.4)

An immediate consequence is that ρS and ρS̄ are diagonal in the respective Schmidt

bases, and their spectra coincide. Furthermore, recall from Eq. (4.9) that

ρ(ρS ⊗ 1S̄) = ρ(1S ⊗ ρS̄). (5.5)
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Summing this identity over all subsets of size m ≤ n yields an equation for pure states

that is expressible in terms of sector lengths [84]:

Mm := 2m
n−m

∑
j=0

(
n− j

m

)
Aj − 2n−m

m

∑
j=0

(
n− j
n−m

)
Aj = 0 (5.6)

for all integer 0 ≤ m ≤ n, where for m = 0 one obtains the purity equality, ∑i Ai =

2n. The relations Mm = 0 are known in the more general context of coding theory

as MacWilliams’ identities [108]. A subset of
⌈ n

2

⌉
of them are linearly independent

equations and allows for the elimination of certain Ai if the state is known to be pure.

5.3 Bounds on individual sector lengths

We start by proving some bounds on the smallest sector lengths. First of all, it is

known that

A1 ≤ n (5.7)

for n-qubit states, which is attained for pure product states like |0 . . . 0〉. This is be-

cause A1(ρ) is given by the sum of all A1(ρi) of the one-party reduced states ρi of

ρ, corresponding to the squared magnitude of the Bloch vector, which is bounded by

one.

5.3.1 Bounds on A2

While the bound (5.7) is trivial, the tight bounds on A2 are only known for n = 2

and n = 3 so far. For n = 2, the bound is given by A2 ≤ 3, as for the purity holds

Tr(ρ2) = 2−2[1 + A1(ρ) + A2(ρ)] ≤ 1. For n = 3, however, we obtain from M1 = 0 in

(5.6) for pure states that A2 = 3, and therefore by convexity for all states A2 ≤ 3. We

will show here that for n ≥ 3, the bound is given by A2 ≤ (n
2), using the following

Lemma.

Lemma 5.1. If for all quantum states ρ of n0 qubits it holds that Ak(ρ) ≤ (n0
k ), then for all

states ρ′ of n ≥ n0 qubits, it holds that Ak(ρ
′) ≤ (n

k).

Proof. We prove the Lemma by induction over the number of qubits n. Let the state-

ment be true for a fixed n ≥ n0 and consider a state ρ of n + 1 parties. There are n + 1

different n-party marginal states of ρ, ρ j̄ := Trj(ρ) for j ∈ {1, . . . , n + 1}. For each of

them it holds by assumption that Ak(ρ j̄) ≤ (n
k).
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Every k-body correlation among the parties i1, . . . , ik that is present in ρ is also present

in the reduced states that contain the parties i1, . . . , ik. This is the case for (n + 1− k)

of the (n + 1) different reductions. Thus,

n+1

∑
j=1

Ak(ρ j̄) = (n + 1− k)Ak(ρ). (5.8)

The left hand side of this equation is bounded by assumption by (n + 1)(n
k), thus we

have that

Ak(ρ) ≤
n + 1

n + 1− k

(
n
k

)
=

(
n + 1

k

)
. (5.9)

Proposition 5.2. For all qubit states of n ≥ 3 parties, it holds that A2 ≤ (n
2). The bound is

tight.

Proof. For n = 3, from M1 = 0 in (5.6) we have that A2 = 3 = (3
2). Thus, Lemma 5.1

applies and therefore A2 ≤ (n
2) for all n-qubit states with n ≥ 3.

Concerning the tightness, consider the pure product state |0 . . . 0〉〈0 . . . 0| = (1+Z
2 )⊗n.

It has weights given by (A1, A2, . . . , An) =
(
(n

1), (
n
2), . . . , (n

n)
)

and reaches the bound.

Note that in [109] the authors prove a weaker statement of Proposition 5.2 for the sum

of all bipartite correlation terms involving X and Y only, for which the same bound is

obtained.

Using the same induction technique and the base case of four qubits, we can prove an

even stronger, non-symmetric version of Proposition 5.2 for n ≥ 4, by summing only

those contributions to A2 that involve correlations with the (arbitrarily chosen) first

qubit.

Proposition 5.3. For all qubit states of n ≥ 4 parties, it holds that

n

∑
j=2

A2(ρ1j) ≡
n

∑
j=2

A(1j)
2 ≤ n− 1. (5.10)

Proof. We prove the claim for n = 4 first. In this case, we distribute all of the 27

Pauli operators whose expectation values contribute to the bipartite sector lengths
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into anticommuting sets,

M1 = {XX11, X Y11, XZ11, Y1X1, Y1Y1, Y1Z1, Z11X, Z11Y, Z11Z },

M2 = {YX11, YY11, YZ11, Z1X1, Z1Y1, Z1Z1, X11X, X11Y, X11Z },

M3 = {Z X11, Z Y11, Z Z11, X1X1, X1Y1, X1Z1, Y11X, Y11Y, Y11Z },

such that in each set all operators pairwise anticommute. Here, XX11 means again

X ⊗ X ⊗ 1⊗ 1. For any anticommuting set M, it holds that ∑m∈M〈m〉2 ≤ 1 [110–112].

The sets are chosen such that

4

∑
j=2

A2(ρ1j) =
3

∑
i=1

∑
m∈Mi

〈m〉2 ≤ 3. (5.11)

To augment the proof to the case of n > 4, we consider all (n−1
3 ) subsets of four

of the parties containing the first one, i.e., for n = 5 we would consider the sets

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5} and {1, 3, 4, 5}. For each of these subsets, the inequal-

ity for four parties holds. Summing these inequalities yields, on the one hand, an up-

per bound of 3(n−1
3 ). On the other hand, we obtain each of the two-body correlations

A2(ρ1j) exactly (n−2
2 ) times. Dividing both sides by this factor proves the claim.

Interestingly, the method of anticommuting sets is also suitable for proving Proposi-

tion 5.2 for n ≥ 6 in an easy graphical way by solving Sudoku-like games. We explain

this method in Appendix A.

Proposition 5.3 states that in a multi-qubit state, the bipartite correlations of a party

with any of the other parties, on average cannot exceed one. Note that maximally

entangled bipartite reduced states would obey A2 = 3, and separable two-qubit states

obey A2 ≤ 1. Thus, Propositions 5.2 and 5.3 can be seen as monogamy relations

limiting the shared entanglement between a party with the rest, and Proposition 5.3 is

in close connection to the Osborne-Verstraete relation [35].

Furthermore, these bounds are useful in the context of the 2-representability problem

[14, 15, 113]. There, one wants to decide whether a set of two-body marginals is

compatible with a common global state. While the 1-representability problem for

qubits is solved (i.e., the same problem with a set of one-body marginals) [113] and

yields a polytope of compatible eigenvalues, the k-representability problem for k > 1

is in general hard to decide [16]. However, Proposition 5.3 can be turned into a set

of necessary conditions on the spectra of a set of two-body marginals in order to be

compatible:
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5.3. Bounds on individual sector lengths

Corollary 5.4. Let {ρij}1≤i<j≤n denote a set of two-qubit states with eigenvalues λ
(ij)
k . Let

their compatible one-qubit marginals be denoted by {ρi}1≤i≤n with spectra λ
(i)
k . If they orig-

inate from a common global state, then for the spectra of the matrices it holds that for all

1 ≤ i ≤ n:

2 ∑
j 6=i

4

∑
k=1

(λ
(ij)
k )2 ≤∑

j 6=i

2

∑
k=1

(λ
(j)
k )2 + (n− 1)

2

∑
k=1

(λ
(i)
k )2. (5.12)

Proof. Note that for an n-qubit state ρ, Tr(ρ2) = ∑2n

k=1 λ2
k , where λk are the eigenvalues

of ρ. Additionally, for the two-body marginal ρij, the purity is given by Tr(ρ2
ij) =

1
4 (1 + A(i)

1 + A(j)
1 + A(ij)

2 ).

This allows to write A(ij)
2 as a function of purities and thus as a function of eigenvalues,

i.e.

A(ij)
2 = 4

4

∑
k=1

(λ
(ij)
k )2 − 2

2

∑
k=1

[(λ
(i)
k )2 + (λ

(j)
k )2] + 1, (5.13)

where λ
(ij)
k are the eigenvalues of ρij and λ

(i)
k , λ

(j)
k the eigenvalues of ρi, ρj, respectively.

Then for each fixed choice of i, the claim follows by using ∑n
j=1,j 6=i A(ij)

2 ≤ n− 1 from

Proposition 5.3.

5.3.2 Bounds on A3 and higher sectors

Up to here, the results involved two-body correlations only. In this section, we gen-

eralize some of the statements to three-body correlations and the sector length A3.

Recalling the statement of Lemma 5.1, we know that if for some n0 ≥ 3, A3(ρ) ≤ (n0
3 )

for all ρ of n0 qubits, then the same bound holds for all n > n0 as well. The ques-

tion arises whether such an n0 exists. For n = 3, A3(|GHZ〉) = 4 > (3
3) = 1. For

n = 4, there exist states with A3 = 8 > (4
3) = 4, for example the highly entangled state

[26, 114, 115]

|χ〉 = 1√
6
(|0001〉+ |0010〉+ |0100〉+ |1000〉+

√
2|1111〉). (5.14)

But for n ≥ 5, the bound holds. To show this, we need to introduce an additional

technique, namely the so-called shadow inequalities [116].

Let M and N be two positive semidefinite hermitian operators acting on an n-particle

space. Then for all T ⊂ {1, . . . , n} [116, 117],

∑
S⊂{1,...,n}

(−1)|S∩T̄| Tr[TrS̄(M)TrS̄(N)] ≥ 0. (5.15)
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Origin Eq. (5.7) Proposition 5.2
Min. n n ≥ 1 n ≥ 3

Sector len. A1 ≤ n A2 ≤ (n
2)

Lin. ent. S(1)
L ≥ 0 S(2)

L ≥
n−1

2 S(1)
L

Mut. ent. I(1)L ≥ 0 I(2)L ≤ n−1
2 I(1)L

Origin Proposition 5.5 Proposition 5.9
Min. n n ≥ 5 n ≥ 3

Sector len. A3 ≤ (n
3) (n

3) + A3 ≥ 1
3 (

n−1
2 )A1 +

n−2
3 A2

Lin. ent. S(3)
L ≥

n−2
2 S(2)

L −
1
4 (

n−1
2 )S(1)

L S(3)
L ≤

n−2
3 S(2)

L −
1
3 (

n−1
2 )S(1)

L

Mut. ent. I(3)L ≥ n−2
2 I(2)L −

1
4 (

n−1
2 )I(1)L I(3)L ≤ n−2

3 I(2)L

Table 5.1: Translation of the various sector bounds into inequalities for linear entropy
and mutual linear entropy.

Here, S̄ = {1, . . . , n} \ S and TrS̄ denotes the partial trace of systems S̄.

Summing over all T with |T| = k yields a set of inequalities Bk ≥ 0:

Bk := ∑
T,S⊂{1,...,n},
|T|=k

(−1)|S∩T̄| Tr[TrS̄(M)TrS̄(N)] ≥ 0. (5.16)

Choosing M = N = ρ, the right-hand side can be evaluated in terms of the sector

lengths to read [118, 119]

Bk =
1
2n

n

∑
r=0

(−1)rKk(r; n)Ar ≥ 0 (5.17)

with the Kravchuk polynomials

Kk(r; n) =
k

∑
j=0

(−1)j3k−j
(

r
j

)(
n− r
k− j

)
. (5.18)

For k = 0, B0 = 1
2n [∑n

j=0(−1)j Aj] ≥ 0 is equivalent to the positivity of state inversion,

introduced in Eq. (2.34). Note that other references denote the inequalities Bk by Sk.

Here, we chose Bk instead in order to avoid confusion with the linear entropy.

Using these inequalities, we are in position to prove the following bound:

Proposition 5.5. For all qubit states of n ≥ 5, it holds that A3 ≤ (n
3). For n = 3, the bound

is given by A3 ≤ 4; for n = 4, it is given by A3 ≤ 8. The bounds are tight.
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5.3. Bounds on individual sector lengths

Proof. For n = 3 and n = 4, we use a linear program that involves the purity M0 = 0

from (5.6) and state inversion inequality B0 ≥ 0. For n = 3, these two equations read

1 + A1 + A2 + A3 = 8, (5.19)

1− A1 + A2 − A3 ≥ 0. (5.20)

Subtracting the second inequality from the first and using A1 ≥ 0, we obtain A3 ≤ 4.

The same works for n = 4.

For n ≥ 5, we prove the statement for n = 5. By use of Lemma 5.1, the result will

then be true for larger n as well. We can assume that the total state is pure, as convex

combinations of pure states will never increase any sector length. Using a linear

program involving relations Mj = 0 for j ∈ {0, 1, 2} from (5.6), B1 ≥ 0 reduces to

A3 ≤ 10 = (5
3).

Concerning the tightness, consider the GHZ state for n = 3 having A3 = 4 and the

state |χ〉 for n = 4, given in Eq. (5.14). For n ≥ 5, consider any product state like |0〉⊗n

with sector lengths Ak = (n
k).

Numerically, a similar statement seems to hold for A4 for states of at least 8 qubits,

but using a linear program, one can show that shadow inequalities are insufficient to

show it. Still, we conjecture:

Conjecture 5.6. For all k there exists an n0, such that for all n ≥ n0, Ak ≤ (n
k) holds for

states of n-qubits.

5.3.3 Bounds on An

Finally, we look at the full-body correlations of states, i.e. An of an n-qubit state. Lower

bounds on this quantity can be used to detect entanglement [105, 120]. Upper bounds,

however, were only known for the case of odd n until recently [120]. In this case,

combining again the purity M0 = 0 from (5.6) and state inversion inequality B0 ≥ 0

from (5.17) yields for odd n

2n−1 ≥ ∑
k odd,
k≤n

Ak ≥ An. (5.21)

For example, the n-partite GHZ state for odd n fulfills An = 2n−1, thus this bound is

tight.

75



5. Sector lengths

n Constraint Sector length Linear entropy Mutual entropy

2 Purity A1 + A2 ≤ 3 S(2)
L ≥ 0 I(2)L ≤ I(1)L

2 State inv. A1 − A2 ≤ 1 S(2)
L ≤ S(1)

L I(2)L ≥ 0
3 Purity A1 + A2 + A3 ≤ 7 S(3)

L ≥ 0 I(3)L ≥ I(2)L − I(1)L

3 State inv. A1 − A2 + A3 ≤ 1 S(3)
L ≥ S(2)

L − S(1)
L I(3)L ≥ 0

3 Schmidt dec. A2 ≤ 3 S(2)
L ≥ S(1)

L I(2)L ≤ I(1)L

3 SSSA A1 + A2 ≤ 3(1 + A3) 3S(3)
L ≤ 2S(2)

L − S(1)
L I(3)L ≤ 1

3 I(2)L

Table 5.2: Translation of the complete sets of sector bounds of two- and three-qubit
states into linear entropy and mutual linear entropy inequalities. The trivial bounds
Aj ≥ 0 are omitted. The translation among the representations is given by (5.33) -
(5.34). The constraints are due to purity, state inversion [B0 ≥ 0 from (5.17)], Schmidt

decomposition [(5.6)] and symmetric strong subadditivity (SSSA, Theorem 5.8).

For n even, this trick does not work. In this case, the GHZ state fulfills An = 2n−1 + 1,

which is why it was conjectured in [120] that this is the upper bound. Here, we show

that this is true at least up to n = 10.

For small n, this follows from the shadow inequality B1 in (5.17). Evaluating B1 ≥ 0

for n = 2 yields

A2 ≤ 3 = 22−1 + 1, (5.22)

which is the well known bound on the two-body correlations in two-qubit states and

is compatible with the conjecture. For n = 4, B1 ≥ 0 yields

A4 ≤ 3− 2A1 + A2 ≤ 3 +
(

4
2

)
= 24−1 + 1 = 9, (5.23)

where we used the result of Proposition 5.2. For higher n, we observe that for every

state ρ, the even mixture with its state inversion from Eq. (2.34), ρ̂ = 1
2 (ρ + ρ̃) has

the same even correlations P2k and vanishing odd correlations P2k+1. This fact was

established already in Chapter 4. Thus, the bounds on an even sector length can be

obtained by setting w.l.o.g. the odd correlations to zero, i.e. A2k+1 = 0.

For n = 6, we investigate B1 ≥ 0 and B3 ≥ 0 and combine them to eliminate A4. This

yields, using Proposition 5.2 again,

A6 ≤ 18 + A2 ≤ 33. (5.24)

For n = 8, we combine B1, B3 and B5 to yield the bound, for n = 10 we combine Bk

for k = 1, 3, 5, 7:

Theorem 5.7. For n-qubit states with n ≤ 10, n even, it holds that An ≤ 2n−1 + 1. The

bound is tight.
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If Conjecture 5.6 is true for k = 4 and n0 ≤ 12, as numerical calculation indicates, then

the same method works for n = 12, n = 14, n = 16 as well.

Finally, we note that recently an alternative proof was found, establishing the bound

for all even n [121].

5.3.4 Application to entanglement detection

Before continuing, we highlight some applications of the bounds found in this section

to the detection of entanglement. As mentioned before, sector lengths are convex

and invariant under local unitaries, making them useful for entanglement detection

[105]. This can be exploited by noticing that for product states ρ = ρA ⊗ ρB, where ρA

consists of nA and ρB of nB particles, it holds that

Ak(ρA ⊗ ρB) =
k

∑
j=0

Aj(ρA)Ak−j(ρB), (5.25)

where we set Ak(ρ) = 0 if k exceeds the number of particles in ρ.

For nA = nB = 1, A2(ρA ⊗ ρB) = A1(ρA)A1(ρB). Due to convexity of the sector

lengths, it follows that

A2 ≤ 1 (5.26)

for all separable states.

For more than two parties, different entanglement structures occur, as explained in

Section 2.5.2. Here, we are interested in detecting genuine multipartite entanglement,

thus, we want to find a criterion excluding biseparability.

For n = 3, we showed that A3 ≤ 4, on the other hand, all biseparable states obey

A3 ≤ 3, (5.27)

as for states ρ = ρA ⊗ ρBC it holds that A3(ρ) = A1(ρA)A2(ρBC) ≤ 3. Therefore,

also in this case, the highest sector length can be used to detect genuine multipartite

entanglement.

For n = 4, however, the situation is different: One can show with the same argument

as above that biseparable states fulfill A4 ≤ 9, an example is given in Section 5.4.5.

But, as seen before, A4 ≤ 9 is already the bound for all states. Thus, A4 does not allow

for detection of genuine multipartite entanglement. However, there is a nontrivial

biseparability bound on A3 of 7. To see this, we have to consider two possibilities. On
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the one hand, product states of the form ρA ⊗ ρBCD fulfill

A3(ρA ⊗ ρBCD) = A3(ρBCD) + A1(ρA)A2(ρBCD) ≤ 4 + 3 = 7, (5.28)

where we used the previously derived bounds of A1 ≤ n, as well as A2 ≤ 3 and

A3 ≤ 4 for three-qubit states. On the other hand, product states of the form ρAB⊗ ρCD

fulfill

A3(ρAB ⊗ ρCD) = A1(ρAB)A2(ρCD) + A2(ρAB)A1(ρCD) (5.29)

≤ A1(ρAB)[3− A1(ρCD)] + A1(ρCD)[3− A1(ρAB)] (5.30)

≤ 6. (5.31)

Here, we have used the purity bound A1 + A2 ≤ 3 and the bound A1 ≤ 2 for two-

qubit states. Instead, for general four-qubit states, the bound of Proposition 5.5 due

to positivity of the state is given by A3 ≤ 8. Therefore, not the highest, but the

next-to-highest correlations allow for entanglement detection. This already yields an

entanglement criterion which can detect states not detectable by known criteria using

the sector lengths [105], an example being again the highly entangled state |χ〉 from

Eq. (5.14) with sector length configuration (A1, A2, A3, A4) = (0, 2, 8, 5). Note that

it is known that even vanishing highest order correlations do not exclude genuine

multipartite entanglement [122–125]. Finally, let us note that while sector lengths

are quadratic expressions in the quantum state, the additional knowledge of similar

quantities of higher order, i.e. higher moments, allows for more refined entanglement

detection. This will be explored in more detail in Chapter 6.

5.4 Bounds on linear combinations of sector lengths

We now turn to the problem of finding bounds on linear combinations of sector

lengths. This is related to the question of whether linear constraints are enough to

fully characterize the set, meaning that the set of states forms a polytope in the sector

length picture. As mentioned before, sector lengths are in one-to-one correspondence

with linear entropies and the mutual entropy for linear entropies. It turns out that

some of the obtained inequalities are easier understood in the language of linear en-

tropies.
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5.4.1 Translation into entropy inequalities

Recall from Section 2.7 that the linear entropy of a state ρ is defined as SL(ρ) =

2[1− Tr(ρ2)]. As Tr(ρ2), the purity of ρ, is up to a factor equal to the sum of all sector

lengths of ρ, we can express SL in terms of sector lengths. We define the sector entropy

of sector k by summing over all linear entropies of reduced states of k particles, i.e.

S(k)
L := ∑

K⊂{1,...,n}
|K|=k

SL(ρK)

=
1

2k−1

[(
n
k

)
2k −

k

∑
j=0

(
n− j
k− j

)
Aj

]
, (5.32)

which can be inverted to yield

Ak =

(
n
k

)
−

k

∑
j=1

(−1)k−j2j−1
(

n− j
k− j

)
S(j)

L . (5.33)

Furthermore, it will be useful to define the k-partite mutual linear entropy,

I(k)L :=
k

∑
j=1

(−1)j−1
(

n− j
k− j

)
S(j)

L . (5.34)

For k = 2 and n = 2, it resembles the usual mutual entropy, I(2)L = SL(ρA) + SL(ρB)−
SL(ρAB). Note that the definition is analogous to the mutual information of von Neu-

mann entropy. However, in the case of linear entropy, the name mutual linear entropy

is preferred, as the quantity is not additive and does not vanish for product states

[126]. Table 5.1 lists the non-trivial bounds on the sector lengths found above, trans-

lated into the two other representations.

Using the results above, we can now characterize the allowed values of sector length

tuples (A1, . . . , An) for two-qubit and three-qubit states. It turns out that in both cases

the set of admissible values is a convex polytope. This is interesting as the convexity

is not trivial because the sector lengths are nonlinear in the state. In addition, it is

surprising that only a finite number of linear constraints corresponding to the surfaces

of the polytope is sufficient for a full description. This reminds of a similar polytope

for separable states if variances of collective spin-observables are considered [111].
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Figure 5.1: The total set of attainable pairs A1 and A2 in two-qubit states, displayed
in light blue.

5.4.2 Characterization of two-qubit states

It is easy to verify that in the case of n = 2, pure product states obey A1 = 2 and

A2 = 1 [see (5.25)]. The Bell state |Φ+〉 = 1√
2
(|00〉 + |11〉) obeys A1 = 0, A2 = 3.

The purity bound Tr(ρ2) ≤ 1 translates into 1 + A1 + A2 ≤ 4. By superposing a

pure product state and the Bell state, one can obtain pure states with A1 ∈ [0, 2] and

A2 = 3− A1. Exceeding the value of 2 for A1 is impossible due to the bound A1 ≤ n

from Eq. (5.7).

However, the state inversion bound B0 ≥ 0 from (5.17) yields another bound on A1

and A2 due to positivity; namely A1 − A2 ≤ 1. States reaching this bound are given

by the family (1− p)|00〉〈00|+ p|01〉〈01|. All other states can be reached by mixing

the boundary states with the maximally mixed state 1/4, as these states lie on a

straight line connecting the boundary state with the origin. This yields the whole set

of admissible pairs of A1 and A2 and is displayed in Fig. 5.1.

5.4.3 Characterization of three-qubit states

While all the bounds in the case of two qubits are known, the case of three qubits

shows an interesting new result that is connected to strong subadditivity of linear

entropy.

We start by collecting all inequalities that we know: The state inversion bound B0 ≥ 0

from (5.17), the bound A1 ≤ 3, the shadow inequality B1 ≥ 0 and the bound from
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5.4. Bounds on linear combinations of sector lengths

Figure 5.2: The polytope of admissible sector length configurations of three-qubit
states. The yellow surface corresponds to the state inversion bound B0 ∝ 1− A1 +
A2− A3 ≥ 0, the blue surface originates from symmetric strong subadditivity [(5.37)].
Pure states lie on the red solid line connecting (3, 3, 1) (product states) and (0, 3, 4)
(GHZ state). The A2-axis is displayed by a red dashed line. States above the lower
gray dotted line are not fully separable, states above the upper gray dotted line are
genuinely multipartite entangled. The surface of the polytope is displayed in Fig. 5.3.

Proposition 5.2 yield a set of four inequalities,

1− A1 + A2 − A3 ≥ 0, A1 ≤ 3, (5.35)

9− 5A1 + A2 + 3A3 ≥ 0, A2 ≤ 3, (5.36)

from which the bound Tr(ρ2) ≤ 1 can be obtained using a linear program. These

inequalities define a polytope in the three-dimensional space of tuples (A1, A2, A3).

However, as numerical search indicates, these bounds are not tight. As it turns out,

there is a single additional linear constraint replacing the constraint B1 ≥ 0.

Theorem 5.8. For 3-qubit states, it holds that

A1 + A2 ≤ 3(1 + A3). (5.37)
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Proof. Consider the map

ρ′ = M(ρ) := (YY1)ρT12(YY1) + (Y1Y)ρT13(Y1Y) + (1YY)ρT23(1YY), (5.38)

where ρTij is the partial transpose of ρ w.r.t. systems i and j. This map can be seen as a

sum of partial state inversions of subsystems of size two, flipping the sign of the Pauli

matrices of that particular subsystems. Using the Bloch decomposition, it can easily

be seen that Tr(ρρ′) = 1
8 (3− A1 − A2 + 3A3). Note that the map defined above is not

positive, however, we will show that Tr(ρρ′) ≥ 0 for all ρ, yielding the claim.

To that end, we consider the Choi matrix η of the map, given by Eq. (2.52) as

η = (1⊗M)(|φ+〉〈φ+|) (5.39)

with |φ+〉 = 1√
8 ∑7

i=0 |ii〉. The map can be reconstructed according to Eq. (2.53) via

M(ρ) = 23 TrA[(ρ
T ⊗ 1)η]. Thus, the quantity in question can be written in terms of

the Choi matrix as Tr(ρρ′) = 23 Tr[(ρ⊗ ρ)ηTA ]. As M is not positive, η is not positive

as well, and one can directly calculate that ηTA has a single negative eigenvalue of

−3/2. Nevertheless, it is positive for symmetric product states ρ⊗ ρ. To see this, we

use an SDP to minimize Tr(σηTA) over symmetric states σ and trying to enforce the

product structure on σ using some relaxations of this property.

To begin with, the matrix ηTA can be written in Bloch decomposition as

ηTA ∝ 3111 111 − ∑
a∈{x,y,z}

σa11 σa11 − ∑
a∈{x,y,z}

1σa1 1σa1 − ∑
a∈{x,y,z}

11σa 11σa

− ∑
a,b∈{x,y,z}

σaσb1 σaσb1 − ∑
a,b∈{x,y,z}

σa1σb σa1σb − ∑
a,b∈{x,y,z}

1σaσb 1σaσb

+ 3 ∑
a,b,c∈{x,y,z}

σaσbσc σaσbσc. (5.40)

Note that due to the special symmetric form of the basis elements, the matrix can also

be written as a combination of local flip operators. This allows to write the matrix

also in terms of projectors onto the symmetric and antisymmetric subspaces. This

representation of the problem is explained in more detail in Appendix B.

The matrix ηTA exhibits many symmetries; it is symmetric under the exchange of the

first three and the second three parties. Also, it is symmetric under any permutation

among the first three parties, if the same permutation is applied to the second three

parties as well. Furthermore, it is invariant under single qubit local unitaries V11V11

for V ∈ {X, Y, Z, Π, T, H} where Π = diag(1, i), T = diag(1, exp(iπ/4)) and H being

the Hadamard gate.
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All of these symmetries do not alter the product structure of ρ⊗ ρ and can, therefore,

be imposed for the optimal state as well.

Apart from the symmetries, we can try to impose the product structure of σ. However,

this is a non-linear constraint and thus not exactly tractable by an SDP. Nevertheless,

we find a set of linear constraints that brings us close enough to the set of product

states to prove the claim.

First of all, product states are separable by definition and must have a positive partial

transpose, i.e. σTA ≥ 0 [127]. Next, using the positivity of Breuer-Hall maps, for

separable states σ and skew symmetric unitaries U, i.e., UT = −U, it holds that σBH =

Tr4,5,6(σ)⊗ 111− σ − (111⊗U)σTB(111⊗U†) ≥ 0 [128, 129]. It turns out that the

choice of U = YYY is suitable in our case.

As a last constraint, for product states, 〈A ⊗ A〉ρ⊗ρ = 〈A〉2ρ ≥ 0 for all three-qubit

observables A. Here, we consider the special choice of A = X11. For product states,

it should hold that 〈A ⊗ A〉σ = 〈A ⊗ 111〉2σ, as σ is symmetric as noted before. To

make this constraint linear, note that for Pauli observables, |〈A〉| ≤ 1. Thus, 〈A ⊗
A〉σ ≤ |〈A⊗ 111〉σ|. Now, there are two possibilities. Either, the optimal state obeys

〈A⊗ 111〉σ ≥ 0 or 〈A⊗ 111〉σ ≤ 0. Therefore, we run the SDP twice, once with the

constraint 〈A⊗ A〉σ ≤ 〈A⊗ 111〉σ and once with 〈A⊗ A〉σ ≤ −〈A⊗ 111〉σ.

To summarize, we run the following SDP:

min
σ

Tr(σηTA) (5.41)

subject to σ ≥ 0,

σ symmetric,

(V11V11)σ(V11V11) = σ for V ∈ {X, Y, Z, Π, T, H},

σTA ≥ 0, σBH ≥ 0,

Tr[(A⊗ A)σ] ≥ 0 for all observables A,

Tr[(X11 X11)σ] ≤ ±Tr[(X11111)σ].

Here, the symmetry constraint means both, symmetric under exchange of the first

three with the last three parties, as well as symmetric under exchange among the first

three and the same exchange among the last three parties. The last three constraints

are the linear approximations of the product structure, where the ± in the last con-

straint means that we run the SDP once for each choice. Both cases yield a minimal

trace of zero within machine precision, proving the claim.
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5. Sector lengths

Note that the method presented here can also be used to prove bounds for arbitrary

linear combinations ∑k ck Ak. In this case, one has to choose ηTA = ∑k ck ∑Ξk
Ξk ⊗ Ξk,

where the inner sum iterates over all Pauli operators Ξk acting on k of the parties

nontrivially, as well as choosing appropriate relaxations of the product structure.

The polytope defined by (5.35)-(5.37) is displayed in Fig. 5.2 and Fig. 5.3.

It remains to show that the obtained polytope is tight by showing the existence of

states for every point in the polytope, including the boundary. In fact, it suffices

to find states on the yellow and the blue surface in Fig. 5.2, corresponding to the

state inversion bound 1 − A1 + A2 − A3 ≥ 0 and the bound A1 + A2 ≤ 3(1 + A3)

from Theorem 5.8. This follows from the observation that for every state ρ, also the

state inversion ρ̃ := Y⊗nρTY⊗n is a proper state, with the same coefficients in the

Bloch decomposition up to a minus sign for all coefficients of an odd number of Pauli

operators as shown in Chapter 4. Thus, the family ρ(p) = pρ + (1− p)ρ̃ corresponds

to states with sector lengths ((1− 2p)2 A1(ρ), A2(ρ), (1− 2p)2 A3(ρ)), yielding a family

of states lying on a straight line connecting a point in the polytope with the point

(0, A2, 0) on the red dashed A2-axis with the same value of A2. Therefore, states filling

the yellow and the blue surface and their straight-line connections to the A2-axis fill

the whole polytope.

First, we give families of states covering the yellow surface, corresponding to the state

inversion bound:

ρA(p, α) = p|G(α)〉〈G(α)|+ 1− p
8

(1+ XXX), (5.42)

ρB(p, α) = p|H(α)〉〈H(α)|+ 1− p
8

[1+ cos(α)Z11+ sin(α)XXX], (5.43)

ρC(p, q) =
p
2
1⊗ |00〉〈00|+ q

2
1⊗ |01〉〈01|+ (1− p− q)|000〉〈000|, (5.44)

with the abbreviations

|G(α)〉 = 1√
1 + cos( α

2 ) sin( α
2 )

[
cos(

α

2
)|GHZ〉+ sin(

α

2
)|+++〉

]
, (5.45)

|H(α)〉 =
[
cos(

α

2
)|0〉 − sin(

α

2
)|1〉

]
⊗ |+−〉, (5.46)

with |±〉 = 1√
2
(|0〉 ± |1〉), and 0 ≤ p ≤ 1, 0 ≤ q ≤ p and 0 ≤ α ≤ π.

Second, the blue surface corresponding to Theorem 5.8 is spanned by the states

ρD(α, β) =
p
2
|Φ(α)〉〈Φ(α)| ⊗ 1+

1− p
2
|Φ(β)〉〈Φ(β)| ⊗ 1 (5.47)
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5.4. Bounds on linear combinations of sector lengths

Figure 5.3: The surface of the polytope of admissible sector lengths of three-qubit
states with the regions covered by the families of states (5.42) - (5.44) on the yellow
surface corresponding to the state inversion bound A1 − A2 + A3 = 1. The family of
states (5.47) covers the whole of the blue surface corresponding to symmetric strong

subadditivity A1 + A2 ≤ 3(1 + A3).

where |Φ(α)〉 = cos(α/2)|00〉+ sin(α/2)|11〉 and p = sin(β)/[sin(α) + sin(β)]. The

angles α and β take arbitrary values between 0 and π.

All other states can be reached by mixing these states with their inverted states, de-

fined by ρ̃ := Y⊗nρTY⊗n.

5.4.4 Connection to strong subadditivity

Theorem 5.8 is closely related to strong subadditivity (SSA). One formulation of SSA

for the specially chosen particle B is S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). However,
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5. Sector lengths

Num. A1 A2 A3 A4 State(s)
1 0 6 0 9 |GHZ4〉, |Φ+〉 ⊗ |Φ+〉, |s4〉
2 0 5 2 8

 cos(α)|s4〉+ sin α|χ〉3 0 4 4 7
4 0 3 6 6
5 0 2 8 5 |χ〉
6 1 6 1 7

 cos(β)|0000〉+ sin(β)|1111〉7 2 6 2 5
8 3 6 3 3
9 1 3 7 4 |W4〉, |GHZ〉 ⊗ |0〉
10 2 4 6 3 |Φ+〉 ⊗ |00〉
11 3 5 5 2 [cos(π/8)|00〉+ sin(π/8)|11〉]⊗ |00〉
12 4 6 4 1 |0000〉

Table 5.3: List of pure four-qubit states realizing integer tuples of sector lengths at
the boundary of the pure state region displayed in Fig. 5.4. In the list, |GHZ4〉 =√

2
−1

(|0000〉 + |1111〉, |s4〉 =
√

3
−1

(|0011〉 + |1100〉 − |Ψ+〉 ⊗ |Ψ+〉), |χ〉 is given in
Eq. (5.14) and |W4〉 = 2−1(|0001〉+ |0010〉+ |0100〉+ |1000〉). The entries depending
on α and β denote families of states covering the whole boundary, and the integer

tuples are obtained for suitable choices of the angles.

it holds for the von Neumann entropy only and fails to hold for the linear entropy, a

counterexample being the state |Φ+〉〈Φ+| ⊗ 1
2 . Nevertheless, summing SSA over all

particles to symmetrize it, yields

3SL(ρABC) + SL(ρA) + SL(ρB) + SL(ρC) ≤ 2[SL(ρAB) + SL(ρAC) + SL(ρBC)], (5.48)

or in our language,

3S(3)
L + S(1)

L ≤ 2S(2)
L . (5.49)

This is, using the correspondence (5.33), equivalent to the statement of Theorem 5.8.

Thus, linear entropy for three-qubit states obeys a symmetric SSA, which implies that

usual SSA holds for at least one choice of special particle. Another formulation in

terms of mutual linear entropies yields the inequality I(3)L ≤ 1
3 I(2)L .

We state the full set of restrictions for n = 2 and n = 3 in all three representations in

Table 5.2.

Finally, note that the statement of Theorem 5.8 can be generalized to states of more

particles using the same induction trick as in the proof of Lemma 5.1. We get:

Corollary 5.9. For n-qubit states with n ≥ 3, it holds that I(3)L ≤ n−2
3 I(2)L .

In terms of sector lengths, the bound reads(
n
3

)
− 1

3

(
n− 1

2

)
A1 −

1
3

(
n− 2

1

)
A2 + A3 ≥ 0. (5.50)
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12 |0000〉
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Figure 5.4: The region of (A3, A4)-pairs of pure four-qubit states. The sector lengths
A1 and A2 are determined by Eqs. (5.51) and (5.52). The numbers indicate the row in

Table 5.3 containing pure state realisations of the respective points.

Using a linear program, it is evident that this equation is stronger than the shadow

inequalities (5.17). As this bound is complementary to the bound A3 ≤ (n
3), we list it

as well in Table 5.1.

5.4.5 A list of pure four-qubit states

While a complete characterization of admissible sector lengths of four-qubit states is

out of the scope of this chapter, it is nevertheless instructive to consider the subset of

pure states only.

From the purity relations M0 = 0 and M1 = 0 from Eq. (5.6) we obtain two indepen-

dent relations among the Ai, namely

A1 = −1
3

A3 −
2
3

A4 + 6, (5.51)

A2 = −2
3

A3 −
1
3

A4 + 9. (5.52)

Furthermore, according to Proposition 5.2, we have A2 ≤ 6, translating into 2A3 +

A4 ≥ 9. We are now in position to plot the remaining (A3, A4) plane. For each integer

pair of (A3, A4) on the boundary of the region, we list some pure state realizations.

Recall that while A4 itself is incapable of detecting genuine multipartite entanglement,

a value of A3 > 7 indicates GME.

The plot is visible in Fig. 5.4, the list of states is given in Table 5.3.
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5.5 Conclusions

In this chapter, we showed how to combine methods from quantum mechanics, coding

theory and semidefinite programming to obtain strict bounds on linear combinations

of sector lengths for multi-qubit systems. As a result, we obtained a full characteri-

zation of the allowed tuples of sector lengths for n ≤ 3, where for n = 3 one of the

constraints is related to a symmetrized version of strong subadditivity of linear en-

tropies. Our results can be understood in the language of entropy inequalities and

monogamy relations, they can also be used in the context of entanglement detection

and the representability problem.

Our results highlight several problems for further research. First of all, the natu-

ral question of a complete characterization of sector bounds for n ≥ 4, but also for

higher-dimensional systems beyond qubits arises. The notion of sector lengths can be

extended to higher-dimensional states as well, and many of the techniques like state

inversion can be generalized. This has been used in the past to obtain some bounds

[101, 117], however, a complete characterization is still out of reach. Interestingly, we

found that for n ≤ 3, the allowed region of sector bounds turned out to be a polytope,

perfectly described by a few linear constraints. The reason for this remains elusive and

deserves further attention, as it may yield deep insight into the complicated structure

of the positivity constraints. It might well be that this is a feature exclusive to qubit

systems, or systems of few particles only. Apart from a similar characterization of

higher-dimensional states of more parties, a deeper understanding of the associated

entropy inequalities is crucial. For instance, the question of whether the inequality

holds for other entropies is relevant.

Finally, we used the bounds on the individual sector lengths for the task of entan-

glement detection and showed, for instance, that A4 alone does not allow for entan-

glement detection in four-qubit states. The question of whether linear combinations

of sector lengths allow for better entanglement criteria in this scenario is worth to be

investigated in the future.
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6 Learning about entanglement from higher

moments

Prerequisites

2.2 Quantum mechanics and quantum states

2.3 Qubits and the Bloch basis

6.1 Introduction

An ongoing challenge in quantum information is the detection of entanglement in

quantum states. While many criteria exist, their experimental realization remains a

major challenge in contemporary setups.

One particular difficulty arises for setups aiming to prove entanglement in quantum

states shared between spatially separated parties, for example in the setting of quan-

tum cryptography. Many entanglement criteria, especially those using Bell inequalities

and often also those involving witnesses, require the parties to align their measure-

ment apparatus [26, 130, 131], which is a technically challenging task.

In order to solve this issue, several different approaches have been used, like using

local measurements only under the assumption that the global state is pure [72], or

encoding the physical state into a logical subspace that is protected against rotations

[132, 133]. Another method that we have exploited already in Chapter 5 is the formu-

lation of LU-invariant entanglement criteria using correlations [8, 105, 123, 134–138].

Such criteria are sometimes called reference frame independent, as they can be evalu-

ated without alignment of the measurements apparatus [139]. However, a drawback

might be that the individual parties need good control over their measurements. This

might be the case if one is required to measure in orthogonal measurement directions.

In this chapter, we will define a family of LU-invariants with the additional advantage

that they can be evaluated using random measurement settings at the local sites, and

use this family for the task of entanglement detection as follows. Typical experimental

setups yield more data than designed for. For example, measuring the sector length
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6. Learning about entanglement from higher moments

A2 in a two-qubit state is equivalent to random measurements on both of the parties

in a sense to be defined in the next section. The corresponding measurement data

yields not only the mean value but also a distribution of measurement results. Good

knowledge of the distribution, in turn, yields a set of its higher moments, forming

higher-degree LU-invariants of the state.

Fig. 6.1 displays the simulated distribution of such randomized measurements for

product states, the two-body marginal of the W-state

|W〉 = 1√
3
(|100〉+ |010〉+ |001〉), (6.1)

as well as the Werner state [140]

ρW(p) = p|Φ+〉〈Φ+|+ 1− p
4

1⊗ 1 (6.2)

for p = 1√
3
. All of these distributions have a vanishing mean value and identical

variances, which are equivalent to the sector length A2 as we will show later. However,

the distribution for the entangled W-state marginal and the entangled Werner state

clearly differ from the distribution of the product state. While this difference is not

visible in the first two moments (the mean value and the variance), and therefore not

detectable by any criterion using the sector length A2, it manifests itself in the higher

moments of the distributions.

These findings motivate to consider higher moments of randomized measurements

for the task of entanglement detection in bipartite systems in this chapter. To that end,

we begin with the definition of a set of higher-degree invariants using moments of

random correlations. We then introduce spherical t-designs to transform the abstractly

defined moments into finite sums of powers of mean values. Finally, we use a subset of

the invariants of degree two (sector lengths) and four to derive improved entanglement

criteria. In fact, these criteria can be regarded as a refinement of the criterion in

Eq. (5.26).

6.2 Moments of random correlation measurements

To begin with, we define a family of intrinsically LU-invariant numbers for an arbi-

trary n-qubit state. To that end, assume that each party k = 1, . . . , n picks a random

measurement basis by picking a random unitary Uk ∈ U(2) according to the Haar

measure, and defining the measurement basis |bi〉k = Uk|i〉k with i ∈ {0, 1}.
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6.2. Moments of random correlation measurements

Figure 6.1: Sample distributions for random bipartite measurements for different
two-qubit states: a product state (blue), the two-body marginal state of the tripartite
W-state (orange) and a specific Werner state (green). The variance of the distributions
corresponds to R(2) and is equal to 1

9 for all distributions shown here. The kurtosis
corresponds to R(4) in Eq. (6.4) and allows for entanglement detection.

The measurement basis defines a point on the Bloch sphere, corresponding to |b0〉,
and its antipodal |b1〉. Instead of picking Haar random unitaries, the parties can

pick uniformly a random point on the Bloch sphere, given by a unit vector ~uk. The

corresponding operator that is measured is given by the rotated Pauli matrix

σ(~uk) = ~uk ·~σ (6.3)

with~σ = (X, Y, Z)T.

The n parties then evaluate the expectation value 〈σ(~u1) ⊗ σ(~u2) ⊗ . . . ⊗ σ(~un)〉ρ on

the joint state ρ and repeat the experiment many times. This yields a distribution of

measured expectation values. The t-th moment R(t) of this distribution is then given

by

R(t)(ρ) =
1

(4π)n

∫
〈σ(~u1)⊗ . . .⊗ σ(~un)〉tρ d~u1 . . . d~un, (6.4)

where the domain of integration is given by n unit spheres S2.

As a local unitary transformation on party k of the state ρ corresponds to rotations

of the corresponding measurement direction ~uk, the moments are by definition LU-

invariant. Furthermore, due to linearity of the expectation value, substituting any ~uk

with −~uk in the t-th power of the expectation value yields a factor of (−1)t, implying

that R(t)(ρ) = 0 whenever t is odd. Furthermore, for t = 0, we obtain R(0)(ρ) = 1.
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6. Learning about entanglement from higher moments

Figure 6.2: Left: The points of a spherical 3-design, forming an octahedron. Its points
correspond to measurements in the usual X, Y and Z direction. Right: The points of

a spherical 5-design, forming an icosahedron.

Therefore, the first two non-trivial moments are given by R(2)(ρ) and R(4)(ρ), on

which we will focus in the following.

6.3 Spherical designs

The question remains how to evaluate the integral in Eq. (6.4). Luckily, averages of

polynomials of degree t on the unit sphere can be replaced by a sum over a certain

finite subset of points on the sphere [141]:

Definition 6.1. A set {~d1, . . . , ~dm} of m points on the unit sphere is called a spherical

t-design of dimension d, if

∫
Sd

F(~u)d~u =
1
m

m

∑
j=1

F(~dj) (6.5)

for all polynomials F of degree t or less with their domain being the d-dimensional

unit sphere Sd.

One can show that for each t and dimension d, for sufficiently large m a spherical

t-design of dimension d exists [141]. However, there is no constructive method to

obtain such designs and the minimal number of points m needed for such designs is

unknown. However, there are many designs known, especially for d = 2 [142].

In order to rewrite Eq. (6.4) for t = 2 and t = 4, we need two-dimensional 2-designs

and 4-designs.
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For t = 2, we use the six points

~d1 = (1, 0, 0)T, ~d2 = (0, 1, 0)T, ~d3 = (0, 0, 1)T,

~d4 = (−1, 0, 0)T, ~d5 = (0,−1, 0)T, ~d6 = (0, 0,−1)T, (6.6)

displayed in Fig. 6.2. In fact, these points even form a 3-design [142]. However,

we are using it for two reasons: First, there exists a 2-designs with only four points

arranged like a tetrahedron. However, the 3-design presented above has the advantage

that for every point also its antipodal is contained in the set. We noted already that

substituting ~uk by−~uk does not change the t-th power of the expectation value for even

t. Thus, we do not have to evaluate the function for all six points in order to determine

R(2), but only for half of them. Second, the points of the 3-design correspond to

measurements of the usual Pauli matrices X, Y and Z. This yields a correspondence

between R(2) and the sector length An as defined in Eq. (2.18):

Lemma 6.2. For an n-qubit quantum state ρ holds that

An(ρ) = 3nR(2)(ρ). (6.7)

Proof. Using the 3-design defined by the points in Eq. (6.6), we obtain

R(2)(ρ) =
1
6n

6

∑
j1,...jn=1

〈~dj1 ·~σ⊗ . . .⊗ ~djn ·~σ〉2ρ (6.8)

=
1
3n

3

∑
j1,...jn=1

〈σj1 ⊗ . . .⊗ σjn〉2ρ (6.9)

=
1
3n An(ρ). (6.10)

For the second line we have used the invariance under point inversion, and the last

equality is just the definition of the sector length An.

This correspondence shows that any entanglement criterion using the moments is a

generalization of the criterion in Eq. (5.26).

Finally, we have to evaluate R(4). To that end, we use the spherical 5-design given by

the 12 vertices of an icosahedron as displayed in Fig. 6.2. Again, for each point also

its antipodal is part of the set, thus it suffices to evaluate the expectation value on six

directions per site. Denoting these vertices as ~e1 to ~e6, we obtain

R(4) =
1
6n

6

∑
j1,...,jn=1

〈~ej1 ·~σ⊗ . . .⊗~ejn ·~σ〉4ρ. (6.11)
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Figure 6.3: Left: The parameters c1, c2, c3 that yield positive bipartite Bell diagonal
states form a tetrahedron, given by the constraints in Eq. (6.16). Right: The subset
of parameters yielding separable Bell diagonal states form an octahedron within the

tetrahedron, given by the constraint |c1|+ |c2|+ |c3| ≤ 1.

6.4 The two-qubit case

We are now going to use the moments R(2) and R(4) for entanglement detection in

the case of two-qubit states. First of all, we expand Eq. (6.11) for n = 2. To that end,

we define

Q(4) :=
3

∑
i,j,k,l=1

〈σi ⊗ σj〉〈σk ⊗ σl〉〈σi ⊗ σl〉〈σk ⊗ σj〉. (6.12)

Inserting the points of the spherical 5-design into Eq. (6.11) for n = 2 yields

R(4) =
1
75

[2Q(4) + 81(R(2))2] (6.13)

=
1
75

[2Q(4) + (A2)
2]. (6.14)

Before considering arbitrary two-qubit states, we concentrate on Bell diagonal states

(BDS). They form a three-parameter subclass of all mixed two-qubit states and are

defined via [143]

ρBDS =
1
4
(1⊗ 1+

3

∑
i=1

ciσi ⊗ σi), (6.15)

where the ci are real numbers. In order to yield a positive matrix, the ci have to obey

1− c1 − c2 − c3 ≥ 0, 1− c1 + c2 + c3 ≥ 0,

1 + c1 − c2 + c3 ≥ 0, 1 + c1 + c2 − c3 ≥ 0. (6.16)
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6.4. The two-qubit case

The set of admissible numbers ci forms a tetrahedron and is displayed on the left-hand

side in Fig. 6.3.

The concurrence of a Bell diagonal state can easily be calculated using Eq. (2.40) by

observing that ρ̃ = ρ, and reads

C(ρBDS) = max{0, 2λmax − 1} (6.17)

= max{0,
3

∑
i=1
|ci| − 1}. (6.18)

The separable BDS states, i.e., those with vanishing concurrence, form an octahedron,

characterized by ∑3
i=1 |ci| ≤ 1, displayed on the right-hand side in Fig. 6.3.

The importance of the class of Bell diagonal states stems from the following fact:

Lemma 6.3. For each two-qubit state ρ, there exists a Bell diagonal state ρBDS, s.t.

a) C(ρBDS) ≤ C(ρ),

b) R(k)(ρBDS) = R(k)(ρ) for all k.

Proof. In order to prove a), we first note that due to Eq. (2.40), the concurrence of a

state ρ and its inversion ρ̃ coincide. This implies, using the convexity property E4 in

Def. 2.4 of entanglement measures, that

C(
1
2

ρ +
1
2

ρ̃) ≤ C(ρ). (6.19)

The mixture on the left-hand side of this equation can be evaluated using Eq. (4.5):

It has the same bipartite correlations as ρ, but vanishing one-particle contributions.

More precisely, 1
2 (ρ + ρ̃) = 1

4 (1⊗ 1+ ∑3
i,j=1 tijσi ⊗ σj).

Using appropriate local unitary transformations UA ⊗UB, the 3× 3 correlation matrix

tij can be diagonalized, yielding the Bell diagonal state

ρBDS := UA ⊗UB
1
2
(ρ + ρ̃)U†

A ⊗U†
B. (6.20)

As local unitary transformations do not change the entanglement of the state, the

claim C(ρBDS) ≤ C(ρ) follows.

For the proof of statement b), we note that R(k) is a function of the bipartite corre-

lations tij only, as well as being invariant under local unitary rotations by definition.

Thus, the moments of ρ and the rotated and mixed ρBDS coincide.
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The statement of Lemma 6.3 yields a simplified recipe to characterize the landscape

of admissible (R(2), R(4))-values of bipartite entangled and separable quantum states,

by consideration of the reduced class of Bell diagonal states only.

6.4.1 The landscape of all two-qubit states

We begin with the characterization of admissible R(2), R(4)-pairs of all bipartite quan-

tum states. As each realizable pair is also realizable by a Bell diagonal state, it suffices

to consider obtainable values of this subset of states.

We begin by rewriting explicitly Eqs. (6.8) and (6.13) for Bell diagonal states. Writing

ρBDS = 1
4 (1⊗ 1+ ∑3

i=1 ciσi ⊗ σi), we obtain

R(2) =
1
9
(c2

1 + c2
2 + c2

3), (6.21)

R(4) =
2
75

(c4
1 + c4

2 + c4
3) +

27
25

(R(2))2. (6.22)

Thus, we have to solve the following optimization problem:

min/max
c1,c2,c3

c4
1 + c4

2 + c4
3 (6.23)

subject to c2
1 + c2

2 + c2
3 = k,

1− c1 − c2 − c3 ≥ 0,

1− c1 + c2 + c3 ≥ 0,

1 + c1 − c2 + c3 ≥ 0,

1 + c1 + c2 − c3 ≥ 0.

Geometrically, this corresponds to minimizing/maximizing the size of a deformed

sphere such that it still intersects with a sphere of radius
√

k, with the intersections

lying inside of the positivity tetrahedron. The constrained optimization is displayed

in Fig. 6.4. Due to symmetry, it suffices to consider the case c1 ≥ c2 ≥ 0, c3 ≤ 0, as

the target function is invariant under exchange of the ci, as well as under reflection

ci → −ci, and the constraints are less restrictive in the octants where one (or all) of the

ci are negative.

In this region, only the positivity constraints 1− c1− c2− c3 ≥ 0 and 1− c1 + c2 + c3 ≥
0 are still relevant.

Next, using Lagrange multipliers, it is easy to see that the minimum (or maximum)

size of the deformed sphere such that it intersects with the sphere of radius
√

k is
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6.4. The two-qubit case

Figure 6.4: The minimization (left) and maximization (right) of the size of a deformed
sphere (blue), such that its intersection with a sphere of radius

√
k (yellow) lies inside

of the constrained red region, corresponding to the set of Bell diagonal states.

given by k2/3 (or k2), where the points of intersection are located at points |ci| = |cj|
(or c1 =

√
k, c2 = 0, c3 = 0).

The global minimum can always be attained, even for k > 1
3 , as long as k ≤ 3. The

maximum, however, is constrained by positivity as soon as k > 1, when the maximal

point touches the tetrahedron. For that region, both remaining positivity constraints

are fulfilled exactly, yielding c1 = 1, c2 = −c3 for the optimal point. From the spherical

constraint we obtain c2 =
√

k−1
2 , yielding a maximal size of the deformed sphere of

1+ (k−1)2

2 . Combining both cases and using k = 9R(2), we obtain the following bounds

on R(4):

9
5
(R(2))2 ≤ R(4) ≤


81
25 (R(2))2 0 ≤ R(2) ≤ 1

9 ,

54
25 (R(2))2 − 6

25R(2) + 1
25

1
9 ≤ R(2) ≤ 1

3 .
(6.24)

These bounds are displayed as blue lines in Fig. 6.6.

6.4.2 The subset of separable two-qubit states

We now have to perform a similar optimization for the subset of separable Bell diag-

onal states, which are described by the additional octahedral constraint |c1| + |c2| +
|c3| ≤ 1, replacing the former positivity constraints, as the separability constraint is

stronger.

In this case, we can perform the optimization in any octant, as all constraints and

target functions are symmetric under reflection and exchange of the ci. Thus, we

concentrate on the case c1 ≥ c2 ≥ c3 ≥ 0. The optimization is displayed in Fig. 6.5.
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6. Learning about entanglement from higher moments

Figure 6.5: The minimization (left) and maximization (right) of the size of a deformed
sphere (blue), such that its intersection with a sphere of radius k (yellow) lies inside of
the constrained red region, corresponding to the set of separable Bell diagonal states.

For the minimization, several different cases have to be considered.

As before, for k ≤ 1
3 , the sphere lies completely inside of the octahedron, yielding the

same upper and lower bound as in the general case.

The maximum, located at c2 = c3 = 0, is attainable up to k = 1. For k > 1, the

octahedron lies inside of the sphere, and no solution can be found anymore.

The minimum, however, splits into several distinct cases. For 1
3 ≤ k ≤ 1

2 , the cut of the

octahedron with the sphere yields a circle, on which the optimum must lie. Solving

the exactly fulfilled constraints |c1| + |c2| + |c3| = c1 + c2 + c3 = 1, as well as c2
1 +

c2
2 + c2

3 = k for c2 and c3, and plugging them into the target function allows for a one-

dimensional optimization, yielding the minimum 1
54 (27k2 + 18k− 7− 4

√
2
√

3k− 1
3
).

Finally, in the region 1
2 ≤ k ≤ 1, the cut of octahedron and sphere is an incomplete

sphere, where the minimum fulfills the additional constraint c3 = 0, yielding immedi-

ately the minimum of 1
2 (k

2 + 2k− 1). Rephrasing these lower bounds in terms of R(2)

and R(4) yields for separable states the same upper bound as for all states, namely

R(4) ≤ 81
25

(R(2))2, (6.25)

as long as R(2) ≤ 1
9 . The lower bound is given by

R(4) ≥


9
5 (R(2))2 0 ≤ R(2) ≤ 1

27 ,

1
2025 [4374(R(2))2 + 162R(2) − 7− 4

√
2
√

27R(2) − 1
3
] 1

27 ≤ R(2) ≤ 1
18 ,

1
75 [162(R(2))2 + 18R(2) − 1] 1

18 ≤ R(2) ≤ 1
9 .
(6.26)
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6.4. The two-qubit case

Figure 6.6: The set of admissible R(2)-R(4) pairs in two-qubit states. The blue region
contains all separable and some entangled states, the red region contains entangled
states only. The red line that separates the two regions corresponds to the function
in Eq. (6.26) and acts as an entanglement criterion that can detect states like the two-
body marginal of a three-partite W-state and all entangled Werner states, lying on
the lower bound of the set. The weaker criterion from Eq. (5.26) using R(2) only is

displayed as a thick black line.

All of the obtained bounds are displayed in Fig. 6.6. As one can see, the set of separable

states is clearly distinguishable from the set of entangled states, and the bounds allow

for entanglement detection in the following way: If a two-qubit state is separable, then

also its corresponding Bell diagonal states from Lemma 6.3 is separable, lying in the

separable subset in Fig. 6.6. Thus, if a two-qubit state lies outside of the subset, it must

be entangled. Whether or not it lies outside can be phrased as follows:

Theorem 6.4. If for a two-qubit state ρ it holds that

• R(2)(ρ) > 1
9 , or

• 1
18 ≤ R(2) ≤ 1

9 and R(4) < 1
75 [162(R(2))2 + 18R(2) − 1], or

• 1
27 ≤ R(2) ≤ 1

18 and R(4) < 1
2025 [4374(R(2))2 + 162R(2) − 7− 4

√
2
√

27R(2) − 1
3
],

then ρ is entangled.

The criterion of Theorem 6.4 can be regarded as a generalization of the criterion in

Eq. (5.26), which detects the entanglement if R(2)(ρ) > 1
9 only (black line in Fig. 6.4).

As a first example, consider the prominent family of Werner states, given in Eq. (6.2).

It is entangled iff p > 1
3 , as can be checked using the PPT criterion. As R(t)[ρW(p)] =
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6. Learning about entanglement from higher moments

ptR(t)(|Φ+〉), the criterion in Eq. (5.26) detects the entanglement of this state for p >
1√
3

only. However, this family lies on the global lower bound of the state space in

Fig. 6.6 with R(4) = 9
5 (R(2))2. Thus, using the refined criterion of Theorem 6.4, the

entanglement of Werner states is detected for the full range of p > 1
3 .

As a second example, consider the marginal state ρAB of the three-partite W-state in

Eq. (6.1). Its marginal state ρAB = 1
3 |00〉〈00|+ 2

3 |Ψ+〉〈Ψ+| is known to be entangled,

with a concurrence of C(ρAB) = 2
3 . With moment values of 32R(2)(ρAB) = 1 and

52R(4)(ρAB) =
49
81 , it is only detectable by the refined criterion.

6.5 Boundary states

The optimization performed above yields directly the Bell diagonal states lying at the

boundary of the corresponding sets. Here, we list for each point on the boundaries a

corresponding Bell diagonal state. Note, however, that these states are usually not the

unique states realizing these points.

As stated above, the global minimum is traced by Werner states, corresponding to

Bell diagonal states with parameters (c1, c2, c3) = (p,−p, p) with 0 ≤ p ≤ 1, being

entangled iff p > 1
3 .

The global upper bound for 32R(2) ≤ 1
3 , connecting the product states with the ori-

gin, is traced by mixtures of product states with maximally mixed states, where the

corresponding Bell diagonal state is given by (0, 0, p) with 0 ≤ p ≤ 1. The quadratic

upper bound connecting the product states with the Bell state, however, is traced by

Bell diagonal states with parameters (p,−p, 1).

The lower bound of the separable set is a piecewise function. For 32R(2) ≤ 1
3 , it

is realised by separable states with parameters (p, p, p), where 0 ≤ p ≤ 1
3 . If 1

3 ≤
32R(2) ≤ 1

2 , the family (p, p, 1− 2p) for 1
3 ≤ p ≤ 1

2 reaches the bound. Finally, the

bound for 1
2 ≤ 32R(2) ≤ 1 is realized by states of the form (p, 1− p, 0) with 1

2 ≤ p ≤ 1.

6.6 Multipartite entanglement

There are several ways to generalize the results of this chapter. One such track is to

consider multipartite states, as the definition in Eq. (6.4), as well as the reformulation

in terms of designs, can be directly generalized to n-partite states.
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6.6. Multipartite entanglement

Figure 6.7: The set of three-qubit states in the R(2), R(4)-landscape. The (numeri-
cally obtained) subset of biseparable states is displayed in light blue with thick blue
boundaries. The lower bound of the set of all states is displayed in red, and some ran-
dom three-qubit states are displayed in violet. The conjectured criterion in Eq. (6.28)
is displayed as a dashed, green line. For reference, the highly entangled GHZ state

and W-state, as well as a biseparable product state, have been added to the plot.

Let us consider the case of three qubits. Using Lemma 6.2 we can express R(2)(ρ) in

terms of the sector length A3, i.e.,

R(2)(ρ) =
1
27

A3(ρ). (6.27)

From Eq. (5.27), we know that a value of A3 > 3 certifies genuine multipartite entan-

glement, and we can ask again the question whether additional knowledge of R(4)

allows for a refined criterion.

In contrast to the bipartite case, we treat this case numerically. Thus, we optimize

numerically over three-partite quantum states using the BFGS algorithm [144–147].

Additionally, we optimize over the set of biseparable states only. The results are pre-

sented in Fig. 6.7 and show a large area occupied by genuinely multipartite entangled

states only. Thus, it is possible to formulate a refined criterion. While we are not able

to infer an analytical form of the boundary between the two sets, we can approximate

it quadratically, which allows us to formulate the following conjecture:

Conjecture 6.5. For each biseparable three-qubit state ρbisep, it holds that

R(4)(ρbisep) ≥
1

425
[972(R(2))2 + 90R(2) − 5]. (6.28)
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6. Learning about entanglement from higher moments

Finally, we note that also the discrimination of different entanglement classes is pos-

sible. Indeed, it is possible to detect states outside of the W-class. Furthermore, it is

possible to detect multipartite entanglement from the two-body marginals. These two

generalizations are described in Ref. [148].

6.7 Conclusions

Higher moments of distributions of measurement results are a natural byproduct of

measurement processes. As such, it is of great interest to harvest this additional infor-

mation for the measurement task at hand. In this chapter, we considered how higher

moments of the statistics of random correlation measurements can help to detect en-

tanglement. These random measurements are useful in cases where no shared ref-

erence frame can be established, or when the measurement devices are insufficiently

characterized.

We showed that in the case of two-qubit states, the additional knowledge of higher mo-

ments allows indeed for a more refined entanglement detection compared to knowing

only the first two moments. In order to obtain analytical results, we used the theory

of spherical designs.

Finally, we gave numerical evidence that also in multipartite scenarios entanglement

detection can be improved using higher moments.

It would be desirable to generalize the results from this chapter to higher-dimensional

systems beyond qubits as well. In this case, one has to replace spherical designs by

unitary designs, as there exists no appropriate Bloch sphere representation of higher

dimensional systems.

A great advantage of using the moments of random correlation measurements is their

invariance under local unitary rotations. However, it is probably also possible to use

higher moments of a restricted set of measurement results to improve the ability to de-

tect entanglement, for example in spin squeezing measurements [149–152]. Prospect-

ing these more general measurement settings could be beneficial for improving the

amount of information that can be obtained from measurement results in many dif-

ferent experiments.
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7 Detecting entanglement using product ob-

servables

Prerequisites

2.2 Quantum mechanics and quantum states

2.5 Entanglement

7.1 Introduction

Entanglement is an important resource for many applications of quantum mechanics.

For example, the security of the Ekert protocol for key distribution using quantum

cryptography relies on the two parties being able to quantify the entanglement in

a shared quantum state [43]. Another example is that of measurement-based quan-

tum computation, where the actual computation is performed by measurements (and

appropriate classical pre- and post-processing) of a previously created resource state

[153, 154]. It is believed that states that allow for universal quantum computing require

certain entanglement quantifiers to reach a maximum [155]. Given the prominent role

of entanglement in such tasks, it is evident that the ability to certify and quantify

entanglement using appropriate measurements is of great importance.

However, measurement abilities are usually limited. First, in typical setups, the de-

vices are limited to local measurements, for instance, if the individual particles of a

multipartite state are spatially separated. Second, measuring expectation values of

these observables can be expensive as usually many copies of the state are required.

In this chapter, we are therefore asking the following question: What is the mini-

mal effort required to detect entanglement using expectation value measurements in

bipartite quantum states?

To answer this question, we investigate the case of measuring the expectation values of

two product observables and give necessary and sufficient conditions on these observ-

ables in order to detect entanglement in qubit-qubit and qubit-qutrit systems. Finally,

we highlight connections of the results to jointly measurable observables.
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7. Detecting entanglement using product observables

7.2 The setting

We consider bipartite quantum states and local measurement observables. We start by

considering the case of a single observable C = CA ⊗ CB. In this case, entanglement

detection is not possible, as can be seen as follows: Let ρ be an entangled quantum

state with c = 〈C〉 = Tr(ρCA⊗CB). Then, as Tr(ρ) = 1, the value of c must lie between

the smallest and the largest eigenvalue (λmin and λmax) of CA ⊗ CB. As CA ⊗ CB

is product, its eigenvectors are product states, too. Thus, there exist two product

states, |amin〉 ⊗ |bmin〉 and |amax〉 ⊗ |bmax〉, yielding the expectation value λmin and

λmax, respectively, when measuring C.

As the set of pure states is connected, one can find two continuous families of states,

|a(t)〉 and |b(t)〉 with

|a(0)〉 = |amin〉, |a(1)〉 = |amax〉, (7.1)

|b(0)〉 = |bmin〉, |b(1)〉 = |bmax〉. (7.2)

As the trace is a continuous map, there exists a value 0 ≤ tc ≤ 1, such that |c〉 :=

|a(tc)〉 ⊗ |b(tc)〉 yields the same expectation value Tr(|c〉〈c|CA ⊗ CB) = c as ρ.

How about having access to an additional measurement observable, L = LA ⊗ LB?

In this case, entanglement detection is clearly possible, as we have already shown in

Section 5.3.4. There, we showed that if for a bipartite qubit system, the sector length

A2 = ∑i,j〈σi ⊗ σj〉2 exceeds a value of one, then the state is entangled. This bound is

already violated if 〈X⊗X〉2 + 〈Z⊗ Z〉2 > 1, which is, for instance, the case for all Bell

states. Thus, having access to the expectation values of the two product observables

X⊗ X and Z⊗ Z, one can indeed detect entanglement.

The question arises whether any pair of product observables can be used for entan-

glement detection. To that end, consider the two observables X⊗X and X⊗ Z. As we

have seen in Section 5.3.1, the sum of squares of their expectation values cannot exceed

one, as the operators anticommute, thus they cannot violate the bound given above.

Indeed, as we will show below, one cannot formulate any entanglement criterion using

only the two expectation values 〈X⊗ X〉 and 〈X⊗ Z〉.

In the following, we investigate this case of two product observables C and L in great

detail in order to find necessary and sufficient properties for these two operators that

enables them to detect entanglement.
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7.3. Relation to entanglement witnesses

7.3 Relation to entanglement witnesses

The scenario described above has close connections to the question of whether or

not an observable can be interpreted as an entanglement witness. As introduced in

Section 2.5, an entanglement witness is a hermitian operator W with 〈W〉 ≥ 0 for all

separable states, and 〈W〉 < 0 for at least one entangled state. Any entanglement

witness can be written as

W = g1− B, (7.3)

where B the observable to be measured and g is chosen such that 〈W〉 ≥ 0 for all

separable states. This means that the optimal choice for g is given by

g = sup
σ

Tr(σB), (7.4)

where the supremum is over all separable quantum states σ. As discussed in Sec-

tion 2.5, the set of separable quantum states is given by all convex combinations of

pure product states, implying that the set of separable states is convex and there

always exists a pure product state yielding a maximal value of Tr(σB). Thus, the max-

imization of Eq. (7.4) can be performed considering pure product states only, making

it much more efficient. Furthermore, for many reasonable choices of B, the maximum

can be calculated analytically.

Finally, note that not all choices for B yield useful entanglement witnesses. As we have

seen above, choosing B = CA ⊗ CB results in the optimization in Eq. (7.4) yielding the

maximal eigenvalue of B, thus W ≥ 0 and there is no entangled state detected by it.

This observation makes it clear that, in order for B to allow for the construction of an

entanglement witness, its eigenstate corresponding to its highest eigenvalue needs to

be entangled (and if instead the ground state is entangled, we can use −B to construct

an entanglement witness).

If, however, in addition to 〈C〉, also 〈L〉 is known, then this allows for the determina-

tion of the expectation value of B = αC + βL for all α and β, and therefore any witness

of the form

W(α, β) = g(α, β)1− αC− βL (7.5)

can be evaluated. Owing to the convexity of the set of all separable states, this also

means that for each entangled state that can be detected from knowledge of 〈C〉 and

〈L〉, there exists a witness of the form of Eq. (7.5) for some α and β detecting it.
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7. Detecting entanglement using product observables

7.4 Systems of two qubits

We start with the easiest case of bipartite qubit systems. In this case, easy necessary

and sufficient conditions for their ability to detect entanglement can be found:

Theorem 7.1. In a two-qubit system, the product observables C = CA⊗CB and L = LA⊗ LB

can be used for entanglement detection, if and only if [CA, LA] 6= 0 and [CB, LB] 6= 0.

Proof. One direction of the proof is trivial: If [CA, LA] = 0, then C and L cannot be

used for entanglement detection, because in this case, Alice is effectively performing

only a single measurement MA. So, any possible linear combination B = αC + βL

can be evaluated from the statistics of a product measurement MA ⊗ MB(α, β), and,

as shown above, the probabilities of such measurements can always be mimicked by

a separable state. The same applies if [CB, LB] = 0.

As argued above, in order to be useful for entanglement detection, there must exist

numbers α, β such that

B = αC + βL (7.6)

has an entangled ground state. This ground state can then be certified by the appro-

priate combination of C and L, thus its entanglement can be detected. Therefore, in

order to show the other direction, we have to show that such numbers α and β exist

whenever the local observables do not commute.

To that end, let us consider α = 1 and β = λ, where λ is a small real number.

We can assume that the operators CA and CB are diagonal in their respective local

computational basis, so C is diagonal in |kl〉, k, l ∈ {0, 1} with eigenvalues γkl . We

need to distinguish two cases, depending on whether the operator C has a degenerate

ground state or not.

Non-degenerate ground state: Let us assume, without loss of generality, that C has the

unique ground state |00〉. Considering λL as a perturbation to C, we now prove that

the perturbed ground state is entangled by reductio ad absurdum. To that end, assume

that the ground state of the operator C+λL is always a product state. For small values

of λ, the ground state can, according to perturbation theory, be expanded as

|ψ(λ)〉 = |00〉+ λ|ψ1〉+ λ2|ψ2〉+ . . . . (7.7)

The first order correction to the ground state is given by [156]

|ψ1〉 = ∑
k 6=0,l 6=0

〈kl|L|00〉
γ00 − γkl

|kl〉, (7.8)
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7.4. Systems of two qubits

where γij = 〈ij|C|ij〉. As the total state is normalized, |ψ1〉 is orthogonal to |00〉.

Note that from the assumption that |ψ(λ)〉 is a product state, it follows that |ψ1〉 must

also be orthogonal to all |kl〉, where k, l > 0. For qubits, this only concerns the case

k = l = 1, but we formulate the argument directly for arbitrary dimensions. This

orthogonality can be seen as follows: Assume that 0 < f := 〈kl|ψ1〉 for k, l > 0, and

consider the state |ϕ〉 = (|00〉+ |kl〉)/
√

2. The state |ϕ〉 is effectively an entangled Bell

state and it is known that for every product state |a, b〉, the overlap obeys |〈a, b|ϕ〉|2 ≤
1/2 [26]. For λ = 0, we have that |〈ψ(0)|ϕ〉|2 = 1/2 and in addition

∂

∂λ
|〈ψ(λ)|ϕ〉|

∣∣
λ=0 = |〈ψ1|ψ〉| = f > 0, (7.9)

so for small λ the overlap obeys |〈ψ(λ)|ϕ〉|2 > 1/2. Consequently |ψ(λ)〉 is entangled

and we arrive at a contradiction.

Having established that |kl〉 for k, l > 0 is orthogonal to the first order expansion

vector |ψ1〉 we can conclude from Eq. (7.8) that

〈11|L|00〉 = 〈00|L|11〉 = 0. (7.10)

Since L = LA ⊗ LB, it follows that either LA or LB must be diagonal in the computa-

tional basis. This is the contradiction to the statement that [Cx, Lx] 6= 0 for x ∈ {A, B}.

Degenerate ground state: Now we consider the case when C is degenerate, in which case

both the ground (lowest eigenvalue) state and the most excited (highest eigenvalue)

state must have two-fold degeneracy. This is because if only the ground state would

be degenerate, the operator −C could be used instead and the first case of the proof

would apply.

Writing CA = diag(c1, c2) and CB = diag(c3, c4), the eigenvalues of C are given by c1c3,

c1c4, c2c3, c2c4. Since we have the assumption that neither CA commutes with LA, nor

CB commutes with LB, neither CA nor CB can be proportional to the identity. Thus,

c1c3 6= c1c4, c1c3 6= c2c3, c1c4 6= c2c4 and c2c3 6= c2c4. The degeneracy can therefore

only occur due to c1c3 = c2c4 and c1c4 = c2c3. It follows that without loss of generality

we can fix the degenerate ground subspace to be spanned by the two product vectors

|00〉 and |11〉. Note that in this two-dimensional subspace, |00〉 and |11〉 are the only

product vectors.

The operator C is disturbed by the operator L and we want to characterize this using

degenerate perturbation theory [156]. We define the projector P = |00〉〈00|+ |11〉〈11|
and, according to perturbation theory, we need to diagonalize the operator PLP.
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7. Detecting entanglement using product observables

The ground state |χ〉 of this operator is then the zeroth order of perturbation the-

ory,meaning that in the limit λ↘ 0, the state |χ〉 approximates the ground state of the

perturbed system arbitrarily well.

The vectors |00〉 and |11〉 cannot be eigenstates of PLP, as otherwise 〈11|L|00〉 =

〈00|L|11〉 = 0 again. So, |χ〉 must be entangled, but then there are no product states

in its vicinity and for small λ the operator C + λL must have an entangled ground

state.

7.5 Systems of higher dimensions

While it was possible to give necessary and sufficient criteria for the usefulness of C

and L in the case of two qubits, the situation changes for higher dimensional systems.

In the case of a qubit-qutrit system, however, a similar statement is true if we assume

that C or L has a non-degenerate ground state and most excited state:

Theorem 7.2. In a qubit-qutrit system, the product observables C = CA ⊗ CB and L =

LA ⊗ LB, where the ground state and the most excited state of C are non-degenerate, can be

used for entanglement detection, if and only if [CA, LA] 6= 0 and [CB, LB] 6= 0.

Proof. We assume again that C is diagonal in the computational basis and that the

ground state is given by |00〉. Using the same methods as in the proof of Theorem 7.1,

one can show that the first order correction to the ground state, |ψ1〉, must be orthog-

onal to |00〉 and to all |kl〉, with k, l > 0, i.e. to |11〉 and |12〉. Similar orthogonality

constraints hold for the corrections to the most excited state. Thus, the operator L

must have the following structure:

L =



� � � � 0 0

� � � � � 0

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �


. (7.11)

Due to the product structure of L, this means that LA (or LB) must be diagonal in the

computational basis, too. This implies that it commutes with CA (or CB), leading to a

contradiction.
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The question remains whether a similar condition holds in higher dimensions as well.

One direction of the statement is still true, i.e., if [CA, LA] = 0 or [CB, LB] = 0, en-

tanglement detection is not possible, as the first part of the proof of Theorem 7.1 is

valid in any dimension. In contrast, the converse direction does not hold, as one can

find counterexamples of non-commuting C and L that have separable ground and

excited states in any linear combination. These examples can be found already for

the case of qubit-ququart, as well as qutrit-qutrit systems. The construction of these

counterexamples can be found in Ref. [157].

7.6 Connection to joint measurability

An interesting consequence of Theorem 7.1 is that while entanglement detection is

not possible with subsystem-wise commuting product observables, it is possible with

jointly measurable observables. As an example, we consider the two POVMs

{E(1)
1 = (1+ X/

√
2)/2, E(1)

2 = (1− X/
√

2)/2}, (7.12)

{E(2)
1 = (1+ Z/

√
2)/2, E(2)

2 = (1− Z/
√

2)/2}. (7.13)

These two POVMs are noisy versions of Pauli X and Z measurements, and jointly

measurable [158]. If we choose CA = CB = E(1)
1 and LA = LB = E(2)

1 , then [CA, LA] 6=
0 6= [CB, LB], thus, entanglement detection is possible. Indeed, knowledge of 〈C〉 and

〈L〉 allows to recover 〈X⊗ X〉 and 〈Z⊗ Z〉. As we have discussed in the beginning of

Section 7.2, this knowledge suffices for entanglement detection.

7.7 Conclusions

In this section, we analyzed the question in which cases knowing the expectation

values of two product observables allows for entanglement detection. As product

observables are usually easier to implement in experiments, and the number of two

observables is the minimal number required to detect entanglement, this scenario is

of great relevance.

We investigated the case of two-qubit and qubit-qutrit systems in great detail and gave

necessary and sufficient criteria for general two-qubit observables and non-degenerate

qubit-qutrit observables, i.e., they are able to detect entanglement whenever the indi-

vidual commutators do not vanish. Finally, we showed that in contrast, there are

jointly measurable observables that are able to detect entanglement.
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7. Detecting entanglement using product observables

Interestingly, while non-commutativity is a necessary criterion in all dimensions, it

is only sufficient in the two cases mentioned above. This is in close resemblance to

the PPT criterion for entanglement detection, which is necessary and sufficient only

in these dimensions as well. This clearly deserves further investigation, as it might

reveal a hidden mathematical connection between the two scenarios.

Furthermore, it would be beneficial to characterize the properties of higher-dimension-

al systems as well and find necessary or sufficient criteria there. However, this scenario

is much more involved and is also numerically harder to treat due to the exponentially

growing number of degrees of freedom. Finally, a generalization to more than two

product observables might be fruitful. For example, it might be possible to find three

observables where each pair of observables is useless, but joint knowledge of the

expectation values of all three of them allows for entanglement detection.
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8 Certifying quantum memories

Prerequisites

2.2 Quantum mechanics and quantum states

2.6 Quantum channels

2.8 Coherence

8.1 Introduction

In this final chapter of the thesis, we focus our attention on the problems of physical

implementations of quantum computers. In contemporary implementations of these

devices, error rates limit the performance, which is why contemporary devices are

limited to approximately 50 qubits and restricted sets of quantum gates [159].

The errors are mainly due to two limitations: First, quantum gates are not imple-

mented perfectly and do not behave correctly in all cases. Second, quantum states

need to be stored intact for a certain amount of time to enable lengthy calculations,

which requires deployment of quantum memories. The time from preparation until

a stored quantum state degrades so significantly that it becomes useless for the com-

putational task is called decoherence time [160]. The implementation of adequately

working quantum memories can be the main obstacle in the construction of quantum

computers. Therefore, it comes as no surprise that a sufficiently large decoherence

time is one of DiVincenzo’s criteria for the construction of useful quantum computers

[161].

Quantum memories are not only important for quantum computers, but also for nu-

merous experiments and protocols. For instance, implementing network protocols like

quantum key distribution for spatially separated parties requires the ability to share

quantum states over large distances. A promising proposal for this task makes use

of quantum repeaters [162–164]. These are intermediate stations that, in the easiest

implementation, share entangled Bell states with each other. The pairs are then used

to teleport a quantum state from Alice to Bob at a later time, utilizing a quantum
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teleportation scheme between the repeaters repeatedly. The functioning of this con-

cept relies heavily on the intermediate parties being able to store the shared Bell pairs

over long time intervals, making quantum memories an inevitable building block of

repeater based networks.

Additionally, quantum memories could be of great advantage for single-photon sour-

ces, which are important quantum optical building blocks [165–168]. These photon

sources usually use parametric down-conversion to create entangled photon pairs.

If one of the photons is eventually detected, it is certain that a second photon was

created, which can then be processed further. However, the creation is a stochastic

process. For many applications, however, it is desirable to have access to photons

at precise, deterministic times. Thus, quantum memories could be used to store the

second photon, and the detection of the first photon acts as a herald that the quantum

memory actually received a photon to store, from where it can be retrieved at the

desired time.

All of these applications are reasons for the ongoing development of suitable quantum

memory devices [169–175].

In this chapter, we study the performance of quantum memories from a theoretical

point of view. We focus on quantum memories that are part of quantum computers,

which give us the ability to perform arbitrary unitary pre- and post-processing. We

consider the question of how to evaluate the quality of such devices. To that end, we

survey existing quality measures, from which we extract a list of abstract criteria that

such a quality quantifier should obey.

Most of the existing measures are based on entanglement. While some tasks indeed

require a certain amount of entanglement, others require sufficient coherence in some

preferred basis instead, for instance the phase discrimination task introduced in Sec-

tion 2.8.2. Consequently, we define a family of three new quality measures based

on how well the coherence is preserved by the memory. Finally, we show that the

introduced measures fulfill the abstract criteria introduced before.

We begin with a brief overview of the main sources of errors in quantum memory

devices.

8.2 Sources of errors in quantum memories

There are two fundamentally different types of errors that can occur during the storage

of quantum states, especially if single photons are the carrier of information. The
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memory can fail to emit a state at all, or the emitted state could differ too much from

the input state.

The first kind of error is connected to the so-called efficiency of a device. It is defined

as the probability that the memory emits an information carrier at all. Current im-

plementations have efficiencies ranging from 5% for quantum dot-based devices, to

nearly 100% in collective atomic gas-based devices [162].

Here, we are more concerned with the second kind of error, namely faulty output

states, as the characterization of these errors is less straight-forward, but important

for all applications, whereas a memory with small efficiency might still be useful in

certain scenarios.

One important class of errors of the second kind are unitary rotations. For example,

a trivial quantum memory for photons could consist of a long fiber coil that delays

the propagation of the photon. Such fibers induce rotations to the polarization of the

photon, which is described by a unitary rotation of the quantum state. If the fiber can

be characterized sufficiently, this unitary is known and constant for each run. Similar

effects can happen in ion-based memories, where background magnetic fields induce

unitary rotations of states. However, we are mainly interested in memories embedded

into a quantum computer, where such unitary errors could be easily corrected.

8.3 Existing quantum memory quality measures

Apart from the efficiency, the most commonly used performance measure for quantum

memories is the fidelity. It is defined as the overlap between the incoming and the

outgoing state. Thus, a unit fidelity indicates that the state was re-emitted unchanged,

whereas vanishing fidelity means that an orthogonal state was reproduced instead.

The fidelities of contemporary quantum memories range from 0.7 in atomic gas-based

memories to 0.94 for quantum dot devices [162]. For memories with low efficiencies,

sometimes a conditional fidelity is used instead, where only runs with re-emitted

quantum states are considered, where values of up to 0.97 are obtained for rare-earth

doped crystal-based memories [162].

Depending on the specific application, the fidelity can be an insufficient choice for a

performance measure. As mentioned before, in some cases fixed unitary rotations are

correctable or do not matter at all, for example for certain Bell measurements [176]. As

an alternative, it has been proposed to use the purity of the output as a performance

measure in these cases instead [162]. However, this approach has other drawbacks: A
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memory device that outputs a fixed pure state on demand will reach unit purity, even

though the output is completely uncorrelated with the input.

Another approach is based on the capability of a memory to preserve entanglement,

and some schemes have been developed to reduce the number of measurements in bi-

partite optical systems [177, 178]. Furthermore, in the case of untrusted measurement

devices, quantum steering has been proposed as an alternative measure. In both cases,

memories which do not conserve entanglement can be distinguished [179]. More re-

cently, also a resource theory of quantum memories was developed [180]. Here, the

free memories in a resource theoretic sense are those destroying the entanglement, and

arbitrary classical pre- and post-processing is allowed in a quantum game assessing

the performance of the memory.

Finally, it is possible to perform a full process tomography of the quantum memory,

revealing its mathematical representation as a quantum channel [181, 182]. From this,

all properties of the memory can be calculated. Process tomography, however, requires

many well-characterized measurements as well as good state preparation capabilities

and is therefore technically challenging and time-consuming.

8.4 Criteria for quality measures

Good quantum memories preserve as many of the non-classical properties as possible,

as these are essential for the performance of quantum algorithms. A perfect quantum

memory is given by the identity channel, its implementation, however, is difficult in

practice.

In contrast, bad memories correspond to measure-and-prepare (M&P) schemes as in-

troduced in Definition (2.10). These schemes can be simulated using classical memo-

ries only, by storing the classical measurement result and preparing a corresponding

state at a later time.

We take these two observations and use them as a guiding principle for our require-

ments on measures for the quality of a memory. On the one hand, such measures

should assign maximal values to the identity channel as well as mere unitary rota-

tions, as these can be corrected for later on and therefore preserve the state. On the

other hand, there should be a nontrivial upper bound for measure-and-prepare de-

vices. Thus, a value exceeding this bound certifies genuine quantum memory.

This definition can be stated formally as follows:
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Definition 8.1. A function M 7→ Q(M) ∈ [0, 1] for channels M is called memory

quality measure, if the following holds:

M1: Q(M) = 1 ifM(ρ) = VρV† for some unitary V,

M2: There is a constant c ∈ [0, 1) such that Q(M) ≤ c ifM is a M&P channel.

We call a memory quality measure sharp, if it additionally fulfills

M1’: Q(M) = 1 if and only ifM(ρ) = VρV† for some unitary V.

While condition M1 requires that unitary channels including the identity channel have

maximal quality, the stricter condition M1’ requires that this is true only for unitary

channels. Interestingly, M1’ implies M2 already if the measure is continuous on the set

of quantum channels, because the subset of measure-and-prepare channels is compact

[7], implying that each M&P channel has finite distance to the set of unitary channels.

8.5 A coherence based quality measure

Given that most existing measures are either not fulfilling the above-given properties,

or require enormous resources to be evaluated, we now want to define and character-

ize a measure that is relatively easy to evaluate, as well as being a memory quality

measure in the sense defined above.

We base this measure on the ability of a quantum memory to preserve the coherence of

quantum states. Coherence has experienced growing interest recently, partly because

of theoretical advances in the field of resource theories, which led to a list of defining

properties for coherence measures [54]. Consequently, many coherence measures have

been found, and some of them have been introduced in Section 2.8 already.

For this section, there are several suitable choices of a coherence measure C. As we are

concerned with coherences w.r.t. different bases and different dimensions, we adopt

the following two conventions.

First of all, we label the D-dimensional basis w.r.t. which the coherence is measured

by {|bj〉}D
j=1. This basis is conveniently represented by a unitary matrix U such that

|bj〉 = U|j〉, where |j〉 denotes the j-th basis state from the canonical basis. We append

the corresponding basis as a parameter to the measure C, i.e., we write CU(ρ) when

referring to the coherence of the quantum state ρ w.r.t. the basis parameterized by U.
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Second of all, we assert that the coherence measure is normalized to range from 0 (for

incoherent states) to 1 (for maximally coherent states) in all dimensions.

The results obtained in this chapter are valid for all such measures as long as they are

continuous, convex, and the only states maximizing it being

|Ψ~α
U〉 :=

1√
D

D−1

∑
j=0

eiαj |bj〉 = UZ~α|+〉, (8.1)

where~α is a D-dimensional phase vector and Z~α = ∑D
j=1 eiαj |j〉〈j| is a phase gate with

phases~α. The state |+〉 is defined as

|+〉 = 1√
D

∑
j
|j〉. (8.2)

This last assumption is rather natural, as many popular coherence measures fulfill

it. Among these are also the two measures introduced in Section 2.8, namely the

robustness of coherence and the l1-norm of coherence [55, 183]. Furthermore, these

states are also maximally coherent in the sense of resource theories [54, 55].

As a concrete example of a coherence measure adapted to varying basis and nor-

malization fulfilling all the properties required here, we extend the definition of the

robustness of coherence from Eq. (2.62). The normalized, basis dependent robustness

of coherence reads

CR,U(ρ) :=
1

D− 1
min

τ∈D,s≥0

{
s
∣∣∣∣ρ + sτ

1 + s
∈ IU

}
, (8.3)

where D denotes the set of D-dimensional quantum states and IU denotes the set of

incoherent, i.e., diagonal states w.r.t the basis defined by U.

In the following, we will define a memory quality measure based on coherence. As

such, the values it assigns to quantum memories should reflect its usefulness for co-

herence based tasks. Therefore, it should identify the most classical basis, that is, the

basis in which all maximally coherent states are mapped to states of smallest coher-

ence. This coherence then defines the quality.

Mathematically, we state this as follows:

Definition 8.2. Given a quantum channelM, the quality Q0 is defined as

Q0(M) := min
U

max
~α

CU [M(|Ψ~α
U〉)]. (8.4)
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Q0(M) = minU max~α |+〉 Z~α U M U† C

Q−(M) = minU,U′ max~α |+〉 Z~α U M U′† C

Q+(M) = minU max|ψ〉 |ψ〉 M U† C

Figure 8.1: The three measures Q0, Q− and Q+ from Defs. 8.2 - 8.4, represented as
quantum circuits. The measures are obtained by optimization over the input states
and measuring the coherence of the output in certain bases which are optimized over

as well.

Here, the maximization is over all maximally coherent states given by Eq. (8.1). Note

that we writeM(|Ψ~α
U〉) instead ofM(|Ψ~α

U〉〈Ψ~α
U |) to shorten the notation. The defini-

tion of Q0 is visualized as a quantum circuit in Fig. 8.1.

If the robustness of coherence is used as the coherence measure, the value of Q0 has an

operational interpretation in the context of the phase discrimination task introduced

in Section 2.8.2. There, the improvement of using quantum probe states over naive

guessing is quantified by their coherence. Thus, Q0 yields the minimal achievable

advantage when storing proper probe states in the memory prior to such a discrimi-

nation task in an arbitrary basis.

Note that Q0 is not the only possible performance measure based on coherence. In

fact, it will be useful to define two similar measures that act as lower and upper bound

on Q0, respectively. First, it is possible to minimize over the basis of the maximally

coherent states independently of the basis in which the coherence of the output is

measured:

Definition 8.3. Given a quantum channelM, the quality Q− is defined as

Q−(M) := min
U,U′

max
~α

CU′ [M(|Ψ~α
U〉)]. (8.5)

Clearly, Q−(M) ≤ Q0(M).

Second, instead of maximizing over maximally coherent states, we can instead maxi-

mize over all states:

Definition 8.4. Given a quantum channelM, the quality Q+ is defined as

Q+(M) := min
U

max
ρ

CU [M(ρ)]

= min
U

max
|ψ〉

CU [M(|ψ〉)]. (8.6)
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Note that maximization over all states is equivalent to maximization over pure states

due to the convexity of the coherence measure. Due to the additional freedom in the

maximization, we have Q0(M) ≤ Q+(M). The definitions of Q± are displayed as

quantum circuits in Fig. 8.1 as well.

Finally, we remark that in parallel to the creation of this work, a similar approach

has been developed by different authors, which also assesses the quality of memory

devices based on coherence [184]. Their approach is based on the average preserved

coherence.

8.6 Properties of the measures

Due to the optimization over the unitary basis, the three qualities are invariant under

unitary pre- and post-processing. This means that for all channels M and unitary

rotations V(ρ) = VρV† for some unitary matrix V, for Q0 it holds that

Q0(M) = Q0(V ◦M ◦ V−1), (8.7)

while for Q± it holds that

Q±(M) = Q±(V ◦M) = Q±(M◦V). (8.8)

Additionally, the quality measure Q+ satisfies a useful pre-processing property:

Lemma 8.5. The quality measure Q+ cannot be increased by pre-processing of the input,

i.e., Q+(M◦N ) ≤ Q+(M) for all quantum channelsM and N .

Proof. By definition,

Q+(M◦N ) = min
U

max
ρ

CU(M(N (ρ)))

≤ min
U

max
ρ

CU(M(ρ)) = Q+(M), (8.9)

which proves the lemma.

Furthermore, the measures are continuous maps.

Lemma 8.6. The quantities Q± and Q0 are continuous.
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Proof. Let M be a quantum channel with the corresponding Choi state ηM given by

Eq. (2.52),

ηM = 1⊗M(|φ+〉), (8.10)

with |φ+〉 being the maximally entangled state 1√
D ∑i |ii〉. Using the Choi state, the

inner part of the expressions for Q− and Q0 can be written as

CU′(M(|Ψ~α
U〉))

=CU′(D TrA[(|Ψ~α
U〉〈Ψ~α

U |T ⊗ 1)ηM]),
(8.11)

which is continuous in α, U, U′ and ηM. Repeatedly applying the maximum theorem

[185], and using the fact that the robustness of coherence is continuous [186], shows

that Q− and Q0 are continuous in ηM.

If a sequence of channels {Mi}i converges to a channelMwith regard to the diamond

norm, then the sequence {ηMi}i must converge to ηM [187, 188]. This implies that the

function above is also continuous inM. For Q+, a similar argument holds.

We still have to show that Q0 and Q± are sharp memory quality measures in the sense

of Definition 8.1. We begin with property M1.

Lemma 8.7. The measures Q± and Q0 fulfill property M1, i.e. Q(V) = 1 for all unitary

channels V .

Proof. As Q−(M) ≤ Q0(M) ≤ Q+(M), it suffices to show the property for Q−.

Furthermore, as Q− is invariant under unitary rotations, it suffices to consider only

the identity channel id. Recall that

Q−(id) = min
U,U′

max
~α

CU′(UZ~α|+〉) = 1, (8.12)

where Z~α is a diagonal matrix with phases eiαj as entries, is equivalent to the statement

that for all bases U and U′, there exists a maximally coherent state in U that is also

maximally coherent in U′. This can be stated as follows: for all U there exist vectors~α

and ~β, such that

Z†
~β

UZ~α|+〉 = |+〉, (8.13)

which is equivalent to the statement that the sets of maximally coherent states with

regard to two different bases always have a non-empty intersection. This interesting

geometrical question has been investigated and answered affirmatively recently; it was
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shown that any unitary operator U can be decomposed as [189]

U = Z1XZ2, (8.14)

where Z1 and Z2 are diagonal unitaries with the upper left entry equal to 1 and X is a

unitary matrix where the elements in each row and each column sum to 1. Inserting

this decomposition into Eq. (8.13) shows that choosing~α and ~β such that Z~α = Z†
1 and

Z~β = Z2 yield the desired equality, as |+〉 is an eigenstate of X.

Second, we show that also M1’ holds by showing the converse statement.

Theorem 8.8. Q± and Q0 fulfill property M1’, i.e., if Q(M) = 1, then M is a unitary

channel.

Proof. To prove the theorem, it is sufficient to consider Q+(M) = 1, as Q−(M) ≤
Q0(M) ≤ Q+(M) ≤ 1. If Q+(M) = 1, then for all unitaries U it holds that

max
|ψ〉

CU [M(|ψ〉)] = 1. (8.15)

This implies that for all U, there exists a state |Φ〉 and a maximally coherent state |Ψ〉
with regard to U such that

M(|Φ〉) = |Ψ〉. (8.16)

To prove the statement, we show the following three facts:

(i) If Q+(M) = 1, then we can find a basis {|Φi〉} that is mapped to a basis {|Ψi〉}
byM.

(ii) In the range of M, there exist vectors {|Ψ1j〉 = ∑D
i=1 β

(j)
i |Ψi〉}D

j=2 with the prop-

erty β
(j)
1 6= 0 6= β

(j)
j for all j.

(iii) From the existence of the |Ψi〉 and |Ψ1j〉, it follows thatM is unitary.

For the first fact, in order to find state |Ψ1〉, we simply choose a random basis and

obtain a pure (maximally coherent) state in the range of M due to the property

Q+(M) = 1. For the second state |Ψ2〉, we choose a basis with |Ψ1〉 as a basis state.

The corresponding maximally coherent state has an overlap of |〈Ψ1|Ψ2〉| = 1√
D

and

is therefore linearly independent. All other states |Ψi〉 can be found step by step: Let

us assume that we have already found the linearly independent states |Ψ1〉, . . . , |Ψm〉.
We construct an orthonormal set of states spanning the same subspace and extend it
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to an orthonormal basis. The corresponding maximally coherent state has nonvanish-

ing overlap with the space orthogonal to span{|Ψ1〉, . . . , |Ψm〉} and is therefore also

linearly independent.

With this procedure, we obtain the nonorthonormal basis {|Ψi〉}. The corresponding

preimages also form a basis, as, from the Kraus decomposition (see also below) it

follows that the dimension of their span must be equal to D as well.

For the second fact, we have to show the existence of the vectors {|Ψ1j〉} with the

properties mentioned above. It suffices to show the existence of |Ψ12〉; the proof for

the other |Ψ1j〉 is analogous.

Given the basis {|Ψi〉}, we consider the normalized dual basis {|γi〉}with the property

〈γi|Ψj〉 = ciδij for some ci > 0 [190]. In this basis, β
(j)
i = c−1

i 〈γi|Ψ1j〉 holds. Now we

search for a vector |Ψ12〉 in the range of M with the properties 〈γ1|Ψ12〉 6= 0 6=
〈γ2|Ψ12〉, as from these conditions the presence of the desired coefficients β

(2)
1 and β

(2)
2

follows.

To this end, consider the orthonormal basis |b1〉 = |γ1〉, |b2〉 ∝ |γ2〉 − 〈γ1|γ2〉|γ1〉 and

the other |bi〉 arbitrary. The maximally coherent state |Ψ〉 in the range of M in this

basis can be written as |Ψ〉 = 1√
D ∑D

k=1 eiφk |bk〉. The overlaps are given by

〈γ1|Ψ〉 ∝ eiφ1 6= 0,

〈γ2|Ψ〉 ∝ 〈γ2|b1〉eiφ1 + 〈γ2|b2〉eiφ2 . (8.17)

If |〈γ2|b1〉| 6= |〈γ2|b2〉|, |Ψ12〉 = |Ψ〉 satisfies the desired properties.

Otherwise, we instead choose the basis given by |b′1〉 =
√

2
3 |b1〉+

√
1
3 eiθ |b2〉 and |b′2〉 =√

1
3 |b1〉 −

√
2
3 eiθ |b2〉 and the other |b′i〉 arbitrary. Now, the maximally coherent state

|Ψ′〉 = 1√
D ∑d

k=1 eiφ′k |b′k〉, with respect to the basis {|b′i〉}, in the range of M has the

overlaps

〈γ1|Ψ′〉 ∝

√
2
3

eiφ′1 +

√
1
3

eiφ′2 6= 0, (8.18)

〈γ2|Ψ′〉 ∝ (

√
2
3

eiφ′1 +

√
1
3

eiφ′2)〈γ2|b1〉

+ (

√
1
3

eiφ′1 −
√

2
3

eiφ′2)eiθ〈γ2|b2〉.
(8.19)

As in this case |〈γ2|b1〉| = |〈γ2|b2〉|, we can choose θ such that 〈γ2|b1〉 = eiθ〈γ2|b2〉 6= 0.

Then the right-hand side of Eq. (8.19) is proportional to (
√

2 + 1)eiφ′1 + (1−
√

2)eiφ′2 ,

which cannot vanish. Thus, in this case we choose |Ψ12〉 = |Ψ′〉.
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Finally, concerning the third fact, as M is a quantum channel, it admits a Kraus

representation, i.e.,M(ρ) = ∑r
l=1 KlρK†

l with ∑l K†
l Kl = 1. Using the fact that the |Φi〉

are mapped to pure states, we have for all l = 1, . . . , r that

Kl |Φi〉 = µli|Ψi〉 (8.20)

for i = 1, . . . , D, and

Kl |Φ1j〉 = κl j|Ψ1j〉 (8.21)

for some |Φ1j〉 = ∑D
k=1 α

(j)
k |Φk〉 and j = 2, . . . , D.

Decomposing the right-hand side of Eq. (8.21) in terms of the basis {|Ψi〉} and using

linearity on the left-hand side, we have

D

∑
k=1

µlkα
(j)
k |Ψk〉 = κl j

D

∑
k=1

β
(j)
k |Ψk〉 (8.22)

for all l. Thus, for all l, j and k,

µlkα
(j)
k = κl jβ

(j)
k . (8.23)

For a fixed j, consider the two equations for k = 1 and k = j, where the corresponding

β
(j)
k do not vanish by assumption. If α

(j)
1 or α

(j)
j were 0, κl j = 0 for all l would follow.

This would imply thatM(|Φ1j〉) = 0, which cannot be true ifM is a channel.

Otherwise, if κl j was 0 for one l, then this would imply that µl1 = µl j = 0 for this l.

However, µl1 = 0 implies that κl j′ = 0 for all j′, which in turn implies that µl j′ = 0

for all j′. Thus, Kl would map a whole basis to 0 and, therefore, vanishes and can be

neglected from the decomposition of the channel.

Thus, we have that κl j 6= 0 and, from that, µl1 6= 0 6= µl j. Then, the ratio

µl1

µl j
=

β
(j)
1 α

(j)
j

β
(j)
j α

(j)
1

(8.24)

is independent of l. As this holds for all j, it follows from Eq. (8.20) that the Kl must

be proportional to each other, i.e., Kl ∝ Kl′ . Using now that M is trace preserving,

i.e. ∑l K†
l Kl = 1, leads to K†

l Kl ∝ 1. Thus, all Kraus operators have to be proportional

to the same unitary V, and hence,M(ρ) = VρV†.

It follows immediately from the proof above that, to completely characterize a unitary

channel, it is sufficient to prepare a basis that is mapped to another basis by that

channel and another pure state in the image which has nonvanishing coefficients in
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the latter basis. If one can find such states, the channel is guaranteed to be unitary

and is uniquely determined by those states up to a global phase. Since pure states can

be characterized with few measurements [99, 191], the same can also be done with

unitary quantum channels M. Such a characterization has also been constructively

obtained in [192].

Finally, as the continuity of Q± and Q0 together with property M1’ implies property

M2, it follows that:

Corollary 8.9. The quantities Q± and Q0 are sharp memory quality measures.

In the case of single-qubit channels, it is possible to find tight upper bounds for M&P

channels for Q0 and Q+ of 1√
2

and of 1√
5

for Q−. For the derivation of these bounds,

see Ref. [186].

It should be noted that the measures introduced here are not faithful in the sense that

any non-M&P channel can be detected. This is not possible with any efficiently com-

putable single measure, because such a measure would solve the separability problem,

which is NP-hard [193].

As a very simple example, we consider the depolarizing channel ∆p of a single D-

dimensional particle, given by [27]

∆p(ρ) = pρ +
1− p

D
1. (8.25)

Physically, this corresponds to a memory that outputs with probability p the correct

state, but with probability 1− p the output is completely random.

As the coherence measure, we use the normalized l1-norm of coherence from Sec-

tion 2.8.2. This measure is sensitive to the off-diagonal entries of the quantum state

only. Thus, mixing it with the maximally mixed state yields only a factor, i.e.,

Cl1 [∆p(ρ)] = Cl1 [pρ +
1− p

D
1] = pCl1(ρ). (8.26)

This allows us to calculate Q± analytically:

Q+(∆p) = min
U

max
ρ

CU [∆p(ρ)] (8.27)

= p min
U

max
ρ

CU [ρ] (8.28)

= p, (8.29)

where the last equality is due to the fact that the second line corresponds to p times

the quality of the identity channel, which is equal to unity by property M1.

123



8. Certifying quantum memories

Analogously, Q−(∆p) = p and therefore Q0(∆p) = p as well. This is a sensible value

for the quality, as p corresponds directly to the probability that the channel works as

expected.

8.7 Experimental estimation

The question remains of how the quality measures can be estimated in experiments.

For single-qubit systems and memories close to a unitary channel, few measurements

suffice to obtain good estimates [186].

For higher-dimensional channels, the estimation is more involved. In the following, we

discuss how experimental data from higher-dimensional quantum memoriesM could

be used to estimate the memory performance measure Q0(M). Since we know that

Q0(M) = 1 iffM is unitary, we writeM = V +K, where V is some unitary channel

and K(ρ) =M(ρ)−V(ρ) for all states ρ. From Lemma 8.7, it follows that with respect

to any basis U with basis vectors |bi〉, there always exist two maximally coherent states

|φ〉 and |ψ〉 such that V(|φ〉) = |ψ〉. Thus, for ρ =M(|φ〉) = |ψ〉〈ψ|+K(|φ〉〈φ|) we

have that

CU(ρ) ≥ −
1

D− 1
Tr(Wρ)

=
1

D− 1
(D〈ψ|ρ|ψ〉 − 1)

=
1

D− 1
(D + D〈ψ|K(|φ〉〈φ|)|ψ〉 − 1) , (8.30)

where we have used the notion of coherence witnesses introduced in Ref. [56] with

W = 1− D|ψ〉〈ψ|, which gives a lower bound to the robustness of coherence. Let

λ = minσ λmin[K(σ)], i.e., λ is the smallest eigenvalue of K(σ) for any state σ. Then,

Q0(M) = min
U

max
~α

CU [M(|Ψ~α
U〉)]

≥ D(1 + λ)− 1
D− 1

. (8.31)

To determine λ, we resort to the Choi matrix ηK of K. Hence,

λ = D min
σ,|s〉
〈s|TrA[(σ

T ⊗ 1)ηK]|s〉

= D min
|a〉|s〉
〈a|〈s|ηK|a〉|s〉, (8.32)
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which can be estimated using experimental data. For instance, let ηM and |φV 〉〈φV | be

the Choi matrix of the channels M and V , respectively. V might be guessed heuris-

tically from the obtained data, determining |φV 〉〈φV |. The experimental data will im-

pose linear constraints on ηM and, hence, also on ηK. Using a see-saw optimization, it

is possible to optimize λ = D minσ,ρ Tr[(σ⊗ ρ)ηK] over states σ and ρ with alternating

semidefinite programs [59].

8.8 Conclusions

In this chapter, we had a close look at quantum memory devices as important build-

ing blocks for future quantum computers. As many tasks in a quantum computer

rely on long decoherence times, the development and characterization of the memo-

ries become increasingly important. We highlighted the different kinds of errors that

memories are prone to; loss of the quantum state (inefficiency) and erroneous output.

Consequently, we discussed how the severity of the last kind of error can be assessed,

and formulated criteria for bona fide quality measures.

As these criteria are not met by many currently used quality measures and given

the fact that some quantum computation tasks require certain values of coherence

in order to yield quantum advantage, we then defined three related measures based

on the minimal coherence left in any basis and showed that they meet the criteria

introduced before.

An important feature of quality measures is the existence of an upper bound on

measure-and-prepare schemes, for which no quantum data needs to be stored. While

we showed that our three measures fulfill these criteria, we did not yield a specific

numerical value for this bound. This should be remedied in future work.

Finally, we gave a recipe on how the measures can be evaluated from experimental

data.

Additionally, the methods introduced here could be generalized to other aspects of

quantum computing and quantum information. For example, the results could be

applied directly to the case of quantum teleportation schemes. Furthermore, they

could be used to characterize the entangling power of two-qubit gates, whose ability

to generate entanglement can be linked to increasing two-level coherences [194, 195].
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”I learned very early the difference between knowing

the name of something and knowing something...“

Richard P. Feynman

This thesis was mainly concerned with deepening the understanding of capabilities

and limitations of correlations in quantum states, and up to this point the word ”cor-

relation“ appeared 142 times, or roughly once per page. However, there is a big

difference between knowing the name of something and knowing something. Never-

theless, there is hope that the findings in this thesis help to illuminate the meaning

behind the bare word.

To recapitulate, we began with the investigation of the marginal problem, i.e., whether

correlations between a limited number of particles in a multi-particle state suffice to

fix the joint state uniquely. We found that in the case of four-qudit states, the two-body

marginals of certain particle pairs almost always suffice for this task. We generalized

this statement to multipartite states of more than four parties by showing that certain

correlations between all but two of them achieve the same determination of the global

state.

We then generalized the marginal problem to the question of which correlations can fix

a global state. Here, in the restricted case of multi-qubit states, we found that there is a

deep connection between correlations among an even number and correlations among

an odd number of the particles. In pure states of an odd number of parties, we found

that the collection of odd correlations fixes the even correlations, whereas, in states

of an even number of parties, the even correlations fix the odd ones. We highlighted

the implications of this finding on the structure of ground states of Hamiltonians and

entanglement detection.

We then considered sector lengths as quantifiers for the amount of correlation between

a certain number of particles and evaluated their expressiveness for the properties of

quantum states. We found that there are many monogamy-like restrictions on the

sector lengths and that they are useful for the task of entanglement detection. Fur-

thermore, we completely characterized admissible values of tuples of sector lengths

in the case of two- and three-qubit states. Interestingly, the set of admissible tuples

forms a convex polytope in these cases, a fact with no apparent reason that is worth
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being investigated in more detail in the future. For one of the constraints describing

this polytope for three-qubits, we found a connection to the strong subadditivity of

linear entropies.

As sector lengths are local unitary invariants of degree two, we consequently explored

how the additional knowledge of higher-degree invariants can help for the task of

entanglement detection. We found that certain invariants of degree four connected to

the distribution of measurement results are indeed helpful and allow for the formu-

lation of more refined entanglement criteria. While we gave an analytical criterion in

the case of two-qubit states, we formulated a conjecture based on numerical studies

for states of three qubits.

We then turned our focus to questions of how entanglement can be detected with

limited resources by considering scenarios where only the expectation values of two

product observables are known. We found a necessary and sufficient criterion for two-

qubit observables in order to be able to detect entanglement and similar results for a

subset of qubit-qutrit observables.

In the last chapter, we developed criteria for measures aiming at assessing the per-

formance of quantum memories. These devices are important building blocks for

quantum computers and quantum communication devices, and their ability to store

quantum states faithfully is essential for many applications in quantum computation

and secure communication. Finally, we defined three quality measures which are

based on coherence and fulfil the criteria, and showed how bounds on these measures

can be found from experimental data.

Naturally, there are many unsolved problems and starting points for further research,

which we highlighted in the conclusions of the corresponding chapters. We hope that

not only the results, but also the tools developed in this thesis are helpful for future

attempts to fill the gap between the word correlation and its true meaning.
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A A Sudoku-like game to prove sector length

inequalities

In Section 5.3.1, we obtained an upper bound on the bipartite correlation length A2 in

multi-qubit states of n ≥ 3 parties of A2 ≤ (n
2). Here, we give an alternative, graphical

proof for this fact for n ≥ 6 that makes use of anticommuting sets and solving a

Sudoku-like game.

As noted in the proof of Proposition 5.3, it is possible to distribute the Pauli operators

of weight two acting on the pairs of parties (1, 2), (1, 3) and (1, 4) into three sets,

M1 = {XX11, X Y11, XZ11, Y1X1, Y1Y1, Y1Z1, Z11X, Z11Y, Z11Z }, (A.1)

M2 = {YX11, YY11, YZ11, Z1X1, Z1Y1, Z1Z1, X11X, X11Y, X11Z }, (A.2)

M3 = {Z X11, Z Y11, Z Z11, X1X1, X1Y1, X1Z1, Y11X, Y11Y, Y11Z }, (A.3)

such that in each set all operators pairwise anticommute. Together with the fact that

for such an anticommuting set, the sum of squares of expectation values is bounded

by one, this implies that A(12)
2 + A(13)

2 + A(14)
2 ≤ 3.

We now want to adopt this method to prove the symmetrized bound of

A2 = ∑
i<j

A(ij)
2 ≤

(
n
2

)
. (A.4)

The strategy is as follows: For n-partite states, we try to distribute the Pauli operators

of weight two into sets like those in Eqs. (A.1) - (A.3) by grouping all (n
2) pairs of

parties into sets of three, having one party in common. If such a distribution can be

found, then for each of the (n
2)/3 sets we obtain an upper bound of 3, yielding the

desired bound.

We make the argument more apparent by considering the explicit example of n =

6. There, the 15 pairs of parties, (1, 2), (1, 3), . . . , (5, 6) can be distributed into the
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Figure A.1: Proving A2 ≤ (n
2) for n = 6 by filling the grid according to the rules given

in the text (from left to right, top to bottom): The entries for pairs (1, 2), (1, 3) and
(2, 3), as well as (4, 5), (4, 6) and (5, 6) are fixed. Choosing then to fill (3, 4) with a
horizontal bar fixes the remaining cells and yielding a solution to distribute the pairs

into sets of three with one common pair.

following five sets:

{(1, 2), (1, 3), (1, 4)}, {(2, 3), (2, 4), (2, 6)}, {(3, 4), (3, 5), (3, 6)},

{(1, 5), (2, 5), (4, 5)}, {(1, 6), (4, 6), (5, 6)}. (A.5)

The pairs in each set have one party in common, making it possible to distribute

the corresponding Pauli operators into three anticommuting sets each and therefore

proving the bound A2 ≤ (6
2).

The question remains how such a distribution of pairs can be found. One strategy is

to represent all pairs of parties as entries of an upper right triangular matrix. Each

entry has now to be filled with either a horizontal (|) or a vertical (—) bar, according

to the following rules:

• The number of horizontal bars in each row must be a multiple of three;

• The number of vertical bars in each column must be a multiple of three.
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Figure A.2: Solutions to the game for n = 7 and n = 8. For n = 8, a trick has to be
used, as the number of cells is not a multiple of three. Instead, a solution is found for

the remaining 27 cells, after one of the boxes is struck out.

If such an assignment can be found, then the sets of pairs can be read off easily: Choose

always three entries with horizontal bars in each row and put the corresponding pairs

into one set, and do the same with sets of three vertical bars in each column.

As an example, consider again the case of n = 6. We display the upper triangular

matrix in Fig. A.1. Indeed, many of the entries are fixed already. As there is not

enough space to put at least three vertical bars into the first and second column, the

entries corresponding to pairs (1, 2), (1, 3) and (2, 3) must be filled with horizontal

bars, and for similar reasons, (4, 5), (4, 6) and (5, 6) have to be filled vertically. The

entry for (3, 4) can be filled arbitrarily for symmetry reasons, which fixes the rest of

the entries to fulfill the constraints. If we choose to fill (3, 4) with a horizontal bar, we

obtain exactly the solution in Eq. (A.5).

The same strategy can be used to prove the bound for seven-qubit states, and a solu-

tion is displayed in Fig. A.2. For n = 8, however, the number of pairs, (8
2) = 28 is not

a multiple of three, thus, there is no solution according to the rules. However, we can

use the following trick: We strike out one of the cells corresponding to a fixed pair

(i, j), and find a solution for the remaining 27 cells. This solution yields the upper

bound

A2 − A(ij)
2 ≤

(
n
2

)
− 1. (A.6)

Having established this bound, we note that it holds for any choice of (i, j), as there

are no distinguished particles. Thus, we can symmetrize Eq. (A.6) by summing over

all (n
2) choices for (i, j), yielding[(

n
2

)
− 1
]

A2 ≤
(

n
2

) [(
n
2

)
− 1
]

. (A.7)
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Dividing both sides by
[
(n

2)− 1
]
, we obtain the bound A2 ≤ (n

2) for n = 8, provided

we find a solution for the 27 cell version. We show such a solution in Fig. A.2 as well.

Finally, we note that with this strategy solutions can be found inductively for all n ≥ 6.

However, as we have given an alternative proof already in the main text, we abstain

from printing more of these solutions here.
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B Sector length inequalities from projec-

tors onto symmetric and antisymmetric

subspaces

In this appendix, we introduce an alternative representation of sector length inequal-

ities. As noted in Section 5.4.3, finding bounds on linear combinations of sector

lengths is equivalent to solving a quadratic program to find minρ Tr[(ρ(A) ⊗ ρ(B))η]

with η = ∑k ck ∑Ξk
Ξ(A)

k ⊗ Ξ(B)
k . Due to the special symmetric form, it is possible to ex-

press η in terms of local flip operators F = 1
2 ∑j=0,x,y,z σj⊗ σj, which in turn can be writ-

ten in their eigenbasis with the eigenvectors given by the projectors Π− = |Ψ−〉〈Ψ−|
and Π+ = |Ψ+〉〈Ψ+| + |Φ−〉〈Φ−| + |Φ+〉〈Φ+| onto the antisymmetric and symmet-

ric subspace, respectively. Here, |Ψ±〉 and |Φ±〉 denote the usual Bell states. In this

representation, the linear combination of sector lengths can be expressed as

η = ∑
i1 ...in=±

c̃i1...in Πi1 ...in (B.1)

with Πi1 ...in = Π(A1,B1)
i1

⊗ . . .⊗Π(An,Bn)
in

. The prefactors c̃ are connect to the prefactors c.

This representation was used before to find entanglement witnesses and monotones

[196–198]. In these references, the authors restrict themselves to c̃i1...in ≥ 0 to ensure

positivity. As we have seen in Appendix B, this approach is too restrictive, as positivity

under trace with symmetric product states is not equivalent to positivity of the matrix

η. Nevertheless, it is interesting to note that the relevant inequalities in the case of

three qubits have a particular form in this representation. The matrix η that yields the

symmetric strong subadditivity is obtained by choosing c̃−−− = −3, c̃−−+ = c̃−+− =

c̃+−− = 1 and all other prefactors vanishing. The constraint A2 ≤ 3, however, can be

expressed by choosing c̃−−− = −3, c̃−++ = c̃+−+ = c̃++− = 1. Usual state inversion is

represented by c̃−−− = 1. Therefore, it seems that the relevant inequalities correspond

to some sort of extremal points in the set of coefficients c̃ that yield matrices that are

positive under trace with positive product operators.
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