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Abstract

This thesis investigates classical models of correlation experiments from a quantum mea-
surement theoretical point of view. Of special interest are the concept of measurement
incompatibility and the phenomenon of quantum steering.

As the main result, we establish a one-to-one connection between non-joint measur-
ability, i.e. the impossibility of measuring two or more observables simultaneously, and
quantum steering, i.e. the possibility of one party to affect a space-like separated party’s
quantum state by the means of local actions and classical communication. The result can
be used to translate various results between the relatively new research field of quantum
steering and the older field of incompatibility. As examples, we use steering inequalities
as incompatibility criteria and map joint observables to local hidden state models.

The main result comes with some possible generalisations. The generalisations dis-
cussed here are strongly motivated by quantum measurement theory and they concentrate
on continuous variable and channel versions of steering. The resulting formalism not only
extends the aforementioned one-to-one connection, but it also has natural applications to
Gaussian steering and to temporal correlations.

Whereas the main result focuses on the connection between non-joint measurability
and steering-like phenomena, in the process we also derive steering witnesses and bounds
on noise tolerance of incompatible observables. As examples, we map certain entropic
uncertainty relations to steering inequalities and use known steering techniques to prove
the tightness of the aforementioned noise bounds on incompatibility.

On top of the measurement theoretical work, we introduce a technique for witnessing
steering in scenarios with one completely uncharacterised and one dimension-bounded
observer. The resulting witnesses are motivated by former works on entanglement theory
and, despite being more general, they don’t weaken the detection strength of the known
steering criteria in typical symmetric scenarios.
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Zusammenfassung

Diese Arbeit untersucht klassische Modelle von Korrelationsexperimenten wie Makroreal-
ismus und lokalen Realismus aus einer messtheoretischen Perspektive. Von besonderem
Interesse sind das Konzept der Inkompatibilitdt und das Phanomen der Quantensteuerung.

Als Hauptergebnis stellen wir eine Eins-zu-eins-Verbindung zwischen der nicht gemein-
samen Messbarkeit her, d. h. der Unmoglichkeit, zwei oder mehr Observablen gleichzeitig
zu messen, und der Quantensteuerung. Eine solche Verbindung erlaubt es, verschiedene
Ergebnisse zwischen dem relativ neuen Forschungsgebiet der Quantensteuerung und dem
alteren Bereich der Inkompatibilitdt zu iibersetzen. Als Beispiele verwenden wir Ungle-
ichungen als Inkompatibilitatskriterien und bilden gemeinsame Observablen auf lokale
Modelle versteckter Zusténde ab.

Das Hauptergebnis erdffnet einige Moglichkeiten fiir Verallgemeinerungen. Die hier
betrachteten Verallgemeinerungen sind stark durch die Quantenmesstheorie motiviert und
konzentrieren sich auf kontinuierliche Variablen und Quantensteuerung fiir Kanile. Die
Tragweite unseres Ansatzes zeigt sich nicht nur in der Erweiterung der oben genannten
Eins-zu-eins-Verbindung auf allgemeinere Szenarien, sondern auch in Anwendungen zur
Steuerung mit kanonischen Quadraturen und dem Nachweis einer strengen Hierarchie
zwischen zeitlicher Steuerung von Quantenzustéanden und Makrorealismus.

Wahrend sich das Hauptergebnis auf den Zusammenhang zwischen nicht-gemeinsamer
Messbarkeit und steuerungsdhnlichen Phénomenen konzentriert, nutzen wir auch den
messtheoretischen Ansatz zur Ableitung von Steuerungskriterien und gemeinsamen Mes-
sunsicherheitsbeziehungen. Als Beispiele zeigen wir, wie bestimmte entropische Un-
scharferelationen als Steuerungsungleichungen verwendet werden kénnen und wie bekannte
Steuerungstechniken verwendet werden kénnen, um die Exaktheit bestimmter Unschérfer-
elationen zu beweisen.

Zusatzlich zur messtheoretischen Arbeit fiihren wir eine Technik ein, mit der wir
Steuerung in einem Szenario beobachten kénnen, in dem eine Partei vollig uncharak-
terisiert ist und der anderen Partei nur die Dimension ihres Systems bekannt ist. Solche
Kriterien werden durch frithere Arbeiten zur Verschréinkungstheorie motiviert, und sie
schwichen iiberraschenderweise nicht die Nachweismoglichkeiten bekannter Steuerungskri-
terien in typischen symmetrischen Szenarien.
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Introduction

Quantum mechanics possesses numerous non-classical properties such as entanglement,
non-locality and contextuality. Some of the quantum features are present already on a
single system and some appear only in distributed scenarios. For the purposes of this thesis,
one property from each category will be of special interest, namely, quantum steering and
quantum incompatibility.

Quantum steering describes how actions taking place on one quantum system can
affect another space-like separated quantum system in a way not describable by classical
mechanics. Originally discussed by Schrédinger [1] and motivated by the work of Einstein,
Podolsky and Rosen [2], quantum steering has recently found its modern formulation as a
correlation experiment intermediate to entanglement and Bell non-locality [3]. To be more
precise, steering is defined as the non-existence of a special type of hidden variable model,
namely hidden state model. These models aim to reproduce state assemblages (into which
one party is steered) from a local state ensemble through classical data processing. If no
such local strategy succeeds, the parties have demonstrated quantum steering.

It is well known from the work of Werner [4] that states allowing steering are a proper
subset of entangled states'. Answering the question which states are entangled is known
to be extremely challenging and the same question posed on steering hasn’t appeared any
casier?. Whereas the set of steerable states remains unknown, one can ask if the set of
measurements allowing steering would be easier to characterise. It turns out that this
question can be answered, and the answer forms the core of this thesis. Namely, quantum
measurements allowing steering are exactly the ones which don’t allow a simultaneous
measurement (see article I).

Simultaneous measurability is a specific type of measurement compatibility. Typically
in text-book quantum mechanics compatibility of observables (i.e. Hermitian operators) is
captured by commutativity. However, Hermitian operators have proven to be insufficient
to cover all possible measurement scenarios. Consequently, more general concepts have
been proposed, such as positive operator valued measures (or POVMs for short), quantum
instruments and measurement models. To be clear, all of these concepts can be traced back
to Hermitian operators (or unitary time evolution) on a larger quantum system through
Naimark and Stinespring dilations, but many times it is more convenient to deal with only
one quantum system. These general concepts lead to different notions of compatibility such
as non-disturbance, coexistence and joint measurability. All of these notions coincide with

1To be more precise, Werner showed that there exists states with a local hidden variable model. Later,
within the modern formulation of steering, these models were recognised to be actually local hidden state
models.

2Tt should be mentioned that both of these problems have found operationally motivated equivalent
formulations [5, 6].
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commutativity (of eigenprojections) for text-book observables, but for POVMs they all
differ from one another and from commutativity. Indeed, there exist POVMs which do not
commute, but still allow a simultaneous or a non-disturbing sequential implementation.

As mentioned above, the core result of this thesis is proving that measurements not
allowing a simultaneous implementation characterise the measurement resource of steering.
This result opens up a connection between the rather new research field of quantum
steering and a way older field of incompatibility. However, the result lets one to translate
between these fields only for a limited set of shared states, namely states with a full
Schmidt rank. Hence, further techniques have been developed to cover also the scenarios
with an arbitrary shared state (see articles IT and IIT). These techniques show a deep
connection between the two fields and have shed light to, for example, steering problems
with position and momentum observables. Moreover, the techniques have proven useful
in deriving incompatibility criteria and steering witnesses.

The core result is not limited to spatial steering. Indeed, a generalisation of the main
result to the level of temporal and channel analogues of steering is also discussed in this
thesis. The generalisation shows that all three types of steering can be mapped into joint
measurability, hence pointing out the theory around incompatibility as a useful framework
for all three steering scenarios. The power of this framework is exemplified by proving
an equivalence between temporal and spatial steering, and a hierarchy between temporal
unsteerability and macrorealism.

On top of the core result, this thesis provides methods for deriving steering criteria
through another incompatibility related topic, namely entropic uncertainty relations, and
through entanglement detection techniques.

The thesis consists of the original research articles listed below and of an introduction
to the topic and the results. The introductory part is organised as follows. In chapters one
and two the basics about quantum correlations in space and time are introduced together
with the rudiments of quantum measurement theory with special focus on incompatibility.
In the third chapter, the core result of the thesis is explained together with its generalisa-
tions. The generalisations lead to two alternative formalisms for steering both motivated
by incompatibility. The fourth chapter focuses on deriving steering criteria from entropic
uncertainty relations and from entanglement detection techniques. The fifth chapter ex-
plains how to derive bounds on the noise tolerance of incompatible quantum measurements
and how to prove the tightness of these bounds using the core result.
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Quantum correlations

A typical way to see the non-classical nature of quantum mechanics is to prepare many
identical distributed (resp. single party) systems and to measure sets of observables on
them (resp. on one object at different times), and try to violate some (semi-)classical
model for the observed probabilities. In this section four such models are discussed, two of
which (non-locality and macrorealism) rely on a fully classical strategy and the two others
(spatial and temporal steering) rely on a hybrid of classical and non-classical strategies.
Moreover, a quantum-quantum version of these strategies leads to the celebrated quantum
property called entanglement.

1.1 The spatial case

Let us start with a simple correlation experiment where two parties, called Alice and Bob,
make local measurements of quantities of their choice in their respective laboratories. The
measurement choices are labelled by x; for Alice and by y; for Bob. At this point it is not
crucial how many measurements are allowed for each party and, hence, we assume that
i €{l,...,n} and j € {1,...,m}. We also use a shorter notation z; = = € {1,...,n} and
y; =y € {1,...,m} when there is no risk of confusion. Each measurement is assumed for
now to have a discrete set of outcomes. For Alice the outcomes are labelled by a, and for
Bob by b,. When there is no risk of confusion, we write simply a, = a € {1,...,k} and
by =0be{l,..,1}.

1.1.1 Local realism

To see quantum effects with the above setup, one has to check if the scenario possesses any
classical limits. Classically, a preparation of a system includes the knowledge about all
subsequent measurements, i.e. the outcomes of the measurements performed by Alice and
Bob are encoded in the initial state of the system. This is typically called realism and it
is reflected by the fact that there exist hidden variables A € A (i.e. classical preparations)
which predict (with probabilistic certainty) the outcomes of each possible measurement.
In general A can be a continuous set of parameters, e.g. the real numbers, but for a
discrete set of measurements with discrete outcome sets A can be chosen to be discrete,
e.g. the natural numbers. The hidden variables can be drawn randomly from the set A
(which is assumed to be discrete) according to a probability distribution p : ¥4 — [0, 1],
where Y5 is a o-algebra generated by the singletons in A. In this case the probability of



Alice and Bob getting the outcomes a and b from measurements x and y is

p(a,blx,y) Zp (a,blx,y, \), (1.1.1.1)
AEA

where f is a response function, i.e. a mapping from the set of outcomes to the set {0,1}.

To set another classical limitation, we can assume that Alice and Bob perform their
measurements at the (approximately) same time. As the velocity of information propa-
gation is limited, the choice of one party’s measurement cannot affect the other party’s
measurement outcome. This assumption is reflected in the hidden variable description as
the property of non-signalling, i.e.

Zf(a,b[x,y, A) = Zf(a,b\x’,y, ) Vb, x, 2y (1.1.1.2)
Zf(a,b[w,y, A) = Zf(a,b\x,y’,)\) Ya,z,y,y . (1.1.1.3)
b b

Moreover, a response function is a probability distribution and it can, hence, be written as
fla,blz,y, N) = f(a|b,z,y, \) f(b|lz,y,A) = f(bla,x,y,\) f(a|x,y, ). As the response func-
tions map to the set {0, 1}, the non-signalling conditions imply f(alb,z,y, ) = f(a|z,\)
and f(blx,y,\) = f(bly, \)!. Hence,

p(a,blz,y) Zp flalz, ) f(bly, A), (1.1.1.4)
AEA

where f(a|z, \), f(bly, A) are local response functions.

Notice that instead of using deterministic (i.e. {0,1}-valued) response functions f,
one can also use stochastic ones, i.e. general probability distributions p?. These two
descriptions give equivalent predictions. To see this, notice first that trivially deterministic
strategies are included in the stochastic ones. For the other direction, from a stochastic
hidden variable model

p(a,blx,y) Zp p(alz, N)p(bly, \) (1.1.1.5)
AEA

we define a set of new hidden variables (corresponding to the set of outcomes of the

measurements) A = {(a1, ..., an, b1, ...,bn)|az = 1,...,k, b, = 1,...,1} with the distribution
=> p(N) [[ plazlz, Np(byly, »). (1.1.1.6)
A T,y

'To see this, write Y., f(a,blz,y,A) = f(blz,y,\) = f(bly,\), where the last inequality follows
from non-signalling. With a similar argument ), f(a,b|z,y,A) = f(a|z,y,A) = f(a|z,)). Using this,
write Y, f(a,blz,y,\) = >, f(alb,z,y, \) f(blz,y,A) = f(a|p),z,y,A\) = f(a|r,)), where V' is such
that f(b'|z,y,A\) = 1 (note that the cases f(b|z,y,\) = 0 are not of interest here as in these cases
f(a,blz,y,\) =0). Hence, f(alb,z,y, ) is independent of b and y.

2Note that we use p as a generic label for a probability distribution without singling out which distri-
bution we refer to.



Such distribution of the new hidden variables gives indeed a deterministic model. Namely,

pag, bylz,y) Zp flazlz, N) f(byly, N), (1.1.1.7)

where f(agz|z, \) is one if a, is present in A and zero otherwise [and similarly for f(b, |y, \)].
Throughout this thesis hidden variable models are assumed to be stochastic unless other-
wise stated.

Having imposed the classical assumptions of realism and locality on our scenario, we
wish to discuss how these assumptions fail in the quantum regime. As a typical example,
we take a situation where Alice and Bob both have two measurements (labelled as x1, xo
for Alice and y1,y2 for Bob) with values plus and minus one. The aim is to derive an
upper bound for the expression

|(B)] := |[{x1y1) + (®1y2) + (T2y1) — (T2y2)] (1.1.1.8)

from the deterministic local realistic hidden variable model in Eq. (1.1.1.4)3. Here (-)
refers to expectation value. First, from Eq. (1.1.1.4) one has

xlyj Z Z abf a|xlv ) (b‘yﬁ)‘)

AEA a,b==1

=Y PN za)alyi)a- (1.1.1.9)

AEA

Combining Eq. (1.1.1.8) with Eq. (1.1.1.9) we get

[ = |22 PO [(@0alfnda + (w2)2) + @ahalfyndr = (w2))]|

AEA

<ZP ([wadx + 2| + [ — (w2)a)])
AEA

=2, (1.1.1.10)

where we have used the triangle inequality together with the fact that !(mz) )\‘ < 1 for all
A. For the last line, one simply checks both cases (y1)x < (y2)x and (y1)x > (y2)x and uses
the inequality |(y;)x| < 1. Hence, a violation of the inequality |(B)| < 2 would lead to
contradictions between our assumptions (locality and realism). Moreover, in the scenario
consisting of two observers both with two +1 valued measurements, this inequality is
known to characterise the existence of a local hidden variable (LHV) model [7]. In general,
any inequality possessing limits for LHV models is called a Bell inequality.

1.1.2 Entanglement

Before discussing possible violations of local realism, we need the basic ingredients for
describing quantum systems. Quantum preparations (or states) are identified as positive
trace one (trace-class) operators* on the system of interest (i.e. complex finite-dimensional

3 As seen above, choosing deterministic response functions over stochastic ones sets no extra limitations.

“The set of trace-class operators is defined as T(H) = {T' € L(H)|tr[(T*T)*/?] < oo}, where L(H) =
{T : H — H|T linear and bounded}.



or infinite-dimensional separable Hilbert space H) and the set of preparations is labelled
by S(H). Composite systems are described by tensor products H 4 ® Hp of single system
Hilbert spaces. The state space of a composite system can be divided into states which
are probabilistic mixtures of local quantum states and to states which are not. Namely,
we can ask if a given state p € S(Ha ® Hp) has the decomposition

p=>_p(wp ®p, (1.1.2.1)
I

where p(-) is a probability distribution, p/‘;‘ € S(Ma), and pf} € S(Hp). States having
a decomposition of this form are called separable and states not having such a decom-
position are called entangled. Separable states are classical in many ways. For example,
these states don’t provide any advantage over classical systems in typical quantum proto-
cols such as quantum key distribution or teleportation. Moreover, separable states have
always a local hidden variable description. To see this, recall that in quantum mechanics
measurements are identified as positive operator valued measures (POVMs), i.e. col-
lections of positive operators {4,}, summing up to the identity operator®, whose POVM
elements A, reproduce the measurement outcome probabilities on a state p through the for-
mula® p(aA) = tr[A,p]. The joint outcome probabilities for measurements given through
POVMs {Aa‘gc}a,,v7 on Alice’s and { By, }5, on Bob’s system on a separable quantum state

p=>,0(wpj @ pf are

p(a, b|x, y) =tr [(Aa\x ® Bb|y) ]
= Zp tI‘ a|zp,u,]tr[Bb|yp/,L]

= ZP ?(ali, w)p? (bl ), (1.1.2.2)

where p@(ali,p) [resp. p@(b|4, )] refers to the obvious probability distribution arising
from the quantum state pﬁ (resp. pf ).

Comparing Eq. (1.1.2.2) with Eq. (1.1.1.5) we see that separable states indeed do have
a hidden variable description. Moreover, this description arises from quantum mechanics
(i.e. from local quantum states) without additional hidden variables.

Hence, in order to see violations of local realism, we need to use non-separable (i.e.
entangled) states. To give an example of a scenario which violates Eq. (1.1.1.10), consider
Alice measuring the spin observables (given as Hermitian matrices) (1,0,0)-¢'and (0,0,1)-¢
and Bob measuring the spin observables %(1,0, 1) - & and \[(1 0,—1) - &, where & =

(0 _ (0 =i (10
v 10 i 0)> 77 \0 —-1)°
SLater we also need POVMs with continuous outcome sets. In this case one has to slightly fine-tune
the definition.

(02, 0y,0,) with

SFor readers more common with quantum mechanical measurements being represented as Hermitian
operators, the adaptation to the formalism here is rather straight-forward: eigenprojections correspond to
POVM elements (although not all POVM elements have to be projections) and eigenvalues (i.e. outcomes)
correspond to the index a.

"In this notation the operators {Aq|z}a form a POVM for every z.

4



Now the POVM elements of {Ag|;}a,x and { By }s, are the eigenprojections of the afore-
mentioned Hermitian matrices. Using the quantum state p = |[¢)*) (| defined through
the vector |[¢p1) := %(\OO} + [11)) we get

[(B)] = 2V2, (1.1.2.3)

which shows that quantum mechanics is, indeed, in contradiction with local hidden variable
models.

It is worth noting that whereas separable states have an LHV model for any number
of measurements and outcomes, there exists also entangled states with the same property
[4]. Hence, entanglement is necessary, but not sufficient for Bell inequality violations.

1.1.3 Steering

Local hidden variable models and entanglement are both extensively studied subjects.
For in depth reviews, see [8, 9, 10]. What is slightly less studied is a hybrid of these
two. Namely, a comparison of Eq. (1.1.1.5) and Eq. (1.1.2.2) raises an obvious question:
what kind of correlations do we get by assuming one party’s probability distributions to
be classical and other party’s distributions to be quantum, i.e.

pla,blz,y) = > p(A\)plalz, \)p® (bly, A)
AEA

= Zp p(alz, \)tr[ By, pa]- (1.1.3.1)
AEA

Such model, when existing, is called a local hidden state (LHS) model. To give a physical
interpretation for Eq. (1.1.3.1), we fix a state p for the composite system and rewrite the
equation using a quantum description on the left-hand-side as

trB{trA [(Aa|z ® 1) ]Bb|y} = trB{ g\p p(alzx, )\)pABbw} (1.1.3.2)

Assuming now that Bob can perform tomography on his side, i.e. assuming that the
POVM elements {By), }s,y span the whole operator space L(H)®, Eq. (1.1.3.2) yields

Pajz = tra[(Age @ D)p Zp plalz, \)p (1.1.3.3)
AEA

The left-hand-side of Eq. (1.1.3.3) has a clear physical interpretation: it represents Bob’s
side of the (non-normalised) post-measurement state when Alice measures z and gets
the outcome a. Thus Eq. (1.1.3.3) asks if the post-measurement states {p,;}ae,x can be
obtained from a local ensemble {p()\), pr}a of states on Bob’s side by classically data-
processing [i.e. implementing p(a|z, A) on] the ensemble according to the classical infor-
mation (a,z) Alice and Bob are assumed to share. Consequently, correlations without an
LHS model are called steerable.

The interpretation of steering is two-fold. First, clearly steering as a type of correlation
is in between entanglement and non-locality. These inclusions are strict [3, 4, 11] (see

8In the infinite-dimensional case informationally complete POVMs are exactly the ones whose range’s
(i.e. range of a measure, not range of an operator) linear span’s ultraweak closure is £(H) [38].



example below). Second, steering can be interpreted as a spooky action at a distance in the
sense that Bob can not explain the changes in his system by only classically post-processing
a local state ensemble according to the classical information gained from Alice. Motivated
by these interpretations, one sees often the more precise term Einstein-Podolsky-Rosen
(EPR) steering used instead of steering. In this thesis we talk simply about steering, but
we keep in mind that the definition has a strong resemblance to hidden variable models.

At this point, it is the writer’s personal experience that the language used around
steering and non-locality may cause confusion. To avoid confusion within this thesis, we
divide the correlation experiments into three classes.

First, we can fix the measurements and the state used in a correlation experiment,
and ask if the obtained probability distributions have an LHS or an LHV model. In
these cases we talk about the steerability (or non-locality) of the assemblage {p4|; }a,z OT
the steerability (or non-locality) of the setup. For small numbers of measurements and
outcomes these questions can be solved with numerical methods [6, 12, 13]. For more
complex cases, the numerical methods can get time-consuming and several (sub)optimal
analytical methods are known [14, 15, 16], see also articles I-IV.

Second, if we don’t manage to prove steering or non-locality for a given set of measure-
ments on a given state, we can add measurements and see if this changes the situation. If
the setup remains unsteerable (resp. local) for all possible measurements, then the state
is called unsteerable (resp. local). If this is not the case, the state is steerable (resp.
non-local). It is noteworthy that whereas steerability or non-locality of a give setup might
be fairly simple to prove, the same question posed on the level of states has turned out to
be a difficult problem.

Finally, one can invert the second scenario by asking which measurements allow steering
when all possible states are considered. In this case we could talk about steerability of
measurements, but as we will see later in this work, these measurements turn out to be
exactly the non-jointly measurable ones.

To clarify the terminology and the hierarchy between entanglement, steering and non-
locality, we present two typical examples of steerable and one-way steerable states. For
further examples of steering, we refer to [3, 14] and the articles I-VI.

As our first example, we consider one of the most commonly discussed states in the
steering community, i.e. the two-qubit Werner state (see also [17])

pwi= ply )+ 22 (1134
where |[¢p7) = %(|01> —|10)) and p € [0,1] is called visibility or a noise parameter. It
is easy to check with the partial transpose criterion [9] that the state p, is separable
if and only if p < 1/3. It is known from the work of Werner [4] that the states with
0 < p < 1/2 have a local hidden state model for all possible projective measurements on
Alice’s side and from the work of Barrett [18] that the same holds for POVMs for the
range 0 < p < 5/12. Moreover, the threshold p = 1/2 is known to be optimal in the
sense that above this value, there are projective measurements which lead to a steering
[3]. Later Acin et al. [19] showed that the state is local with projective measurements
for visibilities p < 1/K¢(3), where 1/K(3) > 0.68 is the Grothendieck constant of order
three?. Hence, with 1/2 < p < 0.68 the two-qubit Werner state is local and steerable for

9Notice that the exact value of the Grothendieck constant is not known. The approximation used here
is from [20].
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Figure 1.1: Alice and Bob share a bipartite state pap, Bob asks Alice to measure A,
and to report the result a. The (non-normalised) post-measurement state assemblage Bob
receives is given as pg|, = tra[(Aq; @ )pas].

all projective measurements. Lastly, Vértesi [21] showed that above the threshold 0.7056
the state is non-local.

At this point it is worth to mention that the above hierarchy has an additional physi-
cal insight in it. Namely, steering and Bell non-locality can be both seen as entanglement
detection methods. From this point of view, the difference between them is simply the
description of the measurement devices: in local hidden state models a quantum descrip-
tion is only assumed for Bob and in local hidden variable models neither party is assumed
to be quantum. Hence, steering is sometimes called semi-device-independent entangle-
ment verification and Bell inequalities can be seen as device-independent entanglement
witnesses.

As our second example, we consider one-way steerable states. Unlike non-locality or
entanglement, steering is an asymmetric type of correlation. This means that there exists
states, which allow a local hidden state model for steering attempts with all possible
measurements on one side, but there exists measurements on the other side, which result

in a steerable state assemblage. To give an example of such a state, we recall the one from
[11] which reads

1 2
p(])DnOe—‘\/N]z\gl = gp(]:n‘g\v{ay + §|2> <2‘ ®tra [pfn‘g-]\v{ayL (1135)
where
1. . _ 3 2
pfn‘g—]\vi/[ay = §[|¢ ><17/} ‘ + E|1><1‘ ®H+T0H® ‘O><O|]1 (1136)

I is the identity operator in the subspace spanned by the vectors {|0),|1)} and [¢p7) is

defined as in the previous example. The states pfn‘g%ay and pgg_‘gja‘@ are known to be
steerable from Bob to Alice with well-chosen sets of measurements, but pfn‘g_]‘v{ay is not
POV M

steerable from Alice to Bob with projective measurements and p is not steerable
from Alice to Bob with POVMs.

To further motivate the concept of steering, we recall an entanglement verification
protocol first introduced in [3], see also Fig. 1.1. The idea is that Alice prepares a bipartite
state and sends one half of it to Bob!?. Alice claims that the state she prepares is entangled,
but Bob wishes to find some way of verifying this. For this purpose, Bob asks Alice to
steer him into an ensemble {pq|; }o (from a set of ensembles {p,; }a,. Alice has announced

prior to the experiment) by making the measurement = on her part of the system and

one-way

1T be more precise, the protocol is not a single shot one. Namely, Alice prepares various copies of the
same state and in each round of the protocol, she sends one particle (i.e. half of a bipartite state) to Bob.



reporting the outcome a. Assuming that Bob can do tomography, after many rounds of
the protocol Bob possesses the state assemblage {pa‘m}a,x, whose steerability he can check
with a steering witness of his choice. In case of steering Bob is convinced that the state
indeed is entangled.

To mention a possible cheating strategy in the above protocol, Alice could in principle
try to fool Bob by sending him states from an ensemble {p(A), px} and give Bob an output
a according to some probability distribution p(a|x, \) conditioned on Bob’s question x and
Alice’s knowledge on A. This way the state assemblage would have a local hidden state
model and Bob would not be convinced that Alice actually prepared an entangled state.

1.2 The temporal case

Similarly to local realism on composite systems, one can ask if hidden variable models
can be posed on single quantum systems. There are two main categories of such models:
macrorealism and contextuality. Macrorealism can be easily modified to correspond to
a temporal analogue of steering, but for the case of contextuality such a modification is
not known. As our main focus is on steering, we will concentrate on macrorealism. For
readers interested in contextuality, we refer to a recent work on the topic [22].

1.2.1 Macrorealism

Macrorealism is a model for a single system measured at different times. It is built on
two assumptions [23]: macrorealism per se and non-invasive measurability. Macrorealism
per se refers to a macroscopic object having (distinguishable) macrostates available to
it and the object being in one of these states at any given time. Mathematically these
states correspond to hidden variables just like in the case of local realism. To write a
macrorealistic hidden variable model, assume that we have a set of measurements x €
{1,...,n} with outcomes a € {1,...,k} on the first time step and a set of measurement
y € {1,...,m} with outcomes b € {1,...,l} on the second time step (of course we could
have more time steps and even continuous observables, but for introducing the idea this
simple scenario is sufficient). Hidden variable model for the scenario reads similarly to
Eq. (1.1.1.1)

p(a,blz,y) Zp (a,blz,y, N). (1.2.1.1)
AEA

Note that the distinct macrostates refer to a full catalogue of properties of the system and,
hence, deterministic response functions are used here.

So far we have only used the assumption of macrorealism per se. Analogously to locality
in local realism, the non-invasiveness measurability (and the fact that future measurements
can not affect the past) imply the factorisability of the response functions. Hence, a
macrorealistic hidden variable model reads'!

p(a,blz,y) Zp p(alz, \)p(bly, A), (1.2.1.2)
AEA

1 One should notice that macrorealism is typically formulated for a single observable at different times.
Here we use a slightly more general formulation as this is better suited for the temporal analogue of
steering. The formulation is due to [24].
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Figure 1.2: Alice applies an instrument (see the next section) Z, on a single system state
p and reports the measurement setting x and result a to Bob. Bob is left with the (non-
normalised) output state Z,,.(p).

where we have changed from deterministic to a stochastic description.

One notices that Eq. (1.1.1.5) and Eq. (1.2.1.2) are identical. Hence, to witness non-
macrorealistic behaviour one can use the inequality in Eq. (1.1.1.10). To mention another
example of a non-macrorealism witness, consider a scenario with three measurement times
and only one (£1 valued) observable per time step. The model in Eq. (1.2.1.2) generalises
straight-forwardly to this scenario, and by labelling the measurements at different times
by A1, Ao and Aj one gets

(A1 As) + (AsAs) — (A1 A3) < 1. (1.2.1.3)

To see this, one can check every possible assignment of values provided by the deterministic

response functions. For quantum mechanical scenarios violating this inequality, see [25,
26].

1.2.2 Temporal steering

As in the case of local realism, one can introduce modifications of macrorealistic hidden
variable models. Namely, one can ask if the classical probability distributions can be
replaced with distributions of quantum origin. Models with the second time step having
a quantum description have received some attention lately [27, 28, 29], and they will
be shortly discussed here, see also Fig. 1.2'2. The impossibility of the resulting hidden
state models is called temporal steering. Namely, a temporal scenario consisting of two
measurement steps is called temporally unsteerable if

p(a,blz,y) Zp p(alz, \)p@ (bly, \), (1.2.2.1)
AEA

where p@ (bly, \) = tr[px By, for some states {px}a.

Temporal steering has an analogous definition to that of spatial steering and, as we
will see in the forthcoming sections, it has an analogous hierarchy with macrorealism as
spatial steering has with local realism. Although temporal steering seems to lack a clear
physical interpretation at the moment, the concept has found connections to, for example,
non-Markovianity [32]. As such, we consider the temporal version of steering merely
as a mathematical concept with possible future applications to, for example, probing
macrorealism, and we don’t aim to seek for a further physical interpretation of it.

20ne can ask if demanding both response functions to have a quantum description leads to a temporal
analogue of entanglement. This question is out of the current work’s scope, but for readers interested in
the topic we refer to [29, 30, 31].



1.3 Channel steering: a unifying picture

1.3.1 Basics on channels and instruments

So far we haven’t specified how state transformations (e.g. time evolutions) and state
updates (caused by measurements) are modelled in quantum mechanics. A valid state
transformation (from the state space of a Hilbert space H to the state space of a Hilbert
space K) is a completely positive trace preserving linear map, i.e. amap A : T(H) — T(K)
whose trivial extensions A ® [ are positive (i.e. mapping positive operators to positive
operators) for every k € N. Such maps are called quantum channels.

To justify the definition, note that the trace-preserving property and positivity are
desirable in order to map quantum states into valid quantum states, linearity comes as an
usual built-in feature for quantum mechanics®, and complete positivity is regarded so that
states which are possibly entangled to an environment will remain positive. Note that every
channel (and also instrument, see below) comes with a dual mapping A* : L(K) — L(H)
defined through

tr[A*(S)T] := tr[A(T)S] VS € L(K), T € T(H). (1.3.1.1)

The dual mapping is also called the Heisenberg picture and the non-dual version is called
the Schrodinger picture of A. Note that the trace-preserving property translates to
identity-preserving property in the Heisenberg picture. This property implies that the
Heisenberg picture (which operates on observables instead of states) maps POVMs into
POVMs.

State updates due to measurements (here POVMs {Ag|;}a) are described as well
by linear completely positive maps Z,, : T(H) — T(K), but instead of preserving
the trace, they are required to be trace non-increasing!® together with the property
tr[>_, Zajo(T)] = tx[T] VT' € T(H). Such collections of mappings are called quantum
instruments. An instrument {Z,, }, is said to be compatible with a POVM {4, }, if it
encodes the measurement outcome probabilities in the post-measurement state, i.e. if

tr[Ia|z(p)] = tr[AaLrp] Vp, a, (1312)

or equivalently if in the Heisenberg picture I;‘x(]l) = Ay, for all a.
A crucial tool for dealing with completely positive maps is the so-called Kraus decom-
position. Namely, a liner map A : 7(H) — 7 (K) is completely positive if and only if there

13See also the reasoning on pp. 21 in [33] about a simple connection between linearity and locality in
quantum mechanics.

n order to have linear transformations, we don’t require the maps to be trace-preserving. As an
example, consider the typical projection postulate. When a projective measurement { Py}, gives an out-
come a on state p, according to the projection postulate the normalised post-measurement state reads
P,pP,/tr[PapPs). This transformation is trace-preserving, but it is also non-linear in p. By not normalising
the post-measurement state (i.e. giving up the trace-preserving property), we get a linear transformation.
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exists operators { Ky}, € L(H,K) (called Kraus operators of A) such that'® 16 [33, 34]

MT)=> KTKiV T eT(H). (1.3.1.3)
k

Moreover, a completely positive linear map A with the above decomposition is trace non-
increasing if and only if

Y KiKp <L (1.3.1.4)
k

If one changes the inequality in Eq. (1.3.1.4) into an equality, one gets a condition char-
acterising the trace-preserving property. Here the star in K refers to the adjoint of the
operator Kj.

Another important tool for quantum channels is the Stinespring dilation. From text-
book quantum mechanics we know that any channel A : T(H) — T (H) can be written as
a unitary channel on a larger system, i.e.

Ap) = tru [U(p @)U, (1.3.1.5)

where Hg is the Hilbert space of the environment, n € S(Hg) is the initial state of the
environment, and U is a unitary operator on the composite system H ® Hg.

For our purposes, considering a slightly different form of the Stinespring dilation ap-
pears convenient. Namely, for a channel A : T(H) — T(K) given in the Kraus form
A(T) = 2, KxTK}; one can define an isometry V : H — H 4 ® K through

V) =" ler) ® Kilth), (1.3.1.6)

k=1

where {|¢)r};_; is an orthonormal basis of the dilation (or dummy) system # 4. From
this isometry one can define a dilation of A as

A(T) = trp, [VTV*] VT € T(H). (1.3.1.7)

For the case of linearly independent Kraus operators this dilation is called minimal (as
the dimension of the dummy system is minimal). Our focus will mainly be on minimal
dilations as they allow a one-to-one mapping between instruments Z,, : 7(H) — T (K)
with A = 3, Z,, and POVMs {A,; }4,. on the dummy system through the following link
(35, 36]

Topo(T) = tra[(Age @ VTV, (1.3.1.8)

Later in this thesis we show how minimal Stinespring dilations works as a unifying frame-
work for different steering scenarios by mapping all these scenarios into joint measurability.

As the final tool for dealing with quantum instruments and channels (in finite-
dimensional systems) we need the Choi-Jamiolkowski isomorphism. It states that one

Here L(H,K) stands for bounded linear maps from H to K.

16Note that the proof of the Kraus decomposition relies typically on Stinespring dilations. Here we will
not present the proof. We go actually the opposing way, i.e. we use the Kraus decomposition to construct
a specific dilation needed later in this work.
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can assign to any quantum channel (resp. instrument) a quantum state (resp. state as-
semblage) on a larger system. The mapping for a channel A : £(C%) — L(C¥) reads
simply

d
Z V(i @ A(i) (). (1.3.1.9)

&M—‘

The importance of this mapping is that it can be used to check whether or not a linear
map A : £L(C?) — E((Cd/) is completely positive. Namely, A is completely positive if and
only if the corresponding operator My (also called Choi matrix) is positive [34].

In article IIT a slight modification of the isomorphism is introduced to cover also the
infinite-dimensional case. This modification is used to provide a framework for spatial
steering within which the steerability of a given state maps to the incompatibility breaking
property of the corresponding channel.

1.3.2 Channel steering

As the Choi-Jamiotkowski isomorphism maps between states and channels, it is natural
to ask if one can build a framework for steering in the channel picture. Here we will give
the basic definitions for such a framework originally presented in [37] and show how the
resulting channel steering captures both temporal and spatial versions of steering.

The objects of interest in channel steering are instrument assemblages {Z,; }q,. (map-
pings from Charlie to Bob), which are defined through the formula

Toje(p) = tral(Age @ DATA9B (p)] Vp € S(H), (1.3.2.1)

where A®7498 is an extension of A“~8 =" T, ol [1-€- AC=B(p) = tra[AC7A9B ()] Vp]
and {A,; }a,» are POVMs on the extension (i.e. on Alice’s system), see also Fig. 1.3. Un-
steerability of these assemblages is defined through the existence of a common instrument
{Z»} an post-processings {p(-|z, )}, such that

Tofe = Zp alz, \)T (1.3.2.2)

When such model doesn’t exist, the assemblage {Z,|; }a,. is called steerable.

There are two simple ways to connect channel steering to state steering: the use
of instruments with a one-dimensional input and the use of the Choi-Jamiotkowski iso-
morphism. First, instruments with one-dimensional input correspond to state prepara-
tors, i.e. mappings of the form Z,,(|1)(1]) = p,,, where [1)(1] is a state on the one-
dimensional Hilbert space C. Hence, instrument assemblages with trivial input correspond
to state assemblages and Eq. (1.3.2.2) translates to a local hidden state model. Moreover,
Eq. (1.3.2.1) translates to the typical way of obtaining state assemblages from a shared
state ACA®B(|1)(1]). Similarly, one can see temporal state assemblages arising from
channel steering!”

Second, in [37] the connection between channel and state steering through the Choi-
Jamiotkowski isomorphism is discussed. The idea is to map the channel extension A¢—4®B

"Note that the temporal assemblages can, in principle, be signalling (i.e. Do, Paje # 24 Paja’). Such
scenarios are trivially temporally steerable and, hence, the channel protocol provides a framework for the
non-trivial occasions of temporal steering.

12
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Figure 1.3: The setup is similar to the spatial steering scenario, but in the channel case the
shared state is prepared by Charlie via the broadcast channel A°~4®5_ The operations
enclosed in the dotted line are then viewed by Bob as instruments which have the total
channel A©B. The main difference to spatial steering is that here Bob’s task is to build
a local (instrument) model for all possible input states.

to the corresponding Choi state

1 N N
Mpcoass = < > liy (g @ ACTASB (i) () (1.3.2.3)
2

and to prove that their respective steerability properties coincide, i.e. the Choi state is
steerable if and only if the channel extension allows steerable instruments assemblages.
With the isomorphism one can find also further analogies between state steering to channel
steering. For example, one can show [37] that incoherent!® channel extensions lead to
unsteerable instrument assemblages and any unsteerable instrument assemblage can be
seen as rising from an incoherent extension (cf. every separable state leads to unsteerable
state assemblages and every unsteerable state assemblage can be seen as rising from a
separable state, see article VI). Note, moreover, that a channel extension is incoherent if
and only if the corresponding Choi matrix Mc-—ass is separable in the cut A|BC [37].

In article IV channel steering is used to approach all three steering scenarios in one
go. Using the techniques introduced in this chapter we map all the scenarios into incom-
patibility, show how temporal and spatial steering are very closely related, and prove a
hierarchy between temporal steering and non-macrorealism.

'8 A channel extension A€ 74®% is called incoherent if AC4®E

=3 AS7E ® o4 for some instrument
{A{7P} and normalised states {o4}x, and coherent otherwise.
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Measurement incompatibility in
quantum mechanics

One peculiar feature of quantum mechanics is measurement incompatibility. Incompati-
bility manifests itself in various different forms depending on the level of detail we have
in our description of quantum measurements. In this section we discuss three different
ways of describing measurements (PVMs!, POVMs and instruments) and see what sort
of fine-tunings of incompatibility they allow.

2.1 Commutativity

The text-book description of quantum measurements as Hermitian operators or, equiv-
alently, as projection valued measures comes with a natural notion of incompatibility.
Namely, two mutually non-commuting Hermitian operators A and B are typically called
incompatible as their measurement statistics have limitations set by a preparation uncer-
tainty relation [see e.g. [38]]:

A(A)sA(B)y > 2| (][4, BI)), (2.1.0.1)

NN

where [A, B] = AB — BA and A(C)Z, = (¢[|C?y) — (¢|Cy)?, C = A, B.

Such limitations do not, however, capture the whole story behind measurement in-
compatibility. Whereas the above inequality is state-dependent, various (operationally
motivated) state-independent notions of measurement incompatibility have been intro-
duced. In the following sections we analyse in detail such concepts and show how they
reduce to commutativity of POVM elements in the case of PVMs. However, for pairs of
POVMs the concepts satisfy a strict hierarchy and, hence, highlight not only operationally

but also mathematically different fine-tunings of incompatibility.

2.2 Non-disturbance

In a sequential measurement scenario (consisting here of two time-steps) one can ask if
there exists a way to measure the first measurement, say {A,},, without disturbing the
statistics of a subsequent measurement, say {Bp},. To answer the question, recall that

!The abbreviation PVM refers to projection valued measure. These measures are defined as POVMs
whose POVM elements are projections and they correspond to text-book observables, i.e. Hermitian
operators.
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any instrument {Z,}, implementing {A4,}, has to fulfil
tr[Z,(p)] = tr[Aap] ¥p, a. (2.2.0.2)

Now, the joint probability distribution for getting an outcome a from the first measurement
and an outcome b from the second measurement in the state p reads

p(a,blA, B) = tr[Z,(p)Bp). (2.2.0.3)

In order not to disturb the statistics of the second measurement, we need ) p(a,b|A, B) =
p(b|B) for all b, i.e.

> " tr[Za(p) By] = tr[pBy] Vb. (2.2.0.4)

To capture non-disturbance as a property of the measurements, Eq. (2.2.0.4) is required
to hold for all input states. In the Heisenberg picture this reads simply )" Z}(B;) = By
for all b.

To decide the existence of a non-disturbing measurement implementation, numerical
methods based on semidefinite programming and analytical methods based on, for exam-
ple, commutativity have been developed [39]. However, as non-disturbance is not the main
focus of this thesis, we will simply state a few basic facts about it without further analysis
of the concept.

First, clearly two commuting POVMs allow a non-disturbing sequential implementa-
tion through the von-Neumann Liiders instrument. Namely, if [4,, By] = 0 Va, b, we can
write Y, ZE*(By) = 3, VAuBoWAa = Y., AuBy = By, for all b, where the superscript
L refers to Liiders. However, there exists POVMs which are non-commuting, but never-
theless allow a non-disturbing sequential implementation [39]. To see how the concept of
commutativity and non-disturbance become equivalent for PVMs, see subsection 2.4.

Second, non-disturbance has an extra structural property in comparison to the other
types of incompatibility discussed here. Namely, non-disturbance can be dependent on
the order of measurements, i.e. it is asymmetric [39].

Third, every non-disturbing measurement consists a joint measurement (see below).
Moreover, every joint measurement can be implemented through a sequential measurement
of possibly different observables [40].

2.3 Joint measurability

As our main concept of compatibility we introduce joint measurability. Joint measurability
refers to the possibility of inferring the measurement data of various observables from the
data of a single observable by the means of classical post-processing. Namely, a set of
POVMs {Ag;}a, is called jointly measurable if and only if there exists a POVM {G}x
(called a joint observable or a joint measurement) together with probability distributions
{p(-|z, A) }z, such that

tr[Agpepl = Y plalz, Atr[Gap] Vp, (2.3.0.5)
A
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or equivalently Ay, = >y p(alr,\)Gy. Sometimes it is more convenient to use deter-
ministic post-processings, i.e. probability distributions with values 0 and 1. Similarly as
in the case of hidden variable models, one can show that this poses no extra restrictions
on joint measurability [41]. Namely, the existence of a joint observable with stochastic
post-processings is equivalent to the existence of a (possibly different) joint observable
with deterministic post-processings.

As in the case of non-disturbance, commuting measurements allow a joint measure-
ment, but the other way around is not always true. To see this, taking the product POVM
of two commuting POVMs forms a valid joint observable. For the other case, consider the
following non-commuting POVMs

1

Sipc = §(I:I: po2) (2.3.0.6)
1

SLZ = §(I:i: poz), (2.3.0.7)

where p € (0,1]. We can define a joint observable candidate for any u € (0,1] by writing

1

Gl = 1 I+ plioy + jo.)], i,j = £1. (2.3.0.8)

Clearly the marginals (i.e. deterministic post-processings) of this candidate are correct,
iLe. >3,Gi; =S4 and 3, G}, = S . However, the candidate is a POVM only for the

il o
values 0 < pu < % Hence, the POVMs Siu and Si|z are non-commuting but jointly

measurable within the parameter range 0 < p < % Moreover, it can be shown that the

value p = % is critical in the sense that above this threshold the POVMs become not

jointly measurable [42] (see also below).

So far we have seen that commutativity implies both non-disturbance and joint mea-
surability, but not the other way around. To build the hierarchy further, we note (as
mentioned above) that every non-disturbing measurement works as a joint measurement.
Namely, let {A,}, be a POVM that allows an instrument {Z,}, not disturbing a POVM
{Bp}p. Now, the operators G, := Z;(Bp) form a POVM with the correct marginals.
Hence, non-disturbance implies joint measurability. For an example showing that the
inverse implication does not hold, we refer to [39].

To characterise sets of observables that admit joint measurements, various analytical
[43, 44, 45, 46, 47, 48] and numerical [13, 49, 50] techniques have been developed. Some
of these techniques are discussed and further developed in the articles LII,III and VII.
However, for completeness we wish to reproduce here an analytical characterisation of
noise tolerance of non-joint measurability in a simple scenario including two two-valued
(unbiased) qubit observables. The characterisation was first found in [42].

To start with, define two POVMs through the operators Ay = 3(I+3a- &) and By =

I+ b-&). Assuming that there exists a joint measurement {Gi j}ij=+1, we can write its
POVM elements as

Gy (2.3.0.9)
Gi_=A, —Gyy (2.3.0.10)
G_,=B; -Gy (2.3.0.11)
G._=1-A, —B,+G,. (2.3.0.12)

16



Writing G4 4 = %(ﬂ + 7 - &), the positivity of the operators {G} ;};; implies

171 <~ (2.3.0.13)
lZ—F| <1—~ (2.3.0.14)
16— <1-+ (2.3.0.15)

l@+b—7| <. (2.3.0.16)

Geometrically, the first and the last inequality imply that there exists a point (namely
%) in the intersection of a ball of radius v whose center is the origin and a ball of radius
v whose center is the point @ + b. This can only be the case if the sum of the radiuses
is larger than or equal to the distance between the center points of the balls, i.e. if
|@ + b|| < 2. Moreover, a similar argument used on the second and the third inequality
gives [|@—b|| < 2(1 —~). Summing up these two inequalities gives the following necessary
condition for joint measurability

|G+ 0| + ||@— b < 2. (2.3.0.17)
To prove the sufficiency of this criterion, one can choose ¥ = (@ + b) and v = ||7||. This
clearly defines a valid joint observable.

2.4 Coexistence

Joint measurability refers to the existence of an observable whose statistics can be used to
deduce the statistics of other observables by the means of classical post-processing. One
can modify this notion by dropping out the post-processings. Namely, one can ask if the
statistics of a set of observables can be included into the statistics of a single observable.
More precisely, a set of POVMs {4, }a. is called coexistent if there exists a POVM
{C\} such that

U U 44 € O (2.4.0.18)

T acAy xeC

where A, and C refer to the sigma-algebras generated by the outcomes of the corresponding
observables. Here, for example, A 9y, refers to Ay, + Ay,

It is then natural to ask if coexistence is indeed a proper generalisation of joint mea-
surability. First, joint observables (with deterministic post-processings) clearly work as
the observable C' in Eq. (2.4.0.18). Second, to prove the strictness of this inclusion, we
evoke an example from [51]. Namely, define two qutrit POVMs as

&z%@—M@mi:QLQ (2.4.0.19)
Bi= S [v)yl, By=T- By, (2.4.0.20)

where [¢) = %(|O> + |1) +|2)). To prove coexistence, clearly the following POVM does
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the job

1
Ci = 5liil, i=0,1,2 (2.4.0.21)

1
C3= By, Ci= 31— B, (2.4.0.22)

Assuming now that the observables {A,}, and {By}; are jointly measurable with a joint
observable {Ggp}qp and deterministic post-processings we get 0 < G,1 < By for a =
0,1,2. As By is rank one we have G, 1 = ¢,B1 for some 0 < ¢, < 1. Consequently,
A, = Ga,l + Ga,2 = coB1 + Ga,Q and

Ca
3
It follows that ¢, = 0 for a = 0,1,2 and B; = ) ,Ge1 = 0. Hence, the POVMs in
Egs. (2.4.0.19, 2.4.0.20) are coexistent but not jointly measurable.

We are now in the point to show that the strict hierarchy between commutativity,
non-disturbance, joint measurability and coexistence does not exist for PVMs. To do this,
we recall the proof from [52]. As coexistence deals not only with outcomes of POVMs,
but also with the sigma-algebras generated by the outcomes, we will use the set notation
X instead of the otherwise used notation a for outcomes®. To start with, note that if a
POVM A has a projection A(X) in its range, then any other element A(Y') of the range
commutes with A(X). To see this, write

0 = (a|Agla) = cqo{a|Bila) + (a|Ga2la) > (2.4.0.23)

AX)=AXNY)+ AX\(XNY)) (2.4.0.24)

A(Y) = AXNY)+AY\(XNY)) (2.4.0.25)
I>AXUY)

= AX) 4+ AY\(X NY)). (2.4.0.26)

Hence, clearly A(XNY) < A(X) and A(Y\(XNY)) <IT—-A(X). As A(X) and I - A(X)
are both projections, one can write

AXNY)=AX)AXNY)A(X) (2.4.0.27)

AY\(XNY))=1-AX)AY\(XNY))(I - A(X)). (2.4.0.28)

The sum of these two operators gives
AY)=AX)AX NY)AX)+ (I - AX)AY\(X NY))(I - A(X)). (2.4.0.29)

Multiplying this with A(X) either from left or right gives A(X)A(XNY)A(X) and, hence,
[A(X), A(Y)] = 0.

Now, if a PVM A : ¥4 — L(H) and a POVM B : ¥p — L(H) are coexistent
with a common POVM C : ¥¢ — L(H), then A(X) = C(Zx) and B(Y) = C(Zy)

2Note that the proof works also for continuous POVMs. For this case the former definition of a POVM
has to be slightly modified. Namely, a continuous POVM A : ¥4 — £(H) is a mapping from the (Borel)
sigma-algebra ¥4 of the outcome space Q4 to the set of bounded positive linear mappings satisfying
A@) =0, A(Qa) =1, A(UsX;) =, A(X;) for disjoint sets X; € ¥ 4. In the case of infinite-dimensional
Hilbert space, the operator sum is assumed to converge in the weak (or equivalently strong [38]) operator
topology
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for some sets Zx,Zy € Y. The above deduction applied to the POVM C shows that
[A(X),B(Y)]=0VX € X4, Y € ¥p. Hence, for pairs of measurements including at least
one PVM, all the above notions of compatibility coincide.

2.5 Compatibility of state transformations

So far we have concentrated on compatibility of measurements through their statistics.
However, compatibility can be also formulated for other measurement descriptions [53, 54,
55]. As examples, one can ask the question about compatibility between an instrument
and a channel, instrument and a POVM, channel and a POVM, compatibility of two (or
more) channels and compatibility of two (or more) instruments. For our purposes, the
compatibility of instruments with channels and other instruments are of most interest,
as they provide the needed tools for mapping all steering problems (channel, spatial and
temporal) to joint measurability problems.

To start with, consider an assemblage of instruments {Ia|x}a,m. The assemblage is
called compatible if there exists an instrument {Z)}, and post-processings p(-|x, \) such
that

Tow = plalz, )T, (2.5.0.30)
A

Noticing that compatible instruments necessarily have the same total channel, we can
reduce the question of instrument compatibility to assemblages {Zg; }a, With the property
> aZajlz = g Lajer for all z,2". Using the techniques introduced in subsection 1.3.1 (for
characterising the instruments compatible with a channel) we can write such instruments
through a minimal Stinespring dilation of the total channel as

Toja(p) = tral(Age @V pV*] Vp € S(H). (2.5.0.31)

Using the fact that the instruments {Z|; }4,» correspond one-to-one to the dummy POVMs
{Aa|:p}a7x on the dilation space, we can easily characterise compatibility of instruments.
Namely, jointly measurable dummy POVMs lead clearly to compatible instrument assem-
blages. On the other hand, if an instrument assemblage is compatible, then the common
instrument {Z)}, has the same total channel as the instruments {Z,;}q.. Therefore,
there exists a unique POVM {G,}, on the dilation space corresponding to the common
instrument. The compatibility of the instruments can be then written as

Tu(p) =D plalz, Nira[(Gy @ DV pV™] (2.5.0.32)
A
= tra[()_plalz, NGr @ D)V pV*] Vp € S(H). (2.5.0.33)
A

As the operators ), p(alz, \)Gy form POVMs (over the index a) for every z, and as
the POVMs on the dilation space correspond one-to-one to the instruments, we have

Aa|z = Z)\p(a]x, )\)G)\

19



Steering and joint measurability

We are now ready to proceed to the results that led to this thesis. As the detailed results
are in the attached articles, we provide an introductory explanation of the ideas and
techniques used in the articles. This chapter covers the articles I-IV, the chapter Steering
detection covers the articles V and VI, and the chapter Bounding the noise tolerance of
incompatibility is about the article VII.

3.1 Spatial steering

In this part, we go through the articles I-III. The results cover the connection between
steering and joint measurements on three different levels: steerability of state assemblages
originating from pure states, steerability of state assemblages originating from mixed
states, and steerability of quantum states (i.e. assemblages originating from a general
state and all possible measurements on Alice’s side).

3.1.1 Non-joint measurability as a measurement resource for spatial
steering

In article I a connection between steering and joint measurements in finite dimensional
systems is presented. Namely, we show that in spatial steering, when optimisation over
all shared states is performed, steerability of Bob’s state assemblage is equivalent to non-
joint measurability of Alice’s observables'. The result allows one to translate various
results and concepts between the research fields of joint measurability and steering such
as incompatibility witnesses and local hidden state models. The work also includes a
numerical analysis about the possibility that non-jointly measurable observables don’t
necessarily lead to Bell non-locality. The analysis shows strong evidence that this would
indeed be the case?.

To be more concrete, we sketch the idea of the main result here. Consider a steer-
ing scenario with Alice and Bob both having a d-dimensional system. Notice first that
jointly measurable observables on Alice’s side lead always (i.e. with any shared state) to
an unsteerable assemblage on Bob’s side. For the opposite direction, label Alice’s mea-
surements by {Ay|;}a,. and let the shared state pap be of Schmidt rank d, i.e. of the

form pap = Y¢i_1 /AiNilid)(jj| with S0 A = 1, Ay > 0 Vi and {[i)}{; being an

!See also [56] for an independent proof of this result and [57] for a similar connection between non-joint
measurability and non-locality in bipartite scenarios with both parties having two binary measurements.

ZNote that later a proof of this fact was presented in [58, 59].
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orthonormal basis, Bob’s conditional state assemblage reads

Palz = trA[(Aa\z ® H)PAB]
= tral(Age © (C S DY HHPH(C S T, (3.1.1.1)

where [¢) = S0 [id) and C = S, VAN]i)(il. Using (A @ B)[g)(yt]] =
1tr[ABT] VA, B € £(C?), where (-)T refers to the transpose (in the basis {|i)}{_,), we get

1
Palr = gCAfL,EC. (3.1.1.2)

Now, if this assemblage is unsteerable with a local hidden state model given through an en-
semble {p(X)px}a, we can define a joint observable for { A, }a.x by Gy = dC~'p(X)p3 C 1.
Hence, we conclude that a set of POVMs is non-jointly measurable if and only if it can be
used for steering.

It follows that any joint measurement criterion on Alice’s observables translates into
a steering inequality and any local hidden state model translates to a joint observable
by the use of a Schmidt rank d state. For example cases, we refer to articles I and VII.
Moreover, it is clear that within the hierarchy of different types of incompatibility joint
measurability is the only one characterising the task of steering. Interestingly, there exists

coexistent observables which can be used for steering, see article I, [51], and subsection
2.4.3

3.1.2 Mapping between spatial steering and joint measurability prob-
lems

In article IT we deepen the connection between joint measurability and steering by adding
mixed shared states into the picture. The results show that any steering problem can be
written as a joint measurability problem and vice versa. This makes the use of joint mea-
surement criteria as steering inequalities more straight-forward and opens up a possibility
to translate steering quantifiers into incompatibility quantifiers.

To be more precise, we define a mapping between state assemblages and POVMs. To
do this, take a (non-signalling) state assemblage {p4|; }a, and define pp := >, py.- By
inverting pp (using a pseudo-inverse when necessary), we can define POVMs {Ba|x}a,m

through B,, := p]_gl/ 2 pa‘xp;/ % Joint measurability of these POVMs is clearly equivalent
to the unsteerability of the assemblage {pq|z }a,z-

Now any incompatibility criterion works as a steering inequality (even without the
use of a Schmidt rank d state) for various scenarios as the connection between POVMs
and state assemblages is one to many. For examples and for the translation of steering
quantifiers into incompatibility quantifiers we refer to article I1.4

3 Author’s contribution: The author of this thesis contributed to the proofs and examples in article
I, but not to the numerical calculations.

4Author’s contribution: The author of this thesis contributed to the proofs and examples in article
II, but not to the numerical calculations.
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3.1.3 Incompatibility breaking quantum channels

In article III we use a generalised Choi-Jamiotkowski isomorphism in order to find a con-
tinuous variable version of the connection between steering and joint measurements. This
results in a formalism where steerability of a state is mapped to incompatibility breaking
property of the corresponding quantum channel. The result allows one to solve seemingly
different steering problems in one go and to prove that canonical pairs of quadratures are
sufficient for steering in the Gaussian regime®.

To start with, recall that the Choi-Jamiotkowski isomorphism is usually defined only
for states which have a totally mixed marginal. This naturally limits the use of the iso-
morphism to finite-dimensional systems. To write a similar correspondence in the infinite-
dimensional case, one can consider states pap € S(Ha ® Hp) with a fixed full-rank
marginal o = tra[pap] (note that here the roles of A and B are changed from the typical
Choi-Jamiotkowski isomorphism in order to have steering going from Alice to Bob). Now
there is a one-to-one correspondence between such states and channels T from Bob to
Alice given as

pas = (T ©D)|2) (], (3.1.3.1)

where |Q5) = ). \/silit) € S(Hp ® Hp) and {s;}; are the eigenvalues of o. For the proof,
see article III.
A crucial point in this correspondence is that the adjoint of the channel T is given as

o PT*(A)o? = tra[(A@ D)pas]”, (3.1.3.2)

where ()T is the transpose in the eigenbasis of o. Notice that inputting POVMs to the
left hand side results in state assemblages on the right hand side. One can show (article
III) that the state pap is steerable with given measurements if and only if the correspond-
ing channel T breaks the incompatibility of these measurements. The connection is also
quantitative in that for a given state pap and given measurements {Aa‘x}a@ an incompat-
ibility quantifier called incompatibility robustness of {T"(A4|;)}a. is equal to a steering
quantifier called (consistent) steering robustness of the state assemblage originating from
pap and {Ag;tae (see article III).

To further justify the channel formulation, notice that one can encode properties of the
state into the channel. As shown in article I1I, for full Schmidt rank states the channel is
unitary (hence generalising the results of article I to the infinite-dimensional setting) and
for separable states the channel is entanglement breaking. Moreover, one can show that
steering with noisy NOON states and steering from an environment of a non-Markovian
system (with amplitude damping dynamics and initial state [1001)) to the system have
the same steering channel, hence enabling one to solve seemingly different steering prob-
lems in one go. Furthermore, applying the formalism to the Gaussian regime allows one
to reproduce the known Gaussian steering criterion of [3] and to prove that steering of

Gaussian states can be already decided with some canonical pair of quadratures.

5Note that as the basics about Gaussian systems are given in the article III, and as Gaussian systems
are not the main focus of this thesis, we don’t present the Gaussian formalism here.

5 Author’s contribution: The author of this thesis contributed to the proof of the connection between
steering and joint measurements for Schmidt rank-d states in the infinite-dimensional case (which was
independently proven by the first author) and to the search of applications of the main result.
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3.2 Temporal and channel steering

In article IV we use channel steering as a unifying framework for temporal and spatial
steering. This way one can prove results for all three steering scenarios in one go and
translate results from one scenario to the other. This is demonstrated by proving that
channel steering is equivalent to non-joint measurability of certain observables (see below)
and that the known hierarchy between spatial steering and non-locality translates into a
hierarchy between temporal steering and non-macrorealism.

In section 1.3, the basic notions and the relation between channel and spatial steering
were already discussed. Namely, channel steering with one-dimensional input systems
results in spatial steering. The same is also true for temporal steering provided that
the assemblages of interest are non-signalling”. Hence, channel steering can be used to
approach both problems.

Recall that steerability of an instrument assemblage {Z; }q,. is defined as the non-
existence of the model

Ty = Y plalz, NI, (3.2.0.3)
A

where {Z,}, is an instrument and {p(:|z,A)}, » are probability distributions. Now using
the techniques presented in subsection 1.3.1 we know that Eq. (3.2.0.3) is equivalent to the
joint measurability of the (dummy) observables {A,; }4,» on a minimal dilation of ), Z,,
that correspond to {Z|; }a,.- Applying this result to channels with one-dimensional input
space gives a connection between joint measurability and both spatial and temporal steer-
ing. One can show (see article IV) that the connection between joint measurability of the
dummy observables {Aa|w}a7$ and spatial steering can be used to reproduce the known
connection between joint measurability and spatial steering given in article II.

As in the case of spatial steering, such connection allows the use of joint measurability
criteria as steering witnesses. In contrast to spatial steering, channel steering extends the
applicability of these criteria to all three forms of steering.

In the above discussion, the use of a minimal dilation is crucial®. These dilations can
be also used to explore the connection between spatial and temporal steering. Namely, it
is fairly straight-forward to show that any non-signalling state assemblage has a spatial
realisation. Using this fact one can show (see article IV) that in order to produce any
non-signalling assemblage in the temporal scenario, it is sufficient to use non-signalling
instruments (even ones mapping between two systems of equal dimension are sufficient).
Hence, taking a channel whose minimal dilation has a bipartite state with interesting prop-
erties (here steerable but local) in the range of the isometry V' we can produce temporally
steerable correlations which have a macrorealistic model.”>'°

"Note that signalling assemblages are trivially steerable.

8See article IV for an example where the connection between joint measurability and steering fails for
a non-minimal dilation.

9Note that the hierarchy between temporal steering and non-macrorealism was independently proven
in [29].

10 Author’s contribution: The author of this thesis contributed to the proofs and examples in article
V.
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Steering detection

In this chapter we concentrate on the articles V and VI in which methods for steering
detection are derived. The first work shows how to map entropic uncertainty relations
into steering inequalities and the second one builds steering inequalities for dimensions-
bounded scenarios from entanglement witnesses.

4.1 Steering inequalities from generalised entropies

The idea of article V is to use the convex structure of local hidden state models together
with the fact that these models have a quantum description for Bob in order to derive
steering criteria. Namely, we show that jointly convex (and additive) functions with a
state-independent uncertainty type lower bound translate to steering witnesses.

We will sketch the proof for the special case of Shannon entropy here. First, consider
a local hidden state model

p(a,blz,y) Zp p(alz, \)tr[pr By, ). (4.1.0.1)

Here, we further assume all the measurements to have k values. Now, one can define a
function F(X,Y) = -D(X @ Y|X ®1), where

D(P|Q) = szln biy (4.1.0.2)

is the relative entropy and P = (pi,...,px) and Q = (q1, ..., gx) are vectors of probabilities.
The notations X and Y refer to the vectors consisting of probabilities of outcomes of the
observables = and y, and the notation I refers to the uniform distribution (1/k,...,1/k).
With X ® Y we refer to a vector consisting of joint probabilities.

The idea is to find a lower bound for F'(X,Y’) given that a local hidden state model
exists. Now, for a fixed A\ we define p(a, b|x,y, \) := p(a|z, \)tr[pxBy,]. As D is additive
for product distributions, we get (for a fixed \)

blz,y, )

FMX,Y) == p(a,blz,y,\)n pla,blz, v, = SMNY) — In(k), 4.1.0.3
(X,Y) = = e ) (p(a‘m/k ) -, (1103)
where SA(Y) = - btr[p,\Bb|y]ln{tr[p>\Bb|y]}. As the relative entropy is jointly convex,
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DAPL+ (1 = NPy AQ1 + (1 = N)Q2) < AD(P1|Q1) + (1 = A)D(P3|Q2),  (4.1.0.4)

the function F is jointly concave. Hence, we get

F(X,Y)> Zp MNFMNX,Y), (4.1.0.5)

where {p(A)}, is the probability distribution of hidden states. Writing the probability vec-
tors for Alice’s measurements x1, ..., £, as Xi, ..., X, and for Bob’s measurements y1, ..., yn
as Y1,...,Y,, we get

SR = 3 S VS )] - (k) |- (4.1.0.6)
7 7 A

An optimisation over all hidden state models translates to an optimisation of the quan-
tity >, >, p(A)SA(Y;) over all state ensembles. The result of such an optimisation is
an entropic uncertainty relation. As an example of such a relation, in the case Bob’s
measurements are y; = o, and y2 = o, we have [60]

S(oz) + S(0y) > In(2). (4.1.0.7)

The inequality in Eq. (4.1.0.6) works already as a steering criterion. However, one can
still modify it by noticing that the quantity F'(X;,Y;) is actually the conditional entropy
minus the logarithm of the number of outcomes. Namely, we have

F(X;,Y;) = S(Y:|X;) — In(k). (4.1.0.8)
Hence, the Shannon entropy based entropic steering criterion reads

> S(YiIXi) > (i, ., ), (4.1.0.9)

where a(Y1,...,Y)) is an entropic lower bound. Entropic lower bounds can be found by
numerical search, but also tight analytical bounds are known for several scenarios, see [61]
and references therein.

To give an example of a generalised entropy that can be mapped into a steering crite-
rion, we consider the Tsallis entropy (see also article V). Tsallis g-entropy (where ¢ > 1)
and the respective relative entropy of a probability distributions P = (pi,...,pr) and
Q= (q1,-..,qx) are defined as

=— Zpglnqpi, (4.1.0.10)

Dy(P|Q) = szlnq (q’> , (4.1.0.11)

where Ing(p;) = a”l:q_l. The relative entropy is jointly convex, but it is not additive for
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product distributions. Namely,

Dy(P1P|Q1Q2) = Do(P1|Q1) + Dyg(P2|Q2) + (¢ — 1) Dg(P1[Q1) Dg(F2|Q2), (4.1.0.12)

where P; = (pjl, ...,pi) and Q; = (q{, ...,qi) for j = 1,2. This, however, does not limit the
use of the technique presented above for the Shannon entropy. The only difference in the
resulting criterion is an extra term on the left hand side, see article V:

> (S(YilXa) + (1= 9)C(X, Vi) > (Y, ..., Vi) (4.1.0.13)

i

where a?(Y71, ..., Yy) is an entropic bound and

C(X:,Yi) =Y pl(Ing(p))” = > pIng(pi)ng (piy)- (4.1.0.14)
i i

For applications of this criterion we refer to the article V, where the strength of our
steering inequalities is compared to known steering witnesses. Interestingly, our technique
is optimal or close to optimal in many scenarios.

4.2 Steering inequalities from entanglement theory

In article VI we develop a method for deciding the steerability of a state assemblage
{pa|aj}a,x by mapping it into an abstract operator X 4p whose entanglement properties are
linked to the steering properties of the assemblage. Such a mapping unlocks the use of
entanglement witnesses in steering detection and, consequently, opens up the possibility
to go beyond the typical steering scenario through the use of dimension-bounded entangle-
ment techniques. These are scenarios where Alice’s measurements are uncharacterised and
Bob’s measurements have only a dimension-bound, but no further description of his mea-
surements is assumed. Moreover, we provide detection thresholds for dimension-bounded
steering that are no weaker than the known ones for steering in typical symmetric sce-
narios. Interestingly, these symmetric scenarios have been implemented in a loophole-free
steering experiment [62]. However, at the time of our work the data of the experiments
were not available.

To introduce the main idea of the paper, we sketch the aforementioned operator X
in a simple scenario. Namely, consider an unsteerable assemblage {pa|x}a7$, where a = +1
and z = 1,2 with a deterministic local hidden state model given by

Pl =04t + 04—y p 1 =04 +0__ (4.2.0.15)
p_HQ :O'+++O'7+, ,0_‘2 :O'+7+O'7,. (42016)

This state assemblage can be clearly produced by the use of a separable state

nag = Y lij){ij] ® oy, (4.2.0.17)
i,j==1

and measurements A, = [£)(+|® I, A4y = [® [£)(£[. Hence, if the state nap would

! Author’s contribution: The author of this thesis contributed to miscellaneous calculations concern-
ing the proofs and examples in article V.
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be entangled, the underlying assemblage would be steerable. However, the state has
two drawbacks that reduce its use as a steering witness. First, the state is not completely
determined as the Eqs. (4.2.0.15,4.2.0.16) don’t have a unique solution in general. Namely,
a possible solution is

4.2.0.18

T4+ )
4.2.0.19)
)
)

Of— = P+)1 — T4+
4.2.0.20
4.2.0.21

(

(
O—F = P42 — O++ (
O—— = pA+ Oy, (
where pA = pp — p4j1 — p4j2 and pp = Y, Pqje- However, o, is not determined by
the solution. Second, the state nap is not a general separable state, but it is instead a
classical-quantum (or zero discord) state. As we aim to use general entanglement detection
techniques, we wish to remove this structure. To overcome the drawbacks, we turn our
focus to operators of the form

Sap =Y Zij ® 0ij, (4.2.0.22)
]
where Z;; are positive semi-definite operators. Now the zero-discord structure is removed

and we can simply rewrite the operator in order to eliminate the redundancy that comes
with the unknown o, as

YAaB=Z4+-Q@pin+ 24 Qpip+tZ—@pa+ (Zyy —Z4 —Z 4+ Z__)R@044.
(4.2.0.23)

Hence, if we use operators {Z;;};; such that Z,, — 7, —Z_, +Z__ =0, the operator
Yap is determined by the state assemblage. Moreover, if we pose the normalisation
condition tr[Z _|tr[py ] +tr[Z_y]tr[py o] +tr[Z-_]tr[pa] = 1 we see that X4 is indeed a
separable quantum state. Consequently, if ¥ 4p is entangled (or no quantum state), then
the underlying state assemblage is steerable.

In article VI we show how the mapping between state assemblages { pa|x}a7x and quan-
tum states X ap works in more complicated scenarios. Moreover, we show that for a
steerable assemblage and an appropriate choice of the operators {Z;;};; the entanglement
of the corresponding state is detected by the swap entanglement witness. For applications
of the result, we refer to the article VI.2

2Author’s contribution: The author of this thesis contributed to the search of applications of the
main result through the connection between steering and joint measurements.
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Bounding the noise tolerance of in-
compatibility

The article VII introduces a simple technique for building joint observables for a given set
of measurements. The technique is based on measuring another set of observables, or more
precisely an ensemble of observables, which can be identified as a joint observable of the
desired set. The strategy results naturally in sufficient conditions for joint measurability.
Interestingly, the connection between steering and joint measurements presented in article
I together with the techniques presented in [14] can be used to prove the necessity of these
conditions in various symmetric scenarios.

To demonstrate our technique, we recall the simple compatibility problem presented
in subsection 2.3. Namely, let

1

Ay = 5 (T pog) (5.0.0.1)
1

AY, = 5(]Ii (o). (5.0.0.2)

To build a joint observables for {A,}y=z ., we wish to measure two other observables
{Bijy}ty=1,2- An educated guess suggests that the other observables have Bloch vectors
lying in the (z, z)—plane. To adjust these Bloch vectors, one can try directions which give
in some sense the most information about the desired observables. One guess is then to use
the observables {Ai|y}y:$vz themselves. Indeed, in some cases this gives good results, see
article VII. However, as these observables have orthogonal Bloch vectors, measuring one
doesn’t give any information about the other one. In order to get the most information
about {A4,}y=z . With By, and By |y, we choose

By = %(}1 + \2(% +02)) (5.0.0.3)
By = %(}1 + \2(% —02)). (5.0.0.4)

As we wish to have only one observable (i.e. a joint observable), we put the above mea-
surements into a single ensemble. To get the correct marginals, we choose an ensemble
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with equal weights. This results in the following POVM

1 1
1 1
G(—,+) - 53,‘2, G(—, —) = §B,|1, (5006)
which turns out to be an optimal joint measurement, as the marginals are Ai‘x and Ai|z
with p = % [42] (see also subsection 2.3).

Summarising the main ingredients of the above calculation, we write an adaptive strat-
egy for finding joint measurements in the qubit case. Assuming that the (unbiased) ob-
servables we want to measure are given by the Bloch vectors %1, ... Xy, the strategy reads
as follows.

1. Fix unit Bloch vectors #1,...,yn such that & - g # 0 for all [ = {1,..., M} and
k={1,...,N}.

2. Choose k € {1,..., N} with probability p(k).

3. Perform the +£1 valued measurement By, |;, corresponding to g.

4. For each [ = {1,..., M} the outcome a; is by, if Z;- g > 0 and —by, if T - 43 < 0.
5. As a result, one gets a list (ay,...,aps) of outcomes.

6. Add p(k)By, ), to joint observable’s corresponding POVM element.

7. If a combination (ai,...,ap) does not result in the process, the corresponding
POVM element of the joint observable is set to be zero, i.e. G(ay,...,ap) = 0.

Note that in the previous example the connection between joint measurements and
steering was not needed. To give an example of a situation, where the connection provides
an advantage, we apply the above guidelines to a set of M > 2 unbiased qubit observables
{Ay x 1M given by the Bloch vectors

fk = (COS@k, Sin0k7 0)7 Qk’ = (k - 1)7T/M (5007)

Following the adaptive strategy, we need to first find suitable guess vectors. Upon trying
a few possibilities, one finds out that sets of guess vectors sharing similar symmetries
as the original vectors work nicely. Moreover, in many cases equal combinations of the
Bloch vectors {£Z} }1 seems to result in an optimal joint observable. Using these intuitive
guidelines, let us first divide the example into two cases. Namely, consider first odd values
of M. For this case, one can choose the guess vectors to be exactly the original Bloch
vectors, i.e. i = &) for all k. For the step two, we take a uniform distribution. For steps
three and four, we calculate

T - 4y = cosBicosl; + sinfsind, (5.0.0.8)
= cos(0x — 6;) (5.0.0.9)
B (k—Dr
= cos < 7 : (5.0.0.10)
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Hence,

Teo Gy >0 if [k—1] < M2, (5.0.0.11)
T <0 if [k—1] > M/2. (5.0.0.12)

The first marginal of G is then

1
Y Glar,...,an) = §(H+a1)\£l-5), (5.0.0.13)
az,...,apr==1
where
(M-1)/2
1 k

A= 142 > cos(Mﬂ) . (5.0.0.14)

By Lagrange’s trigonometric identity we have

(M-1)/2 . 1 1
; cos(ﬂ) =-3 + W (5.0.0.15)
Similarly for an odd M one chooses
Ui = (cos(fx + ﬁ), sin (0, + ﬁ), 0), (5.0.0.16)
O = u (5.0.0.17)

M

As in the case of an even M one gets a joint observable with the correct marginals. The
amount of noise is equal to the one in Eq. (5.0.0.14), i.e.

1

= .0.0.1
Msin(2) (5.0.0.18)

To prove that this threshold is indeed optimal we use a steering inequality given in
[14] (see below). One first notices that the (white) noise in Alice’s measurements can be
transferred to the state shared by Alice and Bob in a steering scenario. For our purposes,
it is enough to consider the shared state to be the maximally entangled one, in which case
the noise transfers as

tra(Age @ DTN 1] =tral(45, @ D) (@], (5.0.0.19)

where [} (0 | = At (0| + 12T @ Land A, = A, + 15204 ]LL
The steering inequality given in [14] reads in our scenario

M
3 (A @ 6l [ < O (5.0.0.20)
k=1
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where Ay = Ay — A_, ¢ is a Bloch vector and the bound C)y is

M
1 Z T
CM = rngx <)\max <M e aiCk * O'k>> s (5.0.0.21)

Amax (K) is the largest eigenvalue of a matrix K and @ = (aj ...aps). Inserting ¢, = ¥
and the transposes of the observables given by the Bloch vectors #, for Alice we arrive at

1
A< — (5.0.0.22)

~ Msin(557)

Hence, a violation of the above inequality implies steerability and non-joint measurability
of Alice’s observables. As transposition does not affect joint measurability, we conclude
that the equally distributed planar observables are jointly measurable if and only if the
above condition holds.

In article VII we analyse various symmetric and non-symmetric scenarios together with
a generalisation of the adaptive strategy to higher dimensional systems. We demonstrate
the power of the strategy by providing optimal noise threshold for incompatibility in
cases including symmetric sets and non-symmetric pairs of qubit observables and pairs of
observables given by mutually unbiased bases in any finite-dimensional system.!

! Author’s contribution: The author of this thesis contributed to the derivation of various joint
measurement criteria.
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Conclusions

In this thesis we have used a quantum measurement theoretical approach towards classical
models of quantum correlations. As the main result we have proved a deep connection
between a type of measurement incompatibility, namely joint measurability, and a type
of quantum correlations, namely quantum steering. As a consequence, we have translated
various results between the two fields and built an alternative formalism for steering.

On top of the main result and its implications, we have also mapped entropic un-
certainty relations to steering criteria and found ways to generate joint observables and,
hence, local hidden state models for steering tests. These results are powerful in the
sense that the former has managed to beat every known analytical steering criteria ei-
ther in strength or in applicability, and the latter has managed to provide optimal noise
thresholds for various incompatibility and steering scenarios.

The thesis has also broadened the typical steering setup by developing steering detec-
tion techniques for scenarios where one party is completely uncharacterised and the other
party has only a dimension-bound on their system. Such techniques are based on mapping
steering problems to entanglement and using dimension-bounded entanglement witnesses.

For future research it will be interesting to see if further connections between mea-
surement theoretical concepts, such as non-disturbance and coexistence, and quantum
information tasks, such as violations of Bell inequalities, macrorealism or contextuality,
can be drawn. Such connections, if existing, may provide powerful tools for all of these

fields.
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Title: Joint measurability of generalised measurements implies classicality
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Abstract: The fact that not all measurements can be carried out simultaneously is a
peculiar feature of quantum mechanics and is responsible for many key phenomena
in the theory, such as complementarity or uncertainty relations. For the special
case of projective measurements, quantum behavior can be characterized by the
commutator but for generalized measurements it is not easy to decide whether two
measurements can still be understood in classical terms or whether the already show
quantum features. We prove that a set of generalized measurements which does not
satisfy the notion of joint measurability is nonclassical, as it can be used for the task
of quantum steering. This shows that the notion of joint measurability is, among
several definitions, the proper one to characterize quantum behavior. Moreover, the
equivalence allows one to derive novel steering inequalities from known results on
joint measurability and new criteria for joint measurability from known results on
the steerability of states.

Author’s contribution: The author of this thesis contributed to proofs and ex-
amples.
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The fact that not all measurements can be carried out simultaneously is a peculiar feature of quantum
mechanics and is responsible for many key phenomena in the theory, such as complementarity or
uncertainty relations. For the special case of projective measurements, quantum behavior can be
characterized by the commutator but for generalized measurements it is not easy to decide whether two
measurements can still be understood in classical terms or whether the already show quantum features.
We prove that a set of generalized measurements which does not satisfy the notion of joint
measurability is nonclassical, as it can be used for the task of quantum steering. This shows that
the notion of joint measurability is, among several definitions, the proper one to characterize quantum
behavior. Moreover, the equivalence allows one to derive novel steering inequalities from known results
on joint measurability and new criteria for joint measurability from known results on the steerability of

week ending
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states.

DOI: 10.1103/PhysRevLett.113.160403

Introduction.—Quantum theory is formulated in the
language of Hilbert spaces, where states correspond to
vectors or density matrices, and measurements are
described by Hermitian matrices, the so-called observables.
As realized by M. Born and P. Jordan, two observables A
and B do not necessarily commute, which means, in the
first place, that the corresponding measurements cannot be
carried out simultaneously in a direct way [1,2]. This
intuition can be made precise by formulating uncertainty
relations, where the commutator [A, B] = AB — BA quan-
tifies the degree of uncertainty about the values of A and B
[2-4]. Consequently there is the widespread opinion
that sets of noncommuting observables are central for
many quantum effects, while commuting observables are
considered to be classical.

It has turned out, however, that the notion of observables
is far too narrow to describe all measurements procedures
in quantum mechanics. This has led to the formulation of
generalized measurements or positive operator valued
measures (POVMs). Mathematically, a POVM consists
of a collection of operators E = {E(i),i € I} which are
positive, E(i) > 0, and sum up to the identity, > ,E(i) = 1.
The POVM elements E(i) describe the measurement out-
comes and the probability of an outcome i is given by
p(i) = tr[oE(i)]. Physically, any POVM can be realized by
first letting the physical system interact with an auxiliary
system and then measuring an ordinary observable on the
auxiliary system. Finally, any observable A is also a POVM
if one identifies the E(i) with the projectors onto the
eigenspaces of A, in which case the measurement is also
called a projection valued measure (PVM).

Given the notion of generalized measurements the
question arises, when two or more POVMs can be
considered to be nonclassical. One possibility is to require

0031-9007/14/113(16)/160403(5)

160403-1

PACS numbers: 03.65.Ta, 03.65.Ca

the commutativity of all the POVM elements, but more
refined notions are useful. Indeed, several notions such as
“nondisturbance,” “joint measurability,” and “coexistence”
have been introduced and their investigation is an active
area of research [5-9].

In this Letter, we argue that the notion of joint
measurability is the proper one to describe the classical
behavior of two or more generalized measurements. To do
so, we establish a connection between joint measurability
and the task of quantum steering. Quantum steering refers
to the scenario, where one party, usually called Alice,
wishes to convince the other party, called Bob, that she
can steer the state at Bob’s side by making measurements
on her side. This task was introduced by E. Schrodinger to
demonstrate the puzzling effects of quantum correlations
[10] and recently it has attracted increasing attention again
[11-16].

More precisely, we show that a set of POVMs in the
finite dimensional case is nonjointly measurable if and only
if the set can be used for Alice to show the steerability of
some quantum state. This allows one to derive new steering
inequalities from results known for joint measurability, and
we will also find new criteria for joint measurability from
results on steering. Finally, we demonstrate that other
possible extensions of commutativity to generalized mea-
surements, such as coexistence, lead to nonclassical effects
and we explore the relation of joint measurability to Bell
inequality violations.

Joint measurability.—The notion of joint measurability
is most conveniently introduced with an example. The
Pauli spin matrices ¢, and ¢, are noncommuting and cannot
be measured jointly. However, one can consider the
smeared or unsharp measurements S, and S, defined
by the POVM elements S, (+) =1 (1 £ (1/v2)s,) and

© 2014 American Physical Society
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S.(£) =1(1 £ (1/v2)s,). It was shown in Ref. [17] that
these are jointly measurable: One can consider the joint
observable

o
Glij) = (ﬂ + 50 +ioz>, ioj € {~1.+1}.

2
(1)

and since S (&) = > ;G(+,j) and S (£) = > ,G(i, %),
one can jointly determine the probabilities of the general-
ized measurements S, and S, by measuring G.

More precisely, joint measurability of the set {E;}
of POVMs can be formulated as the existence of a set
of positive operators {G(4)} from which the original
observables can be attained as

> Dy(x[k)G(4) = Ex(x) forall x. k. (2)
A

with >°,G(4) =1 and where D,(x|k) are positive con-
stants with > D,(x|k) =1 [18]. In practice, this means
that the probabilities of the results E;(x) can be determined
by measuring the operators G(A) and classically postpro-
cessing the data.

Quantum steering.—The essence of steering can also be
described by an example. Let us assume that two parties,
Alice and Bob, share a maximally entangled two-qubit state
lw) = (J00) + |11))/+/2. If Alice measures the Pauli oper-
ators o, or o, the state on Bob’s side will be an eigenstate
|x%) or |z%) depending on Alice’s measurement and result.
Since all these states are pure, Bob cannot explain this by
assuming that he has a fixed marginal state ¢z which is only
modified due to the additional knowledge from Alice’s
measurements. So Bob must conclude that Alice can steer
the state in his lab by making measurements on her side.
The question arises whether the same phenomenon occurs
if Alice uses the smeared measurements S, and S,
introduced above. This will be answered in full generality
in the following.

First, we label Alice’s and Bob’s POVMs by {A;} and
{B,} and the system’s state by ¢,p. Clearly, the scenario is
nonsteerable if the probabilities of possible events can be
written in the form

tfeasAi(x) ® Bi(y)] = Y _p(A)p(xlk, Auele;B,(y)]  (3)
A

because then Bob can assume that he has the collection of
states ¢, with probabilities p(1) which is only modified by
additional information from Alice’s measurements quanti-
fied by conditional probability distributions p(x|k, 4). We
can write the left-hand side of this equation as

tr(tra{[Ar(x) ® Neap}Bi(y)) = twloxBi(y)]  (4)

and if Bob’s measurements are tomographically complete it
follows that ¢, = >, p(4)p(x|a,1)g;. If, on the other
hand, the quantities ¢,; admit this kind of a decomposition
(also called a hidden state model) we conclude that the
scenario is nonsteerable.

This can be reformulated as suggested in Refs. [12,13]:
Steering is equivalent to the nonexistence of a set of
positive operators {c;} such that

> p(xlk. Ao, = oy forall x. k. (5)
A

with tr(} ;6,) = 1 and where g, = try{[Ax(x) ® T]oas}
are Bob’s not-normalized conditional states. The formal
similarity between Eq. (2) and Eq. (5) is appealing and, as
we will see now, no coincidence.

Steering and joint measurements.—Consider the case
where Alice has observables {A;} which are jointly
measurable. Using Eq. (2) we can write for any steering
scenario the conditional states of Bob as

0 = O_Da(x[) s {[G(4) ® Teas}, (6)

which is a decomposition as in Eq. (5). Therefore, if Alice’s
observables are jointly measurable then the scenario is
nonsteerable.

Conversely, if the measurements are nonjointly measur-
able, one can always find a state which can be used for
steering: For the maximally entangled state |¢pT) =
1/v/d >4, |ii) one can write Bob’s conditional states as

1
eufk = a[(Ac(x) @ D ) (p ™[] = Z[Ac)]". (7)
If the scenario is not steerable then one can find a set of
positive operators {c;} and a set of positive numbers
p(x|k, ) such that

A(x) = dY_p(alk.A)o] =Y Dy(xlk)G(2).  (8)

where G(1) = do!. This is just the joint measurability
condition from Eq. (2). Note that by summing over x in
Eq. (8) we see that G is properly normalized. We now state
the main result of this article.

Observation 1: Generalized measurements are non-
jointly measurable if and only if they can be used for
quantum steering.

Let us note that the reasoning prior to Observation 1 was
done for the maximally entangled state. Steering is,
however, invariant under stochastic local operations and
classical communication [19] on the characterized (Bob’s)
side. This means that any state which is obtained from the
maximally entangled one by stochastic local operations and
classical communication can be used to show steering for a

160403-2
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set of nonjointly measurable observables. Therefore, any
pure Schmidt rank d state (possibly having an arbitrarily
small amount of entanglement) reveals steering.

We exploit the connection by giving a generic incom-
patibility criteria for sharp observables, deriving a steering
inequality based on the Fermat-Torricelli point, and point-
ing out two interesting notes on different formulations of
simultaneous measurability.

From steering to incompatibility.—We show that there
exists a threshold value of white noise [that is, adding the
identity as in Eq. (11)] that one needs to add in order to get
any set of PVMs jointly measurable. For this purpose we
need the following connection between noisy states and
noisy observables:

try[Ap(x) @ 105,] = try[A}(x) @ Tous), 9)

where

1-1
Ohp = Aoap + T“ ® traloas]. (10)

Al(x) = 2Ax(x) + tr[A;(x)]1. (11)

In order to obtain the threshold value we take the
known result from Ref. [11] stating that the maximally
entangled state is steerable with PVMs up to the amount
Ai=(Hy;—1)/(d=1) of white noise, where H, =

¢_,(1/n). Using Eq. (9) and Observation 1 one obtains
that for any smearing parameter A > A* there must exist a
set of PVMs which is noise resistant up to the amount 4 of
white noise; i.e., one can add this amount of white noise to
the PVMs without making them jointly measurable. On the
other hand, the maximally entangled state reveals steering
for nonjointly measurable observables, so all PVMs must
be jointly measurable with the amount A* of white noise.
Thus, we arrive at the following result.

Observation 2: In a d-dimensional Hilbert space, any set
of sharp observables is jointly measurable with the amount
A* of white noise. Moreover, for any amount of smearing
above this limit there exists a set of PVMs which remains
nonjointly measurable.

Note that this is formerly known to be sufficient for
d = 2[20]. The result leads to an interesting open question:
Are there sets of POVMs which remain nonjointly meas-
urable with the amount 1* of white noise? If this is the case
then PVMs are not enough for concluding steerability of a
state and if it is not the case then this directly leads to new
local hidden variable models for POVMs.

Fermat-Torricelli steering inequality.—There are many
results of joint measurability known in terms of white
noise resistance [17,21,22]. As an example, consider that
Alice has three dichotomic unbiased [i.e., p(%[k) =1]
measurements while Bob’s conditional (normalized) qubit
states are characterized by the Bloch vector X k=1,2,3.

Using the joint measurability criterion of Ref. [23] we see
steering iff

X1 4 % + X3 = Xprl| + [ = X2 = X3 = Xpr|
A %) = Xy 4 X3 + Xprl| + |1X) 4 %2 = X3 + Xprl| > 4,

(12)

where X denotes the Fermat-Torricelli point of the vectors
X1 + Xy + X3, X| — Xy — X3, —X; + X3 — X3, and —X| — X+
X3; i.e., it is the vector that minimizes the sum in Eq. (12).

Coexistence leads to a nonclassical effect.—Coexistence
of POVMs A, and A, means the possibility of making a
measurement G of which statistics include the statistics of
A; and A,. To be more precise, A; and A, are coexistent if
their POVM elements are contained in the range (i.e., all
possible sums of POVM elements) of a third POVM G.
Note that contrary to joint measurements, the statistics do
not need to originate from a postprocessing scheme as in
Eq. (2). To clarify the notion we present an example given
in Ref. [5] which was originally used to show that
coexistence is more general than joint measurability; for
a similar example, see Ref. [8].

In C? define |p) = 1/v/3(|1) + |2) + |3)) and a POVM
G by the elements {3|1)(1].512)(2[.53)(3].5]0) (.
2(1 = |@)(@])}. One sees straightforwardly that the meas-
urement statistics of a three-valued POVM A, defined as
A (i) =1(1—i)(i]) and a two-valued POVM A, defined
as Ay(1) = 1|@) (@], Ay(2) =1 —A,(1) are contained in
the measurement statistics of G; hence, they are coexistent.
In Ref. [5] it was shown that these measurements are
nevertheless nonjointly measurable due to the lack of a
postprocessing relation. By Observation 1 we conclude the
following.

Observation 3: As coexistence is more general than joint
measurability it can reveal steering; i.e., it can lead to
nonclassical effects in the distributed scenario.

Disturbing measurements can be useless for steering.—
One way to define the classicality of two measurements,
say A; and A,, is to say that the measurement of A; does not
disturb the measurement of A,. This means that a meas-
urement of A; updates the state in such a way that a
subsequent measurement of A, has the same statistics
for both the updated and the original state. It was shown
in Ref. [9] that there exists pairs of observables that can
be measured jointly even though they do not admit a
nondisturbing sequential measurement. Using this together
with Observation 1 we conclude that disturbing measure-
ments do not necessarily lead to steering.

Joint measurability and nonlocality.—From the previous
discussion we know that any nonjointly measurable set of
POVMs can reveal its “quantumness” in a strictly non-
classical, nonlocal effect, more precisely, in the form of
steering. Steering is, however, not the ultimate strongest
form of nonlocality since one still needs a quantum
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description on one side. Thus, it is of course a natural
question whether this connection can even be strengthened,
so whether it also holds that any nonjointly measurable set
of POVMs can show nonclassicality in a Bell-type
scenario.

This is indeed the case for two dichotomic measurements
as has been shown by Wolf et al. in Ref. [24]. It also holds
for an arbitrary number of PVMs. In the following, we
argue that it would be very surprising if this connection
were to hold in general, since via a very simple example
one encounters already large difficulties.

Consider the three dichotomic spin measurements of a
qubit A (£) = (1 £ 10y)/2 with k € {x,y,z}. As already
mentioned, the additional parameter A characterizes the
noise on these measurements. For 4 = 1 the measurements
Ap —A’1 ! are noncommuting projectors, while for A <
1/V3~ 0 5774 the set of POVMs becomes jointly meas-
urable. Suppose that joint measurability and nonlocality are
as strongly connected as steering. This would mean that for
any noisy, but nonjointly measurable set of these POVMs,
i.e., for all 1/ V3 <4, it is possible to find a respective
bipartite state g,p and corresponding measurements for
Bob By(k), such that the obtained data P(&,ylk,[) =
trloapAf(£) ® B,(y)] violate a Bell inequality.

In the search for such an appropriate state, first note that
pure states 45 = |y)(y| are sufficient, since any mixed
state can only violate a Bell inequality if at least one pure
state from its range does so. Using the Schmidt decom-
position together with the fact that dim(HA) =2 we can
write the most general pure state as =Uy ® Ugly,)
with |y,) = s[00) + V1 — s|11) where 1/V2<s<l.
Since we optimize Bob’s measurements we can additionally
assume Uy = 1, meaning that Bob similarly holds a qubit.
Next we also wish to transfer the noise of the measurements
into the state, as given by Eq. (9). Thus, rather than looking
for a pure state which violates a Bell inequality using the
noisy measurements A7, we can equivalently search for a
mixed state that violates a Bell inequality with perfect
measurements A;. To sum up, we would need to show that

for any parameter A > 1/1/3, a state of the form

0ap(s:Ux) = AU, @ Ty, ) (| U} ® 1
+ (1 =172 @ trallyw,)(wil]  (13)

with appropriately chosen 1/v/2 < s < 1 and U, violates a
Bell inequality using the three perfect spin measurements on
system A, and arbitrary measurements for system B.

Let us start with the maximally entangled state,
s=1/ \/Q, for which it is known that it does not violate
a Bell inequality using projective measurements if A <
0.6595 [25]. Hence, for the given noisy nonjointly meas-
urable set of POVMs within 1/ \/§ < 1 <£0.6595, the data
of the maximally entangled state, using also projective
measurements for Bob, will not display any nonlocality.
For nonmaximally entangled states the situation is much

less analyzed, especially under the influence of nonwhite
noise as in Eq. (13). The statement extends, however, to
1/4/3 <2 <0.6009 [25] for arbitrary, nonmaximally
entangled states if one wants to reproduce the full corre-
lations. Thus, the only Bell inequalities that remain are the
ones with marginals.

A different way to prove that certain states do not violate
a Bell inequality is to write them as a convex combination
of states known to possess a local hidden variable model for
the considered configuration

Zp o, (14)

0ap(s:Uy)

Generic states that we consider in this decomposition
include (i) noisy Bell states with 4 < 0.6595 and (ii) states
with two symmetric extensions for system A [26]. States of
class (ii) are known to have a local hidden variable model
for three generic measurements for system A [27], such that
we exploit the fact that Alice has only a restricted number
of measurements. Such a search for symmetric extensions
can be easily done with semidefinite programming [28].
Figure 1 shows, depending on the Schmidt coefficient s
(and for all U,), the respective maximal values of 1 when
such a decomposition is possible. As can be seen for
5 < 0.835, there is always a noise parameter 1 > 1//3
such that the given set of POVMs is nonjointly measurable,
but the measured state will not violate a Bell inequality
using an arbitrary number of projective measurements for
Bob. Finally, if one additionally constrains Bob to perform
only n different dichotomic measurements then one can
further add (iii) the class of states that have n — 1 symmetric
extensions for system B. As shown in Fig. | for n < 6, such
a decomposition is possible for all values of s. Thus, there

0.8

0.75F

0.7f
<
=
£ o65fF
x
©
=
0.6
0.55}
05 . . . . .
0.75 0.8 0.85 0.9 0.95
Schmidt coefficient s
FIG. 1. Maximal values of 1 when a decomposition as given by

Eq. (14) is possible for all U, depending on the Schmidt
coefficient s. It shows that a pure state with s < 0.835 is never
able to reveal Bell nonlocality for an arbitrary number of
projective measurements, while for n < 6 projective measure-
ments it is not possible for any state.
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exists a parameter 1 > 1/+/3 such that the corresponding
set of POVMs is nonjointly measurable but no quantum
state will display nonlocality if Bob only carries out 6
dichotomic measurements.

These observations give strong hints that there are sets of
POVMs which are nonjointly measurable, but which are
nevertheless useless to certify nonlocality.

Conclusions.—We have shown that joint measurability
and quantum steering are intrinsically connected: A col-
lection of different measurements are nonjointly measur-
able if and only if they can reveal its “nonclassicality” as a
violation of a steering inequality. This connects the abstract
notion of joint measurability to an explicit nonlocality task,
and thereby singles out nonjoint measurability as a special
nonclassical property among other peculiar quantum
features of measurements.

Since measurements are as relevant as quantum states,
we believe that this connection will spur the resource theory
of measurements, i.e., which kind of measurements are
required for certain tasks. This investigation could provide
some operational meaning to other quantum properties of
measurements such as disturbance or noncoexistence in the
distributed scenario.
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Note added.—After finishing this work we noticed that
similar results were obtained in Ref. [29].
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Quantum steering refers to the possibility for Alice to remotely steer Bob’s state by performing local
measurements on her half of a bipartite system. Two necessary ingredients for steering are entanglement
and incompatibility of Alice’s measurements. In particular, it is known that for the case of pure states of
maximal Schmidt rank the problem of steerability for Bob’s assemblage is equivalent to the problem of
joint measurability for Alice’s observables. We show that such an equivalence holds in general; namely, the
steerability of any assemblage can always be formulated as a joint measurability problem, and vice versa.
We use this connection to introduce steering inequalities from joint measurability criteria and develop
quantifiers for the incompatibility of measurements.

DOI: 10.1103/PhysRevLett.115.230402

Introduction.—Steering is a quantum effect by which one
experimenter Alice can remotely prepare an ensemble of
states for another experimenter Bob by performing a local
measurement on her half of a bipartite system and commu-
nicating the results to Bob. Introduced by Schrodinger in
1935 [1], quantum steering is a form of quantum correlation
intermediate between Bell nonlocality and entanglement.
It has recently attracted increasing interest [2—7], both from
a theoretical and experimental perspective, and it has been
recognized as a resource for different tasks such as one-sided
device-independent quantum key distribution [8,9] and
subchannel discrimination [10]. In addition, the question
of which quantum states can be used for steering can be
addressed with efficient numerical techniques, contrary to
the notion of entanglement or the question of which states
violate a Bell inequality. In this way, the notion of steering
has been used to find a counterexample to the Peres
conjecture, a long-standing open problem in entanglement
theory [11,12].

A successful implementation of a steering protocol
involves different elements, e.g., entangled states and
incompatible measurements, and therefore steering has
been investigated under different perspectives. On the
one hand, allowing for an optimization over all possible
quantum states or, equivalently, considering the maximal
entangled state, steering has been identified with the lack of
joint measurability of Alice’s local observables [13,14],
similarly to the case of nonlocality [15]. On the other hand,
if an optimization over all possible measurements for Alice
has been considered, steering has been identified with a
property of the state allowing for optimal subchannel
discrimination when one is restricted to local measurements
and one-way classical communication [10]. In addition,
a very natural and interesting framework for steering is
that of one-sided device-independent quantum information
processing [16—-18]. In the case of device-independent

0031-9007/15/115(23)/230402(5)

230402-1

PACS numbers: 03.65.Ud, 03.65.Ta

quantum information processing, both parties are
untrusted; hence, no assumption is made on the system
and the measurement apparatuses and the only resources
are the observed (nonlocal) correlations. Similarly, in one-
sided device-independent scenarios, where only one party
(Bob) is trusted, it is natural to identify the resources for
information processing tasks with the ensemble of states
Bob obtains as a consequence of Alice’s measurement
(see also Ref. [19] for a discussion of this point).

Taking the above perspective, we are able to prove that
any steerability problem can be translated into a joint
measurability problem, and vice versa. This result connects
the well-known theory of joint measurements [20,21] and
uncertainty relations [22-25] to the relatively new research
direction of steering. This is done by mapping any state
ensemble for Bob in a corresponding steering-equivalent
positive operator valued measure (POVM). This simple
technique is shown to give an intuitive way of generalizing
the known results [13,14]. Moreover, the power of the
technique is demonstrated by mapping joint measurement
uncertainty relations [22] into steering inequalities, and
discussing the role of known steering monotones as
monotones for incompatibility.

Preliminary notions.—Given a quantum state p, i.e., a
positive operator with trace 1, an ensemble & = {p,} for p
is a collection of positive operators such that > p, = p.
An assemblage A = {&€,}, is a collection of ensembles for
the same state p, i.e., Zapa|x = p, for all x. Similarly, a
measurement assemblage M = {M, },,., is a collection of
operators M|, > 0 such that ZaMa‘X =1 for all x. Each
subset {M ), }, is called a POVM, and it gives the outcome
probabilities for a general quantum measurement via the
formula P(a|x) = tr[M,.p].

A measurement assemblage M = {Ma‘x}a,x is defined
to be jointly measurable (JM) [26] if there exist numbers
pu(alx, 2) and positive operators {G,} such that

© 2015 American Physical Society
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Ma\x = ZPM(aLx’l)G/l (1)

with 3 °,G, =1, py(alx,2) >0, and >, py(alx, 1) = 1.
Physically, this means that all the measurements in the
assemblage can be measured jointly by performing the
measurement {G,;} and doing some postprocessing of
the obtained probabilities.

In a steering scenario, a bipartite state p,p is shared
by Alice and Bob. Alice performs measurements on her
system with possible settings x and possible outcomes a,
that is, the measurement assemblage {A,,},,- As a result
of her measurement with the setting x, Bob obtains the
reduced state ¢(alx) with probability P(alx). Such a
collection of reduced states and probabilities defines the
state assemblage {pg), },, Where

Palx = trA[(Aa\x ® ﬂ)pAB] (2)

with P(alx) = tr[(Ay @ 1)pap] = trgp,),] and ¢(alx) =
Pajx/P(alx). In particular, elements of the assemblage
satisfy

PB = Zpalx = Zpa’\x”

where pp = try[pap]. This expresses the fact that Alice
cannot signal to Bob by choosing her measurement x.

A state assemblage {p,|} . is called unsteerable if there
exists a local hidden state (LHS) model, namely, numbers
py(alx, ) > 0 and positive operators {5,} such that

Palx = pr(a|x’ j')(7/1 (4)
A

for all settings x, x’, (3)

with tr[),0;] = 1. A state assemblage is called steerable
if it is not unsteerable. The physical interpretation is the
following. If the assemblage has a LHS model, then Bob
can interpret his conditional states p,, as coming from
the preexisting states ¢;, where only the probabilities are
changed due to the knowledge of Alice’s measurement and
result. Contrary, if no LHS model is possible, then Bob
must believe that Alice can remotely steer the states in his
lab by making measurements on her side.

Steerability as a joint measurability problem.—We now
prove the main results of the Letter, namely, that the
steerability properties of a state assemblage can always
be translated in terms of the joint measurability properties
of a measurement assemblage.

Let {py+},. be a state assemblage and pj the
corresponding total reduced state for Bob. We define
Iz: Hg — K,, C Hp as the projection on the subspace
K, :=range(pg); i.e., TIgIl, = lg,, and II3Ip is a
Hermitian projector in £(Hp).

Since p,, are positive operators, Eq. (3) implies
range(p,|,) C range(pg) for all a, x [27]. Hence, we can

define the restriction of our assemblage elements to the
subspace IC,, as py = lppy,llp and pp = Tlgpplly,
preserving the positivity of the operators. Such a restriction
is needed in order to define (jz)~* (see below). Then,

we define Bob’s steering-equivalent (SE) observables
B, € L(KC,,) as

Balx = ([’B)_%ﬁa\x(ﬁB)_%' (5)

These operators are clearly positive and, by Eq. (3),
> uBax = Iy, s hence, {Ba}, forms a POVM. We can

formulate the first equivalence.

Theorem 1. The state assemblage {p,,}, is unsteer-
able if and only if the measurement assemblage {B,}, .
defined by Eq. (5) is jointly measurable.

Proof—First, notice that it is sufficient to discuss the
existence of a LHS model for {p,},.,. From Egs. (4) and
(1), one can easily see that from a LHS for {p,, }, one can
construct a joint observable for {B,,},, and vice versa.
The corresponding LHS model and joint observable are
obtainable via the relation

G, = (pp)26,(pp) %, (6)

where 6, denotes the elements of the LHS for p,,. U

The above theorem shows that every steerability problem
can be recast as a joint measurability problem. The other
direction is trivial, since every joint measurability problem
corresponds, up to a multiplicative constant, to a steer-
ability problem with pz = 1/d. We can then state the main
result.

Theorem 2. The steerability problem of any state
assemblage {p,,},, can be translated into a joint meas-
urability problem for a measurement assemblage {M a|x}
and vice versa.

It is now interesting to discuss the interpretation of
Bob’s SE observables. Let p = > ;| 2;4;]ii)(jj| be a pure
state on a finite-dimensional Hilbert H, ® Hp, where

a,x’

(i)Y i) g ‘]13 are the local bases associated with the
above Schmidt decomposition of p, n < min{dy,dg},
;> 0, and tr)p] = > 42 = 1.

The reduced states for Alice and Bob have in such
basis an identical form, namely, py = >, A2]i)(i|y with
X = A, B; hence, their ranges K, , K, are isomorphic
through the obvious mapping |i),<>|i)z. Using that, we
can formally write

Palx = trA[(Aa\x ® ]])p]

2 . W . 1/2 1/2
=3 LdilAa DIl = o)Al o) (D)
ij=1

recovering a similar relation as in Eq. (5). The only missing
step is to invert the relation by projecting on K, and
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writing the inverse p, " H.ence, for' any pure ’state, (1-F - F2) _0_12_0_3 < (P Ty — ayp)? (11)

Theorem 1 gives us a clear interpretation of Bob’s SE Fi F;

observables that generalizes the result given in
Refs. [13,14], namely, that for a Schmidt rank d state it is
sufficient for Alice to use nonjointly measurable observ-
ables in order to demonstrate steering.

Remark. For a pure bipartite state, in order for Alice to
demonstrate steering, her observable must be not jointly
measurable even when restricted to the subspace where her
reduced state p, does not vanish.

Notice that the above remark holds also for pure
separable states; however, since the corresponding sub-
space KC,, is one dimensional, joint measurability of Alice’s
observables is always trivially achieved.

For the case of mixed states, a straightforward gener-
alization of the above argument, e.g., via convex combi-
nations, is not possible. Hence, the physical interpretation
of Bob’s SE observable for mixed states remains an open
problem.

Steering inequalities.—We use the above result to give
new steering inequalities for an assemblage arising from
two and three dichotomic measurements for Alice when
Bob’s system is a qubit. We begin with the assemblage
arising from two dichotomic measurements.

Given the assemblage {p,, }, with a =+ and x € {1,2},
written in terms of Pauli matrices 6 = (o}, 6,,03) as

pap = 1455 (®)

with 5% = (s{,,s3,,s3,), the only nontrivial case corre-
sponds to a reduced state pp = Za:ipapc of rank 2;
otherwise, the total state would be separable.

Then, the SE observables for Bob can be written as

—_—

BHX = [(1 +ax)]] +7‘x 6-]7 B—lx =1 _BHx (9)

2
with a, and 7, = (riy, 2y r3,) being functions of the
assemblage {p,,}; the explicit forms of these functions
are given in the the Supplemental Material [28]. For such
observables Busch er al. [22] have defined the degree
of incompatibility to be the amount of violation of the
following inequality

171+ Fall + 117y = 7all < 2. (10)

This inequality is a measurement uncertainty relation for
joint measurements and as such it is a necessary condition
for the joint measurability of two observables on a qubit
(see also Ref. [21]). A violation of this inequality means
that the SE observables of Bob are not jointly measurable
and hence the setup is steerable. However, it has been
shown that the degree of incompatibility does not capture
all incompatible observables and a more fine-tuned version
of this inequality, providing necessary and sufficient con-
ditions, has been derived [29]:

with F; =3 (v/(1+a)” = II7E17 + V(1 = a)? = [I7]P),
fori=1,2.

With the above definition, we can see the difference
in the steerable assemblages detected by the steering
inequality (10), which provides only a necessary condition,
and inequality (11), which completely characterizes
steerability. Consider an ensemble of two reduced states
along the z axis and symmetric with respect to the origin,
ie, pig = 1(1 £ 6,). Given another ensemble pips bY
Eq. (3) only one of the two reduced states can be chosen
freely, say p.» = t; +5; - 6, with the conditions r; < 1/2
and ||s5|| <#5. The steerability detected by Egs. (10)
and (11) is plotted in Fig. 1, for different values of the
parameters 4, r:=||s5 ||, and the angle 0 between s and
the z axis.

Finally, for the case of three dichotomic measurements
on Alice’s side (and Bob holding a qubit) we get three
steering equivalent observables of the form (9). For this
case a joint measurement uncertainty relation and hence a
steering inequality is given by [30]

4
> IR = Rerll <4, (12)
i=1

where kl = 7"1 +;:2 +;3, ki = 271'_1 — iél (l = 2,3,4),
and Rpr is the Fermat-Torricelli point of the vectors R;,

r

_04 -03 -02 -0.1 0.0
. S AR EEEE AR
0.80 1:%;@"\\77‘7*7 [ )

FIG. 1 (color online). Regions of the parameters 4, r, @ allowing
for steering, detected by the inequality (10) (inner region) and
inequality (11) (outer region), with r = ||55|| and O the angle
between 55 and the z axis, and 75 = 0.45 (fixed). Inset:
representation in the Bloch sphere of the reduced states p.
(green points) and p,, (red point). The normalization factor
1 = tr[p, o] is not represented.
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i.e., the point that minimizes the left-hand side of Eq. (12).
Analogously to the case of Eq. (10), Eq. (12) provides
a necessary condition for the unsteerability of the state
assemblage.

Steering monotones.—The previously known connection
between joint measurability and steering [13,14] has
inspired the definition of incompatibility monotones, i.e.,
measures of incompatibility that are nonincreasing under
local channels, based on steering monotones [31] or
associated with steering tasks [32].

Following the same spirit and in light of Theorem 2, we
introduce an incompatibility monotone based on a recently
proposed steering monotone, i.e., the steering robustness
[10]. Given a measurement assemblage {M,},, we
define the incompatibility robustness (Z'R) as the minimum
t such that there exists another measurement assemblage
{Ngjx}ax such that {(My, +tNg,)/(1+ 1)}, is jointly
measurable. The idea is to quantify the robustness of the
incompatibility properties of the measurement assemblage
under the most general form of noise. It is easily proven
that ZR can be computed as a semidefinite program and
that it is monotone under the action of a quantum channel
(cf. the Supplemental Material [28]).

It is interesting to discuss the relation with previously
proposed incompatibility monotones. In Ref. [31], the
incompatibility weight (IW), a monotone based on the
steerable weight (SW) of Ref. [3], was defined for a set of
POVMs {M,, }, as the minimum positive number 4 such
that the decomposition M|, = 10, + (1 = 1)N,, holds
for the assemblage {N,|},, and the jointly measurable
assemblage {O,,}, . From the definition it is clear that
the IW suffers from a similar problem as the SW, namely,
that whenever the elements of the (state or measurement)
assemblage are rank-1, such a weight is maximal.
As a consequence, each pair of projective measurements,
e.g., on a qubit, even along arbitrary close directions,
is maximally incompatible according to the IW, and,
similarly, the state assemblage arising from a bipartite pure
state, even with arbitrary small entanglement, is maximally
steerable according to the SW (see also the discussion
in Ref. [10]).

Another monotone has been proposed by Heinosaari
et al. [32], based on noise robustness of the incompatibility
with respect to mixing with white biased noise. This
definition can be obtained from ZR, with the substitution
Nu|xl—>% (white noise) and, for the corresponding coeffi-
cient A:=t/(1 + ¢), the substitution A—(1 + ab)4, in the
case of dichotomic measurements, i.e., ¢ = £1. The notion
of biasedness refers to the possibility of having a different
disturbance for different outcomes.

As a consequence, IR is always a lower bound to the
white noise tolerance. It is interesting to discuss such
differences in a simple example. Consider a mixing of a
measurement assemblage {M |}, with white or general
noise

0.5F:

0.4f:

03f:
< [:
0.2f:

0.1f:

0.0[

FIG. 2 (color online). Plot of noise robustness for white and
general noise for two sharp qubit measurements separated by an
angle 0. The line denoted by g corresponds to the parameter 4, of
Eq. (13), whereas lines denoted by b correspond to the parameter
A, of Eq. (14) for different level of bias, namely, » = 0,0.5,0.8, 1
(see main text). The plot shows that the white noise tolerance is
always at least double that of the the general noise tolerance 4,.
Moreover, the introduction of biased noise, quantified by the
parameter b, with b = 0 corresponding to unbiased white noise,
only increases the noise tolerance.

Mg = {(1 - ﬂg)Ma\x + ﬂ'gNa\x}a.x’ (13)
1
Mw = {(1 - j’w)Ma|x +’1w3} . (14)

If we choose in a qubit case M, =3(1+ 7, 0)
and N, =3(1—7,,-0) we end up with the mixings
M, = {%[ﬂ + (1 =24)04, - 6]},, and M, = {%[1]4—
(1 =)Dy - 6]}, It is then clear that in this case the
noise robustness for general noise is always smaller than
half the noise robustness with respect to white noise,
namely,

1
min{4,|M,is IM} < Emin{/lw|/\/lw is IM}.  (15)

Explicit calculations (plotted in Fig. 2) show that the above
choice for N, is not always the optimal one. The same
noise robustness, for the case of orthogonal sharp mea-
surements in dimension d, has been calculated in Ref. [33].

The case of biased white noise corresponds to the
substitution in Eq. (14) A—A(1 + ab) for the case of binary
measurements, i.e., a = £1. For the simplest case, i.e., two
sharp projective measurement on a qubit, the noise robust-
ness for mixing with general noise or with white noise plus
a bias is plotted in Fig. 2.

Conclusions.—We have proven that every steerability
problem can be recast as a joint measurability problem, and
vice versa. As opposed to previous results [13,14], our
approach does not include any assumption on the state of
the system, but it is applicable knowing solely Bob’s state
assemblage. This is arguably the most natural resource for
steering, especially for one-sided device-independent
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quantum information protocols, where only Bob’s side is
characterized [19].

Our work connects the relatively new field of quantum
steering with the much older topic of joint measurability.
As we showed with concrete examples, this connection
allows us to translate results from one field to the other.
On the one hand, we were able to derive new steering
inequalities for the two simplest steering scenarios based
on joint measurability criteria for qubit observables. As
opposed to previously defined steering inequalities based
on semidefinite programming [3,10], our inequalities are
not defined in terms of an optimization for a specific
assemblage, but are valid in general. For example, Eq. (11)
gives a complete analytical characterization of the simplest
steering scenario for any state assemblage.

On the other hand, our result allowed us to introduce a
new incompatibility monotone based on a steering mono-
tone. This opens a connection to entanglement theory:
similar quantities to the incompatibility monotone have
been used to quantify entanglement [34-36]. So, for future
work it would be very interesting to use ideas from
entanglement theory to characterize the incompatibility
of measurements.

We thank F.E.S. Steinhoff and T. Heinosaari for dis-
cussions and M. C. Escher for his help with Fig. 1. This
work has been supported by the Finnish Cultural
Foundation, the EU (Marie Curie CIG 293993/
ENFOQI), the FQXi Fund (Silicon Valley Community
Foundation), and the DFG.
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Explicit form of Bob’s SE observables for a qubit
and tight steering inequality

Given the assemblage {p,,}, with a = + and 2 €
{1, 2}, written in terms of Pauli matrices & = (01, 02, 03)
as

Ptz :t;ctﬂ+§xi -0, (1)

with 5% = (s, 5,5, 5,T), the only nontrivial case cor-
responds to a reduced state pp = ), pa|, of rank 2,
otherwise the total state would be separable.

Since pp is full rank, we can directly compute first
the square root (pp)? and then its inverse (pp)~2 as
a function of 5%, either via a tedious direct calculation
or with the aid of a symbolic mathematical computation
program.

Then the SE observables for Bob can then be obtained

from the equation

=

By, = (pB)"2 pafa (pB) (2)

as
1
B+|$ = 5((1 + OzI)ﬂ + 7y 0_")7 B,‘w =1 - B+|w, (3)

with 7 = (r1z, 724, 73.) and the substitutions

ap = —1+ (2685 — 45,5083 + 2t 83) /T%,  (4)
e = (251,87 — 453,182 — 2s1,835) /T2, (5)
rox = 2(s3, 67 + 2s1,6162 — 53,83) /T2, (6)
roe = 2(s3,85 + 2t BofBs — s5,63) /17, (7)
r= (8 —18P), (8)
LA
ﬁ = %(gfr + §2+)v (9>
BOZ%\/I—\/I—)\Z, (10)
A=5"+58"| (11)

Notice that A can be computed both from 5% and 5,*,
it corresponds to the norm of the Bloch vector associated
with Bob’s reduced state.

Incompatibility robustness as a semidefinite program

The following construction is almost identical to the
one presented in Ref. [1], we discuss it here for complete-

ness. By definition

. Ma|7 + tNa|.z
IR:mln{tz 0 ’ ————— = Oy, are JM
1+t

{Ny|z}a,. measurement assemblage }

(12)
We can then write
14+ t)Ou1 — Myjs

Na|m = ( ) t‘ | >0, (13)

where > denotes a positive semidefiniteness condition.
Eq. (13) is satisfied whenever

(]. + t)Oa|l. - Ma|x >0, (14)
which can be rewritten, using the joint measurability

properties of {Ogjg}ajz, -6, Oz = Doy pPu(alz, \)Gy
for all a, x, as

(1+)> pulalz, )Gy > My, Ya,x (15)
A

By incorporating the factor 1+ ¢ in the definition of Gy,
one can easily see that the value of 1+ZR can be obtained
via the following SDP:

|
minimize: ~ ;tr[G)\]

subject to: ZpM(a\w,)\)GA > Mg, Ya,z,
A (16)
Gy > 0.

ZGA = ]1% (Ztr[G,\]) ,
A A

where the last equation encode the fact that G, up to
the correct normalization, must be an observable. In
addition, the postprocessing can be chosen, without loss
of generality, as the deterministic strategy pas(alz, A) =
Oa,n,» Where A := (A\;), and A, is the hidden variable
associated with the setting z, taking as value the possible
outcomes a.

It can be easily proven that the program is strictly
feasible (e.g., take G, = 1) and bounded from below,
i.e., the optimal value is always larger or equal one.



Monotonocity of the incompatibility robustness
under local channels

To prove monotonocity of ZR under the action of a
quantum channel A it is sufficient to prove that

{M“'I s } is IM
1+t e

Ma\x+tNa|z .
= A ——— is JM .
1+¢ e

Let us denote again Og|p = (Mgyy + tNge)/(1 + 1),
with {Ogj3}a,e admitting a joint measurement, i.e.,
Ouaje = 2y pulalz,A) G, It is sufficient to check
that {A(Ogjz)}a,. again admits a joint measurement
A(Oqjz) = 2 oapum(alz, X)) A(Gy).  That A(Gy) is a
POVM follows directly the properties of the channel A,

(17)

since

A(G/\) > Oa
D> AGN) =A (Z GA) = A(1) = 1.
A A

Notice that, since we are looking for the transformation
of the observables, we use the channel in the Heisenberg
picture, hence the fact that the map is trace preserving
when acting on states (Schrodinger picture) corresponds
to its adjoint (Heisenberg picture) being unital.

(18)

[1] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404
(2015).
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The term Einstein-Podolsky-Rosen steering refers to a quantum correlation intermediate between entanglement
and Bell nonlocality, which has been connected to another fundamental quantum property: measurement
incompatibility. In the finite-dimensiona case, efficien computational methods to quantify steerability have
been developed. In the infinite-dimensiona case, however, less theoretical tools are available. Here, we approach
the problem of steerability in the continuous variable case via a notion of state-channel correspondence, which
generalizes the well-known Choi-Jamiotkowski correspondence. Via our approach we are able to generalize the
connection between steering and incompatibility to the continuous variable case and to connect the steerability of
a state with the incompatibility breaking property of a quantum channel, with applications to noisy NOON states
and amplitude damping channels. Moreover, we apply our methods to the Gaussian steering setting, proving,
among other things, that canonical quadratures are sufficien for steering Gaussian states.

DOI: 10.1103/PhysRevA.96.042331

I. INTRODUCTION

The phenomenon of Einstein-Podolsky-Rosen (EPR) steer-
ing combines two central features of quantum theory: en-
tanglement and incompatibility, namely, the impossibility of
determine precisely and simultaneously certain properties of a
physical system, e.g., position and momentum. In practice,
steering is a quantum effect by which one experimenter,
Alice, can remotely prepare (i.e., steer) an ensemble of
states for another experimenter, Bob, by performing local
measurement on her half of a bipartite system shared by them,
and communicating the results to Bob [1].

Due to the fact that steering is a form of quantum correlation
intermediate between entanglement and Bell nonlocality [2],
it has been proven useful to solve foundational problems
[3—7] and important for applications in quantum informa-
tion processing such as one-sided-device-independent (1SDI)
quantum information [8—10].

In the finite-dimensiona case, several methods are available
to attack the steering problem. In particular, efficien methods
based on semidefinit programming [11] are able to detect and
quantify steerability of a given state and set of measurements
[3,12—14]. Notwithstanding the existence of several methods
(see, e.g., Refs. [1,15-19] and the review [14]), such a
systematic approach is missing in the continuous variable
case.

In this paper, we will develop a general tool for discussing
steering in the continuous variable case, which is based on
an extension of the Choi-Jamiotkowski state-channel duality
[20-22]. The Choi-Jamiotkowski correspondence associates a
state to each channel, but not all states can be mapped to a
channel in this way. We will extend this idea by showing that
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fcostantino.budroni@oeaw.ac.at
froope.uola@gmail.com
Sjuhpello@utu.f
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one can associate to each bipartite state a channel, such that
the steerability property of a state is equivalent to the property
of the corresponding channel being incompatibility breaking
[23], when all possible measurements are allowed for steering.
This result, in turn, extends to the continuous variable case the
result on equivalence between steering and joint-measurability
[24-26].

In addition to these conceptual results, we fin that the
channel picture reduces seemingly different steering prob-
lems to a single one. For instance, we show that steer-
ability of noisy NOON-states (cf. Ref. [19]) corresponds
to the decoherence of incompatibility under an amplitude
damping channel (cf. [27,28]), and how to use steering
to investigate its Markovianity properties. Using incom-
patibility techniques we investigate both analytically and
numerically the noise tolerance of these states with two
quadrature measurements. Finally, we apply our methods
in the continuous variable Gaussian settings, showing that
steerability by a pair of canonical quadrature measurements
already ensures steerability by all Gaussian measurements,
and connecting this to Gaussian incompatibility breaking
channels [29]. We also show in passing how the method
yields an independent proof of the known Gaussian steering
criterion [1].

The paper is organized as follows: We begin by introducing
preliminary notions in Sec. II, including the general formalism
for measurements, joint measurability, steering, the formal
connection between hidden state models and positive-operator
valued measures (POVMs), and quantificatio of steering and
incompatibility. Section III contains our main results on the
role of state-channel duality in the connection between steering
and incompatibility. In Sec. IV we present all the above
mentioned applications, except for the Gaussian case, which is
treated separately in Sec. V. Technical proofs of four Lemmas
are given in Appendices A-D, and Appendix E contains the
derivation of the Gaussian LHS, which is not essential for
understanding the main results.

©2017 American Physical Society
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II. PRELIMINARY NOTIONS
A. Measurements as POVMs

A POVM with a discrete outcome set A is a collec-
tion {G;},cn of positive semidefinit operators such that
> sea Ga = 1. Such operators represent the probability of
the outcome A for a measurement on a state p via the rule
Prob()) = tr[ p M, ]. This notion is not sufficien for this paper,
since we also consider Gaussian measurements. A POVM with
a continuous outcome set is one for which A = R”, i.e., the
Euclidean space. This space comes with the usual integration
measure dA, and a POVM {G; };ca consist of elements G,
that may be “infinitesimal ” so, in general, only the integrals
[ Grdx with X C A defin proper operators. This definitio
clarifie the name positive-operator valued measure [30],1.e., a
map from measurable sets to positive operators X +— | y Gada
with normalization [, G;d* = 1 and countable additivity on
disjoint sets. To illustrate this well-known technical issue
with a typical example relevant for the main text, consider
the position operator Q = [ ¢lq)(gldq. The corresponding
POVM has elements |g)(g|, which are not proper operators
as they map wave functions i into improper states ¥(g)|q).
The symbols |g)(g| only make up operators when integrated
into f[a_ 5 |q){q|dq, which projects ¢ into the wave function
coinciding with ¥ (q) for a < ¢ < b and vanishing elsewhere.

B. Joint measurability

A collection of POVMs, indexed by measurement settings
x, will be denoted as M = {M,, },,. and called a measurement
assemblage. In the discrete case, it is said to be jointly
measurable [30] if there is a POVM {G, }, such that each M,
can be obtained from G, via classical postprocessing, i.e.,
My =), D(alx,2)G; forall x,a, where D(alx,A) > 0 and
>, D(alx,)) = 1. For the continuous case, with A, the set of
outcomes for the POVM M, one has joint measurability if

M= [ Mida = [ DOXBAGdL )
X A

where the postprocessing D(:|x,-) = A, x A — [0,1] is
generally known as a weak Markov kernel [31]. An assemblage
not jointly measurable is called incompatible.

C. Quantum steering

Another main ingredient for our discussions is bipartite
quantum steering. Alice can prepare an ensemble of states
for Bob by performing a local measurement (x) on her
half of the bipartite state p and communicating the result
(a) to Bob. This is related to the measurement assem-
blage {Aa\x}a,x via o(alx) :=try [(Aalx ® ﬂ)p]/P(aLx)» where
P(alx) := tr[(Aqx ® 1)p] is the probability of the outcome
a for the setting x, and o(a|x) is the reduced state obtained
by Bob in this case. We call the collection {p4x}q.x, With
Palx = tra[(Aqx ® D)p], a state assemblage. 1t satisfie the
nonsignalling rule pg = Y, pajx for all x, with pg := tra[p]
the reduced state for Bob. An assemblage {p,y}a,r is called
unsteerable if it admits a local hidden state (LHS) model [1],
i.e., a collection of positive operators {0 }, withtr[Y ", 0;] =1
and pgc = Y, D(alx,)) o; for all a,x, where D(alx,A) > 0
and ), D(alx,x)=1. If a LHS model exists, Bob can

PHYSICAL REVIEW A 96, 042331 (2017)

interpret each p,, as coming from some preexisting states
0;, where only the classical probabilities are updated due to
the information obtained by Alice from her measurement.
In the continuous case the assemblage consists of operators
0 (X) = f y Oajxda, where X C A, and the unsteerable case
with LHS {0, };. is define by

| ounda= [ Dxixpyar. @)
X A

where D(-|x,-) is a weak Markov kernel for each x. In the
steerable case we also say that the state p is steerable by the
the measurement assemblage {Ag |y }a x-

Our main results (Theorems 1 and 2 below) can be
applied to reduce seemingly different steering problems to
a single one. To formulate this precisely, we need a few
extra notions. First, we say that states p; and p, are steering-
equivalent if they are steerable by the exact same measure-
ment assemblages {A,c}q,. For a weaker version, suppose
instead that there is a quantum channel A (with Heisenberg
picture A*), such that p; is steerable by an assemblage
{Agx}ax exactly when p, is steerable by {A*(Agx)}ax-
Generalizing the notion in Ref. [26], we then call B, :=
A*(Aqx) the steering-equivalent observables (for Agpy). A
related (state-independent) notion is that of an incompatibility
breaking channel (IBC) [23], namely, a channel A such
that {A*(Ag|x)}r.q 1S jointly measurable for any measurement
assemblage {A, }.q. For instance, entanglement breaking
channels [32] belong to this class. It is known [23] that when
such a channel is applied to one side of a maximally entangled
state, the resulting state is not steerable by any measurement
assemblage. Corollary 1(d) extends this to arbitrary states in
the broader context of state-channel duality (see below).

D. Hidden state models and measurements in terms of POVMs

We now review the fact that hidden state models and general
quantum observables can both be described by POVMs. Since
we are interested in the infinite-dimensiona case with POVMs
having continuous outcome sets, some technical considera-
tions are unavoidable, and we discuss them briefl . These
technicalities are not essential for understanding the main text,
but they are needed to make the proofs mathematically sound.

The connection between hidden state models and POVMs is
fairly obvious whend < oo and A is discrete. Suppose now we
have a general family {0; },ca of positive operators on Bob’s
side of a bipartite setting. Here A is the set of hidden variables,
either discrete or continuous as above. The crucial difference to
POVMs is that each o,_is a proper trace class operator, i.e., not
“infinitesimal” even in the continuous case. The function A —
o0; must satisfy the technical condition of measurability in the
trace class norm, to allow the (Bochner) integrals [ f(A)oydA
to exist with finit trace for every measurable scalar function f
on A. We also assume the normalization ) 5 0y, = o (discrete
case) and [ 03d\ = o (continuous case), where o is again a
fi ed density operator. Then there exists a unique POVM G
with outcomes in A, satisfying

O'%G)LCT% = Oj. (3)

This is clear in the ﬁnite—dimensigma case with finit outcome
set A—we just multiply with o =2, which preserves positivity,
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and normalization translates into ), G, = 1. For d = oo we
need a technical density argument analogous to that used in
the proof of Lemma 1 below (see Appendix A). In the case
of continuous outcome set, Eq. (3) is again understood via the
corresponding integrals.

Suppose then that we start with a POVM {G; },ca; the
question is how to get the states o;,. If A is discrete, this
is trivial: we defin o := U%GAO'%. However, the case of
continuous outcome set A introduces a subtlety: we have
to show that the possibly infinitesima POVM elements G;
yield trace class operators o;. In general, this is nontrivial,
and follows from the Radon-Nikodym property of the trace
class (cf. p. 79 of Ref. [33]). In the relevant case of a position
operator (and more generally a Gaussian POVM)), this is easier
to prove: a%lq)(qla% maps ¥ into (q|a%xﬂ)a%|q), which is
indeed a proper wave function since o > lg) =", /Snlnlg)n)
has finit norm Y, s,|(n|q)|* < oo forall ¢ due to Y, s, <
00, assuming the basis functions are continuous (which is the
case for the number basis considered in the main text). Here,
o =Y, suIn)(n| is the eigendecomposition of o

E. Robustness quantification

Both incompatibility and steering can be quantifie by the
amount of classical noise required to destroy these quantum
properties. There are different ways of setting up a precise
definitio for this idea; here we only introduce the quantifier
which turn out to be naturally compatible with our state-
channel duality.

We recall from Ref. [34] that Consistent Steering Robust-
ness (CSR) of a state assemblage is given by

CSR({ogx}) = inf {t > 0|{m,} o-consistent,

Oa|x + ”Talx
« ] 2alx TP alx
141t
where o-consistence means ) , o4 = ), Tax for all x.

Similarly, the Incompatibility Robustness (IR) [26] of a
measurement assemblage is given by

M tN,
Mape + 1Najx jointly measurable }
141t

} unsteerable } 4)

IR({M.}) = inf{z > 0]

)

We stress that these definitions although typically interpreted
as SDPs in the finite-dimensiona case, can also be stated in
infinit dimensions with possibly continuous outcomes for the
measurements. We note that in such a case they can only
be formulated as SDPs by firs restricting to a subspace and
discretizing the outcomes, as in our numerical example in
Sec. I[VB.

III. MAIN RESULT: STATE-CHANNEL
CORRESPONDENCE AND STEERING

Our key idea for attacking steering problems is
a state-channel duality valid in infinit dimensions. It
goes beyond the familiar Choi-Jamiotkowski (CJ) isomor-
phism, which maps channels T: L(Hp) — L(H4) into
states p = (T ® Id)(|20) (2]) on H @ Hp, where |Qp) =
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ﬁ >, Inn) is the maximally entangled state on Hp ® Hp
and dimHp = d < oo. The CJ isomorphism is a one-to-one
map between channels and states p with completely mixed
‘H p marginals, i.e., 0 = tra[p] = 1/d. It has been used in the
definitio of channel steering [35] and the verificatio of the
quantumness of a channel [36]. Our extension is as follows.

Lemma 1. There is a 1-to-1 correspondence between bi-
partite states p sharing a full-rank marginal ¢ = trs[p], and
quantum channels T from Bob to Alice, such that

p =T @ Id)(12:)(2]), (6)

where |Q,) = Zz:l splnn) € Hp @ Hp is define as the
purificatio of o =", s,|n)(n|.

We postpone the detailed proof to Appendix A. However,
since one aim of the paper is to pay due attention to the
technicalities related to the infinite-dimensiona case, we
briefl sketch the relevant points here in the main text: Given
a channel T, p is clearly a valid state with try[p] = o. Vice
versa, given p with marginal o, the idea is to fin a channel T,

such that
o T*(A)o? = tra[p(A ® D]T, (7)

where the transpose is taken with respect to the basis {|n)}.
Equation (7) can then be seen to be equivalent to Eq. (6) by
direct computation. To fin T, one can invert o2 and solve for
T*(A) provided that d < oo. For d = oo, one cannot directly
inverto 2 , since it will be an unbounded operator. However, one
can still construct the Kraus operators {M}}; for the channel
T* from the Kraus operators R; of O'%T*(')G%, obtained via
Eq. (7). This is achieved by extending Rka‘% to a bounded
operator on H g; see Appendix A.

Using Lemma 1, we can prove the equivalence between
steering of a state assemblage and incompatibility of a
measurement assemblage [26] in full generality and from a
quantitative perspective [34,37].

Theorem 1. The state assemblage {o,(X)}x , define by
p and {A,}, is steerable < the measurement assemblage
{T*(A,)}, is incompatible. Here, T <> p via Lemma 1, with
o =tra[p] = 0,(A,). This correspondence is quantitative in
that the incompatibility robustness (IR) of {T*(A,)}. coincides
with the consistent steering robustness (CSR) of {0 (X)}x -

Proof. Using Lemma 1 with any f xed state o, we have the
correspondences

{T*(Aalx)} = {,Oalx}’
T p=(T®I1d)(12:)(21),

®)

between the measurement assemblage A,|, transformed, via
the Heisenberg-picture channel T* and the steering assemblage
obtained via measurements A,|, on the state p. Note that the
measurements {A,,} stay fi ed. Now, {T*(A,y)} is jointly
measurable if and only if

T*(Aa) = ) D(alx,1)G;. ©)
A

By multiplying this with o 2 on both sides, we obtain

paTlx = Z D(al|x,\)oy, (10)
A

042331-3



KIUKAS, BUDRONI, UOLA, AND PELLONPAA

where the hidden states o3 correspond to G, via Eq. (3),
and PJ\X = U%T*(Aw)a% =tra[p(Aqy ® 1)]T is the assem-
blage. As we have established above, all the correspondences
are one-to-one, and hence steerability of the setting (o, {A4x})
is equivalent to the incompatibility of {T*(Agx)}.

To prove the equivalence of the quantifiers we follow a
similar reasoning as the one in Ref. [37]: We need to prove
that for each noise term N,, of the IR problem, i.e., a term
making the measurement assemblage jointly measurable for a
given ¢, we can fin a noise term m,|, of the CSR problem, i.e.,
a term making the state assemblage unsteerable for the same
t, and vice versa. We use again the relation

nl . =01No? (11)

al

to obtain a a one-to-one mapping between o-consistent
assemblages and arbitrary POVMs. In the finite-dimensiona
case, we can argue as follows: Given a o-consistent assem-
blage {mux}a.x» {Najx}a,x define as in Eq. (11) is a valid
measurement assemblage. Vice versa, given {Nyy}q . a valid
measurement assemblage, we can construct the o-consistent
assemblage {7,y }4 » S

1 1
n;pc :trA[Na|x®ﬂ|Qo>(Qa|] :GiNa‘XO’E, (12)

where [Q,) =), /salnn) is the purificatio of o :=
>, Saln) (n]. Hence CSR({o4x}) = IR({T*(Aq4)x)}). When the
Hilbert space is infinite-dimensional with possibly continuous
outcomes for the POVMs, we again need the same argument as
in Sec. I D, since N, |, may not be a proper operator, while we
need 7|, to actually be in the trace class. This establishes the
correspondence Eq. (11) between POVMs and o -consistent
assemblages in the same way as we obtained Eq. (3). Then
the equality CSR({oyx}) = IR({T*(A4x)}) clearly follows,
and so we can extend the equivalence of quantifier to the
infinite-dimensiona case. |

We remark that the above reasoning also provides the
connection with the steering equivalent observables define
in the introduction. Given a state assemblage {p4|x }q,x, With
a full rank reduced state o := ), pqv, its steering equivalent
(SE) observables [26] are given by

Balx = U_l/zpa\xo—_l/z = T:(Aa\x)~ (13)

We stress that we have here used Theorem 1 above to make a
connection between the notion in Ref. [26] and the one given
in the introduction in terms of channels. In particular, this
extends the former notion to the infinite-dimensiona case.

Furthermore, it is easy to show that if we have only access to
the assemblage {4, }«,x, and not to the bipartite state p, we can
always interpret By, as the observables giving the assemblage
when measured on the purificatio [Q,) 1= ", \/s,|Inn) of
o =), suln)(n|. Namely,

Ul/zBa\xal/z = trA[Balx ® ]1|Qa><Qa|]T- (14)

From Theorem 1 we know that {p4|}q, « 1S unsteerable <
{Bqx}ax 1s jointly measurable. If we compare that with the
definitio of'the channel T, we fin that T";MW(BW) = Bgjx.
Hence, the observables B,, = T*(Agx), when measured on
|2, ), reproduce the state assemblage {o)}qx. We record
this conclusion, along with some other direct implications of
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Theorem 1, into the following Corollary, which generalizes
several existing results.

Corollary 1. (a) Two states p;,p, are steering-equivalent
if the corresponding channels of Lemma 1 have Ti(:) =
UT;(-)U*, where U is unitary. (b) A pure state |W) of full
Schmidt rank is steerable by assemblage {A x|} x, iff the latter
is incompatible. (c¢) A state p is steerable by measurements
{Ax|,} iff the purificatio |Q2,) of Lemma 1 is steerable by the
steering-equivalent measurements {T*(Ax,)}. (d) A state p is
unsteerable iff the channel T* is incompatibility breaking.

Proof. Part (a) follows directly from Theorem 1 and the
fact that incompatibility is preserved in unitary operations.
We demonstrate the use of (a) with NOON-states below.
Part (b) is the infinite-dimensiona version of the result in
Refs. [24,25] and can be obtained by definin a Hilbert-
Schmidt operator R with (n|R|m) = (nm|W¥), where the basis
on Bob’s side is chosen as in Lemma 1. Since R and R*
have full rank, U = Ro~2is unitary and |¥) = (U ® 1)|2,),
so that T*(A) = U*AU and hence preserves incompatibility.
Part (c) was proved above, while (d) is a direct consequence
of Theorem 1 on the theory of incompatibility breaking
channels. |

We stress the difference with respect to Ref. [23], where the
incompatibility breaking property of a given quantum channel
was related to the unsteerability property of specifi bipartite
states derived from it. Here we have devised a way (via the
above state-channel duality) to do the converse: for any given
state p, we can fin a quantum channel T that is incompatibility
breaking exactly when the state is steerable. This allows us to
treat any given steering problem as an IBC problem, which
might open up new possibilities for investigating steering.
In the following section, we illustrate this with different
applications.

IV. APPLICATIONS

A. Separable and pure states

Consider firs separable states p = Y, p;p, ® p, which
are of course not steerable. We easily fin the chan-
nel of Lemma 1 as T*(A) =Y, tr[p, A]F;, where F; =
pia’%(pfg)TG’% satisfie 0 < F; < land ) ; F; =1, that is,
T is entanglement breaking [32].

At the other extreme, pure states of full Schmidt rank
correspond to unitary channels by Corollary 1(b). As an
infinite-dimensiona example, the channel for the two-mode
coherent state |z) with z = re'? is the phase shift T*(4) =
¢ifa'a Ag=i0a'a if e identify the photon number bases of Alice
and Bob. Importantly, the problem of nonunique regularization
of maximally entangled states in d = oo is circumvented by
our method.

B. Noisy NOON states
Consider the “NOON state,”
1
V2

shared by Alice and Bob [38], with {|n)} photon number basis
of 1-mode electromagnetic field Via random photon loss, the

INOON) = —(|ON) — ¢"N¥|NO)),
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state becomes
Py = nINOON)(NOON| + (1 — 1)|00)(00],

which is unsteerable for n =0 and steerable for n = 1.
Hence, there is a threshold 5. (depending on the allowed
measurements) such that p, is steerable iff n > n. (cf. [19]
and the references therein, for previous results on the problem).
Using Lemma 1 we fin the channel of p, as

TH(A) = 07 tra[p(A @ 1)]To 2

. r2Ayny + (1 - rZ)AOO —rApyge" N

B —rAoyetiNe Aogo

= U*AJ(A)U, (15)
where r=.n/2-mn), o =tra(p)=(1-n/2)0){(0]+
n/2IN){N|,

AN(A) = ZK AK;,
FAON

_{ Aoo
- (VANO r*Any + (1 — 72)A00>’ (16)

is the amplitude damping channel [39] with Kraus operators

KO,r = <(1) g)’ Kl,r = <8 10_"2)’ (17)
and
iNa 0 1
U= 01 =m0 = (g o) (9)

is a unitary matrix. By Corollary 1(a), the unitary is irrelevant
for steering, and we will ignore it in what follows.

The problem, then, reduces to the question of how A,
breaks incompatibility. We introduce the following necessary
criterion for this:

Lemma 2. Let {A}"_, be any finit assemblage of qubit
measurements (with arbitrary outcome sets A,). Then the
“damped measurements” A (A,) are jointly measurable if

n

Zth(AX\x)

n — 1 foreach X, C A,. 19
(0] Ax,x10) (19)

A proof of this result is given in Appendix B.

Next, we proceed to introduce the relevant measure-
ments: we focus on the case of Alice attempting to steer
Bob using rotated quadratures Qg = (¢/?a’ + e %a)/V/2.
They act in the infinite-dimensiona Hilbert space, with
spectral projections (PVM) Qg1 = €%“'“|q)(gle "%, As
our state lives in span({|0),|N)}, only the 2 x 2 matrix
(Qgio)am = (1| Qqalm) = €™ nlq)(glm) with n.m =
0,N contributes. Explicitly, this matrix reads

- 1 e Non(g)\ e

= . — R, 20
Qo (e”v%(q) hqy > Jw 1R 0
where i(x) := % with Hy(x) a Hermite polynomial. Note

that indeed [ Qq0dg =1 and O,y > 0, so this is a valid
qubit POVM with continuous outcomes.
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We assume that Alice only has one pair, i.e., an assemblage
{Qq‘o, Qq‘g }4 for fxed 6, and this pair is incompatible (despite
the truncation), if 6 # 0,7. Indeed, since these are rank-1
POVMs, they can only be compatible if Q410 = | D(qlg") Q410
for some classical postprocessing D(q|q’) [40], implying ¢’ €
R, a contradiction. Hence, the pure NOON state (no damping,
r = 1) is steerable with these measurements.

The next step is then to compute the steering-equivalent
(SE) observables by applying the channel A,. With0 < r < 1,
the SE observables become

1 re_iNah(q) e’ @1
reNn(q)  r*h@? +1-r?) Jw’
The determinant of this kernel matrix is (1 — }’2)67:2 so that the

joint measurability criterion of Lemma 2 reduces to 7> < 1/2.
From this we conclude that

re > 1/3/2,

corresponding to 7, > 2/3 (independently of 0 and N). The
value 1. &~ 2/3 has previously been obtained numerically [19]
for N = 1; up to our knowledge, ours is the firs fully analytical
proof of a lower bound on 7,.

We also remark that when n < 2/3, Eq. (B3) used in the
proof of Lemma 2 gives an explicit joint observable and hence
alocal hidden state model preventing steering of p, by the two
quadrature measurements.

Independently of Ref. [19], we show that our method can
provide also upper bounds on r. for N = 1. We do this by
binarizing the POVMs, and recalling that incompatibility of
binarizations is sufficien for that of the original POVMs, as
coarse-graining is an instance of post-processing. Choosing
the split at ¢ =0 (i.e,, Alice only records if ¢ >0 or
not) gives the POVM W1th elements —(]1 +n-o), where

n = (2r/2/m)(cos 6, sin#,0). Using an exact criterion [41]
we conclude that the binarizations are incompatible for 2>
(1 —sinf)/(2 cos’ ). Notice that the bound depends on 6;
With 0 = /2 (orthogonal quadratures) we get r. < /7 /2, or

< 27m/(4+m) ~ 0.88.

Slnce the split at ¢ = 0 is the most incompatible binariza-
tion of quadratures [42], fine coarse-grainings are needed
to get better bounds. By dividing the real line in Nj, =
2,4,6,8,10,12,14 parts, we obtain bounds via SDP methods,
cf. Fig. 1 for pairs with varying 6, and Table I for larger values
of Niy with & = /2. In particular, for N, = 20 and 6 = 7/2,
we obtain the value 1. < 0.671, which is rather close to the
lower bound n. > 2/3.

We obtained these numerical results by implementing the
SDP of the incompatibility robustness (IR) [see Eq. (5)],
searching for the values of 5, for which IR > 0. We used the
coarse-graining where R is divided into the intervals (—oo,
- C]a [_Cv —c+ C/Nint]> s [_C/Nintvo]s SRR [O’C/Nint]a s

THQgp) = (

TABLE I. Minimal 5 such that the obtained Nj,-valued observ-
ables become incompatible.

N 4 6 8§ 10 12 14 16 18 20

n  0.742 0.698 0.684 0.678 0.675 0.674 0.673 0.672 0.671
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FIG. 1. Critical noise bound for steering through the 1001-state
by a coarse-grained pair of quadrature measurements, as a function
of the separation angle 0, with coarse-grainings of different number
of intervals Nj,. The case Ny = 2 can be reproduced analytically.
Below n =2/3 the setting is unsteerable by joint measurability
criterion Eq. (19).

[c,00), where ¢ &~ 1.4. The corresponding qubit observables
were obtained by integrating over the intervals Iy, i.e., O =
/, I Qq|9dq; such integrals can be explicitly written in terms of
error functions.

One can try the same approach in the different subspaces
with a higher number of photons. For instance, we investigated
the case of 0 or 6 photons, which turned out to be more
sensitive to noise, e.g., for the case of Ny, = 16 one can reach
Nmin = 0.89. If one further increases the number of intervals,
the computation becomes too slow and practically impossible.

C. A dynamical example with non-Markovian noise

We now illustrate how the above steering problem for the
NOON state arises from a different context, and how our
techniques provide a solution in that case as well.

Consider a setup where physical noise arises on Alice’s
side due to coupling to a zero-temperature heat bath. Starting
from the 1001 state, the photon dissipates into the bath on
Alice’s side via a channel & given by the amplitude damp-
ing master equation [43] d&(po)/dt = y(t)[o_E(po)oy —
slowo_ Epo)}], where oy = [1)(0], 0 = [0)(1], and y (1) =
—2Re% log G(t) with G(¢) depending on the bath spectral
density. The state at time ¢ is p, = (£ ® 1d)(]1001)(1001])
so by Eq. (6), its channel T = T, equals & up to a unitary.
Using the form of & [27], we fin T} (A) = U*A}, (AU, as
in Eq. (15), where now r(¢) = |G(¢)|, and U is an irrelevant
unitary. Interestingly, in this scenario our state-channel duality
connects the steerability problem with the non-Markovian
properties of the bath (cf., e.g., Ref. [44]), previously asso-
ciated with temporal correlations [45] and decoherence of
incompatibility [27].

The result of the preceding subsection can now be directly
applied to characterize steering in the heat bath scenario:
for any time ¢, the state p, is steerable by {Q0,Qgx/2}
iff r(t) > r.. For the typical Lorentzian spectral density,
r(t) = e /2| cosh(wit /2) + sinh(wit/2)/w| where A is the
linewidth, and w = /T — 2u/A with u the coupling strength
[27]. We can then evaluate 7(¢) > r. with the numerical value
re ~ 1/+/2, to get the region of points (u,r) where the state is
steerable; cf. Fig. 2 and its caption.
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FIG. 2. Steerability region for the dynamical setting (shaded
area). The parameter u is the coupling strength (in units of the spectral
linewidth A of the bath) and  is time (in units of A~"). The two revival
regions reflec the non-Markovian character of the evolution in the
strong coupling regime, which allows steerability to re-emerge at later
times.

V. GAUSSIAN CASE

In this section, we establish the correspondence between
steering of Gaussian states and incompatibility of Gaussian
measurements, via a Gaussian version of our general state-
channel duality. To do this we frst need to establish the
required formalism and introduce the notation.

Starting with the basics, an optical system with N
modes is a continuous variable (CV) quantum system (see,
e.g., Ref. [46]) with the infinite-dimensiona Hilbert space
HON = @)L L*(R) =~ L*(RY). The associated phase space
is R?V, with canonical coordinates X = (g1, p1, .. ..qn.Pn)"
in a fxed symplectic basis. The corresponding standard
quadrature operators are denoted by Q; and P;; they satisfy
[inPj] = iSile, [Qi»Qj] = [P,,PJ] =0 and we set R=
(Ql,Pl, . ,QN,PN)T, so that [R[,Rj] = ZQ,j]l with Q =
69?121(_01 (]]). We further denote

Ox =x'R;

these operators are called (generalized) quadratures. For a pair
of quadratures (Qx, Qy) the commutator is given by [ Oy, Py] =
ix” Qy1, and any pair for which x” Qy = 1 is called canonical.

The Weyl operators W(x) = e~'?x satisfy the canonical
commutation relation (CCR),

WEW(y) = e X YW (y)W(x), (22)

and we defin displacement operators D, := W(R¢) so
that DXW(x)D, = e *W(x). A matrix S is symplectic if
STQS = Q; then by Stone-von Neumann theorem there is a
unitary Us with U§W(x)Us = W(Sx).

A. Gaussian states, measurements, channels,
and postprocessings

In the following, we firs review the characteristic function
formalism for Gaussian quantum objects [46,47]; see also
Refs. [29,48]. We then use this to prove the Gaussian version
of'the state-channel correspondence, after which we proceed to
establish the connection between steering and incompatibility.
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The characteristic function formalism treats Gaussian state,
channels, measurements, and postprocessings in the same
footing, is a transparent quantum analog of the corresponding
classical objects by way of a rigorous correspondence theory
[49], does not require the use of ancillas, circumvents the
technical problem of the POVM elements not always being
proper operators (see the discussion above), and is especially
convenient to use with concatenation, making explicit the
idea that a Gaussian channel applied to a Gaussian state
(Schrodinger picture) or measurement (Heisenberg picture)
produces a new Gaussian state and measurement, respectively.
We note that this approach differs from the alternative
(equivalent) one introduced by Giedke and Cirac [50], on
which Wiseman et al. based their derivation of the Gaussian
steering criterion [1].

A state on a CV system is Gaussian if its characteristic
function p(x) := tr[p W(x)] is a Gaussian function:

ﬁ(X) — e—%xTVpx—irTx’ (23)

where V,, is the covariance matrix (CM) [V, ];; = tr[p{R; —
ri,R; — r;}] with displacement vector r; = tr[pR;]. The CM
satisfie the uncertainty relation

V,+iQ > 0. 24)

Crucially, every real and symmetric matrix V satisfying
Eq. (24) is a CM of some Gaussian state p.

A measurement (POVM) M, with outcomes a € R? is
Gaussian if its outcome distribution for any Gaussian state is a
Gaussian (i.e., normal) distribution. This is the case when the
operator-valued characteristic function M(p) := [é P'ap, da
is of the form

M(p) = W(Kp)e ' Lp-m'p, (25)

where K is an N x d-matrix and L is an d x d-matrix
satisfying the positivity condition

Ckr =L—iK'QK >0, (26)

and m is a displacement vector. Importantly, every triple
(K,L,m) satisfying Eq. (26) define a Gaussian measurement.
In the case d = 1 we have K = x, a column vector, while
L = 2&2andm = m are just numbers. Since shifts in outcomes
are irrelevant for steering, we consider m = 0 so that the
corresponding POVM M, ¢ has characteristic function

Maxs(p) = e Pxem308,

With &2 = 0, we simply obtain the PVM with characteristic
function M(p) = e~'72x, that is, the unitary group generated
by the quadrature operator Q. Consistently with the notation
in previous section, we use Q,x to denote the corresponding
PVM elements. Hence, Gaussian PVMs with d = 1 are just
quadrature measurements. In general, the product form of the
characteristic function implies that M, ¢ has the convolution
form [48]:

1 1 "2 2 /
f;\/ﬂfezwa) * Qunda.

Hence, any Gaussian POVM M, with a € R is, up to a
shift, a “noisy” quadrature. Interestingly, noise exceeding the
uncertainty limit renders quadratures jointly measurable:

Ma = Malx,é =
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Lemma 3. The noisy versions Myg and Myg of two
quadratures Qy, Qy are jointly measurable if and only if

£8' > |I[0x. Pylll/2,

in which case they have a Gaussian joint measurement.

This result generalizes a known joint measurability criterion
for position and momentum [51-53]; see Appendix C for a
proof. The crucial point here is the existence of joint Gaussian
measurement, which follows from the nontrivial averaging
argument of Ref. [53].

A quantum channel between two CV systems with respec-
tive degrees of freedom N and N’ is Gaussian, if it maps
Gaussian states into Gaussian states. In the Heisenberg picture,
this entails

A*[W(X)] _ W(Mx)efixTNxficTX’ (27)

where Misareal 2N x 2N’-matrix, and Nisareal 2N’ x 2N’-
matrix. Due to complete positivity, they satisfy

Cun+i220, (28)

where (interestingly) Cyn is as in Eq. (26). Again, every
triple (M,N,c) with Eq. (28) define a Gaussian channel via
Eq. (27). Unitary channels B — U*BU have N = 0 and M =
S symplectic, i.e., U = D Us. Using Egs. (23) and (27) we
get the general transformation rule for states in terms of CMs
and displacement vectors:

Vi>M'VM+N, r— M'r+ec. (29)

Similarly, a Gaussian channel with matrices (M,N,c),
followed by a Gaussian measurement with matrices (K,L,m)
is clearly a Gaussian measurement as well, and we can easily
derive the associated matrices by combining Egs. (25) and
(27); there the result is

(K.L,m) — (MK,L + K'NK.m +K’"¢).  (30)

Using Eq. (30), we observe that (for ¢ = 0) the channel
transforms a quadrature PVM Qy into the noisy POVM My &
where now £2 = x"Nx/2.

Finally, a Gaussian post-processing (classical channel) is
one which transforms every Gaussian probability distribution
into another one. These are determined by triples (M,N,¢) as
in the above quantum case, except that only N > 0 is required
as complete positivity does not appear in the classical case.
One can show that the matrices are associated with linear
coordinate transformations, convolutions, and translations,
respectively [29]. Note that linear transformations include
the deterministic post-processings, which simply project on
a lower-dimensional subspace. A Gaussian measurement
(K,L,m), followed by a Gaussian postprocessing (M,N,c¢),
is again a Gaussian measurement, with parameters obtained
by the transformation rule

(K.L,m) — (KM,N+M'LM,c+M'm). (31)

B. State-channel correspondence and Gaussian steering

We are now ready to prove our main results on Gaussian
steering. We start with the Gaussian version of the state-
channel duality:
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Lemma 4. Thereis a 1-to-1 correspondence between bipar-
tite Gaussian states p sharing a marginal o = tru[p] with CM
V., of full symplectic rank and displacement r,, and Gaussian
channels T from Bob to Alice, such that Eq. (6) holds with |<2)
having CM and displacement

vV, 8778 B
VQ: <STZS Vq ), rQ_rGGBr(,.

Here S is a symplectic matrix diagonalising V,, and Z =
®N /v’ — 1o, with v; the symplectic eigenvalues of V,,. The
correspondence between the parameters (V,r) and (M,N,¢) of
p and T, respectively, is explicitly given by

v (Va rr M = (STzS)-'r
“\r V,)) <« {N=V,—-M'V,M,
r=r,®rp C:I'A—MTI'G

where the positivity conditions are equivalent: V +iQ > 0 iff
Cun+i220.

The proof of this Lemma is given in Appendix D.
Interestingly, the equivalence of the inequalities is obtained via
Schur complements, which have recently found applications in
the investigation of quantum correlations [54]. Using Lemmas
3 and 4, we finall prove

Theorem 2. Let p be a bipartite Gaussian state with CM V
and displacement r, and (M, N, ¢) the matrices of the channel
T given by Lemma 4. The following are equivalent:

(i) p is steerable by the set of Gaussian measurements.

(ii) p is steerable by some canonical pair of quadratures.

(111) V +i(0 & 2) is not positive semidefinite

(iv) (M,N,c¢) do not defin a valid Gaussian observable.

Proof. We firs note that (ii) trivially implies (i). Next,
we repeat the calculation (D6) in the proof of Lemma 4
(see Appendix D) without €24, which establishes that Cy N
is the Schur complement of V, +iQp in V, +i(0 D Qp).
This shows that (iii) and (iv) are equivalent. Furthermore,
using [29, Prop. 2] we conclude that T maps the set of all
Gaussian measurements into a set having a joint (Gaussian)
measurement, if Cyn = 0. Hence (i) implies (iv).

We are left with the proof of the main result, stating
that (iv) implies (ii). Assuming (iv) let x,y be vectors
such that (y” —ix")Cpyn(y +ix) < 0. Then by complete
positivity (y” — ix" )(Cy.n + iQ)(y + ix) > 0, which implies
r:=x'Qy > 0and

Mx)" QMy > %(XTNX +y'Ny). (32)
Clearly, we may replace x and y with r=2x and r‘%y and
(32) still holds. Then the pair Qx = xR and Py = y'R of
quadratures is canonical since x” Qy = 1. It is easy to check
using the transformation rule Eq. (30) that the channel T,
having parameters (M, N, ¢), transforms the associated PVMs
into the POVMs My and My ¢ (up to irrelevant shifts
in outcomes), where &2 = x'Nx/2 and &2 = y’Ny/2. By
Eq. (32) we have 2£&' < €2 + &7 < (Mx)' QMy so from
Lemma 3 we conclude that the POVMs are not jointly
measurable. This means we have found a canonical pair
(QOx, Qy) of quadratures such that T(Qy) and T(Qy) are not
jointly measurable, so according to Theorem 1, the state
p is steerable by this pair. Hence, (ii) holds. The proof is
complete. |
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We remark that the equivalence between (i) and (iii) was
originally proven in Ref. [1]. Here we use Lemma 3 to show
that quadratures are enough [(ii)]; this comes closest to the
original notion of steering of an EPR-state via position and
momentum as discussed by Schrodinger [55]. Note that the
above proof shows explicitly how one can construct quadrature
pairs for which steering is possible when the conditions of the
theorem hold.

Furthermore, an interpretation emerges from (iv): the
Gaussian POVM determined by the channel parameters
(M,N,¢) is exactly the joint observable for the assemblage
{T*(A,) : A, Gaussian} that rules out steering in (i) by Th. 1.
To explain this in detail, we follow the argument in Ref. [29,
Prop. 2] mentioned in the above proof: we frst note that an
arbitrary Gaussian measurement (K,L,m) on Alice’s side is
transformed by the channel (M, N,¢) into one with parameters
(K',L'’)m’) = (MK,L + K"NK,m + K”¢) by Eq. (30). To
show that such POVMs are all jointly measurable, we only
need to reinterpret the channel parameters (M,N,c) as the
joint measurement G, . Indeed, with (K,L,m) taken as post-
processing parameters, Eq. (31) becomes identical to Eq. (30),
showing how (K’,L’,m’) is postprocessed from G, . We stress
that the nontrivial part is in the positivity requirements, which
are not in general identical. Indeed, the reinterpretation is
possible only when (iv) does not hold, i.e., Cyyn = 0, which
is not true for general channels.

For the sake of completeness, and to further demonstrate
that the existing formulation of Gaussian steering [1] follows
from our theory, we also show how one can easily derive the
Gaussian LHS model given in Ref. [1] from the above results.
Since this is not essential for understanding our main results,
the derivation is given in Appendix E.

Finally, in addition to its impact on Gaussian steering,
Theorem 2 yields

Corollary 2. A Gaussian channel which maps each canon-
ical quadrature pair into a jointly measurable pair, is Gaussian
incompatibility breaking in the sense of Ref. [29].

This considerably strengthens the theory in Ref. [29], by
showing that canonical pairs are sufficient and thata Gaussian
joint observable always exists for the jointly measurable
Gaussian POVMs. The latter is a nontrivial and a fairly
fundamental result which requires Lemma 3.

VI. CONCLUSIONS

Steering is a genuine quantum phenomenon, with important
applications both in quantum information processing and foun-
dations of quantum mechanics. Notwithstanding the growing
interest in it in the past few years [14], limited results and tools
are available in the continuous variable case. We introduced
a state-channel correspondence that allows us to discuss the
steering problem in a completely general context. In particular,
we extend many of the results previously known only in the
finite-dimensiona case, such as the mathematical equivalence
of steering and joint-measurability problems [26] and the
equivalence of steering and joint-measurability for the case of
full Schmidt rank states [24,25]. Moreover, via state-channel
duality we are able to connect steerability properties of noisy
NOON states with Markovianity properties of the correspond-
ing channel and to provide an analytical lower bound to
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the steerability noise threshold for any N. Finally, we apply
our methods to the Gaussian setting, introducing a channel
characterization of steerability and proving that canonical
quadratures are enough for steering. An interesting future di-
rection would be to extensively investigate the capability of the
state-channel duality to provide steering, joint measurability,
and incompatibility breaking criteria in the continuous variable
case for states, observables, and channels, respectively.
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APPENDIX A: PROOF OF THE GENERAL
STATE-CHANNEL DUALITY (LEMMA 1)

Let |Q2,) and o be as in Lemma 1. Given any quantum
channel T, the state

P = (T &® Id)(|Qa><QJ |)

clearly has the property trs[o] = o, so we have managed to
produce more general states than ones obtained by the Choi-
Jamiotkowski correspondence. We now need to prove that the
new correspondence is one-to-one onto the set of states with
tra[p] = o. Given such as state, we firs compute

tr[p(A ® B)] = (2 |T*(A) ® B|Q)
= Z A/ SnSm (I’l}’llT*(A) ® B|mm>

(AT)

= Z $n8m (0| T*(A)|m) (n| B|m)

nm

=Y (Vo T (Ao |m)(n|B|m)

= tr[y/o T*(A)v/o BT],

where BT is the transpose of B in the f'xed basis. Hence,

(A2)

01T (A)o? = tra[p(A ® 1)]. (A3)

From this we see immediately that distinct channels cor-
respond to distinct states, since the matrix elements of
the state are clearly uniquely determined by those of the
channel: (nm|p|n'm') = u[ /o T*(In') )/ (jm’) (m])T] =
Sma/Sp (m|T*(|n") (n])|m), where we have now also fi ed
a basis {|n)} on Alice’s side.

What remains to be shown is that for any state p with
tra[p] = o there exists a channel T such that Eq. (A1) [or,
equivalently, Eq. (A3)] holds. If d < oo we can invert o2 in
Eq. (A3) to solve for T*(A); however, we still need to show
that this define a channel, i.e., a CPTP map. We therefore
proceed by writing the state p as

p =Y Wl = D (im|y) (Wln'm') [nm) (n'm|,
k

k,n,m
n',m’

(A4)
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so that, for all bounded operators A and B (for Alice and Bob,
respectively), we get

ulp(A® B)] = ) | u[R{ARBT].
k

where R :Hp — H,4 is the Hilbert-Schmidt operator de-
fine by (n|Rym) = (nm|yy). Hence, tra[p(A® 1)]T =
>y REARy. Inparticular, 0 =0T =), R} Ry.

Next, we need a little of functional analysis, so as to allow
the proof to go through also for d = oo, in which case the
inverse of any full rank state is unbounded and requires some
care. Let R be the dense range of o, containing all the basis
vectors. Then, R = rana%, o is injective, and for any |) €
‘R we have

|Reo™ 2y > <Y (o iy |RiReo ™2 y) = |1,

k

(A5)

which implies that each R0~ extends to a bounded operator
My : Hp — Ha, for which Mka% = Ry.

Since Zk MM, =1, the operators M; set up a Kraus
decomposition of a channel: we defin

T(T):= ) M.TM; (A6)
k

for all (trace class) operators 7. This is by construction com-
pletely positive, and it is trace-preserving since ), M; M =
1. In the infinite-dimensiona case the series converges, e.g.,
in the weak topology. Plugging this channel in Eq. (A3)
immediately gives

O’%T*(A)Cf% = Z (Mka%)*AMko% = Z R{ARy
k k
=1ry [,O(A ® ﬂ)]Ty (A7)

so that Eq. (A3), and hence also Eq. (A1) holds, that is, the
channel gives back the original state p. This proves that the
correspondence is one-to-one, and completes the proof.

APPENDIX B: A JOINT MEASURABILITY CRITERION
FOR QUBIT POVMS WITH ARBITRARY OUTCOMES
(LEMMA 2)

In contrast, to most existing criteria, this one applies to qubit
POVMs with continuous outcome sets. In the main text, it was
shown to be useful for findin noise bounds for quadrature
measurements restricted to two-dimensional photon number
eigenspaces.

More generally, we prove that an assemblage of n qubit
observables {By;}7_, is jointly measurable if

Abr,....by) =Y ri(b) —n+120,

1

where I’,'(b) ;= det M,'(b), M,(b) = Bb|,‘/pi(b), and p,(b) =
(0]Byi10). Indeed,

(B1)

fi®)  rid) + 1/ (®)P (52)

for some complex valued functions f;. The normalization
forces [ fi(b)pi(x)dx =0and [(| fi(b)|* + ri(b)) pi(b)db = 1.

M®=(] i) )
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We defin Gy, 5, via
Gyp,,..b,
[Ti—; pi(bi)
_ ( ! POWACY > )
Y i) 1Y fib)P + Ay, ... by)

Using the constraints we see that it is normalized, and that

Byi = Mi(b)pi(b) = /Sb,bi Gyp,,...p,dby - -db,.  (B4)

The critical constraint is Gy, .., = 0 now follows from

.....

det Gy, ., = A1, ....b) [ [ i®)* =0, (BS)
i=1

which is ensured by the assumption. This means that the B;
have a joint observable with deterministic response functions,
so they are jointly measurable.

By taking B,; = Af(Agi), where A, is the amplitude
damping channel define in the main text, the assumption
Eq. (B1) becomes Eq. (19) of the main text, once we notice
that (O] A (Agi)10) = (0]Ag:10); see Eq. (16). This completes
the proof.

APPENDIX C: PROOF OF THE JOINT MEASURABILITY
CRITERION FOR CONVOLUTED QUADRATURES
(LEMMA 3)

This lemma was critical for the characterization of Gaussian
steering. To prove it we let r = x” Qy, so that [ Qx, Qy] = irl.
Ifr = 0, then Q4 and Qy commute and the claim is trivial since
they stay jointly measurable after convolution. We suppose
r > 0, and look at the scaled quadrature Qy/r = y'R/r =
Qy,r. By using the connection Qy = ["a Q,yda between the
operator Qy and the corresponding PVM Qy, we see that
Quly/r = 1 Qraly- A direct computation then shows that scaling
of the noisy POVM gives M y/r.e'/r = ¥ M, 4}y . Since scaling
is a postprocessing and hence does not affect joint measurabil-
ity, the original pair (My ¢, My ¢) is jointly measurable if and
only if (My ¢, My, ) is. But the corresponding quadrature
pair (Qy, Qy,,) is canonical, as

[Ox. Oyl = X' Ry R/r] = i(x" Qy/r)l = i1,
and hence unitarily equivalent to the pair (Qo, Q) via a
symplectic transformation, where Qg = (¢/?a’ + e=?a)//2
are the rotated quadratures of a single-mode system. The same
unitary then transforms the convoluted pair (My ¢, My ¢/,)
into the pair (Mo ¢, My 2 ¢/, ), Wwhere
1 1 N2 /g2
— ~La-ay/E o |
Map g : T /6 Ques

and hence it suffice to show that the joint measurability of
(Mo,e, M2 ¢+) is equivalent to the inequality £(§'/r) > 1/2,
and that the joint observable, when exists, can be chosen
Gaussian.

To prove this, we use known results on joint measurability
of “unsharp” position and momentum [51,52], which is
exactly what our convoluted quadratures are. In particular,
if (Mo ¢,My2¢,) are jointly measurable, they must have
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a joint observable of the Weyl-covariant form Gy, 4 =
W(ay,az)poW(ay,a2)*/(2m), where py is a state with
o Lat/E o= 1B IE I
—, lpoQunpl = —F———.
NZT ST Ve
(CDH

tr[po Q0] =

This implies that & and &’/r are the standard deviations of Qg
and Q> in the state py, hence satistying £(&'/r) > 1/2 by the
Heisenberg uncertainty principle. Conversely, if the inequality
holds, we can defin py = |¥o) (Y| in the coordinate repre-
sentation as Vo(a) = (2¢/m) e~ +we* with £2 = 1/(4c) and
£7/r? = (c* + d*)/d; then a direct computation shows that
the corresponding G, 4, is a joint observable for My and
My >.¢ . This observable is Gaussian since py is a Gaussian
state [48].

Finally, since all the above unitary equivalences were done
via symplectic transformations, the original POVMs have a
Gaussian joint observable as well. This completes the proof.

APPENDIX D: PROOF OF THE GAUSSIAN
STATE-CHANNEL DUALITY (LEMMA 4)

The difference to the general case (considered above) is that
to preserve Gaussianity, we need to do the diagonalization of
the reference state o “symplectically” (see, e.g., Ref. [56]):
Let V, be the CM of o and r, the displacement. By
Williamson’s theorem [57] there is a symplectic matrix S
such that V, = STDS with D = 69,1(\’:1\)/(]12, where v, are
the symplectic eigenvalues of V,, and we assume v; > 1
(full symplectic rank). This is not restrictive as any v; = 1
corresponds to a vacuum mode, which we may factor out from
the system. Then U = D, Us diagonalizes o in the photon
number basis [n) = |ny,...,ny):

N

2 l)k—l "
U'oU = , = .
oU =2 palm)inl. py ]‘[1+Vk(Vk+l)

k=1

(D)

Moreover, the purificatio )" ./pain) @ |n) has the CM

N
(Iz) g) withZ = ) /v? - 1o.. (D2)
i=1

The eigenbasis {U |n)} of o is the one we use to construct the
steering channels following the general scheme (see Lemma
1). Hence, we form the purificatio

Q =) V/PaUIn) @ Un),

n

(D3)

which by Eq. (29) has displacement vector r, & r, and CM,
V, STZS
STzS Vv, )’
(D4)

Vo, = (8" @ST)(]Z) IZ)>(seaS) = <

as stated in the Lemma. Again by Eq. (29), the application of
a Gaussian channel A with matrices (M, N,c¢) yields the state
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0 = (A ®1d)(|12 ) (2, ) with CM,

V. S'z8
=M'aI ’ MaI
V=M & )(STZS Vv, )( D) +Nao
M'V,M+N M"SZS
= D5
( STZSM V, ) (D3)

and displacement r = M'r, +¢) ®r,. Now V,+iQ>20
if and only if C > 0 where C is the Schur complement of the
block V, +iQp in V, +iQ. But

C=M'V,M+N+iQ,
— MTSTZS(V, +iQ25)"'STZSM
=N+iQs+M'ST(D - ZD + iQp)"'Z)SM
= CmN +i824, (Do)
where we have used D —Z(D +iQ)"'Z = Q, which is
straightforward to verify. This shows that Cyyn +i24 > 0

is equivalent to V, being a valid CM. Now for any given
Gaussian state p with CM and displacement vector

T
V=<VA r ) r=r,®r,,

r v, (D7)

we can defin
(M,N,¢) = ((S"ZS)"'T", Vo —M'V,M, rp, — Mr,),
(D?)
which then satisfie Eq. (D5), so that Cyyn +iR24 > 0 by
the above equivalence, showing that (M,N,c) determines

a Gaussian channel A with p = (A ® Id)(]2,)(R2]). This
completes the proof.

APPENDIX E: THE DERIVATION OF THE LHS FROM THE
JOINT GAUSSIAN MEASUREMENT

Here we show that our joint Gaussian POVM (discussed
in the main text) is consistent with the LHS of Ref. [1].
According to the general discussion in Sec. II D, joint POVM

PHYSICAL REVIEW A 96, 042331 (2017)

G, and the LHS o, are related by oy, = o > Gla% =tra[Gy ®
11225 ) (24 ]]. Now 03, has finit trace, and &, := o3 /tr[o; ] is an
actual state; we show that it is Gaussian by computing the char-
acteristic function 6, (x) := tr[W(x)63] = fx(X)/fo(A), where
) = u[W(x)oy] = tr[G), @ W(X)| Q2 ) (2, |]. For simplic-
ity we assume ¢ = 0. Due to Eq. (25), the function fx is
determined via its Fourier transform, in terms of the channel
parameters (IM,N,c). For simplicity, we will assume ¢ = 0,
and compute

Ap) = /eiprl tr[Gr ® W(X)[$25) (R[] dA

= t[G(p) ® W(X)|Q%) (2]
= t[W(Mp) ® W(X)|2,)(Q]le . (El)

Now by definition the frst factor in the last expression is the
characteristic function of the state Q2,, evaluated at Mp @ x;
hence, by Egs. (23) and (D5) we get

Fi(p) = e H M) @V, (Mp&x) ,— i p"Np
— 1@ )VODX) _ ,— 3@ Vap+2p T x+x"V,x)
_ Ll T _ _ 1T _rv-lyT
— ¢~ 3P ) Valp—px) 3% (Vo—TV,'T )x’ (E2)

where py = —V,'I'"x, and we have used the notation
Eq. (D7). Taking the inverse Fourier transform, we obtain

fx(l) = Ce_ATVXI)"_i)‘Tﬂ" e_%xT(V“_rV,Xer)x, (E3)

where C depends only on V4. Hence, 6";()() = fx(A)/fo(h) =
e~ X (Vo —TVITIx+i(TVINTx g0 by Eq. (23), & is Gaussian

with CM and displacement

V,=V, -V, 'T7, rn=-IV,'A (E4)

Furthermore, each &; occurs in the LHS decomposition
with Gaussian probability py = trfor] = fo(A) oc e Va'>,
By changing the hidden variable A to r, we recover exactly
the LHS of Ref. [1].
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Quantum steering describes how local actions on a quantum system can affect another, spacelike separated,
quantum state. Lately, quantum steering has been formulated also for timelike scenarios and for quantum channels.
We approach all the three scenarios as one using tools from Stinespring dilations of quantum channels. By applying

our technique we link all three steering problems one-to-one with the incompatibility of quantum measurements,

a result formerly known only for spatial steering. We exploit this connection by showing how measurement
uncertainty relations can be used as tight steering inequalities for all three scenarios. Moreover, we show that
certain notions of temporal and spatial steering are fully equivalent and prove a hierarchy between temporal

steering and macrorealistic hidden variable models.

DOI: 10.1103/PhysRevA.97.032301

I. INTRODUCTION

Quantum steering refers to the possibility of one party,
typically called Alice, to affect the quantum state of a spatially
separated party, typically called Bob, by making only local
measurements on her system and classically communicat-
ing the measurement outcome and setting to Bob. Quantum
steering formalizes spooky action at a distance [1], and as
such it is an entanglement verificatio method intermediate
to trust-based entanglement witnesses and no trust-requiring
device-independent scenarios, e.g., Bell inequalities. Steering
provides a natural framework for semi-device-independent
quantum information protocols [2—4] and a guideline for theo-
retical and experimental work on both entanglement theory
and nonlocality [5-10]. Moreover, steering is known to be
closely connected to incompatibility of quantum measure-
ments [11,12]. To be more precise, it has been shown that
steering and joint measurability problems are in one-to-one
correspondence [13] and that unsteerability of quantum states
can be checked through incompatibility breaking properties of
quantum channels [14].

Extending the spatial case, steering has recently found its
temporal counterpart [15] (see Fig. 1). The idea of temporal
steering is to ask whether steeringlike phenomena can happen
on a single quantum system, where Alice measures a single
particle firs and then hands it to Bob. One could argue that
some sort of steering effect is easy to reach in such scenarios,
because Alice’s measurement choice can in principle affect
Bob’s state, i.e., Alice can signal to Bob. However, signal-
ing can be excluded by using well-chosen input states. The
remaining scenarios have found connections to, for example,
non-Markovianity [16]. In this work we want to characterize
quantum measurements so we do not restrict ourselves to
specifi input states. Instead, we take an approach where
nonsignaling is a feature of the measurement instruments.
Physically, these are the scenarios where the original system
is firs interacting with a probe system in some predefine
manner, and then different measurements on the probe system

2469-9926/2018/97(3)/032301(6)
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are carried out. We show that all (nontrivial) temporal scenarios
can be mapped into our formulation.

State steering has a natural extension to the level of quantum
channels through the well-known state-channel isomorphism
[17]. This extension is called channel steering, and it investi-
gates the possibility of Alice to affect Bob’s end of a broadcast
channel from Charlie to Alice and Bob. Technically, channel
steering can be seen as a (semi-device-independent) method of
verifying the coherence of a channel extension [17].

By now channel steering has been introduced as a theoretical
construction, but in this article we show how a certain modifi
cation of it provides a powerful framework for all three steering
scenarios. Namely, we connect all three steering scenarios
one-to-one with the incompatibility of quantum measurements,
provide universally applicable steering inequalities through
measurement uncertainty relations, show an equivalence be-
tween spatial and temporal steering, and prove a hierarchy
between temporal steering and macrorealistic hidden variable
models.

II. SPATTAL STEERING

Steering scenarios can be seen as processes where an
untrusted party (Alice) sends a trusted party (Bob) a state
assemblage {4y }4,x, Where x labels the measurements and a
the respective outcomes, satisfying the nonsignaling condition
D 4 Palx = Y, Pajw Tor all x,x’. The nonsignaling property is
crucial in our scenarios for reasons to become clear in the
following sections. The steerability of a state assemblage is
decided by checking the existence of a so-called local hidden
state model (see below).

In spatial steering the state assemblage originates from
spacelike separated local measurements on one party and is
hence naturally nonsignaling. Formally, consider a bipartite
system described by a quantum state psp. When Alice per-
forms measurements described by positive operator valued
measures (POVMS) {Ayjc}ax (€., Agy = 0and D", Ay =1

©2018 American Physical Society



UOLA, LEVER, GUHNE, AND PELLONPAA

PHYSICAL REVIEW A 97, 032301 (2018)

Alice Bob
Ak PAB —m—> pa\m
xr
X
p a
Alice Bob
P WLy ? Ia|r(p)
xT
X
o a

FIG. 1. Spatial steering (top): Alice and Bob share a bipartite
state pap, Alice measures A, and classically communicates the
measurement setting (x) and result (a) to Bob. The (non-normalized)
postmeasurement state assemblage Bob receives is given as p,, =
tra[(Agy ® 1)pag]. Temporal steering (bottom): Alice applies an
instrument Z, on asingle-system state p and classically communicates
the measurement setting (x) and result (a) to Bob, together with the
(non-normalized) output state Z,(p).

for all a,x) on her system, Bob is left with a non-normalized
state assemblage

Palx ‘= trA[(Aa\x ® ﬂ)pABl (1)

Here, 1 is the identity operator on Bob’s system. The setup
is called (spatially) unsteerable if Bob can recover his state
assemblage from a local state ensemble (or state preparator)
{p(1),0,};. together with additional information about Alice’s
choice of measurement x and obtained outcome a by means
of classical postprocessing, i.e., if for every a,x

pape = y_, pO)plalx,2)o; ©)
A

and steerable otherwise. Here p(A) > 0 is the probability
that Bob’s state o; occurs and p(alx,A) > 0 are conditional
probabilities so that )~ p(a|x,1) = 1 for each x, A. The right-
hand side of Eq. (2) is called, when existing, a local hidden state
(LHS) model for the assemblage {04(x}a,x-

III. TEMPORAL STEERING

For temporal steering one needs the concept of quantum in-
struments. Quantum instruments are collections of completely
positive maps which sum up to a completely positive trace
preserving (cptp) map, i.e., to a quantum channel. Physically,
instruments describe the state transformation caused by a
measurement, and one can think of them as a generalization of
the projection postulate to the case of POVMs. For a POVM
{A,}, the most typical instrument is the von Neumann—Liiders
instrument ZZ(p) = /A, p+/A4, and all possible instruments
compatible with {A,}, are the ones which code the measure-
ment outcome probabilities into the postmeasurement state,
ie., tr[Z,(p)] = tr[A,p] for all p. It can be shown [18] that
any instrument implementing {A,}, can be described by the

quantum channels {A,}, from Alice to Bob applied to the von
Neumann-Liiders instrument via Z,(p) = A4[Z5(p)].
In temporal steering one is interested in state assemblages
{ p[tj?p }a.x Which are given by the actions of a set of quantum
instruments {Z,|,},» on a single system state p4. The steer-
ability of this assemblage is decided by checking the existence
of a LHS model, i.e., the scenario is temporally nonsteerable
if
pane” = Tape(pa) = Y_ p(W)plalx,)o; 3)
s

and steerable otherwise. In temporal steering the nonsignaling
condition is not a built-in feature. However, as some input states
lead to steering trivially, it makes sense to talk about temporal
steering only in the case of nonsignaling assemblages. Finally,
note that sometimes temporal state assemblages are define

through an instrument and an additional time evolution. As a
concatenation of an instrument and a channel is an instrument,
we do not write the channel explicitly to our state assemblages.

IV. MAIN TECHNIQUE

As our main technique we use the Stinespring dilation
of quantum channels. In textbook quantum mechanics any
quantum channel A on a finite-dimensiona system is given
through the representation A(p) = trg[U(po ® p)U'], where
U is a unitary operator on the total space of the system and an
environment E, and py is a quantum state of the environment
[19]. This type of representation is, however, not the only way
to dilate a channel. It appears that a slightly modifie version
of Stinespring dilation is better tailored for our purposes.
Namely, instead of using a unitary operator on the system
and its environment, we defin an isometry V : H - A Q® K,
where H and K are the Hilbert spaces of the input and output
systems and A is the Hilbert space of a dummy system. For
a channel given in the Kraus form A(p) = > ;_, Kxp K]I, the
isometry V canbe constructedas V|y) = > _, o) @ Kilr)
for all [y), with {|¢k)},_, being an orthonormal basis of the
dummy system. With this isometry the dilation simply reads
A(p) = tra[VpVT]. Note that this dilation does not have a
specifi initial state on the environment and, hence, in order to
make a clear distinction between the textbook unitary dilation
and our isometric dilation we talk about a dummy system
instead of an environment.

We are specificall interested in sets of instruments {Z |y }4 x
which do not allow signaling, i.e., which have the same total
channel A := )", Ty« = Y, Zajw for every x,x’. Nonsignal-
ing instruments are related to observables on the dummy
space of their total channel A [20,21]. Namely, the actions
of nonsignaling instruments {Z,, },,» can be written as actions
of a set of POVMs {Au‘x}a,x on the dummy system, i.e.,

Zape(p) = ral(Aupy ® DVp V], “4)

Note that in general the dummy POVMs {Aa‘x}a,x do not
coincide with the POVMs {A,|, }4,» one measures on the actual
system. Note, moreover, that the isometry V is constructed
from A and, due to nonsignaling, does not depend on x.
Hence, nonsignaling instruments can be implemented using
a predefine interaction with a probe system, as described in
the Introduction.
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In what follows, we will mainly concentrate on minimal
dummy systems, i.e., minimal Stinespring dilations. The
minimality means that r is the smallest possible dimension,
in which case the Kraus operators of the total channel are
linearly independent. In this case (for a given total channel)
the correspondence between the dummy POVMs and the
instruments they defin is one-to-one [20,21]. Namely, we have
that

T(p) = Y (@1l Aae i) KoK ©)
k=1

from where the matrix elements (¢;|Aa|x |@r) of the dummy
POVMs can be computed.

V. MINIMAL DILATION FOR A STATE ASSEMBLAGE

A crucial concept for our study is joint measurability. A set
of POVMs {A,y}a x 1s called jointly measurable if there exists
a common POVM {G, }, from which the original POVMs can
be postprocessed, i.e., if for every a,x

Aae = Y plalx, )G (6)
A

and incompatible otherwise. Here p(:|x,A) is a probability
distribution for every x,A.

Because of the one-to-one connection between dummy
POVMs and instruments, we see that a set {Am}a,x of dummy
POVMs is jointly measurable if and only if the instruments
{Zajx}ax (define through the minimal dilation) have a com-
mon refinement i.e., for every a,x one has

Tae = Yy, plalx, VT, (7)
A

To relate this connection to spatial and temporal steering,
note that any state ensemble {p(1), p; }1, where Y, p(1) = 1,
is an output of a state preparator, i.e., an instrument with a trivial
input space C. Even though using a one-dimensional Hilbert
space might sound unconventional, it appears to be useful for
our purposes, as any nonsignaling state assemblage {04y }a.x
corresponds to a nonsignaling set {Z,, },,» of state preparators
through the minimal Stinespring dilation as [see Eq. (4)]

Patx = L (V1) = al(Aape @ DIY )WL (8)

where |1) is a complex number withnorm 1 and |) := V1) is
aunit vector on the compound system. As the dummy POVMs
{Am }a.x are unique for a given minimal dilation, and as the
state preparator corresponding to a LHS model has the same
total channel as state preparators associated to the assemblage,
we arrive at our firs Observation [see also Eq. (7)].

Observation 1. Any nonsignaling state assemblage { 0g|x }a,x
isunsteerable ifand only if the associated observables {Aalx Yax
on the minimal dilation of the corresponding state preparator
are jointly measurable.

In order to make Observation 1 more concrete, consider a
state assemblage given by a set of state preparators {Z, }4 x
through Eq. (8). The state of the total system V|1)(1|VT is
clearly a purificatio of pg := ), pax. One possible choice
of'this purificatio is the canonical one |{) = (I ® pllg/ 2)|1//+),
where | T) = ), |ii) is anon-normalized singlet state written

in the eigenbasis of pg. For this choice Eq. (8) reads

Pty = tral(Aax @ DIVY (W[ = pg Al 0g7. (9

where the transpose is taken in the eigenbasis of pz. Hence,
the dummy POVMs whose joint measurability solves spatial

. . ~ 12 7 —1)2
and temporal steerability are given as Aqjx = pp " Py P -

Noting that joint measurability is invariant under transposi-
tion, we can reproduce the known result [ 13] for spatial steering
stating that a state assemblage {4/« }q,» 1S unsteerable if and
only if the so-called Bob’s steering equivalent observables

L —12 —172 .
define as B, := pg ' “paxpp '~ are jointly measurable.

It is worth mentioning that Observation 1 can also be used
to reproduce a known example of the connection between
temporal steering and joint measurability for scenarios using
Luders instruments and a maximally mixed input state [22].
The result of the article states that a set of observables is
nonjointly measurable if and only if it can be used for temporal
steering. Whereas this claim works perfectly for the maximally
mixed input state, it is worth noting that, for example, a
typical joint measurement scenario with orthogonal noisy qubit
observables A%} = 11 +nX -5), where 0 < n < 1 is the
noise parameter, leads to signaling assemblages with any
other input state than the maximally mixed one. Hence, even
jointly measurable observables, i.e., n < % [23], can lead to
temporal steering in the state-dependent framework, providing
a counterexample for the general claim in [22].

For scenarios including the maximally mixed input state
and Luders instruments, one sees that our approach gives
the transposed versions of Alice’s measurements as dummy
POVMs. Hence, one sees that the claims made in [22] for the
specifi input state and instruments can be reproduced using
our method.

VI. CHANNEL STEERING

In channel steering [17] one is interested in an assemblage
of instruments {Z,|,}, . instead of states. This assemblage
originates from a process where Charlie sends quantum states
to Bob through a quantum channel A€~# which possibly
entangles some of the states to an environment (Alice) (see
Fig. 2). The task is to decide if the entanglement between Alice
and Bob is strong enough to allow Alice to steer Bob’s outputs
of the channel. Mathematically this means that one takes a
channel extension A€~4®8 of the channel A€~ 2 and define
an instrument assemblage through

Zax(p) = tral(Age ® DATAEE (p)]. (10)

Note that here the assemblage is nonsignaling by definition
The unsteerability of this instrument assemblage is define as
the existence of a common instrument Z, and postprocessings
p(alx,)) such that

Tue = Yy, plalx, )T, (11
s

Noticing that Eq. (11) and Eq. (7) are identical and using
a minimal dummy system instead of a generic extension in
Eq. (10) we arrive to the following Observation:
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Charlie

Bob

— Ia\z(p)

FIG. 2. Channel steering: The setup is similar to the spatial steer-
ing scenario, but in the channel case the shared state is prepared by
Charlie via the broadcast channel A€~4®5_ The operations enclosed
in the dotted line are then viewed by Bob as instruments which have
the total channel A€~ 5. The main difference to spatial steering is that
here Bob’s task is to build a local (instrument) model for all possible
input states, see Eq. (11).

Observation 2. Aninstrument assemblage {7y}, x define
through a minimal dilation A~4®5 is unsteerable if and
only if the associated dummy POVMs {A,},.. are jointly
measurable.

There exists a former result [24] reporting a one-to-one con-
nection between joint measurability of measurements { A,y } 4.«
on any dilation (or extension) of the total channel and the
nonsteerability of the instrument assemblage they define This
result, however, can be proven false. Namely, while it is
true that compatible measurements will not lead to channel
steering no matter which dilation (or extension) is used, the
other direction is not true in general. Take, for example,
any instrument assemblage {Z,|,},,» define through linearly
dependent Kraus operators K; = %U , Ky = %U of some

unitary channel Ay (p) = UpUT. The instrument assemblage
is given by
12
5 2 (@lAale)UpU'. (12)
k,l=1

Ia\x(p) =

Hence definin  p(alx,\) = %Zk,z<<ﬂl|ga|x|<ﬂk) (which is a
probability distribution as {Au‘x}a,x is a POVM), A; = Ay,
and the hidden variable space to be trivial, one sees that the
setup is unsteerable for compatible as well as for incompatible
sets {Ay(x}a.x of POVMs.

To relate our result to the above example, note that as
the minimal dilation of the channel Ay is one dimensional,
observables in this space are always jointly measurable and
hence the instrument assemblage is nonsteerable.

VII. STEERING INEQUALITIES FROM
INCOMPATIBILITY

As various joint measurement uncertainty relations have
been analytically characterized [23,25-31], our Observation 1
and Observation 2 open up a possibility to use them as steering
inequalities for all three scenarios. As an example, take the
simplest case of two two-valued qubit observables A4y =
%(]l +a,-0), x=1,2. These observables are jointly

measurable [23] if and only if ||a; + az|| + |la; — az|| < 2
This inequality is universally applicable to all three steering
scenarios and gives an “if and only if”” condition for each of
them. Inserting the measurements {A 4|, }y=1 2 as the dummy
POVMs to, for example, Eq. (5) gives instruments for which
channel steering can directly be decided. We are ready to state
our next Observation.

Observation 3. Joint measurement uncertainty relations
can be used as steering inequalities for spatial, temporal, and
channel steering.

VIII. EQUIVALENCE BETWEEN TEMPORAL AND
SPATIAL STEERING

Applying the Stinespring dilation to a set of nonsignaling
instruments {Z, },,x shows that the temporal steering scenario
they defin can be mapped into the spatial steering scenario,
see Eq. (4). The question remains which spatial scenarios can
be reached by these instruments as the mapping is in general
not injective.

To answer this, take a nonsignaling state assemblage
{ajx}a,x With a d-dimensional support. Notice that this state
assemblage can be prepared through spatial steering using
a purificatio of the total state pp := Y, par [32-34] [see
also Eq. (9)]. Hence, we need an isometry V which has such
purificatio inits range. One possible choice is the set of Kraus
operators K; = |k)(k|, where {|k)}k | is the eigenbasis of pp.
Taking the input state |/) : Zl | V/Aili), where the numbers
A; > 0 are the eigenvalues of the state pp, and the observables
Ay = ,oBl/z,ouT‘x,oBl/2 where the transpose is taken in the
eigenbasis of pp, we get through the minimal dilation of the
channel A(p) =), KipK ,1 the desired state assemblage

d

Y UAq )V Kely) (1K) = paje- (13)

k=1

alx(lw WD

With this, we are ready to state the next Observation:

Observation 4. Temporal and spatial steering are fully
equivalent problems in that temporal steering can be embedded
into the spatial scenario and the two can produce exactly the
same assemblages. Moreover, any nonsignaling state assem-
blage on a d-level system can be reproduced with nonsignaling
instruments acting on a d-level system.

The above Observation has two crucial consequences. First,
for nontrivial instances of temporal steering the restriction to
nonsignaling instruments is actually not a restriction at all.
Second, Observation 4 allows one to prove a hierarchy between
temporal steering and macrorealistic hidden variable models
(see below).

IX. TEMPORAL STEERING AND MACROREALISM

We now proceed to show that steering has an analogous role
in the temporal scenario to that of the spatial case. Namely,
whereas spatially nonsteerable correlations are a proper subset
of local correlations, we show that temporally nonsteerable
correlations are a proper subset of macrorealistic correlations.

To do so, recall that the probabilities in a sequential
measurement scenario (consisting here of two different time
steps) are said to have a macrorealistic hidden variable
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model if they can be written in the form tr[Z,,(0)Bpy] =
2, pP(M)p(alx,M)p(bly,r), where p(-), p(|x,) and p(:|y,1)
are probability distributions for all x,y and A [35]. Provided
that one uses nonsignaling instruments, the left-hand side of
the above equation can be written in the distributed scenario
simply as tr[(A,, ® By,)VpV1]. As the nonsignaling condi-
tion is automatically satisfie for a given total channel, our
question boils down to findin an isometry V and a state
p such that the state VpV' is steerable but local. As an
example, consider the Kraus operators Ky = |0)(0] + [1)(1]
and K; =10)(2| 4+ |1){(3]. Now the state p := A|Y) (Y| +
(1- )»)J—‘]L;, where [{) = %UO) + |3)), maps to the isotropic
state VoV = Ayt (yt|+ (1 — )»)%114. Isotropic states are
steerable but local for projective measurements with % <A<

where K (3) is a Grothendieck constant and #(3) >

0.6829 [8,36,37].

However, considering only projective measurements does
not cover all possible instruments compatible with the total
channel. In order to cover this more general scenario, we recall
that all possible instrument assemblages {Z,},,» compatible

with a channel A are given by the minimal Stinespring dilation:

{ZapeVax = (tral(Age @ DV VI{Ag)a is a POVMY.
(14)

To provide the desired example, we use a known steerable
qutrit-qutrit state which is local for POVMs [38] as our target
state VpVT. The state reads

pi=slaleT )@ I+ G - a1 ®2)2
+2a2)21® 1+ (6 - 20)22)22]],  (15)
where [¢~) = 5(01) — [10)), 1 =10)(0] + 1)(1], and 0 <

a < % To reach this state we can use a channel acting on C’
define through the Kraus operators

Ko = [1)(0] 4+ [2)(2], (16)
Ky = —|0)(1] + |2)(3], (17)
Ky = [0)(4] 4+ [1)(5] + [2)(6]. (18)

Now the state
p = glal¥) (| + (3 —a)1(12) (2] +13)3])
+a(l4) (@] + [5)(5]) + (6 — 2a)[6)(6]],  (19)

where |) = %(|0) 4+ |1)), maps to the state p on the minimal
dilation space, hence completing the example.

As the (nontight) inclusion of temporally nonsteerable
correlations to the set of macrorealistic correlations follows
from their definitions we can formulate:

Observation 5. The set of temporally nonsteerable correla-
tions is a proper subset of macrorealistic correlations.

The above Observation shows that there exists instances of
temporal steering where a certain steerable channel-state pair
can never lead to nonmacrorealistic behavior, no matter what
(nonsignaling) measurements (compatible with the channel)
are performed on the frst party.

X. CONCLUSIONS

In this work, we have approached spatial, temporal, and
channel steering through a modifie version of the well-known
Stinespring dilation. We have demonstrated the power of
our approach by showing that incompatibility of quantum
measurements is one-to-one connected to quantum steering in
all three scenarios. In addition, we have shown how measure-
ment uncertainty relations can be used as universal steering
inequalities through this connection.

In contrast to the formerly known connections between
spatial steering and joint measurability [11-14], the current
approach is not limited to incompatibility. Using the Stine-
spring approach, we have mapped temporal steering into a
framework where nonsignaling is a built-in state-independent
feature. Moreover, we have shown an equivalence between
temporal and spatial steering and shown that temporally un-
steerable correlations are a proper subset of nonmacrorealistic
correlations. For future works it would be interesting to
investigate other possible connections between temporal and
spatial correlations, e.g., investigate if our approach can be used
to translate such concepts as entanglement in a meaningful
way to the temporal scenario, and to see if our approach can
be related to the recent works [39,40] comparing spatial and
temporal scenarios.

Note added. Recently, we became aware of the work of
Ref. [41], which independently proved a hierarchy between
temporal steering and macrorealism.
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The effect of steering describes a possible action at a distance via measurements but characterizing
the quantum states that can be used for this task remains difficult. We provide a method to derive
sufficient criteria for steering from entropic uncertainty relations using generalized entropies. We
demonstrate that the resulting criteria outperform existing criteria in several scenarios; moreover,

they allow to detect weakly steerable states.
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Introduction.— Steering is a term coined by
Schrodinger in 1935 in order to capture the essence of
the Einstein-Podolsky-Rosen argument [1]. It describes
Alice’s ability to affect Bob’s quantum state through her
choice of a measurement basis, without allowing for in-
stantaneous signaling. In the modern view, steering is
based on a quantum correlation between entanglement
and the violation of Bell inequalities, meaning that not
every entangled state can be used for steering and not
every steerable state violates a Bell inequality [2].

In the last years the theory of steering has evolved
quickly. It has been shown that the concept of steering is
closely related to fundamental problems and open ques-
tions in quantum physics. For instance, steering has been
used to find counterexamples to so-called Peres conjec-
ture, which was an open problem in entanglement theory
for more than fifteen years [3-5]. In addition, steering
was shown to be equivalent to the notion of joint mea-
surability of generalized measurements [6-10] and results
from one problem can be transfered to the other. Finally,
steering has been shown to be useful for tasks in quan-
tum information processing, such as one-sided device-
independent quantum key distribution [11] and subchan-
nel discrimination [12].

Despite of all these results, the simple question
whether or not a given bipartite quantum state is useful
for steering is not easy to answer. If the conditional states
of Bob are known, the problem can be solved via semidef-
inite programming [13-15], but this approach requires
knowledge of Alice’s measurements and is restricted to
small dimensions. Other steering criteria exist [2, 16-20],
but general concepts for the derivation of them are miss-
ing. This is in contrast to entanglement theory, where
concepts such as the theory of positive, but not com-
pletely positive maps provide a guiding line for develop-
ing separability criteria [21].

In this paper we identify entropic uncertainty relations
as a fundamental tool to develop steering criteria. Un-
certainty relations in terms of entropies have already be-
come important in many areas of quantum information
theory [22, 23]. We show that various entropic uncer-
tainty relations can be transformed into a steering cri-
terion. As examples, we consider generalized entropies

such as the so-called Tsallis entropy and demonstrate
that the resulting criteria outperform known criteria in
many cases. QOur approach is motivated by previous
works on entanglement criteria from entropic uncertainty
relations [24] and generalizes recent entropic criteria for
steering [25, 26], which were, however, restricted to the
special case of the Shannon entropy.

Steering and entropies.— In steering scenarios, one as-
sumes that Alice and Bob share a quantum state pap.
Then, Alice makes measurements on her system and
claims that with these measurements she can steer the
state inside Bob’s laboratory. Bob, of course, is not con-
vinced of Alice’s abilities. In a more formal manner, we
can assume that Alice performs a measurement A with
outcome 7 on her part of the system, while Bob performs
a measurement B with outcome j on his part. From that,
they can obtain the joint probability distribution of the
outcomes. If for all possible measurements A and B one
can express the joint probabilities in the form

p(i,j14, B) = p(Np(il 4, Npg(i|B, ), (1)
A

then the system is called unsteerable. Here, p(i|A, A)
is a general probability distribution, while pg(j|B, ) =
Trg[B(j)0o,] is a probability distribution originating from
a quantum state o, being the same for all measurements
B on Bob’s side. Furthermore, B(j) denotes a measure-
ment operator such that Zj B(j) =1,and >, p(A) =1,
where A is a label for the hidden quantum state o). A
model as in Eq. (1) is called a local hidden state (LHS)
model, and if it exists, Bob can explain all the results
through a set of local states {o)} which is not altered
by Alice’s measurements. But if it is not possible to find
states o) that make this probability distribution feasible,
Bob has to assume that Alice can steer the state.

Let us now explain some basic facts about entropy. For
a general probability distribution P = (p1,...,pn), the
Shannon entropy is defined as [27]

S(P) =~ Zps In(p;). (2)

Entropic uncertainty relations can easily be explained
with an example. Consider the Pauli measurements o,



and o, on a single qubit. For any quantum state these
measurements give rise to a probability distribution of
the outcomes +1 and the corresponding entropy S(ox).
The fact that ¢, and o, do not share a common eigen-
state can be expressed by [22]

S(oz) +5(0z) = In(2), 3)

where the lower bound does not depend on the state.

For our approach, we also need the relative entropy,
also known as Kullback-Leibler divergence [27], between
two probability distributions P and Q,

D(PIQ) = piin (%). (4)

. 1

]
Two properties are essential: First, the relative entropy
is additive for independent distributions, that is if Py, Ps
are independent distributions, with the joint probabil-
ity distribution P(x,y) = Pi(z)Pa2(y) and the same for
Q1, Q5 then one has that

D(P||Q) = D(P1]|Q1) + D(P2||Q2)- (5)

Second, the relative entropy is jointly convex. This
means that for two pairs of distributions P;, @; and

Pa, Q5 one has

D[AP; + (1 — A)Pa|[AQ1 + (1 — A) Q2]
<AD(P1]|@Q1) + (1 = A)D(Pe||Q2).  (6)

The main idea.— The starting point of our method is
the relative entropy between two distributions, namely

F(A,B)=-D(A® B||A®]). (7)

Here, A ® B denotes the joint probability distribution
p(2,j|A, B), which we denote by p;; for convenience, A
is the marginal distribution p(i|A), which we denote by
pi, and I is a uniform distribution with ¢; = 1/N for all
j. As the relative entropy is jointly convex, F'(A, B) is
concave in the probability distribution A ® B. We can
directly calculate that

F(4,B)=~Y pyn (pp/frv) = S(B|A) — In(N), (8)
ij N

where S(B|A) = S(A,B) — S(A) is the conditional en-

tropy. On the other hand, considering a product distri-

bution p(i| A, A)pg (7| B, A) with a fixed A and the property

from Eq. (5), we have

F(A, B) = —D|p(i|A, A)|[p(i|A, A)] — Dlpq(i| B, A)||1]

— S(BIA) — In(N). (9)

Consequently, for a product distribution and a set of mea-

surements Ay ® By, we have

> S(BklAk) = S(BylN). (10)
k k

The right-hand side of this equation depends on probabil-
ity distributions taken from the quantum state o,. Such
distributions typically obey an entropic uncertainty rela-
tion,

S S(BilN) > Cs. (1)
k
So, for product distributions we have
ZS(BHA;:) > Cp. (12)
k

Finally, since F is concave, the same bound holds
for convex combinations of product distributions
p(i|A, N)pg(j| B, A) from Eq. (1), meaning that any non-
steerable quantum system obeys this relation. In this
way entropic uncertainty relations can be used to derive
steering criteria. The intuition behind these criteria is
based on the interpretation of Shannon conditional en-
tropy. In Eq. (12), one can see that the knowledge that
Alice has about Bob’s outcomes is bounded. If this in-
equality is violated, then the system is steerable, meaning
that Alice can do better predictions than those allowed
by an entropic uncertainty relation.

So far, this criterion is the same as the one in Ref. [26],
but our proof highlights the three central ingredients:

First, we needed an additivity relation for independent
distributions in Eq. (5), second we needed the state in-
dependent entropic uncertainty relation in Eq. (11), and
finally we needed the joint convexity of the relative en-
tropy in Eq. (6). These properties are not at all specific
for the Shannon entropy, so our strategy works also for
generalized entropies.

Steering criteria for generalized entropies.— As a pos-
sible generalized entropy, we consider the so-called Tsallis
entropy [28, 29] which depends on a parameter ¢ > 1. It
is given by

5q(P) = —Zp?]nq(ps), (13)

where the g¢-logarithm is defined as Ing(z) =
(z'79—1)/(1 — q). Note that in the limit ¢ — 1 this
entropy converges to the Shannon entropy. The general-
ized relative entropy can be defined as [30]

D,(PIIQ) = =Y pilng (), (14)

it is jointly convex and obeys the following relation for
product distributions:

Dy(P||Q) = Dg(P1]|Q1) + Dg(P2||Q2)
(g = 1)Dg(P1]|Q1) Dy(P2|Q2)-

The additional term is due to non-additivity of the gen-
eralized entropy.
Now we can apply the machinery derived above and

consider the quantity F(A,B) = —Dy(A® B||[A®1). It



follows by direct calculation that if the measurements By
obey the entropic uncertainty relation

> Se(Bi) 2 CF (15)
k
then one has the steering criterion
> [Sa(BelAw) + (1 - )C(Ax, Bo)| 2 €, (16)
k

and violation of it implies steerability of the state. Here
Sq(B|A) = S4(A,B) — Sgq(A) is the conditional en-
tropy [31] and the additional term is given by

C(A,B) =) pilng(p:)]>—>_ pl; Ing(pi) Ing(pij). (17)
i i,j

From Eq. (16) it is easy to see that if we consider ¢ — 1,
we arrive at Eq. (12). Note that we can also rewrite
Eq. (16) in terms of probabilities as

L 1 5" >C9. (18
qu[Zk:( _%:W)]_ - (18

Here, pgf) is the probability of Alice and Bob for outcome

(7, 7) when measuring A ® By, and pgk) are the marginal
outcome probabilities of Alice’s measurement Ap. This
form of the criterion is very easy to evaluate.

Application I: Isotropic states.— To test the strength
of our steering criteria we consider d-dimensional
isotropic states [32]

11—«

where |[¢+) = (1/vd) Y%, |i)|i) is a maximally entan-
gled state. These states are known to be entangled for
a > 1/(d+ 1) and separable otherwise. As observables,
we consider a set of mutually unbiased bases (MUBs) in
dimension d. One can directly check that the marginal
probabilities for this class of states are p; = 1/d for all
i and the joint probabilities are p; = [1 + (d — 1)a]/d?
(occurring d times), and p;; = (1 — a)/d? [for i # j and
occurring d(d — 1) times|. These probabilities are the
same for all measurements. Inserting them in Eq. (18),
the condition for non-steerability reads

q_il{l - %[(1 +(@d-1)a)?+(d-1)(1-a)} > Cg),
(20)

which depends on the parameter ¢ and the number of
MUBs m. For certain values of ¢ and m, the bounds
of the entropic uncertainty relations Cgﬂ are known (see
Appendix A). For other cases they can be approximated
numerically.

Let us discuss the strength of this criterion. First,
numerical investigations suggest that the criterion is

0.7
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FIG. 1. (Color online) The critical value of white noise « for
different dimensions d, considering a complete set of MUBs.
In this plot, yellow squares correspond to our criterion in
Eq. (20) for ¢ — 1 and the blue circles to ¢ = 2. The purple
reversed triangles correspond to the results for the inequality
presented in Ref. [34] and the red triangles in Ref. [36], where
acriv Was calculated via SDP. Below the green diamonds the
existence of an LHS model for projective measurements is
known [2].

strongest for ¢ = 2. For this value of g the violation of
Eq. (20) occurs for a > 1/y/m. Considering a complete
set of MUBs (m = d+ 1) (this exists for d being a power
of a prime) the violation happens for oo > 1/+/d + 1.

For qubits (d = 2) isotropic states are equivalent to
Werner states [33]. Then, with a complete set of MUBs
the violation occurs for a > 1/v/3 = 0.577, which is
known to be the optimal threshold [34]. More gener-
ally, in Ref. [35], a steering inequality for MUBs and
isotropic states has been presented which is violated for
a > (d*? —1)/(d> —1). Tt is straightforward to show
that our inequality is stronger. Recently, the same prob-
lem has been investigated using semi-definite program-
ming [36]. For 3 < d < 5 a better threshold than ours
was obtained, but it is worth to mention that our criteria
directly use probability distributions from few measure-
ments, without the need of performing full tomography
on Bob’s conditional state. In addition, numerical ap-
proaches are naturally limited to small dimensions.

In Fig. 1, we compare our criterion with the ones men-
tioned above. We concentrate in the values of ¢ —+ 1 and
q = 2, since the former is related to the usual entropic
steering criteria and the latter is the optimal value of g
for the detection of steerable states.

Connection to existing entanglement criteria.— At this
point, it is interesting to compare our approach with en-
tanglement criteria derived from entropic uncertainty re-
lations [24]. The mathematical formulation goes as fol-
lows. Let A; and Ay (B; and Bs) be observables on Al-
ice’s (Bob’s) laboratory. Assume that Bob’s observables
obey an entropic uncertainty relation S(B;) + S(Ba) >
Cp, where S(B;) is a generalized entropy, such as the
Shannon or Tsallis entropy. Then it can be shown that



for separable states
S(A; ®B1)+S(A2® Bs) > Cp (21)

holds. Here, S(Ax ® By) is the entropy of the probability
distribution of the outcomes of the global observable A, ®
By.. Note that this implies that for a degenerate Ax @ By
the probability distribution differs from the local ones.
For instance, measuring o, ® o, gives four possible local
probabilities py4,py_,p_4,p__, but for the evaluation
of S(Ar ® Bg) one combines them according to g, =
P+t +p__ and g_ =p,_ +p_., as these correspond to
the global outcomes.

Some connections to our derivation of steering inequal-
ities are interesting. First, if one reconsiders the proof in
Ref. [24] one realizes that Eq. (21) is indeed a steering cri-
terion and not a criterion for entanglement. That is, all
probability distributions of the form in Eq. (1) fulfill it.
Second, also in Ref. [24] it was observed that the criterion
is strongest for values 2 < ¢ < 3. Finally, if one asks for
a direct comparison between Eq. (21) and Egs. (16,12)
one finds that Eq. (21) is of the same strength for special
scenarios (e.g. Bell-diagonal two-qubit states and Pauli
measurements), while it seems weaker in the general case
(see below).

Application II: General two-qubit states.— Let us now
consider the application of our methods to general two-
qubit states. Any two-qubit state can, after application
of local unitaries, be written as

3
[101+(@7)®1+10(3)+ Y  cioi®ai] (22)

i=1

PAB =

ol M

where @, g, ¢ € R? are vectors with norm less than one,
@ is a vector composed of the Pauli matrices and (d@5) =
>;ai0;. Let us assume that Alice performs projective
measurements with effects P22 = [1+p(@x7)]/2 and Bob
with the effects PE = [1 + vy (3%3)]/2 with pg, vp = £1
and {#,7} € R3. Then, Eq. (18) can be written as

S (1 + (@) + v (Biie) + kaq}
p 20+ [1 + pg(@ig )] 91

ke Vi
> (¢ - 105, (23)
where T = E?:l ciju;xVik. The optimization over

measurements of this criterion for general two-qubit
states is involving. We will focus on the simple case
of Pauli measurements, meaning that @y = T =
{(1,0,0)T,(0,1,0)T,(0,0,1)T} and ¢ = 2. Then we have
that

3
Z {l—a?—bg—c?+2agbic,;:| 1 (24)
— 2(1 — a?) -

If this inequality is violated, then the system is steerable.

Now, we can compare our criteria with other proposals
for the detection of steerable states using three measure-
ments, see Appendix B for detailed calculations. The
criteria from Eq. (21) prove steerability if E?:] 2 >1,
and from the linear criteria [2, 37| steerability follows if
(Z§=1 03)1/ 2 > 1, which is equivalent. Not surprisingly,
Eq. (24) is stronger, since it uses more information about
the state. This statement can be made hard by analyz-
ing 10 two-qubit states randomly generated from a pro-
cess based on Hilbert-Schmidt ensemble [38]. 94.34% of
the states do not violate any of the criteria, 3.81% are
steerable according to all criteria, 1.85% violate only cri-
terion (24), and no state violates only the linear criteria.

A special case of two-qubit states are Bell diagonal
states, which can be obtained if we set @ = b=0in
Eq. (22). For this class of states it is easy to see that the
three criteria are equivalent. Note, however, that a nec-
essary and sufficient condition for steerability of this class
for projective measurements has recently been found [18].

Application III: One-way steerable states.— As an ex-
ample of weakly steerable states that can be detected
with our methods we consider one-way steerable states,
i.e., states that are steerable from Alice to Bob and not
the other way around. We consider the state

oan = BUE) WE) + (1 -3 Ok, (25)

where [(f)) = cos(0)|00) + sin(f)|11) and % =
Tra[|v(0))(¢(0)|]. It has been shown that for 6 € [0, w/4]
and cos?(20) > (28—1)((2—B)B>) this state is not
steerable from Bob to Alice considering an infinite num-
ber of projective measurements [19], while Alice can steer
Bob for g > 1/2.

Considering three measurement settings, this state is
one way-steerable for 1/ V3 < B < Bmax with Bmax =
[1 4+ 2sin?(26)]~'/2 [39]. For our entropic steering criteria
we consider three Pauli measurements and g = 2 and we
find that this state is one-way steerable for

—1 -
2 cos(26) \/3 B \/m < B < Pmax- (26)

For any 6 this gives a non-empty interval of 3 for which
our criterion detects these weakly steerable states. An
attempt of optimizing over the set of measurements will
be addressed in a future work.

Conclusions.— In this work we have proposed a
straightforward technique for the construction of strong
steering criteria from entropic uncertainty relations.
These criteria are easy to implement using a finite set
of measurement settings only, and do not need the use of
semi-definite programming and full tomography on Bob’s
conditional states.

For future work, several directions seem promising.
First, besides the usual entropic uncertainty relations,
such as entropic uncertainty relations in the presence of




quantum memory [40] or relative entropy formulations
of the uncertainty principle [41] are promising starting
points for other criteria. Second, one can try to make
quantitative statements on steerability from steering cri-
teria. Recently, some attempts in this direction have
been pursued [42]. Finally, it would be highly desirable to
embed our approach in a general theory of multiparticle
steering.

We thank Marcus Huber and Renato M. Angelo for
discussions. This work was supported by the DFG, the
ERC (Consolidator Grant No. 683107/ TempoQ) and the
Finnish Cultural Foundation.

APPENDIX

A: Known entropic uncertainty relations

In this Appendix we will present different entropic un-
certainty relations that were used in this work and known
from literature. For the Shannon entropy (¢ — 1) and
a complete set of MUBs, entropic uncertainty relations
were analytically derived in Ref. [43] and are given by

(d+1)log (), dodd
Cp = (27)

%llog (g)—l— (%—l—l) log (g—l—l), deven.

For the Tsallis entropy and m MUBs it has been shown
in Ref. [44] that, for ¢ € (0;2], the bounds are given by

md ) . (28)

C](;) =mln, (d—i—m—l

If we consider the case ¢ — 1, this bound is not optimal
for even dimensions, so in this case it is more appropriate
to consider the bounds given in Eq. (27).

B: Calculations for two-qubit states

First, consider the steering criterion in Eq. (21), devel-
oped in Ref. [24]. For three Pauli measurements and the
Tsallis entropy, we have the following relation

3

3" S,(Av @ By) > CY, (29)
k=1

where Ay, = (46) and By, = (0;6). In terms of proba-

bilities this criterion can be rewritten as

3

q
{1 - |:p'a:k7"~7k (+17 +1) +p171«7171«(_17 _1)}
k=1

1
q—1

q
= [P (1, =) + paa (L] b = Cf (30)

Inserting the probabilities for general two-qubit systems,
we have that

1 3

" {1—2—q[(1+Tk)q+(1—Tk)"H > C. (31)
k=1

If we fix the measurements and the value of ¢ in the
same way as in Eq. (24), this criterion gives 37, ¢ < 1.
Then, if this inequality is violated, the system is steer-

able.
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The existence of quantum correlations that allow one party to steer the quantum state of another party is a
counterintuitive quantum effect that was described at the beginning of the past century. Steering occurs if
entanglement can be proven even though the description of the measurements on one party is not known, while
the other side is characterized. We introduce the concept of steering maps, which allow us to unlock
sophisticated techniques that were developed in regular entanglement detection and to use them for certifying
steerability. As an application, we show that this allows us to go beyond even the canonical steering scenario; it
enables a generalized dimension-bounded steering where one only assumes the Hilbert space dimension on
the characterized side, with no description of the measurements. Surprisingly, this does not weaken the
detection strength of very symmetric scenarios that have recently been carried out in experiments.

DOI: 10.1103/PhysRevLett.116.090403

Introduction.—While the term steering was coined in the
early days of quantum mechanics [1], its precise treatment
only started alongside modern developments in quantum
information theory [2,3]. The possibility of steering the
ensemble in a two-party shared state in quantum mechanics
requires that the two subsystems are entangled. To show
steering, however, entanglement is not sufficient, since
there are some entangled states that are nonsteerable.
In fact, steering can be seen as a kind of entanglement
verification where one relaxes all assumptions about the
devices used by one of the parties, thus sacrificing the
ability to detect all entangled states.

This fundamental fact is also what has motivated some
recent interest in certifying the steerability of quantum states:
Any successful steering test constitutes an entanglement test
that is completely device independent for one of the parties,
and can thus be exploited to design more secure quantum
protocols in situations where one of the parties may be
untrusted. Apart from this, it has been observed recently that
steering is fundamentally asymmetric [4] and that it is closely
connected to joint measurability [5,6]. Furthermore, steering
is known to give an advantage for tasks like subset channel
discrimination [7]. Naturally, this also spurred interest in
devising strong steering criteria [2,8—12], i.e., to investigate
their violation [13] or to develop and to use it quantitatively
[14-16]. It has been shown that bound entangled quantum
states also exhibit steering [17]. Steering has been success-
fully shown experimentally in several recent experiments
[18-20], all of which demonstrate that steering, taking into
account various loopholes, is already reachable with today’s
technology.

0031-9007/16/116(9)/090403(5)
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In this Letter, we operationally connect steering with
regular entanglement verification: We develop a framework
that maps the steering certification problem to a regular
entanglement detection problem. More explicitly, we con-
struct a matrix from the measurement data that exhibits
entanglement if the state is steerable. These steering maps,
as we call them, allow us to harness the sophisticated
techniques developed in entanglement theory and to go
beyond the current state of the art in steering. Contrary to
intuition, this does not complicate the construction of
steering criteria at all. In fact, at no additional expense,
we can use the resulting entanglement tests to derive
nonlinear or other improved steering tests that are not
straightforward to derive with the standard semidefinite
programming (SDP) approach. As an example of the vast
possibilities of this framework, we introduce a new con-
cept, which we call dimension-bounded steering, and show
that it is accessible with our techniques. In this scenario,
one also removes all assumptions of the usually trusted
side, with the exception that all measurements operate
in the same Hilbert space of dimension d. In that, this
dimension-bounded steering lies between nonlocality
and regular steering. Nonetheless, we also show that the
robustness to experimental noise of dimension-bounded
steering can be comparable or even equal to regular steering
certification. This implies that recent loophole-free
steering experiments could have also shown loophole-free
dimension-bounded steering.

The Letter is organized as follows. First, we define
steering and set the notation. We continue by demonstrating
our approach in a dichotomic setting and then discuss our

© 2016 American Physical Society
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main technique, the steering maps. With this, we show that
deciding steerability of an ensemble is equivalent to a
separability problem. We then discuss how our approach
can be used to derive criteria for the dimension-bounded
case. We end with an explicit example of this criterion for
recent experiments and a discussion of its strength.

Steering.—In the steering scenario, two parties (Alice
and Bob) share a quantum state p. Alice can choose
between n different measurements, each having m possible
results. Her choice is denoted by x = 1, ..., n for the setting
while the results are labeled by @ = 1, ..., m. For Bob, we
assume that he performs full tomography on his reduced
state depending on Alice’s measurement and result; thus,
he is able to reconstruct the conditional states p,,, and the
data of this experiment is summarized by the ensemble
€ = {pajx}ax of unnormalized density operators, where
Alice’s probability is P(a|x) = tr(pyy).

Originally, the question of steering asks whether Alice
can convince Bob that she can steer the state at Bob’s side via
her measurements. This means that Bob cannot explain
the reduced states p,|, as coming from some probability
distribution p(4) of states p;, where Alice’s measurements
just give additional information about the probability.
As shown in Ref. [16], this can be reformulated as follows:
An ensemble £ is nonsteerable if and only if there exist
unnormalized density operators w;,  ; with iy =1,...,m
for each k = 1, ..., n such that

pa\x = Z 5i1,awi],...,in9 (1)

,,,,,

and steerable otherwise. This is the definition from which we
start our considerations.

A dichotomic warm-up.—Let us first discuss the idea via
the simplest scenario where Alice has two dichotomic
measurements, i.e., n = m = 2, in which case we use labels
a = =+ to provide easier distinguishable formulas. In this
scenario, the ensemble & = {p_ |1, p_j1,p1p. p_pp } is called
nonsteerable if and only if there exists positive semidefinite
operators ;; with i, j = & such that

P =04 + o,

p=o +o_,

Pip =01y oy,

Pp=04 +o__ (2)

holds. Note that these linear equations are not linearly
independent; therefore, £ does not completely determine
the unknowns w;;. Choosing for instance an arbitrary @, ,,
the choices

Wyt s Wi =Pyl = Oy

DOy = Pip — Opy, w__=prto. (3

with pp = p —pyj1 — pypp, satisfy the linear constraints,
where p denotes the reduced density matrix of Bob.

Recall that steering constitutes one-sided device-
independent entanglement verification, because a nonsteer-
able ensemble can always be reproduced by measurements
on a separable state o,5. This works by using

oan = Y i )ali.j| ® wy, 4)
ij
where |+, +), label computational basis states and mea-
surements My, = |[£)(£|® 1, M, = 1 ® |[£)(£].

One might guess there is not much difference whether we
explicitly search for appropriate w;; satisfying Eq. (2) or for
the separable state 0,5 in Eq. (4). However, looking for a
separable state is a task with which we are currently well
familiar, due to extensive research on separability criteria
during the past two decades [21,22]. There are two things
to take into account, though. First, obviously, the state o5
is not completely known to us. Also, o, is not just a
separable state, because Alice’s states are very special; they
are called classical-quantum states [23] or are described
to have a zero “quantum discord” [24,25]. Thus, if one
naively applies a separability criterion, one loses this
required extra structure and the criterion will not be very
strong. In the following we show how to circumvent these
drawbacks.

Steering maps.—In the following, we reformulate the
original SDP in an equivalent manner by using the duality
of semidefinite programs [26]. This will later allow us
to treat dimension-bounded steering. First, to remove the
discord zero structure, we replace the basis states |i, j) (i, J|
by other positive semidefinite operators Z;; of our choice,
so that we get a generic separable structure

Xup = Zzij ® w;;. (5)
ij

To get a unit trace for X,z and to remove the problem that
not all w;; are known, one enforces certain linear relations
on Z;;. Using for instance the solution of Eq. (3), in Eq. (5)
one obtains

Lap=Z @pin+Z ®pipt+Z__Q®pa
(2 -Zi-Z  +Z ) @w,,,

from which one sees that X,z is completely determined if
the last term vanishes,ie.,Z,, =Z,_+Z_, —Z__. With
this identity, the normalization of tr(X,z) = 1 is then equal
0 t(Z, (1) + 0(Zo r(pga) + (ZoJte(py) = 1.
This is exactly what we were looking for, and we get
the following sufficient criterion for steerability: For any
nonsteerable ensemble £ and any choice of positive semi-
definite operators Z;;, which satisfy the two just-mentioned
extra relations, the operator

p=Z ®pipn+Z ®pip+Z__Qpsx (6)

is a separable quantum state.

090403-2
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If for a given set of Z;; the state X is not separable, i.e.,
it is entangled or no quantum state at all, then operators w;;
with the properties from Egs. (2), (3) do not exist and the
underlying ensemble is steerable. In order to check this,
we can employ any separability criterion, e.g., partial trans-
position [27], positive maps [28], entanglement witness
[28,29], computable cross norm or realignment [30,31], or
covariance matrices [32], to name only a few. The whole
power of this is unlocked by the mapping |i, j){i, j| - Z;
which from now on we refer to as the steering map.

In the most general steering case, we know that a non-
steerable ensemble can always be obtained by measuring the
separable state 645=D> ;i |i1,--sly)ali1see i@y i s
with appropriate measurements that only act nontrivially on
the respective subsystem for Alice. Each computational basis
state is now mapped to a new positive semidefinite operator
Z;, .. to obtain

j°

ZAB = ZZ,’I _____ iy ® a)il ..... iy* (7)

This operator is uniquely determined by the given ensemble
& if and only if the chosen operators Z; _ ; satisfy

.....

sbn

for all possible choices of iy, ..., i, and ji, ...j,. With this we
are ready to state our first main result, which says that the
developed criterion via steering maps is also sufficient. The
proof is given in the Supplemental Material [33].

Proposition 1. —For any nonsteerable ensemble £ and any
set of positive semidefinite operators Z = {Z; _; }; .
fulfilling (8) the operator given by Eq. (7) has a separable
structure.For any steerable ensemble £ there exists a set of
operators Z which uniquely determines X,5 and satisfies
tr(£45) = 1, but where nonseparability of X, is detected
by the swap entanglement witness. Here, the swap entangle-
ment witness is the flip operator V =}, .|ij)(ji| where
tr(pV) < O signals entanglement.

Let us remark that the steering map criterion is strictly
stronger than a single steering inequality, which is similarly
characterized by Z, but where one only checks the
swap entanglement witness. Moreover, the proposition
also applies to steering scenarios where Bob measures a
few observables rather than a tomographic complete set;
in this case, nonseparability of X,z must be verified via
this partial information only. Note that since steering is
closely related to joint measurability, Proposition 1 can
directly be employed for this task also; we are using a result
from this field [34] to deduce a collection of Z for the
case n = 2,m = d, cf. Supplemental Material [33].

Dimension-bounded steering.—Next let us turn to the
dimension-bounded steering case. Contrary to the standard
steering setup, where it is essential that the measured

observables on the characterized side are fully known,
these criteria require only that Bob’s measurements act on a
fixed finite-dimensional Hilbert space.

To be precise, we assume that Bob can choose between
np different settings y, each yielding one of mp possible
outcomes b. Each measurement is described by a positive
operator valued measure (POVM), i.e., a set of operators
{M, },, which satisfies positivity My, > 0 and normali-
zation ) , M, = 1. As the sole restriction, we have to
assume that they all act on the same Hilbert space with
at most dimension dg. Thus, if Bob observes different
distributions, P(b|y, i), possibly conditioned onto a sepa-
rate event i like a measurement result by Alice, then there
must exist a collection of different density operators {p; }
and a single set of appropriate POVMs, both on a dp-
dimensional Hilbert space, which reproduce the data,
P(bly, i) = tr(My,p;) [35]. To complete the description
of the problem, we assume that n,, m, are the subsystem-
labeled specifications for Alice, who is the fully unchar-
acterized side, and we refer to it as a dp-dimension-
bounded steering scenario with parameters ny, my, ng, mp.

In order to derive steering criteria for this scenario, we
employ a fixed steering map to transform the problem into a
standard separability question according to Proposition 1.
Afterwards, we use the entanglement detection techniques
of Ref. [37], which require only a dimension constraint.

The criteria that we derive work best if Bob has
dichotomic measurements np = 2. Before we give the
general framework we would like to explain the ideas
behind it. As shown in the previous section, we know that
any steerable ensemble &£ can be detected by an appropriate

collection Z such that Zy5 = 32, Z; . @ o, is
spec

i1....i, should express that the
w;, i, when using a Z satisfying Eq. (8), is given by a
special solution of the linear relations given by Eq. (1), e.g.,
as in Eq. (6). To show that X, is not separable, we can
employ the computable cross-norm or realignment criterion
[30,31]. This criterion states that the correlation matrix
[C(pap)]y = tr(G @ GBpap) of any separable state plip
satisfies ||C(py5)|l; < 1. The norm that appears here is the
trace norm [[C||; = > ;s;(C) given by the sum of the
singular values s;(C), while the sets {G,}, are orthonormal
Hermitian operators (not necessarily forming a basis) for
the respective local side. Thus, whenever ||C(Z45)]l; > 1,
the data £ shows steering. Note that since || - ||, is unitarily
equivalent, only the corresponding spanned local operator
spaces matter.

However, one cannot directly evaluate this for the
dimension-bounded scenario, because Bob can neither
reconstruct p,, nor compute values tr(Gfpa|x) because
he lacks the precise description of his measurements M.
Still, we can build a matrix that looks similar to the
correlation matrix and for which the dichotomic choice

of Bob’s measurements becomes important. For each

not a separable state. Here, @
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dichotomic measurement, consider the operators given
by the difference of the two POVM elements B, =
My, —-M_, for y=1,...,ng and By = 1. Then, define
the matrix [D(Z4p)];, with entries

......

For convenience we assume that we only pick ngz + 1
different operators G4, such that D is a square matrix with a
determinant. We call this matrix the data matrix D to
further express that D is determined by the observed data
P(a, b|x,y) once having selected Z and {G},.

From the data matrix D we obtain a correlation matrix
C = DT if T describes a linear transformation that maps
{B,}, into an orthonormal set {G} = > T\,B,},. Though
we have only the limited information about np being
dichotomic measurements on a dg-dimensional Hilbert
space, this transformation 7 satisfies [37]

| det(T)| > dj "/, (10)

To be precise, this only holds if {B,}, is linearly inde-
pendent, but that can be inferred directly from a data matrix
with | det(D)| # 0. Through this, one can then lower bound
the trace norm of C by

ICll, = Zsi(C) > (ng + 1)| det(C)|!V/n+1)]
= (ng + 1)(| det(D)|| det(T)| )1/ (ns+1]

Zl’lB+l
dg

| det(D)|(M/(m+ 1] (11)

using the inequality of the arithmetic and geometric means
in the first step, the determinant rule, and finally Eq. (10). If
this lower bound is strictly above 1, we certify that X5 is
not separable and thus steerability of the underlying state.
This is effectively the second condition of the following
proposition; the other statement employs a slightly better
bounding technique.

Proposition 2.—Consider a dg-dimension-bounded
steering scenario with parameters ny,my4,ng, and mp = 2.
From the observed data, build up the data matrix

Dy, = Z w(GLZi,. i, u(Byo™ ) (12)

using By = 1 and B, =M,,—-M_, fory =1,...,ng, any
set of steering operators Z with n,, m,, and any choice of
ng + 1 orthonormal operators G‘,;‘.Let d, be the dimension
of the chosen Z. If the observed data are nonsteerable, then
the determinant of D satisfies

| det(D)| < \/1211 (V :’;% 1)% (13)

if ng > /dydg — 1 and 1 € span({G#}). If this is not the
case, nonsteerable data give

Vs )nﬁl. (14)

det(D)| < [ ——
der)] < (Y,

Application to experiments.—We now give an explicit
example of Proposition 2, in order to demonstrate its
application and compare its strength. We pick the scenario
that has been implemented in the loophole-free steering
experiment performed in Vienna [19]. We follow the
procedure outlined in our Letter to arrive at the data matrix
(for details see the Supplemental Material [33])

1 (By) (B2) (B3)
1 | (A)/V3 (AiB)/V3 (ABy)/V3 (AB3)/V3
V2| (0)/V3 (B)/V3 (AB2)/V3 (AsB3)/V3 |
(A3)/V3 (A3B1)/V/3 (A3B))/V3 (A3B3)/V3

Because np =3 > /dydgy —1 =1, and since the full
operator basis for A includes the identity, we can use the
bound given by Eq. (13). Thus, if

| det(D)| > (15)

1
108°
then the observed data show steering under the sole
assumption that Bob’s measurements act onto a qubit.

If one evaluates this criterion for a noisy maximally
entangled state p|y~)(w~| + (1 — p)1/4, measuring along
the three spin directions o1, 0,, 03, one verifies steering if
p > 1/+/3. This is surprising, because the visibility to show
standard steering, i.e., requiring the knowledge that Bob
perfectly measures o, 0,, 03, is exactly the same. Thus, we
learn that for this symmetric case, the only crucial knowledge
of the measurements is that they act onto a qubit, and
no further characterization is needed. In the Supplemental
Material we discuss this scenario under experimentally
realistic conditions showing that current technology indeed
allows (or has already allowed) a loophole-free dimension-
bounded steering experiment [33].

Conclusion.—We have introduced a framework that
allows us to map the steering problem to a standard
separability problem. This opened the possibility of
exploiting the sophisticated tools available in entanglement
detection, and thereby creating strong steering criteria. We
showed dimension-bounded steering to be one particularly
promising further application. Considering that many
quantum protocols also require a certain level of trust,
we believe that this dimension-bounded scenario is of high
relevance for scenarios where at least one of the parties has
some degree of confidence in his or her local device. We
have shown that this “nearly” device-independent scenario
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is a lot stronger than the undoubtedly harder to achieve
fully device-independent scenario. This scenario will help
to make quantum key distribution more robust [38,39] and
will assist in unifying frameworks of resource theories that
exist for nonlocality [40] and steering [41] in order to
approach a resource theory of partially device-independent
entanglement certification.
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Proof of Eq. (8) in the main text

Let us summarize the statement in the following propo-
sition:

Proposition 1. The set Z = {Z;, i }i .., uniquely
determines Y ap if and only zf Eq. (8) in the main text
holds for any choices of i1,...,1, and ji,...Jn-

Before we prove this proposition let us note a technical
lemma, which will be useful in the following. It describes
the most general solution of w;, ;. which satisfy the re-
lations demanded for a local hidden state model.

Lemma 1. Any collection of hidden states wj, ., which
satisfies the set of linear equations given by Eq. (1) in
the main text for £ can be written as w = WP 4 Yhomo,

A special solution w™*° is given by w;'; = 0 for all
indices iy, ...,4, except
spec SpeC _ spec
Wam...m = Pa|ls Wmam..m = Pal2)- -+ Win...ma =Palns (1)

for a <m and

wf}@)ecm = me\w - (n - l)p. (2)

x

The general solution of the corresponding homogeneous
system is given by

homo

Z v, (3)

using arbitrary Hermitian operators Xyx. Here k =
ki ...ky, is an n-length index similar to the subscripts of
w, where only the distinct possibilities with at least two
ki < m are considered. For a fized k the vector v is
given by

vz(i()z,, = §i1~-in,k1-~kn

_5i1...in,m...mkn + (TL

- 6i1...in,k1m...m -

- 1)6111n,mm (4)

Proof. Note that Eq. (1) in the main text is a standard
set of linear equations, except that we have Hermitian

operators rather than scalar variables. Therefore all the
basic linear algebra results apply.

In total we have m™ unknowns but only n(m — 1) 4+ 1
linear independent relations recalling once more that
> o Paje = p is independent of the setting. Hence the
general solution can be written as a combination of a
special solution and the general solution of the homoge-
neous system Y 6;, Wi, .., = 0.

That w°P®° as given in the Lemma is a special solution
can be checked straightforwardly. For the general solu-
tion of the homogeneous system w"®™° note that via the
Ansatz of Eq. (3) this breaks down to the relation

Z 8y a0l =0 (5)

i1,

The dimension of this linear subspace is m™ — [n(m —
1) + 1], which is precisely the number of the considered
k’s. Now first note that the given {v®}, are linearly
independent, since vector v is the only vector which
has a non-zero entry at the position i1 ...%, = k1...k,.
Thus we are left to show that they indeed solve Eq. (5).
For the z = 1 and a < m this follows for instance by

k
Zv;i;“in: +1 -1 =0 (6)

akz...k, am...m

if k1 = a, otherwise it holds trivially. The same argu-
ments holds if one picks a different index i,. At last we
still need to check the relation corresponding to reduced
state, which is given by

Zv(k) = +1 —n
~~ ~~
kika...kn {kim...m,...

no1=0.(7)

,mmkn} m...m

which finishes the proof. O

Proof of Prop. 1. Using the general solution w®°! as given



the Lemma 1 in the operator X 45 one sees that
Sap = Y Ziy.i, ®WP
11...9
-
k

is uniquely determined by the given ensemble £ if and
only if

> Uz(:()znZhZ) ® Xk (8)
i1+

i1...10

Z /Ug(‘)‘.inzil.“i" =0 (9)

holds for all possibilities k. Using the explicit form of the
vectors v(®) as given in Eq. (4) these constraints can be
re-written as

Zkl...kn :Zklmm + kafz...m +...+ Zm...k,,,
—(n=1)Zm..m (10)

for all admissible kj ...k, with at least two k; < m.
However, this condition also holds also for each &k ...k,
without this restriction, because then the vectors v in
Eq. (4) vanish. Thus we have proven Eq. (8) in the main
text for all 41...4,, but only for the special index set
J1---Jn = m...m. Still, these conditions already im-
ply the general (more symmetric looking) relation, using
an arbitrary j;...j,. This can be inferred more easily
directly from the problem formulation by relabeling the
individual outcomes of the conditional states. O

Proof of Prop. 1 in the main text

We prove this in two parts; the first only considers the
statement without the extra condition tr(X45) = 1, but
which is discussed in the second part then.

As mentioned in the main text, the proof rests on the
duality properties of semidefinite programs. In fact, the
first part of the proof can be considered as a special inter-
pretation of the dual program of the original semidefinite
program. Since the dual might be of independent inter-
est, we compactly summarizes it in Remark 1.

Proof, Part 1. The idea of the proof is to employ the
duality statements given by respective semidefinite pro-
grams. Recall that the problems inf,cgn{c’z|Fy +
>_ixziFi > 0} and supy.o{—tr(ZFp)|tr(ZF;) = Vi,
called primal and dual semidefinite programs, are con-
nected by a couple of important relations. The most
relevant is strong duality, which states that both optimal
values are equal. This holds for instance under the Slater
regularity condition that either problem has a strictly fea-
sible point, i.e., either an x such that Fo + ), x;F; > 0
or a Z > 0 satisfying tr(ZF;) = ¢; [32]. The proof goes
along the following lines: We parse the original steering

problem into the form of the primal semidefinite pro-
gram, then we invoke its dual, show strong duality such
that we can ensure that it gives the same solution, and
finally we interpret this dual program as a the swap wit-
ness on X Ap.

To start let us write the original problem into the form
of a primal semidefinite program, which is given by

inf 0 (11)
s.t. w?pec_n + sz(:{)ank >0 Viy...ip.
k

11...2

This can be transformed to the standard form if one
uses, i) a Hermitian operator basis {S,} to transform
the matrix-valued variables Xy into Xy = ZT Tk Sy to
scalar-valued variables zy ., and ii) that several positiv-
ity constraints are equivalent to a single positivity con-
straint of a corresponding block matrix. We emphasize
that Eq. (11) is a special primal problem called feasibility
problem, since we effectively do not optimize anything.
By convention, if the constraint cannot be fulfilled then
the infimum is +o0.
Working out the dual gives

= Y 6(Zi @, ) ()
i1...00
s.t. Zil...i” >0 Viy...ip,

PRI L S
1

If one has used the standard form for the previous prob-
lem, one simply reverses here the points i) and ii); the
block-structure can be removed directly, while the lin-
ear relations in the last line of Eq. (12) appear since one
has respective linear relations for all Hermitian operator
basis elements.

This dual has a strictly feasible point Z;, ; =1 > 0,
noting . vz(f()zn = 0 was already proven in Lemma 1.
Therefore we have strong duality, and consequently the
statement that, whenever the primal problem is infeasible
(€ steerable) then there exists a sequence of appropriate
Zi,..i,, such that C' = 3, tr(Z;, wfffi}) will tend to
—00, saying that Eq. (12) is unbounded. We summarize
this more direct dual SDP in Remark 1.

Now let us interpret this as the detection statement
of the proposition. That we labeled the dual variables
by Z,,..i, as also used in ¥ 4p is no coincidence. Ef-
fectively the solutions Z;, ; of the dual program will
be the ones used in the operator ¥ 45 that shows steer-
ing. Note that the variables of the dual program already
satisfy positivity Z;, i, > 0 and the linear relations in
Eq. (12) uniquely determine ¥ap =Y. Z;, i, ®w§1p_6_3_cin,
as already shown in the proof of Prop. 1. Finally, note
here the formal operator connection between ¥ p and
the objective function C. Using the swap operator V,
i.e., tr(VA ® B) = tr(AB), one directly sees that the

ciin



swap operator evaluated on X 4 g gives the objective value
tr(VXap) = C. Since the swap operator V is an entan-
glement witness a negative tr(VX4p5) = C < 0 signals
that the optimal ¥ 4 g has not a separable structure. This
finishes the first part of the proof. O

Remark 1. The dual problem to the feasibility problem
for the collection of positive semidefinite operators satis-
fying the relations given by Eq. (1) reads as

sup — Z tr(Ziy iy Wiy i) (13)
11...00

s.t. Zil...in Z 0 V’L1 . .in,

Zivig.oin = Zirjajn + Zjrisjs..jn T+ Ljija.in
7(77’ - 1)Zj1j2~--jn Vila . ]n

Via the linear equations for Z;, ;. and by Eq. (1) one
can evaluate the objective C' = Zil..‘in tr(Ziy . iy Wiy iy )-
For instance, if one picks fized indices ji,...,jn one ar-
rives at

C= 0 Zijojuisein)F -+ D t0(Zjy iy win i)
1.0 1.0

~(n=1) Y 0(Zjujpju@is.in)

11--.n

_Ztr 11J2---Jn Z Wiy ...
+Ztr F1.in Z Wi, ...

in

*(”* ) tr[Zj,j,..j Z Wiy )]
_Ztr i1j2.. ]nph\l —‘thI‘ Ji-. anln|n)

—(n = 1)t1(Zj1j5...5,P)-

Note that any other choice gives the same value; this is
expressed by C = Zil...in tr(Zi, a WP ).

AnTiy iy

Proof, Part 2. It is left to show that we can also find a
solution Z which satisfies tr(¥45) = 1, since such a con-
dition does not appear in Eq. (12). Note that since the
value of an objective function of any steerable ensemble
will tend to —oo, there are for sure parameters Z such
that C' < 0. Suppose that for these Z;, , , the oper-
ator Y ap is not normalized. If tr(X45) > 0, then one
can directly used a rescaled version Z;, ; /tr(Xap), now
also satisfying the trace condition, but still detecting the
state. Note that this trick fails if tr(Xap) < 0, either
due to a division by zero, or due to Z;, ., being not
positive semidefinite anymore. Thus we are left to prove
that tr(EAB) > 0.

To verify tr(X4p) > 0 we employ that C > 0 holds
for any non-steerable ensemble. From the given en-
semble £ such a non-steerable ensemble is for instance
£ = {Paje = tr(pqjz)1/d}, having a special solution

Qiy..i, = tr(w;P®; )1/d as can be checked by Egs. (1,
2). Thus evaluatlng the objective function of this non-
steerable ensemble and the chosen selection Z one finds

S trlZ 0 )
iy eein
d Z tr(Zi,.

Finally, we show that from Z with C < 0 and
tr(Xap) = 0 it is always possible to find a different
solution Z with C < 0 but tr(¥ap) > 0 such that
we can employ the rescaling trick again. Note first
that the only negative part in the C' must be due to
tr(Zp,.. mwiPee,) < 0, since all other terms involve only
positive semidefinite operators. Now pick any w;’®;
with tr(w;’"; ) > 0, and assume this is wiPe° with

a < m. Then define the new set of operator

1
tI‘( quc ) = gtr(ZAB) > 0.

am- T E]la

Zam“.m =

Zmam...m = Zmam...m; oo

which by Eq. (10) are enough to fully determine the
set Z. This set still contains only positive semidefinite
operators because the only operators that change are
Zm»zl_,in = Zai,..i, + €1. For this new solution Z we get
tr(Xap) = etr(w®e ) and C = C + etr(wihs-.), thus

choosing e small enough one obtains the given statement.
This completes the proof. O

Proof of Prop. 2 in the main text

The ideas and bounding techniques are the same as
in Ref. [35], which derived similar determinant con-
straints for the dimension-bounded entanglement verifi-
cation; here we only need to apply them to a single side.

Proof. Inequality (14) in the main text is just a rear-
rangement of Eq. (11) in the main text. We remark once
more that the bound of T as given by Eq. (10) in the
main text holds only if {B,}, is linearly independent,
which follows from the observation | det(D)]| # 0.

The first and stronger condition in Eq. (13) in the main
text follows using the extra information of C' that if both
sets {G}r, {GP}; have the identity in its linear span,
then the largest singular value satisfies 0o(C) > ¢q¢ =
tr(1/vda®1/vdgXag) = 1/v/dadp. This follows from
the fact that the ordered singular values of C are lower
bounded by the ordered singular values of any submatrix
Cs"P of C. While {GP}, satisfies this extra condition au-
tomatically since By = 1, we need this requirement for
the choice of {Gi}.

Via this extra condition we can achieve a better bound
using the inequality of arithmetic and geometric means
only to np singular values and then checking whether the



minimal value of 0((C) can be reached, more precisely

one obtains
. |det(C)|)”lB
o)+ (=
min o)+ (155G ]
(np + 1)|det(C)[ ™57 if | det(C)| 757 > g
- \det(cn)% , (15)

q+np (# else

min_|Clly >
a0(C)>g

depending on the determinant of C'. Note that both
bounds are monotonically increasing functions. By the
determinant rule |det(C)| = |det(D)||det(T")| and the
bound of Eq. 10 in the main text, the possible values are
constrained to satisfy

np+1

[det(C)] = [det(D)ldp = (16)

Thus, depending on the value of |det(D)| the sec-
ond bound in Eq. (15) can be used or not. If
|det(D)|"/ "5+ > 1//d 4 the determinant of C' will al-
ways satisfy the constraint in Eq. (15) and one obtains

ng+1

Vidp

Otherwise one can split the possible region and minimize
separately, yielding

min ||| > B (17)

00(C)>q

| det(D)

min ||C|; > (18)

00(C)>q

. 1 —-ZB % ng+1
+ dady 2 |det(D , .

mm{m s (Vdady ¥ | det(D)]) m}

At last, if ng > v/dadg — 1 note that the bound given
by Eq. (17) and the second argument in minimum of
Eq. (18) are strictly larger than 1. Thus only the first
argument of Eq. (18) must be checked, which is the stated
condition. This completes the proof. O

Steering scenario for n =2 and m =d

In this section we exemplify the construction of respec-
tive Z = {Z;; };; for the case of two settings but arbitrary
number of outcomes. The idea and construction rely on
Fourier connected mutually unbiased bases [33]. Thus we
need a couple of definitions first.

Consider a Hilbert space C? and suppose that one has
a basis {|¢k) tkez, with Zg = {0,...,d — 1}, which we
also use to label the outcomes. Then one obtains an-
other basis, which is mutually unbiased, by the Fourier
transform

[r) = F ) = % S o | (19)
€7y

with ¢ = e27i/4,

These two bases even admit further structure which
becomes convenient in the following. Consider two rep-
resentations U,V of the cyclic group Z4; on H defined
by its action onto the first basis, Uy [¢k) = |[¥g44) and
Vy [Yr) = ¢¥F |¢r) for all z,y, k. These two representa-
tions further satisfy U,V, = ¢~*¥V, U, and the Fourier
transform is the intertwining map, U,F = FV, and
VyF = FU,. Via this one can identify the action on
both basis states that we summarize as

Uy [6k) = |Okta) Us k) = a "% ), (20)
Vy lor) = ¢¥" |on) Vy [r) = [Vry) (21)

for all z,y € Z4. Then the following set of operators will
be our characterization of the steering inequality. The
structure can be guessed once one knows the so-called
mother observable for the respective joint measurability
problem [33], from whose result one further knows that
the current form is optimal.

Proposition 2. Consider the set of operators Z =
{Zkl = Uk‘/lZQ()‘/lTUg} with

Zoo = p1 [x—) (x=|+p2(T=Ix+) (x| =Ix=) (x-1), (22)

pure states |x+) X |po) £ |[to) and parameters

2
M Vaa- (Vi) =
14+Vd (24)

M= aVa-n(Wa+2)

Then this set of operators can be used in the steering map,
since all operators are positive semidefinite and uniquely
determines the operator ¥ ap and satisfies tr(Xap) = 1.

Proof. Using the form of Zy as given by Eq. (22) one sees
that Zyg is positive semidefinite, since both p; are strictly
positive and |x_) and |x_) are orthogonal, moreover it
has unit trace. Since all other Zj; are obtained by a
unitary transformation each Zj; is positive semidefinite
and satisfies tr(Zy;) = 1, which directly shows that ¥ 4p
has unit trace. Thus we are left to show that Zj; uniquely
determines X 4 g, for which we have to show

Zi = Lyt + Lo — Zst (25)

for all k,l,s,t € Zg according to Prop. 1. In order to
show this we expand the states |x+) in Zgp which results
into the structure

Zoo = c1(|po) (do| + [to) (ol) + cal (26)

with appropriate coefficients ¢1,co. Note that at this
point the very specific choices of py and py become im-
portant; they are chosen such that cross terms of |¢g) (1]
or |tg) {(¢o| vanish. Applying now the rules given by



Egs. (20, 21) one gets

Z = c1(|dk) (x| + [v1) (hi]) + el (27)

from which the necessary relation given by Eq. (25) can
be verified. O

In order to obtain a steering criterion one can use the
given operators Z; of the proposition to build up X435,
which is uniquely determined by the given ensemble £
in the n = 2 and m = d steering case. Whenever this
operator X 4 p is then not a separable state the underlying
distribution is steerable.

Dimension-bounded steering in a loophole free
experiment of Ref. [19]

First let us reiterate how to arrive at the data matrix
necessary for employing the dimension bounded steering
criterion. Alice and Bob have three different dichotomic
measurements, ny = ng = 3 and my = mp = 2, and we
assume that Bob’s measurement act onto a qubit dg = 2.
The settings will be labeled by z,y € {1,2,3} and the
outcomes by a,b € {£1}.

According to Prop.2, let us first pick operators Z;j
with 4, j, k € {£1} that characterize a steering map with
parameters ny = 3 and my = 2. Here we choose Z;;, =
[1+ (ioy + jos + kos)/v/3] /2, which can be interpreted
as pure states, whose Bloch vectors point towards the
8 different corners of the cube. It can be checked that
these choices satisfy all relations given by Eq.(8) of the
main text, so that, by construction, the operator X 4p is
uniquely determined by the ensemble £ and furthermore
normalized. This operator is given by

3
1 1
Tap=-|1 — s s—p_is)| . (28
AB =5 ®p+¢3§210 ® (p4ps — p-1s) | - (28)

In order to get to the data matrix D we still need to
fix the operator set {G4}, for which the properly nor-
malized identity and Pauli-operators, {1,071, 02,03}/v/2,
are convenient choices since they only act non-trivially
on certain terms in Eq. (28). Since only the subspace of
{G#}x matters in the criteria of Prop.2, any other ba-
sis choice will perform equally well. As the final step we
rewrite the abstract values tlr(Bypa‘m)7 with By = 1 and
By, = My, — M_,,, in terms of the directly observable
quantities P(a, b|x,y). Looking at

tx{By (p+1e — p1)
=tr[(Mypy — M_py)psie] — tr[(Myy — M_jy)p—a]
=P(+,+|z,y) — P(+,—|z,y)—
[P(= +|z,y) = P(=, —|z,y)] = (A By)

one sees that correlations (A,B,) and respective

marginals (A;), (By), which similarly appear in Bell in-

equalities, give an appropriate formulation. Hence, to
sum up one gets the data matrix D
1 (B1) (B2) (Bs)
1 [ (A1) /V3 (AiBi) /V3 (AiB2) /V3 (AiBs) /V3
V2 | (A2) /V3 (A2B1) /V3 (A2Bs) [V3 (A2Bs) V3
(As) /V3 (AsB1) /V/3 (A3B2) /[V3 (A3Bs) /V3

Next let us explain how the developed criterion can
be employed for the real setup used in Vienna [19]. The
main difference is that in the actual experiment one addi-
tionally observes an inconclusive outcome “inc” due to no
click or even double click events. On Bob’s side, the side
which is at least partially trusted, this event can safely
be discarded [19] assuming that this event is independent
of the measurement choice such that it can be viewed as
a kind of filter telling whether the final result will be con-
clusive or not. Only if this filter succeeds one looks at
the corresponding state. For those measurements (acting
on the conditional state) the measurements are assumed
to act on a qubit, respective single photon in two polar-
ization modes. However for Alice, the uncharacterized
side, this is not possible. In order to incorporate the in-
conclusive event for Alice we consider the case that each
inconclusive outcome “inc” is randomly assigned to either
of the +1 or —1 outcome. This is also the standard for
Bell experiments. Then one is left with the dimension-
bounded steering scenario considered in the main section.

To finally give an example of the strength of our devel-
oped criterion we employ the following model to simulate
real data: For the quantum state we assume a noisy max-
imally entangled singlet which has passed through a lossy
channel for Alice, more precisely the state given by

pap =p [MY7) (07| + (1 - A)1/4]
+(1-p) | {(Q®1/2. (29)

Here p denotes the transmission probability, |©2) is the
vacuum state and A a parameter characterizing the qual-
ity of the Werner state. In the true experiment there
will be also loss on Bob’s side, but as mentioned before,
we look at the conditional state. Next we imagine that
Alice and Bob perform projective measurements in the
01,092, 03 basis, while the additional “inc” event for Alice
is given by the projection onto the vacuum state. Then
the observed data, if Alice and Bob are using the same
settings x,y, are given by

1

P(+? —|Z‘,y) = P(_a +|$,y) = zp(l + )\6%1/)7 (30)
1

P(+,—|—|x,y) = P(_a —|33,y) = zp(l - /\6w,y)7 (31)

P(inc, +|x,y) = P(inc, —|z,y) = %(1 - D). (32)



If one reassign each “inc” one obtains
Pt ~|o,y) = P(— +r.p) = 11 +pMey),  (39)
P+, +r,y) = P(— ~lr.5) = (1 - pAey), (34
and thus
(AeBy) = —0aypA, (Ag) =(By)=0.  (35)

Putting these observations into the data matrix from the
main text one obtains

1
V2 N 0 0
0 -2 0 0
D= Ve (36)
_pA )
0 0 a 0A
_pA
0 0 0 8

which shows steering according to Eq. (16) in the main
text if pA > 1/v/3 ~ 0.577. Let us point out that this is

also the condition if we would know that the performed
measurements are perfect projective measurements in the
eigenbasis of 01,09, 03. Thus, we see that we have here
a scenario where this further characterization is totally
redundant and only the knowledge that one measures a
qubit is essential.

Assuming the visibility and detection efficiency pa-
rameters from Ref. [19], one would obtain the values
{0.74,0.73,0.73} for the respective pA, which are all well
above the threshold. Assuming that all other correlations
and marginals vanish, this would strongly show steer-
ing also in the case where one has only the very limited
knowledge that the conclusive outcomes were qubit mea-
surements. However, note, that these other observations
are essential for the inequality, otherwise one could not
gain the required extra knowledge of the uncharacterized
qubit measurements. Unfortunately, these experimen-

tal data are not available anymore for the experiment of
Ref. [19].
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I. INTRODUCTION

Incompatibility of quantum devices is one of the funda-
mental features of quantum theory with a wide range of
consequences [1]. In particular, incompatibility of quantum
measurements is known to be a very powerful tool in many
branches of quantum information theory including entan-
glement detection [2], uncertainty relations [3,4], and tasks
demanding a Bell violation, like quantum cryptography [5,6].
Recent developments [7-9] are suggesting that incompatibility
can be seen as a resource for quantum information processing.
The resource theoretical aspect has spurred a development of
monotones quantifying quantum incompatibility or nonjoint
measurability [10—13] as a general quantum resource. These
monotones are based on adding noise to a set of incompatible
measurements and concluding numerically the noise threshold
for the measurements to become jointly measurable. Besides
the numerical methods a few measurement setups have been
analyzed analytically, including two- [14,15] and three-qubit
measurements [16,17], two mutually unbiased measurements
[18,19], and a measurement setup including a Clifford algebra
generalization of the Pauli matrices [20]. There are also some
general methods to derive either necessary [21] or sufficien
[22] conditions for a set of measurements to be incompatible.

In this article we present a method to derive analytical
bounds for the noise resistance of incompatible measurements
on a d-level quantum system. Our method is based on an
adaptive algorithm which starts with a set of well-chosen
Hilbert space vectors and results as a set of noisy compatible
measurements. The algorithm gives lower bounds for the noise
needed to make a set of M quantum measurements compatible.
We demonstrate the power of our method by rederiving
some of the known [14,18] joint measurement uncertainty
relations, but then also applying the technique to various new
symmetric measurement scenarios obtaining lower bounds for
the noise robustness of the involved measurements. Moreover,
we translate known quantum steering [23,24] techniques into
inequalities which, when violated, witness incompatibility.
These inequalities are shown to coincide with our lower
bounds proving the optimality of our results. We conclude
by constructing a so called 4-Specker sets, i.e. sets of
four incompatible observables with compatible subsets of
incompatible quantum measurements in the qubit scenario.

2469-9926/2016/94(2)/022109(9)
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The paper is organized as follows: in Sec. II we recall the
mathematical definitio of joint measurability and we explain
the general idea of the method, in Sec. III we exploit the
strategy for qubit measurements, in Sec. IV we generalize
our strategy for d-level quantum systems and apply it to two
mutually unbiased bases (MUBs), and in Sec. V we prove
the optimality of our results using known steering techniques.
We conclude by proving the existence of a 4-Specker set
in the qubit case in Sec. VI and by stating our conclusions
in Sec. VIL

II. QUANTUM INCOMPATIBILITY
AND THE ADAPTIVE STRATEGY

Quantum incompatibility means the impossibility of mea-
suring two or more quantum observables simultancously.
For the case of projective measurements incompatibility is
characterized by the noncommutativity of the measurements,
but for general observables (i.e., positive operator-valued
measures or POVMs for short) this is no longer the case.
Indeed, there exist noncommuting observables which allow
a simultaneous measurement. Generally, incompatibility is
formulated as the nonexistence of a joint measurement: a set
{A M, of observables is compatible if there exists a joint
observable G from which one recovers the observables as
marginals, i.e.,

Axi) =Y Glxi....

xi,i#k

»Xm)- ()

A set of observables which is not compatible is called
incompatible. In what follows, we develop an intuitive strategy
for implementing joint measurements for several quantum
measurement scenarios.

Suppose we have measurement devices for two observables
A and A, but that these observables are incompatible. We can
thus only hope to simultaneously implement their approximate
versions. But how do we perform a joint measurement even
of their approximate versions if the only available devices are
the ones for A; and A,?

A rough method as presented in Fig. 1 is to toss a coin and
measure either A; or A, depending on the result of the coin
toss. Since a joint measurement should give an outcome for
both observables, one can then for example draw randomly

©2016 American Physical Society
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P — Q2
Al —
_p)u i
P —
Ao > Q2

FIG. 1. Nonadaptive strategy to obtain a joint observable for
approximations of two observables. A system in a state p enters
the measurement device. With probability p the observable A; is
measured and for observable A, a random outcome is drawn. With
probability 1 — u the observable A, is measured and a value for the
observable A, is drawn randomly.

an outcome for the other observable. A POVM describing this
procedure is

G(ar,02) = pp(a)Ai(ar) + (1 — wplanAz(e),  (2)

where p is a probability distribution and p is the probability
that the coin toss leads to the choice of the frst observable.
The noisy versions of A; and A, are uA; + (1 — pn)pl and
(1 — w)A; + upl, respectively.

There is a way to improve the previous procedure if we
know something about the relation of A; and A,. Namely,
we can take an advantage of the obtained measurement
outcome and adapt the random choice accordingly. This means
that we replace the probability distribution p by conditional
probability distributions, hence leading to a joint observable

Glar,a2) = uplaz | Ay = o)A (o)
+( = wplar | Ay = an)Por(az).  (3)

This has an obvious generalization to any finit number of
observables. The strategy is illustrated in Fig. 2.

There is still an important modificatio of the previous
procedure that adds a new dimension of f exibility (see Fig. 3).
Suppose we want to perform a joint measurement of noisy
versions of Ay, ... ,Ay, but we have measurement devices
for some other (incompatible) observables By,...,By in
our possession. Again, we make a random choice of which
observable B, we measure. Based on the obtained outcome,
we create M outcomes «f, .. .,ay that are interpreted as the
outcomes of noisy versions of Aj, ... ,Ay. If an observable
By gives an outcome S, then the resulting set of outcomes

p(A2|Ar) —— a2

FIG. 2. Adaptive strategy to obtain a joint observable for approxi-
mations of two observables. In comparison to the nonadaptive strategy
(Fig. 1), in the adaptive strategy the outcome of the nonmeasured
observable is conditioned on the outcome of the measured observable.

PHYSICAL REVIEW A 94, 022109 (2016)

ar,az

b1

aq, O

B2

FIG. 3. Adaptive strategy with auxiliary observables. In the
general case the adaptive strategy uses some other observables B;,B,
to obtain approximations of the original observables A, A;.

op, ...,ap 1s obtained with some conditional probability
pay, ...,ay | By = Bir). We also note that the observables By,
do not have to be chosen with equal probability, but in general
we can throw an N-sided biased die giving the outcome « (i.e.,
telling to measure By ) with probability 1¢;. In this general case
the obtained POVM is thus

G(O[l, e ,OlM)
= Zp(al,.--,O!M [ By = BDBi(B1)+ -
B

+uy Y @i, ...om | By = By)By(Br). (4)
B

There is no guarantee that the marginals of this joint
observable are good approximations of Aj,...,Ay. This
obviously depends on the choices of By,...,By and the
conditional postprocessing. In what follows we show that
our technique captures many of the known examples of joint
measurability and, moreover, we present various new joint
measurement scenarios.

III. ADAPTIVE STRATEGY FOR QUBIT OBSERVABLES

The general procedure described in the last sections has two
critical choices: test observables By, ...,By and conditional
postprocessing functions p(«y, ...,ay | By = ). We now
specify the latter in the case of unbiased qubit observables.

First, we start from unbiased binary qubit observables. For
each unit vector a € R and 0 < & < 1, we denote by S* the
binary qubit observable

S*(+l)=1(1+ra-0).

For values 0 < A < 1 we consider S** as a noisy version of
the sharp qubit observable S* [14,15].

Leta,...,ay € R3 be a finit set of unit vectors. We are
seeking a joint observable for noisy versions of S?', ..., S%;
i.e., we want to construct an observable G such that

Z G(Oll,..

and similarly for the other marginals. Following the general
guideline of the adaptive strategy, we proceed as follows.

(1) We fx a set of unit vectors by, ... ,by € R3 such that
ag-by#Oforall ={1,...,M}andk ={1,...,N}.

(2) We choose randomly k € {1, ... ,N}.

. ,OlM) = S)\al(()ll),

022109-2
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a
1 A 2
NI by 1A, by
Or :al
-1 0 1

FIG. 4. Two orthogonal observables in plane.

(3) We perform a measurement of SP in the input state
0, hence obtaining an outcome f; = %1 with the probability
tr[oSP (£1)].

(4) Foreach £ = {1,...,M}, we decide that the outcome
agis By ifa, - by > 0and — B¢ ifa, - by < 0.

(5) Asaresult, we get a list («y, . . . ,ay) of outcomes.

(6) It is possible that some combination («y,...,x)
does not result in the process at all. In this case we set
G(Oll, ‘e ,OlM) =0.

The marginals of G are binary qubit observables, but
they are not guaranteed to be unbiased noisy versions of
the original observables S*', ... ,S%  However, we next see
that the marginals are unbiased noisy versions of the original
observables in many symmetric situations if the vectors
by, ...,by are chosen properly.

A. Planar directions

We begin our discussion with a well-known example of
two orthogonal qubit observables S* and S¥ [14] (see Fig. 4).
We want to build our joint measurement by findin two
measurement directions and then randomly performing one
of the measurements. For this purpose we employ projective
measurements in the directions which are equal superpositions
of the Bloch vectors x,y of S*(+) and S¥(+). If an outcome
of a measurement in the direction b; = %(x +y) is positive

(negative), then the measurement outcomes of S* and SY are
decided to be positive (negative) asx-b; > 0 andy - by > 0.
In a similar way, if a measurement in the direction b, =
%(x —y) is performed and a positive (negative) outcome is
obtained, then the measurement outcomes of S* and SY are
decided tobe + and — (—and +)asx-b, > Oandy - b, < 0.
In this procedure the actually measured observable is a POVM
G given by the operators

G(+.4) = 38"(+). G(—.—) = 38" ().
G(+a_) = %Sb2(+)7 G(_’+) = %sz(_)

The marginals (postprocessings) of G are given as
G(+,+) + G(+,—) = AS* () + (1 = V)11, (5)

G(+,+) + G(—.+) = A8 (H) + (1 =131, (6)

PHYSICAL REVIEW A 94, 022109 (2016)

with A = % ~ 0.7071. The parameter A is usually called the

noise parameter. It tells how much white noise is added to the
observable. Surprisingly, the obtained value of A is known to
be necessary and sufficien for the joint measurability of the
observables S* and SY [14].
The following proposition generalizes the previous example
for symmetrical arrangement of qubit observables in a plane.
Proposition 1. Let M > 2 be an integer and

a; = cosx +sinbry, 6=k — )/ M

for k =1,...,M. The observables $**', ..., S are jointly
measurable if

g
M sin(53;)

Proof. Suppose that M is odd. We choose by = a; for k =
1,...,M and follow the previously described procedure. We
have

a; - ay = cos b cos by + sin G sin Gy
= cos(6r — 0p)
(k — &)
=cos ————.

Hence,

ag-a, >0 if[k— ¢ <M/2,

ag-a, <0 if [k — ¢ > M)2.

The frst marginal of G is

Z G(ai, .. .,an) = S (),

where

M-1)/2
1 km

By Lagrange’s trigonometric identity we have

(M-1)/2

T eos ()b L
M) 2 2sin(Z)

k=1

Suppose then that M is even. We choose

T . b4
b, = cos (Gk + W)X + sin (Bk + ﬁ)y,

(k= Dn

)
k M

)

fork =1,...,M. The firs marginal of G is

Z G(Oll,..

Lay) = SM(a)),
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am bl

by

FIG. 5. Three observables. The vectors a;,i = 1,2,3, are the
desired directions and the vectors b;, j = 1,2,3,4, are the guessing
directions.

where

M/2

2 Qk—Dr\ 1
A_MZCOS< oM )_Msin(;;w)‘

k=1

B. Nonplanar directions

In this section we apply our method for qubit observables
whose Bloch vectors are not in the same plane but are situated
in a symmetric way. We explain the method for the case of
three and four observables and we note that the noise parameter
for these settings is the same. Moreover, we give the results
concerning two more complicated cases, and the proofs for
these results are given in the Appendix.

1. Three observables

Letus frst choose a; = x, a, =y, and a; = z. Adding also
opposite directions the vectors would form an octahedron.
However, since two vectors a and —a determine the same
binary observable up to the permutation of outcomes, we keep
only the positive directions.

For our adaptive strategy we choose b; = %(x +y+

z), by = %(—’H'Y‘FZ), b; = %(X—Y‘FZ), and by =
%(—x —y + z); see Fig. 5. If in this case we measure for

example in the direction of b; and get a positive (negative)
outcome our adaptive strategy assigns the value 4 (—) to all
of the observables A;, A,, and A;. The nonzero elements of
the constructed joint observable G are thus (see Fig. 5)

G(+, +.+) = 1S"(+).
G+ +.-) = 3S™(-).
G(+, — . +) = 1S (+).
G(+. — =) = ;8"(-).

G(—, =, =) =38"(-),
G(—, —,+) = ;S™ ()
G(—, +.-) = ;S"(-),
G(—, +.,+) = 38™(+).

PHYSICAL REVIEW A 94, 022109 (2016)

FIG. 6. Four observables. The vectors a;,i = 1,2,3,4, are the
desired directions and the vectors b;,j = 1,2,3, are the guessing
directions.

The marginals of G are $**, $*® and S** with the noise
parameter A = 1/+/3 &~ 0.5774, and we have thus reproduced
the result frst proved in [14]. Let us note that this noise
parameter is known to be the boundary point, meaning that for
any A > 1/+/3 the three observables are incompatible [16].

2. Four observables
We then choose a; = %(x +y+1z),a = %(x —-y—12),
a3 = %(—x +y—1z),anday = %(—x —y + 2), so the vec-
tors go to the vertices of a tetrahedron. For our adaptive strategy

we choose by = x, by =y, and bs = z; see Fig. 6. Now the
nonzero elements of the joint observable G are

G(+7 + s 7_) = %Sbl(—i_)v G(_’ ) + 7+) = %Sbl(_L
G+, —, +,9)=3i8"(+), G(— +,—.+) =3S"(-),
G(+7 s T 7+) = %Sb3(+)7 G(_9 + ) + a_) = %Sb3(_)

The marginals of G are $* with A = % This value of the

noise parameter coincides with the one for three observables
(see previous section).

3. Six and ten observables

An icosahedron has 12 vertices and these directions
determine six binary observables, while a dodecahedron has 20
vertices and these directions determine ten binary observables.
Using the adaptive strategy we obtain the following values for

the noise parameters (see the Appendix): As = I+T‘E ~ 0.5393

and A = %/g ~ (0.5236. As we later see, these are the least
noise values making the binary observables jointly measurable.

C. Adaptive strategy for the nonsymmetric case

The adaptive strategy gives an optimal joint observable
also for the case of two arbitrary unbiased qubit observables.
For this purpose, let a; and a, be two Bloch vectors. We

choose by = m(al +ay)and b, = m(al —ay)tobe
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the equal superpositions of these vectors. The adaptive strategy
gives a joint observable G define by

G(+,+) = uS" (+),

G(+.—) = (1 = WS™(+),

G(—,4) = (1 — w)8™(-),

G(_v_) = MSbl(_)t
where the constant p is the probability of making the
measurement in the direction b; and 1 — p is the probability
of making the measurement in the direction b;.

In order to get the correct marginals for G, i.e., $** and
S*® one needs to have

_ lla; + as||
lay +as | + lla; — ay|’

and this gives
2
A= ,
lla; +az | + lla; — az|l

which coincides with the optimal value originally presented
in [14].

IV. GENERALIZED ADAPTIVE STRATEGY FOR MUBS

In order to use our strategy for measurements with more
than two outcomes in a Hilbert space whose dimension is
larger than or equal to two, one needs to introduce two minor
modifications First, in step 3 of the strategy a measurement of
a two-valued observable SP (4) is performed. In the general
case such a measurement is not enough to distinguish between
the outcomes of the desired observables. For example in the
case where one of the desired observables (say A) is three
valued, a two-valued observable could at best distinguish one
of the outcomes of A and leave the other two open. This lack
of distinguishability can be circumvented. Namely, instead of
flippin a coin between two-valued observables, we build up
the joint observable from the fi ed vectors and not from the
two-valued observables assigned to them.

Second, in the qubit case our strategy requires f xed Bloch
vectors. The values of the joint observable are decided by
checking the overlaps between these vectors and the Bloch
vectors of the desired observables. In order to generalize our
strategy we note that the inner products of the Bloch vectors
(say a and b) and the inner products of the corresponding
Hilbert space vectors (say ¥/, and ¥y, are related by the formula

|(Yal¥)|* = 1(1 +a-b). (7)

Hencewe can fi Hilbert space vectors instead of Bloch vectors
and decide the values of the joint observable by maximizing
the inner products between the fxed rank-1 operators and the
effects of the desired observables. More generally, one could
fi higher rank effects and maximize the overlaps between
these effects and the effects of the observables.

The generalization withdraws step 3 from our strategy.
Step 3 can be seen as a requirement for the normalization
of the joint observable and, hence, we replace the third step
by the condition that the f xed Hilbert space vectors as rank-1
operators must sum up to the identity.

PHYSICAL REVIEW A 94, 022109 (2016)

To illustrate the generalized adaptive strategy we consider
the case of two MUBs in a d-dimensional Hilbert space. Let
{o; }321 and {y };_, be two mutually unbiased bases of C", i.e.,

(@) ¥ )] = 1/+/d, and let Ay(j) = lp;) (@] and Ay(k) =

V) (Wel, j.k = 1,...,d, be the corresponding observables.
We defin unit vectors b;; like in the previous section as

equal superpositions of the desired directions ¢; and :

bix = N(@j + €%y, €% = Vdrlg,),

where N is a normalization factor. It is easy to see that the
overlaps | (¢, |b; «)|* and [(,|b; x)|* are both maximal when
m = j and n = k. Hence we build up a joint measurement
candidate by definin

N2
G(j.k) = 7|bj,k)(bj,k|-

It is now straightforward to check that G sums up to identity
and that it gives as marginals the smeared versions of A; and
A, with the amount

1 1
A=—(14+ ——
2( 1+JZ>

of white noise. This value was earlier shown to be the optimal
noise parameter in the case of Fourier-connected MUBs
[18,19].

V. PROVING OPTIMALITY OF ADAPTIVE JOINT
MEASUREMENTS USING STEERING

In this latter part of our investigation we prove that the
joint measurements considered in the previous sections are
actually optimal. In other words, we show that their marginals
possess the least possible amount of white noise, meaning that
for any larger value of the noise parameter A the respective
observables are incompatible. For proving the optimality, we
employ some known steering techniques. In this section we
recall the basic setup of steering and explain why it helps to
prove the optimality of the presented joint measurements.

Consider a bipartite scenario (Alice and Bob) sharing a
quantum state p,p. In a quantum steering task Alice tries to
convince Bob that the shared state is entangled by making
only local measurements Ay, k =1,...,n, on her system
and sending Bob the respective outcomes x = 1,...,m by
classical communication.

When Alice measures an observable A, and gets an outcome
x Bob’s conditional (non-normalized) state reads

oxik = tra[(Ar(x) ® 1)pas]. ®)

We firs notice that for any separable state Y ; p; o'y ® ply the
conditional states always read

ox = Y _ [ Au(x)oly | pipls. ©9)

1

This kind of an ensemble could also be created by classically
postprocessing a local set of (non-normalized) states {p; o’ }:
on Bob’s side.

If, however, Bob runs over all local ensembles of non-
normalized states {o;}; together with all possible postprocess-
ings and find out that he cannot reproduce his conditional
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states, he concludes that the shared state must be entangled.
To be more precise, a bipartite setup (i.e., pap and Alice’s
measurements {A;};_,) is nonsteerable if there exists an
ensemble of positive semidefinit operators {0, }, together with
classical postprocessings p(x|k,n) such that

o =y plxlk,noy. (10)
n

If this is not the case, the setup is called steerable. For a
steerable (nonsteerable) setup it is said that Alice can (cannot)
steer Bob.

One notices that the definition of steerability (10) and joint
measurability (1) look very similar. It was proven in [8,9] that
this similarity originates from a one-to-one correspondence
between these concepts: compatible measurements never
allow Alice to steer Bob and steering is always possible with
incompatible observables provided that the Schmidt rank of
the shared pure state is d. In order to emphasize the link
between steering and joint measurements it is convenient to use
the maximally entangled state |) = ﬁ > ; lii) in a steering
scenario. For the maximally entangled state the conditional
states read

1
Ok = gAk(x)T, (11)

where T denotes the transpose. In what follows, we use this
link to show that adaptive joint measurements are optimal in
the sense that they possess the least possible amount of white
noise.

A. Necessary condition for qubit observables

In this part we use known steering results to obtain the nec-
essary condition for joint measurability of qubit observables.
The steering inequality introduced in [23] reads

n

1
- Ztr[(A;< Q¢ - 01)pap] < C, (12)
k=1

where Ay = Ar(+) — Ax(—), ¢, is a Bloch vector, and p4 5 is a
state of the composite system. The bound C,, is the maximum
value for the expression

1 n
- D> wtrdogge - o], (13)

k=1 xp=%1

provided that the operators oy are of the form (10). Here we
have labeled the outcomes of the measurement A; by x;. The
bound C,, is obtained as

1 n
Cn = kan:ain (Amax (}’l k;-xkck . O’k)) s (14)

where Anax(K) is the largest eigenvalue of a matrix K.
For example, in the case of planar observables (Proposi-
tion 1) one gets

lanar 1
C 1'34 ) —L— (15)
: T
M sin ()
This is the maximum value for Cﬁ,}anar such that the scenario
is not steerable. This means, like we discussed in the previous
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section, that a violation of inequality (12) is only possible if
Alice’s observables are incompatible.

To see that in the planar case our adaptive strategy gives
the optimal joint observable, let ) (¢ | denote the maximally
entangled state and notice that

tra[Ac(x) @ L[y ) (YH ] = tra[Ar () @ Ly ) (vl],  (16)

where |[*) (Y| = A1y) (Y| + 1321 ® Land A (x) = AAx(x)+
2 e[ A ()]

Inserting the noisy maximally entangled state |*)(y*],
the Bloch vectors of the planar observables from Proposition
1 for Bob, and the transposed planar observables for Alice!
into the left-hand side of Eq. (12), one arrives at the condition
A< Cﬁ,}anar. In other words, if A is larger than this threshold
one violates the steering inequality and consequently Alice’s
observables are nonjointly measurable (transposition does not
affect joint measurability) with the amount A of white noise
[see Eq. (16)]. This means that joint measurability of Alice’s
observables implies that A < Cﬁ,}anar. Hence, we arrive at the
following result.

Proposition 2. The planar observables introduced in Propo-
sition 1 are jointly measurable if and only if

1
= Msin(Z;)

Calculating the values Cj, for the cases of Platonic solids
and repeating the same procedure as above one find that the
joint measurements given by the adaptive strategy are optimal
also in these cases. We summarize the results of this section
in the following statement.

Proposition 3. The sufficien joint measurability conditions
given in Secs. III A and III B are also necessary.

B. Necessary condition for MUBs

In this part we prove that the joint measurability conditions
given in Sec. [V are optimal. For this purpose, suppose that Al-
ice performs two different d-valued projective measurements
given by two sets of MUBs {(pj}?:1 and {;}¢_, as follows:

ALG) = le) (il Aslk) = [vi) (Yl - amn

The ensemble of states that Bob observes is denoted by
{Ux\i}er,,;i =1,2.

For this scenario the underlying state is nonsteerable if and
only if there exists a collection {w} jx of positive semidefinit
operators w;; > 0 such that

ojn = ijk, Ok = Zw_,‘k, (18)
k J

"We choose transposed observables because using the properties
of the maximally entangled state gives then a simple condition for
steering:

AL @ Adyh) (Y] = A

Note that as this is the case for any choice of observables Ay, one can
use Eq. (14) to calculate necessary joint measurability conditions for
arbitrary qubit observables.
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hold for all possible j,k. Note that here the notation wj;
combines the postprocessings and the positive operators in
Eq. (10). To certify that a decomposition of this form is
impossible one needs to violate a steering inequality. For our
purpose a useful inequality is characterized by a collection of
operators {Z .} jx which are all positive semidefinit Z;; > 0
and furthermore satisfy the linear constraints

ij = th + Zsk - Zsr (19)

for all possible j,k,s,t. If the observed ensembles {0}1},cz,
and {ox2}kez, do have a decomposition of the above form,
then it holds that

Ztr[zjkwjk] = th[(zjr + Zg — Z)wjk]

Jjk Jk

el
+Xk:tr Zy ;wjk

—tr| Za | Do (20)
J.k

= Z'EI'[Z]‘[U]'H] + Ztr[zxko'kIZ]
j k

—tr[Zyp] 2 0, ey

for all s,z. Note that non-negativity holds because all Zj;
and wj; are positive semidefinite In addition we have used
the fact that p = 20 = 2 Okp- Hence if one violates
this inequality one proves that such a positive semidefinit
decomposition is impossible.

C. Employed inequality

In the following we use the following steering inequality.
For the two given mutually unbiased basis sets {|¢;)};cz
{I¥i) }kez,» we defin

d>

Zj = a(le;) (@;| + [¥w) (Yrl) + b1, (22)
with
_ 1 b Vd +1 .
(Vd —D)d+2) Vd(d —1)/d +2)

(23)

In this form one directly verifie that all linear constraints given
by Eq. (19) are satisfied In order to show that these operators
are also positive semidefinit we express them in a different
way.

Since the sets are mutually unbiased one has (¢; |V ) =
¢! //d. If one incorporates this phase into the superposition
states

+ 1 —iBOi
G = o) £ e 1), (24)
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one achieves that the resulting states become orthogonal,
( X;c | xjx) =0. Furthermore, note that the normalization is
then also independent of j and k.

Via these definition one can rewrite the operators given by
Eq. (22) as

Zi = e 11G) el + b — 1) GGl = bl OikD,— (29)
with
. 2
‘T VAWd—DWd+2)

Since both terms in Eq. (25) consist of a positive constant
multiplied with a positive semidefinit operator, this shows
that all Z;; are positive semidefinite

Note that in order to derive the coefficients one can start
with Z;; as given by Eq. (25) but with open b,c. In order to
achieve a form like Eq. (22) the coefficient in front of the
terms |@;) (Y| and [;) (@k| must vanish, which holds if

c—>b n b
N: N2
The solution which additionally satisfie tr[Z;] =1 is the
given solution.

(26)

=0. Q@7

D. The implication

In this part we apply the steering inequality to derive the
statement that the two observables A} and A} are not jointly
measurable if Ay < A.

We measure the maximally entangled state |{) =

ﬁ Y, lii) with the observables A?" and AL'2 By the
properties of the maximally entangled state, the conditional
states are given by

1 . 1
oj = EA?(J), Ok = EAﬁ(k)- (28)

If we now apply the steering inequality from Eq. (21) with the
operators Z j; given by Eq. (22) one obtains

Ay ulZjwi] =Y tw[Z;A())]
Jjk

J

+ Ztr[zskAé(k)] - tr[Zstﬂ]
k

()] 52}

=2{1 —A[l —a(d+1)—db]} — 1

—2fi-a(1- =)} - 120

The inequality only holds if

1 |
A< (14 —— ) = ras 29
2( 1+«/2> @)

and this proves the statement.

2If we violate a steering inequality it means that A" A}" are
not jointly measurable; this implies further that also the transposed
measurements are not jointly measurable.
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VI. 4-SPECKER SET OF QUBIT OBSERVABLES

As a consequence of our previous results we can now show
that there exists a so-called 4-Specker set [17] consisting
of qubit observables. This means that there exists a set of
four incompatible qubit observables which are not jointly
measurable but any triplet of these observables forms a jointly
measurable set. The precise set of these four observables is the
following.

Proposition 4. Consider four qubit observables $*# define
by equally distributed Bloch vectors on the upper side of the
xy plane; i.e., the angle between the vector k and k + 1 is 7w /4.
There exists a smearing parameter A such that the observables
S*% form a 4-Specker set.

Proof 2. Because of the symmetry of the situation, every
subset of three observables {S**},_; for some i is jointly
measurable if and only if (see Eq. (16) in [16])

A < [cos(/4) + 2sin(r/8)] " &~ 0.679. (30)

By Proposition 2, however, the set of four observables
is incompatible if and only if A > m ~ 0.65. Hence,
choosing any A which is between these thresholds gives a
4-Specker set {S“‘k}izl of qubit observables. |

It has been earlier shown that qubit observables can form
a 3-Specker set [17,25], and that a 4-Specker set exists in
dimension four [20].

VII. CONCLUSION

Our method opens up possibilities for future research on
both quantum incompatibility and steering. First, we have
tested our method on basic symmetric and nonsymmetric
measurement setups and shown its power in these scenarios by
reproducing some known and various new noise thresholds.
The open question is how far the method can be fetched,
i.e., how to fin optimal vectors b; for more complicated
measurement settings. Second, it is an open problem to decide
which pairs of quantum observables are the most noise resistant
onesin finit dimension. Our method gives lower bounds on the
noise robustness of sets of measurements. Third, our technique
might have interesting applications in quantum steering as
every joint observable works as a local hidden state model for
steering attempts with a restricted set of measurements [13].
These questions are left for now for future works.
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APPENDIX A: SIX OBSERVABLES

Denote x = Y5 and n =

5+4/5
3 2TV Let

2

1 1
a = E(Y‘F Xz), a;= ﬁ(—Y‘i‘ XZ),

1 1
a3 = ﬁ(x +xy), a4= ﬁ(—x + Xy,

1 1
as = —(xx+1z), ag=——=(—xx+2z).

Ji Ji

PHYSICAL REVIEW A 94, 022109 (2016)

ag

as
ay

ag a2
FIG. 7. Six observables (icosahedron). The desired directions a;
are the same as the guessing directions b;.

We choose b; = a; fori = 1, ...,6 and obtain the elements of
the joint observable G according to Fig. 7 as follows.

The nonzero elements of the constructed joint observable
G are

G+, +. 4+, + . +.4) = 18" (+),

G(—, =, =, =, —,—)=S"(-),
G+, +, = = +.4) = :S™(h),
G(— =+, +, —. =) = §8"(~),
G+, =, +, 4, +.) = {S"(+),
G(— +.—. = =) =8"().
G+, = +. +, —.4) = 18™(+),
G(— 4. —.—.+.7) = S™(-),

G(+a +, + s T + ’_) = ésb5(+)’

TABLE I. Outcomes of the joint observable G for ten observables.

k Outcome of SP Outcome of G
1 + (Frbrb bbbt o)

— (--—-——,—,—,—,—1)
2 + (hobs= = b =)

- s N )
3 + Crimbim bbb

- (== = = =)
4 + (== bims bbb )

= (=t rbb—s = =)
5 + (bbbt bbbt

— (- -t ===, =)
6 + N

- (= = =h—=hh—, )
7 + N )

~ (=h=s = o=hi=, = =)
8 + )

- (=imr = ==y =)
9 + )

- T D)
10 + (= =h—th— =)

(++.—+——+—+-)
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G(_’ T T + T 9+) = %Sbs(_),
G+, +., —, 4+, —.+) = 18%(+),
G(—, =+, =, +,-) = §S™(-),
Marginals of G are $**,i € 1, ...,6, with A = '%ﬁ
APPENDIX B: TEN OBSERVABLES
We denote x = # Let
Lixty+a Lix—y+2)
a=—KX+y+z), ay=—X—-y+12),
T VG
1 1
a=—(X+ty+z), ay=-—=X+y—12),
3 «/5( y+1z), a ﬁ( y—12)

PHYSICAL REVIEW A 94, 022109 (2016)

1 1 .
as=—(x"y+xz), as=-——=(—x"y+xz),
5 ﬁ 6 ﬁ

1 ~1
ag = —=(— X + )
8 ﬁ( X xXy)
1
aj) = ﬁ(—XX +x"'2).

1 1
a7 =—(X X+ xYy)
7 ﬁ( Y)

|
ay = —(xx+ x '),

V3

We choose b; = a; fori =1, ...,10 and obtain the outcomes
of the joint observable G according to Table I.

The nonzero elements of the constructed joint observable
G are the ones given by Table I divided by the number of
guessing observables. Marginals of G are $**,i e 1, ...,10,
with A = 1E£.
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