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Abstract

This thesis investigates classical models of correlation experiments from a quantum mea-
surement theoretical point of view. Of special interest are the concept of measurement
incompatibility and the phenomenon of quantum steering.

As the main result, we establish a one-to-one connection between non-joint measur-
ability, i.e. the impossibility of measuring two or more observables simultaneously, and
quantum steering, i.e. the possibility of one party to affect a space-like separated party’s
quantum state by the means of local actions and classical communication. The result can
be used to translate various results between the relatively new research field of quantum
steering and the older field of incompatibility. As examples, we use steering inequalities
as incompatibility criteria and map joint observables to local hidden state models.

The main result comes with some possible generalisations. The generalisations dis-
cussed here are strongly motivated by quantum measurement theory and they concentrate
on continuous variable and channel versions of steering. The resulting formalism not only
extends the aforementioned one-to-one connection, but it also has natural applications to
Gaussian steering and to temporal correlations.

Whereas the main result focuses on the connection between non-joint measurability
and steering-like phenomena, in the process we also derive steering witnesses and bounds
on noise tolerance of incompatible observables. As examples, we map certain entropic
uncertainty relations to steering inequalities and use known steering techniques to prove
the tightness of the aforementioned noise bounds on incompatibility.

On top of the measurement theoretical work, we introduce a technique for witnessing
steering in scenarios with one completely uncharacterised and one dimension-bounded
observer. The resulting witnesses are motivated by former works on entanglement theory
and, despite being more general, they don’t weaken the detection strength of the known
steering criteria in typical symmetric scenarios.
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Zusammenfassung

Diese Arbeit untersucht klassische Modelle von Korrelationsexperimenten wie Makroreal-
ismus und lokalen Realismus aus einer messtheoretischen Perspektive. Von besonderem
Interesse sind das Konzept der Inkompatibilität und das Phänomen der Quantensteuerung.

Als Hauptergebnis stellen wir eine Eins-zu-eins-Verbindung zwischen der nicht gemein-
samen Messbarkeit her, d. h. der Unmöglichkeit, zwei oder mehr Observablen gleichzeitig
zu messen, und der Quantensteuerung. Eine solche Verbindung erlaubt es, verschiedene
Ergebnisse zwischen dem relativ neuen Forschungsgebiet der Quantensteuerung und dem
älteren Bereich der Inkompatibilität zu übersetzen. Als Beispiele verwenden wir Ungle-
ichungen als Inkompatibilitätskriterien und bilden gemeinsame Observablen auf lokale
Modelle versteckter Zustände ab.

Das Hauptergebnis eröffnet einige Möglichkeiten für Verallgemeinerungen. Die hier
betrachteten Verallgemeinerungen sind stark durch die Quantenmesstheorie motiviert und
konzentrieren sich auf kontinuierliche Variablen und Quantensteuerung für Kanäle. Die
Tragweite unseres Ansatzes zeigt sich nicht nur in der Erweiterung der oben genannten
Eins-zu-eins-Verbindung auf allgemeinere Szenarien, sondern auch in Anwendungen zur
Steuerung mit kanonischen Quadraturen und dem Nachweis einer strengen Hierarchie
zwischen zeitlicher Steuerung von Quantenzuständen und Makrorealismus.

Während sich das Hauptergebnis auf den Zusammenhang zwischen nicht-gemeinsamer
Messbarkeit und steuerungsähnlichen Phänomenen konzentriert, nutzen wir auch den
messtheoretischen Ansatz zur Ableitung von Steuerungskriterien und gemeinsamen Mes-
sunsicherheitsbeziehungen. Als Beispiele zeigen wir, wie bestimmte entropische Un-
schärferelationen als Steuerungsungleichungen verwendet werden können und wie bekannte
Steuerungstechniken verwendet werden können, um die Exaktheit bestimmter Unschärfer-
elationen zu beweisen.

Zusätzlich zur messtheoretischen Arbeit führen wir eine Technik ein, mit der wir
Steuerung in einem Szenario beobachten können, in dem eine Partei völlig uncharak-
terisiert ist und der anderen Partei nur die Dimension ihres Systems bekannt ist. Solche
Kriterien werden durch frühere Arbeiten zur Verschränkungstheorie motiviert, und sie
schwächen überraschenderweise nicht die Nachweismöglichkeiten bekannter Steuerungskri-
terien in typischen symmetrischen Szenarien.
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Introduction

Quantum mechanics possesses numerous non-classical properties such as entanglement,
non-locality and contextuality. Some of the quantum features are present already on a
single system and some appear only in distributed scenarios. For the purposes of this thesis,
one property from each category will be of special interest, namely, quantum steering and
quantum incompatibility.

Quantum steering describes how actions taking place on one quantum system can
affect another space-like separated quantum system in a way not describable by classical
mechanics. Originally discussed by Schrödinger [1] and motivated by the work of Einstein,
Podolsky and Rosen [2], quantum steering has recently found its modern formulation as a
correlation experiment intermediate to entanglement and Bell non-locality [3]. To be more
precise, steering is defined as the non-existence of a special type of hidden variable model,
namely hidden state model. These models aim to reproduce state assemblages (into which
one party is steered) from a local state ensemble through classical data processing. If no
such local strategy succeeds, the parties have demonstrated quantum steering.

It is well known from the work of Werner [4] that states allowing steering are a proper
subset of entangled states1. Answering the question which states are entangled is known
to be extremely challenging and the same question posed on steering hasn’t appeared any
easier2. Whereas the set of steerable states remains unknown, one can ask if the set of
measurements allowing steering would be easier to characterise. It turns out that this
question can be answered, and the answer forms the core of this thesis. Namely, quantum
measurements allowing steering are exactly the ones which don’t allow a simultaneous
measurement (see article I).

Simultaneous measurability is a specific type of measurement compatibility. Typically
in text-book quantum mechanics compatibility of observables (i.e. Hermitian operators) is
captured by commutativity. However, Hermitian operators have proven to be insufficient
to cover all possible measurement scenarios. Consequently, more general concepts have
been proposed, such as positive operator valued measures (or POVMs for short), quantum
instruments and measurement models. To be clear, all of these concepts can be traced back
to Hermitian operators (or unitary time evolution) on a larger quantum system through
Naimark and Stinespring dilations, but many times it is more convenient to deal with only
one quantum system. These general concepts lead to different notions of compatibility such
as non-disturbance, coexistence and joint measurability. All of these notions coincide with

1To be more precise, Werner showed that there exists states with a local hidden variable model. Later,
within the modern formulation of steering, these models were recognised to be actually local hidden state
models.

2It should be mentioned that both of these problems have found operationally motivated equivalent
formulations [5, 6].

iv



commutativity (of eigenprojections) for text-book observables, but for POVMs they all
differ from one another and from commutativity. Indeed, there exist POVMs which do not
commute, but still allow a simultaneous or a non-disturbing sequential implementation.

As mentioned above, the core result of this thesis is proving that measurements not
allowing a simultaneous implementation characterise the measurement resource of steering.
This result opens up a connection between the rather new research field of quantum
steering and a way older field of incompatibility. However, the result lets one to translate
between these fields only for a limited set of shared states, namely states with a full
Schmidt rank. Hence, further techniques have been developed to cover also the scenarios
with an arbitrary shared state (see articles II and III). These techniques show a deep
connection between the two fields and have shed light to, for example, steering problems
with position and momentum observables. Moreover, the techniques have proven useful
in deriving incompatibility criteria and steering witnesses.

The core result is not limited to spatial steering. Indeed, a generalisation of the main
result to the level of temporal and channel analogues of steering is also discussed in this
thesis. The generalisation shows that all three types of steering can be mapped into joint
measurability, hence pointing out the theory around incompatibility as a useful framework
for all three steering scenarios. The power of this framework is exemplified by proving
an equivalence between temporal and spatial steering, and a hierarchy between temporal
unsteerability and macrorealism.

On top of the core result, this thesis provides methods for deriving steering criteria
through another incompatibility related topic, namely entropic uncertainty relations, and
through entanglement detection techniques.

The thesis consists of the original research articles listed below and of an introduction
to the topic and the results. The introductory part is organised as follows. In chapters one
and two the basics about quantum correlations in space and time are introduced together
with the rudiments of quantum measurement theory with special focus on incompatibility.
In the third chapter, the core result of the thesis is explained together with its generalisa-
tions. The generalisations lead to two alternative formalisms for steering both motivated
by incompatibility. The fourth chapter focuses on deriving steering criteria from entropic
uncertainty relations and from entanglement detection techniques. The fifth chapter ex-
plains how to derive bounds on the noise tolerance of incompatible quantum measurements
and how to prove the tightness of these bounds using the core result.
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Quantum correlations

A typical way to see the non-classical nature of quantum mechanics is to prepare many
identical distributed (resp. single party) systems and to measure sets of observables on
them (resp. on one object at different times), and try to violate some (semi-)classical
model for the observed probabilities. In this section four such models are discussed, two of
which (non-locality and macrorealism) rely on a fully classical strategy and the two others
(spatial and temporal steering) rely on a hybrid of classical and non-classical strategies.
Moreover, a quantum-quantum version of these strategies leads to the celebrated quantum
property called entanglement.

1.1 The spatial case

Let us start with a simple correlation experiment where two parties, called Alice and Bob,
make local measurements of quantities of their choice in their respective laboratories. The
measurement choices are labelled by xi for Alice and by yj for Bob. At this point it is not
crucial how many measurements are allowed for each party and, hence, we assume that
i ∈ {1, ..., n} and j ∈ {1, ...,m}. We also use a shorter notation xi = x ∈ {1, ..., n} and
yj = y ∈ {1, ...,m} when there is no risk of confusion. Each measurement is assumed for
now to have a discrete set of outcomes. For Alice the outcomes are labelled by ax and for
Bob by by. When there is no risk of confusion, we write simply ax = a ∈ {1, ..., k} and
by = b ∈ {1, ..., l}.

1.1.1 Local realism

To see quantum effects with the above setup, one has to check if the scenario possesses any
classical limits. Classically, a preparation of a system includes the knowledge about all
subsequent measurements, i.e. the outcomes of the measurements performed by Alice and
Bob are encoded in the initial state of the system. This is typically called realism and it
is reflected by the fact that there exist hidden variables λ ∈ Λ (i.e. classical preparations)
which predict (with probabilistic certainty) the outcomes of each possible measurement.
In general Λ can be a continuous set of parameters, e.g. the real numbers, but for a
discrete set of measurements with discrete outcome sets Λ can be chosen to be discrete,
e.g. the natural numbers. The hidden variables can be drawn randomly from the set Λ
(which is assumed to be discrete) according to a probability distribution p : ΣΛ → [0, 1],
where ΣΛ is a σ-algebra generated by the singletons in Λ. In this case the probability of
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Alice and Bob getting the outcomes a and b from measurements x and y is

p(a, b|x, y) =
∑

λ∈Λ

p(λ)f(a, b|x, y, λ), (1.1.1.1)

where f is a response function, i.e. a mapping from the set of outcomes to the set {0, 1}.
To set another classical limitation, we can assume that Alice and Bob perform their

measurements at the (approximately) same time. As the velocity of information propa-
gation is limited, the choice of one party’s measurement cannot affect the other party’s
measurement outcome. This assumption is reflected in the hidden variable description as
the property of non-signalling, i.e.

∑

a

f(a, b|x, y, λ) =
∑

a

f(a, b|x′, y, λ) ∀b, x, x′, y (1.1.1.2)

∑

b

f(a, b|x, y, λ) =
∑

b

f(a, b|x, y′, λ) ∀a, x, y, y′. (1.1.1.3)

Moreover, a response function is a probability distribution and it can, hence, be written as
f(a, b|x, y, λ) = f(a|b, x, y, λ)f(b|x, y, λ) = f(b|a, x, y, λ)f(a|x, y, λ). As the response func-
tions map to the set {0, 1}, the non-signalling conditions imply f(a|b, x, y, λ) = f(a|x, λ)
and f(b|x, y, λ) = f(b|y, λ)1. Hence,

p(a, b|x, y) =
∑

λ∈Λ

p(λ)f(a|x, λ)f(b|y, λ), (1.1.1.4)

where f(a|x, λ), f(b|y, λ) are local response functions.
Notice that instead of using deterministic (i.e. {0, 1}-valued) response functions f ,

one can also use stochastic ones, i.e. general probability distributions p2. These two
descriptions give equivalent predictions. To see this, notice first that trivially deterministic
strategies are included in the stochastic ones. For the other direction, from a stochastic
hidden variable model

p(a, b|x, y) =
∑

λ∈Λ

p(λ)p(a|x, λ)p(b|y, λ) (1.1.1.5)

we define a set of new hidden variables (corresponding to the set of outcomes of the
measurements) Λ̃ = {(a1, ..., an, b1, ..., bm)|ax = 1, ..., k, by = 1, ..., l} with the distribution

p(λ̃) =
∑

λ

p(λ)
∏

x,y

p(ax|x, λ)p(by|y, λ). (1.1.1.6)

1To see this, write
∑
a f(a, b|x, y, λ) = f(b|x, y, λ) = f(b|y, λ), where the last inequality follows

from non-signalling. With a similar argument
∑
b f(a, b|x, y, λ) = f(a|x, y, λ) = f(a|x, λ). Using this,

write
∑
b f(a, b|x, y, λ) =

∑
b f(a|b, x, y, λ)f(b|x, y, λ) = f(a|b′, x, y, λ) = f(a|x, λ), where b′ is such

that f(b′|x, y, λ) = 1 (note that the cases f(b|x, y, λ) = 0 are not of interest here as in these cases
f(a, b|x, y, λ) = 0). Hence, f(a|b, x, y, λ) is independent of b and y.

2Note that we use p as a generic label for a probability distribution without singling out which distri-
bution we refer to.
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Such distribution of the new hidden variables gives indeed a deterministic model. Namely,

p(ax, by|x, y) =
∑

λ̃

p(λ̃)f(ax|x, λ̃)f(by|y, λ̃), (1.1.1.7)

where f(ax|x, λ̃) is one if ax is present in λ̃ and zero otherwise [and similarly for f(by|y, λ̃)].
Throughout this thesis hidden variable models are assumed to be stochastic unless other-
wise stated.

Having imposed the classical assumptions of realism and locality on our scenario, we
wish to discuss how these assumptions fail in the quantum regime. As a typical example,
we take a situation where Alice and Bob both have two measurements (labelled as x1, x2

for Alice and y1, y2 for Bob) with values plus and minus one. The aim is to derive an
upper bound for the expression

|〈B〉| := |〈x1y1〉+ 〈x1y2〉+ 〈x2y1〉 − 〈x2y2〉| (1.1.1.8)

from the deterministic local realistic hidden variable model in Eq. (1.1.1.4)3. Here 〈·〉
refers to expectation value. First, from Eq. (1.1.1.4) one has

〈xiyj〉 =
∑

λ∈Λ

∑

a,b=±1

p(λ)abf(a|xi, λ)f(b|yj , λ)

=
∑

λ∈Λ

p(λ)〈xi〉λ〈yj〉λ. (1.1.1.9)

Combining Eq. (1.1.1.8) with Eq. (1.1.1.9) we get

∣∣〈B〉
∣∣ =

∣∣∣
∑

λ∈Λ

p(λ)
[
〈x1〉λ(〈y1〉λ + 〈y2〉λ) + 〈x2〉λ(〈y1〉λ − 〈y2〉λ)

]∣∣∣

≤
∑

λ∈Λ

p(λ)
(∣∣〈y1〉λ + 〈y2〉λ)

∣∣+
∣∣〈y1〉λ − 〈y2〉λ)

∣∣)

= 2, (1.1.1.10)

where we have used the triangle inequality together with the fact that
∣∣〈xi〉λ

∣∣ ≤ 1 for all
λ. For the last line, one simply checks both cases 〈y1〉λ ≤ 〈y2〉λ and 〈y1〉λ > 〈y2〉λ and uses
the inequality

∣∣〈yj〉λ
∣∣ ≤ 1. Hence, a violation of the inequality |〈B〉| ≤ 2 would lead to

contradictions between our assumptions (locality and realism). Moreover, in the scenario
consisting of two observers both with two ±1 valued measurements, this inequality is
known to characterise the existence of a local hidden variable (LHV) model [7]. In general,
any inequality possessing limits for LHV models is called a Bell inequality.

1.1.2 Entanglement

Before discussing possible violations of local realism, we need the basic ingredients for
describing quantum systems. Quantum preparations (or states) are identified as positive
trace one (trace-class) operators4 on the system of interest (i.e. complex finite-dimensional

3As seen above, choosing deterministic response functions over stochastic ones sets no extra limitations.

4The set of trace-class operators is defined as T (H) = {T ∈ L(H)|tr[(T ∗T )1/2] < ∞}, where L(H) =
{T : H → H|T linear and bounded}.
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or infinite-dimensional separable Hilbert space H) and the set of preparations is labelled
by S(H). Composite systems are described by tensor products HA ⊗HB of single system
Hilbert spaces. The state space of a composite system can be divided into states which
are probabilistic mixtures of local quantum states and to states which are not. Namely,
we can ask if a given state ρ ∈ S(HA ⊗HB) has the decomposition

ρ =
∑

µ

p(µ)ρAµ ⊗ ρBµ , (1.1.2.1)

where p(·) is a probability distribution, ρAµ ∈ S(HA), and ρBµ ∈ S(HB). States having
a decomposition of this form are called separable and states not having such a decom-
position are called entangled. Separable states are classical in many ways. For example,
these states don’t provide any advantage over classical systems in typical quantum proto-
cols such as quantum key distribution or teleportation. Moreover, separable states have
always a local hidden variable description. To see this, recall that in quantum mechanics
measurements are identified as positive operator valued measures (POVMs), i.e. col-
lections of positive operators {Aa}a summing up to the identity operator5, whose POVM
elements Aa reproduce the measurement outcome probabilities on a state ρ through the for-
mula6 p(a|A) = tr[Aaρ]. The joint outcome probabilities for measurements given through
POVMs {Aa|x}a,x7 on Alice’s and {Bb|y}b,y on Bob’s system on a separable quantum state

ρ =
∑

µ p(µ)ρAµ ⊗ ρBµ are

p(a, b|x, y) = tr
[
(Aa|x ⊗Bb|y)ρ

]

=
∑

µ

p(µ)tr[Aa|xρ
A
µ ]tr[Bb|yρ

B
µ ]

=:
∑

µ

p(µ)pQ(a|i, µ)pQ(b|j, µ), (1.1.2.2)

where pQ(a|i, µ) [resp. pQ(b|j, µ)] refers to the obvious probability distribution arising
from the quantum state ρAµ (resp. ρBµ ).

Comparing Eq. (1.1.2.2) with Eq. (1.1.1.5) we see that separable states indeed do have
a hidden variable description. Moreover, this description arises from quantum mechanics
(i.e. from local quantum states) without additional hidden variables.

Hence, in order to see violations of local realism, we need to use non-separable (i.e.
entangled) states. To give an example of a scenario which violates Eq. (1.1.1.10), consider
Alice measuring the spin observables (given as Hermitian matrices) (1, 0, 0)·~σ and (0, 0, 1)·~σ
and Bob measuring the spin observables 1√

2
(1, 0, 1) · ~σ and 1√

2
(1, 0,−1) · ~σ, where ~σ =

(σx, σy, σz) with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

5Later we also need POVMs with continuous outcome sets. In this case one has to slightly fine-tune
the definition.

6For readers more common with quantum mechanical measurements being represented as Hermitian
operators, the adaptation to the formalism here is rather straight-forward: eigenprojections correspond to
POVM elements (although not all POVM elements have to be projections) and eigenvalues (i.e. outcomes)
correspond to the index a.

7In this notation the operators {Aa|x}a form a POVM for every x.

4



Now the POVM elements of {Aa|x}a,x and {Bb|y}b,y are the eigenprojections of the afore-
mentioned Hermitian matrices. Using the quantum state ρ = |ψ+〉〈ψ+| defined through
the vector |ψ+〉 := 1√

2
(|00〉+ |11〉) we get

∣∣〈B〉
∣∣ = 2

√
2, (1.1.2.3)

which shows that quantum mechanics is, indeed, in contradiction with local hidden variable
models.

It is worth noting that whereas separable states have an LHV model for any number
of measurements and outcomes, there exists also entangled states with the same property
[4]. Hence, entanglement is necessary, but not sufficient for Bell inequality violations.

1.1.3 Steering

Local hidden variable models and entanglement are both extensively studied subjects.
For in depth reviews, see [8, 9, 10]. What is slightly less studied is a hybrid of these
two. Namely, a comparison of Eq. (1.1.1.5) and Eq. (1.1.2.2) raises an obvious question:
what kind of correlations do we get by assuming one party’s probability distributions to
be classical and other party’s distributions to be quantum, i.e.

p(a, b|x, y) =
∑

λ∈Λ

p(λ)p(a|x, λ)pQ(b|y, λ)

=
∑

λ∈Λ

p(λ)p(a|x, λ)tr[Bb|yρλ]. (1.1.3.1)

Such model, when existing, is called a local hidden state (LHS) model. To give a physical
interpretation for Eq. (1.1.3.1), we fix a state ρ for the composite system and rewrite the
equation using a quantum description on the left-hand-side as

trB

{
trA
[
(Aa|x ⊗ I)ρ

]
Bb|y

}
= trB

{∑

λ∈Λ

p(λ)p(a|x, λ)ρλBb|y

}
. (1.1.3.2)

Assuming now that Bob can perform tomography on his side, i.e. assuming that the
POVM elements {Bb|y}b,y span the whole operator space L(H)8, Eq. (1.1.3.2) yields

ρa|x := trA
[
(Aa|x ⊗ I)ρ

]
=
∑

λ∈Λ

p(λ)p(a|x, λ)ρλ. (1.1.3.3)

The left-hand-side of Eq. (1.1.3.3) has a clear physical interpretation: it represents Bob’s
side of the (non-normalised) post-measurement state when Alice measures x and gets
the outcome a. Thus Eq. (1.1.3.3) asks if the post-measurement states {ρa|x}a,x can be
obtained from a local ensemble {p(λ), ρλ}λ of states on Bob’s side by classically data-
processing [i.e. implementing p(a|x, λ) on] the ensemble according to the classical infor-
mation (a, x) Alice and Bob are assumed to share. Consequently, correlations without an
LHS model are called steerable.

The interpretation of steering is two-fold. First, clearly steering as a type of correlation
is in between entanglement and non-locality. These inclusions are strict [3, 4, 11] (see

8In the infinite-dimensional case informationally complete POVMs are exactly the ones whose range’s
(i.e. range of a measure, not range of an operator) linear span’s ultraweak closure is L(H) [38].
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example below). Second, steering can be interpreted as a spooky action at a distance in the
sense that Bob can not explain the changes in his system by only classically post-processing
a local state ensemble according to the classical information gained from Alice. Motivated
by these interpretations, one sees often the more precise term Einstein-Podolsky-Rosen
(EPR) steering used instead of steering. In this thesis we talk simply about steering, but
we keep in mind that the definition has a strong resemblance to hidden variable models.

At this point, it is the writer’s personal experience that the language used around
steering and non-locality may cause confusion. To avoid confusion within this thesis, we
divide the correlation experiments into three classes.

First, we can fix the measurements and the state used in a correlation experiment,
and ask if the obtained probability distributions have an LHS or an LHV model. In
these cases we talk about the steerability (or non-locality) of the assemblage {ρa|x}a,x or
the steerability (or non-locality) of the setup. For small numbers of measurements and
outcomes these questions can be solved with numerical methods [6, 12, 13]. For more
complex cases, the numerical methods can get time-consuming and several (sub)optimal
analytical methods are known [14, 15, 16], see also articles I-IV.

Second, if we don’t manage to prove steering or non-locality for a given set of measure-
ments on a given state, we can add measurements and see if this changes the situation. If
the setup remains unsteerable (resp. local) for all possible measurements, then the state
is called unsteerable (resp. local). If this is not the case, the state is steerable (resp.
non-local). It is noteworthy that whereas steerability or non-locality of a give setup might
be fairly simple to prove, the same question posed on the level of states has turned out to
be a difficult problem.

Finally, one can invert the second scenario by asking which measurements allow steering
when all possible states are considered. In this case we could talk about steerability of
measurements, but as we will see later in this work, these measurements turn out to be
exactly the non-jointly measurable ones.

To clarify the terminology and the hierarchy between entanglement, steering and non-
locality, we present two typical examples of steerable and one-way steerable states. For
further examples of steering, we refer to [3, 14] and the articles I-VI.

As our first example, we consider one of the most commonly discussed states in the
steering community, i.e. the two-qubit Werner state (see also [17])

ρp := p|ψ−〉〈ψ−|+ 1− p
4

I, (1.1.3.4)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) and p ∈ [0, 1] is called visibility or a noise parameter. It

is easy to check with the partial transpose criterion [9] that the state ρp is separable
if and only if p ≤ 1/3. It is known from the work of Werner [4] that the states with
0 ≤ p ≤ 1/2 have a local hidden state model for all possible projective measurements on
Alice’s side and from the work of Barrett [18] that the same holds for POVMs for the
range 0 ≤ p ≤ 5/12. Moreover, the threshold p = 1/2 is known to be optimal in the
sense that above this value, there are projective measurements which lead to a steering
[3]. Later Aćın et al. [19] showed that the state is local with projective measurements
for visibilities p ≤ 1/KG(3), where 1/KG(3) ≥ 0.68 is the Grothendieck constant of order
three9. Hence, with 1/2 ≤ p ≤ 0.68 the two-qubit Werner state is local and steerable for

9Notice that the exact value of the Grothendieck constant is not known. The approximation used here
is from [20].
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ρAB ρa|xAx

a
a

x
x

Alice Bob

Figure 1.1: Alice and Bob share a bipartite state ρAB, Bob asks Alice to measure Ax
and to report the result a. The (non-normalised) post-measurement state assemblage Bob
receives is given as ρa|x = trA[(Aa|x ⊗ I)ρAB].

all projective measurements. Lastly, Vértesi [21] showed that above the threshold 0.7056
the state is non-local.

At this point it is worth to mention that the above hierarchy has an additional physi-
cal insight in it. Namely, steering and Bell non-locality can be both seen as entanglement
detection methods. From this point of view, the difference between them is simply the
description of the measurement devices: in local hidden state models a quantum descrip-
tion is only assumed for Bob and in local hidden variable models neither party is assumed
to be quantum. Hence, steering is sometimes called semi-device-independent entangle-
ment verification and Bell inequalities can be seen as device-independent entanglement
witnesses.

As our second example, we consider one-way steerable states. Unlike non-locality or
entanglement, steering is an asymmetric type of correlation. This means that there exists
states, which allow a local hidden state model for steering attempts with all possible
measurements on one side, but there exists measurements on the other side, which result
in a steerable state assemblage. To give an example of such a state, we recall the one from
[11] which reads

ρPOVMone-way :=
1

3
ρPVMone-way +

2

3
|2〉〈2| ⊗ trA[ρPVMone-way], (1.1.3.5)

where

ρPVMone-way :=
1

2

[
|ψ−〉〈ψ−|+ 3

10
|1〉〈1| ⊗ I +

2

10
I⊗ |0〉〈0|

]
, (1.1.3.6)

I is the identity operator in the subspace spanned by the vectors {|0〉, |1〉} and |ψ−〉 is
defined as in the previous example. The states ρPVMone-way and ρPOVMone-way are known to be

steerable from Bob to Alice with well-chosen sets of measurements, but ρPVMone-way is not

steerable from Alice to Bob with projective measurements and ρPOVMone-way is not steerable
from Alice to Bob with POVMs.

To further motivate the concept of steering, we recall an entanglement verification
protocol first introduced in [3], see also Fig. 1.1. The idea is that Alice prepares a bipartite
state and sends one half of it to Bob10. Alice claims that the state she prepares is entangled,
but Bob wishes to find some way of verifying this. For this purpose, Bob asks Alice to
steer him into an ensemble {ρa|x}a (from a set of ensembles {ρa|x}a,x Alice has announced
prior to the experiment) by making the measurement x on her part of the system and

10To be more precise, the protocol is not a single shot one. Namely, Alice prepares various copies of the
same state and in each round of the protocol, she sends one particle (i.e. half of a bipartite state) to Bob.
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reporting the outcome a. Assuming that Bob can do tomography, after many rounds of
the protocol Bob possesses the state assemblage {ρa|x}a,x, whose steerability he can check
with a steering witness of his choice. In case of steering Bob is convinced that the state
indeed is entangled.

To mention a possible cheating strategy in the above protocol, Alice could in principle
try to fool Bob by sending him states from an ensemble {p(λ), ρλ}λ and give Bob an output
a according to some probability distribution p(a|x, λ) conditioned on Bob’s question x and
Alice’s knowledge on λ. This way the state assemblage would have a local hidden state
model and Bob would not be convinced that Alice actually prepared an entangled state.

1.2 The temporal case

Similarly to local realism on composite systems, one can ask if hidden variable models
can be posed on single quantum systems. There are two main categories of such models:
macrorealism and contextuality. Macrorealism can be easily modified to correspond to
a temporal analogue of steering, but for the case of contextuality such a modification is
not known. As our main focus is on steering, we will concentrate on macrorealism. For
readers interested in contextuality, we refer to a recent work on the topic [22].

1.2.1 Macrorealism

Macrorealism is a model for a single system measured at different times. It is built on
two assumptions [23]: macrorealism per se and non-invasive measurability. Macrorealism
per se refers to a macroscopic object having (distinguishable) macrostates available to
it and the object being in one of these states at any given time. Mathematically these
states correspond to hidden variables just like in the case of local realism. To write a
macrorealistic hidden variable model, assume that we have a set of measurements x ∈
{1, ..., n} with outcomes a ∈ {1, ..., k} on the first time step and a set of measurement
y ∈ {1, ...,m} with outcomes b ∈ {1, ..., l} on the second time step (of course we could
have more time steps and even continuous observables, but for introducing the idea this
simple scenario is sufficient). Hidden variable model for the scenario reads similarly to
Eq. (1.1.1.1)

p(a, b|x, y) =
∑

λ∈Λ

p(λ)f(a, b|x, y, λ). (1.2.1.1)

Note that the distinct macrostates refer to a full catalogue of properties of the system and,
hence, deterministic response functions are used here.

So far we have only used the assumption of macrorealism per se. Analogously to locality
in local realism, the non-invasiveness measurability (and the fact that future measurements
can not affect the past) imply the factorisability of the response functions. Hence, a
macrorealistic hidden variable model reads11

p(a, b|x, y) =
∑

λ∈Λ

p(λ)p(a|x, λ)p(b|y, λ), (1.2.1.2)

11One should notice that macrorealism is typically formulated for a single observable at different times.
Here we use a slightly more general formulation as this is better suited for the temporal analogue of
steering. The formulation is due to [24].
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ρ Ix Ia|x(ρ)

a
a

x
x

Alice Bob

Figure 1.2: Alice applies an instrument (see the next section) Ix on a single system state
ρ and reports the measurement setting x and result a to Bob. Bob is left with the (non-
normalised) output state Ia|x(ρ).

where we have changed from deterministic to a stochastic description.
One notices that Eq. (1.1.1.5) and Eq. (1.2.1.2) are identical. Hence, to witness non-

macrorealistic behaviour one can use the inequality in Eq. (1.1.1.10). To mention another
example of a non-macrorealism witness, consider a scenario with three measurement times
and only one (±1 valued) observable per time step. The model in Eq. (1.2.1.2) generalises
straight-forwardly to this scenario, and by labelling the measurements at different times
by A1, A2 and A3 one gets

〈A1A2〉+ 〈A2A3〉 − 〈A1A3〉 ≤ 1. (1.2.1.3)

To see this, one can check every possible assignment of values provided by the deterministic
response functions. For quantum mechanical scenarios violating this inequality, see [25,
26].

1.2.2 Temporal steering

As in the case of local realism, one can introduce modifications of macrorealistic hidden
variable models. Namely, one can ask if the classical probability distributions can be
replaced with distributions of quantum origin. Models with the second time step having
a quantum description have received some attention lately [27, 28, 29], and they will
be shortly discussed here, see also Fig. 1.212. The impossibility of the resulting hidden
state models is called temporal steering. Namely, a temporal scenario consisting of two
measurement steps is called temporally unsteerable if

p(a, b|x, y) =
∑

λ∈Λ

p(λ)p(a|x, λ)pQ(b|y, λ), (1.2.2.1)

where pQ(b|y, λ) = tr[ρλBb|y] for some states {ρλ}λ.
Temporal steering has an analogous definition to that of spatial steering and, as we

will see in the forthcoming sections, it has an analogous hierarchy with macrorealism as
spatial steering has with local realism. Although temporal steering seems to lack a clear
physical interpretation at the moment, the concept has found connections to, for example,
non-Markovianity [32]. As such, we consider the temporal version of steering merely
as a mathematical concept with possible future applications to, for example, probing
macrorealism, and we don’t aim to seek for a further physical interpretation of it.

12One can ask if demanding both response functions to have a quantum description leads to a temporal
analogue of entanglement. This question is out of the current work’s scope, but for readers interested in
the topic we refer to [29, 30, 31].
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1.3 Channel steering: a unifying picture

1.3.1 Basics on channels and instruments

So far we haven’t specified how state transformations (e.g. time evolutions) and state
updates (caused by measurements) are modelled in quantum mechanics. A valid state
transformation (from the state space of a Hilbert space H to the state space of a Hilbert
space K) is a completely positive trace preserving linear map, i.e. a map Λ : T (H)→ T (K)
whose trivial extensions Λ ⊗ Ik are positive (i.e. mapping positive operators to positive
operators) for every k ∈ N. Such maps are called quantum channels.

To justify the definition, note that the trace-preserving property and positivity are
desirable in order to map quantum states into valid quantum states, linearity comes as an
usual built-in feature for quantum mechanics13, and complete positivity is regarded so that
states which are possibly entangled to an environment will remain positive. Note that every
channel (and also instrument, see below) comes with a dual mapping Λ∗ : L(K) → L(H)
defined through

tr[Λ∗(S)T ] := tr[Λ(T )S] ∀S ∈ L(K), T ∈ T (H). (1.3.1.1)

The dual mapping is also called the Heisenberg picture and the non-dual version is called
the Schrödinger picture of Λ. Note that the trace-preserving property translates to
identity-preserving property in the Heisenberg picture. This property implies that the
Heisenberg picture (which operates on observables instead of states) maps POVMs into
POVMs.

State updates due to measurements (here POVMs {Aa|x}a,x) are described as well
by linear completely positive maps Ia|x : T (H) → T (K), but instead of preserving
the trace, they are required to be trace non-increasing14 together with the property
tr[
∑

a Ia|x(T )] = tr[T ] ∀T ∈ T (H). Such collections of mappings are called quantum
instruments. An instrument {Ia|x}a is said to be compatible with a POVM {Aa|x}a if it
encodes the measurement outcome probabilities in the post-measurement state, i.e. if

tr[Ia|x(ρ)] = tr[Aa|xρ] ∀ρ, a, (1.3.1.2)

or equivalently if in the Heisenberg picture I∗a|x(I) = Aa|x for all a.
A crucial tool for dealing with completely positive maps is the so-called Kraus decom-

position. Namely, a liner map Λ : T (H)→ T (K) is completely positive if and only if there

13See also the reasoning on pp. 21 in [33] about a simple connection between linearity and locality in
quantum mechanics.

14In order to have linear transformations, we don’t require the maps to be trace-preserving. As an
example, consider the typical projection postulate. When a projective measurement {Pa}a gives an out-
come a on state ρ, according to the projection postulate the normalised post-measurement state reads
PaρPa/tr[PaρPa]. This transformation is trace-preserving, but it is also non-linear in ρ. By not normalising
the post-measurement state (i.e. giving up the trace-preserving property), we get a linear transformation.
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exists operators {Kk}k ∈ L(H,K) (called Kraus operators of Λ) such that15 16 [33, 34]

Λ(T ) =
∑

k

KkTK
∗
k ∀ T ∈ T (H). (1.3.1.3)

Moreover, a completely positive linear map Λ with the above decomposition is trace non-
increasing if and only if

∑

k

K∗kKk ≤ I. (1.3.1.4)

If one changes the inequality in Eq. (1.3.1.4) into an equality, one gets a condition char-
acterising the trace-preserving property. Here the star in K∗k refers to the adjoint of the
operator Kk.

Another important tool for quantum channels is the Stinespring dilation. From text-
book quantum mechanics we know that any channel Λ : T (H)→ T (H) can be written as
a unitary channel on a larger system, i.e.

Λ(ρ) = trHE [U(ρ⊗ η)U∗], (1.3.1.5)

where HE is the Hilbert space of the environment, η ∈ S(HE) is the initial state of the
environment, and U is a unitary operator on the composite system H⊗HE .

For our purposes, considering a slightly different form of the Stinespring dilation ap-
pears convenient. Namely, for a channel Λ : T (H) → T (K) given in the Kraus form
Λ(T ) =

∑r
k1
KkTK

∗
k one can define an isometry V : H → HA ⊗K through

V |ψ〉 :=
r∑

k=1

|ϕk〉 ⊗Kk|ψ〉, (1.3.1.6)

where {|ϕ〉k}rk=1 is an orthonormal basis of the dilation (or dummy) system HA. From
this isometry one can define a dilation of Λ as

Λ(T ) = trHA [V TV ∗] ∀T ∈ T (H). (1.3.1.7)

For the case of linearly independent Kraus operators this dilation is called minimal (as
the dimension of the dummy system is minimal). Our focus will mainly be on minimal
dilations as they allow a one-to-one mapping between instruments Ia|x : T (H) → T (K)
with Λ =

∑
a Ia|x and POVMs {Aa|x}a,x on the dummy system through the following link

[35, 36]

Ia|x(T ) = trA[(Aa|x ⊗ I)V TV ∗]. (1.3.1.8)

Later in this thesis we show how minimal Stinespring dilations works as a unifying frame-
work for different steering scenarios by mapping all these scenarios into joint measurability.

As the final tool for dealing with quantum instruments and channels (in finite-
dimensional systems) we need the Choi-Jamio lkowski isomorphism. It states that one

15Here L(H,K) stands for bounded linear maps from H to K.

16Note that the proof of the Kraus decomposition relies typically on Stinespring dilations. Here we will
not present the proof. We go actually the opposing way, i.e. we use the Kraus decomposition to construct
a specific dilation needed later in this work.
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can assign to any quantum channel (resp. instrument) a quantum state (resp. state as-
semblage) on a larger system. The mapping for a channel Λ : L(Cd) → L(Cd′) reads
simply

MΛ :=
1

d

d∑

i,j=1

|i〉〈j| ⊗ Λ(|i〉〈j|). (1.3.1.9)

The importance of this mapping is that it can be used to check whether or not a linear
map Λ : L(Cd) → L(Cd′) is completely positive. Namely, Λ is completely positive if and
only if the corresponding operator MΛ (also called Choi matrix) is positive [34].

In article III a slight modification of the isomorphism is introduced to cover also the
infinite-dimensional case. This modification is used to provide a framework for spatial
steering within which the steerability of a given state maps to the incompatibility breaking
property of the corresponding channel.

1.3.2 Channel steering

As the Choi-Jamio lkowski isomorphism maps between states and channels, it is natural
to ask if one can build a framework for steering in the channel picture. Here we will give
the basic definitions for such a framework originally presented in [37] and show how the
resulting channel steering captures both temporal and spatial versions of steering.

The objects of interest in channel steering are instrument assemblages {Ia|x}a,x (map-
pings from Charlie to Bob), which are defined through the formula

Ia|x(ρ) = trA[(Aa|x ⊗ I)ΛC→A⊗B(ρ)] ∀ρ ∈ S(H), (1.3.2.1)

where ΛC→A⊗B is an extension of ΛC→B :=
∑

a Ia|x
[
i.e. ΛC→B(ρ) = trA[ΛC→A⊗B(ρ)] ∀ρ

]

and {Aa|x}a,x are POVMs on the extension (i.e. on Alice’s system), see also Fig. 1.3. Un-
steerability of these assemblages is defined through the existence of a common instrument
{Iλ}λ an post-processings {p(·|x, λ)}x,λ such that

Ia|x =
∑

λ

p(a|x, λ)Iλ. (1.3.2.2)

When such model doesn’t exist, the assemblage {Ia|x}a,x is called steerable.
There are two simple ways to connect channel steering to state steering: the use

of instruments with a one-dimensional input and the use of the Choi-Jamio lkowski iso-
morphism. First, instruments with one-dimensional input correspond to state prepara-
tors, i.e. mappings of the form Ia|x(|1〉〈1|) = ρa|x, where |1〉〈1| is a state on the one-
dimensional Hilbert space C. Hence, instrument assemblages with trivial input correspond
to state assemblages and Eq. (1.3.2.2) translates to a local hidden state model. Moreover,
Eq. (1.3.2.1) translates to the typical way of obtaining state assemblages from a shared
state ΛC→A⊗B(|1〉〈1|). Similarly, one can see temporal state assemblages arising from
channel steering17.

Second, in [37] the connection between channel and state steering through the Choi-
Jamio lkowski isomorphism is discussed. The idea is to map the channel extension ΛC→A⊗B

17Note that the temporal assemblages can, in principle, be signalling (i.e.
∑
a ρa|x 6=

∑
a ρa|x′). Such

scenarios are trivially temporally steerable and, hence, the channel protocol provides a framework for the
non-trivial occasions of temporal steering.
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ρ

ΛC→A⊗B Ia|x(ρ)Ax

a
a

x
x

Alice Bob

Charlie

ΛC→B

Figure 1.3: The setup is similar to the spatial steering scenario, but in the channel case the
shared state is prepared by Charlie via the broadcast channel ΛC→A⊗B. The operations
enclosed in the dotted line are then viewed by Bob as instruments which have the total
channel ΛC→B. The main difference to spatial steering is that here Bob’s task is to build
a local (instrument) model for all possible input states.

to the corresponding Choi state

MΛC→A⊗B =
1

d

∑

i,j

|i〉〈j| ⊗ ΛC→A⊗B(|i〉〈j|) (1.3.2.3)

and to prove that their respective steerability properties coincide, i.e. the Choi state is
steerable if and only if the channel extension allows steerable instruments assemblages.
With the isomorphism one can find also further analogies between state steering to channel
steering. For example, one can show [37] that incoherent18 channel extensions lead to
unsteerable instrument assemblages and any unsteerable instrument assemblage can be
seen as rising from an incoherent extension (cf. every separable state leads to unsteerable
state assemblages and every unsteerable state assemblage can be seen as rising from a
separable state, see article VI). Note, moreover, that a channel extension is incoherent if
and only if the corresponding Choi matrix MΛC→A⊗B is separable in the cut A|BC [37].

In article IV channel steering is used to approach all three steering scenarios in one
go. Using the techniques introduced in this chapter we map all the scenarios into incom-
patibility, show how temporal and spatial steering are very closely related, and prove a
hierarchy between temporal steering and non-macrorealism.

18A channel extension ΛC→A⊗B is called incoherent if ΛC→A⊗B =
∑
λ ΛC→Bλ ⊗ σAλ for some instrument

{ΛC→Bλ }λ and normalised states {σAλ }λ, and coherent otherwise.
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Measurement incompatibility in
quantum mechanics

One peculiar feature of quantum mechanics is measurement incompatibility. Incompati-
bility manifests itself in various different forms depending on the level of detail we have
in our description of quantum measurements. In this section we discuss three different
ways of describing measurements (PVMs1, POVMs and instruments) and see what sort
of fine-tunings of incompatibility they allow.

2.1 Commutativity

The text-book description of quantum measurements as Hermitian operators or, equiv-
alently, as projection valued measures comes with a natural notion of incompatibility.
Namely, two mutually non-commuting Hermitian operators A and B are typically called
incompatible as their measurement statistics have limitations set by a preparation uncer-
tainty relation [see e.g. [38]]:

∆(A)ψ∆(B)ψ ≥
1

2

∣∣〈ψ|[A,B]ψ〉
∣∣, (2.1.0.1)

where [A,B] = AB −BA and ∆(C)2
ψ = 〈ψ|C2ψ〉 − 〈ψ|Cψ〉2, C = A,B.

Such limitations do not, however, capture the whole story behind measurement in-
compatibility. Whereas the above inequality is state-dependent, various (operationally
motivated) state-independent notions of measurement incompatibility have been intro-
duced. In the following sections we analyse in detail such concepts and show how they
reduce to commutativity of POVM elements in the case of PVMs. However, for pairs of
POVMs the concepts satisfy a strict hierarchy and, hence, highlight not only operationally
but also mathematically different fine-tunings of incompatibility.

2.2 Non-disturbance

In a sequential measurement scenario (consisting here of two time-steps) one can ask if
there exists a way to measure the first measurement, say {Aa}a, without disturbing the
statistics of a subsequent measurement, say {Bb}b. To answer the question, recall that

1The abbreviation PVM refers to projection valued measure. These measures are defined as POVMs
whose POVM elements are projections and they correspond to text-book observables, i.e. Hermitian
operators.

14



any instrument {Ia}a implementing {Aa}a has to fulfil

tr[Ia(ρ)] = tr[Aaρ] ∀ρ, a. (2.2.0.2)

Now, the joint probability distribution for getting an outcome a from the first measurement
and an outcome b from the second measurement in the state ρ reads

p(a, b|A,B) = tr[Ia(ρ)Bb]. (2.2.0.3)

In order not to disturb the statistics of the second measurement, we need
∑

a p(a, b|A,B) =
p(b|B) for all b, i.e.

∑

a

tr[Ia(ρ)Bb] = tr[ρBb] ∀b. (2.2.0.4)

To capture non-disturbance as a property of the measurements, Eq. (2.2.0.4) is required
to hold for all input states. In the Heisenberg picture this reads simply

∑
a I∗a(Bb) = Bb

for all b.
To decide the existence of a non-disturbing measurement implementation, numerical

methods based on semidefinite programming and analytical methods based on, for exam-
ple, commutativity have been developed [39]. However, as non-disturbance is not the main
focus of this thesis, we will simply state a few basic facts about it without further analysis
of the concept.

First, clearly two commuting POVMs allow a non-disturbing sequential implementa-
tion through the von-Neumann Lüders instrument. Namely, if [Aa, Bb] = 0 ∀a, b, we can
write

∑
a IL∗a (Bb) =

∑
a

√
AaBb

√
Aa =

∑
aAaBb = Bb for all b, where the superscript

L refers to Lüders. However, there exists POVMs which are non-commuting, but never-
theless allow a non-disturbing sequential implementation [39]. To see how the concept of
commutativity and non-disturbance become equivalent for PVMs, see subsection 2.4.

Second, non-disturbance has an extra structural property in comparison to the other
types of incompatibility discussed here. Namely, non-disturbance can be dependent on
the order of measurements, i.e. it is asymmetric [39].

Third, every non-disturbing measurement consists a joint measurement (see below).
Moreover, every joint measurement can be implemented through a sequential measurement
of possibly different observables [40].

2.3 Joint measurability

As our main concept of compatibility we introduce joint measurability. Joint measurability
refers to the possibility of inferring the measurement data of various observables from the
data of a single observable by the means of classical post-processing. Namely, a set of
POVMs {Aa|x}a,x is called jointly measurable if and only if there exists a POVM {Gλ}λ
(called a joint observable or a joint measurement) together with probability distributions
{p(·|x, λ)}x,λ such that

tr[Aa|xρ] =
∑

λ

p(a|x, λ)tr[Gλρ] ∀ρ, (2.3.0.5)
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or equivalently Aa|x =
∑

λ p(a|x, λ)Gλ. Sometimes it is more convenient to use deter-
ministic post-processings, i.e. probability distributions with values 0 and 1. Similarly as
in the case of hidden variable models, one can show that this poses no extra restrictions
on joint measurability [41]. Namely, the existence of a joint observable with stochastic
post-processings is equivalent to the existence of a (possibly different) joint observable
with deterministic post-processings.

As in the case of non-disturbance, commuting measurements allow a joint measure-
ment, but the other way around is not always true. To see this, taking the product POVM
of two commuting POVMs forms a valid joint observable. For the other case, consider the
following non-commuting POVMs

Sµ±|x :=
1

2
(I ± µσx) (2.3.0.6)

Sµ±|z :=
1

2
(I ± µσz), (2.3.0.7)

where µ ∈ (0, 1]. We can define a joint observable candidate for any µ ∈ (0, 1] by writing

Gµi,j :=
1

4

[
I + µ(iσx + jσz)

]
, i, j = ±1. (2.3.0.8)

Clearly the marginals (i.e. deterministic post-processings) of this candidate are correct,
i.e.

∑
iG

µ
i,j = Sµj|z and

∑
j G

µ
i,j = Sµi|x. However, the candidate is a POVM only for the

values 0 < µ ≤ 1√
2
. Hence, the POVMs Sµ±|x and Sµ±|z are non-commuting but jointly

measurable within the parameter range 0 < µ ≤ 1√
2
. Moreover, it can be shown that the

value µ = 1√
2

is critical in the sense that above this threshold the POVMs become not

jointly measurable [42] (see also below).
So far we have seen that commutativity implies both non-disturbance and joint mea-

surability, but not the other way around. To build the hierarchy further, we note (as
mentioned above) that every non-disturbing measurement works as a joint measurement.
Namely, let {Aa}a be a POVM that allows an instrument {Ia}a not disturbing a POVM
{Bb}b. Now, the operators Ga,b := I∗a(Bb) form a POVM with the correct marginals.
Hence, non-disturbance implies joint measurability. For an example showing that the
inverse implication does not hold, we refer to [39].

To characterise sets of observables that admit joint measurements, various analytical
[43, 44, 45, 46, 47, 48] and numerical [13, 49, 50] techniques have been developed. Some
of these techniques are discussed and further developed in the articles I,II,III and VII.
However, for completeness we wish to reproduce here an analytical characterisation of
noise tolerance of non-joint measurability in a simple scenario including two two-valued
(unbiased) qubit observables. The characterisation was first found in [42].

To start with, define two POVMs through the operators A± = 1
2(I± ~a · ~σ) and B± =

1
2(I±~b ·~σ). Assuming that there exists a joint measurement {Gi,j}i,j=±1, we can write its
POVM elements as

G+,+ (2.3.0.9)

G+,− = A+ −G+,+ (2.3.0.10)

G−,+ = B+ −G+,+ (2.3.0.11)

G−,− = I−A+ −B+ +G+,+. (2.3.0.12)
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Writing G+,+ = 1
2(γI + ~γ · ~σ), the positivity of the operators {Gi,j}i,j implies

‖~γ‖ ≤ γ (2.3.0.13)

‖~a− ~γ‖ ≤ 1− γ (2.3.0.14)

‖~b− ~γ‖ ≤ 1− γ (2.3.0.15)

‖~a+~b− ~γ‖ ≤ γ. (2.3.0.16)

Geometrically, the first and the last inequality imply that there exists a point (namely
~γ) in the intersection of a ball of radius γ whose center is the origin and a ball of radius
γ whose center is the point ~a +~b. This can only be the case if the sum of the radiuses
is larger than or equal to the distance between the center points of the balls, i.e. if
‖~a +~b‖ ≤ 2γ. Moreover, a similar argument used on the second and the third inequality
gives ‖~a−~b‖ ≤ 2(1− γ). Summing up these two inequalities gives the following necessary
condition for joint measurability

‖~a+~b‖+ ‖~a−~b‖ ≤ 2. (2.3.0.17)

To prove the sufficiency of this criterion, one can choose ~γ = 1
2(~a+~b) and γ = ‖~γ‖. This

clearly defines a valid joint observable.

2.4 Coexistence

Joint measurability refers to the existence of an observable whose statistics can be used to
deduce the statistics of other observables by the means of classical post-processing. One
can modify this notion by dropping out the post-processings. Namely, one can ask if the
statistics of a set of observables can be included into the statistics of a single observable.
More precisely, a set of POVMs {Aa|x}a,x is called coexistent if there exists a POVM
{Cλ}λ such that

⋃

x

⋃

a∈Ax

Aa|x ⊆
⋃

λ∈C
Cλ, (2.4.0.18)

whereAx and C refer to the sigma-algebras generated by the outcomes of the corresponding
observables. Here, for example, A{1,2}|x refers to A1|x +A2|x.

It is then natural to ask if coexistence is indeed a proper generalisation of joint mea-
surability. First, joint observables (with deterministic post-processings) clearly work as
the observable C in Eq. (2.4.0.18). Second, to prove the strictness of this inclusion, we
evoke an example from [51]. Namely, define two qutrit POVMs as

Ai =
1

2
(I− |i〉〈i|), i = 0, 1, 2 (2.4.0.19)

B1 =
1

2
|ψ〉〈ψ|, B2 = I−B1, (2.4.0.20)

where |ψ〉 = 1√
3
(|0〉 + |1〉 + |2〉). To prove coexistence, clearly the following POVM does
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the job

Ci =
1

2
|i〉〈i|, i = 0, 1, 2 (2.4.0.21)

C3 = B1, C4 =
1

2
I−B1. (2.4.0.22)

Assuming now that the observables {Aa}a and {Bb}b are jointly measurable with a joint
observable {Ga,b}a,b and deterministic post-processings we get 0 ≤ Ga,1 ≤ B1 for a =
0, 1, 2. As B1 is rank one we have Ga,1 = caB1 for some 0 ≤ ca ≤ 1. Consequently,
Aa = Ga,1 +Ga,2 = caB1 +Ga,2 and

0 = 〈a|Aa|a〉 = ca〈a|B1|a〉+ 〈a|Ga,2|a〉 ≥
ca
3
. (2.4.0.23)

It follows that ca = 0 for a = 0, 1, 2 and B1 =
∑

aGa,1 = 0. Hence, the POVMs in
Eqs. (2.4.0.19, 2.4.0.20) are coexistent but not jointly measurable.

We are now in the point to show that the strict hierarchy between commutativity,
non-disturbance, joint measurability and coexistence does not exist for PVMs. To do this,
we recall the proof from [52]. As coexistence deals not only with outcomes of POVMs,
but also with the sigma-algebras generated by the outcomes, we will use the set notation
X instead of the otherwise used notation a for outcomes2. To start with, note that if a
POVM A has a projection A(X) in its range, then any other element A(Y ) of the range
commutes with A(X). To see this, write

A(X) = A(X ∩ Y ) +A(X\(X ∩ Y )) (2.4.0.24)

A(Y ) = A(X ∩ Y ) +A(Y \(X ∩ Y )) (2.4.0.25)

I ≥ A(X ∪ Y )

= A(X) +A(Y \(X ∩ Y )). (2.4.0.26)

Hence, clearly A(X ∩Y ) ≤ A(X) and A(Y \(X ∩Y )) ≤ I−A(X). As A(X) and I−A(X)
are both projections, one can write

A(X ∩ Y ) = A(X)A(X ∩ Y )A(X) (2.4.0.27)

A(Y \(X ∩ Y )) = (I−A(X))A(Y \(X ∩ Y ))(I−A(X)). (2.4.0.28)

The sum of these two operators gives

A(Y ) = A(X)A(X ∩ Y )A(X) + (I−A(X))A(Y \(X ∩ Y ))(I−A(X)). (2.4.0.29)

Multiplying this with A(X) either from left or right gives A(X)A(X∩Y )A(X) and, hence,
[A(X), A(Y )] = 0.

Now, if a PVM A : ΣA → L(H) and a POVM B : ΣB → L(H) are coexistent
with a common POVM C : ΣC → L(H), then A(X) = C(ZX) and B(Y ) = C(ZY )

2Note that the proof works also for continuous POVMs. For this case the former definition of a POVM
has to be slightly modified. Namely, a continuous POVM A : ΣA → L(H) is a mapping from the (Borel)
sigma-algebra ΣA of the outcome space ΩA to the set of bounded positive linear mappings satisfying
A(∅) = 0, A(ΩA) = I, A(∪iXi) =

∑
iA(Xi) for disjoint sets Xi ∈ ΣA. In the case of infinite-dimensional

Hilbert space, the operator sum is assumed to converge in the weak (or equivalently strong [38]) operator
topology
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for some sets ZX , ZY ∈ ΣC . The above deduction applied to the POVM C shows that
[A(X), B(Y )] = 0 ∀X ∈ ΣA, Y ∈ ΣB. Hence, for pairs of measurements including at least
one PVM, all the above notions of compatibility coincide.

2.5 Compatibility of state transformations

So far we have concentrated on compatibility of measurements through their statistics.
However, compatibility can be also formulated for other measurement descriptions [53, 54,
55]. As examples, one can ask the question about compatibility between an instrument
and a channel, instrument and a POVM, channel and a POVM, compatibility of two (or
more) channels and compatibility of two (or more) instruments. For our purposes, the
compatibility of instruments with channels and other instruments are of most interest,
as they provide the needed tools for mapping all steering problems (channel, spatial and
temporal) to joint measurability problems.

To start with, consider an assemblage of instruments {Ia|x}a,x. The assemblage is
called compatible if there exists an instrument {Iλ}λ and post-processings p(·|x, λ) such
that

Ia|x =
∑

λ

p(a|x, λ)Iλ. (2.5.0.30)

Noticing that compatible instruments necessarily have the same total channel, we can
reduce the question of instrument compatibility to assemblages {Ia|x}a,x with the property∑

a Ia|x =
∑

a Ia|x′ for all x, x′. Using the techniques introduced in subsection 1.3.1 (for
characterising the instruments compatible with a channel) we can write such instruments
through a minimal Stinespring dilation of the total channel as

Ia|x(ρ) = trA[(Aa|x ⊗ I)V ρV ∗] ∀ρ ∈ S(H). (2.5.0.31)

Using the fact that the instruments {Ia|x}a,x correspond one-to-one to the dummy POVMs
{Aa|x}a,x on the dilation space, we can easily characterise compatibility of instruments.
Namely, jointly measurable dummy POVMs lead clearly to compatible instrument assem-
blages. On the other hand, if an instrument assemblage is compatible, then the common
instrument {Iλ}λ has the same total channel as the instruments {Ia|x}a,x. Therefore,
there exists a unique POVM {Gλ}λ on the dilation space corresponding to the common
instrument. The compatibility of the instruments can be then written as

Ia|x(ρ) =
∑

λ

p(a|x, λ)trA[(Gλ ⊗ I)V ρV ∗] (2.5.0.32)

= trA[(
∑

λ

p(a|x, λ)Gλ ⊗ I)V ρV ∗] ∀ρ ∈ S(H). (2.5.0.33)

As the operators
∑

λ p(a|x, λ)Gλ form POVMs (over the index a) for every x, and as
the POVMs on the dilation space correspond one-to-one to the instruments, we have
Aa|x =

∑
λ p(a|x, λ)Gλ.

19



Steering and joint measurability

We are now ready to proceed to the results that led to this thesis. As the detailed results
are in the attached articles, we provide an introductory explanation of the ideas and
techniques used in the articles. This chapter covers the articles I-IV, the chapter Steering
detection covers the articles V and VI, and the chapter Bounding the noise tolerance of
incompatibility is about the article VII.

3.1 Spatial steering

In this part, we go through the articles I-III. The results cover the connection between
steering and joint measurements on three different levels: steerability of state assemblages
originating from pure states, steerability of state assemblages originating from mixed
states, and steerability of quantum states (i.e. assemblages originating from a general
state and all possible measurements on Alice’s side).

3.1.1 Non-joint measurability as a measurement resource for spatial
steering

In article I a connection between steering and joint measurements in finite dimensional
systems is presented. Namely, we show that in spatial steering, when optimisation over
all shared states is performed, steerability of Bob’s state assemblage is equivalent to non-
joint measurability of Alice’s observables1. The result allows one to translate various
results and concepts between the research fields of joint measurability and steering such
as incompatibility witnesses and local hidden state models. The work also includes a
numerical analysis about the possibility that non-jointly measurable observables don’t
necessarily lead to Bell non-locality. The analysis shows strong evidence that this would
indeed be the case2.

To be more concrete, we sketch the idea of the main result here. Consider a steer-
ing scenario with Alice and Bob both having a d-dimensional system. Notice first that
jointly measurable observables on Alice’s side lead always (i.e. with any shared state) to
an unsteerable assemblage on Bob’s side. For the opposite direction, label Alice’s mea-
surements by {Aa|x}a,x and let the shared state ρAB be of Schmidt rank d, i.e. of the

form ρAB =
∑d

i,j=1

√
λiλj |ii〉〈jj| with

∑d
i=1 λi = 1, λi > 0 ∀i and {|i〉}di=1 being an

1See also [56] for an independent proof of this result and [57] for a similar connection between non-joint
measurability and non-locality in bipartite scenarios with both parties having two binary measurements.

2Note that later a proof of this fact was presented in [58, 59].
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orthonormal basis, Bob’s conditional state assemblage reads

ρa|x = trA[(Aa|x ⊗ I)ρAB]

= trA[(Aa|x ⊗ I)(C ⊗ I)|ψ+〉〈ψ+|(C ⊗ I)], (3.1.1.1)

where |ψ+〉 = 1√
d

∑d
i=1 |ii〉 and C =

∑d
i=1

√
dλi|i〉〈i|. Using tr[(A ⊗ B)|ψ+〉〈ψ+|] =

1
dtr[ABT ] ∀A,B ∈ L(Cd), where (·)T refers to the transpose (in the basis {|i〉}di=1), we get

ρa|x =
1

d
CATa|xC. (3.1.1.2)

Now, if this assemblage is unsteerable with a local hidden state model given through an en-
semble {p(λ)ρλ}λ, we can define a joint observable for {Aa|x}a,x by Gλ = dC−1p(λ)ρTλC

−1.
Hence, we conclude that a set of POVMs is non-jointly measurable if and only if it can be
used for steering.

It follows that any joint measurement criterion on Alice’s observables translates into
a steering inequality and any local hidden state model translates to a joint observable
by the use of a Schmidt rank d state. For example cases, we refer to articles I and VII.
Moreover, it is clear that within the hierarchy of different types of incompatibility joint
measurability is the only one characterising the task of steering. Interestingly, there exists
coexistent observables which can be used for steering, see article I, [51], and subsection
2.4.3

3.1.2 Mapping between spatial steering and joint measurability prob-
lems

In article II we deepen the connection between joint measurability and steering by adding
mixed shared states into the picture. The results show that any steering problem can be
written as a joint measurability problem and vice versa. This makes the use of joint mea-
surement criteria as steering inequalities more straight-forward and opens up a possibility
to translate steering quantifiers into incompatibility quantifiers.

To be more precise, we define a mapping between state assemblages and POVMs. To
do this, take a (non-signalling) state assemblage {ρa|x}a,x and define ρB :=

∑
a ρa|x. By

inverting ρB (using a pseudo-inverse when necessary), we can define POVMs {Ba|x}a,x
through Ba|x := ρ

−1/2
B ρa|xρ

−1/2
B . Joint measurability of these POVMs is clearly equivalent

to the unsteerability of the assemblage {ρa|x}a,x.
Now any incompatibility criterion works as a steering inequality (even without the

use of a Schmidt rank d state) for various scenarios as the connection between POVMs
and state assemblages is one to many. For examples and for the translation of steering
quantifiers into incompatibility quantifiers we refer to article II.4

3Author’s contribution: The author of this thesis contributed to the proofs and examples in article
I, but not to the numerical calculations.

4Author’s contribution: The author of this thesis contributed to the proofs and examples in article
II, but not to the numerical calculations.
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3.1.3 Incompatibility breaking quantum channels

In article III we use a generalised Choi-Jamio lkowski isomorphism in order to find a con-
tinuous variable version of the connection between steering and joint measurements. This
results in a formalism where steerability of a state is mapped to incompatibility breaking
property of the corresponding quantum channel. The result allows one to solve seemingly
different steering problems in one go and to prove that canonical pairs of quadratures are
sufficient for steering in the Gaussian regime5.

To start with, recall that the Choi-Jamio lkowski isomorphism is usually defined only
for states which have a totally mixed marginal. This naturally limits the use of the iso-
morphism to finite-dimensional systems. To write a similar correspondence in the infinite-
dimensional case, one can consider states ρAB ∈ S(HA ⊗ HB) with a fixed full-rank
marginal σ = trA[ρAB] (note that here the roles of A and B are changed from the typical
Choi-Jamio lkowski isomorphism in order to have steering going from Alice to Bob). Now
there is a one-to-one correspondence between such states and channels T from Bob to
Alice given as

ρAB = (T ⊗ I)|Ωσ〉〈Ωσ|, (3.1.3.1)

where |Ωσ〉 =
∑

i

√
si|ii〉 ∈ S(HB ⊗HB) and {si}i are the eigenvalues of σ. For the proof,

see article III.
A crucial point in this correspondence is that the adjoint of the channel T is given as

σ1/2T ∗(A)σ1/2 = trA[(A⊗ I)ρAB]T , (3.1.3.2)

where (·)T is the transpose in the eigenbasis of σ. Notice that inputting POVMs to the
left hand side results in state assemblages on the right hand side. One can show (article
III) that the state ρAB is steerable with given measurements if and only if the correspond-
ing channel T breaks the incompatibility of these measurements. The connection is also
quantitative in that for a given state ρAB and given measurements {Aa|x}a,x an incompat-
ibility quantifier called incompatibility robustness of {T ∗(Aa|x)}a,x is equal to a steering
quantifier called (consistent) steering robustness of the state assemblage originating from
ρAB and {Aa|x}a,x (see article III).

To further justify the channel formulation, notice that one can encode properties of the
state into the channel. As shown in article III, for full Schmidt rank states the channel is
unitary (hence generalising the results of article I to the infinite-dimensional setting) and
for separable states the channel is entanglement breaking. Moreover, one can show that
steering with noisy NOON states and steering from an environment of a non-Markovian
system (with amplitude damping dynamics and initial state |1001〉) to the system have
the same steering channel, hence enabling one to solve seemingly different steering prob-
lems in one go. Furthermore, applying the formalism to the Gaussian regime allows one
to reproduce the known Gaussian steering criterion of [3] and to prove that steering of
Gaussian states can be already decided with some canonical pair of quadratures.6

5Note that as the basics about Gaussian systems are given in the article III, and as Gaussian systems
are not the main focus of this thesis, we don’t present the Gaussian formalism here.

6Author’s contribution: The author of this thesis contributed to the proof of the connection between
steering and joint measurements for Schmidt rank-d states in the infinite-dimensional case (which was
independently proven by the first author) and to the search of applications of the main result.
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3.2 Temporal and channel steering

In article IV we use channel steering as a unifying framework for temporal and spatial
steering. This way one can prove results for all three steering scenarios in one go and
translate results from one scenario to the other. This is demonstrated by proving that
channel steering is equivalent to non-joint measurability of certain observables (see below)
and that the known hierarchy between spatial steering and non-locality translates into a
hierarchy between temporal steering and non-macrorealism.

In section 1.3, the basic notions and the relation between channel and spatial steering
were already discussed. Namely, channel steering with one-dimensional input systems
results in spatial steering. The same is also true for temporal steering provided that
the assemblages of interest are non-signalling7. Hence, channel steering can be used to
approach both problems.

Recall that steerability of an instrument assemblage {Ia|x}a,x is defined as the non-
existence of the model

Ia|x =
∑

λ

p(a|x, λ)Iλ, (3.2.0.3)

where {Iλ}λ is an instrument and {p(·|x, λ)}x,λ are probability distributions. Now using
the techniques presented in subsection 1.3.1 we know that Eq. (3.2.0.3) is equivalent to the
joint measurability of the (dummy) observables {Aa|x}a,x on a minimal dilation of

∑
a Ia|x

that correspond to {Ia|x}a,x. Applying this result to channels with one-dimensional input
space gives a connection between joint measurability and both spatial and temporal steer-
ing. One can show (see article IV) that the connection between joint measurability of the
dummy observables {Aa|x}a,x and spatial steering can be used to reproduce the known
connection between joint measurability and spatial steering given in article II.

As in the case of spatial steering, such connection allows the use of joint measurability
criteria as steering witnesses. In contrast to spatial steering, channel steering extends the
applicability of these criteria to all three forms of steering.

In the above discussion, the use of a minimal dilation is crucial8. These dilations can
be also used to explore the connection between spatial and temporal steering. Namely, it
is fairly straight-forward to show that any non-signalling state assemblage has a spatial
realisation. Using this fact one can show (see article IV) that in order to produce any
non-signalling assemblage in the temporal scenario, it is sufficient to use non-signalling
instruments (even ones mapping between two systems of equal dimension are sufficient).
Hence, taking a channel whose minimal dilation has a bipartite state with interesting prop-
erties (here steerable but local) in the range of the isometry V we can produce temporally
steerable correlations which have a macrorealistic model.9,10

7Note that signalling assemblages are trivially steerable.

8See article IV for an example where the connection between joint measurability and steering fails for
a non-minimal dilation.

9Note that the hierarchy between temporal steering and non-macrorealism was independently proven
in [29].

10Author’s contribution: The author of this thesis contributed to the proofs and examples in article
IV.
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Steering detection

In this chapter we concentrate on the articles V and VI in which methods for steering
detection are derived. The first work shows how to map entropic uncertainty relations
into steering inequalities and the second one builds steering inequalities for dimensions-
bounded scenarios from entanglement witnesses.

4.1 Steering inequalities from generalised entropies

The idea of article V is to use the convex structure of local hidden state models together
with the fact that these models have a quantum description for Bob in order to derive
steering criteria. Namely, we show that jointly convex (and additive) functions with a
state-independent uncertainty type lower bound translate to steering witnesses.

We will sketch the proof for the special case of Shannon entropy here. First, consider
a local hidden state model

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)tr[ρλBb|y]. (4.1.0.1)

Here, we further assume all the measurements to have k values. Now, one can define a
function F (X,Y ) = −D(X ⊗ Y |X ⊗ I), where

D(P |Q) =
∑

i

piln
(pi
qi

)
(4.1.0.2)

is the relative entropy and P = (p1, ..., pk) and Q = (q1, ..., qk) are vectors of probabilities.
The notations X and Y refer to the vectors consisting of probabilities of outcomes of the
observables x and y, and the notation I refers to the uniform distribution (1/k, ..., 1/k).
With X ⊗ Y we refer to a vector consisting of joint probabilities.

The idea is to find a lower bound for F (X,Y ) given that a local hidden state model
exists. Now, for a fixed λ we define p(a, b|x, y, λ) := p(a|x, λ)tr[ρλBb|y]. As D is additive
for product distributions, we get (for a fixed λ)

F λ(X,Y ) := −
∑

a,b

p(a, b|x, y, λ)ln

(
p(a, b|x, y, λ)

p(a|x, λ)/k

)
= Sλ(Y )− ln(k), (4.1.0.3)

where Sλ(Y ) = −∑b tr[ρλBb|y]ln
{

tr[ρλBb|y]
}

. As the relative entropy is jointly convex,
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i.e.

D(λP1 + (1− λ)P2|λQ1 + (1− λ)Q2) ≤ λD(P1|Q1) + (1− λ)D(P2|Q2), (4.1.0.4)

the function F is jointly concave. Hence, we get

F (X,Y ) ≥
∑

λ

p(λ)F λ(X,Y ), (4.1.0.5)

where {p(λ)}λ is the probability distribution of hidden states. Writing the probability vec-
tors for Alice’s measurements x1, ..., xn as X1, ..., Xn and for Bob’s measurements y1, ..., yn
as Y1, ..., Yn, we get

∑

i

F (Xi, Yi) ≥
∑

i

{∑

λ

[
p(λ)Sλ(Yi)

]
− ln(k))

}
. (4.1.0.6)

An optimisation over all hidden state models translates to an optimisation of the quan-
tity

∑
i

∑
λ p(λ)Sλ(Yi) over all state ensembles. The result of such an optimisation is

an entropic uncertainty relation. As an example of such a relation, in the case Bob’s
measurements are y1 = σx and y2 = σz we have [60]

S(σx) + S(σz) ≥ ln(2). (4.1.0.7)

The inequality in Eq. (4.1.0.6) works already as a steering criterion. However, one can
still modify it by noticing that the quantity F (Xi, Yi) is actually the conditional entropy
minus the logarithm of the number of outcomes. Namely, we have

F (Xi, Yi) = S(Yi|Xi)− ln(k). (4.1.0.8)

Hence, the Shannon entropy based entropic steering criterion reads

∑

i

S(Yi|Xi) ≥ α(Y1, ..., Yk), (4.1.0.9)

where α(Y1, ..., Yk) is an entropic lower bound. Entropic lower bounds can be found by
numerical search, but also tight analytical bounds are known for several scenarios, see [61]
and references therein.

To give an example of a generalised entropy that can be mapped into a steering crite-
rion, we consider the Tsallis entropy (see also article V). Tsallis q-entropy (where q > 1)
and the respective relative entropy of a probability distributions P = (p1, ..., pk) and
Q = (q1, ..., qk) are defined as

Sq(P ) = −
∑

i

pqi lnqpi, (4.1.0.10)

Dq(P |Q) = −
∑

i

pilnq

(
qi
pi

)
, (4.1.0.11)

where lnq(pi) = x1−q−1
1−q . The relative entropy is jointly convex, but it is not additive for
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product distributions. Namely,

Dq(P1P2|Q1Q2) = Dq(P1|Q1) +Dq(P2|Q2) + (q − 1)Dq(P1|Q1)Dq(P2|Q2), (4.1.0.12)

where Pj = (pj1, ..., p
j
k) and Qj = (qj1, ..., q

j
k) for j = 1, 2. This, however, does not limit the

use of the technique presented above for the Shannon entropy. The only difference in the
resulting criterion is an extra term on the left hand side, see article V:

∑

i

(
Sq(Yi|Xi) + (1− q)C(Xi, Yi)

)
≥ αq(Y1, ..., Yk) (4.1.0.13)

where αq(Y1, ..., Yk) is an entropic bound and

C(Xi, Yi) =
∑

i

pqi
(
lnq(pi)

)2 −
∑

i,j

pqij lnq(pi)lnq(pij). (4.1.0.14)

For applications of this criterion we refer to the article V, where the strength of our
steering inequalities is compared to known steering witnesses. Interestingly, our technique
is optimal or close to optimal in many scenarios.1

4.2 Steering inequalities from entanglement theory

In article VI we develop a method for deciding the steerability of a state assemblage
{ρa|x}a,x by mapping it into an abstract operator ΣAB whose entanglement properties are
linked to the steering properties of the assemblage. Such a mapping unlocks the use of
entanglement witnesses in steering detection and, consequently, opens up the possibility
to go beyond the typical steering scenario through the use of dimension-bounded entangle-
ment techniques. These are scenarios where Alice’s measurements are uncharacterised and
Bob’s measurements have only a dimension-bound, but no further description of his mea-
surements is assumed. Moreover, we provide detection thresholds for dimension-bounded
steering that are no weaker than the known ones for steering in typical symmetric sce-
narios. Interestingly, these symmetric scenarios have been implemented in a loophole-free
steering experiment [62]. However, at the time of our work the data of the experiments
were not available.

To introduce the main idea of the paper, we sketch the aforementioned operator ΣAB

in a simple scenario. Namely, consider an unsteerable assemblage {ρa|x}a,x, where a = ±1
and x = 1, 2 with a deterministic local hidden state model given by

ρ+|1 = σ++ + σ+−, ρ−|1 = σ−+ + σ−− (4.2.0.15)

ρ+|2 = σ++ + σ−+, ρ−|2 = σ+− + σ−−. (4.2.0.16)

This state assemblage can be clearly produced by the use of a separable state

ηAB =
∑

i,j=±1

|ij〉〈ij| ⊗ σij , (4.2.0.17)

and measurements A±|1 = |±〉〈±| ⊗ I, A±|2 = I ⊗ |±〉〈±|. Hence, if the state ηAB would

1Author’s contribution: The author of this thesis contributed to miscellaneous calculations concern-
ing the proofs and examples in article V.
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be entangled, the underlying assemblage would be steerable. However, the state has
two drawbacks that reduce its use as a steering witness. First, the state is not completely
determined as the Eqs. (4.2.0.15,4.2.0.16) don’t have a unique solution in general. Namely,
a possible solution is

σ++ (4.2.0.18)

σ+− = ρ+|1 − σ++ (4.2.0.19)

σ−+ = ρ+|2 − σ++ (4.2.0.20)

σ−− = ρ∆ + σ++, (4.2.0.21)

where ρ∆ = ρB − ρ+|1 − ρ+|2 and ρB =
∑

a ρa|x. However, σ++ is not determined by
the solution. Second, the state ηAB is not a general separable state, but it is instead a
classical-quantum (or zero discord) state. As we aim to use general entanglement detection
techniques, we wish to remove this structure. To overcome the drawbacks, we turn our
focus to operators of the form

ΣAB =
∑

ij

Zij ⊗ σij , (4.2.0.22)

where Zij are positive semi-definite operators. Now the zero-discord structure is removed
and we can simply rewrite the operator in order to eliminate the redundancy that comes
with the unknown σ++ as

ΣAB = Z+− ⊗ ρ+|1 + Z−+ ⊗ ρ+|2 + Z−− ⊗ ρ∆ + (Z++ − Z+− − Z−+ + Z−−)⊗ σ++.

(4.2.0.23)

Hence, if we use operators {Zij}ij such that Z++ − Z+− − Z−+ + Z−− = 0, the operator
ΣAB is determined by the state assemblage. Moreover, if we pose the normalisation
condition tr[Z+−]tr[ρ+|1]+tr[Z−+]tr[ρ+|2]+tr[Z−−]tr[ρ∆] = 1 we see that ΣAB is indeed a
separable quantum state. Consequently, if ΣAB is entangled (or no quantum state), then
the underlying state assemblage is steerable.

In article VI we show how the mapping between state assemblages {ρa|x}a,x and quan-
tum states ΣAB works in more complicated scenarios. Moreover, we show that for a
steerable assemblage and an appropriate choice of the operators {Zij}ij the entanglement
of the corresponding state is detected by the swap entanglement witness. For applications
of the result, we refer to the article VI.2

2Author’s contribution: The author of this thesis contributed to the search of applications of the
main result through the connection between steering and joint measurements.
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Bounding the noise tolerance of in-
compatibility

The article VII introduces a simple technique for building joint observables for a given set
of measurements. The technique is based on measuring another set of observables, or more
precisely an ensemble of observables, which can be identified as a joint observable of the
desired set. The strategy results naturally in sufficient conditions for joint measurability.
Interestingly, the connection between steering and joint measurements presented in article
I together with the techniques presented in [14] can be used to prove the necessity of these
conditions in various symmetric scenarios.

To demonstrate our technique, we recall the simple compatibility problem presented
in subsection 2.3. Namely, let

Aµ±|x =
1

2

(
I± µσx

)
(5.0.0.1)

Aµ±|z =
1

2

(
I± µσz

)
. (5.0.0.2)

To build a joint observables for {A±|y}y=x,z, we wish to measure two other observables
{B±|y}y=1,2. An educated guess suggests that the other observables have Bloch vectors
lying in the (x, z)−plane. To adjust these Bloch vectors, one can try directions which give
in some sense the most information about the desired observables. One guess is then to use
the observables {A±|y}y=x,z themselves. Indeed, in some cases this gives good results, see
article VII. However, as these observables have orthogonal Bloch vectors, measuring one
doesn’t give any information about the other one. In order to get the most information
about {A±|y}y=x,z with B±|1 and B±|2, we choose

B±|1 =
1

2

(
I± 1√

2
(σx + σz)

)
(5.0.0.3)

B±|2 =
1

2

(
I± 1√

2
(σx − σz)

)
. (5.0.0.4)

As we wish to have only one observable (i.e. a joint observable), we put the above mea-
surements into a single ensemble. To get the correct marginals, we choose an ensemble
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with equal weights. This results in the following POVM

G(+,+) =
1

2
B+|1, G(+,−) =

1

2
B+|2 (5.0.0.5)

G(−,+) =
1

2
B−|2, G(−,−) =

1

2
B−|1, (5.0.0.6)

which turns out to be an optimal joint measurement, as the marginals are Aµ±|x and Aµ±|z
with µ = 1√

2
[42] (see also subsection 2.3).

Summarising the main ingredients of the above calculation, we write an adaptive strat-
egy for finding joint measurements in the qubit case. Assuming that the (unbiased) ob-
servables we want to measure are given by the Bloch vectors ~x1, . . . ~xM , the strategy reads
as follows.

1. Fix unit Bloch vectors ~y1, . . . , ~yN such that ~xl · ~yk 6= 0 for all l = {1, . . . ,M} and
k = {1, . . . , N}.

2. Choose k ∈ {1, . . . , N} with probability p(k).

3. Perform the ±1 valued measurement Bbk|k corresponding to ~yk.

4. For each l = {1, . . . ,M} the outcome al is bk if ~xl · ~yk > 0 and −bk if ~xl · ~yk < 0.

5. As a result, one gets a list (a1, . . . , aM ) of outcomes.

6. Add p(k)Bbk|k to joint observable’s corresponding POVM element.

7. If a combination (a1, . . . , aM ) does not result in the process, the corresponding
POVM element of the joint observable is set to be zero, i.e. G(a1, . . . , aM ) = 0.

Note that in the previous example the connection between joint measurements and
steering was not needed. To give an example of a situation, where the connection provides
an advantage, we apply the above guidelines to a set of M ≥ 2 unbiased qubit observables
{A±|k}Mk=1 given by the Bloch vectors

~xk = (cosθk, sinθk, 0), θk = (k − 1)π/M. (5.0.0.7)

Following the adaptive strategy, we need to first find suitable guess vectors. Upon trying
a few possibilities, one finds out that sets of guess vectors sharing similar symmetries
as the original vectors work nicely. Moreover, in many cases equal combinations of the
Bloch vectors {±~xk}k seems to result in an optimal joint observable. Using these intuitive
guidelines, let us first divide the example into two cases. Namely, consider first odd values
of M . For this case, one can choose the guess vectors to be exactly the original Bloch
vectors, i.e. ~yk = ~xk for all k. For the step two, we take a uniform distribution. For steps
three and four, we calculate

~xk · ~yl = cosθkcosθl + sinθksinθl (5.0.0.8)

= cos(θk − θl) (5.0.0.9)

= cos

(
(k − l)π
M

)
. (5.0.0.10)
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Hence,

~xk · ~yl > 0 if |k − l| < M/2, (5.0.0.11)

~xk · ~yl < 0 if |k − l| > M/2. (5.0.0.12)

The first marginal of G is then

∑

a2,...,aM=±1

G(a1, . . . , aM ) =
1

2

(
I + a1λ~x1 · ~σ

)
, (5.0.0.13)

where

λ =
1

M


1 + 2

(M−1)/2∑

k=1

cos(
kπ

M
)


 . (5.0.0.14)

By Lagrange’s trigonometric identity we have

(M−1)/2∑

k=1

cos(
kπ

M
) = −1

2
+

1

2 sin( π
2M )

. (5.0.0.15)

Similarly for an odd M one chooses

~yk =
(

cos(θk +
π

2M
), sin(θk +

π

2M
), 0
)
, (5.0.0.16)

θk =
(k − 1)π

M
. (5.0.0.17)

As in the case of an even M one gets a joint observable with the correct marginals. The
amount of noise is equal to the one in Eq. (5.0.0.14), i.e.

λ =
1

Msin( π
2M )

. (5.0.0.18)

To prove that this threshold is indeed optimal we use a steering inequality given in
[14] (see below). One first notices that the (white) noise in Alice’s measurements can be
transferred to the state shared by Alice and Bob in a steering scenario. For our purposes,
it is enough to consider the shared state to be the maximally entangled one, in which case
the noise transfers as

trA[(Aa|x ⊗ I)|ψ+
λ 〉〈ψ+

λ |] =trA[(Aλa|x ⊗ I)|ψ+〉〈ψ+|], (5.0.0.19)

where |ψ+
λ 〉〈ψ+

λ | = λ|ψ+〉〈ψ+|+ 1−λ
4 I⊗ I and Aλa|x = λAa|x + 1−λ

2 tr[Aa|x]I.
The steering inequality given in [14] reads in our scenario

1

M

M∑

k=1

tr[(Ak ⊗ ~ck · ~σk)|ψ+
λ 〉〈ψ+

λ |] ≤ CM , (5.0.0.20)
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where Ak = A+|k −A−|k, ~ck is a Bloch vector and the bound CM is

CM = max
~a

(
λmax

(
1

M

M∑

k=1

ak~ck · ~σk
))

, (5.0.0.21)

λmax (K) is the largest eigenvalue of a matrix K and ~a = (a1 . . . aM ). Inserting ~ck = ~yk
and the transposes of the observables given by the Bloch vectors ~xk for Alice we arrive at

λ ≤ 1

Msin( π
2M )

. (5.0.0.22)

Hence, a violation of the above inequality implies steerability and non-joint measurability
of Alice’s observables. As transposition does not affect joint measurability, we conclude
that the equally distributed planar observables are jointly measurable if and only if the
above condition holds.

In article VII we analyse various symmetric and non-symmetric scenarios together with
a generalisation of the adaptive strategy to higher dimensional systems. We demonstrate
the power of the strategy by providing optimal noise threshold for incompatibility in
cases including symmetric sets and non-symmetric pairs of qubit observables and pairs of
observables given by mutually unbiased bases in any finite-dimensional system.1

1Author’s contribution: The author of this thesis contributed to the derivation of various joint
measurement criteria.

31



Conclusions

In this thesis we have used a quantum measurement theoretical approach towards classical
models of quantum correlations. As the main result we have proved a deep connection
between a type of measurement incompatibility, namely joint measurability, and a type
of quantum correlations, namely quantum steering. As a consequence, we have translated
various results between the two fields and built an alternative formalism for steering.

On top of the main result and its implications, we have also mapped entropic un-
certainty relations to steering criteria and found ways to generate joint observables and,
hence, local hidden state models for steering tests. These results are powerful in the
sense that the former has managed to beat every known analytical steering criteria ei-
ther in strength or in applicability, and the latter has managed to provide optimal noise
thresholds for various incompatibility and steering scenarios.

The thesis has also broadened the typical steering setup by developing steering detec-
tion techniques for scenarios where one party is completely uncharacterised and the other
party has only a dimension-bound on their system. Such techniques are based on mapping
steering problems to entanglement and using dimension-bounded entanglement witnesses.

For future research it will be interesting to see if further connections between mea-
surement theoretical concepts, such as non-disturbance and coexistence, and quantum
information tasks, such as violations of Bell inequalities, macrorealism or contextuality,
can be drawn. Such connections, if existing, may provide powerful tools for all of these
fields.
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Article I

• Title: Joint measurability of generalised measurements implies classicality

• Authors: Roope Uola, Tobias Moroder, Otfried Gühne
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• Abstract: The fact that not all measurements can be carried out simultaneously is a
peculiar feature of quantum mechanics and is responsible for many key phenomena
in the theory, such as complementarity or uncertainty relations. For the special
case of projective measurements, quantum behavior can be characterized by the
commutator but for generalized measurements it is not easy to decide whether two
measurements can still be understood in classical terms or whether the already show
quantum features. We prove that a set of generalized measurements which does not
satisfy the notion of joint measurability is nonclassical, as it can be used for the task
of quantum steering. This shows that the notion of joint measurability is, among
several definitions, the proper one to characterize quantum behavior. Moreover, the
equivalence allows one to derive novel steering inequalities from known results on
joint measurability and new criteria for joint measurability from known results on
the steerability of states.

• Author’s contribution: The author of this thesis contributed to proofs and ex-
amples.
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The fact that not all measurements can be carried out simultaneously is a peculiar feature of quantum
mechanics and is responsible for many key phenomena in the theory, such as complementarity or
uncertainty relations. For the special case of projective measurements, quantum behavior can be
characterized by the commutator but for generalized measurements it is not easy to decide whether two
measurements can still be understood in classical terms or whether the already show quantum features.
We prove that a set of generalized measurements which does not satisfy the notion of joint
measurability is nonclassical, as it can be used for the task of quantum steering. This shows that
the notion of joint measurability is, among several definitions, the proper one to characterize quantum
behavior. Moreover, the equivalence allows one to derive novel steering inequalities from known results
on joint measurability and new criteria for joint measurability from known results on the steerability of
states.

DOI: 10.1103/PhysRevLett.113.160403 PACS numbers: 03.65.Ta, 03.65.Ca

Introduction.—Quantum theory is formulated in the
language of Hilbert spaces, where states correspond to
vectors or density matrices, and measurements are
described by Hermitian matrices, the so-called observables.
As realized by M. Born and P. Jordan, two observables A
and B do not necessarily commute, which means, in the
first place, that the corresponding measurements cannot be
carried out simultaneously in a direct way [1,2]. This
intuition can be made precise by formulating uncertainty
relations, where the commutator ½A; B� ¼ AB − BA quan-
tifies the degree of uncertainty about the values of A and B
[2–4]. Consequently there is the widespread opinion
that sets of noncommuting observables are central for
many quantum effects, while commuting observables are
considered to be classical.
It has turned out, however, that the notion of observables

is far too narrow to describe all measurements procedures
in quantum mechanics. This has led to the formulation of
generalized measurements or positive operator valued
measures (POVMs). Mathematically, a POVM consists
of a collection of operators E ¼ fEðiÞ; i ∈ Ig which are
positive, EðiÞ ≥ 0, and sum up to the identity,

P
iEðiÞ ¼ 1.

The POVM elements EðiÞ describe the measurement out-
comes and the probability of an outcome i is given by
pðiÞ ¼ tr½ϱEðiÞ�. Physically, any POVM can be realized by
first letting the physical system interact with an auxiliary
system and then measuring an ordinary observable on the
auxiliary system. Finally, any observable A is also a POVM
if one identifies the EðiÞ with the projectors onto the
eigenspaces of A, in which case the measurement is also
called a projection valued measure (PVM).
Given the notion of generalized measurements the

question arises, when two or more POVMs can be
considered to be nonclassical. One possibility is to require

the commutativity of all the POVM elements, but more
refined notions are useful. Indeed, several notions such as
“nondisturbance,” “joint measurability,” and “coexistence”
have been introduced and their investigation is an active
area of research [5–9].
In this Letter, we argue that the notion of joint

measurability is the proper one to describe the classical
behavior of two or more generalized measurements. To do
so, we establish a connection between joint measurability
and the task of quantum steering. Quantum steering refers
to the scenario, where one party, usually called Alice,
wishes to convince the other party, called Bob, that she
can steer the state at Bob’s side by making measurements
on her side. This task was introduced by E. Schrödinger to
demonstrate the puzzling effects of quantum correlations
[10] and recently it has attracted increasing attention again
[11–16].
More precisely, we show that a set of POVMs in the

finite dimensional case is nonjointly measurable if and only
if the set can be used for Alice to show the steerability of
some quantum state. This allows one to derive new steering
inequalities from results known for joint measurability, and
we will also find new criteria for joint measurability from
results on steering. Finally, we demonstrate that other
possible extensions of commutativity to generalized mea-
surements, such as coexistence, lead to nonclassical effects
and we explore the relation of joint measurability to Bell
inequality violations.
Joint measurability.—The notion of joint measurability

is most conveniently introduced with an example. The
Pauli spin matrices σx and σz are noncommuting and cannot
be measured jointly. However, one can consider the
smeared or unsharp measurements Sx and Sz, defined
by the POVM elements Sxð�Þ ¼ 1

2
ð1� ð1= ffiffiffi

2
p ÞσxÞ and
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Szð�Þ ¼ 1
2
ð1� ð1= ffiffiffi

2
p ÞσzÞ. It was shown in Ref. [17] that

these are jointly measurable: One can consider the joint
observable

Gði; jÞ ¼ 1

4

�
1þ iffiffiffi

2
p σx þ

jffiffiffi
2

p σz

�
; i; j ∈ f−1;þ1g;

ð1Þ

and since Sxð�Þ ¼ P
jGð�; jÞ and Szð�Þ ¼ P

iGði;�Þ,
one can jointly determine the probabilities of the general-
ized measurements Sx and Sz by measuring G.
More precisely, joint measurability of the set fEkg

of POVMs can be formulated as the existence of a set
of positive operators fGðλÞg from which the original
observables can be attained as

X
λ

DλðxjkÞGðλÞ ¼ EkðxÞ for all x; k; ð2Þ

with
P

λGðλÞ ¼ 1 and where DλðxjkÞ are positive con-
stants with

P
xDλðxjkÞ ¼ 1 [18]. In practice, this means

that the probabilities of the results EkðxÞ can be determined
by measuring the operators GðλÞ and classically postpro-
cessing the data.
Quantum steering.—The essence of steering can also be

described by an example. Let us assume that two parties,
Alice and Bob, share a maximally entangled two-qubit state
jψi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

. If Alice measures the Pauli oper-
ators σx or σz, the state on Bob’s side will be an eigenstate
jx�i or jz�i depending on Alice’s measurement and result.
Since all these states are pure, Bob cannot explain this by
assuming that he has a fixed marginal state ϱB which is only
modified due to the additional knowledge from Alice’s
measurements. So Bob must conclude that Alice can steer
the state in his lab by making measurements on her side.
The question arises whether the same phenomenon occurs
if Alice uses the smeared measurements Sx and Sz
introduced above. This will be answered in full generality
in the following.
First, we label Alice’s and Bob’s POVMs by fAkg and

fBlg and the system’s state by ϱAB. Clearly, the scenario is
nonsteerable if the probabilities of possible events can be
written in the form

tr½ϱABAkðxÞ ⊗ BlðyÞ� ¼
X
λ

pðλÞpðxjk; λÞtr½ϱλBlðyÞ� ð3Þ

because then Bob can assume that he has the collection of
states ϱλ with probabilities pðλÞ which is only modified by
additional information from Alice’s measurements quanti-
fied by conditional probability distributions pðxjk; λÞ. We
can write the left-hand side of this equation as

tr(trAf½AkðxÞ ⊗ 1�ϱABgBlðyÞ) ≕ tr½ϱxjkBlðyÞ� ð4Þ

and if Bob’s measurements are tomographically complete it
follows that ϱxjk ¼

P
λpðλÞpðxja; λÞϱλ. If, on the other

hand, the quantities ϱxjk admit this kind of a decomposition
(also called a hidden state model) we conclude that the
scenario is nonsteerable.
This can be reformulated as suggested in Refs. [12,13]:

Steering is equivalent to the nonexistence of a set of
positive operators fσλg such that

X
λ

pðxjk; λÞσλ ¼ ϱxjk for all x; k; ð5Þ

with trðPλσλÞ ¼ 1 and where ϱxjk ¼ trAf½AkðxÞ ⊗ 1�ϱABg
are Bob’s not-normalized conditional states. The formal
similarity between Eq. (2) and Eq. (5) is appealing and, as
we will see now, no coincidence.
Steering and joint measurements.—Consider the case

where Alice has observables fAkg which are jointly
measurable. Using Eq. (2) we can write for any steering
scenario the conditional states of Bob as

ϱxjk ¼
X
λ

DλðxjkÞtrAf½GðλÞ ⊗ 1�ϱABg; ð6Þ

which is a decomposition as in Eq. (5). Therefore, if Alice’s
observables are jointly measurable then the scenario is
nonsteerable.
Conversely, if the measurements are nonjointly measur-

able, one can always find a state which can be used for
steering: For the maximally entangled state jϕþi ¼
1=

ffiffiffi
d

p P
d
i¼1 jiii one can write Bob’s conditional states as

ϱxjk ¼ trA½ðAkðxÞ ⊗ 1Þjϕþihϕþj� ¼ 1

d
½AkðxÞ�T: ð7Þ

If the scenario is not steerable then one can find a set of
positive operators fσλg and a set of positive numbers
pðxjk; λÞ such that

AkðxÞ ¼ d
X
λ

pðxjk; λÞσTλ ≕
X
λ

DλðxjkÞGðλÞ; ð8Þ

where GðλÞ ¼ dσTλ . This is just the joint measurability
condition from Eq. (2). Note that by summing over x in
Eq. (8) we see that G is properly normalized. We now state
the main result of this article.
Observation 1: Generalized measurements are non-

jointly measurable if and only if they can be used for
quantum steering.
Let us note that the reasoning prior to Observation 1 was

done for the maximally entangled state. Steering is,
however, invariant under stochastic local operations and
classical communication [19] on the characterized (Bob’s)
side. This means that any state which is obtained from the
maximally entangled one by stochastic local operations and
classical communication can be used to show steering for a
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set of nonjointly measurable observables. Therefore, any
pure Schmidt rank d state (possibly having an arbitrarily
small amount of entanglement) reveals steering.
We exploit the connection by giving a generic incom-

patibility criteria for sharp observables, deriving a steering
inequality based on the Fermat-Torricelli point, and point-
ing out two interesting notes on different formulations of
simultaneous measurability.
From steering to incompatibility.—We show that there

exists a threshold value of white noise [that is, adding the
identity as in Eq. (11)] that one needs to add in order to get
any set of PVMs jointly measurable. For this purpose we
need the following connection between noisy states and
noisy observables:

trA½AkðxÞ ⊗ 1ϱλAB� ¼ trA½Aλ
kðxÞ ⊗ 1ϱAB�; ð9Þ

where

ϱλAB ¼ λϱAB þ 1 − λ

d
1 ⊗ trA½ϱAB�; ð10Þ

Aλ
kðxÞ ¼ λAkðxÞ þ

1 − λ

d
tr½AkðxÞ�1: ð11Þ

In order to obtain the threshold value we take the
known result from Ref. [11] stating that the maximally
entangled state is steerable with PVMs up to the amount
λ� ≔ ðHd − 1Þ=ðd − 1Þ of white noise, where Hd ¼P

d
n¼1ð1=nÞ. Using Eq. (9) and Observation 1 one obtains

that for any smearing parameter λ ≥ λ� there must exist a
set of PVMs which is noise resistant up to the amount λ of
white noise; i.e., one can add this amount of white noise to
the PVMs without making them jointly measurable. On the
other hand, the maximally entangled state reveals steering
for nonjointly measurable observables, so all PVMs must
be jointly measurable with the amount λ� of white noise.
Thus, we arrive at the following result.
Observation 2: In a d-dimensional Hilbert space, any set

of sharp observables is jointly measurable with the amount
λ� of white noise. Moreover, for any amount of smearing
above this limit there exists a set of PVMs which remains
nonjointly measurable.
Note that this is formerly known to be sufficient for

d ¼ 2 [20]. The result leads to an interesting open question:
Are there sets of POVMs which remain nonjointly meas-
urable with the amount λ� of white noise? If this is the case
then PVMs are not enough for concluding steerability of a
state and if it is not the case then this directly leads to new
local hidden variable models for POVMs.
Fermat-Torricelli steering inequality.—There are many

results of joint measurability known in terms of white
noise resistance [17,21,22]. As an example, consider that
Alice has three dichotomic unbiased [i.e., pð�jkÞ ¼ 1

2
]

measurements while Bob’s conditional (normalized) qubit
states are characterized by the Bloch vector ~xk, k ¼ 1; 2; 3.

Using the joint measurability criterion of Ref. [23] we see
steering iff

jj~x1 þ ~x2 þ ~x3 − ~xFT jj þ jj~x1 − ~x2 − ~x3 − ~xFT jj
þ jj~x1 − ~x2 þ ~x3 þ ~xFT jj þ jj~x1 þ ~x2 − ~x3 þ ~xFT jj > 4;

ð12Þ

where ~xFT denotes the Fermat-Torricelli point of the vectors
~x1 þ ~x2 þ ~x3, ~x1 − ~x2 − ~x3, −~x1 þ ~x2 − ~x3, and −~x1 − ~x2þ
~x3; i.e., it is the vector that minimizes the sum in Eq. (12).
Coexistence leads to a nonclassical effect.—Coexistence

of POVMs A1 and A2 means the possibility of making a
measurement G of which statistics include the statistics of
A1 and A2. To be more precise, A1 and A2 are coexistent if
their POVM elements are contained in the range (i.e., all
possible sums of POVM elements) of a third POVM G.
Note that contrary to joint measurements, the statistics do
not need to originate from a postprocessing scheme as in
Eq. (2). To clarify the notion we present an example given
in Ref. [5] which was originally used to show that
coexistence is more general than joint measurability; for
a similar example, see Ref. [8].
In C3 define jφi ¼ 1=

ffiffiffi
3

p ðj1i þ j2i þ j3iÞ and a POVM
G by the elements f1

2
j1ih1j; 1

2
j2ih2j; 1

2
j3ih3j; 1

2
jφihφj;

1
2
ð1 − jφihφjÞg. One sees straightforwardly that the meas-

urement statistics of a three-valued POVM A1 defined as
A1ðiÞ ¼ 1

2
ð1 − jiihijÞ and a two-valued POVM A2 defined

as A2ð1Þ ¼ 1
2
jφihφj, A2ð2Þ ¼ 1 − A2ð1Þ are contained in

the measurement statistics of G; hence, they are coexistent.
In Ref. [5] it was shown that these measurements are
nevertheless nonjointly measurable due to the lack of a
postprocessing relation. By Observation 1 we conclude the
following.
Observation 3: As coexistence is more general than joint

measurability it can reveal steering; i.e., it can lead to
nonclassical effects in the distributed scenario.
Disturbing measurements can be useless for steering.—

One way to define the classicality of two measurements,
say A1 and A2, is to say that the measurement of A1 does not
disturb the measurement of A2. This means that a meas-
urement of A1 updates the state in such a way that a
subsequent measurement of A2 has the same statistics
for both the updated and the original state. It was shown
in Ref. [9] that there exists pairs of observables that can
be measured jointly even though they do not admit a
nondisturbing sequential measurement. Using this together
with Observation 1 we conclude that disturbing measure-
ments do not necessarily lead to steering.
Joint measurability and nonlocality.—From the previous

discussion we know that any nonjointly measurable set of
POVMs can reveal its “quantumness” in a strictly non-
classical, nonlocal effect, more precisely, in the form of
steering. Steering is, however, not the ultimate strongest
form of nonlocality since one still needs a quantum
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description on one side. Thus, it is of course a natural
question whether this connection can even be strengthened,
so whether it also holds that any nonjointly measurable set
of POVMs can show nonclassicality in a Bell-type
scenario.
This is indeed the case for two dichotomic measurements

as has been shown by Wolf et al. in Ref. [24]. It also holds
for an arbitrary number of PVMs. In the following, we
argue that it would be very surprising if this connection
were to hold in general, since via a very simple example
one encounters already large difficulties.
Consider the three dichotomic spin measurements of a

qubit Aλ
kð�Þ ¼ ð1� λσkÞ=2 with k ∈ fx; y; zg. As already

mentioned, the additional parameter λ characterizes the
noise on these measurements. For λ ¼ 1 the measurements
Ak ≔ Aλ¼1

k are noncommuting projectors, while for λ ≤
1=

ffiffiffi
3

p
≈ 0.5774 the set of POVMs becomes jointly meas-

urable. Suppose that joint measurability and nonlocality are
as strongly connected as steering. This would mean that for
any noisy, but nonjointly measurable set of these POVMs,
i.e., for all 1=

ffiffiffi
3

p
< λ, it is possible to find a respective

bipartite state ϱAB and corresponding measurements for
Bob BlðkÞ, such that the obtained data Pð�; yjk; lÞ ¼
tr½ϱABAλ

kð�Þ ⊗ BlðyÞ� violate a Bell inequality.
In the search for such an appropriate state, first note that

pure states ϱAB ¼ jψihψ j are sufficient, since any mixed
state can only violate a Bell inequality if at least one pure
state from its range does so. Using the Schmidt decom-
position together with the fact that dimðHAÞ ¼ 2 we can
write the most general pure state as jψi ¼ UA ⊗ UBjψ si
with jψ si ¼ sj00i þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
j11i where 1=

ffiffiffi
2

p
≤ s ≤ 1.

Sincewe optimize Bob’s measurements we can additionally
assume UB ¼ 1, meaning that Bob similarly holds a qubit.
Next we also wish to transfer the noise of the measurements
into the state, as given by Eq. (9). Thus, rather than looking
for a pure state which violates a Bell inequality using the
noisy measurements Aλ

k, we can equivalently search for a
mixed state that violates a Bell inequality with perfect
measurements Ak. To sum up, we would need to show that
for any parameter λ > 1=

ffiffiffi
3

p
, a state of the form

ϱABðs;UAÞ ¼ λUA ⊗ 1jψ sihψ sjU†
A ⊗ 1

þ ð1 − λÞ1=2 ⊗ trA½jψ sihψ sj� ð13Þ

with appropriately chosen 1=
ffiffiffi
2

p
≤ s ≤ 1 and UA violates a

Bell inequality using the three perfect spinmeasurements on
system A, and arbitrary measurements for system B.
Let us start with the maximally entangled state,

s ¼ 1=
ffiffiffi
2

p
, for which it is known that it does not violate

a Bell inequality using projective measurements if λ ≤
0.6595 [25]. Hence, for the given noisy nonjointly meas-
urable set of POVMs within 1=

ffiffiffi
3

p
< λ ≤ 0.6595, the data

of the maximally entangled state, using also projective
measurements for Bob, will not display any nonlocality.
For nonmaximally entangled states the situation is much

less analyzed, especially under the influence of nonwhite
noise as in Eq. (13). The statement extends, however, to
1=

ffiffiffi
3

p
< λ ≤ 0.6009 [25] for arbitrary, nonmaximally

entangled states if one wants to reproduce the full corre-
lations. Thus, the only Bell inequalities that remain are the
ones with marginals.
A different way to prove that certain states do not violate

a Bell inequality is to write them as a convex combination
of states known to possess a local hidden variable model for
the considered configuration

ϱABðs;UAÞ ¼
X
i

piϱ
LHV
i : ð14Þ

Generic states that we consider in this decomposition
include (i) noisy Bell states with λ ≤ 0.6595 and (ii) states
with two symmetric extensions for system A [26]. States of
class (ii) are known to have a local hidden variable model
for three generic measurements for system A [27], such that
we exploit the fact that Alice has only a restricted number
of measurements. Such a search for symmetric extensions
can be easily done with semidefinite programming [28].
Figure 1 shows, depending on the Schmidt coefficient s
(and for all UA), the respective maximal values of λ when
such a decomposition is possible. As can be seen for
s ≤ 0.835, there is always a noise parameter λ > 1=

ffiffiffi
3

p
such that the given set of POVMs is nonjointly measurable,
but the measured state will not violate a Bell inequality
using an arbitrary number of projective measurements for
Bob. Finally, if one additionally constrains Bob to perform
only n different dichotomic measurements then one can
further add (iii) the class of states that have n − 1 symmetric
extensions for system B. As shown in Fig. 1 for n ≤ 6, such
a decomposition is possible for all values of s. Thus, there

 0.5
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FIG. 1. Maximal values of λ when a decomposition as given by
Eq. (14) is possible for all UA depending on the Schmidt
coefficient s. It shows that a pure state with s ≤ 0.835 is never
able to reveal Bell nonlocality for an arbitrary number of
projective measurements, while for n ≤ 6 projective measure-
ments it is not possible for any state.
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exists a parameter λ > 1=
ffiffiffi
3

p
such that the corresponding

set of POVMs is nonjointly measurable but no quantum
state will display nonlocality if Bob only carries out 6
dichotomic measurements.
These observations give strong hints that there are sets of

POVMs which are nonjointly measurable, but which are
nevertheless useless to certify nonlocality.
Conclusions.—We have shown that joint measurability

and quantum steering are intrinsically connected: A col-
lection of different measurements are nonjointly measur-
able if and only if they can reveal its “nonclassicality” as a
violation of a steering inequality. This connects the abstract
notion of joint measurability to an explicit nonlocality task,
and thereby singles out nonjoint measurability as a special
nonclassical property among other peculiar quantum
features of measurements.
Since measurements are as relevant as quantum states,

we believe that this connection will spur the resource theory
of measurements, i.e., which kind of measurements are
required for certain tasks. This investigation could provide
some operational meaning to other quantum properties of
measurements such as disturbance or noncoexistence in the
distributed scenario.
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Note added.—After finishing this work we noticed that
similar results were obtained in Ref. [29].
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Quantum steering refers to the possibility for Alice to remotely steer Bob’s state by performing local
measurements on her half of a bipartite system. Two necessary ingredients for steering are entanglement
and incompatibility of Alice’s measurements. In particular, it is known that for the case of pure states of
maximal Schmidt rank the problem of steerability for Bob’s assemblage is equivalent to the problem of
joint measurability for Alice’s observables. We show that such an equivalence holds in general; namely, the
steerability of any assemblage can always be formulated as a joint measurability problem, and vice versa.
We use this connection to introduce steering inequalities from joint measurability criteria and develop
quantifiers for the incompatibility of measurements.

DOI: 10.1103/PhysRevLett.115.230402 PACS numbers: 03.65.Ud, 03.65.Ta

Introduction.—Steering is a quantum effect by which one
experimenter Alice can remotely prepare an ensemble of
states for another experimenter Bob by performing a local
measurement on her half of a bipartite system and commu-
nicating the results to Bob. Introduced by Schrödinger in
1935 [1], quantum steering is a form of quantum correlation
intermediate between Bell nonlocality and entanglement.
It has recently attracted increasing interest [2–7], both from
a theoretical and experimental perspective, and it has been
recognized as a resource for different tasks such as one-sided
device-independent quantum key distribution [8,9] and
subchannel discrimination [10]. In addition, the question
of which quantum states can be used for steering can be
addressed with efficient numerical techniques, contrary to
the notion of entanglement or the question of which states
violate a Bell inequality. In this way, the notion of steering
has been used to find a counterexample to the Peres
conjecture, a long-standing open problem in entanglement
theory [11,12].
A successful implementation of a steering protocol

involves different elements, e.g., entangled states and
incompatible measurements, and therefore steering has
been investigated under different perspectives. On the
one hand, allowing for an optimization over all possible
quantum states or, equivalently, considering the maximal
entangled state, steering has been identified with the lack of
joint measurability of Alice’s local observables [13,14],
similarly to the case of nonlocality [15]. On the other hand,
if an optimization over all possible measurements for Alice
has been considered, steering has been identified with a
property of the state allowing for optimal subchannel
discrimination when one is restricted to local measurements
and one-way classical communication [10]. In addition,
a very natural and interesting framework for steering is
that of one-sided device-independent quantum information
processing [16–18]. In the case of device-independent

quantum information processing, both parties are
untrusted; hence, no assumption is made on the system
and the measurement apparatuses and the only resources
are the observed (nonlocal) correlations. Similarly, in one-
sided device-independent scenarios, where only one party
(Bob) is trusted, it is natural to identify the resources for
information processing tasks with the ensemble of states
Bob obtains as a consequence of Alice’s measurement
(see also Ref. [19] for a discussion of this point).
Taking the above perspective, we are able to prove that

any steerability problem can be translated into a joint
measurability problem, and vice versa. This result connects
the well-known theory of joint measurements [20,21] and
uncertainty relations [22–25] to the relatively new research
direction of steering. This is done by mapping any state
ensemble for Bob in a corresponding steering-equivalent
positive operator valued measure (POVM). This simple
technique is shown to give an intuitive way of generalizing
the known results [13,14]. Moreover, the power of the
technique is demonstrated by mapping joint measurement
uncertainty relations [22] into steering inequalities, and
discussing the role of known steering monotones as
monotones for incompatibility.
Preliminary notions.—Given a quantum state ρ, i.e., a

positive operator with trace 1, an ensemble E ¼ fρag for ρ
is a collection of positive operators such that

P
aρa ¼ ρ.

An assemblage A ¼ fExgx is a collection of ensembles for
the same state ρ, i.e.,

P
aρajx ¼ ρ, for all x. Similarly, a

measurement assemblageM ¼ fMajxga;x is a collection of
operators Majx ≥ 0 such that

P
aMajx ¼ 1 for all x. Each

subset fMajxga is called a POVM, and it gives the outcome
probabilities for a general quantum measurement via the
formula PðajxÞ ¼ tr½Majxρ�.
A measurement assemblage M ¼ fMajxga;x is defined

to be jointly measurable (JM) [26] if there exist numbers
pMðajx; λÞ and positive operators fGλg such that
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Majx ¼
X
λ

pMðajx; λÞGλ ð1Þ

with
P

λGλ ¼ 1, pMðajx; λÞ ≥ 0, and
P

apMðajx; λÞ ¼ 1.
Physically, this means that all the measurements in the
assemblage can be measured jointly by performing the
measurement fGλg and doing some postprocessing of
the obtained probabilities.
In a steering scenario, a bipartite state ρAB is shared

by Alice and Bob. Alice performs measurements on her
system with possible settings x and possible outcomes a,
that is, the measurement assemblage fAajxga;x. As a result
of her measurement with the setting x, Bob obtains the
reduced state ϱðajxÞ with probability PðajxÞ. Such a
collection of reduced states and probabilities defines the
state assemblage fρajxga;x, where

ρajx ¼ trA½ðAajx ⊗ 1ÞρAB� ð2Þ
with PðajxÞ ¼ tr½ðAajx ⊗ 1ÞρAB� ¼ trB½ρajx� and ϱðajxÞ ¼
ρajx=PðajxÞ. In particular, elements of the assemblage
satisfy

ρB ¼
X
a

ρajx ¼
X
a0
ρa0jx0 ; for all settings x; x0; ð3Þ

where ρB ¼ trA½ρAB�. This expresses the fact that Alice
cannot signal to Bob by choosing her measurement x.
A state assemblage fρajxga;x is called unsteerable if there

exists a local hidden state (LHS) model, namely, numbers
pρðajx; λÞ ≥ 0 and positive operators fσλg such that

ρajx ¼
X
λ

pρðajx; λÞσλ ð4Þ

with tr½Pλσλ� ¼ 1. A state assemblage is called steerable
if it is not unsteerable. The physical interpretation is the
following. If the assemblage has a LHS model, then Bob
can interpret his conditional states ρajx as coming from
the preexisting states σλ, where only the probabilities are
changed due to the knowledge of Alice’s measurement and
result. Contrary, if no LHS model is possible, then Bob
must believe that Alice can remotely steer the states in his
lab by making measurements on her side.
Steerability as a joint measurability problem.—We now

prove the main results of the Letter, namely, that the
steerability properties of a state assemblage can always
be translated in terms of the joint measurability properties
of a measurement assemblage.
Let fρajxga;x be a state assemblage and ρB the

corresponding total reduced state for Bob. We define
ΠB∶HB → KρB ⊂ HB as the projection on the subspace
KρB≔rangeðρBÞ; i.e., ΠBΠ�

B ¼ 1KρB
and Π�

BΠB is a
Hermitian projector in LðHBÞ.
Since ρajx are positive operators, Eq. (3) implies

rangeðρajxÞ ⊂ rangeðρBÞ for all a, x [27]. Hence, we can

define the restriction of our assemblage elements to the
subspace KρB as ~ρajx ¼ ΠBρajxΠ�

B and ~ρB ¼ ΠBρBΠ�
B,

preserving the positivity of the operators. Such a restriction
is needed in order to define ð~ρBÞ−1

2 (see below). Then,
we define Bob’s steering-equivalent (SE) observables
Bajx ∈ LðKρBÞ as

Bajx ¼ ð~ρBÞ−1
2 ~ρajxð~ρBÞ−1

2: ð5Þ

These operators are clearly positive and, by Eq. (3),P
aBajx ¼ 1KρB

; hence, fBajxga forms a POVM. We can
formulate the first equivalence.
Theorem 1. The state assemblage fρajxga;x is unsteer-

able if and only if the measurement assemblage fBajxga;x
defined by Eq. (5) is jointly measurable.
Proof.—First, notice that it is sufficient to discuss the

existence of a LHS model for f~ρajxga;x. From Eqs. (4) and
(1), one can easily see that from a LHS for f~ρajxga;x one can
construct a joint observable for fBajxga;x and vice versa.
The corresponding LHS model and joint observable are
obtainable via the relation

Gλ ¼ ð~ρBÞ−1
2 ~σλð~ρBÞ−1

2; ð6Þ

where ~σλ denotes the elements of the LHS for ~ρajx. □

The above theorem shows that every steerability problem
can be recast as a joint measurability problem. The other
direction is trivial, since every joint measurability problem
corresponds, up to a multiplicative constant, to a steer-
ability problem with ρB ¼ 1=d. We can then state the main
result.
Theorem 2. The steerability problem of any state

assemblage fρajxga;x can be translated into a joint meas-
urability problem for a measurement assemblage fMajxga;x,
and vice versa.
It is now interesting to discuss the interpretation of

Bob’s SE observables. Let ρ ¼ P
n
i;j¼1 λiλjjiiihjjj be a pure

state on a finite-dimensional Hilbert HA ⊗ HB, where
fjiiAgdA1 ,fjiiBgdB1 are the local bases associated with the
above Schmidt decomposition of ρ, n ≤ minfdA; dBg,
λl > 0, and tr½ρ� ¼ P

iλ
2
i ¼ 1.

The reduced states for Alice and Bob have in such
basis an identical form, namely, ρX ¼ P

n
i¼1 λ

2
i jiihijX with

X ¼ A; B; hence, their ranges KρA , KρB are isomorphic
through the obvious mapping jiiA↔jiiB. Using that, we
can formally write

ρajx ¼ trA½ðAajx ⊗ 1Þρ�

¼
Xn
i;j¼1

λiλjhjjAajxjiijiihjj ¼ ρ1=2A At
ajxρ

1=2
A ; ð7Þ

recovering a similar relation as in Eq. (5). The only missing
step is to invert the relation by projecting on KρB and
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writing the inverse ρ−1=2A . Hence, for any pure state,
Theorem 1 gives us a clear interpretation of Bob’s SE
observables that generalizes the result given in
Refs. [13,14], namely, that for a Schmidt rank d state it is
sufficient for Alice to use nonjointly measurable observ-
ables in order to demonstrate steering.
Remark. For a pure bipartite state, in order for Alice to

demonstrate steering, her observable must be not jointly
measurable even when restricted to the subspace where her
reduced state ρA does not vanish.
Notice that the above remark holds also for pure

separable states; however, since the corresponding sub-
spaceKρA is one dimensional, joint measurability of Alice’s
observables is always trivially achieved.
For the case of mixed states, a straightforward gener-

alization of the above argument, e.g., via convex combi-
nations, is not possible. Hence, the physical interpretation
of Bob’s SE observable for mixed states remains an open
problem.
Steering inequalities.—We use the above result to give

new steering inequalities for an assemblage arising from
two and three dichotomic measurements for Alice when
Bob’s system is a qubit. We begin with the assemblage
arising from two dichotomic measurements.
Given the assemblage fρajxg, with a¼� and x ∈ f1; 2g,

written in terms of Pauli matrices ~σ ¼ ðσ1; σ2; σ3Þ as
ρ�jx ¼ t�x 1þ ~s�x · ~σ ð8Þ

with ~s�x ¼ ðs�1x; s�2x; s�3xÞ, the only nontrivial case corre-
sponds to a reduced state ρB ¼ P

a¼�ρajx of rank 2;
otherwise, the total state would be separable.
Then, the SE observables for Bob can be written as

Bþjx ¼
1

2
½ð1þ αxÞ1þ ~rx · ~σ�; B−jx ¼ 1 − Bþjx ð9Þ

with αx and ~rx ¼ ðr1x; r2x; r3xÞ being functions of the
assemblage fρajxg; the explicit forms of these functions
are given in the the Supplemental Material [28]. For such
observables Busch et al. [22] have defined the degree
of incompatibility to be the amount of violation of the
following inequality

∥~r1 þ ~r2∥þ ∥~r1 − ~r2∥ ≤ 2: ð10Þ
This inequality is a measurement uncertainty relation for
joint measurements and as such it is a necessary condition
for the joint measurability of two observables on a qubit
(see also Ref. [21]). A violation of this inequality means
that the SE observables of Bob are not jointly measurable
and hence the setup is steerable. However, it has been
shown that the degree of incompatibility does not capture
all incompatible observables and a more fine-tuned version
of this inequality, providing necessary and sufficient con-
ditions, has been derived [29]:

ð1 − F2
1 − F2

2Þ
�
1 −

α21
F2
1

−
α22
F2
2

�
≤ ð~r1 · ~r2 − α1α2Þ2 ð11Þ

with Fi ¼ 1
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αiÞ2 − ∥~ri∥2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − αiÞ2 − ∥~ri∥2

p
Þ,

for i ¼ 1; 2.
With the above definition, we can see the difference

in the steerable assemblages detected by the steering
inequality (10), which provides only a necessary condition,
and inequality (11), which completely characterizes
steerability. Consider an ensemble of two reduced states
along the z axis and symmetric with respect to the origin,
i.e., ρ�j1 ¼ 1

2
ð1� λσzÞ. Given another ensemble ρ�j2, by

Eq. (3) only one of the two reduced states can be chosen
freely, say ρþj2 ¼ tþ2 þ ~sþ2 · ~σ, with the conditions tþ2 ≤ 1=2
and ∥~sþ2 ∥ ≤ tþ2 . The steerability detected by Eqs. (10)
and (11) is plotted in Fig. 1, for different values of the
parameters λ; r≔∥~sþ2 ∥, and the angle θ between ~sþ2 and
the z axis.
Finally, for the case of three dichotomic measurements

on Alice’s side (and Bob holding a qubit) we get three
steering equivalent observables of the form (9). For this
case a joint measurement uncertainty relation and hence a
steering inequality is given by [30]

X4
i¼1

∥~Ri − ~RFT∥ ≤ 4; ð12Þ

where ~R1 ¼ ~r1 þ ~r2 þ ~r3, ~Ri ¼ 2~ri−1 − ~R1 ði ¼ 2; 3; 4Þ,
and ~RFT is the Fermat-Torricelli point of the vectors ~Ri,

FIG. 1 (color online). Regions of the parameters λ, r, θ allowing
for steering, detected by the inequality (10) (inner region) and
inequality (11) (outer region), with r ¼ ∥~sþ2 ∥ and θ the angle
between ~sþ2 and the z axis, and tþ2 ¼ 0.45 (fixed). Inset:
representation in the Bloch sphere of the reduced states ρ�j1
(green points) and ρþj2 (red point). The normalization factor
tþ2 ¼ tr½ρþj2� is not represented.

PRL 115, 230402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 DECEMBER 2015

230402-3



i.e., the point that minimizes the left-hand side of Eq. (12).
Analogously to the case of Eq. (10), Eq. (12) provides
a necessary condition for the unsteerability of the state
assemblage.
Steering monotones.—The previously known connection

between joint measurability and steering [13,14] has
inspired the definition of incompatibility monotones, i.e.,
measures of incompatibility that are nonincreasing under
local channels, based on steering monotones [31] or
associated with steering tasks [32].
Following the same spirit and in light of Theorem 2, we

introduce an incompatibility monotone based on a recently
proposed steering monotone, i.e., the steering robustness
[10]. Given a measurement assemblage fMajxga;x we
define the incompatibility robustness (IR) as the minimum
t such that there exists another measurement assemblage
fNajxga;x such that fðMajx þ tNajxÞ=ð1þ tÞga;x is jointly
measurable. The idea is to quantify the robustness of the
incompatibility properties of the measurement assemblage
under the most general form of noise. It is easily proven
that IR can be computed as a semidefinite program and
that it is monotone under the action of a quantum channel
(cf. the Supplemental Material [28]).
It is interesting to discuss the relation with previously

proposed incompatibility monotones. In Ref. [31], the
incompatibility weight (IW), a monotone based on the
steerable weight (SW) of Ref. [3], was defined for a set of
POVMs fMajxgx as the minimum positive number λ such
that the decomposition Majx ¼ λOajx þ ð1 − λÞNajx holds
for the assemblage fNajxga;x and the jointly measurable
assemblage fOajxga;x. From the definition it is clear that
the IW suffers from a similar problem as the SW, namely,
that whenever the elements of the (state or measurement)
assemblage are rank-1, such a weight is maximal.
As a consequence, each pair of projective measurements,
e.g., on a qubit, even along arbitrary close directions,
is maximally incompatible according to the IW, and,
similarly, the state assemblage arising from a bipartite pure
state, even with arbitrary small entanglement, is maximally
steerable according to the SW (see also the discussion
in Ref. [10]).
Another monotone has been proposed by Heinosaari

et al. [32], based on noise robustness of the incompatibility
with respect to mixing with white biased noise. This
definition can be obtained from IR, with the substitution
Najx↦ 1

d (white noise) and, for the corresponding coeffi-
cient λ≔t=ð1þ tÞ, the substitution λ↦ð1þ abÞλ, in the
case of dichotomic measurements, i.e., a ¼ �1. The notion
of biasedness refers to the possibility of having a different
disturbance for different outcomes.
As a consequence, IR is always a lower bound to the

white noise tolerance. It is interesting to discuss such
differences in a simple example. Consider a mixing of a
measurement assemblage fMajxga;x with white or general
noise

Mg ¼ fð1 − λgÞMajx þ λgNajxga;x; ð13Þ

Mw ¼
�
ð1 − λwÞMajx þ λw

1
d

�
a;x
: ð14Þ

If we choose in a qubit case Majx ¼ 1
2
ð1þ ~vajx · ~σÞ

and Najx ¼ 1
2
ð1 − ~vajx · ~σÞ we end up with the mixings

Mg ¼ f1
2
½1þ ð1 − 2λÞ~vajx · ~σ�ga;x and Mw ¼ f1

2
½1þ

ð1 − λÞ~vajx · ~σ�ga;x. It is then clear that in this case the
noise robustness for general noise is always smaller than
half the noise robustness with respect to white noise,
namely,

minfλgjMgis JMg ≤
1

2
minfλwjMw is JMg: ð15Þ

Explicit calculations (plotted in Fig. 2) show that the above
choice for Najx is not always the optimal one. The same
noise robustness, for the case of orthogonal sharp mea-
surements in dimension d, has been calculated in Ref. [33].
The case of biased white noise corresponds to the

substitution in Eq. (14) λ↦λð1þ abÞ for the case of binary
measurements, i.e., a ¼ �1. For the simplest case, i.e., two
sharp projective measurement on a qubit, the noise robust-
ness for mixing with general noise or with white noise plus
a bias is plotted in Fig. 2.
Conclusions.—We have proven that every steerability

problem can be recast as a joint measurability problem, and
vice versa. As opposed to previous results [13,14], our
approach does not include any assumption on the state of
the system, but it is applicable knowing solely Bob’s state
assemblage. This is arguably the most natural resource for
steering, especially for one-sided device-independent

FIG. 2 (color online). Plot of noise robustness for white and
general noise for two sharp qubit measurements separated by an
angle θ. The line denoted by g corresponds to the parameter λg of
Eq. (13), whereas lines denoted by b correspond to the parameter
λw of Eq. (14) for different level of bias, namely, b ¼ 0; 0.5; 0.8; 1
(see main text). The plot shows that the white noise tolerance is
always at least double that of the the general noise tolerance λg.
Moreover, the introduction of biased noise, quantified by the
parameter b, with b ¼ 0 corresponding to unbiased white noise,
only increases the noise tolerance.
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quantum information protocols, where only Bob’s side is
characterized [19].
Our work connects the relatively new field of quantum

steering with the much older topic of joint measurability.
As we showed with concrete examples, this connection
allows us to translate results from one field to the other.
On the one hand, we were able to derive new steering
inequalities for the two simplest steering scenarios based
on joint measurability criteria for qubit observables. As
opposed to previously defined steering inequalities based
on semidefinite programming [3,10], our inequalities are
not defined in terms of an optimization for a specific
assemblage, but are valid in general. For example, Eq. (11)
gives a complete analytical characterization of the simplest
steering scenario for any state assemblage.
On the other hand, our result allowed us to introduce a

new incompatibility monotone based on a steering mono-
tone. This opens a connection to entanglement theory:
similar quantities to the incompatibility monotone have
been used to quantify entanglement [34–36]. So, for future
work it would be very interesting to use ideas from
entanglement theory to characterize the incompatibility
of measurements.
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Explicit form of Bob’s SE observables for a qubit
and tight steering inequality

Given the assemblage {ρa|x}, with a = ± and x ∈
{1, 2}, written in terms of Pauli matrices ~σ = (σ1, σ2, σ3)
as

ρ±|x = t±x 11 + ~s ±x · ~σ, (1)

with ~s ±x = (s ±1x , s
±
2x , s

±
3x ), the only nontrivial case cor-

responds to a reduced state ρB =
∑
a=± ρa|x of rank 2,

otherwise the total state would be separable.
Since ρB is full rank, we can directly compute first

the square root (ρB)
1
2 and then its inverse (ρB)−

1
2 as

a function of ~s ±x , either via a tedious direct calculation
or with the aid of a symbolic mathematical computation
program.

Then the SE observables for Bob can then be obtained
from the equation

B±|x = (ρB)−
1
2 ρ±|x (ρB)−

1
2 . (2)

as

B+|x =
1

2
((1 + αx)11 + ~rx · ~σ), B−|x = 11−B+|x, (3)

with ~rx = (r1x, r2x, r3x) and the substitutions

αx = −1 + (2t+x β
2
0 − 4s+3xβ0β3 + 2t+x β

2
3)/Γ2, (4)

r1x = (2s+1xβ
2
1 − 4s+2xβ1β2 − 2s+1xβ

2
2)/Γ2, (5)

r2x = 2(s+2xβ
2
1 + 2s+1xβ1β2 − s+2xβ2

2)/Γ2, (6)

r2x = 2(s+3xβ
2
0 + 2t+x β0β3 − s+3xβ2

3)/Γ2, (7)

Γ = (β2
0 − |~β|2), (8)

~β =
λ

8β0
(~s +

1 + ~s +
2 ), (9)

β0 =
1

2

√
1−

√
1− λ2, (10)

λ = |~s +
x + ~s −x |. (11)

Notice that λ can be computed both from ~s ±1 and ~s ±2 ,
it corresponds to the norm of the Bloch vector associated
with Bob’s reduced state.

Incompatibility robustness as a semidefinite program

The following construction is almost identical to the
one presented in Ref. [1], we discuss it here for complete-

ness. By definition

IR = min
{
t ≥ 0

∣∣∣
Ma|x + tNa|x

1 + t
:= Oa|x are JM ,

{Na|x}a,x measurement assemblage
}
.

(12)

We can then write

Na|x =
(1 + t)Oa|x −Ma|x

t
≥ 0, (13)

where ≥ denotes a positive semidefiniteness condition.
Eq. (13) is satisfied whenever

(1 + t)Oa|x −Ma|x ≥ 0, (14)

which can be rewritten, using the joint measurability
properties of {Oa|x}a|x, i.e., Oa|x =

∑
λ pM (a|x, λ)Gλ

for all a, x, as

(1 + t)
∑

λ

pM (a|x, λ)Gλ ≥Ma|x ∀a, x (15)

By incorporating the factor 1 + t in the definition of Gλ,
one can easily see that the value of 1+IR can be obtained
via the following SDP:

minimize:
1

d

∑

λ

tr[Gλ]

subject to:
∑

λ

pM (a|x, λ)Gλ ≥Ma|x ∀a, x,

Gλ ≥ 0.

∑

λ

Gλ = 11
1

d

(∑

λ

tr[Gλ]

)
,

(16)

where the last equation encode the fact that G, up to
the correct normalization, must be an observable. In
addition, the postprocessing can be chosen, without loss
of generality, as the deterministic strategy pM (a|x, λ) =
δa,λx

, where λ := (λx)x and λx is the hidden variable
associated with the setting x, taking as value the possible
outcomes a.

It can be easily proven that the program is strictly
feasible (e.g., take Gλ = 11) and bounded from below,
i.e., the optimal value is always larger or equal one.
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Monotonocity of the incompatibility robustness
under local channels

To prove monotonocity of IR under the action of a
quantum channel Λ it is sufficient to prove that

{
Ma|x + tNa|x

1 + t

}

a,x

is JM

=⇒
{

Λ

(
Ma|x + tNa|x

1 + t

)}

a|x
is JM .

(17)

Let us denote again Oa|x := (Ma|x + tNa|x)/(1 + t),
with {Oa|x}a,x admitting a joint measurement, i.e.,
Oa|x =

∑
λ pM (a|x, λ) Gλ. It is sufficient to check

that {Λ(Oa|x)}a,x again admits a joint measurement
Λ(Oa|x) =

∑
λ pM (a|x, λ) Λ(Gλ). That Λ(Gλ) is a

POVM follows directly the properties of the channel Λ,

since

Λ(Gλ) ≥ 0,

∑

λ

Λ(Gλ) = Λ

(∑

λ

Gλ

)
= Λ(11) = 11.

(18)

Notice that, since we are looking for the transformation
of the observables, we use the channel in the Heisenberg
picture, hence the fact that the map is trace preserving
when acting on states (Schrödinger picture) corresponds
to its adjoint (Heisenberg picture) being unital.

[1] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404
(2015).
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II. PRELIMINARY NOTIONS

A. Measurements as POVMs

�

{Gλ}λ∈�∑
λ∈� Gλ = 1

λ ρ

λ = ρMλ

continuous outcome set � = Rn

dλ {Gλ}λ∈� Gλ∫
X

Gλdλ X ⊂ �

X �→ ∫
X

Gλdλ∫
�

Gλdλ = 1

Q = ∫
R q|q〉〈q|dq

|q〉〈q| not
ψ ψ q |q〉

|q〉〈q|∫
a,b

|q〉〈q|dq ψ

ψ q a � q � b

B. Joint measurability

x M = {Ma|x}a,x measurement
assemblage jointly
measurable {Gλ}λ Ma|x

Gλ

Ma|x = ∑
λ D a|x,λ Gλ x,a D a|x,λ �∑

a D a|x,λ = Ax

Mx

MX|x =
∫

X

Ma|xda =
∫

�

D X|x,λ Gλdλ,

D ·|x,· = Ax × � → ,

weakMarkov kernel
incompatible

C. Quantum steering

x

ρ

a

{Aa|x}a,x � a|x = A Aa|x ⊗ 1 ρ /P a|x
P a|x = Aa|x ⊗ 1 ρ

a x � a|x
{ρa|x}a,x

ρa|x = Aa|x ⊗ 1 ρ state assemblage
ρ = ∑

a ρa|x x ρ = A ρ

{ρa|x}a,x

unsteerable
{σλ}λ

∑
λ σλ =

ρa|x = ∑
λ D a|x,λ σλ a,x, D a|x,λ �∑

a D a|x,λ =

ρa|x
σλ

σx X = ∫
X

σa|xda X ⊂ Ax

{σλ}λ∫
X

σa|xda =
∫

�

D X|x,λ σλdλ,

D ·|x,· x

ρ is steerable by
{Aa|x}a,x

ρ ρ steering-
equivalent

{Aa|x}a,x

�

�∗ ρ

{Aa|x}a,x ρ {�∗ Aa|x }a,x

Ba|x =
�∗ Aa|x steering-equivalent observables Aa|x

incompatibility
breaking channel �

{�∗ Aa|x }x,a

{Aa|x}x,a

D. Hidden state models and measurements in terms of POVMs

d < ∞ �

{σλ}λ∈�

�

The crucial difference to
POVMs is that each σλ is a proper trace class operator, i.e., not
“infinitesimal” even in the continuous case. λ �→
σλ ∫

f λ σλdλ

f

�
∑

λ σλ = σ∫
σλdλ = σ σ

G

�

σ Gλσ = σλ.

� σ−
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∑
λ Gλ = 1 d = ∞

{Gλ}λ∈�

σλ �

σλ = σ Gλσ

�

Gλ

σλ

σ |q〉〈q|σ ψ 〈q|σ ψ〉σ |q〉
σ |q〉 = ∑

n

√
sn〈n|q〉|n〉∑

n sn|〈n|q〉| < ∞ q
∑

n sn <

∞

σ = ∑
n sn|n〉〈n| σ

E. Robustness quantification

Consistent Steering Robust-
ness

{σa|x} =
{
t � |{πa|x} σ ,

×
{

σa|x + tπa|x
+ t

} }
,

σ
∑

a σa|x = ∑
a τa|x x

Incompatibility Robustness

{Ma|x} =
{
t � |Ma|x + tNa|x

+ t

}
.

III. MAIN RESULT: STATE-CHANNEL
CORRESPONDENCE AND STEERING

T L HB → L HA

ρ = T ⊗ |
 〉〈
 | HA ⊗ HB |
 〉 =

√
d

∑
n |nn〉 HB ⊗ HB

HB = d < ∞
ρ

HB σ = A ρ = 1/d

Lemma 1.
ρ σ = A ρ

T

ρ = T ⊗ |
σ 〉〈
σ | ,

|
σ 〉 = ∑d
n=

√
sn|nn〉 ∈ HB ⊗ HB

σ = ∑
n sn|n〉〈n|

T ρ A ρ = σ

ρ σ T

σ T∗ A σ = A ρ A ⊗ 1 ᵀ,

{|n〉}

T σ

T∗ A d < ∞ d = ∞
σ

{Mk}k
T∗ Rk σ T∗ · σ

Rkσ
−

HB

Theorem 1. {σx X }X,x

ρ {Ax}x ⇔
{T∗ Ax }x T ↔ ρ

σ = A ρ = σx Ax

{T∗ Ax }x
{σx X }X,x

Proof. σ

{T∗ Aa|x } �→ {ρa|x},
T �→ ρ = T ⊗ |
σ 〉〈
σ | ,

Aa|x
T∗

Aa|x ρ

{Aa|x} {T∗ Aa|x }

T∗ Aa|x =
∑

λ

D a|x,λ Gλ.

σ

ρ
ᵀ
a|x =

∑
λ

D a|x,λ σλ,
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σλ Gλ

ρ
ᵀ
a|x = σ T∗ Aa|x σ = A ρ Aa|x ⊗ 1 ᵀ

ρ,{Aa|x}
{T∗ Aa|x }

Na|x

t πa|x

t

πT
a|x = σ Na|xσ

σ

σ

{πa|x}a,x {Na|x}a,x

{Na|x}a,x

σ

{πa|x}a,x

πT
a|x = A Na|x ⊗ 1|
σ 〉〈
σ | = σ Na|xσ ,

|
σ 〉 = ∑
n

√
sn|nn〉 σ =∑

n sn|n〉〈n| {σa|x} = {T∗ Aa|x }

Na|x
πa|x

σ

{σa|x} = {T∗ Aa|x }

�

{ρa|x}a,x

σ = ∑
a ρa|x

Ba|x = σ− / ρa|xσ− / = T∗
ρ Aa|x .

{ρa|x}a,x ρ

Ba|x
|
σ 〉 = ∑

n

√
sn|nn〉

σ = ∑
n sn|n〉〈n|

σ / Ba|xσ / = A Ba|x ⊗ 1|
σ 〉〈
σ | T.

{ρa|x}a,x ⇔
{Ba|x}a,x

Tρ T∗
|
σ 〉〈
σ | Ba|x = Ba|x

Ba|x = T∗ Aa|x
|
σ 〉 {σa|x}a,x

Corollary 1. ρ ,ρ

T∗ · =
UT∗ · U ∗ U |�〉

{AX|x}X,x

ρ

{AX|x} |
σ 〉
{T∗ AX|x } ρ

T∗
Proof.

R 〈n|R|m〉 = 〈nm|�〉
R R∗

U = Rσ− |�〉 = U ⊗ 1 |
σ 〉
T∗ A = U ∗AU

�

ρ T

any

IV. APPLICATIONS

A. Separable and pure states

ρ = ∑
i piρ

i
A ⊗ ρi

B

T∗ A = ∑
i ρi

AA Fi Fi =
piσ

− ρi
B

ᵀσ− � Fi � 1
∑

i Fi = 1
T

|z〉 z = reiθ T∗ A =
eiθa†aAe−iθa†a

d = ∞

B. Noisy NOON states

|N N〉 = √ | N〉 − eiNα|N 〉 ,

{|n〉}
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ρη = η|N N〉〈N N | + − η | 〉〈 |,
η = η =

ηc

ρη η > ηc

ρη

T∗ A = σ−
A ρ A ⊗ 1 ᵀσ−

=
(

r ANN + − r A −rAN e−iNα

−rA Ne+iNα A

)
= U ∗�∗

r A U,

r = √
η/ − η σ = A ρ = − η/ | 〉〈 | +

η/ |N〉〈N |

�∗
r A =

∑
i=

K∗
i,rAKi,r

=
(

A rA N

rAN r ANN + − r A

)
,

amplitude damping channel

K ,r =
(

r

)
, K ,r =

( √ − r
)

,

U = | 〉〈N | − eiNα|N〉〈 | =
(

−eiNα

)

�r

Lemma 2. {Ax}nx=
Ax

�∗
r Ax

n∑
x=

�∗
r AXx |x

〈 |AXx |x | 〉 � n − Xx ⊂ Ax.

Qθ = eiθa† + e−iθ a /
√

Qq|θ = eiθa†a|q〉〈q|e−iθa†a

{| 〉,|N〉} ×
Qq|θ nm = 〈n|Qq|θ |m〉 = eiθ n−m 〈n|q〉〈q|m〉 n,m =
,N

Qq|θ =
(

e−iNθh q

eiNθh q h q

)
e−q

√
π

, q ∈ R,

h x = HN x√
N N

HN x∫
R Qq|θdq = 1 Qq|θ �

{Qq| ,Qq|θ }q θ

θ �= ,π

Qq|θ = ∫
D q|q ′ Qq|

D q|q ′ eiθ ∈
R
r =

�r < r <

T∗
r Qq|θ =

(
re−iNθh q

reiNθh q r h q + − r

)
e−q

√
π

.

− r e− q

π

r � /

rc � /
√

,

ηc � / θ N

ηc ≈ /

N =
ηc

η � /

ρη

rc N =

q = q >

1 ± n · σ

n = r
√

/π θ, θ,

r �
π − θ / θ θ

θ = π/ rc �
√

π/

ηc � π/ + π ≈ .

q =

N =
, , , , , ,

θ

N θ = π/ N = θ = π/

ηc � .

ηc � /

ηc >

R −∞,

− c −c, − c + c/N . . . −c/N , . . . ,c/N . . .

η N

N

η
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θ

N N =
η = /

c,∞ c ≈ .

Ik QIk |θ =∫
Ik

Qq|θdq

N =
η = .

C. A dynamical example with non-Markovian noise

Et

dEt ρ /dt = γ t σ−Et ρ σ+ −
{σ+σ−,Et ρ } σ+ = | 〉〈 | σ− = | 〉〈 | γ t =

− d
dt

G t G t

t ρt = Et ⊗ | 〉〈 |
T = Tt Et

Et T∗
t A = U ∗�∗

r t A U

r t = |G t | U

t ρt {Qq| ,Qq|π/ }
r t � rc

r t = e−λt/ | wλt/ + wλt/ /w| λ

w = √ − u/λ u

r t � rc

rc ≈ /
√

u,t

u

λ t λ−

V. GAUSSIAN CASE

N

H⊗N = ⊗N
j= L R � L RN

R N x = q ,p , . . . ,qN ,pN
T

Qj Pj

Qi,Pj = iδij1 Qi,Qj = Pi,Pj = R =
Q ,P , . . . ,QN,PN

T Ri,Rj = i
ij1 
 =
⊕N

j= −

Qx = xT R

quadratures
Qx,Qy Qx,Py =

ixT 
y1 xT 
y = canonical
Weyl operators W x = e−iQx

W x W y = e−ixT 
yW y W x ,

Dc = W 
T c
D∗

c W x Dc = e−icT xW x S symplectic
ST 
S = 


US U ∗
S W x US = W Sx

A. Gaussian states, measurements, channels,
and postprocessings
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et al.

Gaussian
ρ x = ρW x

ρ x = e− xT Vρx−irT x,

Vρ covariance matrix Vρ ij = ρ{Ri −
ri,Rj − rj } rj = ρRj

uncertainty relation

Vρ + i
 � .

every V
ρ

Ma a ∈ Rd

Gaussian

M p = ∫
eipT aMa da

M p = W Kp e− pT Lp−imT p,

K N × d L d × d

CK,L = L − iKT 
K � ,

m every
K,L,m

d = K = x
L = ξ m = m

m =
Ma|x,ξ

Ma|x,ξ p = e−ipQxe− p ξ .

ξ =
M p = e−ipQx

Qx
Qa|x

d =

Ma|x,ξ

Ma = Ma|x,ξ =
ξ
√

π

∫
e− a−a′ /ξ Qa′|xda′.

Ma a ∈ R

Lemma 3. Mx,ξ My,ξ ′

Qx Qy

ξξ ′ � ‖ Qx,Py ‖/ ,

N N ′ Gaussian

�∗ W x = W Mx e− xT Nx−icT x,

M N × N ′ N N ′ × N ′

CM,N + i
 � 0,

CM,N every
M,N,c

B �→ U ∗BU N = 0 M =
S U = DcUS

V �→ MT VM + N, r �→ MT r + c.

M,N,c
K,L,m

K,L,m �→ MK,L + KT NK,m + KT c .

c =
Qx MMx,ξ

ξ = xT Nx/

classical

M,N,c
except that only N � 0 is required

K,L,m M,N,c

K,L,m �→ KM,N + MT LM,c + MT m .

B. State-channel correspondence and Gaussian steering
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Lemma 4.
ρ σ = A ρ

Vσ rσ

T |
〉

V
 =
(

Vσ ST ZS
ST ZS Vσ

)
, r
 = rσ ⊕ rσ .

S Vσ Z =
⊕N

i=
√
νi − σz νi Vσ

V,r M,N,c
ρ T⎧⎨⎩V =

(
VA �T

� Vσ

)
,

r = rA ⊕ rB

↔
⎧⎨⎩M = STZS −1�

N = VA − MT Vσ M
c = rA − MT rσ

,

V + i
 �
CM,N + i
 �

Theorem 2. ρ V
r M,N,c

T
ρ

ρ

V + i 0 ⊕ 


M,N,c
Proof.


A CM,N
Vσ + i
B Vρ + i 0 ⊕ 
B

T

CM,N �

x,y
yT − ixT CM,N y + ix <

yT − ixT CM,N + i
 y + ix �
r = xT 
y >

Mx T 
My > xT Nx + yT Ny .

x y r− x r− y
Qx = xT R Py = yT R
xT 
y =

T
M,N,c

MMx,ξ MMy,ξ ′

ξ = xT Nx/ ξ ′ = yT Ny/

ξξ ′ � ξ + ξ ′ < Mx T 
My

Qx,Qy T Qx T Qy

ρ

�

channel parameters
M,N,c

{T∗ Aa Aa }

K,L,m
M,N,c

K′,L′,m′ = MK,L + KT NK,m + KT c

M,N,c
Gλ K,L,m

K′,L′,m′ Gλ

not
CM,N � 0

Corollary 2.
Gaussian

incompatibility breaking

canonical Gaussian

VI. CONCLUSIONS
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APPENDIX A: PROOF OF THE GENERAL
STATE-CHANNEL DUALITY (LEMMA 1)

|
σ 〉 σ

T

ρ = T ⊗ |
σ 〉〈
σ |
A ρ = σ

onto the set of states with
A ρ = σ

ρ A ⊗ B = 〈
σ |T∗ A ⊗ B|
σ 〉
=
∑
nm

√
snsm〈nn|T∗ A ⊗ B|mm〉

=
∑
nm

√
snsm〈n|T∗ A |m〉〈n|B|m〉

=
∑
nm

〈n|√σT∗ A
√

σ |m〉〈n|B|m〉

= √
σT∗ A

√
σBᵀ ,

Bᵀ B

σ T∗ A σ = A ρ A ⊗ 1 ᵀ.

〈nm|ρ|n′m′〉 = √
σT∗ |n′〉〈n| √

σ |m′〉〈m| ᵀ =√
sm

√
sm′ 〈m′|T∗ |n′〉〈n| |m〉
{|n〉}

any ρ

A ρ = σ T
d < ∞ σ−

T∗ A

ρ

ρ =
∑

k

|ψk〉〈ψk| =
∑
k,n,m

n′,m′

〈nm|ψk〉〈ψk|n′m′〉 |nm〉〈n′m′|,

A B

ρ A ⊗ B =
∑

k

R∗
kARkB

ᵀ ,

R HB → HA

〈n|Rkm〉 = 〈nm|ψk〉 A ρ A ⊗ 1 ᵀ =∑
k R∗

kARk σ = σᵀ = ∑
k R∗

kRk

d = ∞

R σ

R = σ σ |ψ〉 ∈
R ∥∥Rkσ

− ψ
∥∥ �

∑
k

〈
σ− ψ

∣∣R∗
kRkσ

− ψ
〉 = ‖ψ‖ ,

Rkσ
−

Mk HB → HA Mkσ = Rk∑
k M∗

k Mk = 1 Mk

T T =
∑

k

MkT M∗
k

T ∑
k M∗

k Mk =
1

σ T∗ A σ =
∑

k

(
Mkσ

)∗
AMkσ =

∑
k

R∗
kARk

= A ρ A ⊗ 1 ᵀ,

ρ

APPENDIX B: A JOINT MEASURABILITY CRITERION
FOR QUBIT POVMS WITH ARBITRARY OUTCOMES

(LEMMA 2)

n

{Bb|i}ni=
� b , . . . ,bn =

∑
i

ri bi − n + � ,

ri b = Mi b Mi b = Bb|i/pi b pi b =
〈 |Bb|i | 〉

Mi b =
(

fi b

fi b ri b + |fi b |
)

fi∫
fi b pi x dx = ∫ |fi b | + ri b pi b db =
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Gb ,...,bn

Gb ,...,bn∏n
i= pi bi

=
( ∑

i fi bi∑
i fi bi |∑i fi bi | + � b , . . . ,bn

)
.

Bb|i = Mi b pi b =
∫

δb,bi
Gb ,...,bn

db · · · dbn.

Gb ,...,bn
�

Gb ,...,bn
= � b , . . . ,bn

n∏
i=

pi bi � ,

Bi

Ba|i = �∗
r Aa|i �r

〈 |�∗
r Aa|i | 〉 = 〈 |Aa|i | 〉

APPENDIX C: PROOF OF THE JOINT MEASURABILITY
CRITERION FOR CONVOLUTED QUADRATURES

(LEMMA 3)

r = xT 
y Qx,Qy = ir1
r = Qx Qy

r > Qy/r = yT R/r =
Qy/r Qy = ∫

a Qa|yda

Qy Qa|y
Qa|y/r = rQra|y

Ma|y/r,ξ ′/r = rMra|y,ξ ′

Mx,ξ ,My,ξ ′

Mx,ξ ,My/r,ξ ′/r

Qx,Qy/r

Qx,Qy/r = xT R,yT R/r = i xT 
y/r 1 = i1,

Q ,Qπ/

Qθ = eiθa† + e−iθ a /
√

Mx,ξ ,My/r,ξ ′/r

M ,ξ ,Mπ/ ,ξ ′/r

Ma|θ,ξ = √
πξ

∫
e− a−a′ /ξ Qa′|θ ,

M ,ξ ,Mπ/ ,ξ ′/r ξ ξ ′/r � /

M ,ξ ,Mπ/ ,ξ ′/r

Ga ,a =
W a ,a ρ W a ,a ∗/ π ρ

ρ Qa | = e− a /ξ

√
πξ

, ρ Qa |π/ = e− a / ξ ′/r

√
π ξ ′/r

.

ξ ξ ′/r Q

Qπ/ ρ ξ ξ ′/r � /

ρ = |ψ 〉〈ψ |
ψ a = c/π e− c+iw a ξ = / c

ξ ′ /r = c + d /d

Ga ,a M ,ξ

Mπ/ ,ξ ′/r ρ

APPENDIX D: PROOF OF THE GAUSSIAN
STATE-CHANNEL DUALITY (LEMMA 4)

σ

Vσ σ rσ

S
Vσ = ST DS D = ⊕N

k= νk1 νk

Vσ νi >

νi =

U = Drσ
US σ

|n〉 = |n , . . . ,nN 〉

U ∗σU =
∑

n

pn|n〉〈n|, pn =
N∏

k= + νk

(
νk −
νk +

)nk

.

∑
n
√

pn|n〉 ⊗ |n〉(
D Z
Z D

)
Z =

N⊕
i=

√
νi − σz.

{U |n〉} σ


σ =
∑

n

√
pnU |n〉 ⊗ U |n〉,

rσ ⊕ rσ

V
σ
= ST ⊕ ST

(
D Z
Z D

)
S ⊕ S =

(
Vσ ST ZS

ST ZS Vσ

)
,

� M,N,c
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ρ = � ⊗ |
σ 〉〈
σ |

V = MT ⊕ I
(

Vσ ST ZS
ST ZS Vσ

)
M ⊕ I + N ⊕ 0

=
(

MTVσ M + N MT ST ZS
ST ZSM Vσ

)
,

r = MT rσ + c ⊕ rσ Vρ + i
 �
C � C

Vσ + i
B Vρ + i


C = MT Vσ M + N + i
A

− MT ST ZS Vσ + i
B
− ST ZSM

= N + i
A + MT ST D − Z D + i
B
− Z SM

= CM,N + i
A,

D − Z D + i
 − Z = 


CM,N + i
A �
equivalent Vρ

ρ

V =
(

VA �T

� Vσ

)
, r = rA ⊕ rσ ,

M,N,c = ST ZS − �, VA − MT Vσ M, rA − MT rσ ,

CM,N + i
A �
M,N,c

� ρ = � ⊗ |
σ 〉〈
σ |

APPENDIX E: THE DERIVATION OF THE LHS FROM THE
JOINT GAUSSIAN MEASUREMENT

Gλ σλ σλ = σ Gλσ = A Gλ ⊗
1|
σ 〉〈
σ | σλ σλ = σλ/ σλ

σ̂λ x = W x σλ = fx λ /f0 λ

fx λ = W x σλ = Gλ ⊗ W x |
σ 〉〈
σ |
c = fx

M,N,c c =

f̂x p =
∫

eipT λ Gλ ⊗ W x |
σ 〉〈
σ | dλ

= G p ⊗ W x |
σ 〉〈
σ |
= W Mp ⊗ W x |
σ 〉〈
σ | e− pT Np.


σ Mp ⊕ x

f̂x p = e− Mp T ⊕xT V
σ Mp⊕x e− pT Np

= e− pT ⊕xT V p⊕x = e− pT VAp+ pT �T x+xT Vσ x

= e− p−μx
T VA p−μx e− xT Vσ −�V−

A �T x,

μx = −V−
A �T x

fx λ = Ce−λT V−
A λ−iλT μx e− xT Vσ −�V−

A �T x,

C VA σ̂λ x = fx λ /f0 λ =
e− xT Vσ −�V−

A �T x+i �V−
A λ T x σλ

Vλ = Vσ − �V−
A �T , rλ = −�V−

A λ.

σλ

pλ = σλ = f0 λ ∝ e−λT V−
A λ

λ rλ
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Article IV

• Title: Unified picture for spatial, temporal, and channel steering

• Authors: Roope Uola, Fabiano Lever, Otfried Gühne, Juha-Pekka Pellonpää

• Journal reference: Phys. Rev. A 97, 032301 (2018)

• Abstract: Quantum steering describes how local actions on a quantum system can
affect another, spacelike separated, quantum state. Lately, quantum steering has
been formulated also for timelike scenarios and for quantum channels. We approach
all the three scenarios as one using tools from Stinespring dilations of quantum chan-
nels. By applying our technique we link all three steering problems one-to-one with
the incompatibility of quantum measurements, a result formerly known only for spa-
tial steering. We exploit this connection by showing how measurement uncertainty
relations can be used as tight steering inequalities for all three scenarios. Moreover,
we show that certain notions of temporal and spatial steering are fully equivalent
and prove a hierarchy between temporal steering and macrorealistic hidden variable
models.

• Author’s contribution: The author of this thesis contributed to proofs and ex-
amples.
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Unified picture for spatial, temporal, and channel steering

Universität Siegen, Walter-Flex-Strasse 3, D-57068 Siegen, Germany
Universität Potsdam, Karl-Liebknecht-Strasse 24, 14476 Potsdam, Germany

Turku Centre for Quantum Physics, University of Turku, FI-20014 Turku, Finland

I. INTRODUCTION

II. SPATIAL STEERING

{ρa|x}a,x x a∑
a ρa|x = ∑

a ρa|x ′ x,x ′

spatial

ρAB

{Aa|x}a,x Aa|x � ∑
a Aa|x = 1
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ρAB Ax

x a

ρa|x =
A Aa|x ⊗ 1 ρAB

Ix ρ

x a

Ia|x ρ

a,x

ρa|x = A Aa|x ⊗ 1 ρAB .

1

{p λ ,σλ}λ
x a

a,x

ρa|x =
∑

λ

p λ p a|x,λ σλ

p λ �
σλ p a|x,λ �∑

a p a|x,λ = x, λ

{ρa|x}a,x

III. TEMPORAL STEERING

{Aa}a
IL

a ρ = √
Aaρ

√
Aa

{Aa}a
Ia ρ = Aaρ ρ

{Aa}a

{�a}a
Ia ρ = �a IL

a ρ .

{ρa|x }a,x

{Ia|x}a,x ρA

ρa|x = Ia|x ρA =
∑

λ

p λ p a|x,λ σλ

IV. MAIN TECHNIQUE

�

� ρ = E U ρ ⊗ ρ U †

U

E ρ

V H → A ⊗ K
H K

A
� ρ = ∑r

k= KkρK
†
k

V V |ψ〉 = ∑r
k= |ϕk〉 ⊗ Kk|ψ〉

|ψ〉 {|ϕk〉}rk=

� ρ = A VρV †

{Ia|x}a,x

� = ∑
a Ia|x = ∑

a Ia|x ′ x,x ′

�

{Ia|x}a,x

{Aa|x}a,x

Ia|x ρ = A Aa|x ⊗ 1 VρV † .

{Aa|x}a,x

{Aa|x}a,x

V

� x
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r

Ia|x ρ =
r∑

k,l=
〈ϕl|Aa|x |ϕk〉KkρK

†
l ,

〈ϕl|Aa|x |ϕk〉

V. MINIMAL DILATION FOR A STATE ASSEMBLAGE

{Aa|x}a,x

{Gλ}λ
a,x

Aa|x =
∑

λ

p a|x,λ Gλ

p ·|x,λ

x,λ

{Aa|x}a,x

{Ia|x}a,x

a,x

Ia|x =
∑

λ

p a|x,λ Iλ.

{p λ ,ρλ}λ
∑

λ p λ =

C

{ρa|x}a,x

{Ia|x}a,x

ρa|x = Ia|x | 〉〈 | = A Aa|x ⊗ 1 |ψ〉〈ψ | ,

| 〉 |ψ〉 = V | 〉

{Aa|x}a,x

.

Observation 1. {ρa|x}a,x

{Aa|x}a,x

{Ia|x}a,x

V | 〉〈 |V †

ρB = ∑
a ρa|x

|ψ〉 = I ⊗ ρ
/

B |ψ+〉
|ψ+〉 = ∑

i |ii〉

ρB

ρa|x = A Aa|x ⊗ 1 |ψ〉〈ψ | = ρ
/

B AT
a|xρ

/

B ,

ρB

Aa|x = ρ
− /

B ρT
a|xρ

− /

B

{ρa|x}a,x

Ba|x = ρ
− /

B ρa|xρ
− /

B

A
η

± |x = 1 ± η�x · �σ < η �

η � √

VI. CHANNEL STEERING

{Ia|x}a,x

�C→B

�C→A⊗B �C→B

Ia|x ρ = A Aa|x ⊗ 1 �C→A⊗B ρ .

Iλ

p a|x,λ

Ia|x =
∑

λ

p a|x,λ Iλ.
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�C→A⊗B

�C→B

Observation 2. {Ia|x}a,x

�C→A⊗B

{Aa|x}a,x

{Aa|x}a,x

{Ia|x}a,x

K = √ U, K = √ U

�U ρ = UρU †

Ia|x ρ =
∑
k,l=

〈ϕl|Aa|x |ϕk〉UρU †.

p a|x,λ = ∑
k,l〈ϕl|Aa|x |ϕk〉

{Aa|x}a,x �λ = �U

{Aa|x}a,x

minimal �U

VII. STEERING INEQUALITIES FROM
INCOMPATIBILITY

A±|x =
1 ± �ax · �σ , x = ,

‖�a + �a ‖ + ‖�a − �a ‖ � .

{A±|x}x= ,

Observation 3.

VIII. EQUIVALENCE BETWEEN TEMPORAL AND
SPATIAL STEERING

{Ia|x}a,x

{ρa|x}a,x d

ρB = ∑
a ρa|x
V

Kk = |k〉〈k| {|k〉}dk= ρB

|ψ〉 = ∑d
i=

√
λi |i〉

λi > ρB

Aa|x = ρ
− /

B ρT
a|xρ

− /

B

ρB

� ρ = ∑
k KkρK

†
k

Ia|x |ψ〉〈ψ | =
d∑

k,l=
〈l|Aa|x |k〉Kk|ψ〉〈ψ |K†

l = ρa|x.

Observation 4.

d

d

IX. TEMPORAL STEERING AND MACROREALISM
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Ia|x ρ Bb|y =∑
λ p λ p a|x,λ p b|y,λ p · ,p ·|x,λ p ·|y,λ

x,y λ

Aa|x ⊗ Bb|y VρV †

V

ρ VρV †

K = | 〉〈 | + | 〉〈 |
K = | 〉〈 | + | 〉〈 | ρ = λ|ψ〉〈ψ | +

− λ 1 |ψ〉 = √ | 〉 + | 〉
VρV † = λ|ψ+〉〈ψ+| + − λ 1

< λ �
KG

KG KG
�

.

{Ia|x}a,x

�

{Ia|x · }a,x = { A Aa|x ⊗ 1 V · V † |{Aa|x}a }.

VρV †

ρ = a|ϕ−〉〈ϕ−| + − a 1 ⊗ | 〉〈 |
+ a| 〉〈 | ⊗ 1 + − a | 〉〈 | ,

|ϕ−〉 = √ | 〉 − | 〉 1 = | 〉〈 | + | 〉〈 | <

a � C

K = | 〉〈 | + | 〉〈 |,
K = −| 〉〈 | + | 〉〈 |,
K = | 〉〈 | + | 〉〈 | + | 〉〈 |.

ρ = a|ψ〉〈ψ | + − a | 〉〈 | + | 〉〈 |
+ a | 〉〈 | + | 〉〈 | + − a | 〉〈 | ,

|ψ〉 = √ | 〉 + | 〉 ρ

Observation 5.

X. CONCLUSIONS

Note added.
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Article V

• Title: Steering criteria from general entropic uncertainty relations

• Authors: Ana C. S. Costa, Roope Uola, Otfried Gühne

• Journal reference: arXiv:1710.04541 (pre-print)

• Abstract: The effect of steering describes a possible action at a distance via mea-
surements but characterizing the quantum states that can be used for this task
remains difficult. We provide a method to derive sufficient criteria for steering from
entropic uncertainty relations using generalized entropies. We demonstrate that the
resulting criteria outperform existing criteria in several scenarios; moreover, they
allow to detect weakly steerable states.

• Author’s contribution: The author of this thesis contributed to miscellaneous
calculations concerning the proofs and examples.
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Steeringcriteriafromgeneralentropicuncertaintyrelations

AnaC.S.Costa,RoopeUola,andOtfried G̈uhne
Naturwissenschaftlich-TechnischeFakulẗat,UniversiẗatSiegen, Walter-Flex-Straße3,57068Siegen,Germany

(Dated:October13,2017)

Theeffectofsteeringdescribesapossibleactionatadistanceviameasurementsbutcharacterizing
thequantumstatesthatcanbeusedforthistaskremainsdifficult. Weprovideamethodtoderive
sufficientcriteriaforsteeringfromentropicuncertaintyrelationsusinggeneralizedentropies. We
demonstratethattheresultingcriteriaoutperformexistingcriteriainseveralscenarios;moreover,
theyallowtodetectweaklysteerablestates.

PACSnumbers:03.65.Ud,03.67.-a

Introduction.— Steering is a term coined by
Schr̈odingerin1935inordertocapturetheessenceof
theEinstein-Podolsky-Rosenargument[1].Itdescribes
Alice’sabilitytoaffectBob’squantumstatethroughher
choiceofameasurementbasis,withoutallowingforin-
stantaneoussignaling.Inthemodernview,steeringis
basedonaquantumcorrelationbetweenentanglement
andtheviolationofBellinequalities,meaningthatnot
everyentangledstatecanbeusedforsteeringandnot
everysteerablestateviolatesaBellinequality[2].

Inthelastyearsthetheoryofsteeringhasevolved
quickly.Ithasbeenshownthattheconceptofsteeringis
closelyrelatedtofundamentalproblemsandopenques-
tionsinquantumphysics.Forinstance,steeringhasbeen
usedtofindcounterexamplestoso-calledPeresconjec-
ture,whichwasanopenprobleminentanglementtheory
formorethanfifteenyears[3–5].Inaddition,steering
wasshowntobeequivalenttothenotionofjointmea-
surabilityofgeneralizedmeasurements[6–10]andresults
fromoneproblemcanbetransferedtotheother.Finally,
steeringhasbeenshowntobeusefulfortasksinquan-
tuminformationprocessing,suchasone-sideddevice-
independentquantumkeydistribution[11]andsubchan-
neldiscrimination[12].

Despiteofalltheseresults,thesimplequestion
whetherornotagivenbipartitequantumstateisuseful
forsteeringisnoteasytoanswer.Iftheconditionalstates
ofBobareknown,theproblemcanbesolvedviasemidef-
initeprogramming[13–15],butthisapproachrequires
knowledgeofAlice’smeasurementsandisrestrictedto
smalldimensions.Othersteeringcriteriaexist[2,16–20],
butgeneralconceptsforthederivationofthemaremiss-
ing. Thisisincontrasttoentanglementtheory,where
conceptssuchasthetheoryofpositive,butnotcom-
pletelypositivemapsprovideaguidinglinefordevelop-
ingseparabilitycriteria[21].

Inthispaperweidentifyentropicuncertaintyrelations
asafundamentaltooltodevelopsteeringcriteria. Un-
certaintyrelationsintermsofentropieshavealreadybe-
comeimportantinmanyareasofquantuminformation
theory[22,23]. Weshowthatvariousentropicuncer-
taintyrelationscanbetransformedintoasteeringcri-
terion. Asexamples,weconsidergeneralizedentropies

suchastheso-calledTsallisentropyanddemonstrate
thattheresultingcriteriaoutperformknowncriteriain
manycases. Ourapproachis motivatedbyprevious
worksonentanglementcriteriafromentropicuncertainty
relations[24]andgeneralizesrecententropiccriteriafor
steering[25,26],whichwere,however,restrictedtothe
specialcaseoftheShannonentropy.
Steeringandentropies.—Insteeringscenarios,oneas-
sumesthatAliceandBobshareaquantumstate̺ AB.
Then, Alice makes measurementsonhersystemand
claimsthatwiththesemeasurementsshecansteerthe
stateinsideBob’slaboratory.Bob,ofcourse,isnotcon-
vincedofAlice’sabilities.Inamoreformalmanner,we
canassumethatAliceperformsameasurementAwith
outcomeionherpartofthesystem,whileBobperforms
ameasurementBwithoutcomejonhispart.Fromthat,
theycanobtainthejointprobabilitydistributionofthe
outcomes.IfforallpossiblemeasurementsAandBone
canexpressthejointprobabilitiesintheform

p(i,j|A,B)=
λ

p(λ)p(i|A,λ)pq(j|B,λ), (1)

thenthesystemiscalledunsteerable. Here,p(i|A,λ)
isageneralprobabilitydistribution,whilepq(j|B,λ)=
TrB[B(j)σλ]isaprobabilitydistributionoriginatingfrom
aquantumstateσλbeingthesameforallmeasurements
BonBob’sside.Furthermore,B(j)denotesameasure-
mentoperatorsuchthat jB(j)=,and λp(λ)=1,
whereλisalabelforthehiddenquantumstateσλ. A
modelasinEq.(1)iscalledalocalhiddenstate(LHS)
model,andifitexists,Bobcanexplainalltheresults
throughasetoflocalstates{σλ}whichisnotaltered
byAlice’smeasurements.Butifitisnotpossibletofind
statesσλthatmakethisprobabilitydistributionfeasible,
BobhastoassumethatAlicecansteerthestate.
Letusnowexplainsomebasicfactsaboutentropy.For
ageneralprobabilitydistributionP=(p1,...,pN),the
Shannonentropyisdefinedas[27]

S(P)=−
i

piln(pi). (2)

Entropicuncertaintyrelationscaneasilybeexplained
withanexample. ConsiderthePaulimeasurementsσx
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andσzonasinglequbit.Foranyquantumstatethese
measurementsgiverisetoaprobabilitydistributionof
theoutcomes±1andthecorrespondingentropyS(σk).
Thefactthatσxandσzdonotshareacommoneigen-
statecanbeexpressedby[22]

S(σx)+S(σz)≥ln(2), (3)

wherethelowerbounddoesnotdependonthestate.
Forourapproach,wealsoneedtherelativeentropy,
alsoknownasKullback-Leiblerdivergence[27],between
twoprobabilitydistributionsPandQ,

D(P||Q)=
i

piln
pi
qi
. (4)

Twopropertiesareessential:First,therelativeentropy
isadditiveforindependentdistributions,thatisifP1,P2
areindependentdistributions,withthejointprobabil-
itydistributionP(x,y)=P1(x)P2(y)andthesamefor
Q1,Q2thenonehasthat

D(P||Q)=D(P1||Q1)+D(P2||Q2). (5)

Second,therelativeentropyisjointlyconvex. This
meansthatfortwopairsofdistributions P1,Q1and
P2,Q2onehas

D[λP1+(1−λ)P2||λQ1+(1−λ)Q2]

≤λD(P1||Q1)+(1−λ)D(P2||Q2). (6)

Themainidea.—Thestartingpointofourmethodis
therelativeentropybetweentwodistributions,namely

F(A,B)=−D(A⊗B||A⊗I). (7)

Here,A⊗Bdenotesthejointprobabilitydistribution
p(i,j|A,B),whichwedenotebypijforconvenience,A
isthemarginaldistributionp(i|A),whichwedenoteby
pi,andIisauniformdistributionwithqj=1/Nforall
j. Astherelativeentropyisjointlyconvex,F(A,B)is
concaveintheprobabilitydistributionA⊗B. Wecan
directlycalculatethat

F(A,B)=−
ij

pijln
pij
pi/N

=S(B|A)−ln(N),(8)

whereS(B|A)=S(A,B)−S(A)istheconditionalen-
tropy. Ontheotherhand,consideringaproductdistri-
butionp(i|A,λ)pq(j|B,λ)withafixedλandtheproperty
fromEq.(5),wehave

F(A,B)=−D[p(i|A,λ)||p(i|A,λ)]−D[pq(j|B,λ)||I]

=S(B|λ)−ln(N). (9)

Consequently,foraproductdistributionandasetofmea-
surementsAk⊗Bk,wehave

k

S(Bk|Ak)=
k

S(Bk|λ). (10)

Theright-handsideofthisequationdependsonprobabil-
itydistributionstakenfromthequantumstateσλ.Such
distributionstypicallyobeyanentropicuncertaintyrela-
tion,

k

S(Bk|λ)≥CB. (11)

So,forproductdistributionswehave

k

S(Bk|Ak)≥CB. (12)

Finally,since F isconcave,thesameboundholds
for convex combinations of product distributions
p(i|A,λ)pq(j|B,λ)fromEq.(1),meaningthatanynon-
steerablequantumsystemobeysthisrelation.Inthis
wayentropicuncertaintyrelationscanbeusedtoderive
steeringcriteria. Theintuitionbehindthesecriteriais
basedontheinterpretationofShannonconditionalen-
tropy.InEq.(12),onecanseethattheknowledgethat
AlicehasaboutBob’soutcomesisbounded.Ifthisin-
equalityisviolated,thenthesystemissteerable,meaning
thatAlicecandobetterpredictionsthanthoseallowed
byanentropicuncertaintyrelation.
Sofar,thiscriterionisthesameastheoneinRef.[26],
butourproofhighlightsthethreecentralingredients:
First,weneededanadditivityrelationforindependent
distributionsinEq.(5),secondweneededthestatein-
dependententropicuncertaintyrelationinEq.(11),and
finallyweneededthejointconvexityoftherelativeen-
tropyinEq.(6).Thesepropertiesarenotatallspecific
fortheShannonentropy,soourstrategyworksalsofor
generalizedentropies.
Steeringcriteriaforgeneralizedentropies.—Asapos-
siblegeneralizedentropy,weconsidertheso-calledTsallis
entropy[28,29]whichdependsonaparameterq>1.It
isgivenby

Sq(P)=−
i

pqilnq(pi), (13)

where the q-logarithm is defined as lnq(x) =
(x1−q−1)/(1−q). Notethatinthelimitq→ 1this
entropyconvergestotheShannonentropy.Thegeneral-
izedrelativeentropycanbedefinedas[30]

Dq(P||Q)=−
i

pilnq
qi
pi
, (14)

itisjointlyconvexandobeysthefollowingrelationfor
productdistributions:

Dq(P||Q)=Dq(P1||Q1)+Dq(P2||Q2)

+(q−1)Dq(P1||Q1)Dq(P2||Q2).

Theadditionaltermisduetonon-additivityofthegen-
eralizedentropy.
Nowwecanapplythemachineryderivedaboveand
considerthequantityF(A,B)=−Dq(A⊗B||A⊗ ).It
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followsbydirectcalculationthatifthemeasurementsBk
obeytheentropicuncertaintyrelation

k

Sq(Bk)≥C
(q)
B (15)

thenonehasthesteeringcriterion

k

Sq(Bk|Ak)+(1−q)C(Ak,Bk)≥C
(q)
B ,(16)

andviolationofitimpliessteerabilityofthestate.Here
Sq(B|A) =Sq(A,B)−Sq(A)istheconditionalen-
tropy[31]andtheadditionaltermisgivenby

C(A,B)=
i

pqi[lnq(pi)]
2−

i,j

pqijlnq(pi)lnq(pij).(17)

FromEq.(16)itiseasytoseethatifweconsiderq→1,
wearriveatEq.(12). Notethatwecanalsorewrite
Eq.(16)intermsofprobabilitiesas

1

q−1
k

1−
ij

(p
(k)
ij)

q

(p
(k)
i )

q−1
≥C

(q)
B . (18)

Here,p
(k)
ij istheprobabilityofAliceandBobforoutcome

(i,j)whenmeasuringAk⊗Bk,andp
(k)
i arethemarginal

outcomeprobabilitiesofAlice’smeasurementAk. This
formofthecriterionisveryeasytoevaluate.
ApplicationI:Isotropicstates.—Totestthestrength
of oursteeringcriteria weconsider d-dimensional
isotropicstates[32]

i̺so=α|φ
+
d φ+d|+

1−α

d2
, (19)

where|φ+ =(1/
√
d)

d−1
i=0|i|iisamaximallyentan-

gledstate. Thesestatesareknowntobeentangledfor
α>1/(d+1)andseparableotherwise.Asobservables,
weconsiderasetofmutuallyunbiasedbases(MUBs)in
dimensiond. Onecandirectlycheckthatthemarginal
probabilitiesforthisclassofstatesarepi=1/dforall
iandthejointprobabilitiesarepii=[1+(d−1)α]/d

2

(occurringdtimes),andpij=(1−α)/d
2[fori=jand

occurringd(d−1)times]. Theseprobabilitiesarethe
sameforallmeasurements.InsertingtheminEq.(18),
theconditionfornon-steerabilityreads

m

q−1
1−

1

dq
[(1+(d−1)α)q+(d−1)(1−α)q]≥C

(q)
B ,

(20)
whichdependsontheparameterqandthenumberof
MUBs m. Forcertainvaluesofqandm,thebounds

oftheentropicuncertaintyrelationsC
(q)
B areknown(see

AppendixA).Forothercasestheycanbeapproximated
numerically.
Letusdiscussthestrengthofthiscriterion. First,
numericalinvestigationssuggestthatthecriterionis
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FIG.1.(Coloronline)Thecriticalvalueofwhitenoiseαfor
differentdimensionsd,consideringacompletesetof MUBs.
Inthisplot,yellowsquarescorrespondtoourcriterionin
Eq.(20)forq→ 1andthebluecirclestoq=2.Thepurple
reversedtrianglescorrespondtotheresultsfortheinequality
presentedinRef.[34]andtheredtrianglesinRef.[36],where
αcritwascalculatedviaSDP.Belowthegreendiamondsthe
existenceofanLHS modelforprojective measurementsis
known[2].

strongestforq=2.Forthisvalueofqtheviolationof
Eq.(20)occursforα>1/

√
m.Consideringacomplete

setofMUBs(m=d+1)(thisexistsfordbeingapower
ofaprime)theviolationhappensforα>1/

√
d+1.

Forqubits(d=2)isotropicstatesareequivalentto
Wernerstates[33].Then,withacompletesetofMUBs
theviolationoccursforα >1/

√
3≈ 0.577,whichis

knowntobetheoptimalthreshold[34]. Moregener-
ally,inRef.[35],asteeringinequalityfor MUBsand
isotropicstateshasbeenpresentedwhichisviolatedfor
α>(d3/2−1)/(d2−1).Itisstraightforwardtoshow
thatourinequalityisstronger.Recently,thesameprob-
lemhasbeeninvestigatedusingsemi-definiteprogram-
ming[36]. For3≤d≤5abetterthresholdthanours
wasobtained,butitisworthtomentionthatourcriteria
directlyuseprobabilitydistributionsfromfewmeasure-
ments,withouttheneedofperformingfulltomography
onBob’sconditionalstate.Inaddition,numericalap-
proachesarenaturallylimitedtosmalldimensions.

InFig.1,wecompareourcriterionwiththeonesmen-
tionedabove. Weconcentrateinthevaluesofq→1and
q=2,sincetheformerisrelatedtotheusualentropic
steeringcriteriaandthelatteristheoptimalvalueofq
forthedetectionofsteerablestates.

Connectiontoexistingentanglementcriteria.—Atthis
point,itisinterestingtocompareourapproachwithen-
tanglementcriteriaderivedfromentropicuncertaintyre-
lations[24]. Themathematicalformulationgoesasfol-
lows.LetA1andA2(B1andB2)beobservablesonAl-
ice’s(Bob’s)laboratory.AssumethatBob’sobservables
obeyanentropicuncertaintyrelationS(B1)+S(B2)≥
CB,whereS(Bi)isageneralizedentropy,suchasthe
ShannonorTsallisentropy.Thenitcanbeshownthat
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forseparablestates

S(A1⊗B1)+S(A2⊗B2)≥CB (21)

holds.Here,S(Ak⊗Bk)istheentropyoftheprobability
distributionoftheoutcomesoftheglobalobservableAk⊗
Bk.NotethatthisimpliesthatforadegenerateAk⊗Bk
theprobabilitydistributiondiffersfromthelocalones.
Forinstance,measuringσz⊗σzgivesfourpossiblelocal
probabilitiesp++,p+−,p−+,p−−,butfortheevaluation
ofS(Ak⊗Bk)onecombinesthemaccordingtoq+ =
p+++p−−andq−=p+−+p−+,asthesecorrespondto
theglobaloutcomes.
Someconnectionstoourderivationofsteeringinequal-
itiesareinteresting.First,ifonereconsiderstheproofin
Ref.[24]onerealizesthatEq.(21)isindeedasteeringcri-
terionandnotacriterionforentanglement.Thatis,all
probabilitydistributionsoftheforminEq.(1)fulfillit.
Second,alsoinRef.[24]itwasobservedthatthecriterion
isstrongestforvalues2≤q≤3.Finally,ifoneasksfor
adirectcomparisonbetweenEq.(21)andEqs.(16,12)
onefindsthatEq.(21)isofthesamestrengthforspecial
scenarios(e.g.Bell-diagonaltwo-qubitstatesandPauli
measurements),whileitseemsweakerinthegeneralcase
(seebelow).
ApplicationII:Generaltwo-qubitstates.—Letusnow
considertheapplicationofourmethodstogeneraltwo-
qubitstates.Anytwo-qubitstatecan,afterapplication
oflocalunitaries,bewrittenas

A̺B=
1

4
⊗ +(aσ)⊗ + ⊗(bσ)+

3

i=1

ciσi⊗σi (22)

wherea,b,c∈R3arevectorswithnormlessthanone,
σisavectorcomposedofthePaulimatricesand(aσ)=

iaiσi. LetusassumethatAliceperformsprojective
measurementswitheffectsPAk =[ +µk(ukσ)]/2andBob
withtheeffectsPBk =[ +νk(vkσ)]/2withµk,νk=±1
and{u,v}∈R3.Then,Eq.(18)canbewrittenas

k

1−
µk,νk

[1+µk(auk)+νk(bvk)+µkνkTk]
q

2q+1[1+µk(âuk)]q−1

≥(q−1)C
(q)
B , (23)

where Tk =
3
i=1ciuikvik. Theoptimizationover

measurementsofthiscriterionforgeneraltwo-qubit
statesisinvolving. Wewillfocusonthesimplecase
of Pauli measurements, meaningthatuk = vk =
{(1,0,0)T,(0,1,0)T,(0,0,1)T}andq=2.Thenwehave
that

3

i=1

1−a2i−b
2
i−c

2
i+2aibici

2(1−a2i)
≥1. (24)

Ifthisinequalityisviolated,thenthesystemissteerable.

Now,wecancompareourcriteriawithotherproposals
forthedetectionofsteerablestatesusingthreemeasure-
ments,seeAppendixBfordetailedcalculations. The
criteriafromEq.(21)provesteerabilityif

3
i=1c

2
i>1,

andfromthelinearcriteria[2,37]steerabilityfollowsif

(
3
i=1c

2
i)
1/2>1,whichisequivalent. Notsurprisingly,

Eq.(24)isstronger,sinceitusesmoreinformationabout
thestate.Thisstatementcanbemadehardbyanalyz-
ing106two-qubitstatesrandomlygeneratedfromapro-
cessbasedonHilbert-Schmidtensemble[38].94.34%of
thestatesdonotviolateanyofthecriteria,3.81%are
steerableaccordingtoallcriteria,1.85%violateonlycri-
terion(24),andnostateviolatesonlythelinearcriteria.
Aspecialcaseoftwo-qubitstatesareBelldiagonal
states,whichcanbeobtainedifweseta=b=0in
Eq.(22).Forthisclassofstatesitiseasytoseethatthe
threecriteriaareequivalent.Note,however,thatanec-
essaryandsufficientconditionforsteerabilityofthisclass
forprojectivemeasurementshasrecentlybeenfound[18].
ApplicationIII:One-waysteerablestates.—Asanex-
ampleofweaklysteerablestatesthatcanbedetected
withourmethodsweconsiderone-waysteerablestates,
i.e.,statesthataresteerablefromAlicetoBobandnot
theotherwayaround. Weconsiderthestate

A̺B=β|ψ(θ)ψ(θ)|+(1−β)
2
⊗̺θB, (25)

where |ψ(θ) = cos(θ)|00 +sin(θ)|11 and̺θB =
TrA[|ψ(θ)ψ(θ)|].Ithasbeenshownthatforθ∈[0,π/4]
andcos2(2θ)≥ (2β−1)((2−β)β3)thisstateisnot
steerablefromBobtoAliceconsideringaninfinitenum-
berofprojectivemeasurements[19],whileAlicecansteer
Bobforβ>1/2.
Consideringthreemeasurementsettings,thisstateis
oneway-steerablefor1/

√
3<β≤βmax withβmax =

[1+2sin2(2θ)]−1/2[39].Forourentropicsteeringcriteria
weconsiderthreePaulimeasurementsandq=2andwe
findthatthisstateisone-waysteerablefor

1

2cos(2θ)
3− 1+8sin2(2θ)<β≤βmax.(26)

Foranyθthisgivesanon-emptyintervalofβforwhich
ourcriteriondetectstheseweaklysteerablestates. An
attemptofoptimizingoverthesetofmeasurementswill
beaddressedinafuturework.
Conclusions.— Inthis work wehaveproposeda
straightforwardtechniquefortheconstructionofstrong
steeringcriteriafromentropicuncertaintyrelations.
Thesecriteriaareeasytoimplementusingafiniteset
ofmeasurementsettingsonly,anddonotneedtheuseof
semi-definiteprogrammingandfulltomographyonBob’s
conditionalstates.
Forfuturework,severaldirectionsseempromising.
First,besidestheusualentropicuncertaintyrelations,
suchasentropicuncertaintyrelationsinthepresenceof
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quantum memory [40] or relative entropy formulations
of the uncertainty principle [41] are promising starting
points for other criteria. Second, one can try to make
quantitative statements on steerability from steering cri-
teria. Recently, some attempts in this direction have
been pursued [42]. Finally, it would be highly desirable to
embed our approach in a general theory of multiparticle
steering.

We thank Marcus Huber and Renato M. Angelo for
discussions. This work was supported by the DFG, the
ERC (Consolidator Grant No. 683107/TempoQ) and the
Finnish Cultural Foundation.

APPENDIX

A: Known entropic uncertainty relations

In this Appendix we will present different entropic un-
certainty relations that were used in this work and known
from literature. For the Shannon entropy (q → 1) and
a complete set of MUBs, entropic uncertainty relations
were analytically derived in Ref. [43] and are given by

CB =

⎧⎪⎨
⎪⎩
(d+ 1) log

(
d+1
2

)
, d odd

d
2 log

(
d
2

)
+
(
d
2 + 1

)
log

(
d
2 + 1

)
, d even.

(27)

For the Tsallis entropy and m MUBs it has been shown
in Ref. [44] that, for q ∈ (0; 2], the bounds are given by

C
(q)
B = m lnq

(
md

d+m− 1

)
. (28)

If we consider the case q → 1, this bound is not optimal
for even dimensions, so in this case it is more appropriate
to consider the bounds given in Eq. (27).

B: Calculations for two-qubit states

First, consider the steering criterion in Eq. (21), devel-
oped in Ref. [24]. For three Pauli measurements and the
Tsallis entropy, we have the following relation

3∑
k=1

Sq(Ak ⊗Bk) ≥ C
(q)
B , (29)

where Ak = (�uk�σ) and Bk = (�vk�σ). In terms of proba-
bilities this criterion can be rewritten as

1

q − 1

3∑
k=1

{
1−

[
p�uk,�vk(+1,+1) + p�uk,�vk(−1,−1)

]q
−
[
p�uk,�vk(+1,−1) + p�uk,�vk(−1,+1)

]q}
≥ C

(q)
B . (30)

Inserting the probabilities for general two-qubit systems,
we have that

1

q − 1

3∑
k=1

{
1−2−q

[
(1+Tk)

q+(1−Tk)
q
]}

≥ C
(q)
B . (31)

If we fix the measurements and the value of q in the
same way as in Eq. (24), this criterion gives

∑3
i=1 c

2
i ≤ 1.

Then, if this inequality is violated, the system is steer-
able.
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The existence of quantum correlations that allow one party to steer the quantum state of another party is a
counterintuitive quantum effect that was described at the beginning of the past century. Steering occurs if
entanglement canbe proven even though the description of themeasurements on oneparty is not known,while
the other side is characterized. We introduce the concept of steering maps, which allow us to unlock
sophisticated techniques that were developed in regular entanglement detection and to use them for certifying
steerability. As an application,we show that this allows us to go beyond even the canonical steering scenario; it
enables a generalized dimension-bounded steering where one only assumes the Hilbert space dimension on
the characterized side, with no description of the measurements. Surprisingly, this does not weaken the
detection strength of very symmetric scenarios that have recently been carried out in experiments.
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Introduction.—While the term steeringwas coined in the
early days of quantum mechanics [1], its precise treatment
only started alongside modern developments in quantum
information theory [2,3]. The possibility of steering the
ensemble in a two-party shared state in quantum mechanics
requires that the two subsystems are entangled. To show
steering, however, entanglement is not sufficient, since
there are some entangled states that are nonsteerable.
In fact, steering can be seen as a kind of entanglement
verification where one relaxes all assumptions about the
devices used by one of the parties, thus sacrificing the
ability to detect all entangled states.
This fundamental fact is also what has motivated some

recent interest in certifying the steerability of quantum states:
Any successful steering test constitutes an entanglement test
that is completely device independent for one of the parties,
and can thus be exploited to design more secure quantum
protocols in situations where one of the parties may be
untrusted. Apart from this, it has been observed recently that
steering is fundamentally asymmetric [4] and that it is closely
connected to joint measurability [5,6]. Furthermore, steering
is known to give an advantage for tasks like subset channel
discrimination [7]. Naturally, this also spurred interest in
devising strong steering criteria [2,8–12], i.e., to investigate
their violation [13] or to develop and to use it quantitatively
[14–16]. It has been shown that bound entangled quantum
states also exhibit steering [17]. Steering has been success-
fully shown experimentally in several recent experiments
[18–20], all of which demonstrate that steering, taking into
account various loopholes, is already reachable with today’s
technology.

In this Letter, we operationally connect steering with
regular entanglement verification: We develop a framework
that maps the steering certification problem to a regular
entanglement detection problem. More explicitly, we con-
struct a matrix from the measurement data that exhibits
entanglement if the state is steerable. These steering maps,
as we call them, allow us to harness the sophisticated
techniques developed in entanglement theory and to go
beyond the current state of the art in steering. Contrary to
intuition, this does not complicate the construction of
steering criteria at all. In fact, at no additional expense,
we can use the resulting entanglement tests to derive
nonlinear or other improved steering tests that are not
straightforward to derive with the standard semidefinite
programming (SDP) approach. As an example of the vast
possibilities of this framework, we introduce a new con-
cept, which we call dimension-bounded steering, and show
that it is accessible with our techniques. In this scenario,
one also removes all assumptions of the usually trusted
side, with the exception that all measurements operate
in the same Hilbert space of dimension d. In that, this
dimension-bounded steering lies between nonlocality
and regular steering. Nonetheless, we also show that the
robustness to experimental noise of dimension-bounded
steering can be comparable or even equal to regular steering
certification. This implies that recent loophole-free
steering experiments could have also shown loophole-free
dimension-bounded steering.
The Letter is organized as follows. First, we define

steering and set the notation. We continue by demonstrating
our approach in a dichotomic setting and then discuss our
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main technique, the steering maps. With this, we show that
deciding steerability of an ensemble is equivalent to a
separability problem. We then discuss how our approach
can be used to derive criteria for the dimension-bounded
case. We end with an explicit example of this criterion for
recent experiments and a discussion of its strength.
Steering.—In the steering scenario, two parties (Alice

and Bob) share a quantum state ρ. Alice can choose
between n different measurements, each having m possible
results. Her choice is denoted by x ¼ 1;…; n for the setting
while the results are labeled by a ¼ 1;…; m. For Bob, we
assume that he performs full tomography on his reduced
state depending on Alice’s measurement and result; thus,
he is able to reconstruct the conditional states ρajx, and the
data of this experiment is summarized by the ensemble
E ¼ fρajxga;x of unnormalized density operators, where
Alice’s probability is PðajxÞ ¼ trðρajxÞ.
Originally, the question of steering asks whether Alice

can convince Bob that she can steer the state at Bob’s side via
her measurements. This means that Bob cannot explain
the reduced states ρajx as coming from some probability
distribution pðλÞ of states ρλ, where Alice’s measurements
just give additional information about the probability.
As shown in Ref. [16], this can be reformulated as follows:
An ensemble E is nonsteerable if and only if there exist
unnormalized density operators ωi1;…;in with ik ¼ 1;…; m
for each k ¼ 1;…; n such that

ρajx ¼
X

i1;…;in

δix;aωi1;…;in ; ð1Þ

and steerable otherwise. This is the definition fromwhich we
start our considerations.
A dichotomic warm-up.—Let us first discuss the idea via

the simplest scenario where Alice has two dichotomic
measurements, i.e., n ¼ m ¼ 2, in which case we use labels
a ¼ � to provide easier distinguishable formulas. In this
scenario, the ensemble E ¼ fρþj1; ρ−j1; ρþj2; ρ−j2g is called
nonsteerable if and only if there exists positive semidefinite
operators ωij with i; j ¼ � such that

ρþj1 ¼ ωþþ þ ωþ−; ρþj2 ¼ ωþþ þ ω−þ;

ρ−j1 ¼ ω−þ þ ω−−; ρ−j2 ¼ ωþ− þ ω−− ð2Þ

holds. Note that these linear equations are not linearly
independent; therefore, E does not completely determine
the unknowns ωij. Choosing for instance an arbitrary ωþþ,
the choices

ωþþ; ωþ− ¼ ρþj1 − ωþþ;

ω−þ ¼ ρþj2 − ωþþ; ω−− ¼ ρΔ þ ωþþ; ð3Þ

with ρΔ ¼ ρ − ρþj1 − ρþj2, satisfy the linear constraints,
where ρ denotes the reduced density matrix of Bob.

Recall that steering constitutes one-sided device-
independent entanglement verification, because a nonsteer-
able ensemble can always be reproduced by measurements
on a separable state σAB. This works by using

σAB ¼
X
ij

ji; jiAhi; jj ⊗ ωij; ð4Þ

where j�;�iA label computational basis states and mea-
surements M�j1 ¼ j�ih�j ⊗ 1, M�j2 ¼ 1 ⊗ j�ih�j.

One might guess there is not much difference whether we
explicitly search for appropriate ωij satisfying Eq. (2) or for
the separable state σAB in Eq. (4). However, looking for a
separable state is a task with which we are currently well
familiar, due to extensive research on separability criteria
during the past two decades [21,22]. There are two things
to take into account, though. First, obviously, the state σAB
is not completely known to us. Also, σAB is not just a
separable state, because Alice’s states are very special; they
are called classical-quantum states [23] or are described
to have a zero “quantum discord” [24,25]. Thus, if one
naïvely applies a separability criterion, one loses this
required extra structure and the criterion will not be very
strong. In the following we show how to circumvent these
drawbacks.
Steering maps.—In the following, we reformulate the

original SDP in an equivalent manner by using the duality
of semidefinite programs [26]. This will later allow us
to treat dimension-bounded steering. First, to remove the
discord zero structure, we replace the basis states ji; jihi; jj
by other positive semidefinite operators Zij of our choice,
so that we get a generic separable structure

ΣAB ¼
X
ij

Zij ⊗ ωij: ð5Þ

To get a unit trace for ΣAB and to remove the problem that
not all ωij are known, one enforces certain linear relations
on Zij. Using for instance the solution of Eq. (3), in Eq. (5)
one obtains

ΣAB ¼ Zþ− ⊗ ρþj1 þ Z−þ ⊗ ρþj2 þ Z−− ⊗ ρΔ

þ ðZþþ − Zþ− − Z−þ þ Z−−Þ ⊗ ωþþ;

from which one sees that ΣAB is completely determined if
the last term vanishes, i.e., Zþþ ¼ Zþ− þ Z−þ − Z−−. With
this identity, the normalization of trðΣABÞ ¼ 1 is then equal
to trðZþ−Þtrðρþj1Þ þ trðZ−þÞtrðρþj2Þ þ trðZ−−ÞtrðρΔÞ ¼ 1.
This is exactly what we were looking for, and we get
the following sufficient criterion for steerability: For any
nonsteerable ensemble E and any choice of positive semi-
definite operators Zij, which satisfy the two just-mentioned
extra relations, the operator

ΣAB ¼ Zþ− ⊗ ρþj1 þ Z−þ ⊗ ρþj2 þ Z−− ⊗ ρΔ ð6Þ
is a separable quantum state.
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If for a given set of Zij the state ΣAB is not separable, i.e.,
it is entangled or no quantum state at all, then operators ωij

with the properties from Eqs. (2), (3) do not exist and the
underlying ensemble is steerable. In order to check this,
we can employ any separability criterion, e.g., partial trans-
position [27], positive maps [28], entanglement witness
[28,29], computable cross norm or realignment [30,31], or
covariance matrices [32], to name only a few. The whole
power of this is unlocked by the mapping ji; jihi; jj ↦ Zij,
which from now on we refer to as the steering map.
In the most general steering case, we know that a non-

steerable ensemble can always be obtained bymeasuring the
separable state σAB¼

P
i1;…;in ji1;…;iniAhi1;…;inj⊗ωi1;…;in ,

with appropriate measurements that only act nontrivially on
the respective subsystem forAlice. Each computational basis
state is now mapped to a new positive semidefinite operator
Zi1;…;in to obtain

ΣAB ¼
X

Zi1;…;in ⊗ ωi1;…;in : ð7Þ

This operator is uniquely determined by the given ensemble
E if and only if the chosen operators Zi1;…;in satisfy

Zi1i2;…;in ¼ Zi1j2;…;jn þ Zj1i2j3;…;jn þ � � � þ Zj1j2;…;in

− ðn − 1ÞZj1j2;…;jn ð8Þ

for all possible choices of i1;…; in and j1;…jn.With this we
are ready to state our first main result, which says that the
developed criterion via steering maps is also sufficient. The
proof is given in the Supplemental Material [33].
Proposition 1.—For any nonsteerable ensemble E and any

set of positive semidefinite operators Z ¼ fZi1;…;ingi1;…;in
fulfilling (8) the operator given by Eq. (7) has a separable
structure.For any steerable ensemble E there exists a set of
operators Z which uniquely determines ΣAB and satisfies
trðΣABÞ ¼ 1, but where nonseparability of ΣAB is detected
by the swap entanglement witness. Here, the swap entangle-
ment witness is the flip operator V ¼ P

ijjijihjij where
trðρVÞ < 0 signals entanglement.
Let us remark that the steering map criterion is strictly

stronger than a single steering inequality, which is similarly
characterized by Z, but where one only checks the
swap entanglement witness. Moreover, the proposition
also applies to steering scenarios where Bob measures a
few observables rather than a tomographic complete set;
in this case, nonseparability of ΣAB must be verified via
this partial information only. Note that since steering is
closely related to joint measurability, Proposition 1 can
directly be employed for this task also; we are using a result
from this field [34] to deduce a collection of Z for the
case n ¼ 2; m ¼ d, cf. Supplemental Material [33].
Dimension-bounded steering.—Next let us turn to the

dimension-bounded steering case. Contrary to the standard
steering setup, where it is essential that the measured

observables on the characterized side are fully known,
these criteria require only that Bob’s measurements act on a
fixed finite-dimensional Hilbert space.
To be precise, we assume that Bob can choose between

nB different settings y, each yielding one of mB possible
outcomes b. Each measurement is described by a positive
operator valued measure (POVM), i.e., a set of operators
fMbjygb which satisfies positivity Mbjy ≥ 0 and normali-
zation

P
bMbjy ¼ 1. As the sole restriction, we have to

assume that they all act on the same Hilbert space with
at most dimension dB. Thus, if Bob observes different
distributions, Pðbjy; iÞ, possibly conditioned onto a sepa-
rate event i like a measurement result by Alice, then there
must exist a collection of different density operators fρigi
and a single set of appropriate POVMs, both on a dB-
dimensional Hilbert space, which reproduce the data,
Pðbjy; iÞ ¼ trðMbjyρiÞ [35]. To complete the description
of the problem, we assume that nA, mA are the subsystem-
labeled specifications for Alice, who is the fully unchar-
acterized side, and we refer to it as a dB-dimension-
bounded steering scenario with parameters nA;mA; nB;mB.
In order to derive steering criteria for this scenario, we

employ a fixed steering map to transform the problem into a
standard separability question according to Proposition 1.
Afterwards, we use the entanglement detection techniques
of Ref. [37], which require only a dimension constraint.
The criteria that we derive work best if Bob has

dichotomic measurements nB ¼ 2. Before we give the
general framework we would like to explain the ideas
behind it. As shown in the previous section, we know that
any steerable ensemble E can be detected by an appropriate
collection Z such that ΣAB ¼ P

i1;…;inZi1;…;in ⊗ ωspec
i1;…;in

is
not a separable state. Here, ωspec

i1;…;in
should express that the

ωi1;…;in , when using a Z satisfying Eq. (8), is given by a
special solution of the linear relations given by Eq. (1), e.g.,
as in Eq. (6). To show that ΣAB is not separable, we can
employ the computable cross-norm or realignment criterion
[30,31]. This criterion states that the correlation matrix
½CðρABÞ�kl ¼ trðGA

k ⊗ GB
l ρABÞ of any separable state ρsepAB

satisfies ∥CðρsepABÞ∥1 ≤ 1. The norm that appears here is the
trace norm ∥C∥1 ¼

P
isiðCÞ given by the sum of the

singular values siðCÞ, while the sets fGigi are orthonormal
Hermitian operators (not necessarily forming a basis) for
the respective local side. Thus, whenever ∥CðΣABÞ∥1 > 1,
the data E shows steering. Note that since ∥ · ∥1 is unitarily
equivalent, only the corresponding spanned local operator
spaces matter.
However, one cannot directly evaluate this for the

dimension-bounded scenario, because Bob can neither
reconstruct ρajx nor compute values trðGB

k ρajxÞ because
he lacks the precise description of his measurements Mbjy.
Still, we can build a matrix that looks similar to the
correlation matrix and for which the dichotomic choice
of Bob’s measurements becomes important. For each

PRL 116, 090403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

090403-3



dichotomic measurement, consider the operators given
by the difference of the two POVM elements By ¼
Mþjy −M−jy for y ¼ 1;…; nB and B0 ¼ 1. Then, define
the matrix ½DðΣABÞ�ky with entries

trðGA
k ⊗ ByΣABÞ ¼

X
i1;…;in

trðGA
kZi1;…;inÞtrðByω

spec
i1;…;in

Þ: ð9Þ

For convenience we assume that we only pick nB þ 1

different operatorsGA
k , such thatD is a square matrix with a

determinant. We call this matrix the data matrix D to
further express that D is determined by the observed data
Pða; bjx; yÞ once having selected Z and fGA

kgk.
From the data matrix D we obtain a correlation matrix

C ¼ DT if T describes a linear transformation that maps
fBygy into an orthonormal set fGB

l ¼ P
yTylBlgl. Though

we have only the limited information about nB being
dichotomic measurements on a dB-dimensional Hilbert
space, this transformation T satisfies [37]

j detðTÞj ≥ d−½ðnBþ1Þ=2�
B : ð10Þ

To be precise, this only holds if fBygy is linearly inde-
pendent, but that can be inferred directly from a data matrix
with j detðDÞj ≠ 0. Through this, one can then lower bound
the trace norm of C by

∥C∥1 ¼
X

siðCÞ ≥ ðnB þ 1Þj detðCÞj½1=ðnBþ1Þ�

¼ ðnB þ 1Þðj detðDÞ∥ detðTÞjÞ½1=ðnBþ1Þ�

≥
nB þ 1ffiffiffiffiffiffi

dB
p j detðDÞj½1=ðnBþ1Þ�; ð11Þ

using the inequality of the arithmetic and geometric means
in the first step, the determinant rule, and finally Eq. (10). If
this lower bound is strictly above 1, we certify that ΣAB is
not separable and thus steerability of the underlying state.
This is effectively the second condition of the following
proposition; the other statement employs a slightly better
bounding technique.
Proposition 2.—Consider a dB-dimension-bounded

steering scenario with parameters nA;mA;nB, and mB ¼ 2.
From the observed data, build up the data matrix

Dky ¼
X

i1;…;in

trðGA
kZi1;…;inÞtrðByω

spec
i1;…;in

Þ ð12Þ

using B0 ¼ 1 and By ¼ Mþjy −M−jy for y ¼ 1;…; nB, any
set of steering operators Z with nA;mA, and any choice of
nB þ 1 orthonormal operators GA

k .Let dA be the dimension
of the chosen Z. If the observed data are nonsteerable, then
the determinant of D satisfies

j detðDÞj ≤ 1ffiffiffiffiffi
dA

p
� ffiffiffiffiffiffiffiffiffiffi

dAdB
p

− 1

nB
ffiffiffiffiffi
dA

p
�

nB
ð13Þ

if nB >
ffiffiffiffiffiffiffiffiffiffi
dAdB

p
− 1 and 1 ∈ spanðfGA

i gÞ. If this is not the
case, nonsteerable data give

j detðDÞj ≤
� ffiffiffiffiffiffi

dB
p
nB þ 1

�
nBþ1

: ð14Þ

Application to experiments.—We now give an explicit
example of Proposition 2, in order to demonstrate its
application and compare its strength. We pick the scenario
that has been implemented in the loophole-free steering
experiment performed in Vienna [19]. We follow the
procedure outlined in our Letter to arrive at the data matrix
(for details see the Supplemental Material [33])

1ffiffiffi
2

p

2
666664

1 hB1i hB2i hB3i
hA1i=

ffiffiffi
3

p hA1B1i=
ffiffiffi
3

p hA1B2i=
ffiffiffi
3

p hA1B3i=
ffiffiffi
3

p

hA2i=
ffiffiffi
3

p hA2B1i=
ffiffiffi
3

p hA2B2i=
ffiffiffi
3

p hA2B3i=
ffiffiffi
3

p

hA3i=
ffiffiffi
3

p hA3B1i=
ffiffiffi
3

p hA3B2i=
ffiffiffi
3

p hA3B3i=
ffiffiffi
3

p

3
777775
:

Because nB ¼ 3 >
ffiffiffiffiffiffiffiffiffiffi
dAdB

p
− 1 ¼ 1, and since the full

operator basis for A includes the identity, we can use the
bound given by Eq. (13). Thus, if

j detðDÞj > 1

108
; ð15Þ

then the observed data show steering under the sole
assumption that Bob’s measurements act onto a qubit.
If one evaluates this criterion for a noisy maximally

entangled state pjψ−ihψ−j þ ð1 − pÞ1=4, measuring along
the three spin directions σ1; σ2; σ3, one verifies steering if
p > 1=

ffiffiffi
3

p
. This is surprising, because the visibility to show

standard steering, i.e., requiring the knowledge that Bob
perfectly measures σ1; σ2; σ3, is exactly the same. Thus, we
learn that for this symmetric case, the only crucial knowledge
of the measurements is that they act onto a qubit, and
no further characterization is needed. In the Supplemental
Material we discuss this scenario under experimentally
realistic conditions showing that current technology indeed
allows (or has already allowed) a loophole-free dimension-
bounded steering experiment [33].
Conclusion.—We have introduced a framework that

allows us to map the steering problem to a standard
separability problem. This opened the possibility of
exploiting the sophisticated tools available in entanglement
detection, and thereby creating strong steering criteria. We
showed dimension-bounded steering to be one particularly
promising further application. Considering that many
quantum protocols also require a certain level of trust,
we believe that this dimension-bounded scenario is of high
relevance for scenarios where at least one of the parties has
some degree of confidence in his or her local device. We
have shown that this “nearly” device-independent scenario
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is a lot stronger than the undoubtedly harder to achieve
fully device-independent scenario. This scenario will help
to make quantum key distribution more robust [38,39] and
will assist in unifying frameworks of resource theories that
exist for nonlocality [40] and steering [41] in order to
approach a resource theory of partially device-independent
entanglement certification.
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Proof of Eq. (8) in the main text

Let us summarize the statement in the following propo-
sition:

Proposition 1. The set Z = {Zi1...in}i1...in uniquely
determines ΣAB if and only if Eq. (8) in the main text
holds for any choices of i1, . . . , in and j1, . . . jn.

Before we prove this proposition let us note a technical
lemma, which will be useful in the following. It describes
the most general solution of ωi1...in which satisfy the re-
lations demanded for a local hidden state model.

Lemma 1. Any collection of hidden states ωi1...in which
satisfies the set of linear equations given by Eq. (1) in
the main text for E can be written as ω = ωspec +ωhomo.
A special solution ωspec is given by ωspec

i1...in
= 0 for all

indices i1, . . . , in except

ωspec
am...m = ρa|1, ω

spec
mam...m = ρa|2, . . . ω

spec
m...ma=ρa|n, (1)

for a < m and

ωspec
m...m =

∑

x

ρm|x − (n− 1)ρ. (2)

The general solution of the corresponding homogeneous
system is given by

ωhomo
i1...in =

∑

k

v
(k)
i1...in

Xk (3)

using arbitrary Hermitian operators Xk. Here k =
k1 . . . kn is an n-length index similar to the subscripts of
ω, where only the distinct possibilities with at least two
ki < m are considered. For a fixed k the vector v(k) is
given by

v
(k)
i1...in

= δi1...in,k1...kn − δi1...in,k1m...m − . . .
−δi1...in,m...mkn + (n− 1)δi1...in,m...m. (4)

Proof. Note that Eq. (1) in the main text is a standard
set of linear equations, except that we have Hermitian

operators rather than scalar variables. Therefore all the
basic linear algebra results apply.

In total we have mn unknowns but only n(m− 1) + 1
linear independent relations recalling once more that∑
a ρa|x = ρ is independent of the setting. Hence the

general solution can be written as a combination of a
special solution and the general solution of the homoge-
neous system

∑
δix,aωi1...in = 0.

That ωspec as given in the Lemma is a special solution
can be checked straightforwardly. For the general solu-
tion of the homogeneous system ωhomo note that via the
Ansatz of Eq. (3) this breaks down to the relation

∑

i1,...,in

δix,av
(k)
i1...in

= 0. (5)

The dimension of this linear subspace is mn − [n(m −
1) + 1], which is precisely the number of the considered
k’s. Now first note that the given {v(k)}k are linearly
independent, since vector v(k) is the only vector which
has a non-zero entry at the position i1 . . . in = k1 . . . kn.
Thus we are left to show that they indeed solve Eq. (5).
For the x = 1 and a < m this follows for instance by

∑

i2...in

v
(k)
ai2...in

= +1︸︷︷︸
ak2...kn

−1︸︷︷︸
am...m

= 0 (6)

if k1 = a, otherwise it holds trivially. The same argu-
ments holds if one picks a different index ix. At last we
still need to check the relation corresponding to reduced
state, which is given by

∑

i1...in

v
(k)
i1...in

= +1︸︷︷︸
k1k2...kn

−n︸︷︷︸
{k1m...m,...,m...kn}

n− 1︸ ︷︷ ︸
m...m

= 0. (7)

which finishes the proof.

Proof of Prop. 1. Using the general solution ωsol as given



2

the Lemma 1 in the operator ΣAB one sees that

ΣAB =
∑

i1...in

Zi1...in ⊗ ωspec
i1...in

+
∑

k

( ∑

i1...in

v
(k)
i1...in

Zi1...in

)
⊗Xk (8)

is uniquely determined by the given ensemble E if and
only if

∑

i1...in

v
(k)
i1...in

Zi1...in = 0 (9)

holds for all possibilities k. Using the explicit form of the
vectors v(k) as given in Eq. (4) these constraints can be
re-written as

Zk1...kn =Zk1m...m + Zmk2...m + . . .+ Zm...kn

− (n− 1)Zm...m (10)

for all admissible k1 . . . kn with at least two ki < m.
However, this condition also holds also for each k1 . . . kn
without this restriction, because then the vectors v(k) in
Eq. (4) vanish. Thus we have proven Eq. (8) in the main
text for all i1 . . . in, but only for the special index set
j1 . . . jn = m. . .m. Still, these conditions already im-
ply the general (more symmetric looking) relation, using
an arbitrary j1 . . . jn. This can be inferred more easily
directly from the problem formulation by relabeling the
individual outcomes of the conditional states.

Proof of Prop. 1 in the main text

We prove this in two parts; the first only considers the
statement without the extra condition tr(ΣAB) = 1, but
which is discussed in the second part then.

As mentioned in the main text, the proof rests on the
duality properties of semidefinite programs. In fact, the
first part of the proof can be considered as a special inter-
pretation of the dual program of the original semidefinite
program. Since the dual might be of independent inter-
est, we compactly summarizes it in Remark 1.

Proof, Part 1. The idea of the proof is to employ the
duality statements given by respective semidefinite pro-
grams. Recall that the problems infx∈Rn{cTx|F0 +∑
i xiFi ≥ 0} and supZ≥0{− tr(ZF0)| tr(ZFi) = ci∀i},

called primal and dual semidefinite programs, are con-
nected by a couple of important relations. The most
relevant is strong duality, which states that both optimal
values are equal. This holds for instance under the Slater
regularity condition that either problem has a strictly fea-
sible point, i.e., either an x such that F0 +

∑
i xiFi > 0

or a Z > 0 satisfying tr(ZFi) = ci [32]. The proof goes
along the following lines: We parse the original steering

problem into the form of the primal semidefinite pro-
gram, then we invoke its dual, show strong duality such
that we can ensure that it gives the same solution, and
finally we interpret this dual program as a the swap wit-
ness on ΣAB .

To start let us write the original problem into the form
of a primal semidefinite program, which is given by

inf 0 (11)

s.t. ωspec
i1...in

+
∑

k

v
(k)
i1...in

Xk ≥ 0 ∀i1 . . . in.

This can be transformed to the standard form if one
uses, i) a Hermitian operator basis {Sr} to transform
the matrix-valued variables Xk into Xk =

∑
r xk,rSr to

scalar-valued variables xk,r, and ii) that several positiv-
ity constraints are equivalent to a single positivity con-
straint of a corresponding block matrix. We emphasize
that Eq. (11) is a special primal problem called feasibility
problem, since we effectively do not optimize anything.
By convention, if the constraint cannot be fulfilled then
the infimum is +∞.

Working out the dual gives

sup −
∑

i1...in

tr(Zi1...inω
spec
i1...in

) (12)

s.t. Zi1...in ≥ 0 ∀i1 . . . in,∑

i

v
(k)
i1...in

Zi1...in = 0 ∀k.

If one has used the standard form for the previous prob-
lem, one simply reverses here the points i) and ii); the
block-structure can be removed directly, while the lin-
ear relations in the last line of Eq. (12) appear since one
has respective linear relations for all Hermitian operator
basis elements.

This dual has a strictly feasible point Zi1...in = 1 > 0,

noting
∑
i v

(k)
i1...in

= 0 was already proven in Lemma 1.
Therefore we have strong duality, and consequently the
statement that, whenever the primal problem is infeasible
(E steerable) then there exists a sequence of appropriate
Zi1...in such that C =

∑
i tr(Zi1...inω

spec
i1...in

) will tend to
−∞, saying that Eq. (12) is unbounded. We summarize
this more direct dual SDP in Remark 1.

Now let us interpret this as the detection statement
of the proposition. That we labeled the dual variables
by Zi1...in as also used in ΣAB is no coincidence. Ef-
fectively the solutions Zi1...in of the dual program will
be the ones used in the operator ΣAB that shows steer-
ing. Note that the variables of the dual program already
satisfy positivity Zi1...in ≥ 0 and the linear relations in
Eq. (12) uniquely determine ΣAB =

∑
i Zi1...in ⊗ω

spec
i1...in

,
as already shown in the proof of Prop. 1. Finally, note
here the formal operator connection between ΣAB and
the objective function C. Using the swap operator V ,
i.e., tr(V A ⊗ B) = tr(AB), one directly sees that the
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swap operator evaluated on ΣAB gives the objective value
tr(V ΣAB) = C. Since the swap operator V is an entan-
glement witness a negative tr(V ΣAB) = C < 0 signals
that the optimal ΣAB has not a separable structure. This
finishes the first part of the proof.

Remark 1. The dual problem to the feasibility problem
for the collection of positive semidefinite operators satis-
fying the relations given by Eq. (1) reads as

sup −
∑

i1...in

tr(Zi1...inωi1...in) (13)

s.t. Zi1...in ≥ 0 ∀i1 . . . in,
Zi1i2...in = Zi1j2...jn + Zj1i2j3...jn + · · ·+ Zj1j2...in

−(n− 1)Zj1j2...jn ∀i1, . . . jn.

Via the linear equations for Zi1...in and by Eq. (1) one
can evaluate the objective C =

∑
i1...in

tr(Zi1...inωi1...in).
For instance, if one picks fixed indices j1, . . . , jn one ar-
rives at

C =
∑

i1...in

tr(Zi1j2...jnωi1...in)+ · · ·+
∑

i1...in

tr(Zj1...inωi1...in)

−(n− 1)
∑

i1...in

tr(Zj1j2...jnωi1...in)

=
∑

i1

tr
[
Zi1j2...jn(

∑

i2...in

ωi1...in)
]

+ . . .

+
∑

in

tr[Zj1...in(
∑

i2...in

ωi1...in)]

−(n− 1) tr[Zj1j2...jn(
∑

i1...in

ωi1...in)]

=
∑

i1

tr(Zi1j2...jnρi1|1) + · · ·+
∑

in

tr(Zj1...inρin|n)

−(n− 1) tr(Zj1j2...jnρ).

Note that any other choice gives the same value; this is
expressed by C =

∑
i1...in

tr(Zi1...inω
spec
i1...in

).

Proof, Part 2. It is left to show that we can also find a
solution Z which satisfies tr(ΣAB) = 1, since such a con-
dition does not appear in Eq. (12). Note that since the
value of an objective function of any steerable ensemble
will tend to −∞, there are for sure parameters Z such
that C < 0. Suppose that for these Zi1...in , the oper-
ator ΣAB is not normalized. If tr(ΣAB) > 0, then one
can directly used a rescaled version Zi1...in/ tr(ΣAB), now
also satisfying the trace condition, but still detecting the
state. Note that this trick fails if tr(ΣAB) ≤ 0, either
due to a division by zero, or due to Zi1...in being not
positive semidefinite anymore. Thus we are left to prove
that tr(ΣAB) > 0.

To verify tr(ΣAB) ≥ 0 we employ that C ≥ 0 holds
for any non-steerable ensemble. From the given en-
semble E such a non-steerable ensemble is for instance
Ẽ = {ρ̃a|x = tr(ρa|x)1/d}, having a special solution

ω̃i1...in = tr(ωspec
i1...in

)1/d as can be checked by Eqs. (1,
2). Thus evaluating the objective function of this non-
steerable ensemble and the chosen selection Z one finds

∑

i1...in

tr(Zi1...in ω̃
spec
i1...in

)

=
1

d

∑

i1...in

tr(Zi1...in) tr(ωspec
i1...in

) =
1

d
tr(ΣAB) ≥ 0.

Finally, we show that from Z with C < 0 and
tr(ΣAB) = 0 it is always possible to find a different
solution Z̄ with C̄ < 0 but tr(ΣAB) > 0 such that
we can employ the rescaling trick again. Note first
that the only negative part in the C must be due to
tr(Zm...mω

spec
m...m) < 0, since all other terms involve only

positive semidefinite operators. Now pick any ωspec
i1...in

with tr(ωspec
i1...in

) > 0, and assume this is ωspec
am...m with

a < m. Then define the new set of operator

Z̄am...m = Zam··· + ε1,

Z̄mam...m = Zmam...m, . . . , Z̄m...m = Zm...m (14)

which by Eq. (10) are enough to fully determine the
set Z̄. This set still contains only positive semidefinite
operators because the only operators that change are
Z̄ai2...in = Zai2...in + ε1. For this new solution Z̄ we get
tr(Σ̄AB) = ε tr(ωspec

am...m) and C̄ = C + ε tr(ωspec
am···), thus

choosing ε small enough one obtains the given statement.
This completes the proof.

Proof of Prop. 2 in the main text

The ideas and bounding techniques are the same as
in Ref. [35], which derived similar determinant con-
straints for the dimension-bounded entanglement verifi-
cation; here we only need to apply them to a single side.

Proof. Inequality (14) in the main text is just a rear-
rangement of Eq. (11) in the main text. We remark once
more that the bound of T as given by Eq. (10) in the
main text holds only if {By}y is linearly independent,
which follows from the observation |det(D)| 6= 0.

The first and stronger condition in Eq. (13) in the main
text follows using the extra information of C that if both
sets {GAk }k, {GBl }l have the identity in its linear span,
then the largest singular value satisfies σ0(C) ≥ q =
tr(1/

√
dA⊗1/

√
dBΣAB) = 1/

√
dAdB . This follows from

the fact that the ordered singular values of C are lower
bounded by the ordered singular values of any submatrix
Csub of C. While {GBl }l satisfies this extra condition au-
tomatically since B0 = 1, we need this requirement for
the choice of {GAk }k.

Via this extra condition we can achieve a better bound
using the inequality of arithmetic and geometric means
only to nB singular values and then checking whether the
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minimal value of σ0(C) can be reached, more precisely
one obtains

min
σ0(C)≥q

‖C‖1 ≥ min
σ0(C)≥q

[
σ0(C) +

( |det(C)|
σ0(C)

) 1
nB
]

=





(nB + 1)| det(C)|
1

nB+1 if |det(C)|
1

nB+1 ≥ q
q + nB

(
| det(C)|

q

) 1
nB else

, (15)

depending on the determinant of C. Note that both
bounds are monotonically increasing functions. By the
determinant rule |det(C)| = |det(D)||det(T )| and the
bound of Eq. 10 in the main text, the possible values are
constrained to satisfy

|det(C)| ≥ |det(D)|d−
nB+1

2

B . (16)

Thus, depending on the value of |det(D)| the sec-
ond bound in Eq. (15) can be used or not. If
|det(D)|1/(nB+1) ≥ 1/

√
dA the determinant of C will al-

ways satisfy the constraint in Eq. (15) and one obtains

min
σ0(C)≥q

‖C‖1 ≥
nB + 1√

dB
|det(D)|

1
nB+1 . (17)

Otherwise one can split the possible region and minimize
separately, yielding

min
σ0(C)≥q

‖C‖1 ≥ (18)

min

{
1√
dAdB

+ nB

(√
dAd

−nB
2

B |det(D)|
) 1

nB
,
nB + 1√
dAdB

}
.

At last, if nB >
√
dAdB − 1 note that the bound given

by Eq. (17) and the second argument in minimum of
Eq. (18) are strictly larger than 1. Thus only the first
argument of Eq. (18) must be checked, which is the stated
condition. This completes the proof.

Steering scenario for n = 2 and m = d

In this section we exemplify the construction of respec-
tive Z = {Zij}ij for the case of two settings but arbitrary
number of outcomes. The idea and construction rely on
Fourier connected mutually unbiased bases [33]. Thus we
need a couple of definitions first.

Consider a Hilbert space Cd and suppose that one has
a basis {|φk〉}k∈Zd

with Zd = {0, . . . , d − 1}, which we
also use to label the outcomes. Then one obtains an-
other basis, which is mutually unbiased, by the Fourier
transform

|ψk〉 = F |φk〉 =
1√
d

∑

l∈Zd

qkl |φl〉 (19)

with q = e2πi/d.

These two bases even admit further structure which
becomes convenient in the following. Consider two rep-
resentations U, V of the cyclic group Zd on H defined
by its action onto the first basis, Ux |ψk〉 = |ψk+x〉 and
Vy |ψk〉 = qyk |ψk〉 for all x, y, k. These two representa-
tions further satisfy UxVy = q−xyVyUx and the Fourier
transform is the intertwining map, UxF = FV †x and
VyF = FUy. Via this one can identify the action on
both basis states that we summarize as

Ux |φk〉 = |φk+x〉 , Ux |ψk〉 = q−xk |ψk〉 , (20)

Vy |φk〉 = qyk |φk〉 , Vy |ψk〉 = |ψk+y〉 (21)

for all x, y ∈ Zd. Then the following set of operators will
be our characterization of the steering inequality. The
structure can be guessed once one knows the so-called
mother observable for the respective joint measurability
problem [33], from whose result one further knows that
the current form is optimal.

Proposition 2. Consider the set of operators Z =
{Zkl = UkVlZ00V

†
l U
†
k} with

Z00 = µ1 |χ−〉 〈χ−|+µ2(1−|χ+〉 〈χ+|−|χ−〉 〈χ−|), (22)

pure states |χ±〉 ∝ |φ0〉 ± |ψ0〉 and parameters

µ1 =
2√

d(
√
d− 1)(

√
d+ 2)

, (23)

µ2 =
1 +
√
d√

d(
√
d− 1)(

√
d+ 2)

. (24)

Then this set of operators can be used in the steering map,
since all operators are positive semidefinite and uniquely
determines the operator ΣAB and satisfies tr(ΣAB) = 1.

Proof. Using the form of Z00 as given by Eq. (22) one sees
that Z00 is positive semidefinite, since both µi are strictly
positive and |χ−〉 and |χ−〉 are orthogonal, moreover it
has unit trace. Since all other Zkl are obtained by a
unitary transformation each Zkl is positive semidefinite
and satisfies tr(Zkl) = 1, which directly shows that ΣAB
has unit trace. Thus we are left to show that Zkl uniquely
determines ΣAB , for which we have to show

Zkl = Zkt + Zsl − Zst (25)

for all k, l, s, t ∈ Zd according to Prop. 1. In order to
show this we expand the states |χ±〉 in Z00 which results
into the structure

Z00 = c1(|φ0〉 〈φ0|+ |ψ0〉 〈ψ0|) + c21 (26)

with appropriate coefficients c1, c2. Note that at this
point the very specific choices of µ1 and µ2 become im-
portant; they are chosen such that cross terms of |φ0〉 〈ψ0|
or |ψ0〉 〈φ0| vanish. Applying now the rules given by



5

Eqs. (20, 21) one gets

Zkl = c1(|φk〉 〈φk|+ |ψl〉 〈ψl|) + c21 (27)

from which the necessary relation given by Eq. (25) can
be verified.

In order to obtain a steering criterion one can use the
given operators Zkl of the proposition to build up ΣAB ,
which is uniquely determined by the given ensemble E
in the n = 2 and m = d steering case. Whenever this
operator ΣAB is then not a separable state the underlying
distribution is steerable.

Dimension-bounded steering in a loophole free
experiment of Ref. [19]

First let us reiterate how to arrive at the data matrix
necessary for employing the dimension bounded steering
criterion. Alice and Bob have three different dichotomic
measurements, nA = nB = 3 and mA = mB = 2, and we
assume that Bob’s measurement act onto a qubit dB = 2.
The settings will be labeled by x, y ∈ {1, 2, 3} and the
outcomes by a, b ∈ {±1}.

According to Prop.2, let us first pick operators Zijk
with i, j, k ∈ {±1} that characterize a steering map with
parameters nA = 3 and mA = 2. Here we choose Zijk =
[1+

(
iσ1 + jσ2 + kσ3)/

√
3
]
/2, which can be interpreted

as pure states, whose Bloch vectors point towards the
8 different corners of the cube. It can be checked that
these choices satisfy all relations given by Eq.(8) of the
main text, so that, by construction, the operator ΣAB is
uniquely determined by the ensemble E and furthermore
normalized. This operator is given by

ΣAB =
1

2

[
1⊗ ρ+

1√
3

3∑

s=1

σs ⊗ (ρ+|s − ρ−|s)
]
. (28)

In order to get to the data matrix D we still need to
fix the operator set {GAk }k, for which the properly nor-
malized identity and Pauli-operators, {1, σ1, σ2, σ3}/

√
2,

are convenient choices since they only act non-trivially
on certain terms in Eq. (28). Since only the subspace of
{GAk }k matters in the criteria of Prop.2, any other ba-
sis choice will perform equally well. As the final step we
rewrite the abstract values tr(Byρa|x), with B0 = 1 and
By = M+|y −M−|y, in terms of the directly observable
quantities P (a, b|x, y). Looking at

tr[By(ρ+|x − ρ−|x)]

= tr[(M+|y −M−|y)ρ+|x]− tr[(M+|y −M−|y)ρ−|x]

=P (+,+|x, y)− P (+,−|x, y)−
[P (−,+|x, y)− P (−,−|x, y)] ≡ 〈AxBy〉 ,

one sees that correlations 〈AxBy〉 and respective

marginals 〈Ax〉 , 〈By〉, which similarly appear in Bell in-
equalities, give an appropriate formulation. Hence, to
sum up one gets the data matrix D

1√
2




1 〈B1〉 〈B2〉 〈B3〉
〈A1〉 /

√
3 〈A1B1〉 /

√
3 〈A1B2〉 /

√
3 〈A1B3〉 /

√
3

〈A2〉 /
√
3 〈A2B1〉 /

√
3 〈A2B2〉 /

√
3 〈A2B3〉 /

√
3

〈A3〉 /
√
3 〈A3B1〉 /

√
3 〈A3B2〉 /

√
3 〈A3B3〉 /

√
3


 .

Next let us explain how the developed criterion can
be employed for the real setup used in Vienna [19]. The
main difference is that in the actual experiment one addi-
tionally observes an inconclusive outcome “inc” due to no
click or even double click events. On Bob’s side, the side
which is at least partially trusted, this event can safely
be discarded [19] assuming that this event is independent
of the measurement choice such that it can be viewed as
a kind of filter telling whether the final result will be con-
clusive or not. Only if this filter succeeds one looks at
the corresponding state. For those measurements (acting
on the conditional state) the measurements are assumed
to act on a qubit, respective single photon in two polar-
ization modes. However for Alice, the uncharacterized
side, this is not possible. In order to incorporate the in-
conclusive event for Alice we consider the case that each
inconclusive outcome “inc” is randomly assigned to either
of the +1 or −1 outcome. This is also the standard for
Bell experiments. Then one is left with the dimension-
bounded steering scenario considered in the main section.

To finally give an example of the strength of our devel-
oped criterion we employ the following model to simulate
real data: For the quantum state we assume a noisy max-
imally entangled singlet which has passed through a lossy
channel for Alice, more precisely the state given by

ρAB =p
[
λ |ψ−〉 〈ψ−|+ (1− λ)1/4

]

+ (1− p) |Ω〉 〈Ω| ⊗ 1/2. (29)

Here p denotes the transmission probability, |Ω〉 is the
vacuum state and λ a parameter characterizing the qual-
ity of the Werner state. In the true experiment there
will be also loss on Bob’s side, but as mentioned before,
we look at the conditional state. Next we imagine that
Alice and Bob perform projective measurements in the
σ1, σ2, σ3 basis, while the additional “inc” event for Alice
is given by the projection onto the vacuum state. Then
the observed data, if Alice and Bob are using the same
settings x, y, are given by

P (+,−|x, y) = P (−,+|x, y) =
1

4
p(1 + λδx,y), (30)

P (+,+|x, y) = P (−,−|x, y) =
1

4
p(1− λδx,y), (31)

P (inc,+|x, y) = P (inc,−|x, y) =
1

2
(1− p). (32)
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If one reassign each “inc” one obtains

P (+,−|x, y) = P (−,+|x, y) =
1

4
(1 + pλδx,y), (33)

P (+,+|x, y) = P (−,−|x, y) =
1

4
(1− pλδx,y), (34)

and thus

〈AxBy〉 = −δx,ypλ, 〈Ax〉 = 〈By〉 = 0. (35)

Putting these observations into the data matrix from the
main text one obtains

D =




1√
2

0 0 0

0 − pλ√
6

0 0

0 0 − pλ√
6

0

0 0 0 − pλ√
6


 , (36)

which shows steering according to Eq. (16) in the main
text if pλ > 1/

√
3 ≈ 0.577. Let us point out that this is

also the condition if we would know that the performed
measurements are perfect projective measurements in the
eigenbasis of σ1, σ2, σ3. Thus, we see that we have here
a scenario where this further characterization is totally
redundant and only the knowledge that one measures a
qubit is essential.

Assuming the visibility and detection efficiency pa-
rameters from Ref. [19], one would obtain the values
{0.74, 0.73, 0.73} for the respective pλ, which are all well
above the threshold. Assuming that all other correlations
and marginals vanish, this would strongly show steer-
ing also in the case where one has only the very limited
knowledge that the conclusive outcomes were qubit mea-
surements. However, note, that these other observations
are essential for the inequality, otherwise one could not
gain the required extra knowledge of the uncharacterized
qubit measurements. Unfortunately, these experimen-
tal data are not available anymore for the experiment of
Ref. [19].
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I. INTRODUCTION

d

M

d

II. QUANTUM INCOMPATIBILITY
AND THE ADAPTIVE STRATEGY

{Ak}Mk=
G

Ak xk =
∑

xi ,i �=k

G x , . . . ,xm .

A A
approximate

A A

A A
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μ

A1

A2

p

p

α1

α2

α1

α2

ρ

ρ

μ A
A

− μ A
A

G α ,α = μp α A α + − μ p α A α ,

p μ

A A μA + − μ p1
− μ A + μp1

A A

p

G α ,α = μp α | A = α A α

+ − μ p α | A = α A α .

A , . . . ,AM

B , . . . ,BN

Bk

M α , . . . ,αM

A , . . . ,AM

Bk βk

μ

A1

A2

p(A2|A1)

p(A1|A2)

α2

α1

α1

α2

ρ

μ

B1

B2

p(A1,A2|B1)

p(A1,A2|B2)

α1, α2

β1

α1, α2

β2

ρ

B ,B
A ,A

α , . . . ,αM

p α , . . . ,αM | Bk = βk Bk

N k

Bk μk

G α , . . . ,αM

= μ
∑

β

p α , . . . ,αM | B = β B β + · · ·

+μN

∑
β

p α , . . . ,αM | BN = βN BN βN .

A , . . . ,AM

B , . . . ,BN

III. ADAPTIVE STRATEGY FOR QUBIT OBSERVABLES

B , . . . ,BN

p α , . . . ,αM | Bk = β

a ∈ R � λ � Sλa

Sλa ± = 1 ± λa · σ .

< λ < Sλa

Sa

a , . . . ,aM ∈ R
Sa , . . . ,SaM

G∑
α ,...,αM=±

G α , . . . ,αM = Sλa α ,

b , . . . ,bN ∈ R
a� · bk �= � = { , . . . ,M} k = { , . . . ,N}

k ∈ { , . . . ,N}
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Sbk

� βk = ±
�Sbk ±

� = { , . . . ,M}
α� βk a� · bk > −βk a� · bk <

α , . . . ,αM

α , . . . ,αM

G α , . . . ,αM =
G

Sa , . . . ,SaM

b , . . . ,bN

A. Planar directions

Sx Sy

x,y Sx + Sy +
b = √ x + y

Sx Sy

x · b > y · b >

b =
√ x − y

Sx Sy

+ − − + x · b > y · b <

G

G +,+ = Sb + , G −,− = Sb − ,

G +,− = Sb + , G −,+ = Sb − .

G

G +,+ + G +,− = λSx + + − λ 1,

G +,+ + G −,+ = λSy + + − λ 1,

λ = √ ≈ . λ

λ

Sx Sy

Proposition 1 M �

ak = θkx + θky, θk = k − π/M

k = , . . . ,M Sλa , . . . ,SλaM

λ �
M π

M

.

Proof M bk = ak k =
, . . . ,M

ak · a� = θk θ� + θk θ�

= θk − θ�

= k − � π

M
.

ak · a� > |k − �| < M/ ,

ak · a� < |k − �| > M/ .

G∑
α ,...,αM=±

G α , . . . ,αM = Sλa α ,

λ =
M

(
+

M− /∑
k=

(
kπ

M

))
.

M− /∑
k=

(
kπ

M

)
= − + π

M

.

M

bk =
(
θk + π

M

)
x +

(
θk + π

M

)
y,

θk = k − π

M
,

k = , . . . ,M G∑
α ,...,αM=±

G α , . . . ,αM = Sλa α ,
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a1

a2

a3

b1

b2

b3

b4

ai ,i = , ,

bj ,j = , , ,

λ =
M

M/∑
k=

(
k − π

M

)
=

M π
M

.

�

B. Nonplanar directions

1. Three observables

a = x a = y a = z

a −a

b = √ x + y +
z b = √ −x + y + z b = √ x − y + z b =
√ −x − y + z

b
+ −

A A A
G

G +, + ,+ = Sb + , G −, − ,− = Sb − ,

G +, + ,− = Sb − , G −, − ,+ = Sb + ,

G +, − ,+ = Sb + , G −, + ,− = Sb − ,

G +, − ,− = Sb − , G −, + ,+ = Sb + .

a1

a2

a3

a4

b1

b2

b3

ai ,i = , , ,

bj ,j = , ,

G Sλa Sλa Sλa

λ = /
√ ≈ .

λ > /
√

2. Four observables

a = √ x + y + z a = √ x − y − z

a = √ −x + y − z a = √ −x − y + z

b = x b = y b = z
G

G +, + , − ,− = Sb + , G −, − , + ,+ = Sb − ,

G +, − , + ,− = Sb + , G −, + , − ,+ = Sb − ,

G +, − , − ,+ = Sb + , G −, + , + ,− = Sb − .

G Sλaj λ = √

3. Six and ten observables

λ = +√
≈ .

λ = +√
≈ .

C. Adaptive strategy for the nonsymmetric case

a a
b = ‖a +a ‖ a + a b = ‖a −a ‖ a − a
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G

G +,+ = μSb + ,

G +,− = − μ Sb + ,

G −,+ = − μ Sb − ,

G −,− = μSb − ,

μ

b − μ

b
G Sλa

Sλa

μ = ‖a + a ‖
‖a + a ‖ + ‖a − a ‖ ,

λ = ‖a + a ‖ + ‖a − a ‖ ,

IV. GENERALIZED ADAPTIVE STRATEGY FOR MUBS

Sbi ±

A

A

a b
ψa ψb

|〈ψa|ψb〉| = + a · b .

d

{ϕj }nj= {ψk}nk= Cn

|〈ϕj | ψk 〉| = /
√

d A j = |ϕj 〉〈ϕj | A k =
|ψk〉〈ψk| j,k = ,...,d

bj,k

ϕj ψk

bj,k = N ϕj + eiθj,kψk , eiθj,k =
√

d〈ψk|ϕj 〉,
N

|〈ϕm|bj,k〉| |〈ψn|bj,k〉|
m = j n = k

G j,k = N

d
|bj,k〉〈bj,k|.

G
A

A

λ =
(

+ + √
d

)

V. PROVING OPTIMALITY OF ADAPTIVE JOINT
MEASUREMENTS USING STEERING

λ

ρAB

Ak k = , . . . ,n

x = , . . . ,m

Ak

x

σx|k = A Ak x ⊗ 1 ρAB .∑
i piρ

i
A ⊗ ρi

B

σx|k =
∑

i

[
Ak x ρi

A

]
piρ

i
B.

{piρ
i
B}i

{σi}i
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ρAB

{Ak}nk= {ση}η
p x|k,η

σx|k =
∑

η

p x|k,η ση.

d

|ψ〉 = √
d

∑
i |ii〉

σx|k =
d

Ak x T ,

T

A. Necessary condition for qubit observables

n

n∑
k=

Ak ⊗ ck · σ k ρAB � Cn,

Ak = Ak + − Ak − ck ρAB

Cn

n

n∑
k=

∑
xk=±

xk σx|kck · σ k ,

σx|k
Ak xk

Cn

Cn =
xk=±

(
λ

(
n

n∑
k=

xkck · σ k

))
,

λ K K

CM =
M

(
π
M

) .
CM

|ψ〉〈ψ |

A Ak x ⊗ 1|ψλ〉〈ψλ| = A

[
Aλ

k x ⊗ 1|ψ〉〈ψ |],
|ψλ〉〈ψλ| = λ|ψ〉〈ψ | + −λ1 ⊗ 1 Aλ

k x = λAk x +
−λ Ak x I

|ψλ〉〈ψλ|

λ � CM λ

λ

λ � CM

Proposition 2

λ �
M

(
π
M

) .
CM

Proposition 3

B. Necessary condition for MUBs

d

{ϕj }dj= {ψk}dk=
A j = |ϕj 〉 〈ϕj | , A k = |ψk〉 〈ψk| .

{σx|i}x∈Zd
i = ,

{ωjk}jk

ωjk �

σj | =
∑

k

ωjk, σk| =
∑

j

ωjk,

[
AT

k ⊗ Ak|ψλ〉〈ψλ|] = λ.

Ak
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j,k ωjk

{Zjk}jk Zjk �

Zjk = Zjt + Zsk − Zst

j,k,s,t {σj | }j∈Zd

{σk| }k∈Zd

∑
jk

Zjkωjk =
∑
jk

Zjt + Zsk − Zst ωjk

=
∑

j

[
Zjt

(∑
k

ωjk

)]

+
∑

k

⎡⎣Zsk

⎛⎝∑
j

ωjk

⎞⎠⎤⎦
−

⎡⎣Zst

⎛⎝∑
j,k

ωjk

⎞⎠⎤⎦
=
∑

j

Zjtσj | +
∑

k

Zskσk|

− Zstρ � ,

s,t Zjk

ωjk

ρ = ∑
j σj | = ∑

k σk|

C. Employed inequality

{|ϕj 〉}j∈Zd

{|ψk〉}k∈Zd

Zjk = a |ϕj 〉 〈ϕj | + |ψk〉 〈ψk| + b1,

a = − √
d − √

d + , b =
√

d +√
d

√
d − √

d + .

〈ϕj | ψk 〉 =
eiθjk /

√
d

|χ±
jk〉 =

N±
|ϕj 〉 ± e−iθjk |ψk〉 ,

〈χ+
jk | χ−

jk 〉 =
j k

Zjk = c |χ−
jk〉 〈χ−

jk| + b 1 − |χ−
jk〉 〈χ−

jk| − |χ+
jk〉 〈χ+

jk| ,

c = √
d

√
d − √

d + .

Zjk

Zjk b,c

|ϕj 〉 〈ψk| |ψj 〉 〈ϕk|
c − b

N−
+ b

N+
= .

Zjk =

D. The implication

Aλ Aλ

λ � λ

|ψ〉 =
√

d

∑
i |ii〉 AλT AλT

σj | =
d

Aλ j , σk| =
d

Aλ k .

Zjk

d
∑
jk

Zjkωjk =
∑

j

[
ZjtAλ j

]
+
∑

k

[
ZskAλ k

]− Zst1

= d

{
λ

[
a

(
+

d

)
+ b

]
+ − λ

d

}
−

= { − λ − a d + − db } −

=
{

− λ

(
− √

d +

)}
− � .

λ �
(

+ + √
d

)
= λ ,

AλT
,AλT
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VI. 4-SPECKER SET OF QUBIT OBSERVABLES

Proposition 4 Sλak

xy k k + π/

λ

Sλak

Proof 2
{Sλak }k �=i i

λ � π/ + π/ − ≈ . .

λ >
π/

≈ .

λ

{Sλak }k= �

VII. CONCLUSION

bi
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APPENDIX A: SIX OBSERVABLES

χ = +√
n = +√

a = √
n

y + χz , a = √
n

−y + χz ,

a = √
n

x + χy , a = √
n

−x + χy ,

a = √
n

χx + z , a = √
n

−χx + z .

a1

a2

a3

a4
a5

a6

ai

bj

bi = ai i = , . . . ,

G

G

G +, + , + , + , + ,+ = Sb + ,

G −, − , − , − , − ,− = Sb − ,

G +, + , − , − , + ,+ = Sb + ,

G −, − , + , + , − ,− = Sb − ,

G +, − , + , + , + ,− = Sb + ,

G −, + , − , − , − ,+ = Sb − ,

G +, − , + , + , − ,+ = Sb + ,

G −, + , − , − , + ,− = Sb − ,

G +, + , + , − , + ,− = Sb + ,

G

k Sbk G

+ + + + + + + + + + −
− −, − , − , − , − , − , − , − ,− +
+ + + −,− + + −,− + −
− −,− + + −,− + + − +
+ + − + − + + + + − +
− − + − + −, − , − ,− + −
+ + −,− + −,− + + + −
− − + + − + + −, − ,− +
+ + + + − + + + + + +
− −, − ,− + −, − , − , − , − ,−
+ + + + − + + −,− + +
− −, − ,− + −,− + + −,−
+ + − + + + − + + + −
− − + −, − ,− + −, − ,− +
+ + − + + + − + + − +
− − + −, − ,− + −,− + −
+ + + − + + + + − + −
− −,− + −, − , − ,− + − +
+ −,− + − + + − + − +
− + + − + −,− + − + −
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G −, − , − , + , − ,+ = Sb − ,

G +, + , − , + , − ,+ = Sb + ,

G −, − , + , − , + ,− = Sb − .

G Sλai i ∈ , . . . , λ = +√

APPENDIX B: TEN OBSERVABLES

χ = +√

a = √ x + y + z , a = √ x − y + z ,

a = √ −x + y + z , a = √ x + y − z ,

a = √ χ− y + χz , a = √ −χ− y + χz ,

a = √ χ− x + χy , a = √ −χ− x + χy ,

a = √ χx + χ− z , a = √ −χx + χ− z .

bi = ai i = , . . . ,

G

G
G Sλai i ∈ , . . . ,

λ = +χ

49

92
86

111

103

86

48
113

113

92

32

112

115
33

8

506
85

48
89

46
5

84

6
38


	Title page
	Abstract
	Zusammenfassung
	Introduction
	List of articles
	Contents
	1 Quantum correlations
	1.1 The spatial case
	1.1.1 Local realism
	1.1.2 Entanglement
	1.1.3 Steering

	1.2 The temporal case
	1.2.1 Macrorealism
	1.2.2 Temporal steering

	1.3 Channel steering: a unifying picture
	1.3.1 Basics on channels and instruments
	1.3.2 Channel steering


	2 Measurement incompatibility in quantum mechanics
	2.1 Commutativity
	2.2 Non-disturbance
	2.3 Joint measurability
	2.4 Coexistence
	2.5 Compatibility of state transformations

	3 Steering and joint measurability
	3.1 Spatial steering
	3.1.1 Non-joint measurability as a measurement resource for spatial steering
	3.1.2 Mapping between spatial steering and joint measurability problems
	3.1.3 Incompatibility breaking quantum channels

	3.2 Temporal and channel steering

	4 Steering detection
	4.1 Steering inequalities from generalised entropies
	4.2 Steering inequalities from entanglement theory

	5 Bounding the noise tolerance of incompatibility
	6 Conclusions
	7 Acknowledgements
	Bibliography
	Appendices
	Article I
	Article II
	Article III
	Article IV
	Article V
	Article VI
	Article VII




