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Introduction

A beginning is the time for taking
the most delicate care that
the balances are correct.

— FRANK HERBERT, Dune (1965)

This thesis concerns two very basic problems:

TSEP — Compute the eigendecomposition of a real
symmetric tridiagonal matrix.

BSVD — Compute the singular value decomposition of a
real bidiagonal matrix.

Both problems have in common that they look deceptively simple, since, after all,
the number of inputs is only linear in the matrix dimension. They also have in
common that solving them provides the means to compute eigen-/singular value
decompositions of Hermitian/general dense complex matrices, and those are two
of the most challenging tasks in numerical linear algebra.

¢

In 1997, Inderjit Dhillon finished his thesis [15] where he proposed the Al-
gorithm of Multiple Relatively Robust Representations (MR®) as new solution
method for TSEP. It offered optimal complexity together with embarrassing par-
allelism, even if not the full eigendecomposition was desired. Thus it was heralded
as breakthrough achievement, and rightly so. Indeed, this was just what everyone
had been looking for, so in some inner circles of eigenvalue-hunters, MR? came
to be known by the more catchy title “The Grail”.

The singular value decomposition (SVD) of a bidiagonal matrix can be ob-
tained in multiple ways by computing eigendecompositions of related symmetric
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tridiagonal matrices. Hence the natural desire arose to employ MR? for that
purpose. However, all the resulting solution strategies for BSVD turned out to be
unstable. This was investigated by Benedikt Grofler, who found that the reason
lay in the most elementary feature distinguishing BSVD from TSEP: the former
requires two full systems of orthonormal vectors. These must not be treated in-
dependently, since the left and right singular vectors have to fit together on a
one-to-one basis. None of the “black box” applications of MR? to related tridi-
agonal problems could guarantee to get the connection right. For his thesis [35],
GroBer devised a new scheme based on coupling relations to run MR? implicitly
on two tridiagonal matrices at once, in a synchronized fashion. This seemed to
solve the problem and delivered properly paired singular vectors.

The coupling-based approach was promising enough to be deemed worthy
of inclusion into the renowned LAPACK [1] software library. This is where my
involvement with the topic began, since Benedikt Grofler had already left the
academic field at that time. During a visit to Berkeley at the end of 2004, I
worked on an implementation of the “coupled MR3” which should incorporate the
latest developments for MR®. The version that was produced worked fairly well,
but there were also too many test cases where the results were not satisfactory.
Further investigation revealed the cause to be gaps in the existing theory for the
coupled approach.

Our main motivation for this thesis has been to close these gaps and extend
GroBer’s work to finally obtain a MR?-based solution method for BSVD that re-
tains all benefits of MR3, rests on a solid body of theory, and is accompanied by
a stable, reliable and efficient software implementation. To achieve these goals,
we also had to reexamine how some aspects of MR? itself might be improved.

¢

A general outline of this work is as follows. In Chapter 1 we fix notation and
assemble the necessary tools for later. This includes an introduction to our way
of handling error analysis, which is rather technical by nature. Furthermore we
give a compressed selection of those parts of the beautiful and deep theory of the
symmetric eigenproblem that will be referred to later.

The MR3-algorithm has the whole Chapter 2 to its own. We will present
the algorithm in a revised form that is both simpler and more abstract than
earlier versions. Building on this we provide a complete proof of correctness and
error analysis, which will become the foundation for the theory in Chapter 3. A
prominent role will be played by shifted bidiagonal factorizations of symmetric
tridiagonal matrices, in the form

LDL* — 7 = L*D*(L*)", (%)

where the factors D, D* are diagonal and L, L* are (unit lower) bidiagonal. MR?
owns part of its success to the fact that such decompositions, and variants of



them, can be computed with componentwise mixed relative stability. To this
end, customized variants of Rutishauer’s qd-transformations are employed. We
will study those, and also adapt them to different interpretations of what the
defining data for a bidiagonal factorization can be. Our treatment of MR? closes
with numerical experiments; we have engineered an implementation of MR? that
incorporates some new techniques and want to compare it with code from LA-
PACK.

Chapter 3 is devoted to problem BSVD and how the MR?*-algorithm can be
harnessed for its solution. We give a thorough theoretical analysis of the prob-
lems involved with the pure black box approaches. Then we show how one of
these—namely using MR? on the so-called Golub-Kahan matriz—can actually be
repaired to solve BSVD reliably. After this we treat the coupled approach, for
which we can now provide a complete proof of correctness including rigorous er-
ror bounds. Thus we have now in fact two working methods for BSVD, which are
intimately related but nevertheless different. We have provided implementations
for both, and at the end of Chapter 3 numerical experiments shall ascertain that
both are indeed effective solutions for BSVD.

The final Chapter 4 is about what we call block factorizations. It could, in
principle, be regarded on its own. The motivation is that standard bidiagonal
factorizations like in (%) above are vulnerable to element growth, just like all other
variants of Gaussian Elimination. This vulnerability extends to MR® and as such
also to the MR3-based methods for BSVD.

One way to counter element growth before it even arises is to allow 2 x 2-
pivots, or blocks, in D and D*. We have developed a new algorithm to compute
shifted block factorizations, for which we can prove componentwise mixed relative
stability. The latter makes Chapter 4 a very technical one, but is unavoidable to
employ block factorizations within MR?.

The implementations for TSEP and BSVD that were introduced in the chapters
before have been alternatively realized using blocks, and at the end of Chapter 4
we compare the versions by the way of numerical experiments. The conclusion
will be that block factorizations can lift MR3-based methods to a whole new level
of robustness, but at some cost to efficiency.
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Chapter 1

Foundations

| do not define time, space, place, and motion, as being well known to all.
— ISAAC NEWTON, Philosophiae Naturalis Principia Mathematica (1687)

The enjoyment of one's tools is an essential ingredient of successful work.

— DONALD E. KNUTH, The Art of Computer Programming, Volume 2,
Seminumerical Algorithms (1998)

As the title conveys, this chapter will lay some necessary groundwork. In §1.1
we recapitulate some elementary facts and introduce our notation. The content of
§1.2 is floating-point arithmetic and error analysis. §1.3 is devoted to the concept
of angles between subspaces, which is derived from first principles. Finally, in
§1.4 we cover parts of the theory of the symmetric eigenproblem.

With the sole exception of §1.1, everything is presented in full detail, including
proofs, and everything that is presented will be needed at some later point. The
motivation for doing so is that this chapter makes the whole work self-contained
while being as compact as possible. Except for marginal issues, each result or
proof that will have to be built upon later is right here.

Readers experienced in the field will probably know most of the contents of
this chapter in some form and can safely skip parts of it. To simplify this, many
parts of §1.2-§1.4 contain at the beginning some pointers to the most important
aspects that should be noticed. In any case we recommend to read §1.1 in full to
get a feeling for our notation.

1.1 Boot Camp

This section is intended as a refresher course with emphasis on introducing the
parts of our notation that might be considered nonstandard. The topics are
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among those any basic linear algebra course should convey; for the most part
they will be leaned upon implicitly in the rest of this thesis. Therefore the speed
will be rapid, proofs omitted, and only a bare minimum of equations are numbered
to allow for future explicit reference.

The core of our notation follows [56] in using upper and lower case sans-
serif letters for matrices A and vectors x. Most of the time we will also reserve
symmetric letters A, H, M and T for symmetric matrices.

The main problems considered in this thesis are the symmetric eigenprob-
lem, in particular the tridiagonal case, and the bidiagonal SVD. Those can all
be completely and satisfactorily solved while sticking to the reals, so complex
numbers will not be an issue. Hence we focus the spotlight of our attention on
R", identified with the n-dimensional Euclidean Space over R. Elements of R"”
are understood to be column-vectors.

Although considering only real numbers, for purely aesthetic reasons we still
use the superscript * to indicate transposition, instead of the usual 7. Thus, x*
is a row-vector.

A summary of the notation can be found on page 235.

Numbers & Indices

The natural numbers are N = {1, 2, ... } without zero in contrast to Ny = NU{0}.

An index can in principle be any integer in Z, although we assume them to
be in-range implicitly if used with vectors and matrices. Any nonempty set of
indices is an index set. If it consists of a sequence a,a + 1,...,b of consecutive
indices, we call it indez range or interval and write a:b, in MATLAB™-notation.
If the lower and/or upper index bound is omitted it should be replaced by the
smallest/largest index that makes sense in the context, respectively.

We define the sign of any real (number) = € R, also denoted as scalar, as

-1, ifx <0,
sign(z) = 0, ifx=0,
+1, ifx>0.

Vectors & Matrices

Let us showcase our notation with the help of some vector x € R™ and some
matrix A € R™*™, To access the entries of x we use parentheses, i.e.,
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Note that we would write x; to denote a vector with index one but not the first
entry of x. For an index set I the subvector of x built from just the entries whose
indices are in the set is denoted as x;; for example:

5

X 7 = X ( o ) X <5>
= (1,3} = ; X2 = :
1 11 7

The identity matrix is l,, or simply | if the dimension is clear from the context.
Its columns e, are called coordinate vectors or canonical vectors and obey

, 1, if k=1,
ey (i) = .
0, otherwise.

The entries of a matrix A can also be accessed using parentheses, or alterna-
tively via subscripts, that is,

Ali,j) = Aij = ejAe;.

Note that the latter conveys implicitly that the e] on the left has dimension m
and the e; on the right has dimension n.

For structured matrices it can be very useful to have access to individual
bands. As is common practice we identify a band of an m x n-matrix with its
distance k from the main diagonal, —(m —1) <k <n —1.

To extract a band from a given matrix, diag [A} yields a matrix of same
dimensions as A but with all entries zero except for the kth band, which is copied
from A. Thus we can decompose a matrix by summing its bands, i.e.,

n—1
A = diag,, [A] for all A € R™".
(

k=—(m—1)

A complementary tool is diag, (ay, ..., a,_x) to specify a square matrix of dimen-
sion n X n that is zero except for the entries a; on its kth band. For both notations
we omit k if it is zero and allow to replace k by +k for symmetric structure or
even an arbitrary index set to work with a whole bunch of bands at once. Thus
we have | = diag(1,...,1) and

n—1
A =) diag.,(A(L1+E),....A(n—k,n))
k=0

for all symmetric A € R"*".
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Given index sets I and J, both A; ; and A(I,J) can be used to denote the
submatrix that consists only of those entries with row-indices from I and column-
indices from J. In particular, the ith row and jth column of A are

A(i,:) = A, = eA, A(,j) = A = Ae..

J

As you can see singleton sets {i} may simply be written as i. For example:

A:

- e =

2
o
8

© O W
>
no
o
-

w
&
|
>
—
N
~
\_H
w
—
SN—
|
7N\
[S—
w
<

For I = J, Ay := Ay is called a principal submatriz of A.

Transpose and Inverse

For any matrices F and G we have
(FG)" = G'F",
so for any invertible A € R"*"™
AATT = | = (AATH)* = (ATH)*A*

Hence, the fact that the identity is symmetric implies that transposition and
inversion commute, so

Af* - (A—l)* — (A*)—l

is well-defined.

Norms

The distinguishing feature of Euclidean Space R" is the standard scalar product

i=1

It allows for a notion of length of vectors via the Euclidean or standard norm

n 1/2
x| = vxrx = (ZX(@'V) :

i=1

also sometimes called 2-norm (in symbols: |[|-|[2). There are other useful norms,
like for instance the maximum norm

IX[loe := max {[x(i)l},
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but for us, when we write ||x|| we always mean the Euclidean norm. A vector x
with ||x|| = 1 is called normalized or unit vector.

The standard scalar product on R™ allows to define an angle between nonzero
vectors x and y via

x*y

[x[Hlyll”
such that the usual geometrical meaning (in R? and R3) is retained. Replacing
x*y by |x*y| on the right hand side gives the acute angle in [0, /2], a more suitable
measure of angle between the one-dimensional subspaces span{x} and span{y}.

This geometrical connotation of the standard scalar product is why x and y
are called orthogonal when x*y = 0. A set of pairwise orthogonal unit vectors is
called an orthonormal set. If this pertains to the columns of a matrix Q € R™*"
we have Q*Q = I,, and Q is orthonormal. We use the term unitary to denote a real
square orthonormal matrix (Q* = Q™'), avoiding the common—but misleading—
reuse of orthogonal for that purpose. More will be said about orthogonality and
angles in §1.3.

For a matrix A € R™*" any pair of vector norms on R™ and R" induces an
operator norm. Taking the standard norm both times, we get the spectral norm

A
|Al| := max 1AX|
0#XER? ||XH

cos ¢ =

= max||Ax| = max Vx*A*Ax.
xeR™ xER™

[Ix]=1 [Ix]|=1
The spectral norm is invariant under transposition,
[Al = [[A"]]

for any matrix A € R™*" (proof: use the SVD).
For orthonormal Q € R™*" (Q*Q = 1,,) and any x € R",

Qx| = vVxQQx = [[x]|

As a direct consequence, for arbitrary F € R™*P,
IQF[[ = [[FQ*[| = [IF|l.

Thus the Euclidean norm is invariant under orthonormal (not necessarily unitary,
i.e., maybe non-square) transformations, and the spectral norm is invariant under
multiplication by orthonormal columns from the left or by orthonormal rows from

the right. (The same is true only for the Frobenius-norm, which we won’t need
here.)

Vector (sub-)spaces

We use uppercase letters like S, U, Q to denote subspaces of R™. A mnontrivial
subspace is one that is not equal to {o}. For a set X C R", the space of all linear
combinations of vectors from X is denoted span X.
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Two subspaces U and V are complementary if they have only the zero vector
in common and sum to R",

U+V=R" UNYV={o}.

Spaces are orthogonal, written & L V, if this holds for every pair of vectors from
them, i.e., u*v = 0 for all u € U,v € V. For each U there is one, and only
one, other space that is both orthogonal and complementary, aptly called the
orthogonal complement of U and written U,

Useful relations for subspaces to have in one’s toolbelt are the dimension rule

dim(U + V) +dimU NYV) = dimU + dim V,

as well as

dimU* =n —dimYd and (U +V)F = U-NV-

concerning orthogonal complements.

Eigenvalues and Eigenvectors

If for A € C™™*"™ we have
Ag = A\q, qeC" q#0,AeC,

then X is an eigenvalue of A and for every nonzero scalar a the vector aq is an
eigenvector belonging to A; together (A, aq) form an eigenpair of A.

A transformation of the kind A — FAF~! is called similarity transformation.
It leaves eigenvalues untouched and changes eigenvectors in a simple way, because,
if (X, q) is an eigenpair of A then (\, Fq) is an eigenpair of FAF~.

Another useful transformation is shifting, A — A — 7l. An eigenpair (A, q) of
A becomes an eigenpair (A — 7,q) of A — 71, so the main effect of shifting is that
the eigenvalues are shifted. It will be ubiquitous in this thesis which is why we
drop the identity,

A—7 = A—1l]

A matrix A is similar to a diagonal matrix via a unitary similarity transfor-
mation (possibly complex) if, and only if, it is normal, meaning A*A = AA*. A
special subclass of normal matrices are real symmetric ones. They have a full set
of n real eigenvalues and one can find an orthonormal basis for R™ consisting of
eigenvectors.

From here on we assume that A € R™*" is symmetric.

The aforementioned similarity to a diagonal matrix gives the eigendecomposi-

tion
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where A = diag(A,...,\,) contains the eigenvalues in ascending order and
Q = [aq1]...|9,] € R™™ is unitary, Q*Q = |, having normalized eigenvectors
as columns. Then A can be regarded as sum of rank-1 matrices,

A = E;Aiqiqr-

Notation. We use \;[A] and A_;[A] to denote the ith smallest and largest eigen-
value of A, respectively, that is,

M[A] < Ao[A] < o < N[A]
An[Al < ApoplAl < o< A [AL
Negating the matrix negates the eigenvalues, so an alternative formulation is

ALAl = Ain]Al = —M[-A].

Based on the same indexing, q4;[A] denotes the corresponding member of an
orthonormal basis of eigenvectors (be careful here in the face of multiple eigen-
values), so that

(A= NANwA] = o, |alA]|| = 1.

As is common practice, the symbol “=” shall emphasize an equality that holds
for all indices.

Invariant Subspaces. If A maps a subspace § to itself, AS C &, then § is
called an invariant subspace of (for, under) A. Equivalent would be to say that the
space is spanned by a subset of A’s eigenvectors. An eigenspace is a special kind
of invariant subspace spanned by eigenvectors belonging to the same (multiple)
eigenvalue—within an eigenspace, multiplication by A is the same as multiplying
by a scalar.

For an index set I,

Q/[A] = span {q;[A] |i € I}

denotes the invariant subspace belonging to eigenvalues with index in /. Again
we can use MATLAB™-notation here, like for any j,

QA = Qu...;1[Al = span {m[A],...,q;[Al},

Q;[A] = Qpm[Al = span {q,[A],...,q.[A]}. (1.1)
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The Spectrum. Let symmetric A € R™*" with eigenvalues A\; = \;[A] be fixed.
All eigenvalues taken together give the spectrum

spec(A) == {A1,..., A\ )

Nice to know is that multiplying all eigenvalues gives the determinant and sum-
ming them up gives the trace

det(A) = H/\ trace(A) = ZA(M) - ZA

The spectral norm (also known as spectral radius) of a symmetric matrix equals
the largest extremal eigenvalue in magnitude, or more concisely

”AH - maX{|)‘1|7|/\n|} = maX{_/\l7/\n}~ (12)

In some situations more appropriate than the spectral norm is the spectral diam-
eter
spdiam[A] = X\, — Ay,

because many results can be stated with respect to gaps in the spectrum, for
which it is the smallest upper bound.

We can quantify the distribution of the spectrum by considering how distant
the eigenvalues associated with an index set I (need not be a range) are to the
rest, in either an absolute or relative sense, using

gapa(l) == min{|N; = \;| 1 i€ [,j &I}, (1.3)
relgapa (1) = min{|\; — \;|/|Ni| 1 i€ 1,5 &1} (1.4)

Both are considered undefined if I = {1,...,n}. For the relative gap we stipulate
that 0/0 = 0 (two zero eigenvalues, one in I, one not) and z/0 = oo for = # 0
(simple zero eigenvalue in T).

An alternative notion is that we have a sample value g and want to know the
smallest positive distance to an eigenvalue. This is captured by

gapa(p) = min{|u— Al : p# X € spec(A)},
relgapa (p) = min {| —X|/|u| : p # X € spec(A) }.
Note that the two forms coincide if 4 = \; is a simple eigenvalue, since then
gapa (1) = gapa({i}) and relgap, (1) = relgapa ({i}).

The relative gaps as they were defined above can be confusing, because the
denominator varies over I. One would expect the minimum to be attained at
the “border(s)” of I, but this might not be so. However, we are usually only
interested in cases where relgap, (/) < 1. Then there must exist i € I,j ¢ I with
sign \; = sign ;. Based on this, a straightforward (but somewhat tedious) case
distinction yields

relgap, (1) :min{‘)\j —N|/|N| cieLig -] = 1}. (1.6)

(1.5)
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1.2 Computing with Errors

1.2.1 Floating-Point Arithmetic

Computers can only handle a finite set of numbers. As consequence, computa-
tions have to be restricted to a finite subset of the reals, and a proper machine-
compatible encoding for them has to be found. Unfortunately, no finite set that
is useful can be closed under all arithmetic operations. So results will have to be
rounded to the nearest representable number. In other words, we have to adapt
to finite precision.

The following pages compress the core issues of finite precision arithmetic that
concern us. Our exposition partially conforms with each of [43] and [32] (but not

fully with both).

The encoding of choice (at least today) is scientific or floating-point notation.
It can be characterized by four positive integer parameters: a base [ (usually
2), a precision p and bounds epi, < emax to define a range of allowed exponents.
With these fixed, the considered subset F C R consists of all numbers x that can
be written in the form

r = £0.didy...d,3°% d; €{0,....,0—1}, emin <€ < emax, (1.7)

or equivalently,

p
ro=2mpB, m=(ddy...dy)g =Y dip’" (1.8)
=1

The fractional part given by m € N is called mantissa or significand and e is
the exponent. To enforce uniqueness we require m > (P~! for nonzero x, that
is, the first digit d; of the significand (or the most significant bit for § = 2)
should be nonzero; such a representation is called normalized. Then we have
Bl < m < P —1 for all z # 0, so all representable numbers satisfy the
constraint

r=0 or Btz < (1—p3P)am. (1.9)

A fundamental implication of using floating-point numbers is that they are not
uniformly distributed in R, because the absolute distance between neighboring
numbers grows with their size. The smallest modification one can make to increase
a positive z as in (1.8) without leaving the system is to add one to m, thus
revolving around the last digit of the significand. Doing so effects an absolute
change of

ulp(:v) = 0.0...01 'ﬁe _ Be,p’
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called one wunit in the last place. We just write ulp for ulp(1). Note that ulp(x)
depends only on the exponent of x. Thus, for > 0, the next floating-point
number after z is

next(z) = x + ulp(x),

provided the operation does not leave the system, i.e., x < (1 — §77)3°. Anal-
ogously, for z > 3°min~1 the floating-point number coming before z is

prev(z) = x — ulp(), if m # P,
x—ulp(z)/B, ifm=pr"

Measuring differences of floating-point numbers in terms of ulps is the right
thing to do within the system [F, but the concept of ulp has no meaning for general
real numbers. One way to interpret the embedding of F within R is to regard
each z € R as represented by its best approximation fl(z) € F. This concept is
commonly known as rounding. A number z € R lies within representable range if
it satisfies the constraint (1.9). Assuming this is so and z # 0, we can write z =
+u3°7P with BP~1 < < BP. Then rounding z to fl(z) corresponds to rounding
1 to an integer. Thus the absolute distance of z to the best approximation in F
satisfies

fi(z) — 2| < 387

Hence, the relative error incurred by rounding will obey

O R o AV
m1n{|ﬂ(z)|7|z|} < 56—1 - 26 P = QU-lp(1> = €rep,

defining the maximal relative representation error €.y, also known as machine
epsilon. Then we can state

fi(z) = 2(14+7) = 2/(1+9) with |v],]0] < €ep- (1.10)

Some authors characterize €. as the smallest floating-point number that added
to one gives a floating-point number other than one. Depending on how ties are
broken this might not be identical to the definition above. A better formulation
denotes €., as half the distance between one and the next larger floating-point
number.

There seems to be no real consensus in the community on what machine
epsilon should be. Our €, is the one used by Goldberg [32], whereas Higham [43]
calls 3177 /2 unit roundoff and defines machine epsilon to be twice that (which is
the full distance between one and the next larger floating-point number). With
regard to numerical software, xLAMCH(’E’) from LAPACK returns €., as machine
epsilon but the eps in MATLAB™ is 2¢€,,.

At this point we make a step back. For analyzing the algorithms in this
thesis, we generally do not need to know how floating-point numbers look like
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Axiom FP

The floating-point system provides the arithmetic operations +, —, x, / and
V- over a (sensible) set B of machine numbers. The implementation of the
arithmetic obeys that when an operation is applied to arguments from F for
which the exact result z € R is defined, exactly one of three things may
happen:

e The computation is marked as overflow, indicating that |z| exceeds the
overflow threshold o,.

e The computation is marked as underflow, indicating that 0 < |z| < u,,
where u, s the underflow threshold.

o A number x € F is returned that satisfies
z=z2(1+7)=2/(146), o] <e,
with machine epsilon ¢,.

The three parameters o,, u, and €, are supposed to be uniformly chosen so
that the above holds for all arguments from F.

or even what base is chosen. Instead it suffices that the operations executed on
the machine flag results that would not be representable and otherwise behave
in principle as if they were computed exactly and then rounded, such that (1.10)
holds for some uniform constant €,.,. These requirements are formulated as Axiom
FP on this page.

Remark 1.1 (About Axiom FP). The exact result might exceed o, without caus-
ing overflow if it is rounded to o, and similar for underflow. Furthermore, for
underflow and overflow, nothing is said about the produced result of the oper-
ation, it might well but need not be undefined. This is done deliberately to
encompass a broader range of implementations. For instance, both the use of de-
normalized numbers or flushing the result to zero would be acceptable treatments
of underflow. We merely need some way of telling that an exceptional case has
occurred.

The system [ will rarely be mentioned, because we will implicitly assume all
inputs for algorithms to be representable floating-point numbers. Provided no
underflow or overflow occurs during execution, the same will then be true for
intermediate and final results of the computation. O
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single precision | double precision
32 bit 64 bit
16 2 2
D 24 93
€min —125 —1021
Emax +128 +1024
9—126 9—1022
te ~1.8-107% ~ 2.2 107
2—24 2—53
o ~6.0- 1078 ~ 111071
(1 _ 2—24) . 2128 (1 _ 2—53) . 21024
oo ~ 3.4 -10% ~ 1.8-10%

Table 1.1: Formats defined by the IEEE 754 standard and the parameters with
which they fulfill Axiom FP.

The IEEE Standard

Most modern architectures adhere to the IEEE 754 standard for floating-point
arithmetic which was first established in 1985 [44] and recently revised [45].
It requires that all operations produce exactly rounded results, that is, e, =
€rep- 1he original standard defines two formats single precision and double
precision. Table 1.1 summarizes the respective parameters of these formats and
how they fulfill Axiom FP. Notable features of the standard are the use of denor-
malized numbers to provide for gradual underflow, signed infinities 00 € I for
overflow and special constants called not-a-number (NaN) to indicate undefined
results (like 0/0 or co — 00). For more information, see [32,49].

1.2.2 Condition of Addition & Cancellation

The field of numerical analysis is driven by the ambition to let machines compute
numbers for which we know beforehand what they will mean. Generally, suit-
able models are used to reduce the concrete application area at hand (e.g., the
optimization of a plane-wing’s aerodynamics) to one or more problems with an
underlying well-defined mathematical relation (like a linear system, differential
equations or the eigensystem of a matrix).

Given (sets of) inputs to the problem we want to compute outputs which
reflect the true result as accurately as is possible with reasonable use of computing
resources. It depends on the application to define when a solution is accurate
enough.

There are basically two kinds of obstacles in our way. The first is that we
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cannot do exact arithmetic on a machine or even represent each real number, as
we have seen in the previous section. The second obstacle is in fact more subtle
and concerns the fact that the input data we get will generally be inexact, due to
inaccurate measurements in the “real” world. So, before we start thinking about
computing outputs, we have to ask ourselves if the problem is well-posed, that is,
is it even possible to compute nearly right outputs from slightly wrong inputs? If
the answer to this question is yes, we call the problem well-conditioned, otherwise
ill-conditioned. This notion of a problem’s condition is completely independent
of any algorithm that might be deployed to solve it.

In the previous section we did already brush the dichotomy of relative vs. ab-
solute error. In the context of floating-point numbers, relative errors are way
more meaningful and should always be preferred because they indicate roughly
the number of correct digits in a result. For this thesis, relative errors and relative
condition numbers are far more prominent than absolute ones.

At this point we do not want to give a general definition of what a problem
and its absolute and relative condition numbers are. Those can be found in any
introductory textbook. What we will do is focus on the relative condition of a
specific problem which seems trivial but is, arguably, one of the most influential:
the addition of two real numbers. Let z,y € R be fixed and assume x + y # 0.
For small relative perturbations &, y—think of them as about O(e,)—we surely
have

r(1+8+y(l+7v) = (x+y) (1—|—

= (z+y)(1+0),

x£+yv)
r+y

with

|z + ly|
¢l < max {[¢], [y} - T —
{ } |z +y]
This reveals that the relative change in the result is controlled by the quotient
(|z| + |y|)/]x + y|, which is just the condition of adding = and y. The resulting
condition number is important enough to warrant its own name. Note that our
initial assumption = 4+ y # 0 can be dropped by allowing the condition to reach
infinity.

Definition 1.2. For any z,y € R define

2| + ly| 2| + |yl
rlz,y) = —, Kk (x,y) = —=.
i |z + y] |z — y]
For both cases, z/0 may evaluate to 1 if z = 0 and to oo otherwise. O

The separate definition of x_(z,y) is just there to avoid having to write ugly
things like k4 (x, —y). Let us note some fairly obvious properties of « .
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Lemma 1.3. For any z,y € R:

(1) kl2,y) = Kylx, —y).

() malay) > 1
(11))  ky(z,y) =1 < (signz-signy) # —1.
(v)  kar,ay) = rkz,y) for alla € R\ {0}.

It is also worthwhile to state explicitly the connection between the condition
and the effect of input data perturbations on the result.

Lemma 1.4. For any scalars x,y,&,v € R with x +y # 0

r(1+&) +y(l+v) = (x+y)(1+)
for some ¢ € R with (| < ki(z,y) max{[¢], |y|}.

One interesting remark is that we did not (need to) make any assumptions
about the size of the perturbation quantities £ and ~, although we will mainly
use this result in a context where they are of magnitude O(e,).

The intuitive notion is that if k_(x, y) is large, then x and y must be close in a
relative sense. For floating-point numbers this would mean that x and y agree to
some of their leading digits, so evaluating = — y involves cancellation. The next
result captures this.

Lemma 1.5. Let z,y € R with |z| < |y| and k(x,y) > 1. Then

i) |z] _ ety ||
/i+($,y)—1 2 /{+(J:ay)+1)

(i) |o|(5alz,y) +1) = |yl(s(z,y) - 1).

Proof. From Lemma 1.3 we get signz = —signy. Together with |z| < |y| this
gives | + y| = |y| — |z|. Now both claims are immediate. O

The result can be employed backwards to use information about z and y to
obtain a bound on k. For example, Lemma 1.5 leads to

1+ K
1-K'

lz] < Kly|, 0 < K <1 = kyz,y) < (1.11)

This formula captures the notion of cancellation: Adding numbers of different
signs that are of about the same magnitude (K =~ 1) is badly conditioned and
can therefore lose information.
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1.2.3 A Toolset for Error Analysis

The floating-point model introduced previously allows us to bound errors in com-
putations at the most basic level. In this section we develop a custom notation
and some tools to streamline working with those bounds.

Readers familiar with componentwise relative error analysis but not that inter-
ested in the details of our notation can probably safely skip most of this section.
The important points that will be needed later on are the Chart 1.11 on page 20
and Corollary 1.12. In most minimal terms the notation we will use is captured
in (1.19).

An Example

Consider the innocuous computation
y = (a+1)-b*—c (1.12)

The symbol “:=" is how we write down computational statements in algorithms.

If (1.12) is executed by a machine satisfying Axiom FP (where we assume
the data a, b, ¢ to be given as floating-point values) the computed result y can be
described as

y = [(a+1D)A+a)b’(1+o)(l+a)—c (1+a) (1.13)

with |a, |, |asql, ||, |a_| < €. Most of the time we will use fittingly subscripted
Greek letters (a, 3, 7, ...) to denote (small) relative errors or perturbations. In
this case it was possible to find subscripts that link the errors to the operations
that caused them, although this will not always be feasible or necessary. Note
that Axiom FP would have allowed us to place the perturbation (1 + «_) on the
left hand side of the equation, but for this example we chose not to.

What can we say about the computed result y in (1.13)7 Well, in order to
link y to what would be the exact result (a + 1) - b* — ¢, that is, to do what is
formally called a forward error analysis, we would need to consider the condition
of the subtraction involved, which might be bad if there is cancellation.

However, we can also look at (1.13) from a slightly different angle and see it

as
2

y(1+a )™ = (a+1) {b\/(l +a ) (14 asq)(1+a,)| —c

Note that we implicitly exploited €, < 1 here in order to put the perturbations
under the square root. With

§o= y(l+a) and b= by/(1+a)(1+ag)(1+a) (1.14)

we arrive at

7 = (a+1)b* —c.
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Basically, this relation reveals that if we change the input data b and the output
y according to (1.14), the perturbed values do satisfy the desired relation ezactly.
What we just did is called (componentwise) mized relative error analysis; it is a
powerful technique and will play a prominent role in this work.

Standard Approaches

In general, we call an algorithm mized relatively stable, or just stable, if it allows
for a mixed relative error analysis and the resulting relative errors to inputs
and outputs are “small”. With rudimentary knowledge of infinite series we can
interpret (1.14) to get the crude bounds

J=yl+7+0(2), W <e b=0bl+B8+0(), |8 <ie. (1.15)

The usual way is just to forget about any O(e?) terms and read this as “perturb y
and b each by about €, (= .5ulp) 7. For instance this is how results are presented
n [15,18,35-37].
Once you start using them, O(€2)-terms tend to spawn rapidly until they occur
almost everywhere. This is not only unsatisfactory but plain ugly. Thus we will
use two techniques to handle relative perturbation factors more fluently.

To motivate the following, let us cast what we did in the example above into
more general terms. The sole origin of perturbations is Axiom FP and most of the
time one has to juggle around factors (1 + ), || < €. One could call these basic
or elementary perturbations. It is possible to accumulate them by multiplying,
dividing and taking square roots. This can take you quite far; in the example
above until (1.14). In general it will lead to something like

1—1—04Z
— xH 1—|—6 ’061’,|62| S €o, Si,ti c [07 1] (116)

But there comes a point when one wants to write = = z(1 + ) again with a
concise bound for &, that is, for |#/z — 1|. First-order perturbation theory would
give |T/z — 1| < ey ;(si + ;) + O(e2).

A Refined Notation

Higham uses in his book [43] terms of the form 7,, = ne,/(1—ne,) for accumulating
relative perturbation factors. The denominator (1 —ne,) takes care of all second-
order contributions in a clearly defined way. We decided to adopt his approach.
However, the bounds 7, do not lend themselves well for taking square roots
of errors like in (1.14), nor for dividing them. For instance, the best one can
do to bound (1 + 7v4)/(1 4+ ~;) is by (1 + Yk42;) (cf. [43, Lemma 3.3]), which
overestimates the first-order contribution by je,. Therefore we developed a slight
generalization. Using our notation is a little more cumbersome, but it gives
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sharper first-order bounds. The essence is that we have to keep better track of
second-order contributions, not because we are interested in them, but because
neglecting them would cause the first-order bounds to suffer.

The type of bounds we will use are of the form z/(1 — kz) for small z, e.g.,
x = ne,. To analyze their properties let us, for k£ € Ny, define the functions

x
1—ka

O : [0, m) —-R, z+— (1.17)
Note that Oy is just the identity on [0, 1). The restriction on the definition domain
is just a formal necessity since we are interested in O (x) only for tiny arguments
x. The salient feature of O (z) is that it is strictly monotonically increasing in
both k£ and xz. Furthermore we define

0r(x) := placeholder for quantity bounded by Oy (x) in magnitude.  (1.18)

By “placeholder” we mean that occurrences of #-terms should be interpreted
similarly to the traditional O(-) notation. To pronounce relations that deal with
unspecified quantities like these we will write “ = ” instead of “=". The expres-
sions become unambiguous if interpreted from left to right.

Figure 1.1 shows plots of O for k£ = 1,2,4 as well as a possible incarnation of
f,. The following theorem is of rather technical nature but forms the foundation

of our notation.

b

)
11— 4

1.0 — O,
0.9 — ©1

0.8 —
0.7 —
0.6 —
0.5 —
0.4 —

0.3 —

possible pos. for 61(0.2)

0 T T T 1 €
0 0.1 02 0.3 04 0.5 0.6

Figure 1.1: Functions ©; and placeholders #; underlying the notation for error
analysis.
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Theorem 1.6 (Properties of 6y)

With the notation developed above, and provided all 6, terms are defined
according to (1.17) and (1.18), the following holds:

() (@)1 +6) = (L b (max{z, y})"

(i) (L+0:(2) (1 +0;(1) = 14 Omaxrrgy (@ +9),

(447) (14 0k(2)” = 1464y (slz), 0#]s| <1,
(i) O(x) £0;(y) = Omaxqrrg(z+y),

(v) Mi(x) = O(Ax) forall N> 1.

The proof will require a couple of lemmas for support.
Lemma 1.7. For any z,s € R with |z| < 1 and |s| <1 we have

|s|
1=z

(1+2)° 1| <
Proof. Recalling the general binomial coefficients

s(s—=1)---(s—k+1)/kl, ifk>0

') = < th—0,
k T ) 1 — Y
0

otherwise,

9

we employ the general binomial expansion to obtain

1+2)° = i (Z)xk

L (s—1)(s —2 —
= 1+sxz S S ) (S k)xk
k=0

o (k+1)
Since |s| < 1, the coefficients of z* in the latter sum are bounded by one in
magnitude. Hence the geometric series Y |z|* = (1 — |2|)~! is a majorant. O

Lemma 1.8. Let a,b € R and |s| < 1. Then, for any a € R,

a |s]a
<— <1 = 1 el <
S (e =1l < =G

Proof. Apply Lemma 1.7 and note that |z|/(1 — |z|) = ©1(|x|) is monotonically
increasing. O]
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Lemma 1.9. Let a,b,c,d € R with0 < a <b, 0<c<dandb+d < 1. Then,
for any o, B € R,

a c a—+c
< — A < = 1 1 -1 < —
Proof.
1+a)1+8) -1 = [a+8+af < — 4+ 4 &

1-b 1-d (1-0b)(1-4d)
a+ c¢— (ad+ bec — ac)
1—(b+d)+bd

From the prerequisites we can infer 0 < bd < b+ d as well as
0<(ad+bc—ac)=a(d—c)+bc<a+c

and the result follows. O]

Proof of Theorem 1.6. Remember that the claims only concern nonnegative
arguments x and y.

(7). This is just the monotonicity of ©(z) in k and z.

(ii). For k > 1, j > 1 we employ Lemma 1.9 to get

T+y
L)1+ 0) 1] £ 2T
Tty
< — : .
— 1 —max{k,jHz +y) Omax(is (& +9)
The special cases £ = 0 or j = 0 follow then as well, since we can exploit
Op(z) < O4(x) for all x € [0,1), that is, Oy(z) = 01 (z).
(73i). Lemma 1.8 gives
s |s|z 570 |s|z
1 -1 < < = .
‘( + 04(2)) ‘ T l=(k+Dr T 1-Elg O+ (lsl2)
(7v). This follows from (i), since for scalars « = Oy(x), 3 = 6;(y) we have

o £ 8] < la| + 18] + | = [(1+|al)(1 +18]) - 1].
(v). Use that 1/(1 —2) < 1/(1 = Az) forall z < Az < 1. O

Now we can define our notation for running error analysis. As we are effec-
tively only going to need perturbations expressed as multiple of €, we will define
a special notation for those, namely
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The following definition captures this and the subsequent chart compiles the
properties we are going to need, all of which are immediate consequences of
Theorem 1.6. The ©,’s are completely left out from the presentation, since their
sole purpose was to get us here. Naturally, Theorem 1.6 would also offer an
analogon to the general exponentiation rule (iiz) for the €'(-)-terms. But to ease
later reference to the chart we have opted to forego it. Instead, we did explicitly
split off only the two special rules that will be needed, namely (3) for inversion
and (4) for taking square roots.

Definition 1.10. For any p,n € R=% and 0 < pne, < 1, we define

€?(n) := placeholder for quantity o with |a| < A
1 — pne,
We abbreviate €/(n) =: €(n) and write €, instead of €/(1) if in placeholder context
(on the right hand side of an “="). O
Chart 1.11 (Rules for running error analysis)
Let r = max{p, ¢}, R = max{1,p,q}.
1) 1+ (1+eim)) = 1+ (max{m,n}))’
(2) (1+e”(n)(1+€"(m) = 1+ (n+m)
(3) (1+e7n)™" = 1+4€(n)
(4) L+ erm) = 14w (lp),
(5) ) £el(m) = ¥(n+m)
(6) AP (n) = €”(An), A >1

We need to stress, again, that although the use of €!(+)-terms as placeholder for
an unspecified quantity simplifies the notation in general, it may cause ambiguity
if employed carelessly. Just as with the traditional O-notation, expressions which
contain placeholders should be interpreted from left to right. Consider rule (6) in
the previous chart: It would have been erroneous to state it the other way around
since Ane,/(1 — pAnes) > Anes/(1 — pne,) for A > 1.

To demonstrate the power of the notation, the following corollary shows how
accumulated elementary perturbations like those in (1.16) can be handled rather
effortlessly.

Corollary 1.12 (Accumulation of basic rounding errors).
Given for i = 1,...,n scalars m; € R and s; € {—1,1}, let D = >7"  |myl.
Then, provided D < 1/e,,

n

[T+ mieo) = 1+ (D).

=1
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Proof. Because |s;| is limited to one, we can with help of Lemma 1.8 rewrite the
factors as (1 + mye,)% = 1+ ¢(|m;|). Then the result follows from rule (2). O

Note that if one would bound each elementary perturbation from the start
by (1 + me,) = 1+ €(|my]), then using rules (2) and (3) the bound would
become 1+ €?(D). The difference concerns only second-order contributions, so a
pragmatic reader might remark that this seeming improvement provided by the
corollary is of no practical consequence whatsoever.

We want to leave this section by taking a second look at example (1.12) from
before. As was done there, a tilde superscript is reserved to denote perturbed
quantities.

To provide for a more visual presentation we use a zigzag-arrow ~» to pro-
nounce the transition from unperturbed to perturbed data. Furthermore, for
perturbations of scalars we also identify x ~» T with the relative factor involved;
formally defined this means

T~ T = (T—x)/x, x#0.

So, T = z(1 + &) is the same as x ~» T = .

For the perturbations in (1.14) we would use Corollary 1.12 to compress the
factors under the square root as (1 + €(3)), and then use rules (3) and (4) from
Chart 1.11 to obtain

y~7 = €(1), basb = 6[4](%).

As closing remark, it is nice to have control over second-order terms, but
rarely of practical relevance. Most readers will probably be already familiar with
the traditional use of the O-notation. To ease the transition for them the rule

"(n) = ne, + k(ne,)* + O(ed) (1.19)

really covers everything one needs to keep in mind.

1.3 Angles between subspaces

For understanding the MR3-algorithm we will have to analyze how invariant sub-
spaces of matrices are affected by perturbations. To do so, we need to develop a
strong grip on the concept of angles between subspaces. This topic can become
rather tricky to handle in a general way, as one inevitably has to venture beyond
3-dimensional space where intuition and examples might help. On top of that,
treatment in the literature [9,34,55,56] is somewhat varying in depth and often
strongly biased by the authors’ intended application.

Therefore we decided to give a stand-alone presentation of the topic. Expe-
rienced readers might want to flip ahead to the results starting on page 25 to
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Figure 1.2: Geometrical interpretation of an angle between a vector (line) and a
2-dimensional subspace (plane) in R3.

evaluate the potential gain from studying this section. The notion of angle we
will end up using is just the largest canonical angle as defined in [34], see the
remarks at the end of this section.

Our presentation up to Definition 1.14 was strongly influenced by [55, §5.15].

The standard scalar product with which R™ was embodied to become the
Euclidean space carries with it the concept of an angle between vectors, or more
precisely, between one-dimensional subspaces. Let u,v € R™ have unit norm, then

cos/ (spanf{u},span{v}) = |u*v| (1.20)

defines this angle, measured as acute in [0,7/2] for uniqueness. For brevity we
will just write Z(U, v) given nonzero u and v.

If we lift the restriction of being one-dimensional from one of the spaces, say
by replacing v € R® with V C R", it becomes natural to ask for the smallest
rotation to bring u into V. This gives rise to the minimal angle ¢ between those
two, defined by

cos¢ = max {|u*v|] : veV,|v|] =1}, (1.21)
or equivalently,

sing = min{flu—v[ : veV}
= max {|u*w| : w € V", |lw[| = 1}. (1.22)

Both definitions are conceptually based on orthogonal decompositions, see Figure
1.2.

However, for making the next step to define an angle between general sub-
spaces U,V C R", the intuition that brought us thus far can become misleading.
At first one could try to define a minimum angle

cosfy, = max{|u"v|] : u€U,v eV}, (1.23)
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only to realize 6, will be zero as soon as the spaces have a non-trivial intersection.
The alternative approach to define a maximum angle asymmetrically via

sinfy = max {|u*w| : u € U,w eV}, (1.24)

does not work either, because then 6y = 7/2 whenever dim¢/ > dimV (we will
prove this in Lemma 1.13 below).

Projectors

To work with arbitrary subspaces we first need a way to identify them. One could
employ any basis for this purpose, but that would not be unique. Better is to use
that each subspace has a unique linear operator associated with it—its orthogonal
projector.

Any idempotent matrix P = P? is called a projector. Then

| -P =1-2P+P> = (I-P)(I-P)

is also a projector. For any x € R" we have P?>x = Px, so range(P) = null(l — P)
and null(P) = range(l — P). Hence, for every projector P,

range(P) +null(P) = R", range(P) ﬂnull(P) = {o},

meaning range(P) and null(P) are complementary subspaces.

Conversely, for any two complementary subspaces R and N, there is a unique
linear operator whose matrix P (with respect to the standard basis on R") com-
bines the properties P? = P, range(P) = R and null(P) = N. In this situation
we say that P projects onto R along N .

A projector is called orthogonal if its range and nullspace are, well, orthogonal,
otherwise it is oblique. The preceding thoughts show that there is a one-to-
one correspondence between a subspace & and an orthogonal projector Ps that
projects onto S (along S*), thus we can identify the space S uniquely with the
matrix Pgs.

There is a nice connection between orthogonal projectors and orthonormal
bases of the subspace. For any S with orthonormal columns spanning S, we
clearly have range(SS*) = S and null(SS*) = S*. Hence, as the orthogonal
projector onto § is unique,

PS = SS* and Psl = | —SS*. (1.25)
An immediate consequence is
|IP|| =1 for any orthogonal projector P. (1.26)

Furthermore, any symmetric projector, P = P* must be orthogonal, because
(1—P)*P = (I—P)P = 0. Together with (1.25) we get the elegant characterization
that orthogonal projectors are just the symmetric ones, i.e.,

range(P) L null(P) < P =P (1.27)
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In the remainder of this thesis we will exclusively be dealing with orthogonal
projectors, so from here on, we will just say projector when we mean orthogonal
projector.

Distance between subspaces

Given subspaces U,V C R", one way to gauge their difference is to measure the
maximal distance of a vector in one space, say U, to its (orthogonal) projection
onto the other space. This leads to

5, V) = max|(1 - Py)ul. (1.28)

€
[Jull=1

Note that this definition of distance is similar to (1.24) but not symmetric. Using
that orthogonal projectors are symmetric, we can rewrite it

oU, V) = [[(1=Pyv)Pyl = [[Pu(l = Py)ll. (1.29)

Take any unitary matrices Qy = [U|U] and Qy = [V|V] such that the columns of
U and V form orthonormal bases of U and V), respectively, to see

SU.V) = [l =Py)Pyll = [VWUU*| = VU] (1.30)

The next lemma compiles some rudimentary properties.
Lemma 1.13. For any subspaces U,V C R"™:

(1) 0<o(U,V) <1

(ii) UNVE £ {o} = U, V)=1

(1ii) dimY > dimV = §(U,V) =1

(iv) dimU = dimV = o(U,V) =5V, U)

(v) max {6(U,V),6(V, W)} = [[Py — Py

Proof. | —Py is an (orthogonal) projector (onto V1), thus (i) follows from (1.29)
and (1.26). (4i) is a direct consequence of the way 0 is defined. (i) follows from
(7i) if one exploits that R™ is finite dimensional and therefore dim¥ > dimV
implies the existence of a nonzero x € Y N V+.

Now fix unitary matrices as in (1.30). Then

Q7 (P = Pv)Qy = m (VU =W [vIV] = [_

so together with (1.30) we have (v).
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Finally, it remains to show (7v). With (1.25) and (1.30),

U, V) = |VU||? = max x*U*VV Ux

[Ix]]=1
= ﬁn”aX x*U*(I — VV*)UX
x||=1
=1- \\Hﬁin [V*Ux]|?,
x||=1

and analogously,

SV.UP = OV = 1= min UK
Since dimi/ = dim V), the matrix U*V is square. Should it be singular, then the
spaces UNVL and UNV are both nontrivial, and (i) gives 6(U, V) = §(V,U) = 1.
Otherwise, U*V is invertible and hence V*U = (U*V)* is, too. Thus the above
calculations give

SUV? = 1—[|[(VU) 7" = 1-|[(UV)Y " = s(vu)?,

completing the argument. O

Angles

The concept of angles between general subspaces that we will use is based on
the distances 0 that were just introduced. However, the angle really should not
depend on the order in which we write down the subspaces, so the definition will
be symmetrical, in contrast to the d-measure. After all we have Z(x,y) = Z(y,x)
for vectors as well. Point (éii) of Lemma 1.13 shows that it is really only sensible
to use J-distances in a way that the maximization in (1.28) runs over the smaller
of the spaces, and (iv) conveys that we can take either one if they have equal
dimension.

Definition 1.14. For any two nontrivial subspaces U,V C R", define the (acute)
angle between them to be the number Z(U,V) € (0,7 /2] with

sinZ (U, V) = min {6(u,),500.) }.

O

Next we establish that our definition of angles is indeed consistent with the
intuitively clear notions of angle between vectors and between vectors and sub-
spaces as they were introduced at the beginning of this section; in particular we
retain the geometrical connections from (1.21) and (1.22) between angles and
orthogonal decompositions from Figure 1.2.
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Lemma 1.15. Let § be a nontrivial subspace of R™. Then each x € R"™ with
|IX|| =1 has a unique orthogonal decomposition

X = scosa + rsina, azl(x,S),
with s € S,r € St and ||s|| = ||r|| = 1.

Proof. There is really not much to do except to take the orthogonal decomposi-
tion as defined by the projector Pg, note that sin a = §(span{x},S) = ||(I —Ps)x||
and leave the rest to Pythagoras. ]

The following minimax-characterization builds on the well-understood angles
between vectors in Euclidean space from (1.20) and avoids the explicit use of
norms.

Lemma 1.16. For any two subspaces U,V C R™ with 0 < dimU < dim V,

4(?/{, V) = maxminé(u,v).

ueld vey

Proof. In this situation we have sinZ (U, V) = §(U, V). As sine is strictly mono-
tonically increasing on [0, 7/2], the claim is just (1.28) if one notes that for x of
unit norm, [|(I — Py)x|| = minyep sinZ(x,v). O

This characterization makes the following result immediate. We just write it
down here because it is needed for Chapter 2.

Corollary 1.17. Let U, V be nontrivial subspaces of R™ with U C V. Then for
any nontrivial Z

LU, Z2) <LV, Z), if dimV <dimZ,
Z(Z2,V) < Z(Z,U), if dimZ < dimU.

Finally, we will show that general subspace angles do still enjoy some notion
of transitivity. This fact will also be put to frequent use in Chapters 2 and 3.

Lemma 1.18. Let U, V, W be nontrivial subspaces of R™ with
min{dim#,dim W} < dimV < max{dimU,dim W}.

Then
sinZ (U, W) < sinZ(U,V) +sinZ(V,W).

Proof. The symmetric definition of angles allows without loss of generality to re-
strict ourselves to the case dimU < dim V < dim W. Then the claim is equivalent
to

UW) < oU,V)+0(V,W).
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First assume dim ) = dim W. Use that operator norms are matrix norms, (1.26)
and Lemma 1.13 to see

oU, W)

I(1 = Pw)Py||
I
I

(
< |[(1 = Py)Pull + [[(Py — Pw)Puy|
< |[(1 = Py)Py|| + [Py — Pw||
— SU, V) + 5V, W), (%)

For the case dim V' < dim W, we can find a subspace S C (VtNW) with dim S =
dimW — dim V. Then V := V + S has dimV = dim W, so (%) is applicable and
yields

SUW) < SU,V)+ 5V, W).

It is not hard to see that our choice for V implies §(V,W) = §(V,W). Fur-
thermore, we have V C V and sinZ(U,V) = §(U,V), so Lemma 1.17 gives

S(U,V) < 6U, V). O

At this point, we have all the tools concerning angles assembled that we will
need on the following pages. However, before we leave this section, we want at
least to remark on one prominent concept that was left out so far.

Remark 1.19 (Principal Angles). For general subspaces U, V there is actually a
whole collection

¢ < ... < ¢y, k=min{dim¥,dimV},

of angles between them, called the canonical or principal angles. These are
usually defined in an algorithmic fashion, by taking the minimal angle ¢, := 6,,
from (1.23), factoring out the directions (u and v) for which it was attained,
and continuing iteratively until the smaller space is reduced to the nullspace.
Geometrically, the canonical angles do in a way define a minimal sequence of
rotations around suitable axes to bring the smaller space into the larger one.
Mathematically, the cosines of the canonical angles are the singular values of V*U
(see [34, p. 603f]) and their sines are among the singular values of P, — Py, (cf.
(v) in Lemma 1.13). Our definition gives nothing else than the largest canonical
angle, that is, Z(U, V) = ¢y O

1.4 Theory of the Symmetric Eigenproblem
(Greatest Hits)

This section will take us on a trip to visit a selection of topics from the theory of
the symmetric eigenproblem.

We only cover results that are in some way used at a later point; this in-
cludes that we need to reference them directly for proving something, but also
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the introduction of crucial techniques or just valuable insights. Everything that
is presented is done so in detail, including complete proofs.

Experts in the field will probably not find anything new on the following
pages. The contents can be found in most standard textbooks. Because of this
we have opted not to give a detailed reference to the literature for each lemma
or theorem. FExcept for small modifications here and there our exposition follows
the lead of [56], with some additions from [10,69] mixed in.

1.4.1 Rayleigh’'s Quotient, Residuals and Gaps

Any matrix A (€ R™*", symmetric) defines a bilinear form x — x*Ax. By factoring
out the vector’s norm one obtains a map that is of the utmost importance for the
theory of symmetric matrices and their eigenvalues, namely

x*Ax
pA(X> = XFX ) X 7£ 0, (131)

called the Rayleigh Quotient of A applied to x. If the matrix can be inferred
from the context we just write p(x). The undefinedness at zero is unlucky as it
becomes cumbersome to heed x # o at each occasion. In the sake of brevity let
us thus stipulate that whenever we use Rayleigh’s Quotient, the involved vectors
are implicitly assumed to be nonzero.

From its design, p,(x) is independent of the norm of x, that is, it is invariant
under scaling, p,(x) = pa(ax) for all a € R7?. Despite this feature being admit-
tedly obvious, it is worth mentioning, as it allows to restrict any analysis of the
Rayleigh Quotient to the unit sphere.

For a deeper understanding of pa we have to put A’s eigendecomposition into

play. Let A; = NJA], 9; = qi[A], ¢ = 1,...,n, so that we can expand x in the
basis of A’s eigenvectors as

x=> &qi with x> =) "¢
i=1 i=1
This gives
palx) = D NE = Y Ni(ax)?, (1.32)
i=1 i=1
revealing the following crucial property:
pa(X) is a weighted average of the eigenvalues of A, where the

weight of X\ is just the square of the weight of the corresponding
unit eigenvector in the representation of x.



1.4 Greatest Hits of SEP 29

One can also use the term convex combination instead of weighted average, this
makes it even more clear that p,(x) ranges over the convex hull of A’s eigenvalues,
ie.,

MIAL S pal) < MlA] and maloa()] = AL (139

Still just building on (1.32), we can improve on this result for arbitrary invariant
subspaces. If x # o is known to lie within Q;[A], then

Amin 1[A] < pa(%) < Amaxr[A]. (1.34)

A nice application is to consider the index sets {j,...,n} and {1,...,j} with
their associated invariant subspaces. They have, respectively, only one index j
and one eigenvector q;[A] in common. Thus a straightforward argument based
on (1.34) gives the characterization

max{pA(x) ‘xe lej[A]} — A = min {pA(x)‘XE Qjm[A]}. (1.35)

Experienced readers will recognize this as an instance of the Courant-Fischer
Theorem which we will present on its own at a later point.

Clearly, if x = q; happens to be an eigenvector of A, then p(x) = A;. But
note that the converse is not necessarily true, that is, p(x) = A; does not imply
that x is an eigenvector. Just consider for example a matrix with eigenvalues that
satisfy \; = %(Ai,l + Aix1) and then take x = q;_1 + g1

However, on a related note, it is not hard to show that there is a one-to-
one correspondence between eigenpairs of A and pairs of extremal values and
stationary points of the map pa constrained to the unit sphere. Using Lagrange
multipliers, we know that those are just the pairs (A, x) where the derivative of

L(x) = x"Ax — A(x"x — 1)
vanishes, and this gives

L'(x) = 2xA—=2X\x" = 0o & Ax=Xx

An algorithm that computes eigenpairs has to employ some means to evaluate
the quality of an approximation. A natural way to do so is by monitoring an
eigenpair’s residual. The following result states that the residual norm is an upper
bound for—and can therefore never be smaller than—the absolute accuracy in
the eigenvalue approximation.

Theorem 1.20

Let A € R™™ be symmetric. Then for every nonzero vector x € R™ and
every i € R there is an eigenvalue \ of A such that

A=l < 1A% =l /][]
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Proof. There are different approaches, we chose one that exhibits the Rayleigh
Quotient:

(1.33) . 9
A =l /K2 = pa_ex) 2 M[(A— )] = min (\[A] - )

A special residual is the one that comes with the Rayleigh Quotient,
ra(x) (= Ax— pa(x)x. (1.36)

Its characteristic feature is being orthogonal to x, as x*ra(x) = x*Ax— [|x||2ps(x) =
o. Hence Ax = ra(x) + pa(x)x is the orthogonal decomposition of the map of x
under A, with respect to span{x}, see Figure 1.3. This realization has several
consequences. First of all it shows that the Rayleigh Quotient-residual is the best
residual one can get with any eigenvalue for a given vector x,

|Ax — xpa(X)]] < ||Ax —xp|| for all x # o, u € R. (1.37)
Furthermore, elementary trigonometry (or Lemma 1.15) gives
x| cosZ(x,Ax) = palixl,  [Ax] sinZ(,AX) = [lm(ll.  (138)

linking ra(x) to the rotation effected by A on x.

Ax

Pa(X) x

Figure 1.3: The Rayleigh Quotient, its associated residual and their role in the
orthogonal decomposition of the mapped vector.

Now we come up to two highlights. Theorem 1.20 told us that small residual
norms imply accuracy in the eigenvalue. The Gap Theorems we will present now
do essentially the same for eigenvectors, as they connect the residual norm with
how close the vector is to a true eigenvector or an invariant subspace, expressed
similar to (1.38) by considering angles.

It turns out that the quality of information about vectors that can be inferred
from the residual hinges on gaps in the spectrum. For stating the following results,
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the gaps we defined in §1.1 are unfortunately not sufficient. Instead we need to
define for any index set I the rather exotic

gapa(l;p) = min{\% —pl j%”}, (1.39)

which is the distance of u to any eigenvalue of A whose index is not in I. The
connection to the traditional gap-measures from (1.3) and (1.5) is as follows:

i€ T and |p—N| < 3gapa(Ni) = 3gapa(l) < gapa(l; p). (1.40)

The condition states that p is closer to an eigenvalue A\; with index ¢ € I than to
any other eigenvalue of A; this is usually the case in situations where we want to
invoke one of the Gap Theorems.

The following result about subspaces is usually not found in introductory
textbooks; it can be generalized to angles between subspaces of equal dimen-
sions [56, Thm. 11.7.2] or even arbitrary ones [9]. Note the lack of requirements
except for a nonzero gap, which will only not be fulfilled if the eigenvalue approx-
imation p is really bad and happens to coincide with an exact eigenvalue outside
the set we are interested in.

Theorem 1.21 (Gap Theorem for an invariant subspace)
For every symmetric A € R™"™, unit vector x, scalar j1 and index set I,
. [[AX — xu|
sinZ(QA], x) < ———,
(AT, x) gapa(f; 1)

provided gap(I; 1) # 0.

Proof. Decompose x along Q;[A] as
x = GailAl+ ) wjqs[Al
iel gl
to see
1AX = x> = " ENIA] = p)® + ) WA = p)?
iel el

> gapa(l;0)* Y w?
iel
= gapa(l; p)” sin®Z(Q,[A], x),

where we needed Lemma 1.15 to make the last step. O]
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Now we present the Gap Theorem that is probably better known. Additionally
to the same upper bound on the sine as in Theorem 1.21, the use of Rayleigh
Quotients makes it possible to give both a lower bound on the sine, as well as a
tight upper bound on the distance of p,(x) to an exact eigenvalue of A that is
proportional to the square of the residual norm and generally superior to the one
from Theorem 1.20. In fact, this latter bound is the driving force behind Rayleigh
Quotient Iteration (RQI, [56]) and its cubic convergence. However, in contrast
to Theorem 1.21, the new bounds cannot be generalized for invariant subspaces
with dimension exceeding one, cf. Lemma 3.5.

The proof is rather long and quite subtle, but highly instructive. Therefore
we decided to present it in full length; except for minor adjustments it is taken
from [56].

Theorem 1.22 (Gap Theorem with Rayleigh’s Quotient)

For symmetric A € R™™ and unit vector x with 0 = pa(x), let A = \;[A] be
an eigenvalue of A such that no other eigenvalue lies between (or equals) A
and 6, and q = q;[A] the corresponding normalized eigenvector. With

r = (A—0)x, gap = gapp({i};0), spdiam := spdiam[A],

we will have gap > 0 and

2
Hr|| < siné(x,q) < M and 10—\ < M
spdiam gap gap

Proof. Let A(X,q) =: 9. The upper bound for sin is just a special case for
Theorem 1.21 (with I = {i}, n = 0). We can without loss of generality assume
x & span{q} as there is nothing to prove otherwise. Then there is a unique unit
vector w orthogonal to q such that we have the decomposition x = q cos 14w sin 1.
This gives

r=(A—0)x = q(A—0)costp+ (A —0)wsinp.

Because w is orthogonal to q, so is (A — 0)w. Hence, using Pythagoras, we obtain
Irl* = (A= 0)? cos® ¢ + [| (A — O)w]|* sin® o). (A)
On the other hand, we know that r = ra(x), so x L r and therefore

0=xr= (A —0)cos® 1 + w*(A — §)wsin® 1. (B)
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Solve (B) for (A — @) cos? 1) and combine with (A) to see
17 = (A — B)w|sin® 6 — (A— B)w*(A — 6)wsin?
= (W (A=0)(A—0)w —w*(A—0)(A—0)w)sin®
= w((A=0) — (A\—0))(A—0)wsin®¢
= w*(A = \)(A — O)wsin? 7). (C)
The Cauchy-Schwartz inequality now gives
W (A=XNA-0Ow < [|(A=Xw| [|[(A—=0)w| < spdiam?,

which provides us with the desired lower bound on sin .
We still have to come up with the upper bound on [# — A|. Write w =

Zj;éi w;q;[A] for

W (A= XN)A=hw = Y Wi — A\ —0) (? 0.
J#
At this point we deploy the as yet unused condition that no eigenvalue of A comes
between A and 6 to conclude that for all j # ¢, the scalars (A\; — ) and (\; — 6)
have identical signs. In other words, the matrix (A — \)(A —6) is positive definite
on span{q}*. Hence,

WA=NA=Ow = Y w N — A |A =0

J#i
> gap ’ PIHOE /\)’
J#
= gap |[w*(A — A)w|.

Thus, looking back at (C), we realize that the proof is complete as soon as we
can establish |w*(A — N)w|sin?%) > |§ — A|. Indeed, we can even show equality
here: Plug cos?1) = 1 — sin® % into (B) and rearrange for

(0—X) = (W(A=0)w+ (60— N))sin’¢ = w*(A— Nwsin® ).

1.4.2 The Classics

In the following we present a series of timeless results from the theory of the
symmetric eigenproblem, all of which are going to be needed at some later point.
Concretely these are the Cauchy Interlace Theorem, the Courant-Fischer The-
orem giving minmax- and maxmin-characterizations, Sylvester’s Law of Inertia
and Weyl’s Theorem.

Interestingly, all four build directly on the following fact from basic linear
algebra:
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In a finite dimensional space, if the dimensions of two subspaces
sum to more than the whole, then they must have a nontrivial
intersection.

The Cauchy Interlace Theorem is usually known in the form that deleting
from a symmetric matrix for one index the corresponding row and column gives
a symmetric matrix whose eigenvalues lie between (interlace) the original one’s.
An alternative (but equivalent) formulation links the eigenvalues to those of a
principal submatrix. See also Figure 1.4 for a comparison of these viewpoints.

The eigenvalues of a principal submatrix are also called Ritz Values, although
they are in fact only a special kind of those, namely with respect to columns of
the identity.

Theorem 1.23 (Cauchy Interlace Theorem)
For every symmetric A with principal submatriz Ar, and every k with 1 <
k<|Il,

Proof. We start with simplifying the setting a bit, by noting that, as any sym-
metric permutation A — P*AP has no effect on the eigenvalues, we can just as
well limit ourselves to the case I = {1,...,m}, where A can be partitioned

H B
A = [B* X:| s H = A[. (*)
For any given k& we then have

dim Q. [A] + dim Q1 x[H] = n+1 > n.

If we append zeros to the eigenvectors of H to get them to dimension n, the
previous dimensional argument remains valid for the thusly prolonged invariant
subspaces of H. Hence we can find a nonzero vector x € Q;.;[H] such that

y = m € QualAl. (5)
This gives
MJA] = min {pA(Z) ’z c ka[A]} by (1.35)
< paly) since y € Qg [A],
= pu(x) by () and (x),
< max {pH(Z) z€e Ql;k[H]} since x € Qy.x[H],

Ak H],
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A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
n=>5 n=>5 ° ° ° ° )
A1 A3
n=4 } } } } i n=4
)\2 )\4
A1 A3
n=3 } } } i n=3
A2
A1
n=2 fFo—t———sf n=2
A2
n=1 Fo——m— n=1
A1

Figure 1.4: The Cauchy Interlace Theorem. On the left: Sample eigenvalue
distribution for sequence of submatrices obtained by successively deleting one row
and column; dotted lines indicate the bounds as given by the next larger matrix.
On the right: The lines indicate ranges where eigenvalues of submatrices with the
respective dimensions can lie, deduced directly from the original n = 5 matrix.

proving the first inequality. The second inequality is just the first one written for
—A. [

The Courant-Fischer Theorem provides the well-known minmax-characteriza-
tion of eigenvalues and is a generalization of (1.35). The following formulation [56,
Thm. 10.2.1] differentiates between subspaces and constraint spaces.

Theorem 1.24 (Courant-Fischer “Minimax” Theorem)

Let S and C stand for subspaces of R™ with dimensions attached as super-
scripts. For j = 1,...,n, the j°th eigenvalue of symmetric A € R™" is
characterized by

. _ Al = .
min max p, (x) jIAl = max min p,(x),

or equivalently stated for the j’th largest eigenvalue of A

i = A ,A] = mi .
max min p, (x) jIAl = min max pa(x)

Proof. To see that both formulas are equivalent, replace j by n — j 4+ 1 in the
first and note that

S{Eljﬂl xeg}g}fﬂ f(x) - gﬂllrll xﬁlcz}}fl f(x)
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for any f.
Because dim &7 + dim (C"1)" = j + (n — j + 1) > n we can find a nonzero
vector w € 87 N (C/~1)". Then we surely have

i < < .
nin pa(x) < pa(w) < maxp,(x)

As this holds for every possible configuration of S/ and ¢!, we can conclude

a i < mi a .
max min pa(x) < minmax p,(x)

Now consider the choices 87 = Q;,[A] and (C7~1)*+ = Q;.,[A]. Use (1.35) to see
min {pA(x) ‘ X € Qj;n[A]}

max 1min, pa(x)

AilA]

IN

IN

in ma;
min max p, (x)

max {pa(x) [x € Qi [A]} = Nj[Al.

IN

Thus all inequalities must in fact be equalities and the first characterization is
proven. O]

Similarity transformations A — X"!AX leave eigenvalues unchanged. For the
symmetric eigenproblem, congruence transformations A — X*AX with nonsingu-
lar X are far more relevant in practice. Indeed, starting with Chapter 2 everything
will quite literally revolve around them.

Congruent matrices need not have the same eigenvalues, but Sylvester’s Law
establishes that at least the signs of eigenvalues are identical. This is equivalent
to saying that they have the same inertia, which is defined as triplet containing
the numbers of negative, zero, and positive eigenvalues of the matrix. Methods
that compute eigenvalues using bisection rely on Sylvester’s Law implicitly.

The proof combines parts from [10, Theorem 5.3] and [55, p. 586].

Theorem 1.25 (Sylvester’s Inertia Theorem)

Symmetric matrices are congruent if, and only if, they have the same in-
ertia.

Proof. (<) Every symmetric matrix is congruent to a diagonal matrix with en-
tries from {—1,0,+1}, the signs of the eigenvalues. By reordering the eigenvalues
conformably we see that if two symmetric matrices have the same inertia, they are
in fact congruent to the same diagonal matrix. Then just note that congruence
is an equivalence relation and hence transitive.



1.4 Greatest Hits of SEP 37

(=) Let M = X*AX € R™*" for nonsingular X and symmetric A, M. Choose
asign s € {—1,0,+1} and let Sp and Sy be the invariant subspaces spanned by
the eigenvectors belonging to the eigenvalues of A and M with sign s, respectively.
Recall (1.34) to see that pa and py both have constant sign s while varying over
these spaces.

We will give a proof by contradiction. Assume without loss of generality
dim Sp > dim Sy, otherwise swap A and M. Because X is nonsingular,

dim Sa + dim(XS,\LA) = dimSp +n —dimSy > n.
Therefore we can find nonzero vectors u,v with u = Xv,
ueSa = signpa(u) =s and vESy = signpy(v) # s.

This is a contradiction to pa(u) = pa(Xv) = py(v). O

Last but surely not least, Weyl’s Theorem provides a bound that links eigen-
values of matrices to those of their sum. It is extremely valuable for analyzing
additive perturbations, but its principal setup is far more general. In fact, some
textbooks, e.g., [10, Thm. 5.1], give only the error analysis viewpoint, which we

will state as Corollary 1.28 below. The formulation here is taken from [56, Thm.
10.3.1].

Theorem 1.26 (Weyl’s Theorem)
Let W=U+VeR"™ andi,j e Nwith1 <i+j—1<n. Then

AU+ AV < AW and - A W] < AU+ A[V].

Proof. Using the dimension rule it is straightforward to show that
d1m(81 N 82 N 83) Z dim 81 + dim 82 + dim 83 —2n

holds for any three subspaces Sy, Ss, S3 of an n-dimensional vector space. In the
situation at hand we have

dim Q;., [U] 4+ dim Q;.,, [V] 4 dim Qy.(i4—1)[W]
=mn—i+)+n—j+)+@+75—1) = 2n+1,
hence there is a nonzero vector z in the intersection of these three spaces. Thus,
AilU] + A;[V] = min {pU(x) |x € Qi:n[U]} + min {pv(x) |x € Qj:n[V]}
pu(z) + py(2)
pw(2)
max { py(x) | x € Quirj-1)[ W}
= Aigj—1[W].
The second inequality is just the first applied to —A. O

IN

IN
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1.4.3 Perturbation Theory

The field of perturbation theory for the symmetric eigenproblem is vast. We hand-
picked the following results with regard to our needs in subsequent chapters. For
more information, consult for instance [23,24,40, 51, 52,63 and the references
therein.

Remark 1.27 (Multiple Eigenvalues). For simplicity we will limit the presentation
of the two results concerning perturbed eigenvectors (Theorems 1.29 and 1.31) to
simple eigenvalues. Using the subspace-formulation of the Gap Theorem 1.21 it
is easy to extend both to multiple eigenvalues by replacing gap,(A) by gapa (/)
in the statements and proofs, where I = {i | \;[A] = A} O

Additive Perturbations

Every perturbation can be written in the form
A— A+E,

which makes the study of these perturbations useful in almost any application.
The only thing we have to require is that E does not destroy symmetry, i.e., E
must be symmetric itself.

As an immediate consequence of Weyl’s Theorem 1.26 we get that eigenvalues
of symmetric matrices are perfectly conditioned, at least in a normwise absolute
sense. Related results are the Wielandt-Hoffmann inequality for a bound in the
Frobenius-Norm and the Bauer-Fike Theorem as generalization to diagonalizable
matrices, cf. [34,56].

Corollary 1.28 (Eigenvalues under Additive Perturbations). For symmetric
A E € R™™™

mac { | \w[A +E] = MA]l} < JE].

Proof. For any fixed k invoke Theorem 1.26 (with U =AV=E,j=1andi=%k
for the left bound, i =n — k + 1 for the right) to get

MelAl + M[E] < MJA+E] < A[A] + A [E]
then use ||E|| = max {|\1[E]|, [\, [E]| }. O

Right of the bat we can get a cheap bound on the change in the eigenvector.
Let A = MJA], g = qi[A], A = MJA+E], § = qr[A+ E] and 6 = é(q,d). Noting
that then gap,({k}; \) = gapa({k}) = gapa(A), the Gap Theorem 1.21 yields

sinf gapa(A) < [|AG—GA = [[(A+E—-E)d—gAll

3 o (1.41)
= [IA=XNd—Egq|| < 2|E|,
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where we needed Corollary 1.28 for a bound on [\ — \| in the last step. It turns
out that the bound can be improved by (nearly) a factor of two, cf. [10, Thm.
5.4], but the price we pay is considerable more work for a proof. To extend the
claim to multiple eigenvalues, see Remark 1.27.

Theorem 1.29 (Eigenvectors under Additive Perturbations)
Use the same notation as in (1.41). If X is simple, then

1S.ir120 < ﬁ,
2 gapy ()

provided 2||E|| < gapa(A). Note that 0 ~ 0 implies sin 20 ~ 2sin 6.

Proof. Redo (1.41) up until before the last step, where we bounded the norm of
r:=(A—X\)g — E§ by 2||E||. Now write

a'Mi = ¢'(A+E)d = ¢AG+qE§ = q'E§ = (A~ N)q'q.
Using (1.41) and the assumption 2||E|| < gapa (k) we know 6 < /2, i.e., q and §
cannot be orthogonal. Hence we see
qq9°
9q

r=REq with R :=

The matrix R is rather interesting since R? = —R. We will now proceed to
prove ||R|| = (q*§)~!; indeed this holds generally apart from the setting here for
all such R and unit vectors q,§ (cf. [10, Question 5.7]). To validate this claim,
define 1 := (q*d)~! = (cos )}, so that we have ng = q + d with d orthogonal to
q. Then R = (q +d)q* — | and hence RR* = (I — qq*) 4+ dd*, leading to

IRI < 1+[d* = »* = [R] < »n

And since d*RR*d = (1 + ||d||?)||d||?, this inequality is indeed an equality.
Now we can put everything together to obtain

sinf gapa(A) < [Irll = [IREG|| < (cos®)™"[E],
from where the identity 2 sin 6 cosf = sin 20 completes the argument. O]

The preceding results are purely norm-based, as they rely solely on ||E||. They
are satisfactory and useful in many applications, but are too coarse to convey
meaningful information for eigenvalues that are small or tightly clustered. In
§2.3.3 we will present a more sophisticated approach to get bounds of finer gran-
ularity.
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Multiplicative Perturbations

By “multiplicative” we mean perturbations in the form of congruence transfor-
mations
A — X*AX,

but with the understanding that X is somehow “close to” the identity. Some-
times these are also called outer perturbations. We will consider the effects on
eigenvalues and eigenvectors separately. In principle, the following results can be
extended for nonsymmetric permutations A — XAY [24].

The crucial fact to take from here is that multiplicative perturbations are
more benign in the sense that they allow us to say something about the relative
changes in eigenvalues as well as changes in the eigenvectors based on relative
gaps in the spectrum.

Theorem 1.30 (Eigenvalues under Multiplicative Perturbations)

Let A € R™™ be symmetric, X € R"*" be nonsingular and o, & be the k’th
ergenvalues of A and A = X*AX, respectively. Then

ol M[XTX] < a] < faf A[X7X],
which implies

& =a(l+e) with | < [XX—1].

Proof. By Sylvester’s Law, the kth eigenvalue of X*(A — a)X is zero. Written as

A — aX*X we can interpret it as additive perturbation of A. Then Corollary 1.28,
combined with the fact that X*X is positive definite, leads to

&l = |a—=0] < |af[XX]| = |o] An[X*X].
The same argument, based on A as the original matrix and A = X-*AX~1 as the
perturbed one, and then using \,[X*X7! = \,[X7IX~*] = \{[X*X]~! allows us

to conclude
la] M[X*X] < o] < |a] A\[X*X].

Subtract |a| and use that by Sylvester’s Law we have sign o = sign &, to see
] —|a| = |a—a] < ]a|max{]A1xx — 1|, | M XX] —1\} = |af|X*X —1]|.

]
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The following result concerning the effect of multiplicative perturbations on
eigenvectors and its proof were taken from [10, Thm. 5.7] but modified to mea-
sure the relative gaps with respect to the original matrix instead of the perturbed
one. Therefore the stated bound differs slightly. A generalization for invariant
subspaces can be found in [52, Thm. 3.1] and for multiple eigenvalues, see Re-
mark 1.27.

Theorem 1.31 (Eigenvectors under Multiplicative Perturbations)

Let A € R™™ be symmetric, X be nonsingular and A = X*AX. Let a, a
be the respective k’th eigenvalues, both having multiplicity one, and with
associated normalized eigenvectors q, . Then

3

lanog < ———
28 = Lelgapa(a)

+77 0 = 4(‘1;5)7

with ¢ = | XX|IX*X" = 1|, v = |X = 1|, and where for a = 0,
e/relgapa(a) should be evaluated as zero.

Proof. Define M = A — & and M = a(l — X*X™1) to get
M+ oM = A—aX*X ! = X*(A—a)X .
Hence, the kth eigenvalue of M 4 6M is zero and X§ is an (unnormalized) eigen-
vector belonging to it. Now it gets a bit subtle. We invoke Theorem 1.29 for
[oM]]
gapy(a —a)’

Because M is just A shifted, gapy, (o — &) = gap,(a). Furthermore, we can bound
|oM]]| by |cr|e using Theorem 1.30. Together this gives us

lsin26, <

5 91 = l(q7X€])

1. €
zsin260, < ——mM—.
2 " = relgapy(a)

The rest is trigonometry. With 6, = A(Xﬁ, c"q) the triangle inequality gives
sinfy < || X —1|| and 6 < 0, + 0, as all angles lie in [0, 7/2]. Hence
sin20 < sin(26; + 205)
sin 26 cos 265 + sin 20, cos 26,
sin 267 + sin 05,

IAIA A

and therefore
€

relgap, («)

IN

%sinQ@ + |IX =1
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Outer perturbations by a diagonal matrix. We want to leave this section
with a small example to apply the previous results in a more concrete setting.
Frequently, the arising multiplicative perturbations are given by a diagonal matrix
that is a componentwise relative perturbation of the identity, i.e.,

A — DAD, D = diag((1401),...,(1+6,)), 6] < 1.
Then the bounds from Theorems 1.30 and 1.31 become
| \[A]] min {(1+6;)°} < [M[DAD]| < |Xi[A]] m?X{(l +0,)%}, (1.42)
for the eigenvalues and

. maxm{(l—l—(si) (1+6;)
—sin20 <
2 relgapa ({£})

_ 1’} +mzax{|5i|}

for the eigenvectors.

These expressions are rather unwieldy. We can state them more compactly
using our notation for error analysis from §1.2.3; indeed it might be a good idea
to recall that notation before we embark to the next chapter, where we will make
frequent use of it. If we have a matrix D as above, it is reasonable to assume that
the entries stem from some kind of error analysis which gave us concrete bounds
on the perturbations. Assume we know for some m,p € R= that

& = €*(m), i=1,...,n
Then the rules (2) and (3) from Chart 1.11 let us compute ||[X — || = €”!(m) and
IX*X|| = maX{ (146;)%} = 1+ €% (2m),
XX —1|| = maX{| (1+6) —1|} = € (2m),
[X*Xt —1|| = max {lA+6)72—1]} = & (2m).

Hence, the bounds for eigenvalues and eigenvectors can be stated as

A[DAD] = X [A](1 + €¥(2m)),
1 Pt (2m)

581112(9 = (1 —i—e“”(Qm))m

4P (1.43)



Chapter 2

The MR3 Algorithm

“Elsa never really believed in the grail.
She thought she'd found a prize.”
“And what did you find, Dad?"

“Me? lllumination.”

— in Indiana Jones and the Last Crusade (1989)

The proven strategy to solve a dense real or complex symmetric eigenproblem
numerically is to reduce the matrix to real tridiagonal form by an orthogonal
similarity transformation [1,34] and then solve the tridiagonal problem. Before
there was MR?, usually one of three standard algorithms was employed for the
second part.

QR-Iteration has been the workhorse since, well, forever. The current im-
plementation xSTEQR in LAPACK [1] is rock-solid. At the time of this writing,
the undisputed best method for computing all eigenvalues is the dqds algo-
rithm [30, 64], which is nothing else but a supercharged QR-iteration. But for
computing eigenvectors, QR exhibits a true O(n?) complexity, making it very
slow in practice. In fact, for the dense symmetric problem, the solution of the
tridiagonal problem using QR can outweigh the reduction phase by far [18].

Divide & Conquer (DC) has been known quite a long time [8] but it took
nearly 15 years until a stable implementation was found [39]. Complexity is
O(n?) in theory but on average DC behaves more like O(n?®) in practice [10,13],
due to a large amount of work that can be outsourced to BLAS3-operations. The
current implementation in LAPACK (xSTEDC) is fast, accurate and the method
of choice for computing all eigenvalues and eigenvectors. The only conceivable
drawback is that n? temporary workspace is needed.

Bisection & Inverse Iteration (BI) has as main advantage that a subset of
k eigenpairs can be computed. But due to accuracy limitations of the inverse



44 The MR? Algorithm

iteration scheme employed, explicit Gram-Schmidt reorthogonalization is required
for eigenvalues that are too close to each other (in an absolute sense), so the
complexity remains O(k?n).

The latest addition to the field has been the algorithm of multiple relatively
robust representations [15,17,18], in short MRRR or MR?. It offers to compute
k eigenpairs (A, d;), ||d;|| = 1 of a symmetric tridiagonal matrix T € R™ " with
residual norms and orthogonality levels of

I(T =)@l = O([Tlnes),  18;q;| = Olneo), i # . (2.1)

in optimal O(kn) time. As such, it is a whole order of magnitude faster than BI.

The feature of being able to compute subsets of the spectrum is called adapt-
ability. Combined with the fact that MR® requires no communication for Gram-
Schmidt reorthogonalization, this makes for an embarrassingly parallel algorithm.

In a recent thorough study [13] of the performances of the current tridiagonal
eigensolvers in LAPACK, Demmel et al. made the following observations:

(a) MR? does the least amount of floating-point operations across the board.
(b) DC is faster than MR? if all or most of the eigendecomposition is wanted.

(c) MR? is not as accurate as DC or QR in general. The bounds in (2.1) are
valid, but for some of their test cases the hidden constant in the O-term lies
in the hundreds.

The explanation for the seeming contradiction between (a) and (b) is that MR?
operates at a lower flop-rate. There are two reasons for this. First, MR?® does
more divisions; as will become apparent during this chapter, MR® needs O(kn)
divisions to compute k eigenpairs. And second, DC can be arranged to do most
of its work within matrix-matrix multiplications.

Their conclusion is that DC remains the method of choice when the full eigen-
decomposition is wanted, but for subsets MR? is the clear winner.

Outline

In this chapter we will exhibit the theoretical side of MR3-algorithm in full splen-
dor. It plays a central role for this thesis, because everything else quite literally
revolves around MR?.

A short road map of this chapter is as follows: In §2.1 we present the algo-
rithm in an abstract setting, just detailed enough to be able to give a full proof of
correctness and error bounds in §2.2. Only then will we study twisted factoriza-
tions of symmetric tridiagonal matrices: §2.3 contains their definition, exposition
of the main features and how they mesh with MR3, then §2.4 presents in-depth
means—both old and new—for their computation. Finally, §2.5 holds topics of
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a more practical flavor. There we will describe various techniques that we ex-
plored while engineering our own implementation of MR®. Our exposition will
close with numerical experiments to compare our version with the most recent
MR?-implementation from LAPACK 3.2.1.

Although our task for this thesis was focused on the bidiagonal SVD, out of
necessity we gathered quite a bit of theoretical and practical expertise with MR?,
some of which lead to improvements in the core algorithm itself. We regard the
following as our main contributions in this chapter:

e A streamlined formulation of MR? to provide the framework for integrating
alternative kinds of representations for symmetric tridiagonal matrices; in
particular we completely disentangled twisted factorizations from the pre-
sentation. This was in fact necessary groundwork for both Chapters 3 and 4,
but on its own it might also serve as catalyst for future developments.

e Better ways to work with twisted factorizations, leading to increased accu-
racy and better efficiency.

Setting the stage

For the given symmetric tridiagonal we usually name the diagonal entries ¢, and
the offdiagonals e, that is,

T = diag(cy,...,c,) +diag(eq, ..., e, 4) € R™" (2.2)

It is advisable to preprocess the given input matrix with regard to a couple of
points. First of all, the entries should be scaled properly to fall into practicable
range; specific guidelines can for example be found in [48]. If some offdiagonal
entry is zero the matrix is reducible to two independent subproblems that can
be handled separately. On the same note, if some offdiagonal entries are smaller
than O(e,||T||) they can safely be set to zero without serious ramifications for
the quality of the results in (2.1). The process of eliminating small offdiagonal
entries and breaking the problem into unreduced subproblems is called splitting
the matrix. Once this has been done, one can always find a diagonal matrix X
with entries +1 (called a signature matrix) such that the offdiagonals of XTX are
positive.

Combining these thoughts allows without loss of generality to restrict our
attention to a matrix T as in (2.2) that obeys

6Tl < e, i=1,...,n—1. (2.3)

Remark 2.1. For future reference it will be useful to compile some of the special
properties of an unreduced symmetric tridiagonal T € R™*™:

1. All eigenvalues are simple (cf. [56, Thm. 7.7.1]).
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2. No eigenvector has a zero in its first or last component and eigenvectors
to the extremal eigenvalues have no zero components at all (cf. [56, Cor.
7.9.3]).

3. Let (A, q) be an eigenpair. Then for k = 1,...,n the following are equiva-
lent:

e k=1 and A is an eigenvalue of Ty, 1
e k# n and A is an eigenvalue of Tyiq.,
e q(k)=0

(follows from [56, Thm. 7.9.2]). In particular A is not an eigenvalue of Ty, 1
nor of Ty.,.

2.1 MR? in a Nutshell

There is a long line of research results that led to and contribute to the MR?-
algorithm, some to a lesser and some to a larger degree. But the first time where
all pieces where assembled and harnessed fully to form the algorithm we now call
MR?, was in Inderjit Dhillon’s thesis [15] under the supervision of Beresford Par-
lett. A completely revised description and a formal proof of correctness followed,
distributed across two subsequent publications [17] and [18], the latter of which
won its authors the SIAM/SIAG Linear Algebra Prize in 2006.

The discovery spawned a multitude of further results and developments. We
cannot give an exhaustive overview but some publications that stand out are
[59-61, 63] concerning relative perturbation theory, [19, 20, 53] about issues of
relevance for a robust implementation, and [4,70] to address problematic aspects
in the original version and how they can be overcome

In this section we want to develop the driving principles behind MR? and then
describe the algorithm in full. Our presentation differs in some aspects notably
from the original version in the sources mentioned above.

We will restrict ourselves to what we call the core algorithm, meaning that
we assume reasonable preparations like splitting and scaling have been done, so
that we have an unreduced tridiagonal matrix as in (2.3) for which a subset of
eigenpairs is to be computed.

2.1.1 The Idea

From a distant point of view, MR? can be seen as a sophisticated variant of inverse
iteration. Its salient feature is that no explicit reorthogonalization is needed,
resulting in an O(n?) complexity. This is achieved, basically, by computing the
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vectors to such accuracy that they really have no other choice but to be orthogonal
automatically. How this works can be explained in layman’s terms: If we manage
to compute approximate eigenvectors g; and g; so that they have small angles to
the respective exact eigenvectors,

Slné(qqu) = O(TLEO)J Slnl(ap%) = O(n€0)7 (24)
then, provided ||g,|| = ||G;[| = 1, simple trigonometry gives
E]fdj = cosé(ﬁi,(]j) < siné(qi,qi) —i—siné(qj,qj) = O(ne,). (2.5)

The details of this idea will go into hibernation here and not resurface until the
proof of Theorem 2.14 (Orthogonality of MR?) way down the road. Right now it
will suffice to keep in mind that accuracy yields orthogonality.

Of course, accuracy has to come from somewhere and in particular on the
levels stipulated in (2.4) it usually has to be earned. Standard inverse iteration
can only deliver such accuracy if you got lucky in the choice of starting vector [46].
One step closer towards the intricacies that constitute MR?® reveals that there are
two principles at work to overcome this hurdle.

Assume the matrix T does “define” an eigenpair (A, q) that we want to “high
relative accuracy”—the precise meaning of these terms will be defined later. Then
we are able to compute an approximation A of A\ with

A=A = O(|\ne,) or even O(|\e,).

The first ingredient to MR? is a new technique that allows in this situation to
compute an approximation G to the eigenvector with a residual norm that is small
compared to the eigenvalue,

I(T = Nall < O(|AIne). (2.6)

The key is to exploit tridiagonal form. Using twisted factorizations one can deter-
mine, in O(n) time, a position where the true eigenvector has a large entry [27,62].
Starting with the corresponding canonical vector on the right hand side, one step
of inverse iteration will deliver a residual norm satisfying (2.6) and that is at most
a factor y/n away from being optimal [46]. We will explore twisted factorizations
and their use for computing eigenvectors in detail in §2.3.

The reward of (2.6) is revealed by the Gap Theorem 1.21, since it gives

sinZ(g,q) = O(nes/relgapr())). (2.7)

Hence, we can reach the goal (2.4) of highly accurate eigenvectors for all eigenval-
ues whose relative gap to the rest of the spectrum exceeds a constant gaptol, the
gap tolerance (think of gaptol between 0.01 and 0.001 for double precision). Such
eigenvalues are called isolated or singletons, the others are grouped into clusters.
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It is surprisingly easy to state a formal definition for the concept of a cluster
that looks fine at first glance but turns out to be ambiguous, due to relative gaps
being nonsymmetric and centered around one eigenvalue. The following measure
will help to avoid this trap.

Definition 2.2. The relative distance between two scalars a,b € R is 0 if a =

b=0 and
la — b

max{|al, [b]}

otherwise. O

reldist(a, b) =

Note that if \; are the eigenvalues of T, then
min { reldist(A\;_1, A;), reldist(A;, )‘H—l)} < relgapt(\),
and with (1.6) one can extend this to sets of eigenvalues.

Definition 2.3 (Singletons & Clusters). Let A; = A\;[A] be the eigenvalues of a
symmetric matrix A € R™*", Given a tolerance gaptol, we say that the spectrum
of A has a (relative) gap between i and i + 1 if

reldist()\i,/\iﬂ) > gaptol.

A nonempty set {A,, A\ai1,...,A\p} of consecutive eigenvalues of A is relatively
separated if

e a =1 or there is a gap between a — 1 and a, and
e b =n or there is a gap between b and b+ 1, and
e forv=a,...,b— 1 there is no gap between ¢ and ¢ + 1.

A relatively separated set is called a singleton if it has just one element, otherwise
it is a cluster. O

The second principle at work within MR? deals with eigenvalues that are
too close in a relative sense to make the bound (2.7) useful. It is just this:
Figenvectors are shift-invariant, but relative gaps are not.  To exemplify the
idea, take a shift 7 &~ X close to an eigenvalue to see that the relative gap with
respect to the shifted matrix becomes

A
relgapr_ (A —17) = relgapT()\)‘ A > relgapr()).

A—T|

Thus we can increase relative gaps by shifting close.

Both principles taken together give the crude outline for a strategy:
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(1) Compute the eigenvalues to reveal relative gaps.
(2) For all singletons: Compute the eigenvector such that (2.6) is fulfilled.

(3) For all clusters: Shift close to the cluster. This will increase the relative gaps,
so at least some should now exceed the tolerance; rinse and repeat.

This looks deceptively simple, but there is a catch. Doing the shifting in floating-
point arithmetic will inevitably incur rounding errors so that the eigenvector-
invariance is lost. To get numerically orthogonal vectors as in (2.5) one must
ensure that the computed vectors will still be accurate with respect to the original
matriz. Hence, we will basically need that rounding errors from the shifting do
not affect the invariant subspace we are aiming for too severely.

We can summarize that for the strategy outlined above to work, each en-
countered shifted matrix has to define the desired eigenvalues and eigenvectors
to high relative accuracy, and furthermore the shifting must be done so as not
to spoil the invariant subspaces. The key ingredient to overcome both issues is
what could be regarded as third principle underlying MR?, namely: do not try to
compute results to more accuracy than is warranted by the data (cf. [15, p. 155]).
The question of what data one should actually use to define a matrix leads to a
crucial new concept.

Definition 2.4 (Representation). A set of m < 2n — 1 scalars, called the data,
together with a mapping f : R™ — R?"~! to define the entries of a symmetric
tridiagonal matrix T € R"*" is called a representation of T. O

Definition 2.5 (Perturbation of a Representation). Let z1, ..., x,, be the scalars
used to represent the symmetric tridiagonal matrix T and Z; = z;(1 + &) be
relative perturbations of them; using the same representational mapping they
define a matrix T. N

If & < Efori=1,...,m, wecall T ~ T a componentwise or elementwise
relative perturbation (erp) bounded by &, in short T = erp(T, €). O

A (partial) relatively robust representation (RRR) of a matrix T is one where
small relative changes in the data, in the form of an elementwise relative pertur-
bation bounded by some constant &, will cause only relative changes proportional
to € in (some of ) the eigenvalues and eigenvectors. We will quantify these notions
in §2.2.

The obvious way to represent a matrix uses the diagonal and offdiagonal
entries directly, that is, the representational mapping is just the identity on R?"~1.
Unfortunately this will rarely be an RRR, at least not for the small eigenvalues.
An alternative is to take the entries of a decomposition, e.g., an LU-decomposition
T = LDL* with L unit bidiagonal. In [15] compelling evidence was gathered that
this will usually result in at least a partial RRR for the smallest eigenvalues,
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which is why LDL*-factorizations were chosen as workhorse for the original MR?-
algorithm. We will investigate them in-depth in §2.3.

The seminal paper [12] showed that bidiagonal factorizations of definite ma-
trices will always give RRRs, as do entrywise representations of tridiagonals with
a zero diagonal. The latter will play a prominent role in Chapter 3 and also
provides an example why it is useful to allow m < 2n — 1 in the definition above.

On the notational side, we will not explicitly mention the representational
mappings from here on but just say T where we mean a representation of T.

2.1.2 The Algorithm

The previously developed ideas are formalized in Algorithm 2.1. One particular
non-standard feature of our version is that nothing is said about the kind of
representation used at the nodes. The computed eigenpairs are denoted ();, g;)
to distinguish them from the exact ones.

The Representation Tree

Although we have chosen an iterative layout, the basic nature of algorithm MR? is
a recursive one. Hence, the natural way to model the computation is as traversal
of a tree, the representation tree. The nodes in this tree are the objects placed into
and retrieved from the set S; they correspond to the iterations of the outermost
loop. Each node has three features associated with it:

e a representation of a matrix M,

e an index set I of the eigenpairs that are to be computed for M, called the
local eigenpairs,

e the accumulated shift 7 from the root matrix.

Hence we can write nodes as triplet (M, I, 7), but sometimes we may just write
(M, I) if the shift is not of interest. The root node is (Mg, Iy, 0) at the top of the
tree.

Step 5 partitions the index set of a node (M,I) as I = [ U---UI,. This
basically defines the layout of the tree. Each I; is called a child index set of the
node, but only if |I;| > 1 does it lead to a child node (M., I;,7.). Note that this
implies that the index sets of all nodes except possibly the root have at least two
elements.

For each computed eigenpair there is exactly one singleton child index set of
a node somewhere. Conceptually we regard these as the leaves of the tree, but
they are not nodes in the above sense, because no representation is attached. If
{i} is a child index set of (M, I), we say that the eigenpair ()\;,q;) was computed
at the node (M, I).
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ALGORITHM 2.1 The MR? Algorithm

Compute selected eigenvalues and eigenvectors for symmetric tridiag-
onal T.

Input:
Output:
Params:  gaptol : The Gap Tolerance

Symmetric tridiagonal T € R™*". Index set Iy C {1,...,n}.
Eigenpairs (\;,q;),i € I

© N

10:
11:

12:

13:
14:
15:
16:

Find a suitable representation My for T, preferably definite, possibly
by shifting T.

S = {(Mo,jo,’fZO)}
while S # () do
Remove one node (M, I,7) from S

Approximate eigenvalues [A°°|,;i € I of M such that they can be
classified into singletons and clusters according to gaptol; this gives
a partition I = L U---U [,,.

for r =1 to m do
if 7. = {i} then // singleton

Refine eigenvalue approximation [A°¢] if necessary and use
it to compute eigenvector q;

5\1‘ = )\ioc + T
else // cluster

Refine the eigenvalue approximations at the borders (and/or
inside) of the cluster if desired for more accurate shift-
selection.

Choose a suitable shift 7 near the cluster and compute a
representation of M* =M — 7.

Add new node (M*, I, 7+ 17) to S
endif
endfor

endwhile
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For each node we define d(M) to be its depth, that is, the number of edges on
the (one and only) path leading from the root to it, so d(Mg) = 0. Furthermore,
for each j € Iy let d(j) stand for the depth of the node where the eigenpair
(A, @;) is computed. (Would we regard leaves {j} as nodes, their depth should
be d(j) + 1.)

Note that it is theoretically possible that a child node has the same index set
as its father, but a node is uniquely identified by the combination of index set
and depth.

(Some) Implementation Issues

At this point we would like to raise some more general points that pertain to any
implementation of the algorithm. More specific information will follow in §2.5.

Remark 2.6 (Computation of eigenvalues; line 5). Because only a subset of eigen-
values is to be computed, some kind of bisection method is advisable to get
intervals [\°¢] for each eigenvalue. The accuracy needs only be good enough to
enable reliable classification; e.g., for gaptol = 0.001 getting about the first three
decimal digits would suffice. For clusters the bounds can then be inflated a little

and shifted by 7 to serve as useful starting points for the eigenvalue refinement
at child nodes. O

Remark 2.7 (Computation of eigenvectors; line 8). At this point an initial ap-
proximation to the eigenvalue will be available from the classification step. In
principle one could again use bisection to refine the eigenvalue to full accuracy
before computing the vector, but for faster convergence a Rayleigh-Quotient It-
eration (RQI) is usually deployed in practice. The eigenpair is improved until
the residual norm was driven below some threshold. In §2.2 we discuss concrete
criteria to gauge when the pair is acceptable and §2.3.2 contains more information
about how the RQI can be set up. O

Remark 2.8 (Shifting; line 12). This is one of the most critical and also most
subtle steps in the whole algorithm. On one hand, we need to shift as close as
possible or even inside the cluster to break up the relative gaps. For this it is
usually sensible to follow the classification phase by further refinement of at least
the intervals for cluster boundaries. On the other hand, the representation of the
shifted matrix has to satisfy a series of requirements that will be compiled in §2.2,
so one may have to back off from the cluster to get them right. O

Remark 2.9 (The set ). Management of S determines the order in which the
representation tree is traversed. This is irrelevant for the algorithm itself, but
there are practical considerations. A breadth-first strategy can save workspace
memory by storing the 2n — 1 data elements of the node representations in the
eigenvector matrix, because each node covers at least two eigenvalues. This is
how MR? was originally designed [20]. Alternatively a depth-first strategy can
be employed, as for example proposed in [35]. The advantage is that it keeps the



2.2 Proof of Correctness 53

option of backtracking, should insurmountable problems within a subtree arise—
for instance that no suitable shift candidate can be found. Also, the copying
of representation data to and from the eigenvector matrix is avoided. The only
disadvantage of a depth-first strategy is that it requires to cap the maximal depth
of the tree (to, say, 10) so that all representations on the longest path can be stored
at once in a reserved area of workspace. O

2.2 Proof of Correctness

We now set out to present, from scratch, a complete error analysis of the MR3-
algorithm. Originally this was presented by the inventors in [17] and [18]; what
is to follow will combine and, to some degree, extend their work.

Our presentation is more abstract, because we do not specify the type of
representation used. In [17,18] the proof was tightly intertwined with the use of
bidiagonal and twisted factorizations; our intention is to drive home the notion
that those do not need to be an integral part of the algorithm per se. Furthermore,
the line of argumentation could be compressed and streamlined. We invested a
considerable amount of work to do so, and the resulting proof is partly new.
Nevertheless we wish to emphasize at this point that it cannot be regarded as
novel, because since the beginnings it has been clear to everyone involved with
MR? that one could in principle use different kinds of representations, it just had
not been justified formally.

We need to stress that we feel the following pages to be an essential part of
this thesis, because two of our main contributions hinge on it.

First and foremost, in Chapter 3 we will use MR? to compute the singular
value decomposition of a bidiagonal matrix and establish a proof of the new
method. For this to succeed we need to disassemble MR? and its proof, polish
and tune the parts, and put them back together in a new way; in other words,
we will need to refer to intermediate results in the proof that were not easily
accessible in the original version [17].

And second, in §2.4 and Chapter 4 we investigate alternative ways to represent
tridiagonal matrices and how they can be used within MR?. To be able to do so
we need a clear understanding of where the representation’s features interconnect
with the dependencies of the algorithm.

The basic strategy we use is the same as in [17]: Identify a minimal set of
(reasonable and practicable) requirements that are assumed to be fulfilled and
on whose shoulders the proof can rest. The advantage of this approach is that it
provides, as a side effect, a concise set of guidelines for an implementation, e.g.,
the conditions that have to be heeded when selecting a shift in step 12.

Recall that ();, ;) are the eigenpairs computed by algorithm MR?. We can
make the simplifying assumption that the computed vectors are normed to unity
exactly, ||g;|| = 1. Otherwise just replace g, by §,/||g;|| everywhere.
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’Name ‘ Source Function ‘ Expected Size ‘
Clecs RRR controls change in eigenvectors moderate (= 10)
Celg ELG factor for element growth moderate (= 10)

« | SHIFTREL | erp at father to link with child O(eo)
a; | SHIFTREL | erp at child to link with father O(eo)
(o GETVEC | erp for vector computations O(eo)
Bt GETVEC | relative change to vector entries O(neo)
Ry GETVEC | factor for the residual bound up to O(1/gaptol)

Table 2.1: Summary of parameters in the requirements for MR?. All are expected
to be uniform over the whole tree. The rightmost column gives magnitudes of what
might come up in practice for an average problem.

A List of Requirements

There are five distinct requirements a computational run of MR? has to fulfill;
they are compiled on page 55. The first three (RRR, ELG, RELGAPS) can be
found in similar form in [17, p. 10-12]. How to attain the fourth (SHIFTREL)
and fifth (GETVEC) for bidiagonal factorizations is the topic of [18]; stating them
as requirements provides the capsule in which we hide the particular kind of
representation used. The requirements declare a small set of constants to control
the error bounds globally; an overview of them is given in Table 2.1, together
with reasonable assumptions about their sizes for an average test case.

The first requirement RRR was already motivated in §2.1.1, namely that the
local invariant subspaces have to be relatively robust in the face of small changes
to a node’s representation data.

The stated condition only concerns eigenvectors, because that is all we need
explicitly. We do not need that each eigenvalue within a cluster has to be rel-
atively robust. As will become clear when we study relative condition numbers
in §2.3.3, such a requirement would be very hard to guarantee for a cluster with
moderate relative width (for example ~ /€5). In that regard our formulation
differs notably from [17]. However, using the Gap Theorem 1.21, we see that
fulfillment of the stated condition will imply that the boundaries of a cluster, as
well as singleton eigenvalues, will be relatively robust, since they cannot change
by more than O(Clyecsna|A|).

Note the connection to Theorem 1.31: for erps which can be written as mul-
tiplicative perturbations one could basically set Ciees = 1.

The requirement ELG concerns the absolute changes to matrix entries that
result from relative changes to the representation data. For decomposition-based
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Requirement 1: RRR (Relatively Robust Representations)
There is a constant Cyees such that for any perturbation M = erp(M, a) at

a node (M, I), the effect on the eigenvectors can be controlled as

sin/ (Qs[M], Qs[M]) < Cueesnt/relgapy (J),

forall Je{l, 1,..., 1.} with |J| <n.

Requirement 2: ELG (Conditional Element Growth)
There is a constant Cgg such that for any perturbation M = erp(M, «) at
a node (M, I), the incurred element growth is bounded by
IM —M]|| < spdiam[Mo],
(M =M)g,|| < Cegna spdiam[Mg] for each i € 1.

Requirement 3: RELGAPS (Relative Gaps)

For each node (M, I), the classification of I into child index sets in step 5
is done such that for r =1,... m, relgapy () > gaptol (if |I,| < n).

Requirement 4: SHIFTREL (Shift Relation)

There exist constants o, oy such that for every node with matriz H that
was computed using shift T as child of M, there are perturbations

M =erp(M,a)) and H= erp(H, ay)

with which the exact shift relation M —7 = H is attained.

Requirement 5: GETVEC (Computation of Eigenvectors)

There exist constants oy, B; and Rg, with the following property: Let
(Neaf §) with § = §; be computed at node (M, I), where N is the final
local eigenvalue approximation. Then we can find elementwise perturba-
tions to the matriz and the vector,

M:erp(M7ai)a Ei“")aa q(]) = q(])(1+ﬁi)v
for which the residual norm is bounded as

[ = 30— Nl /] < e mapg (1) 3.
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representations this is called element growth (elg). Note that the requirement
becomes mute if the matrix is represented by its entries directly.

The formulation of the two conditions that constitute the requirement are
quite deliberately chosen. Combined they convey that even huge element growth
is permissible (first condition), but only in those entries where the local eigenvec-
tors of interest have tiny entries (second condition). This meaning is not really
affected by the fact that the second condition is stated using the computed vectors
(as it is done in [17] as well) instead of the exact ones. An advantage of doing
it this way is that it provides a direct and easily checkable criterion to see if the
computation is on the right track. In fact one could still do the proof if g, were
replaced by q; here, but it would require more work.

A final note concerning element growth. In the requirement it is measured
globally, with respect to the spectral diameter (of the root). A stronger condition
would compare M(4, j) to M(i, j) directly (in particular the diagonal entries) to
evaluate what we like to call local element growth, but that is not necessary at
this point. Dhillon conjectured [15, p. 123] that absence of local element growth
implies relative robustness, at least for the eigenvalues of small magnitude, but
as of now this claim has not been proven. We will come back to the connection
between element growth and relative robustness in §2.5.

The third requirement RELGAPS conveys that the structure of the represen-
tation tree has to be consistent with our definition of relative gaps. With regard
to the coming proof, RELGAPS is the key to allow the use of both RRR and
GETVEC. It influences two separate aspects of algorithm MR?.

The first is of course step 5. But it should be clear that, if the eigenvalues
are approximated accurately enough and the classification is done in accordance
with Definition 2.3, fulfillment of the requirement should not be an issue.

The other concern is slightly hidden: the requirement also touches on the
outer relative gaps of the whole local subset at the node. This is because

m&x{relgap,\,,([r)} < relgapy (1),

so fulfillment of the requirement implies relgapy, (/) > gaptol. Stated the other
way around, the requirement cannot be fulfilled if relgapy, (1) < gaptol. This fact
has to be kept in mind when the node is created, in particular during evaluation
of shifts for a new child in step 12. Furthermore, it has to hold for the root node
and Iy. If it does not when only a subset of eigenpairs is desired, Iy & {1,...,n},
one has to deploy special countermeasures to deal with this problem [53].

Requirement SHIFTREL provides the glue that connects the nodes in the tree.
It basically states that the computations of the shifted representations have to
be done in a mixed relatively stable way. In §2.4 we will deal extensively with
algorithms to achieve this for twisted factorizations.
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Note that the perturbation M = erp(M, «)) at the father will in general be
different for each of its child nodes, but each child node has just one perturbation
governed by a; to establish the link to its father.

Finally, GETVEC captures what was postulated at the beginning of §2.1.1, in
(2.6), namely that the vectors computed in step 8 have to have residual norms
that are small, even when compared to the eigenvalue. The formulation of the
requirement is relaxed in that we may perturb the representation and the vec-
tor entries to actually obtain the bound. In §2.3.2 we will explore how twisted
factorizations can be employed to achieve GETVEC.

It must seem strange that the required residual bound is given in terms of
the gap (of the perturbed matrix) instead of the eigenvalue. In the situation at
hand we are talking about a singleton eigenvalue, meaning that the gap will be of
about the same magnitude as the eigenvalue. Assuming A\ = A approximates
A = \[M] to high relative accuracy, that is, A = A(1+O(ne,)), for all intents and
purposes we will have gapm(j\) ~ gapy(A) and therefore

Al gaptol < gapg (X).

Hence we could also have required a residual norm of O(ne,|\|gaptol). However,
formulating the condition based on the gap eases access to the Gap Theorem 1.21.
Furthermore, quite often we have the situation that the eigenvalue of interest has
a relative separation far better than gaptol. Then this formulation clearly states
that high relative accuracy in the eigenvalue is not strictly necessary. As such, it
also provides a practicable convergence criterion for the iteration in step 8.

This closes the requirements and we can now begin actually proving some-
thing. The two goals will be to obtain error bounds for the final residuals (The-
orem 2.10) and orthogonality levels (Theorem 2.14). Three intermediate results
in the form of lemmas will pave the way. Not all of the above requirements have
to be fulfilled for each result: see Figure 2.1 to get an overview of the logical
dependencies.

Residual Norms

In the following we will derive a first-order bound for the residual norms of the
computed vectors q,, with respect to the root matrix and an ideal eigenvalue
approximation A* which one would get if the shift-accumulations in lines 9 and 13
were done exactly. For the actually returned eigenvalue J;, the bound would have
to be adjusted minimally to take into account the rounding errors from adding
the shifts together. Alternatively, it might be a better idea to return the Rayleigh
Quotient of the computed vector instead to minimize the residual norm.

The residual r'** used in the statement of the theorem is the one with respect
to the local eigenvalue X as specified by GETVEC.
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Theorem 2.14

Computed vectors are
numerically orthogonal

Lemma 2.13

Computed vectors are close
to the local invariant
subspaces at the nodes

Lemma 2.12

Local invariant subspaces of
fathers and children are
close

Lemma 2.11

Computed eigenvectors
have small angle to the
exact ones

SHIFTREL

RELGAPS]

( RRR ( Bwc )

Theorem 2.10

Final (root-level) residuals
are small

Figure 2.1: Outline and logical structure of the proof of correctness for MR3.

o —7'1 ~ < _Td_l ~
M, M, Ma—1 My
§ § g § computed Tleaf =
Mo M M Ma-1 Mq (A%, q)
gerpw éerpw g é é é
Mo M, My — 0 — My M, o o (Aeaf )
r

Figure 2.2: The computed eigenpairs relate to the root along an alternating
sequence of matrix perturbations and exact shift relations.
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Theorem 2.10 (Residual norms for MR?)

Let the representation tree traversed by Algorithm MR® satisfy requirements
ELG, SHIFTREL and GETVEC.

For given index j € Iy, let d = d(j) and Mg, My, ..., My be the represen-
tations along the path from the root (Mg, Iy) to the node where § = 4; was
computed, with shifts 7; linking M; and M, 1, respectively (cf. Figure 2.2).

Define \* := 1 + -+ + 7q_1 + N, Then

(1+05y)
(1—-3)

JMo = 3ya]| < (][] + v spdiam(M]

where 7 := Cagn (d(a) + ap) + o) + 2(d + 1)3;.

Proof. Requirement SHIFTREL gives us along the path perturbations
My = erp(Mg, o)) and Mpyy = erp(Mg1, ),
such that
My —7 = Mpyr, k=0,...,d—1.
Furthermore, GETVEC specifies another perturbed matrix
Ma = erp(Maag), & = §+48, [16a] < 3,

with rleaf = (M, — \eaf)g /11d]|. The complete situation is depicted in Figure 2.2.
We can link the representations on the path using a telescope sum:

d—1
Mg — A =My — Near + Z[(Mk —T) — Mk+1]
k=0
= My — Aieat
d—1

+ [(My, = My.) + (M, = 75) = Mygq +(My iy — Myiy)]

=0

B
Il
o

= (|\7|d — Aear) + (Mg — |\7|d)

+ 3 (M = My) + (Mg — M),

U
—

i}
o
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Multiply by § = g + 03 and take norms. Then employ ||0G]| < G, 1G]] < 1+ 5
and the bounds provided by GETVEC and ELG to obtain

1Mo = X)a[| < [Pl (1 + Bs)
+ Celg (d(O&l + OCT) + Oéi) nspdiam[Mo]
+ B:(2d + 1) spdiam[Mo]

= [I"[(1 4 B;) + (v — B;) spdiam|[Mo]
=: A.

Now we only need to replace g by g on the left. By Theorem 1.20 the above
bound on the residual norm implies the existence of an eigenvalue A of My with
IA =X < A/]|d]|. This gives

(Mo — A")all < A+ (Mo — X*)6g||
< A+ [[(Mg — A)aal| + (A = X7)sg]|
< A+ By spdiam([Mo] + A[16|/ 14|
< (A + By spdiam[Mo]) (1 + l|ogl /[all),

and noting ||0g]|/||G|l < B;/(1 — B;) the claim follows. O

Orthogonality

For proving that the computed vectors are numerically orthogonal, it will again
be necessary to propagate them up the tree. The key is to show that each g;
has a small angle to all invariant subspaces Q;[M] of ancestors in the tree, which
are just all nodes (M, I) with I 5 i. Note that if the shifting were done in exact
arithmetic, we would have containment, g, € Q;[M], so all these angles would be
Zero.

At this point it might be a good idea to recall §1.3 about angles between
subspaces. In particular we will have to make frequent us of the transitivity law
in Lemma 1.18.

We start by harnessing GETVEC to establish that the computed vectors are
close to the corresponding exact eigenvector at the node where they are computed.

Lemma 2.11 (Accuracy of computed vectors). Let the representation tree tra-
versed by Algorithm MR? satisfy Requirements GETVEC, RRR and RELGAPS.
Then a vector §; computed at node (M, I) will obey

sin/ (qi[M] , c_]i) < Cvecsain/gaptol + Rgyne, + By =: Rne,, (2.8)

defining R.
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Proof. Let M and g be the perturbed matrix and vector specified by GETVEC.
Then we can use Lemma 1.18 for

sin/(q;[M], §;) < sinZ(q;[M], q;[M]) + sinZ(q;[M], §;) + sinZ(§,,d;)-

We will proceed by considering each of the three summands on the right sepa-
rately. Plugging the residual bound from GETVEC into the Gap Theorem 1.21
yields _
siné(qi[M] , ai) < Rgyne,,

which takes care of the middle term. If g, is computed at node (M, I) then
i must be a singleton eigenvalue, i.e., {i} is a child index set of I. Thus, by
requirement RELGAPS, its relative gap exceeds gaptol. Consequently, requirement
RRR allows to bound the first term as

siné(qi[M], qi[M]) < Cvecsain/gaptol.

Finally we have to consider the componentwise perturbation g, ~» ¢, to the
computed vector’s entries. This we can write as q, = Xq;, where X is diagonal
holding the individual relative perturbations. But then the triangle inequality
gives

sin/ (§;,3;) < [[(X=Dg|| < [X—=1]| < B
]

The next result provides control over the shifts, as it shows how to relate an
invariant subspace of a child to the corresponding subspace at the father.

Lemma 2.12 (Invariant subspace relations). Let the representation tree traversed
by Algorithm MR® satisfy requirements RRR, SHIFTREL and RELGAPS. Then
for each node (M, I) with child (H,J),

sinZ(Qy[M], QsH]) < Cyecs(a) + ay)n/gaptol.

Proof. Let 7 be the shift used to compute H and l\7|, H be the perturbed versions
of father and child as specified by requirement SHIFTREL. Then H =M — 7 and
so Q,[M] = Q,[H]. Hence, Lemma 1.18 gives

sinZ(Q,[M], Q,[H]) < sinZ(Q,[M], QJ[M]) +SinZ(QJ[I:I]> Q,[H]).

Now, as J is a child index set of I, RELGAPS implies relgapy (J) > gaptol as well
as relgapy(J) > gaptol. With the help of requirement RRR we can therefore
bound the two terms on the right in the inequality above separately as

sinZ(QJ[M], QJ[M]) < Cvecsaln/gaptol,
siné(QJ[H], QJ[I:H) < Checsyn/ gaptol,

and the claim follows. O]
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Now a straightforward argument based on Lemma 2.11 and using Lemma 2.12
inductively allows to link the computed vectors to invariant subspaces higher up
in the tree.

Lemma 2.13 (Computed vectors and the local invariant subspaces). Let the
conditions for Lemmas 2.11 and 2.12 be fulfilled. Then for each node (M, I) in
the tree with child index set J C I, the computed vectors q;,j € J will obey

sinZ(Qy[M], §;) < Rneo + Crees(d(j) — d(M))(a; + ay)n/ gaptol,
with R as in (2.8).

Proof. If the eigenvalue j is a singleton, J = {j}, then d(j) = d(M) and the
claim is just Lemma 2.11.

For the case |J| > 1, let (H,.J) be the corresponding child node and 7 the
shift leading to it. Fix any index j € J and let N be the unique child index set
of J that contains j. Note that N may or may not be a singleton. In any case,

sinZ(Qs[M], §;)
< sinZ(Qy[M], Qy[H]) +sinZ(Q,[H], ;) using Lemma 1.18,
< sinZ(Qy[M], Qy[H]) +sinZ(Qn[H], G;) by Cor. 1.17, as N C J.

The first term on the right is handled by Lemma 2.12. For the second term we
employ the induction hypothesis, noting that 7 € N, N is a child index set of J
and d(H) = d(M) + 1; together they complete the argument. O

Finally, the crown jewel lies within our grasp. Based on the previous results,
it just formalizes the notion raised at the beginning of §2.1.1, in (2.4) and (2.5),
namely that accuracy yields orthogonality.

Theorem 2.14 (Orthogonality of MR?)

Let the representation tree traversed by Algorithm MR® satisfy the condi-
tions for Lemma 2.13, and let dyay := max{d(i)|i € Iy} be the mazimal
depth of a node in the tree. Then any two computed vectors q; and q; will
obey

%qqu < Rnes + Cyeesdmax (] + aq)n/ gaptol,

with R as in (2.8).
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Proof. Let (M, N) be the unique deepest ancestor of both ¢ and j, meaning that
N has child index sets I # J with ¢ € I and j € J. From Lemma 2.13 we know
that g; and q; can be written as
(_‘]i :X—i—l’, X € QI[M]’ x L r, HrH :Sinl(QI[ML (_11)7 (29)
G =y+s, ye QM| yLs, |[s||=sinz(Q,M],3q;), (2.10)

and we have bounds on [|r|| and ||s||. The situation is depicted in Figure 2.3.
Hence,
44, = X'y X's+ry+r's = r'g;+x’s (= gis+ry),
—
=0
and as we assume ||q, | = [|g;|| = 1,
a;a;| < |ra,| + s < irll+IIsll,

where we had to invoke the Cauchy-Schwartz inequality for the last step. [

Figure 2.3: Situation for the proof of Theorem 2.14.

This completes what we set out to do. It should be noted that the error
bounds are all of a worst-case nature. The accuracy delivered by MR? is in
general far better than these would suggest, as we will see in §2.5. Nevertheless
they are also sharp in the following sense: running MR?® with a gap tolerance
of, say, gaptol = 0.001, one must be prepared to live with orthogonality levels
of about O(1000ne¢,), because they can occur even if all of the requirements are
fulfilled with very benign parameters.

2.3 Twisted Factorizations and their role(s) in MR?

We have seen that MR? can in principle be set up using any kind of representation
at the nodes, as long as the five requirements are fulfilled. However, the latter
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is sometimes nontrivial, and this is particularly true for RRR and GETVEC.
In general it would not be possible to attain these if tridiagonal matrices were
represented by their entries.

In its original form, MR? used decompositions resulting from Gaussian elim-
ination, specially tailored for the tridiagonal case, to achieve both RRR and
GETVEC. Top-to-bottom LDL*-type factorizations were reevaluated as favor-
able way to represent symmetric tridiagonals with regard to relative sensitivity of
eigenvalues. For computing eigenvectors under the restrictions posed by GETVEC,
an extension based on so called twisted factorizations was employed.

In this section we present these techniques and their interplay with MR?. We
start gently, by revisiting the standard bidiagonal factorizations, which can be
regarded as generalized Cholesky decompositions. Then twisted factorizations
are introduced. In §2.3.2 we will see how the latter allow to compute accurate
eigenvectors (GETVEC), and §2.3.3 gives a short introduction to the favorable
properties of bidiagonal factorizations with regard to small relative perturbations
in the data (RRR). The only thing missing, namely how to shift twisted factori-
zations with mixed stability (SHIFTREL), will then be the exclusive topic of §2.4.

2.3.1 Burn At Both Ends

Top-to-Bottom

If T is positive definite we can compute a Cholesky-decomposition B*B with a
bidiagonal matrix B. For indefinite T we can revert to using standard (symmetri-
cal) Gaussian Elimination starting at the first row to obtain the lower bidiagonal
factorization

T — LDL*, (2.11)
where D = diag(dy, ..., d,) and
1
(1
L = ly, 1
l,, 1

is unit lower bidiagonal. The d, are called pivots and we sometimes refer to the
¢, as nontrivial entries of L.
Just evaluating (2.11) gives

T(lv 1) = d17

T(i,i) = d,+¢? ,d,_,, fori=2,...,n, (2.12)
T@G,i+1) = (,d,, fori=1,...,n—1.
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With these at hand it is straightforward to write down a small loop to compute
the decomposition.

CS 2.2: Factorize T = LDL*
1: d, = T(l, 1)

2 fori=1ton—1do

3: ¢, = TG+ 1)/d,

4 dipy = T+ 1,04+ 1) — £3d,
5 endfor

Note that this is the only way to compute the data if T is unreduced, which
is another way of saying that the decomposition must be unique, if it exists. The
division by d, is problematic because it means the computation will fail if a pivot
other than the last becomes zero—this is fittingly called breakdown. Lemma 2.15
below will ascertain that a zero pivot is equivalent to a leading submatrix being
singular. Its proof hinges on the following elementary observation. Write (2.11)
in blocked form to see

Ty, = (LDL")1x = L, DLl kE=1,... n. (2.13)

In other words, stopping the process prematurely at an index £ still gives a valid
lower bidiagonal factorization of the leading k x k submatrix of T.

Lemma 2.15. Let symmetric tridiagonal T € R™™™ admit lower bidiagonal fac-
torization T = LDL*. Then

det Tl:k:

d, = S Lk
¥ det Typ—q’

k=2,...n.

Consequently, the factorization exists in the first place if, and only if, all strictly
leading principal submatrices T, k < n are nonsingular.

Proof. Use (2.13) for det Ty, = det Ly det Dy det L},,. The matrix Ly is unit
lower bidiagonal and thus has determinant one, so det Ty., = det Dy, = Hk d

=1 "1

[]

Bottom-to-Top

An alternative to T = LDL* is to just start the process in the last row of the
matrix and proceed upwards, resulting in an upper bidiagonal factorization

T = URU”
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with R = diag(ry,...,r,) and

1w,
1 ug
U= 1
un
1
being unit upper bidiagonal.
Analogously to (2.12) we obtain
T(n,n) = r,,
T(i,i) = ry+uiqr,,, fori=1,...,n—1, (2.14)
T —1,1) = wr,, fori=2,...,n,

together with a straightforward loop to compute the decomposition.

CS 2.3: Factorize T = URU*

1 r, = T(n,n)

2 for i = n down to 2 do

3: w, = T(—1,0)/r

4 ry = T(i—1,i—1)—u?r,
5 endfor

Note that we index the nontrivial entries of U starting with two, although
the standard way employed by other authors is to start with one. We feel our
scheme beneficial mainly because it better exhibits the similarity (or symmetry)
between lower and upper factorizations; in fact these are already apparent when
comparing (2.12) with (2.14) and CS 2.2 with CS 2.3. Indexing the u,’s starting
with one would lead to terms u?r,,; and u,_,r, compared to ¢?d; and ¢,d; instead.

The mathematical equivalent of starting in the lower right corner is flipping
the matrix beforehand. For A € R™*" define its flipped counterpart by inverting
each (off-)diagonal, that is,

AP ) = Aln+1—jn+1—14), 4,j=1,...,n (2.15)

Using the symmetric permutation matrix P, :=[e,|...|e;] € R™*", this is more
elegantly expressed as
Aﬁlp = PrevA* Prev.

Back to tridiagonal T, an upper bidiagonal factorization T = URU* is now
tantamount to . . o
Tﬁlp — (Uﬁlp)*RﬁlpUﬁlp’ (216)



2.3 Twisted Factorizations and their role(s) in MR? 67

which is a lower bidiagonal factorization of THP. At this point we would urge
the reader to verify for himself that (2.14) and CS 2.3 are really just the flipped
analogons of (2.12) and CS 2.2. As an application, the flipping-connection ap-
plied to Lemma 2.15 nets us the criterion for existence of an upper bidiagonal
factorization.

Corollary 2.16. Let symmetric tridiagonal T € R™"™ admit upper bidiagonal
factorization T = URU*. Then

det Tk:n

—_— k=1,... — 1.
det Tysrm el

Tk —
Consequently, the factorization exists in the first place if, and only if, all strictly
trailing principal submatrices Ty, k > 1 are nonsingular.

Simplifications

Bidiagonal factorizations and in particular the data elements that define them
are ubiquitous in this thesis. To simplify the author’s life we will now introduce
two purely notational simplifications that are to become effective immediately.

First, the relations in (2.12) and (2.14) could have been stated more compactly
less attention had to be spent on getting the indices right and watch for special
cases. The following makes this possible:

(IMPLICIT 0)
Indexed quantities are implicitly defined as zero whenever they
are used with an index that is “out-of-range”.

However, reliance on implicitly defining otherwise undefined things does have a
drawback in that it thrusts the doors wide open for ambiguity. As a matter of
principle, we will avoid using it for writing down algorithms?.

Second, things like ¢2d, quickly become cumbersome to write and confusing
to read. Thus we define the handy abbreviations

ld, = 2d,, M, = (,d,
) (2.17)
uur; = upr;, ur; = ur

% 7 A

Basically we just omit writing indices multiple times. Note that this would not
be so easy to do if we had indexed the w’s starting with one. Naturally the
declaration of implicit-zero will apply to those quantities as well.

For example, using both simplifications we can now write (2.12) and (2.14) as

(LDL*)(4,4) = d, + ¢d, ,, (LDL")(i,i+1) = 4, (2.18)
(URU")(4,1) = r; +uur;,, (URU")(i—1,9) = wr,. '

! But one really should use IMPLICIT in FORTRAN, immediately followed by NONE.
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Remark 2.17 (About ¢, and wur;). The connection between leading blocks of
the matrix and blocks of the bidiagonal factors was expressed in (2.13). One key
property of the quantities #d, and uur, is that they allow to do the same for
trailing blocks, since

(LDL*)kin_ggdk—leleT = Lk:nDk:n Z:n’

(URU") 14 — uury, ey = U Ry Ul

Twisted Factorizations

A generalization of lower and upper bidiagonal factorizations are the so-called
twisted factorizations. Sometimes also called BABE-factorizations (for “Burn
At Both Ends”), they were resurrected by K.V. Fernando [26,27] for the purpose
of computing eigenvectors of symmetric tridiagonal matrices. We start by giving
a principal motivation before delving into details.

The idea is to initiate both a top-to-bottom and a bottom-to-top factorization
process at once until they meet at, say, the kth row, where they will have to be
sewed together. The index k is the twist index or twist position. This results in
a decomposition with both lower bidiagonal and upper bidiagonal subsystems.

What is the benefit of doing so? A near-singular matrix factorized as T =
LDL* may, but need not, have a tiny last pivot d,,. One, if not the essential
observation is that there is always at least one twist position such that the twist
element of the associated twisted factorization does reveal the near-singularity
of the matrix. A cornerstone of the MR3-algorithm is that such a twist position
is connected to a large eigenvector component and thus provides an excellent
starting vector for inverse iteration.

Now come the details. Assume T admits both a top-to-bottom and a bottom-
to-top factorization T = LDL* = URU*. With the insight given by (2.13) we can
then construct for each twist index k = 1,...,n a twisted factorization of T as

where (Ng)1.x = L1.x is unit lower bidiagonal, (Ng)g., = Ug.,, is unit upper bidiag-
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onal and Gy = diag(dy, ..., dg_1,Vk, ki1, - - -, Tn) is diagonal:
1
(1
1 wu,
1
d,
dp_y
Gr = Tk
Tr+1
Tn
1
-l
N; = 1
Uy
1
u, 1

Thus we see that the twisted factorization can almost be completely specified
reusing data from the bidiagonal ones. The sole new entity is the twist element
v = Gi(k, k). A defining relation for it is easily obtained through

Ve = T(k k) —Ud, | — UUT' 415 as T(k, k) = (N,G.Ny) (K, k),

2.20
= d +r,—T(k k), by (2.18). (220)
In particular, once T = LDL* = URU* have been computed, all n possible twisted
factorizations are completely defined by determining vy, ..., v,.

Note that there are in fact two ways in which one can regard twisted facto-
rizations as generalization of lower and upper bidiagonal factorizations. First,
T = LDL* and T = URU" can be seen as twisted with & = n,v, = d, and
k = 1,7 = ry, respectively. And second, even if the top-to-bottom factorization
of T does break down because some pivot d;, 7 < n becomes zero, a twisted fac-
torization with twist index & < j might still be possible (in fact, it will if, and
only if, the bottom-to-top process does not produce an r; = 0 for i > k).
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There is a delightfully clear characterization of the twist elements, linking
them to the diagonal entries of the inverse. Applications of this result extend far
beyond computing eigenvectors; see for example [62] for references to the solution
of differential equations.

Lemma 2.18. Let T = N,G,N;. Then

{0 if T is singular,
Te =

(exT~le,)~! otherwise.

Proof. We have det T = det G. By Lemma 2.15 and Corollary 2.16, the twisted
factorization can only exist if none of the d;,7 < k, or the r;, j > k, is zero. Hence,
T is singular if, and only if, v, = 0.

Now assume T is nonsingular. We have Nye, = e, and therefore N; 'e, = e,.
This leads to

*T1—1 o *N[—*x~—1pn|—1 _ *~—1 o —1
e, T e, = NG, 'N."e, = ;.G e, = 7.
O

One particular consequence is that for singular T all twist elements will be
zero, that is, 7, = 0 for all k.

A remark concerning terminology. We have noted above that a top-to-bottom
factorization can be regarded as a twisted one since LDL* = N, G,N?, with the
last pivot of the former being the twist element of the latter, d, = ~,. The
choice of interpretation may vary with context, but will be consistent, that is, a
specific decomposition will either be regarded as LDL* with last pivot d,,, or as
N,,G,, N with twist element v,. The same holds for the relation between URU*
and N;G;Nj.

In any case we use the terms bidiagonal and twisted sometimes interchange-
ably. After all, the twisted factors N, are partially bidiagonal.

About Inverses

One feature of bidiagonal matrices is that one can write down explicit formulas
for the entries of the inverse. For given unit lower bidiagonal L the solutions to
Lx =e;,1 < j < n are obtained through forward substitution

x(i) = 0, i=1,...,7—1,

x(j) = 1, (2.21)
x(i) = —€,_x(i — 1), i=j+1,...,n.
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Thus the offdiagonal entries of the inverse of L, which is dense unit lower trian-
gular, are given by

(L)) = (—1)HH% P> (2.22)

k=3
More revealing are the recurrences
e*Lfl — e*)
S (2.23)
e,ll_ - _gi_lei_ll_ —Fe“ 1 = 2,...,”,
for the rows and
L~ 'e = e,
o a . (2.24)
I_ eZ:—sz ez+1+e2, Z:’I’L—l,’I'L—Q,...,l,

for the columns. One application of these is presented by Dhillon in [16] for the
stable computation of condition numbers of tridiagonal matrices.
As an example, for n = 4 we have

1 1
1 —/ 1
I_ — 1 L—l — 1
0, 1 ’ 0l 6, 1
0, 1 000 Ll 1

The preceding structural properties transcend to twisted factors N with twist

index k, since
1

(N = (Nuw) -

Similarly, for a factored tridiagonal matrix T = NGN* we can use
T ' = N*G !N, (2.25)

to make the above results applicable. Thus it becomes apparent that a represen-
tation of a nonsingular symmetric tridiagonal matrix using the nontrivial data
entries of a twisted factorization can also be regarded as representing the inverse,
using only multiplications for the representational mapping.

2.3.2 Eigenvectors with a Twist

In the following we will investigate how twisted factorizations can be harnessed
to compute eigenvectors with residual bounds that are good enough so satisfy
requirement GETVEC of MR?.

To better synchronize the exposition with GETVEC and step 8 of MR?, we
consider a node in the tree with representation M and a singleton eigenpair (A, q),
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lq|l = 1. The task is to compute an approximate eigenpair (),z). Objects of
particular interest will be twisted factorizations M — X\ = N, G,N; for some twist
index k.

A structural feature of the twisted factor Ny is that the kth column is just
the kth unit vector. This property is retained for the inverse of the factor, as
Nie, =€, = ¢, = N,;lek. Thus, solving the system

NyGiNiz = e z(k) =1, (2.26)

is equivalent to solving Nz = e, (keep in mind that -, might be zero). The latter
is achieved through the following recurrence, which is really just (2.21) in action.

CS 2.4: Solve for eigenvector

Looz(k) =1

2: fori=k —1 down to 1 do
3: z(i) = —lz(i+1)

4: endfor

5: fori=k+1tondo

6: z(i) = —u;z(i—1)

7 endfor

The residual norm with respect to M and X is |7,|/||z||; this we must be able
to control for GETVEC. Note that we have not yet put any constraint on the
choice of k. An obvious approach at this point is to compute M — A = N, G, N
for all & and choose the one that minimizes |,|.

The twist elements, in particular the smallest ones, give information about
how far the matrix M — \ is away from singularity, i.e., how close X is to A. Each
twist element denotes an additive perturbation to just one entry that makes
the matrix singular, since replacing 7, by zero yields a twisted factorization of
M — X — vy,e.ef with eigenpair (0,z). A normwise smaller perturbation to get a
singular matrix is given by the residual, because (0, z) is also an eigenpair of

\ ’Yk *
M- )\—- — .
22+

Indeed it can be shown [46] that this is the normwise smallest change to M — X
which yields in a singular matrix.

Assuming A is closer to A than to any other eigenvalue, Theorem 1.20 shows

A=Al < [wl/lizl < Tl

for all k. More important for the purpose at hand than the connection between
the twist elements and eigenvalues is that the magnitudes of the twist elements
are related to the magnitudes of the eigenvector entries. Recall that q is the
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eigenvector of M belonging to A. One can show [15, Lemma 3.2.1] that in the
limit case A — A, the twist elements v, = v, (A) of M — A = N, G, N behave as

Tk ! 2
—— —q(k k=1,...,n.
Y b s
Hence, for a sufficiently accurate eigenvalue approximation X, the twist index
minimizing |y,| will be one where the eigenvector has an above average entry.
Therefore, solving (2.26) with this & is one step of inverse iteration with a right
hand side that is guaranteed to be good.

The next result sheds light on these issues, but without even mentioning
twisted factorizations. It combines Theorem 11 and Lemma 12 from [18] to cover
the general characteristics of solving symmetric systems with a coordinate vector
on the right hand side. For more results of the same flavor see [27].

Theorem 2.19
Let A € R™™ be symmetric, k be an index with 1 < k <n, z € R" be a
vector with z(k) = 1 and 7,7 be scalars such that

(A=7)z = e,

with the added condition that v = 0 if A — 7 is singular. Write \; = N;[A],
d; = q;[A]. Then the following holds:

(1) For every j with q;(k) # 0, the residual norm of the approzimation
(7,2) to the j’th eigenpair of A is bounded by
[(A=7)z| _ 1l _ [A—T]

el Izl = fai(R)]

(i) The Rayleigh Quotient of z with respect to the matriz A is

z*Az ~
10 g N = @ — + T)
7'z ]|
with associated residual
(A —p)z| kel 2y 1/2
e = (12| 7?)
k4] 4

Proof. (i). If v = 0, there is nothing to prove, and because of the addendum
that v = 0 if A is singular neither is there anything to prove in that case, so
assume v # 0 and A — 7 being nonsingular, i.e., A\; # 7 for all j.
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Then z = v(A — 7)"'e, and so,

l2l*/Iv* = ei(A—7)" A= 7) e,

= & (Z()‘z - T)%Mf) €
=1

~ (qi(k) \? a; (k) \? .

= —_ > | 4= for all 7.

;(AZ—T) B )\j—T oratJ

(i7). Write A = (A — 1) + 7. Using z(k) = 1, the identity for p is immediate.
Then

A=z = A== e = (o )

Again employing z(k) = 1, we obtain

2 1
A= ppelP = (1= 2+ ) = 2P0 el ),
ERE A
O]
Suppose we have all twisted factorizations M — A = N,G,N;, k = 1,...,n

together with the solutions z, of (2.26). The eigenvector q; belonging to A = X;[M]
has unit norm and therefore must have at least one entry exceeding 1/4/n in
magnitude. Then the first part of the theorem shows that there is at least one
twist index & with
1M = Nzill /llzell < v/nIA = Al

revealing the near-singularity of M — X. Furthermore it becomes clear that in
order to obtain the accuracy we need (for GETVEC), in general A will have to ap-
proximate A to high relative accuracy. Now the second part of the theorem comes
in, as it allows using the Rayleigh Quotient Correction v, /||z||? to improve .

Altogether this culminates in the customized Rayleigh Quotient Iteration
(RQI) for twisted factorizations shown as Algorithm 2.5. For brevity we have
omitted some details like how to deal with non-convergence. In any case, some-
thing similar to it should be used as subroutine for step 8 in MR?. Note that we
use twisted factorizations only for computing the vectors, but the kind of repre-
sentation used for M is not specified, except that it must provide the operation
to compute twisted factorizations of M — 7.

Issues in Exact Arithmetic

Theorem 2.19 provides solid motivation for the claim that choosing the twist
index to minimize |v,| should result in an excellent eigenvector. However, there
are two conceivable blemishes to refute.



2.3 Twisted Factorizations and their role(s) in MR? 75

ALGORITHM 2.5  RQI with twisted factorizations
Input: M, initial estimate 8 for an eigenvalue
Output:  Improved estimate A and approximate eigenvector z

1: loop

2: Compute M — XA = (N,G,N}) fort =1,...,n

3: Choose k that minimizes |v,|

4: Use CS 2.4 to solve NG} (N} )*z = ¢,

5: if |7.|/]/z|| is small enough then

6: stop

7: else

3 A= A/l

0: endif

10: end loop

We implicitly assumed that the twisted factorizations do exist for all k. In
principle every one of them might break down due to zero pivots. The problem
is related to zero entries in the eigenvectors, cf. Remark 2.1. Indeed, look back
at CS 2.4 to confirm that it can never produce a zero entry (in exact arithmetic,
that is, barring underflow). There is an extension of the method that effectively
solves the problem [15,18].

Of more concern is that the bound for the residual norm given by Theo-
rem 2.19 might not be good enough. After all, we can in general not expect to
be able to approximate A better than |A — A\| = O(|\|ne,). Hence, even if the
RQI is converged and )\ is as accurate as we can possibly get it, the worst-case
bound for the residual norm might still be O(n%2|\|e,), exceeding the allowances
of GETVEC. The main argument that can be fielded against this is practical
experience showing that the residuals are usually far better than these worst-
case bounds would indicate. Also keep in mind that GETVEC only requires an
O(|A|ne,) residual norm if the relative separation is close to the gap tolerance.
See [18, p.890f] for an in-depth discussion about the quality of these bounds in
theory and their ramifications in practice.
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Issues in Floating-Point Arithmetic

Recall that GETVEC allowed both perturbing the matrix and the computed vector
to attain the desired residual norm. So far we have not mentioned this and we
want to leave the topic of computing eigenvectors with a note on how these
perturbations arise and why they are necessary.

We expect that the algorithm used to compute a twisted factorization N, G, N}
of M — 7 is stable in the sense that

Ve — A = NG,
holds exactly for suitable elementwise relative perturbations to M and N, G, Nj;.

Note the k in I\N/Ik Its purpose is to pronounce that the perturbation at the
source M will in general be different for each k. In theory this means we lose the
statement that at least one of the twist indices leads to a residual norm not larger
than /n|\ — \|, but the practical consequences of this are minute (cf. what we
said above for exact arithmetic).

Assume the erp N, G, N ~ Nkékﬂz can be described by Z = (,(1 + €(m)),
u; = u;(1+€(m)). Let CS 2.4 be executed under the wings of Axiom FP, without
underflow or overflow, yielding a vector z. The crucial observation is that the
entries of Z were computed using only multiplications. Then it is not hard to
see that we can account for the perturbation of N, G, N} and the rounding errors
during the computation by putting some small relative changes to the vector’s
components. This leads to

27, 2(0) = Z0)(1+e(m+ Dli— K = 1)), i#k
such that Z is the exact solution of the perturbed system, i.e.,

Thus, in the context of GETVEC, we can take J; = e(mn) to cover all possible
choices of k, cf. the corresponding entry in Table 2.1. Finally, note that the
residual norm |v,|/||Z|]| and the Rayleigh Quotient Correction ~,/||Z||* are effec-
tively computed by Algorithm 2.5 to high relative accuracy with respect to the
perturbed system above. Hence, errors due to finite-precision arithmetic will not
have an adverse effect on the iteration itself. In fact, this is another advantage of
using twisted factorizations.

2.3.3 Relative Condition Numbers

Since the development of MR?, much work has been invested into the relative
perturbation theory of (partial) eigensystems of tridiagonal matrices in factored
form. The most general approach looks at how elementwise relative perturbations
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can effect the hyperbolic SVD [7] of a bidiagonal matrix, see [59,60] and the
formidable [61]. A simpler strategy can be based on first- (and second-) order
analysis of additive perturbations and this is what we will stick to. The loss is only
theoretical, because the resulting bounds and condition numbers are essentially
identical whichever way you go.

We will harness techniques from parts of [15, §5.2.1] and [59, 60, 63], but our
presentation differs because our motivation does: we want to apply the results to
different kinds of representations (like the block factorizations from Chapter 4), so
we will do as much as possible in the setting of additive perturbations of arbitrary
symmetric matrices before zooming in on the factored form.

Per-eigenpair analysis of additive perturbations

We already took a look at additive perturbations

A =A+E

for symmetric E in §1.4.3. There the focus was on uniform bounds based on
|IE||, which led to Corollary 1.28 for the eigenvalues and Theorem 1.29 for the
eigenvectors.

For MR? we need to achieve more for less. Less because only the local invariant
subspace has to be relatively robust; in principle we do not care what happens
with the rest. More because the corresponding eigenvalues will be small or even
tiny compared to the norm of the matrix. Added to that, for decomposition-based
representations of nearly singular matrices some amount of element growth might
be unavoidable, so situations where ||E|| > ¢||A|| have to be anticipated. Under
these circumstances, a bound using solely ||E|| gives us nothing. The following
analysis is finer-grained and will provide more insight, in particular concerning
the effects on parts of the spectrum.

Use A; = Ai[A], ai = qi[A], X = Mi[A], & = qi[A] for i = 1,...,n to denote the
eigensystems of A and A, and

=1

to relate them. The factors n;; measure the contribution of q; to the perturbed
d;. In particular we have n;; = cosZ (qj, dj) and Zi# 77]2-i = sinQA(qj, ﬁj). To see
how the kth eigenpair of A is affected write down the standard eigenequation

A+E)> mwai = Ady = (A +60) Y iich.

=1 i=1

Multiply this from the left by q; for any r to find

A + GEEG), = Ml
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Rearranged this gives the nicely symmetric formula

(e — A) = qrEd), (2.27)

for all k,r, which becomes

for the special case k£ = r. Note that we did not assume anything so far. These
formulas are valid and sharp even for a multiple eigenvalue Ap, and nx = 0 is
possible, i.e., q; might be orthogonal to its perturbed counterpart g;.

As appealing as the symmetry in (2.27) is, the formula is nevertheless unsat-
isfactory because the perturbed quantities A\, and g are still in there. The usual
approach to get rid of them is to resort to first-order analysis. A formal analyti-
cal setting can be found in chapter 2 of Wilkinson’s book [71], we will constrain
ourselves to the main steps.

Assume )\ is simple and 7, # 0. Then we can write

=k + 00k Ogr = > wiid,
i2k

where Z#k w?, = tan? Z(qk, dk), Whi = Mii [ Micke-

The gist of the approach is to write E = €F and investigate \, = Ai(€) and
G, = ar(e) as e — 0. Using that Ay is simple, one can expand both Ag(e)
and q(€) as convergent power series in € to conclude |Ax(€) — Ax| = O(e) and
llak(€) — qi]| = O(e) for small enough e. Plug these into (2.27) and (2.28) and
single out all e-terms to get the first-order expressions

e 2 a.Eqg, (2.20)

wer(Ae —Ar) = aiEqy,

(cf. [71, p. 69-70]). These capture the principle for most applications. Just to be
on the safe side one can also consider the second-order terms, leading to

n +E
e+ 3T

2nd X (95.Eq:)(ayEq;
anO=) 2 g + 3 WiEaNGEe)
i#k,r !

(2.30)

Interestingly, for our purposes the second-order terms are not that useless as
they usually are. They convey that the first-order terms in (2.29) are perfectly
sufficient for the kth eigenpair as long as |q;Eq;| < |A\x — A;| for all ¢ # k. That
is a much more powerful statement than to require ||E|| < gap,(Ax) as we had to
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in §1.4.3, and it fits with requirement ELG for MR? in reiterating that element
growth is acceptable at entries where the eigenvector components are small.
However, for a tight cluster I of eigenvalues, we might well have |q;Eq;| 2
| Ak — N\i| for @ € I, so the first-order expressions lose applicability. But then
the second-order terms in (2.30) show in principle how the analysis has to be
adjusted: the summands on the right become non-negligible for ¢ € I, so the
right thing to do for gauging the robustness of the eigenvalues in the cluster is to

evaluate QjEQ; in a suitable norm.

Application to Twisted Factorizations

Now let us see how the developed techniques can help our understanding of ele-
mentwise relative perturbations of twisted factorizations. Suppose we have NGN*
(right now we do not care about the twist index) as representation at a node in
the tree. In order to fulfill requirements RRR and GETVEC, we need to be able
to control the effect that any erp

T=NGN* ~» NGN* =T

can have on the local subset of eigenpairs.

The crucial observation is that elementwise relative perturbations of bidiag-
onal matrices can be cast in the form of outer multiplicative perturbations by
diagonal matrices; this goes back to Demmel & Kahan [12] and was later expanded
by Demmel & Gragg [11] to characterize the class of matrices whose associated
bipartite graph is acyclic.

Lemma 2.20. Let L € R™™" be unit lower bidiagonal and perturbed to L according
toL(i+1,0)=LGE+1,0)(1+¢;) fori=1,...,n—1, withne; < 1. Then

B (1+aq) (14 1)
L — L

(14 ) (144

where

i—1 i—1

I+a) = [[A+e), +8) = [[a+e)™,  i=1...n

k=1 k=1
Proof. Self-evident. O

Clearly this result extends to unit upper bidiagonal matrices, their flipped
counterparts and therefore also to twisted factors. Thus an elementwise pertur-
bation of a twisted factorization can be written as

NGN* = Y NXGXN*Y
\ﬁf—/

T
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with diagonal matrices X and Y. From Theorems 1.30 and 1.31 we know the
outer perturbations given by Y to be of no concern. What has to be studied is
the effect of the inner multiplicative perturbations X.

At this point a slight change in notation will prove to be beneficial. Extract
the signs from G into a signature matrix Q = diag(+1) via G = 1/|G|Q+/]G] to
get T = KQK* with K = N\/\F As both X and G are diagonal, we also have

T = KQX2K*. Then T ~ T can be written as additive perturbation
T = T+KQX>—1)K* = T+E,

defining E. With A := ||X? — I||, application of (2.29) yields

1st

0Xe] = [apKQX? — DK qi| < AlIK x| (2.31)

Hence we arrive at the point where the proper relative condition number (relcond)
of an eigenvalue \; emerges, namely

IK*qk]|> _ axN|G|N*qy,

Krel(Ag) = = .
)= R T NG

(2.32)

This is how relative condition numbers were originally defined by Dhillon for
LDL*-decompositions [15]. It is possible to get a corresponding condition number
for the eigenvectors by summing up the wy,.’s in (2.29) for r # k. This can in turn
be expressed as sum over the relconds of the values, but we will omit a derivation
here and refer the reader to [63, p. 149f]. Suffice it to say that, as end result,
one can state that relative robustness of the eigenvalue implies the same for the
eigenvector, provided the eigenvalue has a large enough relative separation from
the rest of the spectrum.

Note that both numerator and denominator in (2.32) are Rayleigh Quotients,
and Ky (Ag) is in fact nothing else but the condition number of the Rayleigh
Quotient pycn-(qx) under perturbations in G.

Clearly £.q = 1 for a semi-definite matrix (|G| = +G). So the above derivation
can be regarded as first-order proof that a bidiagonal factorization of a semi-
definite matrix will always be relatively robust for all eigenpairs. This restates
the well-known result by Demmel & Kahan which we will present in Chapter 3.

2.4 QD-Algorithms

The missing link in our exposition so far remains how twisted factorizations of
shifted symmetric tridiagonal matrices can computed in a stable way. The highly
customized tools that exist for this purpose are all descendants of Rutishauer’s
original Quotienten-Differenzen (quotient differences) algorithm [67]. This sec-
tion is devoted to the derivation, analysis and refinement of these tools.



2.4 QD-Algorithms 81

Our presentation of MR? revolved around the principle that the kind of rep-
resentation used for the matrices at each node can be chosen freely, as long as
two operations can be provided:

(1) One must be able to shift, that is, compute
M—-—7=M,,
such that requirement SHIFTREL is achieved.

(2) In §2.3.2 we saw how to compute eigenvectors with residual norms good
enough for GETVEC, if a twisted factorization of a shifted representation

can be computed with mixed relative stability.

If twisted factorizations are itself to be used as representations at the nodes,
both operations collapse to computing

N,G,N;. —7 = NG/ (N;)", k,t arbitrary. (2.33)

Note that this would explicitly allow for varying the twist index between nodes.

In its original form, MR® was presented using plain LDL* factorizations at
each node. To facilitate their use, Dhillon developed in his thesis the following
transformations [15, Alg. 4.4.{3,4,6}]:

dstqds to compute LDL* —7 = L*D*(L")*, (stationary)
dgds to compute LDL* —7 = U*R*(U")*, (progressive)
dtwgds to compute LDL*—7 = NG/ (N;)™

The names stand for differential (stationary / twisted) quotient-differences with
shift. Note that dqds is not the same as the dqds-algorithm for computing singular
values, although both are intimately related, since the latter uses a tailored version
of the former as subroutine; for more information see Remark 2.21 below.

The ultimate goal of the following pages is to reach an algorithm for the
general task (2.33), which we will still call dtwqds, even if it generalizes Dhillon’s
version. Although the only previous treatment of (2.33) that we know of is in [35,
Appendix A] for the restricted case t € {1,n}, we do not claim the algorithm
to be new in any way, because it boils down to an elementary combination of
stationary and progressive parts.

Our contribution lies along the way in the investigation of two alternative
approaches to represent matrices given by twisted factorizations. The traditional
way of using the nontrivial entries of the factors N and G directly is shown to be
far from optimal. Furthermore we will introduce a new technique which we call
perturbing the shift. It allows to simplify the analysis of the shifting process while
providing more robust error bounds at the same time.
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2.4.1 Different flavors of Representations

A general symmetric tridiagonal matrix T € R™" has exactly 2n — 1 degrees of
freedom. The concept of a representation from Definition 2.4 allows for flexibility
in how these can be determined. For a twisted factorization T = N,G,Nj, we
have already come to know four important types of associated scalars in §2.3,
namely:

(1) d;; v, 7;: The pivots. They give the determinants of submatrices, provide
Sturm counts and contribute to the diagonal entries as in (2.18).

(2) £;,u;: The nontrivial entries of the twisted factor Nj. In §2.3.2 we saw how
products of them give the solution of Tx = 7;e, leading to the entries of
computed eigenvectors. Furthermore, Lemma 2.20 established that an erp to
N can be cast directly into outer perturbations.

(3) ld;,ur;: The offdiagonal entries e; of the matrix. In exact arithmetic they
would remain unchanged by shifting.

(4) Ud;, uur;: Constitute the diagonal entries of the matrix together with the
pivots. Remark 2.17 revealed their connection to Schur complements.

Let us focus on a factored matrix T = LDL* for a moment. A natural alterna-
tive to representing T by its entries is combining (1) and (2), i.e., using the non-
trivial entries d,,...,d, and ¢, ...,¢,_, of D and L instead. However, in principle
any two of the sets {d, |7 < n}, {¢;|i <n}, {{,;|i <n}, {€dd,|i <n} combined
with d,, would also define the matrix uniquely, since we know d, # 0,7 < n and
assume the offdiagonals to be positive. As a truly exotic example, if we merely
had the 4,’s, ¢ld,’s and d,,, the remaining quantities could be derived as

0 = Ud,/d, d, = 2/, i<n.

In this case, we would denote the #,’s, ¢ld,’s and d,, as primary data elements
of the representation, and d; for i < n together with ¢, as secondary or derived
data.

How the matrix is defined by the representation has a direct impact on how
algorithms working with the matrix have to be designed. Thus, changing the
kind of representation basically requires a new algorithm. In a floating-point
context, different algorithms may behave quite differently, even if they are equiv-
alent in theory. Then the question arises if one representation and its associated
algorithm(s) might be better than another in some regard.

In the following we will develop and analyze corresponding algorithms for
twisted factorizations represented by combining the pivots (1) with either one of
(2)—(4). This leads to three basic types of representations. All of them have

N R 0 & W TN
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H lu , ur d, wur
) w, = €Zdz od; = (3d,
N-rep primary 5
re ;= wi/di ima td; = Edf/dz
etep w; = ur;/r; primary urj:ur?/rj
¢, = sign(d;) /0, /d, W, = \/ld; d;
Z-rep primary
n(r;)yJuur;/r; | ur; =y juur;r;

Table 2.2: Computation of secondary (derived) data in the three basic represen-
tation types.

in common as first n primary data elements, but differ in their take for the
remaining n — 1:

e The N-representation is based on (2), i.e., ¢1,...,¢,_; and uy_ ..., u,.
e The e-representation takes (3), that is, &, ... (d,_, and ur ,... ur,.
e The Z-representation uses (4), i.e., tld,, ..., 0d,_, and wury,, ..., uur,.

Note that the twist index k is formally for all types a parameter of the represen-
tational mapping and not data. Table 2.2 summarizes for the three types which
of (2)—(4) is primary data and how the remaining secondary items can be defined
in terms of them.

Remark 2.21. The motivation for the names N- and e-representations should be
self-evident, but where does the Z come from?

The Z-representation is actually not a novel concept but has long been in
(albeit hidden) use within the dqds-algorithm [30,57] by Fernando & Parlett; we
selected the name as tribute to this fact. Let us elaborate on the connection. The
dqds-algorithm computes singular values of an upper bidiagonal matrix

) bn—l)

as eigenvalues of B*B and BB* in an iterative fashion.

B = diag(a, ..., a,) + diag (b1, ...

One step consists of
transforming B into another upper bidiagonal B such that B'B — 7 = BB*. Thus,
an upper (non-unit) bidiagonal factorization is shifted and rewritten as a lower
(non-unit) bidiagonal one.

To facilitate a more elegant implementation and to avoid the need for taking
roots, the process does not use the entries of B directly, but their squares. Those
are accumulated by the authors of [64] into an array

Z = (a3,b],...,a2_,,b>_,,a2).

7n17n17n
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Now comes the connection to representations of tridiagonal matrices. The fac-
torization BB* is upper bidiagonal, but with factors that have no unit diagonal.

This is easy to amend, since BB* = URU* with r, = af,uiJrl = b;/a;41. So
uur,,, = b7, meaning that the Z-array contains just the data we would take for
the Z-representation of URU*. O

2.4.2 Stationary Factorization

The computation of
LDL* —7 = L*D*(L*)" (2.34)

is called stationary transformation, because it is just the identity for 7 = 0. An
evaluation of (2.34) row-by-row gives the conditions

dl_T ; d-l‘—a
(2.35)
d,+0d,_, —7 = df +Ud_, 1=2,...,n,

for the diagonal entries and
W, = @, i=1,....n—1, (2.36)

for the offdiagonals. Those lead directly to a straightforward algorithm; shown
below is the one for a Z-representation.

CS 2.6:  Stationary qd-transform with shift

L. dif =d—T

2 fori=1ton—1do

3 Ud;= i, d,/df

4: dif = di +Ud; — df — 7
5 endfor

Unfortunately, there is no way to control the relative errors in this version.
The key to obtain numerical stability is to get a handle on the differences ¢d, —lld;
in line 4. These are important enough to warrant their own name, so define

sy = U, — U] (2.37)

)

for i = 1,...,n (which, given our implicit-zero assumption, means s; = 0). We
refer to the s, sometimes as auziliary quantities, auziliaries or adjustments. Then
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1 1

‘\d;, df
2 (2
= L —d) = (s =) (239)
o

= —L(s;—7) = {l(s; — 7).

The experienced reader may notice that our definition of s, differs from the way
it is done for example in [18] (the s, there is our s, — 7). We have various reasons
for our choice, not the least of them being that we will get the stronger property
that the computed s, are exact for perturbed data.

Remark 2.22 (Recursive form). Not only can we express the auxiliaries s, ; re-
cursively in terms of s,, but on a related note they do allow to formulate the
whole factorization process in a recursive form. Assume LDL* — 7 = L*D*(L")*,
then Remark 2.17 gives

Lk:nDk:nLZ:n + Skelei -7 = LgnDZn(LZny

O

Incorporating the auxiliaries leads to the differential version of the stationary
transformation. Code for all three representation types is given in Algorithm 2.7.
It should be self-explanatory, except maybe concerning some notational issues:

e We use the keyword branch to indicate that an instantiation of the algo-
rithm should be tailored to one representation type and contain only one of
the branches; in particular those are not conditionals. This is deliberately
emphasized by using identical line numbers within each branch.

e Some intermediate expressions appear multiple times, like s, — 7. These
should of course be computed just once, but we prefer to repeat them over
having to introduce dummy variables.

e Braces must be obeyed as given for the coming error analysis to work, but
where there are none, we do not care.

On the perpetual quest to keep notation simple, we want to avoid having
to mark computed values by overbars or somesuch. Thus we use unadorned
symbols to refer to the primary data elements that are inputs and outputs of
computations; e.g., for a Z-representation this would be d,, ¢l,, and d, tid;. We
can do that because we are really not interested in the data of the exactly shifted
matrix. However, note that if used as a variable this way, ¢/, is not just an
abbreviation for ¢,/,d, anymore, but an independent entity, denoting a floating-
point number stored in memory. Concerning secondary data we do have to be
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careful. Staying with the Z-representation-example, the exact matrix defined by
primary data d;, ¢/, has an exact offdiagonal element /d,, which will generally
not be a floating-point number and differ notably from the value

l; = fi(\/0d;d;)

we would compute for it on a machine.

LDL* N-rep erep Z-rep L*D*(L*)* | N-rep e-rep Z-rep
d, ~ d, 1 1 1 dF ~ dF 2 2 2
;0 3 3 2 0F s OF 3 3 2
; ~ @, | 3 3 2 i~ | 3 3 2
Ud; ~ U, |5 5 3 Udf ~ tdf | 4 4 2

Table 2.3: Error bounds to achieve mixed relative stability for dstqds depending
on the representation type used; cf. Theorem 2.24 and Figure 2.4. Only first-order
bounds are shown, i.e., an entry k stands for a bound ke, + O(e2).

dstqds
LDL* L*D*(L*™)*
computed
Table 2.3 Table 2.3
(left side) (right side)
1Dl * -7 T+ (] +)*
LDL g LD+ (L)

Figure 2.4: Mixed relative error analysis for dstqds.

Remark 2.23 (Flipped dstqds). It should be clear that Algorithm 2.7 can also be
used to compute URU* — 7 = UTR*(U™)* by flipping the inputs beforehand and
the results afterward, according to (2.16). We will refer to this simply as flipped
dstqds. O

Let us come to the (componentwise mixed relative) error analysis of the al-
gorithm. It will be a bit of tedious work. The proof for the N-representation
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ALGORITHM 2.7

dstqds—template for all representations

Given LDL* € R™"™ and a shift 7 € R, compute a top-to-bottom

dy, @y, ooy dy g, 2,

+ .t + +
d17x1""7 n—1%*n—1» “n

factorization
LDL* —7 = L*D*(L*)".
Input: Shift 7, data defining LDL* in one of the representation types N,
eor Z,i.e.,

and d,,,

where x stands for ¢, & or ¢/, respectively.

Output:  Data for L*D*(L")* in the same representation type as the input
and auxiliary quantities, that is

and  sq,...,S,.

. s, =10

2: fori=1ton—1do

7.df = d,+(s,—T)

3 df = d;+(s;—71)
branch N:

4: o = 0d,/df

5 Sipp = L l(s; — )
branch e:

4: W = d,

2

5: Sit1 = d&il:* (s; —7)
branch Z:

4: vd; = (td,;/d;)d,

5: Sip1 = (Ud;/df)(s; — )
endbranch

6: endfor

// code for N—representation

// code for e—representation

// code for Z-representation
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was originally given by Dhillon in [15]; we repeat it here in adjusted form for the
sake of completeness and for comparison purposes. The analysis for the other two
types are new. The resulting bounds are stated in Table 2.3 for both primary and
secondary data; the latter are useful because they are sharper than what could
normally be inferred. For example, take the first column on the left (N-rep): If
only bounds for d; ~ d; and ¢; ~ {; were given, the best that could be deduced
for the implied perturbation #d; ~» ¢d; would be (3+ 3+ 1)e, = Te,, but we will
see during the proof that it is actually bounded by 5e,.

Theorem 2.24 (Error analysis of dstqds)

Let Algorithm 2.7 (instantiated for one representation type) be executed
without underflow or overflow in an environment that satisfies Axiom FP.
Then the diagram in Figure 2.4 commutes, that s, there are pertur-
bations to the inputs and outputs, with bounds listed in Table 2.3, such
that o o
LDL* —7 = L*D*(L*)".
The computed auxiliaries are exact for the perturbed data, i.e.,

s5;,=0 and s-zﬁdifl—@/di*_l, i =2,...,n.

(2

Proof. A short note before we begin. Componentwise relative error analysis can
be daunting, not because it is mathematically profound, but because one has to
keep track of minutiae. This is not the only analysis of this kind we will have
to do. But as it is the first, we will expose intermediate steps in more detail to
highlight the techniques employed. In particular we single out the references to
our rules from Chart 1.11, which we would normally use implicitly.

We will proceed per induction over ¢, with induction hypothesis being that
the computed s; is exact for the already specified perturbations of data < ¢. This
is trivially true for ¢ = 1.

We can deal with d; and d up to and including i = n independently of the
representation type, as lines 3 and 7 are always present. Their execution will give

df [(1+ o) = di+(s;=7)(1+0),  |af|of <e. (2.39)
The individual perturbations a, and o will of course differ for each ¢, but the in-
ductive setting allows to hide this dependency. Because we assume the computed
s; to be exact, we have to perturb d, ~» d; and d; ~~ d+ such that the relation
df =d, + s, — 7 holds. Looking at (2.39) this is achieved by

d, == d,-(1+0)7" — d; ~ df = €(1), (2.40)
dr = df - (14+0)M(140)"" = df~d = €2), (2.41)



2.4 QD-Algorithms 89

where Corollary 1.12 was used to bound the errors in our €(-)-notation.

Branch for N-representation. The computations specific to this branch (lines
4 and 5) can be modeled as saying that the computed quantities ¢/ and s,,4
satisfy

0F =0, /df - (1 + ay), (1+a) = (14e), (2.42)

Siv1 = li(s; —7) - (1 +a,)(1+0), (1+ay) = (1+e)? (2.43)

with o being the one from (2.39). Note the use of €, = €(1) on the right in

“placeholder context”. The multiplication and division involved to compute £

would normally be captured by two factors (14, ) (14-ay /) with [, [y, /| < €
we invoked rule (1) from Chart 1.11 to compress those to = (1 + €)%

Now we need to find perturbations ¢, ~» ¢, and ¢; ~» ¢ such that the per-
turbed offdiagonals match and the computed s, ; is exact. This gives two condi-
tions

ngj = Zzaz and = s;. = lili(s; —7)
that have to hold. For the first one, we have
~~ Gdr o d,

Gdf = 0d, = jop = (ta)T, by (242),
Vs Ll
= F(l+a) = F(1+ay), by (240) and (241).

For the second one, just use (2.43) to see
i = Uli(s;—71) = Gl = 01+ a)(1+ o).

Both conditions are satisfied with

0 = fi\/ (1+U)(<1112?)(1+%) — L = E), (244)
o=t \/ (1+0)(<11++0;)>(1+%) — Gl = E). (245

The error bounds were obtained by using Corollary 1.12 to write the terms under
the root as = (1 + €(6)) and then invoking rule (4) from Chart 1.11.

The resulting secondary perturbations to ,, d,, td} , tid; as they are stated
in Table 2.3 (first column) can then be derived by combining (2.40), (2.41) with
(2.44), (2.45) and cancelling terms. For instance, to get a bound on & ~~ U},
(2.41) and (2.45) give

églj _ Z:FEZ’;L _ €+\/<1+U)(1+a+)(1+as> .d3(1+a+)71(1+0)—1

! (1 + Oég)

_ + (]‘+a5) - + 4
N gdi\/(1+a)(1+a+)(1+ae) = i1+ e(3)).
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Branch for e-representation. This case is much simpler because the offdiago-
nal elements stay unchanged, &, = 4. The only real branch-specific computa-
tion performed is in line 5 and will result in

(d?
Siz1 = ﬁ(si —7)-(14+0)(1+a,) with (I+a,) = (1+e)"  (2.46)

and o from (2.39). Because s, is exact by the induction hypothesis, what we have
to ensure is

2
Sit1 = Elgj (Si - T)'

With the perturbations E@ and le already fixed by (2.40) and (2.41), this leads to

. (1—}-@5) R
i, = edi\/(lﬂ)(H%) el = 3), (247)

W = — U~ W = Y(3). (2.48)

)

The implied secondary perturbations to ¢;, ¢, (;, Ul as they are stated in Table

2.3 (second column) are then given by combining (2.40), (2.41) with (2.47), (2.48)
and cancelling terms.

Branch for Z-representation. The quantities ¢d; and s;,, as computed in
lines 4 and 5 of this branch will come out as

(s = (66, /d5)d, - (1+a,)(1+ ), (2.49)
Sip1 = (U /dy)(s; —7) - (1+ a)(1+ )1+ o), (2.50)
with |o, ], |a.],]6.] < € and o from (2.39). The rest is very similar to the N-

branch. We need the perturbed data to fulfill

Udrd; = Udd, and s, = (Ud;/d})(s;— 7).

)

With the perturbations for d;, d already fixed by (2.40) and (2.41), both condi-
tions can be satisfied through

Uy, = 0 - (1 +a)(1+8)/(1+a,) = Ud~ U, = ¢3), (2.51)
Ul = thdf - (1+ 3.) /(1 + ) — Wl W = (). (2.52)
The derived perturbations for the secondary data U, 04, ;] , t as they are

stated in Table 2.3 (third column) are then defined by the combination of (2.40),
(2.41) with (2.51), (2.52), after cancelling terms. O
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2.4.3 Progressive Factorization

To compute is
URU* —7 = L*D*(L*)", (2.53)

called a progressive transformation, because—in contrast to the stationary case—
the structural change is present even for 7 = 0. Just evaluating (2.53) line-by-line
gives the conditions

ry+uury — T L 1
T uur, =T L di + !, i=2,....,n—1, (2.54)
r,—T = di + 0 _,,
for the diagonal entries and

urg, = Wi, i=1,...,n—1 (2.55)

for the offdiagonals. A straightforward way to compute the factorization for a
Z-representation is shown below.

CS 2.8:  Progressive qd-transform with shift

L dy = rytuury—71

2: fori=2ton—1do

3: ld; = wurr;/df

4: dif = rifuur, — U, —T
5: endfor

6:

db = r, =0 | —T

Analogously to the stationary case, the key to obtain a numerically stable
formulation is to realize that the differences r, — ¢ld; | can be written recursively.
Define

p; = 1, — (2.56)

fori=1,...,n (implying p, = r,) and recall & = {, to see

_ +
Piv1 = Tipgg — WA = 1y — a

T Edzz T

- d_++1 <dj - a) B dil (df — uury ) (2.57)
T

= dtl (pi - T)

The adjusted computation for all three representation types is given in Algo-
rithm 2.9. Concerning notation, the same conventions as for dstqds do apply.
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What must seem like coming out-of-nowhere is the parameter off. For now
just think of it being zero. We will need it in §2.4.2 for a seamless combination
of dstqds and dqds.

Remark 2.25 (Flipped dqds). Analogously to Remark 2.23, Algorithm 2.7 can also
be used to compute LDL* — 7 = UTR*(U")* by flipping the inputs beforehand
and the results afterwards, according to (2.16). O

Perturbing the Shift. Before proceeding to the error analysis of dqds we need
to introduce a new technique that we call perturbing the shift. Effectively it allows
to relax the problem.

The task could have been posed more generally as shifting by an arbitrary
diagonal matrix,

T —diag(ry,...,7) = T..

The interesting thing is that for both the stationary and the progressive transfor-
mations, the definitions of the auxiliaries and their recursive formulations would
remain essentially unchanged, except for writing 7; instead of 7. This applies
to the algorithms as well. For dstqds it suffices to replace (s, — 7) by (s; — 73)
everywhere, and for dqds change (r; — 7) to (r; — ;) in line 1 and (p;,; — 7) to
(Pig1 — Ti41) in line 6.

Of course, shifting by a diagonal is not very useful per se. But this changes if
the shift matrix is close to a scalar multiple of the identity. If diag(m,...,7,) =
X, [[X|| < 1, then

T, = T—diag(r,...,7) = T—7X
= (2.58)
YT.Y = YTY -7, Y2=X"1,

Hence we obtain a standard shift relation by applying outer (multiplicative) per-
turbations Y to the input matrix T and the output T, . From §1.4.3 we know that
those are harmless. Indeed, outer perturbations are actually to be preferred over
perturbing representation data, because they are independent of the matrices’
condition. As a consequence, by transporting some perturbations from represen-
tational data elements to the shift we arrive at sharper error bounds that will be
more robust.

The coming error analysis of dgqds will be the first one where we use the
technique to state the results with a modified shift 7; for the (1,1) entry. It will
also prove to be of great use in Chapter 4.
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ALGORITHM 2.9 dqds—template for all representations

Given URU* € R™" and a shift 7 € R, compute a top-to-bottom
factorization URU* + offe;ef — 7 = LTD*(L*")*.

8: d;

Input: Shift 7, initial adjustment off (default: 0), complete data defin-
ing URU* in either one of N-, e- or Z-representation, i.e.,
ryoand Ty, Yg, oty Ty Yo
where y stands for u, ur or uur, respectively.
Output:  Data for L*D*(L™)* in the same representation type as the input
and auxiliary quantities, that is,
dif,xi, ...,d}_,xf 4, df and po,...,D,,
where z denotes one of ¢, d, (.
L A= off +(r;—71)
22 fori=1ton—1do
branch N: // code for N—representation
3 df = uigrig +A
4 G = (g /A iy
branch e: // code for e—representation
3: dif = uri2+1/ri+1 +A
4: Wy = ur,,
branch Z: // code for Z-representation
3: dif = uurg,, +A
4 Udy = (ryy/df yuur;
endbranch
5: Piv1 = (ripa/di)A
6: A =p, T
7:  endfor

= A
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URU* N-rep e-rep Z-rep L*D*(L*)* | N-rep e-rep Z-rep
s 3 3 3 df ~ dF 2 2 2
u; ~ 1, 3 3 3 0F s OF 4 3 2
ur, ~ ar; |3 3 3 Uy~ Wy | 4 3 2
wury ~ Wi, |3 3 1 Uds ~ Uds |6 4 2

Table 2.4: Error bounds to achieve mixed relative stability for dgds depending
on the representation type used; cf. Theorem 2.26 and Figure 2.5. Only first-order
bounds are shown, i.e., an entry k stands for a bound ke, + O(e2).

dqds el s
URU*+off e €] computed LD (L")
Table 2.4 Table 2.4
(left side) (right side)
e —7X -~ ~ o~
URU*+off e €] act L*D*(L*T)*

X = | + deel, 0] < e

Figure 2.5: Mixed relative error analysis for dqds.

Theorem 2.26 (Error analysis of dqds)

Let Algorithm 2.9 (instantiated for one representation type) be executed
without underflow or overflow in an environment that satisfies Axiom FP.

Then the diagram shown in Figure 2.5 commutes, that is, there are
perturbations to the inputs and outputs, with bounds listed in Table 2.4,

such that
URU" +ejefoff —7(1+dee}) = L'D*(LY)", |9 <e..
The computed auxiliaries are exact for the perturbed data, i.e.,

p, = T —Udr,, i=2,...,n.
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Proof. We will begin with analyzing the part involving the auxiliaries p, and the
local quantity A. This can be done independently of the representation type.
Concerning A, we will have

A = Joff +(ri =T) A+ ML +m), |nf,|m| <e
initially (line 1) and
A= (pip—7)1+m), |m[<e

after subsequent updates (line 6). Now perturb r; and the shift for the (1,1)
diagonal entry as

T o= ri(l+n) — T = 6 (2.59)
7= r(1+) = T~ = e (2.60)

Then we can state that the computed A will always be within one machine epsilon
of the value it should have in exact arithmetic for the perturbed data, that is,

off +7, — 71, (initially, at loop entry for i = 1,
A/(1 +06s) = P, — T, at loop entry for 1 < i < n, (2.61)
D, — T, at the end,

for |Ba| < €. As d} is just a copy of the last A produced, this already shows how
d must be perturbed, namely

di = d)(1+Ba) = di~di = €(1). (2.62)
Execution of line 5 will give

Piv1 = (T /d)A-(1+8)1+8.), 161,18
With (2.61) we see that in order to get p,,; to be exact for the perturbed data,

Dit1 = (,FiJrl/E;‘L)A/(l + Ba)

has to hold. Hence, the perturbations r;,; ~ 7,,, and d; ~~ E;* must be chosen
to satisfy the condition

< €. (2.63)

*

e LD (14 5) (14 6)(1+ ) (2.64)
Now we will have to start paying respect to the actual representation type
and branch taken. The first line in each branch computes d; and can be captured

by
df = [2(14+¢)+A](1+ ), where|8,]| <€ and

Z= Ul T (1+¢) = (1+e¢,)? for branch N,
z = UTZ'2+1/T2‘+1’ (14¢) = (1 +e,)? for branch e,
0, for branch Z.

(2.65)

2= UUTG s ¢
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The quantity z that was just introduced is defined using primary data specific to
the representation; let Z be the corresponding value for the perturbed data. From

(2.61) we know that the perturbed d; will then have to obey d; =i+ A/(1454).
Combined with (2.65) this leads us to

=2 (14O + By (2.66)
and

di = df (14 8)7 (1487 = df = df = (2). (2.67)

]

The latter combined with the condition (2.64) fixes the perturbation for 7, ; to

Tigr = ri - (L+68)1+6)0+8,)7 =y~ Ty = €(3). (2.68)

The remaining analysis has to tread on different paths depending on the repre-
sentation type, although not much remains to be done. To summarize where we
stand, the perturbations d] ~» d; and r,,; ~» 7,,, have already been fixed and
for the rest we will have to uphold (2.66).

Branch for N-representation. Here we have Z = u? ,7,,,, so with (2.65) and
(2.68) the condition (2.66) requires us to perturb wu,; , according to

1+ 6,)1+B3.)(1+ 8a)

The remaining ¢; is in line 4 effectively computed to be
U = (ria/d)ug, - (1+8,)(1+ o),

< €, and 3, being the same as in (2.63). Because Ef and 7;,, were

Uy = ui—l—l\/( A+ 0+ p,) = Uy Uy = e¥(3). (2.69)

with |,

chosen to fulfill (2.64), (2.69) means that in order to attain ¢; d; =
have to perturb ¢; as

T+ . + (1+C>(1+6+)<1+ﬁ*)<1+ﬁA) -+ 4
e \/ rp)iray - GUrdw). @

Tip1Uip WE

The derived perturbations for the secondary data wr, ,,uur; ,, ;U as they
are stated in Table 2.4 (first column) are then defined by the combination of
(2.67) and (2.68) with (2.69) and (2.70), after cancelling terms.

Branch for e-representation. As Z = ari,, /T, and T, is given by (2.68),
the condition (2.66) can only be met with

o (A OA A+ 5)(A A+ B
A (1+Ba)(1+75,)
= ar,,, = 4 (1+€9(3)). (2.72)

)

= ur; (1+€9(3)), (2.71)
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For the derived perturbations of the secondary data w,  ,uur,, |, ¢;, ] as stated
in Table 2.4 (second column), combine (2.67) and (2.68) with (2.71) and (2.72)
and cancel terms.

Branch for Z-representation. In this case we have z = uur,,; and ¢ = 0, so
the condition (2.66) does already spell out the perturbation for uur, , to be

wir,, = uuriﬂ(l—i—ﬁA)’l = uur;, ~ uur;, = €(1). (2.73)

The rest is nearly identical to the N-branch. The computation of ¢/} in line 4
will produce
Ud; = (riq/dJuurgy - (14 6,)(1+ o),

< €, and the 3, from (2.63). The perturbations Ej and 7, , were suitably

with |,
chosen to give (2.64), so the desired relation @/djglj = wur, 7, is attained by
i 1+8) .
d; = d - —= = U} (1 2)). 2.74
i (14 e(2) (274)

The derived perturbations for secondary data, in this case u; , ur;,, (], &, with

bounds as they are stated in Table 2.4 (third column), are obtained by combining
(2.41) and (2.68) with (2.73) and (2.74), keeping ¢ = 0 in mind. O

2.4.4 Twisted Factorization

Now we will investigate how stationary and progressive transformations can be
combined to yield

for arbitrary combinations of twist indices k£ and ¢. For brevity we will sometimes
drop the subscripts k£ and ¢ and just write NGN* — 7 = N*G"(N*)*. Evaluate
(2.75) for the diagonal entries to see
d,+0d, , —7 = df +0d; |, 1<i<min{k,t},
vy Fuur, — T = di +0d_, k<i<t,

2.76
dy +Ud,_, —7 = rf +uw],, t<i<k, (2.76)

vy Fuur, g, —7 = rj fuury,, max{k,t} <i<n,

and
d, |+, +uur,, ,—71 = df + 0,
k<t k—1 T Uk k+1 k+ k—+1 .

vy tuur, — 7 = di_ + 7+ uurf

ifk=t: Udy,_y + v, +uury — 71 = U+~ +uuwrf, (2.77)

itk >t: { dy+Ud,_y —7 = U+~ + uwﬁtﬁ-la

Udy,_ + v, +wury,, — 7 = 1)+ uur,jﬂ.
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Define a := min{k,t} and b := max{k,t}. Then the above conditions reveal
that the task can be broken into four parts:

e A stationary transformation from the top down to a, except for the (a,a)-
entry; in matrix notation this becomes

* * _ + Gt + \* * +
Nl:aGlzaNl:a +eaeauura+1 d - Nl:a 1:a(N1:a) +eaeauura+1‘
———— —_—

LDL LDL

(Note that for k # t, one of wur, ,, uur,,, will be undefined and hence
equal zero.)

e Analogously, a (flipped) stationary transformation from n up to b, violated
only at the (b, b)-entry, that is,

Nb:nGb:nNZ:n +ele>{£€db71 - T = N;nG;n<NZn)* +e1eT€£le;—l'
URU URU

o If k < t a progressive transformation from k down to ¢ except at the first
and last diagonal entries, that is,

* * *
Nyt G Ny —7 + ege1lld, | + e e uury 4
——
URU
= *00d+ * + + o+ + \*
= eeylldy_ + epmenuuriyy + N, k:t(Nk:t>
N—

LDL
withm:=t—k+1>1.

e Analogously, if ¢t < k a (flipped) progressive transformation from ¢ up to k
except at the first and last diagonal entries, that is,

* * %
Nt:th:th:k -7 + elelggdt_l + €, Cn UUT 1 ¢
—
LDL
= * + * + + C+ + \k
= eyeylld) , + e, e uuryy + Ny Gl (Ng,)™
—

URU

withm: =k —-t+1>1.

Note that there is at most one progressive part and none if k& = ¢t. They are
welded together at the twist positions k£ and ¢ for which we will have to devise
special treatment. The formulas above already suggest that the auxiliaries from
the stationary and progressive processes can be harnessed for this purpose. To
differentiate from which part they did originate we use decorations ~ for a top-
to-bottom process and ~ for bottom-to-top. Thus, recalling (2.37) and (2.56) and
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adjusting to the fact that the twist elements v, = G(k, k) and 7" = G*(¢,¢) can
be regarded both as d and as r depending on the part we are in, we get

5, = ld, | — U, 1 <4 < min{k,t},

p. = G(i,1) — !, k<i<t,

b () . - (2.78)
p; = G(i,1) —wurf,,, t<i<k,

5, = uur; ., —uury max{k,t} <i<n.

Plug these into (2.77) to get a formulation for how the computation can be com-
pleted at the twist positions:

1fk<t dg:uurk+1+f}/k+§k_77
’Y: = pt+§t_7—7

=38 4+p —T,
k>t T T )
r = Udyy 4+ 5 — T

The finishing touch is to realize that the expressions for d; and 7} in the case
k # t are nearly what the corresponding progressive transformation would do
in its first step anyways, except for 5§, and §,. Here it comes to fruit that we
formulated dgds with the adjustment off for the first diagonal entry. Altogether
this culminates in Algorithm 2.10. The name dtwqds was coined by Dhillon for
his algorithm to compute LDL* — 7 = N} G/ (N} )*; we reuse it here for what is, in
fact, a generalization.

N,G.N; | N-rep erep Z-rep NG/ (N/)* | N-rtep e-rep Z-rep
d,,r, 3 3 3 ds,rt 2 p p
iy u; 3 3 3 b uy 4 3 2
ld;, ur; 3 3 3 ] urt 4 3 2
U, wr ; 5 5 3 U, wur 6 4 2
Vi 3 3 3 v 3 3 3

Table 2.5: Worst-case error bounds to achieve mixed relative stability for dtwqds
depending on the representation type used; cf. Theorem 2.28 and Figure 2.6. Only
first-order bounds are shown, i.e., an entry p stands for a perturbation x ~» T =

pes + O(€2).
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ALGORITHM 2.10 dtwqds—template for all representations

Given twisted factorization NGN* € R™*"™ with twist & and a shift
7 € R Factorize NGN* — 7 = N*G*(N*)* with twist .

Input: Shift 7, data for NGN* in either one of a N—, e— or Z-
representation, desired twist ¢ in the target.

Output:  Data for N*G*(N*)* in the same representation type as the input.
Note: Let dstqds_part and dqds_part stand for versions of Algo-

rithms 2.7 and 2.9 where the last pivots are discarded, i.e., with-
out lines 7 and 8, respectively.

1. Use dstqds_part on Ny.,G.,Nj,,, where a = min{k,t}, to compute
pivots df,...,d}_; and auxiliaries $,,...,5

// Amounts to just 5, =0 ifk=1ort = 1.

a*

2:  Use flipped dstqds_part on N,.,Gp.,N;,,, where b = max{k,t}, to

compute pivots 77,7, _1,...,7,,, and auxiliaries 5,3, ;,...,38,.
// Amounts to just 5, =0 if k =n ort =n.
if £ <t then
Use dqds_part with off = 5, on NG, N}, to compute pivots
dy,...,d/_; and auxiliaries p,_ ,...,p;.
5: Vo= (Bt 8) - T
6: else if £ =t then
T Yo = Y%+ ((gt +5,) — T)
else
Use flipped dgds_part with off = §, on N,..G, N}, to compute
pivots v}, 1y, ..., 74, and auxiliaries p,_q,Dp_o, - ., Dy
10: Vo= (St D) — T

11:  endif
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dtwqds
N, G.N; NG/ (N7 )*
k¥EkE Vk Computed t t( t)
Table 2.5 Table 2.5
(left side) (right side)
NG, s NG ()
k 9k NE exact £ G/ (N;)

X =1+ e e + e, Ok, 0 = €(1)

Figure 2.6: Mixed relative error analysis for dtwqds.

Remark 2.27 (More than one twist). The algorithm dtwqds is easily extended to
compute the union of data for a whole range of twists t* < ¢ < t" at once: just
let the loops within dstqds and dqds run as long as possible for any twist in the
range and add a loop to compute all new twist elements. For example, in line 1
one should take a = min{k,7"}. O

The only error analyses for algorithms similar to dtwqds we know of concern
special cases: Dhillon’s original work on LDL* —7 = Ny G/ (N} )* (his dtwgds) and
an analysis of computing N,G,N; — 7 = LDL* by Grofler in [35, Appendix B],
both of which are based on an N-representation. The following result comprises
and extends these works.

Theorem 2.28 (Error analysis of dtwqds)

Let Algorithm 2.10 (instantiated for one representation type) be executed
without underflow or overflow in an environment that satisfies Axiom FP.

Then the diagram in Figure 2.6 commutes, that s, there are perturba-
tions to the inputs and outputs, with worst case bounds as in Table 2.5,
such that

N,G.N: — 7(1 + Srepel + dreel) = NFGH(ND)*, 6,0, = €(1).

Furthermore, the computed auxiliaries fulfill (2.78) for the perturbed data
ezactly.
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Proof. Naturally we deploy Theorems 2.24 and 2.26 for the executed stationary
and progressive parts. The thing to realize is that this fixes perturbations for
everything except the twist elements and does provide exact auxiliaries and de-
livers all entrywise desired relations except for the diagonal entries at the twist
positions.

Case k # t. Due to symmetry it suffices to prove the case k < t. Here, v, was
gobbled in the progressive part (interpreted as r,), so its perturbation is already
fixed. The offset given to dqds ensures that the perturbed data fulfills the desired
(k, k) diagonal entry relation.

Let the new twist element be computed in line 5 according to

o= B+ 5)/ A +m) =7 /(1 +0), |n],]o| < €.
We have p, and 8, being exact, so by perturbing 7, and the shift as

Vo= A+m(1+0) = w0 = €2),
7, = 1(14+m) — T~ Ty =

I
™
—~
—_
~—

we get 7, = p, + 8, — T,, as desired.
Case k =t. Let the new twist element be computed in line 5 as

%= {W<<§t+§t>/<1+ﬂ)—T>/<1+o>}/<1+w> 7], o], |w| < €.

In this case there is no progressive part, so as yet neither v, nor v, have been
touched. Building on the auxiliaries §,, $, being exact, we fix

Y = 'Yt(1+7r)(1+0) — Yy Yy = €(2),
Vo= (4Tl +o0)(1+w) = 9~ = €3),
7, = 1(1+m) = T~ T, = €(1),

and obtain the last missing piece, namely ¥, =7, + 5, + p, — 7.

A final remark on how the error bounds in Table 2.5 are obtained. These are
worst-case bounds in the sense that they do not depend on k and ¢. Then each
data element can belong to a stationary or a progressive part, flipped or not.
Hence we have to take the respective worse bounds from Tables 2.3 and 2.4. [J

2.4.5 Additional Remarks & Discussion
Comparison of Representation Types

We have seen that N-, e- and Z-representations have different characteristics
concerning rounding errors. The natural question is, which one is best. Tables
2.3, 2.4 and 2.5 pronounce a Z-representation as the clear winner when accuracy
is the only concern, but so far we have not yet taken efficiency into account.
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To optimize for speed, one would implement the algorithms such that subterms
can be cached for repeated use. A prominent candidate to be precomputed and
cached is ¢d;, because then an optimized loop for bisection (where only the signs
of the d} are wanted) could for all representation types use the same formula for
;11 as the Z-branch, needing just one division and one multiplication.

CS 2.11:  Optimized bisection, all representation-types

Sip1 = (Ud/df)(s; — )

1: ce

20 df = d;+(s;,—T)

3. ifdf <0 then

4: negcount = negcount + 1
5: endif

6:

7

Let us focus on the N- and e-branches of dstqds. To precompute whichever
one of ¢; and /d; is not primary data too is less useful in general, but at least the
¢;’s will be needed if the eigenvector-equation associated with the matrix is to
be solved. Below, two modified loop bodies for the N- and e-branches are shown
that will compute everything:

branch N: branch e:
1: e = dd,/df 1: o = u,;/df
2: Siz1 = (s, —7) 2: Siv1 = (s, —7)
3: W = 0 df 3: W = U,
4 Udr = et 4 Udr = U e;

Both require one division and two multiplications at minimum (lines 1 and 2),
and one or two further multiplications to compute I and ¢/ (lines 3 and 4).
So we see that working with an e-representation is in all situations at least as
efficient as using a N-representation.

The nice thing is that our error analysis in Theorem 2.24 is still valid for these
modified loops, and also for the optimized bisection in CS 2.11, because we did
not specify the order in which the multiplications and divisions in lines 4-5 of
dstqds are executed.

Concerning the Z-representation, examining the Z-branch of dstqds shows
that bisection can be done equally fast (1 div, 1 mult) and a plain factorization
giving only primary data too (1 div, 2 mult). That is all nice and well as long as
we do not need /¢,. If we do, it gets costly, in the form of one division and one
square root?, cf. Table 2.2. Hence an RQI to compute eigenvectors would become

20n most modern machines a division and a square root should take about the same number
of cycles.
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prohibitively expensive using Z-representations. To make them nevertheless us-
able for MR?, we propose the following workaround:

e Use plain Z-representations for all nodes, without computing secondary
data.

e For nodes with singleton eigenvalues (and only for those), switch to an e—
representation (of a nearby matrix) by computing , := \/¢d,d; and use
that one to do RQIs for all singletons. The cost is then basically n additional
square roots per node with singleton eigenvalues and should amortize over
the whole run.

A similar argumentation for dqds comes to the same conclusions, in fact, even
the optimized operation counts are identical. To summarize the pros and contras
for the representation types:

e—representation

+ (Minimally) fastest computation, if properly optimized.

+ The offdiagonal entries staying the same means they need only be
stored once for the root and can then be reused for every node in the
tree. This basically halves the memory traffic for MR?.

+ Error analysis is simpler because there is less data to perturb, cf. the
proofs of Theorems 2.24 and 2.26.

o Accuracy is comparable to an N-representation.
Z—representation

+ By far the sharpest error bounds.

o As fast as an e-representation as long as secondary data items (¢;,ld
u;, w"j) are not required, i.e., for bisection and shifting.

79

— The previous makes it impracticable for computing eigenvectors. A
workaround like the one mentioned above will have to be used.

N-representation

+ As fast as an e-representation as long as the offdiagonals ({d;,ur;) are
not needed, otherwise minimally slower.

o Accuracy is comparable to an e-representation.

As result, we can state that a Z-representation should be used when accu-
racy is of paramount concern. In particular, the greatly reduced effected per-
turbations ld; ~ 0, and uur; ~» uur; will lessen the impact of moderate local
element growth on the diagonal. Otherwise, an e-representation is best as it
gives superior performance. There is really no reason to stick with the traditional
N-representation.
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Remark 2.29 (A word of caution). The optimized loop bodies for the N- and e-
branches above are deceptively similar (only difference in line 3), and so are the
perturbation bounds. Nevertheless they are not numerically equivalent and may
lead MR? onto different computational paths. The thing is that the floating-point
incarnations of d,, ¢;, ld, and ¢, as they are stored in the machine do not enjoy
the correlation they would have in exact arithmetic. In order to keep reasoning
clear one must keep track of the matrix, meaning the exact mathematical object
which is defined by the primary data and for which we do have mixed relative
stability. This is basically the reason why we have been so pedantic about the
distinction between primary and secondary data. O

Alternative Problems
There are two related problem formulations:

(a) Factorize T —7 = NG} (N})* for symmetric tridiagonal T represented by its
entries. MR? needs this to find a root RRR for the initial matrix.

(b) Factorize BB* —7 = N*G*(N*)* and B*B — 7 = N*G"(N*)* for upper bidiag-
onal B given by its entries, cf. Remark 2.21; this will be needed in Chapter
3.

In his groundbreaking technical report [48], Kahan provided a thorough treat-
ment of (a) for & = n in the context of eigenvalue computations. He gives a
componentwise relative backward error analysis for the computed Sturm counts
and takes into account proper scaling to avoid underflow and overflow (cf. also
breakdowns below). As icing on the cake he even provides a rigorous proof that
the computed counts of negative eigenvalues (Sturm counts) are monotonic in
the shift if one can assume that the floating-point arithmetic unit obeys a set of
reasonable conditions on top of Axiom FP. It is an open problem if the differential
algorithms presented in this section enjoy a similar property.

The problem (b), as well as (a) for matrices with a zero diagonal, are in-
vestigated by Fernando in [28], again in the context of computing eigenvalues
via bisection. He also explores internal connections between the factorizations.
In turn, those led to the coupling relations by Grofler and Lang [36] that will
become a core topic in Chapter 3. Tailored Algorithms for (b) are used within
the dqds algorithm and can also be found in [35]; by writing B*B = LDL* and
BB* = URU~* it is not hard to recognize them as special cases of dstqds and dqds
for Z-representations.

Treatment of Breakdowns

It is possible to safeguard the factorizations with regard to breakdowns. One
approach, dating back to [48], is to deflect pivots away from an interval around
zero. For dstqds and dqds this would look as follows:
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1 di = ...

2 if |d]| < pivmin then
3: di = —pivmin
4:  endif

b:

Normally the matrix is scaled (and splitted) beforehand to lie in a sensible range
and pivmin is set to something like oy ! max;|(d?|, with the intent that 0] =
ld?/d; cannot overflow anymore. The modification can be modeled as changing
the diagonal entries by no more than 2|pivmin|. Hence, in the context of the
shift-relation we want to preserve for MR?, it is harmless as long as |pivmin| does
not exceed €,|7], because we can subsume it as perturbation to the shift.

The disadvantage is that the extra conditional causes a performance hit. An
alternative is possible if IEEE-conform handling of NaN’s and oo is present, see
for example [54]. The resulting matrix will have invalid rows and columns due to
entries being oo, but a Sturm count can still be used, making the technique very
useful to speed up bisection. It is also possible to compute eigenvectors for twisted
factorizations with infinities [15], but there the net gain is reduced compared to
loosing the exact mathematical relation provided by the pivmin-scheme and the
fact that underflow in the vector entries will still have to be guarded against
(cf. §4 in [19]).

2.5 Towards an improved implementation of MR?

Much of the research work leading to this thesis has been spent in software. Dur-
ing our work on MR?-based solutions to compute the singular value decomposition
of a bidiagonal matrix (problem BSVD, which will be the topic of the next chap-
ter), it quickly became apparent that there were many more extreme numerical
cases than for the tridiagonal problem. This led us to investigate how parts of
existing implementations of MR? could be improved, with particular emphasis on
reliability and robustness.

MR? is an algorithm that can be explained rather compactly, if you leave out
the details. But to get the subcomponents—Ilike the RQI for computing vectors,
or finding a good shift—working just “right” is a tricky business. We desired, for
example, to study what the use of twisted factorizations with somehow optimally
chosen twist index as representations would bring, or how a different heuristic for
evaluating shift candidates does perform.

It is not really feasible to facilitate greater algorithmic changes in reasonable
time while sticking to an optimized FORTRAN 77 codebase. We have developed
an extensive software framework to prototype MR3-based solution approaches
for TSEP (and also BSVD)?. For ultimate flexibility and code-reusability we have

3At the time of this writing, more than 30000 lines of source code.
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chosen an object-oriented approach in C++. It is completely configurable using
plain text files, and contains copious instrumentation for purposes of debugging,
logging, and generation of statistics. Furthermore it can call external LAPACK-
solvers to evaluate their results in the same setting.

The disadvantage of a prototypical approach is that we cannot provide timing
results right now, but only extrapolated cost based on counting iterations. How-
ever, we feel this to be well outweighed by the fact that we can now rather easily
try out algorithmic changes to MR? that were not practicable before.

The purpose of this section is not to describe our software framework, which
is, after all, just means to an end. Instead we want to pit our so far best MR-
implementation against LAPACK.

In the following, when we write DSTEMR we always mean the implementation of
MR? in LAPACK 3.2.1, which is—at the time of this writing—still the most recent
one. For the lack of a better name, let us denote the chosen MR?-instantiation
of our framework as XMR.

How to achieve the requirements

We know that any implementation of MR? has to heed the five requirements on
page 55. Three of those are actually of no concern:

e RELGAPS comes mostly for free provided the representation is robust in
even the most rudimentary terms, and the implied conditions for the outer
gaps are easily checked.

e SHIFTREL is fulfilled if the routine to compute the child representation is
mixed relatively stable. From §2.4 we know how to do that for twisted
factorizations with arbitrary twist index.

e GETVEC is not always easy to achieve, but if some variant of Algorithm 2.5
is employed it will deliver a bound for the residual norm, so fulfillment of
GETVEC can be monitored.

The remaining two, RRR and ELG, have to be attained in step 12 of Algo-
rithm 2.1, where the shifts are selected. The problem with them is that we
cannot always know a priori , that is, at the time of computing the child repre-
sentation, if the requirements are met. Sometimes this is only possible to know
for sure after the vectors have been computed, called a posteriori .

That the vectors are needed for evaluation is evident from how ELG is stated,
and for RRR it is clear from (2.32). The bounds that can be inferred without
eigenvector information are more often than not too crude to be useful. However,
it turns out that to obtain practicable a priori bounds, it usually suffices to know
where all vectors in the local invariant subspace of interest have small entries.
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This information is captured in the envelope of the subspace, which is formally
defined as vector envg € R"™ with entries

envs(i) = max {[x(1)| : x€ S, []x|| = 1}.

The amount of accurate information that can be cheaply determined about an
envelope can sometimes be astonishing [58,65].

We see that the components of the envelope are upper bounds on entries
of any unit vector from the subspace. If some of them are small we say there is
eigenvector localization. Localization can only reasonably be expected for clusters
I ={c,...,d} that are small, say |d — ¢| < 0.3n, as well as tight in the sense

IAe — Ad| < tfacgapa(I), tfac < 1, (2.80)

with, for instance, tfac = 278,

Suppose we have an approximation s for envg. It should be faithful in the sense
envg(i) < s(i) <1 for all entries, but might have s(i) = 1 if no useful information
could be deduced. For a twisted factorization M = NGN* as representation it is
not hard to see that ELG boils down to the condition

IGs|| < Clyg spdiam[My). (2.81)

For requirement RRR, the formula (2.32) for relative condition numbers is not
well suited to be used with an envelope. A better one can be found in [63, p. 126];
we adapt it now to twisted factorizations. The first step is to eliminate the explicit
dependence on G, noting that

oA < |q9"NQGN*q| by (2.31), QG = |G|,
< |q*NQN~'g)| since NGN*q = gA.

This implies
oA

Al
for any (nonsingular) diagonal matrix Y. Hence, requirement RRR can be
checked a priori via the condition

< [g*NQN~'q| < [|[TN*q|[T'N"'q]

[TN*s|[|[T™IN"!s|| < mazre, (2.82)
where T can be chosen freely to minimize the resulting bound, and maxrc is a
parameter of moderate size, say 10.
Outline of DSTEMR

For comparison purposes, let us first describe in a few words how the latest DSTEMR
in LAPACK 3.2.1 was set up; for more information see [20] or refer directly to the
source code [2].
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The basic design is faithfully depicted by Algorithm 2.1. Only plain LDL*-
factorizations are used as representations at nodes.

Concerning selection of shifts in step 12, DSTEMR refines the eigenvalues at the
borders of clusters to full precision and then tries to shift close to one of them,
but still outside, backing off if the first tries are not successful. To evaluate a
shift, DSTEMR only checks for element growth, that is, condition (2.81) above,
with Cge = 8. If no candidate satisfies the condition, DSTEMR takes the one with
minimal element growth. Envelope information is obtained in a very minimal
fashion: for a shift on the left, DSTEMR uses a rudimentary approximation to the
“rightmost” eigenvector of the cluster as envelope, and vice versa. This approach
is very efficient, but runs the danger of using wrong envelope information. To
alleviate this concern, it is only employed if the plain element growth (unweighted)
still lies below a safeguard threshold.

Once a shift has been selected and the corresponding representation is com-
puted, DSTEMR will initialize the child’s eigenvalue bounds. Let [A;] be the bounds
at the father, then

A= ] =

become the bounds for the child. The first order of business before classification
starts in line 5 for the child is then to inflate the child bounds until they have
consistent Sturm counts.

Outline of our implementation XMR

The basic principle guiding the design of our implementation XMR was reliability.
One cannot completely avoid situations where no shift candidate is acceptable a
priori, in particular if no useful envelope is available. Furthermore we made the
experience that the sole testing of element growth, like DSTEMR does it, can lead
you astray: for some (admittedly rare, synthetic) test cases we encountered two
candidates with comparable, acceptable element growth, but manual experimen-
tation revealed only one of them to be relatively robust.

Hence we want to accumulate as much information about the candidates as
possible, to make a better-informed choice. This is why we included the a priori
checking of condition (2.82) for relative robustness.

For the same reason we restructured Algorithm 2.1 a little, by incorporating
some bisection steps directly into step 12. Once a shift is deemed worthy of
selection because it seems best—either passing the a priori tests or failing them
less badly than the other candidates—the shifted representation is computed and
initial bounds for its local eigenvalues are set up. Let [\;],i € I be the local
approximations (intervals) at the father. Then we initialize the bounds for the
child as

A = (NAta) —7)(1+a), (2.83)

where « is a parameter (currently o = 100ne,). In our experience, one of the first
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signs that something is wrong is that the eigenvalues start to jump out of even
these inflated intervals. Hence the bounds are then “verified” to be consistent on
the spot by doing two Sturm counts each. Should they prove to be inconsistent,
the candidate is immediately discarded. In that case the Sturm counts could be
seen as wasted, but they did prevent us from making a wrong choice. However, if
the bounds pass basic consistency, we can save the (costly) inflation of the child
bounds that DSTEMR has to do. We are then also in a position to use just two
more Sturm counts to “verify” that the outer relative gaps at the child exceed
gaptol, thus establishing that part of RELGAPS.

Another major new ingredient in XMR is that we exploit cluster substructure.
As motivation consider for example a cluster of twenty eigenvalues with

/\1,...,)\10 = 1+O(€<>), )\117...,)\20 = 1—i—gapt0l/2—|—(9(eo)

We have to treat all twenty as one cluster, although we would like to separate
the two subgroups. Considering envelopes, the condition (2.80) indicates that
both subgroups may have significant eigenvector localization, and thus the whole
cluster may have, too, although (2.80) considered solely for the whole cluster
would make us think otherwise.

Our general strategy is to refine eigenvalues in clusters to reveal interior gaps
exceeding ,/€,. Then we try to find envelopes for each subgroup and combine
them to form an envelope for the whole cluster. To construct the envelopes
for the subgroups we have implemented the new techniques from [65]. The whole
approach works nicely so far and gives us usable and faithful envelope information
for many cases where DSTEMR cannot use any.

Once cluster substructure has been determined, it is just too tempting not
to exploit it further by also trying to shift inside the cluster, and this is what
we do. It was feared before that doing so runs more risk of coming too close
to Ritz values, thereby causing element growth. And indeed, just blindly taking
the cluster midpoint is most often a fatal decision (we tried). However, to our
experience inside shifts can work very well, as long as one makes sure to keep
the representations nearly singular, that is, still places the shift within an interior
gap, close to a boundary. In the example above we would try to shift slightly
above A\jg or slightly below A1, additionally to trying shifts on the outside.
Further significant differences to DSTEMR are the following:

e We use e-representations of twisted factorizations at the nodes. The twist
index is chosen on a case-by-case basis to minimize the bounds for both
conditions (2.81) and (2.82) simultaneously.

e The tolerances for RQI and bisection were initially taken from DSTEMR and
then optimized. In particular for singletons we switch from bisection to
RQI far earlier to benefit from the faster convergence. Also the acceptance
thresholds in RQI are rather strict in DSTEMR, causing the iteration to con-
tinue (or worse: fallback bisection to be invoked) needlessly sometimes.
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e We use a different bisection design for XMR. The bisection process keeps a
list of nonoverlapping intervals that contain one or more eigenvalues each.
For instance, the child bounds in (2.83) are setup using the bounds in that
list, and not for each eigenvalue separately.

In contrast, DSTEMR uses a simpler scheme, with one interval per eigenvalue.
This can be rather wasteful if the eigenvalues are close together, since over-
lapping intervals are refined independently.

Finally we want to mention that we have discovered rare cases where as yet
unregarded underflow in the qd-transformations leads to loss of relative accuracy.

Our code is now completely underflow-safe, whereas DSTEMR still has the prob-
lem. Indeed we have at least one test case where we are quite sure that exactly
this underflow-issue causes DSTEMR to return a zero vector?, without signaling
an error code. However, at the moment it seems that introducing the necessary
changes into an optimized code would either require IEEE 754-conform handling
of exceptions, or a complete rethinking of the pivmin-scheme from §2.4.5.

We omit further details here, since these problems occurred only recently and
warrant further study.

The Testsets

We have prepared two testsets Pract and Synth that consist of upper bidiagonal
matrices B. They will also be used in Chapters 3 and 4. For the purpose at hand
we will compare DSTEMR and XMR on the tridiagonal problems B*B.

Most of the bidiagonal matrices in the sets were obtained from tridiagonal
problems T in two steps:

(1) T was scaled and split according to (2.3).

(2) For each unreduced subproblem we chose a shift to allow a Cholesky decom-
position, yielding an upper bidiagonal matrix.

The composition of the two testsets Pract and Synth is as follows.

Pract contains 75 bidiagonal matrices with dimensions up to 6245. They were
obtained in the manner above from tridiagonal matrices from various applications,
which we got from Osni Marques and Christof Vomel. More information about
the specific matrices can be found in [13], where the same set was used to evaluate
the symmetric eigensolvers in LAPACK.

The testset Synth contains 19240 bidiagonal matrices that stem from arti-
ficially generated tridiagonal problems. The latter include standard types like
Wilkinson matrices as well as matrices with eigenvalue distributions built into

4 The loss of relative accuracy leads to a twist that is completely wrong and in turn to a
vector of huge norm that overflows.
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LAPACK’s test matrix generator DLATMS. In fact, all artificial types listed in [14]
are present.

For each of these basic types, all tridiagonal matrices up to dimension 100 were
generated. Then those were split according to step (1) above. For the resulting
tridiagonal subproblems we made two further versions by glueing [19,66] them
to themselves: two copies with a small glue of 2 ||T|lne,; three copies with
two medium glues of O(||T||n\/€s). Finally, step (2) above was used to obtain
bidiagonal factors of all unreduced tridiagonal matrices.

Further additions to Synth include some special bidiagonal matrices B that
were originally devised by Benedikt Grofler. These were glued as well. However,
special care was taken that step (1) above would not affect the matrix B*B for
any one of these extra additions.

The nature of the set Pract is that we expect it to represent the kinds of
problems that could be expected in actual applications. Therefore we deliberately
chose not to include any glued matrices in Pract. This does not mean the problems
in there are easy to solve, far from it. Nevertheless we will see that the really
“hard” cases are in Synth, but due to its comprehensive nature, Synth also contains
many cases that are borderline trivial.

A final remark concerning the possible danger of testset-bias. We did in
fact not use the above testsets for testing and tuning of our software; at least
the synthetic matrices we used then were fewer and generated with a different
random seed.

Setup of the Tests

There is another reason besides reusability in later chapters that led us to consider
bidiagonal matrices as the principal test problems. We want a fair comparison of
DSTEMR and XMR, which is only possible if both solve the same problem. This may
sound easier than it is. First of all, the gap tolerance is fixed to gaptol = 0.001
for XMR just as DSTEMR does it. Furthermore we desire both to start with the same
root representation, namely B*B.

To force the root representation to be B*B, we do not call DSTEMR directly,
because it expects the entries of a tridiagonal matrix. Instead we invoke its
subroutine DLARRV which contains the core MR*-algorithm and is called by DSTEMR.
after preparatory steps have been done. Upon call, DLARRV expects to be given
two things:

e An LDL*-factorization to take as root representation. We can write B*B =
L,D,L; and provide one.

e Initial approximations for the eigenvalues. If all eigenpairs are desired,
DSTEMR would compute them using dqds, by calling the routine DLASQ2 in
LApAack. We do just that. Identical values are initially fed to XMR as well.
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Pract Synth
75 cases ORTH 19240 cases
DSTEMR XMR DSTEMR XMR
13.47 5.28 AVG 1001 3.09
1.98 1.78 MED 0.97 0.91
300 91 MAX 965000 608
82.67%  89.33% 0...10 90.43%  94.39%
13.33%  10.67% 10...100 7.38% 5.43%
2.67 % 100...200 0.38% 0.12%
1.33% 200...500 0.29 % 0.05 %
500...10° 0.25% 0.01%
103...106 1.04 %
> 106 0.23%

Table 2.6: Orthogonality levels |Q*Q —1| of DSTEMR compared to XMR, as multiples
of ne,. The results were capped at 10°, meaning the .23% from Synth exceeding
that for DSTEMR were not included in the upper statistics.

Recall that we took deliberate care to ensure that all the bidiagonal matrices
B in the testsets have in common that the corresponding tridiagonal problems
B*B are already properly preprocessed. Hence we can state that DSTEMR, hypo-
thetically confronted with the exact B*B, would not change the matrix anymore
but just shift it to get a positive definite root, which might well be B. Thus
DLARRYV is called within the limits it was designed for.

There is one additional step DSTEMR applies before calling DLARRV: it perturbs
the data of the root representation by small random amounts of O(e,). This
technique was shown in [20] to be an effective countermeasure against too deep
trees for some kinds of glued matrices. Again we mimic the behavior of DSTEMR
by perturbing the entries of B before passing them to XMR or DLARRV; this does not
change the fact that both will start with exactly the same root representation. Of
course we perturb the root representation before computing the initial eigenvalue
approximations.

Numerical Results

Now come the actual results of the tests. Tables 2.6 and 2.7 depict the orthogonal-
ity levels and residual norms of both methods XMR and DSTEMR on both testsets.
A first impression is that both handle the problems in Pract well. It becomes
evident that the hard cases are indeed in Synth, and here is also where our efforts
to improve reliability for XMR show effect. There are not too few cases in there
for which DSTEMR does not produce satisfactory results.
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Pract Synth
75 cases RESID 19240 cases
DSTEMR XMR DSTEMR XMR
0.18 0.21 AVG 1.01 0.37
0.02 0.05 MED 0.03 0.09
1.54 3.10 MAX 5228 96.5
96.00 % 97.33% 0...1 98.79 % 88.24 %
4.00 % 2.67% 1...10 1.16 % 11.75 %
10...100 0.01%
> 100 0.05%

Table 2.7: Residual norms ||[B*Bq — qA|| of DSTEMR compared to XMR, as multiples
of ||B*B||néo.

The natural question is if we did buy the increased robustness of XMR with
decreased efficiency. To answer that question we have compiled detailed profiling
data in Table 2.8.

MR3-based methods spend virtually their whole execution time doing one of
four kinds of factorizations:

A) compute Sturm counts for bisection,

p
(B) compute twisted factorizations during the RQI for singletons,
(C) compute shifted representations.

There is a fourth kind, namely further twisted factorizations to compute envelope
information, but those really apply only to XMR.

The first three rows of Table 2.8 contain information about the number of
steps for each kind. To obtain these numbers for DSTEMR we took the public,
official code from [2] and instrumented it manually. For each test problem, the
number of executed steps was determined and divided by n, to get an average
number of steps per computed eigenvalue. Then we accumulated average, median
and maximum information of these results over the whole testset. For instance,
the table conveys that for any case in Pract, DSTEMR can be expected to take
about 14.03 bisection steps per eigenvalue, and not more than 48.56. Note that
these counts do not include the initial refinement of root eigenvalues, since we
mentioned above that those are computed beforehand to full precision using dqds.

Now that we know what the data in the first three rows is supposed to mean,
we see that our implementation XMR achieves its better accuracy doing in fact
less work. In particular XMR requires significantly fewer bisection steps, due to
the redesigned bisection scheme and the earlier switch to RQI. But the number
of RQI steps is only minimally larger on average, and even lower in the worst
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case, which comes from the optimized tolerances. Clearly XMR tries more shift
candidates—in fact nearly twice as many as DSTEMR does. But the overhead is
minimal considering the whole amount of tries for shifts in relation to bisection
and RQI steps.

At this point we would love to give timing results, but since our code has
not been optimized yet we cannot do that. Instead we propose an abstract cost
measure to get a feeling for the performance. We took the accumulated numbers
of steps for each case and weighted them according to the relative cost of each
step, where a single bisection has the weight one. The remaining weights we
estimated by considering mainly the divisions involved, so the number of shift
tries in DSTEMR was weighted by about two, and RQI steps as well as the shift
tries in XMR were weighted by a little more than three. Looking at the data in
the central row, we would therefore deduce that for any problem in Pract, XMR
has an expected overall runtime equivalent to doing 16.96 bisection steps per
eigenvalue. Note that the stated cost for XMR seems too high compared to the
counts in the upper three rows. This is because the additional factorizations for
envelope computations were of course included in the overall cost estimate, but
are not represented in the counts.

These are estimates at best, so the stated costs are to be taken in spirit only.
Nevertheless we believe they will prove to be quite faithful indicators for the real
situation.

Assuming for now the cost-measure is not completely off, we thus can expect
an optimized version of XMR to be about 30% faster than DSTEMR across the board.
The bottom three rows apportion the costs to the three major subtasks of dealing
with singleton eigenvalues, bisection for classification and refining clusters, and
finding shifts. This data clearly conveys that we reinvested some of the time that
was saved from bisection and RQI into finding better shift candidates.
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Pract Synth
DSTEMR XMR DSTEMR XMR
14.03n 7.28n | AVG | 24.70n 14.50n
# bisection steps 7.38n 3.90n |MED| 33.05n 17.17n
48.56n 25.13n | MAX| 65.5Tn 42.00n
1.92n 2.09n | AVG 1.89n 2.17n
# RQLsteps 1.87n  1.99n |MED| 2.00n  2.16n
(no fallback bisection)
4.36n 3.0ln |MAX 3.87n 3.78n
0.25n 0.55n | AVG 0.32n 0.78n
# tries for shifts 0.22n 0.46n | MED 0.33n 0.67n
1.05n 2.33n | MAX 1.97n 2.41n
vimated cost 21.37n 16.96n | AvG | 31.21n 25.5Tn
estimated cos
(as plain Sturm counts) 17.43n 13.75n | MED | 40.62n 28.95n
63.26n 44.92n | MAX| 81.23n 58.59n
biscction to classif 42% 30% AVG 59% 43%
. bisection to classify
& refine clusters 47% 29% | MED 80% 58%
85% 60% | MAX 91% 75%
; f alet 57% 53% | Ava 40% 43%
o refine singleton
ews & compute vectors 52% 44% MED 19% 29%
100% 100% |max| 100% 100%
o determi 1% 17% | AVG 1% 14%
... to determine en-
velopes € find shifts 1% 14% | MED 1% 15%
5% 48% | MAX 6% 49%
Table 2.8: Efficiency of DSTEMR compared to XMR.
Pract Synth
DSTEMR XMR DSTEMR XMR
126 132 AVG 24 25
Number of nodes in the 98 98 MED 5 5
tree
1176 1313 MAX 175 161
1.47 1.46 AVG 1.3 1.26
Depth of tree 1 1 MED 1 1
4 4 MAX 14 )
Mazimal # of RQI 6.93 3.44 AVG 3.98 2.94
steps  for any single 7 3 MED 3 3
eigenpair 12 7 MAX| 12 8
Maximal ﬁnal sine- 1806”60 10.3n€0 AVG 2.2”60 1077;60
bound |v|/(||q|lgap) for 1.96n¢, 4.2ne, |MED| 1.2ne, 3ne,
a computed vector 408n€,  98.0ne, |MAX| T765nes  583ne,

Table 2.9: Some additional statistics for comparison of DSTEMR and XMR.




Chapter 3

MR3 for the Bidiagonal SVD

The singular values o; of J are known [...] to be related to the eigenvalues of the 2n x 2n
matrix J = [...], whose eigenvalues are just +0; and —o; for i = 1,2,...,n.

The calculation of the eigenvalues of J is simplified conceptually by a transformation to
tridiagonal form via a permutation similarity which will be exhibited below.

— GENE GOLUB and WILLIAM KAHAN,
Calculating the Singular Values and Pseudo-Inverse of a Matrix (1965)

The Singular Value Decomposition (SVD) must be regarded as (one of) the
most fundamental and powerful decompositions a numerical analyst has at his
or her disposal. This is partly due to generality, since every complex rectangular
matrix has an SVD, but also to versatility, because most problems just dissipate
once the SVD of a certain related matrix can be computed. Applications range
from pure theory to image processing.

The principal algorithm for computing the SVD of an arbitrary dense complex
rectangular matrix is reduction to real bidiagonal form using unitary similarity
transformations, followed by computing the SVD of the obtained bidiagonal ma-
trix. The method to do the reduction was pioneered by Golub and Kahan [33,34].
Later improvements include reorganization to do most of the work within BLAS3-
calls [5,6,50].

We call the problem to compute the singular value decomposition of a bidiag-
onal matrix BSVD. There is a long tradition to solve singular value problems by
casting them into related symmetric eigenproblems. For BSVD this leads to a va-
riety of symmetric tridiagonal eigenproblems. It is then natural and tempting to
solve these using the MR? algorithm, to benefit from its many desirable features.
How to do so stably and efficiently is the focus of this chapter.

At least in passing we would like to mention that an alternative and highly
competitive solution strategy for the SVD was only recently discovered by Drmac
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and Veseli¢ [21,22]. They revived the ancient Jacobi method and found a way
to overcome its inherent stability issues, thus skipping bidiagonal reduction alto-
gether.

Outline. In §3.1 we specify the problem to be solved formally, introduce the
associated tridiagonal problems, and set up some notational adjustments. The
focus of §3.2 is using MR? to solve the eigenproblems associated with the normal
equations, and we study the arising problems in detail. Invoking MR? on sym-
metric tridiagonal matrices of even dimension that have a zero diagonal, so-called
Golub-Kahan matrices, will then be investigated in §3.3. The remaining two sec-
tions are devoted to the coupled approach for the problem BSVD, which consists
of using MR? on the normal equations and the Golub-Kahan matrix simultane-
ously. The all-important coupling relations that make this possible are derived
in §3.4, after which §3.5 contains the presentation and study of the resulting
algorithm MCR?. Finally, §3.6 contains numerical experiments to evaluate our
implementations.

The material in this chapter is not entirely new, but builds on pioneering work
by Benedikt GroBer and Bruno Lang [35-37]. We regard our main contributions
to be the following;:

e A thorough theoretical study to explain the problems with MR? on the
normal equations. Existing explanations before were mostly experimental
in nature.

e For a long time the standing opinion was that using MR?® (or any other
TSEP-solver) on the Golub-Kahan matrix was fundamentally flawed. We
will refute that notion, at least with regard to MR?. Indeed we will pro-
vide a complete proof, including error bounds, showing that just a minor
modification makes using MR? on the Golub-Kahan matrix a valid solution
strategy for BSVD.

e The coupled approach has been significantly revised and simplified since its
original conception. Some of this work has been published in [72]. Further-
more we can now provide a rigorous proof of correctness and give concise
error bounds.

e The coupling relations are presented in more detail, with a new proof. We
exhibit the crucial dependence on an ominous property called a nearly con-
stant diagonal and also discuss how to couple arbitrary twisted factoriza-
tions stably in practice.

e We stumbled upon a subtle error in the proof of Theorem 5.2 in [37]. So
far we were not able to repair it, but the revised coupled approach lets us
skirt having to use the claim for now.
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3.1 Basics
3.1.1 The Problem

Throughout this chapter we will keep one particular upper bidiagonal matrix
B € R"™" fixed and in focus. We name its diagonal entries a; and its offdiagonal
elements b;, so that

B = diag(as,...,a,)+diag, ,(b1,...,by_1). (3.1)
The goal is to compute the full singular value decomposition
B = UXV",
(3.2)
where U*U=V*'V=I| and X =diag(oy,...,0,) witho; <--- < 0,.

The columns u; = U(:,4) and v; = V(:,7) are called left and right singular vectors,
respectively, and the o;’s are the singular values. Note that we do break with
the convention to order the singular values descendingly; the justification is to
simplify the transition between BSVD and TSEP and will become apparent soon.
Taken together, (o;,u;,v;) form a singular triplet of B.

Similarly to TSEP, we have concrete requirements in mind that any algorithm
to solve BSVD has to meet. The computed singular triplets (a;, U;, v;) should enjoy
numerical orthogonality in the sense

max {|U*U — I|, [V*V = |} = O(ne,), (3.3)
where |-| is meant componentwise. Furthermore we desire small residual norms,

In the literature the latter is sometimes stated as the singular vector pairs being
“(well) coupled”. We avoid this phrase as the term coupled will be embodied with
a related, but subtly different meaning later in this chapter.

Singular Values to high relative accuracy

The monumental paper [12] established that every bidiagonal matrix (represented
by entries) determines its singular values to high relative accuracy.

At the moment, the state-of-the-art for computing singular values is the dqds-
algorithm by Fernando and Parlett [30,64], which builds upon [12] as well as
Rutishauers’s original qd-algorithm [67]. An excellent implementation of dqds
is included in LAPACK in the form of routine xLASQ1. Alternatively, bisection
could be used, but this is normally much slower—in our experience it becomes
worthwhile to use bisection instead of dqds only if less than ten percent of the
singular values are desired (dqds can only compute all singular values at once).
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The condition (3.4) alone does merely convey that each computed &; must
lie within distance O(]|B||ne,) of some exact singular value of B. A careful but
elementary argument based on the Gap Theorem 1.21 (applied to the Golub-
Kahan matrix, see below) shows that (3.3) and (3.4) combined actually provide
for absolute accuracy in the singular values, meaning each computed &; lies within
distance O(||B]|ne,) of the exact o;. To achieve relative accuracy, a straightfor-
ward modification is just to recompute the singular values afterwards using, for
example, dqds. It is clear that doing so cannot spoil (3.4), at least as long as a;
was computed with absolute accuracy.

The recomputation does not even necessarily be overhead; for MR3-type al-
gorithms like those we study in this chapter one needs initial approximations to
the singular values anyway, the more accurate the better, so there is actually a
gain from computing them up front to full precision.

3.1.2 Associated Tridiagonal Problems

There are two standard approaches to reduce the problem BSVD to TSEP, involving
three different symmetric tridiagonal matrices.

The Normal Equations

From (3.2) we can see the eigendecompositions of the symmetric tridiagonal ma-
trices BB* and B*B to be

BB* = UX?U*, B*B = VX2V~ (3.5)
These two are called normal equations, in deference to the problem of linear least

squares. It will be useful to know how the individual entries of BB* and B*B can
be expressed using those of B:

BB* = diag(aj +07,...,a0_; +b._1,a;)
+ diagil (azbl, NP ,anbn_l), ( )
3.6
BB = diag(aj,a3 +07,...,ap + b2 )

+ diagﬂ (Cl1b1, Ce ,an_lbn_l) .

The Golub-Kahan Matrix

Given a bidiagonal matrix B we can go to a symmetric eigenproblem of twice the

size by forming
0 B
o o) 37)
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which is sometimes called the Jordan-Wielandt form [28,47,68]. If B has the
singular value decomposition B = UXV*, then B* = VXU*, leading to the eigen-
decomposition

o Bl [ [-% o], . L, Juwvu
AR R R R T R

Note that in this formulation the negative eigenvalues are ordered descendingly.
If we assume the o; are simple, J is unique up to reordering and negating columns.

The crucial idea first formulated in the seminal paper [33] is that the Jordan-
Wielandt form can be permuted to become tridiagonal. To this end define P to
be the permutation matrix on R?® which maps any x € R?" to

Pox = [x(n+1),x(1),x(n+2),x(2),...,x(2n),x(n)]", (3.9)

ps

or, equivalently stated,
Prox = [x(2),x(4),...,x(2n),x(1),x(3),...,x(2n — 1)}* (3.10)

The expression (3.9) motivates why P, is called a perfect shuffle permutation.
Symmetric application to the rows and columns of the Jordan-Wielandt form
yields

0 B].,
Tax(B) = Pm[B* O]Pm, (3.11)

the Golub-Kahan (GK) matriz or Golub-Kahan form of B. As far as we know this
name was coined by Fernando in [28]. A short calculation verifies that Tgk(B)
is indeed tridiagonal with a zero diagonal and the entries of B interleaved on the
offdiagonals, that is,

TGK(B> = diag:l:l(ala bi,az,be, ..., an-1,bp_1, an)-

From (3.8) we then see that the relationship of the eigenpairs of Tk (B) and the
singular triplets of B is:

(o,u,v) is a singular triplet of B with |Ju]| = ||v|| = 1.

= (3.12)

(+o,q) are eigenpairs or Tk (B), where ||q|| =1, \/§q =P, L:u} )
v

The interplay between the vectors u, v and q is that v makes up the odd entries
in q and u the even ones:

V2q© = [v(1),u(1),v(2),u(2),...,v(n),u(n)]. (3.13)
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lullsin e

¥

q, [l =1 " /|| cos u

Figure 3.1: Situation for the proof of Lemma 3.1. The global setting is on the
left, the right side zooms in just on the u-components. Note that in general ¢, # @
and r, will not be orthogonal to u, nor to u’.

It will frequently be necessary to relate rotations of GK-eigenvectors q to ro-
tations of their u- and v-components. This is actually rather straightforward and
captured in the following lemma. The formulation has been kept fairly general;
in particular the permutation P is left out, but the claim does extend naturally
if it is reintroduced.

Lemma 3.1. Let q,q" be non-orthogonal unit vectors that admit a conforming

partition
/
q= H q = M, u, v # o.
v v
Let ¢, 1= A(U, u’), Yy 1= Z(V,V,) and o = Z(q,q’). Then

mass {Jullsin ey, vl sin @, b < sin

max { [/l = lull], [Vl = vil| }

sin + (1 — cos )

IN

Ccos

Proof. Define r such that

u’ cos + ru]

u /
= = qgcosp+r =
q {v} 4 cose {v’ cosp +r,

The resulting situation is depicted in Figure 3.1. Consequently,
lullsing, < [Ir]l < [I¥ll = sine.

Now u’cosp = u — r, implies (v — u)cosg = (1 — cosp)u — r,. Use the reverse
triangle inequality, ||u|| < 1 and cos¢ # 0 to obtain the desired relationship for
|u’||. The claims pertaining to the v-components are shown analogously. O

Application to a given approximation q' for an exact GK-eigenvector q merely
requires to exploit |[ul| = [|v]|] = 1/v/2. In particular, the second claim of
Lemma 3.1 will then enable us to control how much the norms of v’ and v’ can
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deviate from 1/4/2, namely basically by no more than sin ¢ 4 O(sin? ¢), provided
@ is small.

A nice exploit of the connection between a bidiagonal B and the associated
Tk (B) gives an elegant alternative proof for the fact that B determines its SVD
to high relative accuracy. In the context of Chapter 2 we can state this as saying
that the offdiagonal entries of a symmetric tridiagonal matrix with zero diagonal
form an RRR.

Here we only want to sketch the main idea for a proof. Lemma 2.20 showed
that an entrywise perturbation B ~ B to a bidiagonal matrix can be written in
multiplicative form B = XBY with diagonal matrices X and Y. This transcends
to an outer perturbation of the Golub-Kahan matrix since

TelB] = P, K 3} P;.Tox(B)P,. [ij 3] p:.
Then the perturbation theory from §1.4.3 can be put into play. Theorem 1.30
allows to bound the relative change in the singular values and Theorem 1.31
controls the rotation effected on the GK-eigenvectors. The latter can be trans-
lated to rotations of the singular vectors using Lemma 3.1 above, together with
Lemma 3.9 which will come below.

Eisenstat & Ipsen [23] use basically the outlined approach to establish their
comprehensive perturbation results for singular values and vectors. The original
proof given by Demmel & Kahan [12] is of a more direct nature and gives in fact
sharper bounds, but they execute it only for the singular values.

Black Box Approaches

Once the associated tridiagonal problems have been identified, essentially the
problem BSVD seems to collapse, as it becomes reducible to TSEP. Two basic
strategies come to mind.

First, we could employ algorithm MR? to compute eigendecompositions of
BB* and B*B separately. This gives both left and right singular vectors as well as
the singular values (twice). A slight variation on this theme would compute just
the vectors on one side, for example BB* = UX2U*, and then get the rest through
solving Bv = uo.

Alternatively we can compute the SVD via (3.12), extracting singular triplets
from computed eigenpairs of T, (B). Here the ability of MR? to compute partial
spectra comes in handy, as we need only concern ourselves with one half of the
spectrum of Tgk(B).

These approaches have come to be called black-box approaches, as they are
based on employing MR? as is, without need for any deeper modifications to its
internals. Note that in both cases, MR? would offer to compute only a subset of
singular triplets; current solution methods for BSVD like DC or QR do not provide
this feature.



124 MR? for the Bidiagonal SVD

So, one could think the problem BSVD is solved. But, alas, the black-box
approaches do all run into major numerical problems at some point. These were
investigated and reported by Grofer [35]. We will describe his findings and pro-
vide a deeper theoretical analysis in §3.2 and §3.3.

Couplings

The fundamental idea originated by Grofer [35] was that the problems with the
black-box approaches can be bypassed if one runs MR? on the Golub-Kahan
matrix and the normal equations simultaneously. What makes this possible is
that translates of these three matrices are intimately related, or coupled, provided
the shifts are compatible. This insight forms a cornerstone of this chapter and
permeates §3.2—83.5, although it will not fully enter the stage before §3.4, where
we provide the detailed theoretical background. Right now we want to give just
a short preview.

As eigenvectors are shift-invariant, the connection between eigenpairs of the
normal equations and the Golub-Kahan matrix that was expressed in (3.5) and
(3.12) remains intact after shifting. This is an insight worth capturing.

Definition 3.2 (Coupled Representations). Let M, M and M be representations
of symmetric tridiagonal matrices such that there is an upper bidiagonal matrix
B and a scalar i > 0 with

A

M = BB* — &%, M = Te(B) — fi, M = B*B — zi%.
Then M, M and M are (perfectly) coupled. O

Since the diagonal of T« (B) is zero, the diagonal of M equals —fi everywhere,
i.e., is constant. This aspect will become a repeating theme on the following
pages.

The next definition relaxes the concept of coupled representations and casts
it into a more MR?-conform setting, where eigenvalues and invariant subspaces
are regarded locally.

Definition 3.3 (Coupled Eigensystems). Let M, M € R™*" and M € R2*2" be
representations of symmetric tridiagonal matrices such that, for all indices ¢ from
aset I C{1,...,n}, the following conditions hold:

(i> )\z“\v/l] - /\Z[I\A/I]

(ii) If u; and v; are ith eigenvectors of M and M, respectively, then P s { ui]
Vi

are eigenvectors of M.

Then the local eigensystems I of M, M and M are (perfectly) coupled. O
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BB* Tek(B) B*B
— i —L —p?
DL o250 —o LDL" o500 (B[
Ji = —dydy iy —dy;_1dy; = Az'
l; = —Lyilai —lyi1ly; = éz

Figure 3.2: The coupling relations at work for standard LDL* bidiagonal factori-
zations.

Obviously, coupled representations have complete coupled eigensystems. Note
that we avoided using indices of M explicitly, because they might be non-conform
to those of M and M, due to the differing dimensions. We will introduce a suitable
indexing convention further below.

The palpable feature of coupled representations is that their defining data el-
ements are connected. If twisted factorizations are employed one can relate them
in an elementary and stable way involving only multiplications and divisions, us-
ing the coupling relations that will be developed in §3.4. As appetizer, Figure 3.2
depicts how they work for plain top-to-bottom bidiagonal factorizations, cf. (3.24)
and (3.25).

Thus, not only are the eigenvectors of an exact GK-translate composed of both
the left and the right singular vectors, but the representation data itself carries
the full information for the corresponding translates of the normal equations.

Notation

The preceding remarks about couplings already indicated that we will constantly
be dealing with representations that are translates of one of our three roots BB*
(“u-side”), B*B (“v-side”) or T¢k(B) (“central”). To streamline working within
these three “layers” we will adjust our notation for this chapter somewhat.

As major step, we use consistent accents to differentiate the layers: translates
of BB* and B*B will be denoted as M and |\7| respectively, and only descendants
of TGK(B) will be written as plain M. These accents transcend to eigenvalues,
thus M has eigenvalues J\; and M has )\;. To indicate perturbed quantities, we
replace ~ by ~and " by ~

There is no need to use separate entities for eigenvalues of Tk (B), since those
are just the singular values of B. Because of this it is useful to retain their
indexing: the Golub-Kahan Matrix Tk (B) and all its shifted descendants will
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The Three Layers

BB*  Tux(B) B*B
representation M M Y
perturbed rep. M M M
eigenvalues 5\2- At 5\2
eigenvectors u; Q- Vi
inv. subspaces U Qir Vi

Table 3.1: Notational adjustments to handle representations associated with the
three root matrices.

have their eigenvalues indexed from —n to n (omitting 0), i.e.,
)\*’L[TGK<B)} = —0y, )\ATGK(B)] = o0y,

and naturally the same indexing applies to eigenvectors.

Concerning eigenvectors, we break with using q and Q;[-] for everything but
only continue to use them for the GK-layer. For the other two we reserve letters
u,U to convey the same meaning on the BB*-side and v,V for the B*B-side. This
has the benefit of being conform with the structural relation (3.13) and keeps the
singular vector semantic, but note that we may use u; for some eigenvector of an
M without u; being an exact left singular vector of our B, since the computation
of M might not have been exact.

A summary of the notational changes is given in Table 3.1.

3.1.3 Setting the stage

Just as was done for the tridiagonal problem in Chapter 2, it will be worthwhile
to preprocess the given input matrix B with regard to some points. For TSEP,
it sufficed to deal with the offdiagonal elements, but now all entries of B are
involved with the offdiagonals of BB*, B*B and T.x(B), which makes a sensible
preprocessing a bit more difficult.

Should the input matrix be lower bidiagonal, work with B* instead and swap
the roles of U and V. Multiplication on both sides by suitable diagonal signature
matrices gets all entries nonnegative, and we can scale to get the largest elements
into proper range. Then, in order to avoid a whole plethora of numerical problems
later on, it is highly advisable to get rid of tiny entries by setting them to zero
and splitting the problem. To summarize, we should strive for the analogon to
(2.3), namely

6||Bl] < min{a;, b;}. (3.14)

Note that this condition is equivalent to (2.3) for Tk (B).
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Splitting a bidiagonal matrix to attain (3.14) by setting all violating entries to
zero is not that straightforward—there are two issues which must be addressed.

If an offdiagonal element b, is zero, B is reducible and can be partitioned
into two smaller bidiagonal problems. If a diagonal element a, is zero, then B
is singular. An elegant way to “deflate” one zero singular value is to apply one
sweep of the implicit zero-shift QR method, which will yield a matrix B’ with

L, =1U,_, =a, =0,cf [12, p. 21]. Thus the zero singular value has been
revealed and can now be removed by splitting into three upper bidiagonal parts
Bi.-1, Bin—1 and B, ,, the latter of which is trivial. An additional benefit of the
QR—sweep is a possible preconditioning effect for the problem [35], but of course
we will also have to rotate the computed vectors afterwards.

The second obstacle is that using (3.14) as criterion for setting entries to zero
will impede computing the singular values to high relative accuracy with respect
to the input matrix. There are splitting criteria which retain relative accuracy,
for instance those employed within the zero-shift QR algorithm [12, p. 18] and
the slightly stronger ones by Li [51,64]. However, they do naturally allow for less
splitting than (3.14).

To get the best of both, that is, extensive splitting with all its benefits as well
as relatively accurate singular values, we propose a 2-phase splitting as follows:

1) Split the matrix as much as possible without spoiling relative accuracy. This
results in a partition
B
Brs = - s
B\
which we call the relative split of B.

2) Split each block B further aggressively to achieve (3.14), resulting in

B

B = Ci=1,....N.
BL™

We denote the collection of subblocks B{? as absolute split of B.

3) Solve BSVD for each block in the absolute split independently by invoking the
desired MR?-based method.

4) Use bisection to refine the computed singular values of each block B to high
relative accuracy with respect to the father-block B in the relative split.

Since the singular values of the blocks in the absolute split retain absolute accu-
racy with respect to B, the requirements (3.3) and (3.4) will still be upheld. In



128 MR? for the Bidiagonal SVD

ALGORITHM 3.1 MR? as black box on the normal equations

Compute specified singular triplets of bidiagonal B using the MR?
algorithm separately on BB* and B*B.

Input: Upper bidiagonal B € R"*". Index set [y C {1,...,n}.
Output:  Singular triplets (a;, U;, V;), @ € lo.

1:  Execute Alg. 2.1, but take My := BB* using the entries of B directly
as root representation in step 1.

This gives eigenpairs (\;, [i;), 7 € I.

2:  Execute Alg. 2.1, but take My := B*B using the entries of B directly
as root representation iAn step 1.
This gives eigenpairs (\;,V;),1 € Io.

3:  Choose one of the following methods to determine 7;:

(a) take some combination of ] /2 and 5\11/ 2
(b) recompute to high relative accuracy (bisection or dqds)
(c) setg; := TBY;

fact, if dqds is used to precompute the singular values (cf. §3.1.1), one can even
skip steps 1) and 4), since the singular values that are computed for the blocks
of the absolute split are discarded anyways. The sole purpose of the separate
relative split is to speed up the refinement in step 4).

We want to stress that we propose the 2-phase splitting also when only a subset
of singular triplets is desired. The additional obstacle is to get the association of
triplet-indices between the blocks consistent. This can be done efficiently, but it
is not entirely trivial.

3.2 MR? and the Normal Equations

Arguably the most straightforward approach to tackle BSVD would be to just call
MR? twice, on BB* for the left and on B*B for the right singular vectors. As BB*
and B*B are already positive definite bidiagonal factorizations, we would naturally
take them directly as root representations, omitting the amateurish mistake to
form either one explicitly. The resulting method is summarized in Algorithm 3.1.

In short, this approach is a bad idea, as the results of the following numerical
experiment do convey.

Ezperiment 3.4. We realized Algorithm 3.1 within our software framework by
calling DSTEMR from LAPACK 3.2.1. For step 3 we chose the average in option (a),
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O1,...,012 ‘ 013 014 015 016 ‘ 017,---,020

—044/100 09  1-107 14107 11 | =100-0; 4

Table 3.2: Singular value distribution of test matrix in Experiment 3.4.

but this makes no essential difference for the results below (we checked).

To facilitate explicitly forcing the root representations, we called again the
internal subroutine DLARRV directly, just as we did for the tests in §2.5. For
the left singular vectors we employed (BB*)P = (BfP)*BfiP to obtain an upper
bidiagonal factorization as root; the computed vectors then had to be reversed
afterwards.

We used LAPACK’s test matrix generator DLATMS to construct a bidiagonal
matrix with singular values that are distributed as shown in Table 3.2, ranging
between 107 and 100. We were deliberate in ensuring that the resulting bidi-
agonal matrix is well within numerical range, so that DSTEMR would neither split
nor scale either one of the tridiagonal problems BB* or B*B.

The results are shown separately for each singular triplet in Figure 3.3. The
plots a) and ¢) convey that the two eigenproblems BB* and B*B are solved to sat-
isfaction. But the residual norms for the SVD, shown in plot d), are catastrophic.
We observe that the problem seems to become worse for larger singular values,
but only those that are computed at deeper levels—in particular note that the
residuals for o6 and g9y, which are both large, are just fine. O

The remainder of this section is devoted to provide an in-depth study to
explain the problems exhibited by the experiment. Somewhat down the road,
Theorem 3.19 in §3.5.2 will also show why singular triplets that are handled at
the root are never cause for concern, regardless of their size.

The Fundamental Problem

To understand what is going wrong with Algorithm 3.1 we need to understand
MR? better, in particular with respect to what it promises to do and—even more
importantly—what not.

Provided all requirements are fulfilled, MR? delivers (numerically) orthonor-
mal bases for (nearly) the invariant subspaces belonging to each cluster of eigen-
values; indeed this holds for each node in the tree. This is actually just a combi-
nation of Lemma 2.13 and Theorem 2.14, as the first conveys that the computed
vectors are indeed “close” to the invariant subspace of the cluster they belong to,
and the same argument that was used for proving the latter provides orthogonal-
ity.

However, there is no guarantee at all how the computed basis relates to the
exact basis of the subspace (which is unique up to signs, as all eigenvalues are
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Figure 3.3: Data for Experiment 3.4, on a per-vector basis, i = 1,...,20.

distinct). And with regard to Gap Theorem 1.21, it must be clear that no such
guarantee could ever be given because the basis of an invariant subspace belonging
to a cluster of eigenvalues is not well determined in the first place, with the
degree of indetermination being inversely proportional to the (relative) width of
the cluster. Note that this is true even if a relatively robust representation is
employed. Note also that this in no way contradicts the claim that the computed
vectors have small residual norms. In a numerical sense, a very tight cluster of
eigenvalues does behave just like a bunch of multiple eigenvalues, with the concept
of a unique basis for the associated eigenspace being moot.
To summarize, we can state the following informal property:

For each cluster, MR® computes an orthonormal basis that is more or less
“random”.

Of course it is not truly random; after all, MR? is deterministic. But the anal-
ogy does help in understanding how MR? behaves. The “randomness” actually



3.2 MR? and the Normal Equations 131

stems directly from the perturbations arising from executing the shifts, and as
we generally do not have any control over those, the results do appear random.

The fundamental problem with the normal equations becomes clear: The left
and right singular vectors are computed independently and do not necessarily
bear any relation to the exact ones; in fact they might be completely “mixed up”
for clusters of tight singular values. Thus, there is no reason why they should fit
together to produce good residuals for the SVD. In [37, sec. 4.5] GroBer & Lang
give a very appealing view of this situation based on the geometric interpretation
of the SVD using (hyper-)ellipses. We will not reproduce it here, but would
instead urge the reader to refer to the source directly.

The local left- and right eigenvalues

The problems involved with Algorithm 3.1 were observed by Grofler in his the-
sis [35]. He also noted that the SVD-residuals tend to become worse for the larger
singular values, which we already saw in Experiment 3.4.

As a next step, Grofler analyzed how the representation trees of the two runs
on the roots BB* and B*B do relate. As those two have identical eigenvalues,
in exact arithmetic one could choose identical shifts and the local eigenvalues at
each pair of corresponding nodes in the trees would remain identical. However,
it turns out that the rounding errors inherently involved in going from father to
child do destroy this harmony; Example 4.5 in [37] clearly demonstrates that the
eigenvalues of the nodes just one level down from the roots may in principle differ
in all significant digits.

The following thought experiment will cast more light on this facet (we gave
this in similar form [72], see also Satz 3.1 in [35]). Assume that, on the first
level of the representation trees of BB* and B*B, a cluster o2, is encountered.
Furthermore, in order to proceed to the next level and break up this cluster, let the
same shift 7 &~ 02 be chosen close by, and let the associated child representations

BB*—7 = M, B'B—7 = M (3.15)

form RRRs for their respective eigenpairs c : d.

Now, in exact arithmetic, for the local eigenvalues \; of M and A; of M, we
would have \; = 0? — 1 = \;, where 0; = 0;[B]. In practice, however, we only
have mixed relative accuracy, meaning the relations (3.15) can only be expected
to hold for small erps of the father- and child-representations. As we assume

RRRs, the actual relationship between 5\1 and \; will therefore be of the form

N(l+e) = ol(l+e)—T,
MN(l+ey) = of(l+e)—T,

with suitable small constants ¢; = O(ne,). If the cluster is tight and the shift is

chosen close to it (02 ~ 02 ~ 7), we will in general have o2 > max{| ], |\;|},
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i
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u; q+i V;

Figure 3.4: Situation for the theoretical analysis as to why computing the left and
right singular vectors separately cannot work: M is exactly shifted from Tk (B),
its local eigensystem I is coupled to M and M.

for i = ¢,...,d. Then it is clear that the absolute deviation between the local
eigenvalues can become as large as

X — N = O(o?ne,). (3.16)

In summary, the independent computations of M and M will cause a slight
difference in the implied initial relative perturbations of the o7 (g5 # &4). Then
the cancellation (67 & 7) which is implicit—and desired—in shifting close to a
cluster magnifies this small deviation up to (3.16).

Clearly, (3.16) shows that, for a tight cluster and a close shift, we cannot
expect any kind of relative similarity between ); and \i. Also it becomes apparent
why the problems with the normal equations tend to happen more for the larger

singular values.

The problem in detail

The observation that the local eigenvalues might not be close in a relative sense is
revealing and hints at what goes wrong. But it does not explain the bad residual
norms for the SVD. Indeed, even if the runs on BB* and B*B were done with
identical shifts and somehow in a way that guarantees close local eigenvalues at
all nodes, one would be hard pressed to actually prove that the computed vectors
fit together well—ourselves we do not deem it contrivable.

We will now develop a deeper theoretical analysis of the problem to provide
more insight into what really goes wrong. It will exhibit that the diverging local
eigenvalues are more symptom than cause.

Assume we have representations M, M and M such that M is an exact translate
of T¢k(B) and their partial eigensystems for an index set I are coupled, as shown
in Figure 3.4. We do not care at all how the outer representations have been
obtained. It could be that they too are exactly shifted from the roots, meaning

\7

M = BB* — 42, M = B*B — ji2, but for the following analysis to apply only
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the fact that the eigensystems are coupled is relevant. Note that this situation
encompasses Algorithm 3.1 for i = 0.

The motivation for allowing f # 0 is as follows. In the next section we will
see that BSVD can be solved using MR? on the Golub-Kahan matrix as long as
all translates are in some sense “ok”. Thus one could be tempted to work with
Tk (B) until problems arise, and only then use the coupling transformations from
§3.4 to switch to the outer layers. The argument in favor of this strategy would be
that the local eigenvalues of M and M have become much smaller due to shifting,
so using the normal equations should be ok now. The following analysis will
expose also this train of thought to be misguided.

Consider some index ¢ € I and let u;, v; be the exact eigenvectors of M and |\7|,
respectively, and q4; the ones of M. Suppose the vectors U and v were computed
using MR? separately on M and M. As was stated before, MR® can only guarantee
that they will be close to the invariant subspaces belonging to I. Thus we can
write them as

D= Gu+r,  rLU, ] =sinZ(U,0) = O(ne, /relgapy (1)),

icl
V= vai +s, slV, Is|| = sinZ(Vr,V) = O(ne, /relgapy, (1)).
el
Again we may assume exactly normalized vectors, |[u]| = ||v|| = 1. The root-level

SVD-residuals can equally well be measured by combining the computed vectors
into g and evaluating that one’s residual for T¢k(B). So we construct

VP G {Ziel §iui + r} (3.17)

b
P Zie[ niVv; +S

defining g. It would have been equally feasible to take —V here, but this makes
no difference. Casting g in terms of T« (B)’s exact eigenvectors

V2qu; = Py, [itﬂ ;o Qi = Q41[M] = Q1 [Tuk(B)] = span{q; | j € £1},
J

reveals \/§P;Sd = w + t, where

W= Z%(&—m)mﬁZ%(é"ﬁm)qi € Qi

il i€l

t = H c Qi

S

Hence, Pps(w + t) is just the unique orthogonal decomposition of V24 along
Qi = Q_1 P 9y, the direct sum of Q_; and Q;. Thus,

sin®Z(Q4r, @) = [[rlP +[Isl]* = sin®Z(U;, G) +sin*Z(Vy, V).
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Now, if we had singletons, |I| = 1, then we could deduce some more information
about g. That is exactly what we will do in the proof of Theorem 3.19 down the
road. However, for the case |I| > 1 we cannot; in particular there is no general
way to bound siné(Q, I d) or sinA(Q I, C_l) separately. And here is the problem,
because a small angle between a vector and an invariant subspace does not imply
small residuals; the following lemma captures in very general terms that the only
realistic bound on the residual is the absolute spread of the eigenvalues.

Lemma 3.5. Let A € R™™" be symmetric. Then for any nonempty index set
I C{1,...,n} one can find a normalized vector x € Q[A] such that

1A = p(x)x]| = 5 (As[A] = Aa[A]).
where p(x) = x*Ax and a = min I, b = max I.
Proof. x:= \/Liqa[A] + \/Liqb[A]. O

Applied to the problem at hand, we see that, if we merely know that the
composed vector g has a small angle to the combined subspace Q4 [TGK(B)],
then the best bound for the residual norm that we can give is in terms of the root
singular values, namely max{|o;| : ¢ € I}, and this is sharp!

The preceding analysis shows two things. First, as the theoretical worst-case
bound for the residuals is the absolute size of the singular values, it explains
why the problems with the normal equations become more pronounced for larger
singular values. Indeed, we have shown that the approach would be perfectly
valid for clusters of tiny singular values (& spdiame, ), but that is not very useful.
And second, it demonstrates why the relationship between the u’s and v’s is so
critical. If those do not fit together, the composed vector q for the Golub-Kahan
matrix can have non-negligible contributions from both spaces Q_; and Q;, and
exactly this is the cause for bad SVD-residuals.

3.3 MR? and the Golub-Kahan Matrix

In this section we investigate the approach to use MR® on the Golub-Kahan
matrix to solve the problem BSVD. The standing opinion for a long time has
been that there are fundamental problems involved which cannot be overcome,
in particular concerning the orthogonality of the extracted left and right singular
vectors. The main objective of this section is to refute that notion.

We start our exposition with a numerical experiment to indicate that using
MR? as a pure black-box method on the Golub-Kahan matrix is indeed not a
sound idea.
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Ezperiment 3.6. We took the same bidiagonal matrix B € R2*20 a5 in Experi-
ment 3.4 (cf. Table 3.2 for the singular values), formed the symmetric tridiagonal
matrix Tk (B) € R%40 explicitly, and called the current MR*-implementation
DSTEMR from LAPACK 3.2.1 to give us the upper 20 eigenpairs (7, g;) of Tek(B).
The singular vectors were then extracted according to

m = V2P’ g;. (3.18)

The results are shown in Figure 3.5. Note that the residual norms for BSVD,
in the sense of (3.4), can be measured in terms of the TSEP-residuals for Tk (B),

since
Bv; — u,0; 0

Tox(B)a, — 8,01 = %[ ) , (3.19)

provided the scaling by v/2 in (3.18) were done exactly.

The plots a) and c) on the left of Figure 3.5 clearly show that DSTEMR does
its job of solving the eigenproblem posed by T¢k(B). But plot b) on the upper
right conveys just as clearly that the extracted singular vectors are far from
being orthogonal. Note the complementing behavior to Experiment 3.4—mnow
the small singular values are causing trouble. Furthermore, plot d) shows that
the u- and v-components have somehow lost their property of having equal norm.
However, note that their norms are still close enough to one that normalizing
them explicitly, instead of the multiplication by /2 in (3.18), would not affect
the orthogonality levels significantly. O

The previous experiment is not special—similar behaviour can be consistently
observed for other test cases with small singular values. There is actually a
rather simple explanation for it: MR? does neither know, nor care, what a Golub-
Kahan matrix is. It will start just as always, by first choosing a shift outside the
spectrum, say 7 S —o,, and compute Tgx(B) — 7 = L DyL§ as positive definite
root representation. From there it will then deploy further shifts into the spectrum
of LyDyL§ to isolate the requested eigenpairs.

What happens is that the first shift to the outside smears all small singular
values into one cluster, as shown in Figure 3.6. Consider for instance we have
|IB|| > 1 and are working with the standard gaptol = 0.001. We can even assume
the initial shift was done exactly; so let )\E&) = o04; — T be the eigenvalues of

LoDyL§. Then for all indices ¢ with o; < 0.0005 the corresponding )\fi) will belong
to the same cluster of L D,Lg, since
(0;—7)— (=0 — 7) 20;

reldist (Ag), Ag) = = ‘— < gaptol.
o; —T o, —T

For singular vectors u; and v;, both of P (ifjj) will be eigenvectors associated

with that cluster. Hence, further (inexact) shifts based on this configuration
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normed by 2||B||ne, normed by ne,
Figure 3.5: Data for Experiment 3.6, on a per-vector basis, i = 1,...,20.

cannot guarantee to separate them again cleanly. Consequently, using MR® as
black-box on the Golub-Kahan matrix in this fashion could in principle even
produce eigenvectors q with ¢dentical u- or v- components.

The problem described is rather easy to overcome. After all we know that
the entries of Tok(B) form an RRR, so the initial outside shift to find a positive
definite root representation is completely unnecessary—we can just take Mg :=
Tk (B) directly as root. For shifting, that is, for computing a child representation
M+ = T4k (B) — p on the first level, a special routine exploiting the zero diagonal
should be employed; if M* is to be a twisted factorization this is much easier
to do than standard dtwqds, see [28,48] and our remarks in §2.4.5. With this
setting, small singular values can be handled by a (positive) shift in one step,
without danger of spoiling them by unwanted contributions from the negative
counterparts. This solution method is sketched in Algorithm 3.2.

Note that we now have heterogeneous representation types in the tree, as the
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Spectrum of Tgk(B):

@ relgap>1 @

—0o, —0.0005 —0i 0 Oi 0.0005 On
T T

T T

VIPLai=() () = V2Phay

Spectrum of LyDyLy = Tex(B) — 7

[ I clustered I ]

—Opn—T —0.0005—7 —0;—T —T ;=T 0.0005—7 On—T
1 1 1 1 1
T T T T

T

VP = [ () () )

Figure 3.6: Why the naive black-box approach of MR? on Tqx is doomed.

root Tex(B) is represented by its entries. In any case, our general setup of MR?
and its proof in Chapter 2 can handle this effortlessly.

One can argue that the approach is still flawed on a fundamental level. Grofer
gives a nice example in [35] which we want to repeat at this point. In fact
his argument can be fielded against using any TSEP-solver on the Golub-Kahan
matrix for BSVD.

Ezample 3.7 (cf. Beispiel 1.33 in [35]). Assume the exact GK-eigenvectors

1 1
1 |(u; 1 1 1 |u; 11 -1
P#< i = —= t = — P* L = — J = —
AN {VJ 2| 1] YT {Vj 21 1/’
-1 1

form (part of) the basis for a cluster. The computed vectors will generally not
be exact, but might for instance be P, Py [9; | q;], where P effects a rotation
(5%2),c®+ s? =1 within the 2-3 plane (thus influencing only the second entries
of the u’s and the first entries of the v’s). We end up with computed singular
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ALGORITHM 3.2 MR? on the Golub-Kahan matrix

Compute specified singular triplets of bidiagonal B using the MR?
algorithm on Tk (B).

Input: Upper bidiagonal B € R"*". Index set [y C {1,...,n}.
Output:  Singular triplets (7;, U;, V;), @ € lo.

1. Execute Algorithm 2.1, but take Mg := T4k (B) as root representation
in step 1, using the entries of B directly.
This gives eigenpairs (7;,;),7 € .

2. Extract the singular vectors via {Hzl = \/§P;Sdi.

Vi

vectors

Vai = | o ovae = | | van = |0 Ve = [0
c+s s—c —1 1

that have orthogonality levels |ufu;| = |viv;| = s*. However, this rotation does

leave the invariant subspace spanned by q; and q; (cf. Lemma 3.9 on the next

page), so if s? is large, the residual norms of g, and q,; would suffer, too. O

That the extracted singular vectors can be far from orthogonal even if the
GK-vectors are fine led Grofler to the conclusion that there must be a funda-
mental problem. Up until recently we believed that as well (cf. p.914 in [72]).
However, we will now set out to prove that with just a small additional require-
ment, Algorithm 3.2 will actually work. This is a new result and shows that
there is no fundamental problem in using MR?® on the Golub-Kahan matrix. Of
particular interest is that the situation in Example 3.7—which, as we mentioned,
should apply to all TSEP solvers on Tg—can be avoided if MR? is deployed as
in Algorithm 3.2. Naturally we need more insights into the workings of MR? to
validate this claim, so for the remainder of this section we have to assume that
the reader is familiar with §2.2.

The following definition will let us control the danger that the shifts within
MR? lose information about the singular vectors.

Definition 3.8. A subspace S of R?"*?" with orthonormal basis (q;);c; is said to
have GK-structure if the systems (u;);e; and (v;);er of vectors extracted according
to

u| ._ * .
|: :| = \/§Ppsqi7 1€ [,

Vi
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are orthonormal each. O

The special property of a GK-matrix is that all invariant subspaces belonging
to (at most) the first or second half of the spectrum have GK-structure. As
eigenvectors are invariant under shifting, this property transcends to any matrix
that can be written as Tk (B) — p for suitable B, which is just any symmetric
tridiagonal matrix of even dimension where the diagonal entries are all identical,
i.e., matrices with a constant diagonal.

The next lemma reveals that the u- and v-components of every vector within
a subspace with GK-structure have equal norm. Thus the actual choice of the
orthonormal system (q;) in Definition 3.8 is irrelevant.

Lemma 3.9. Let the subspace S C R*** have GK-structure. Then for each
se S,

v

V2s = P[> with s = ||su|-
ps S

Proof. As S has GK-structure, we have an orthonormal basis (qy,...,q,,) for S
such that

VP g, = N i=1,...,m.

Thus each s € S can be written as

S=aoa1qr + - + OpQm

Vi [Tt

1Vy +-+ AmVm Sv

Since the u;’s and v,’s are orthonormal we have ||s,||* = Y aZ = ||s,||*. O

Now comes the proof of concrete error bounds for Algorithm 3.2. The addi-
tional requirement we need is that the local subspaces are kept “near” to GK-
structure. We will discuss how to handle this requirement in practice afterwards.

For simplicity we may assume that the call to MR? in step 1 of Algorithm 3.2
produces perfectly normalized vectors, ||g;|| = 1, and that the multiplication by
V2 in step 2 is done exactly.
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Theorem 3.10 (Proof of Correctness for Alg. 3.2)

Let Algorithm 3.2 be executed such that the representation tree built by MR?
satisfies all five requirements on page 55.
Furthermore, let each node (M, I) have the property that a suitable per-

turbation I\N/IGK = erp(M, &cx) can be found such that the subspace QI[I\N/IGK]
has GK-structure.

Finally, let residex and orthex comprise the O(ne,) rhs-bounds from
Theorems 2.10 and 2.14, respectively, and define

A = orthqx + CvecsnfGK/gaptol.
Then the computed singular triplets will satisfy

max{cosé(ﬁi,ﬁj),cosl(\_/i,\_/j)} < WA, i,
max {[[[@] = 1], [[%]| - 1]} < V24 +0(4%),
I’IlaX{HB\_/Z — l_—IiO-iH; ||B*UZ — \_/ZO'zH} S \/§T€S’idGK.

Proof. The fact that all requirements for MR? are fulfilled means that all the
results proven in §2.2 do apply for the computed GK-eigenpairs (7;,;), in par-
ticular we have Lemma 2.13, Theorems 2.10 and 2.14.

We will first deal with the third bound concerning the residual norms, because
that is the easiest. Just invoke the definition of the Golub-Kahan matrix and use
Theorem 2.10 to see

For orthogonality, the approach will be very similar to the one taken during
the proof of Theorem 2.14, but we need Lemmas 3.1 and 3.9 to make the semantic
step from q to u and v. It suffices to focus on just the u-components, as the case
for the v-components is (again) analogous.

Consider indices ¢ and j and let (M, N) be the deepest node in the tree such
that ¢ € I and j € J for different child index sets I,J C N. Recall that the
bound orthex on the right-hand side in Theorem 2.14 is just the worst-case for
the bound from Lemma 2.13, taken over all nodes in the tree. Hence we can state

sin/(Q;[M], §;) < orthex.

As we have postulated that the representation M fulfills Requirement RRR, we
can link @, to the nearby matrix Mgk by

sinA(QI[I\N/IGK], ai) < orthex + Cvecsnch/gaptol = A.
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This means we can find a unit vector q € Q;[Mgy] with sin/ (9,d;) < A.

At this point we invoke that Q;[Mckx] € Qn[Mgk| has GK-structure. By
Lemma 3.9 we can therefore partition

u .
V2q = P, H with [Jul| = [Iv]| = 1.

Let U;[Mcx| denote the invariant subspace spanned by the u-components of vec-
tors in Q7[Mcxk|. Thus u € U;[Mqk] and Lemma 3.1 gives

sinA(L{I[I\N/IGK], ﬁl-) < siné(u,ﬁi) < V24,

as well as the desired property |||G;|| — 1| < v2A + O(A?) for the norms.
Repeat the steps above for j to arrive at

sin/ (UsMaxk], T;) < V2A.

Since QN[|\~/|GK} has GK-structure and I N J = 0, the spaces U1[|\7|GK] and

U;[Msk] are orthogonal. Then an argumentation just like the one used in the
proof of Theorem 2.14 (cf. Figure 2.3) yields Cosé(ﬁi, Uj) < 2V/2A. O

One technical realization following from Theorem 3.10 is that it really does
not matter if we extract the singular vectors as done in step 2 of Algorithm 3.2
by multiplying the g-subvectors by v/2, or if we normalize them explicitly.

We need to talk about the new requirement that was introduced in The-
orem 3.10. It is stated minimally, namely that the representations M can be
perturbed to yield local invariant subspaces with GK-structure. In this situation
we like to say that the subspace of M “nearly” has GK-structure. There might be
a way to specifically test for this property, but at the moment we do not see it.
However, we do know that any even-dimensioned symmetric tridiagonal matrix
with a constant diagonal is just a shifted Golub-Kahan matrix, so trivially each
subspace (within one half) has GK-structure. Let us capture this.

Definition 3.11. If for a given representation of symmetric tridiagonal M there
exists a elementwise relative perturbation

M = erp(M,&) such that M(i,i) = c,

we say that M has a nearly constant diagonal, in short M s ncd, or, if more detail
is to be conveyed, M € ncd(c) or M € ned(c, §). O

Clearly, the precondition for Theorem 3.10 is fulfilled if all representations
in the tree are ncd. Note that a representation being ncd does not necessarily
imply that all diagonal entries are about equal, because there might be large local
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element growth. For example, LDL* can be ncd even if |d;| > [(LDL*)(7,1)| for
some index i, cf. Example 3.13 below.

The usefulness of identifying the ncd-property is that it can easily and cheaply
be verified in practice. Note that the successively shifted descendants of a Golub-
Kahan matrix can only violate the ncd-property if there was large local element
growth at some diagonal entries on the way.

Remark 3.12. Since Theorem 3.10 requires SHIFTREL anyway, execution of the
shifts Tex(B) — = MT to get to level one has to be done with mixed relative
stability. Therefore, all representations on level one will automatically be ncd
and as such always fulfill the extra requirement of having subspaces near to GK-
structure, independent of element growth or relative condition numbers. O

The preceding theoretical results will be demonstrated in action by numerical
experiments in §3.6. Those will confirm that Algorithm 3.2 is indeed a valid
solution strategy for BSvD. However, it will also become apparent that working
with a Golub-Kahan matrix as root can sometimes be dangerous; in fact, the
coupling approach in the next section will suffer from the same problem to some
degree. The reason is that Golub-Kahan matrices are highly vulnerable to element
growth when confronted with a tiny shift.

Example 3.13. Consider for o < 1 the bidiagonal matrix

B = (1 1) with 0'1%@,0'2%2.
(07

Think of o = €,. Shifting Tk (B) by « gives

—a 1
L — LDL*
1 —ao o«
a -«
1—a>  2-a? 142
with D = diag| — a, a,—a a,a+& )
o 1—a? 2+ o2

Clearly there is huge local element growth in D(2). This LDL* still is ncd, but if
we had to shift it again the property would probably be lost completely. O

The thing is that we really have no way to avoid a tiny shift if clusters of tiny
singular values are present. In Chapter 4 an alternative to twisted factorizations
will be presented that is especially suited for shifting Golub-Kahan matrices and
will effectively render the above concerns obsolete.
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3.4 Couplings

In the next section we will describe an MR?-based approach for BSVD that is a
hybrid of using MR? on the normal equations or the Golub-Kahan matrix alone.
The idea has been refined from pioneering work by Grofler & Lang [35-37]. At
its heart lies the insight that translates of the normal equations and the Golub-
Kahan matrix can be linked using so-called coupling relations. Essentially these
stem directly from the elementary formula

o8 - 2 o A _ E{j _BJ {g E} (3.20)
= Ph(Tex(B) — 1) (Tex(B) + 1) Py

The purpose of this section is preparatory groundwork, namely to derive the
coupling relations from first principles.
In [35,36] the coupling relations are presented separately for two cases:

(1) One level down from the root(s), called “positive definite initial matrices”:
Lemma 2.3 in [36], Lemma 3.6 in [35]. These are based on previous work by
Fernando [28].

(2) “indefinite initial matrices” for deeper levels: Satz 3.17 in [35], although this
had an omission in the proof, which was corrected in Lemma 3.1 of [36].

The reason for the separate treatment of (1) is that here the auxiliary quantities
s;,p; from the dqds-transformations can be harnessed to provide for somewhat
slicker formulae. Our presentation omits the distinction because these are of no
practical relevance (and not used) for the algorithm in §3.5.

We give a completely different proof that is more rudimentary while being
(in our opinion) easier to follow. In fact we are not completely happy with how
Lemma 3.1 of [36] was set up, because the requirement of a constant diagonal—
which is crucial for the coupling relations to hold—was not clearly stated in the
formulation there but only appears rather hidden in the proof. This could well
have been one cause why an error down the road (Theorem 5.2 in [37]) went
undetected; we will elaborate on this in §3.5.

The following presentation will not only strongly pronounce the requirement
for a (nearly) constant diagonal but also exhibit the consequences when it is
not fulfilled, in the form of the error terms (3.26). Furthermore we extend the
relations to allow coupling of arbitrary twisted factorizations stably in practice.

The IMPLICIT O convention from page 67 will be used throughout this section.

We start considering general tridiagonal matrices and only later consider the
application to shifted Golub-Kahan matrices. Assume we have scalars py, . .., (,,,
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€1, 6n,_1 € Rand
T = diag:tl(€17 R em—l) o diag(:ula c 7Mm)7 (3 21)
T, = diagy (e, .., e, 1) +diag(iy, ..., i,,)-
The object of interest is the matrix
H:=T_-T, e R™™, (3.22)

In particular we want to study how the entries of H can be inferred from repre-
sentations for T_ and T,.

Lemma 3.14. For T_, T, and H defined as in (3.21) and (3.22), the matriz H
15 symmetric pentadiagonal with entries

H(i i) = ey +ef — i,
H( i+ 1) = (1 — Biga),
H(i,i +2) = ee; .
Proof. A straightforward calculation. [

Note that because of (3.20), applying this result to a Golub-Kahan matrix
(u; =0, m = 2n) is just another way of expressing the entries of BB* and B*B in
terms of the entries of B, cf. (3.6).

Lemma 3.15. Let T_, T, and H be defined as in (3.21) and (3.22) and let
T_ =LDL* be a top-to-bottom bidiagonal factorization of T_. Then

+ dz’(lh' - Nz‘+1) + Mdiq(ﬂi - :U’ifl)a

H(i, i+ 1) = d;(11; — 1),
H(i,i+2) = EdiEdH_l.

Proof. With the identity e, = #,; the equations for the offdiagonals follow im-
mediately from Lemma 3.14.
For the diagonal elements, Lemma 3.14 gives the further identities

H(i,i) = el | +el — . (%)
From T_ = LDL* we know
—p; = d,+0d, , and e} = ld,-d,, (%)
which yield
e; = =, pu;  — b, 0, .,
¢ = —diptyy — didy g,
—pi = p(d, + 0, ).

Substitute these into (*) and rearrange to get the result. ]
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Corollary 3.16. Assume the situation is as in Lemma 3.15 but that we have a
bottom-to-top bidiagonal factorization T_ = URU* instead. Then

H(i,1) = —r;_yr; — uur; uur,
+ Tz’(:uz‘ — 1) + uuri—&—l(:ui - Mi+1>,
H(i,i+1) = wr (1 — piga),
H(i,i +2) = wr; ur;,,.

t

The next result combines and extends Lemma 3.15 and Corollary 3.16 to
general twisted factorizations of T_. The drawback for the moment is that we
need to have the data for two consecutive twist indices k£ and k + 1. We will deal
with the ramifications of this requirement at the end of this section.

Lemma 3.17. Let T_, T, and H be defined as in (3.21) and (3.22) and suppose
we have twisted factorizations of T_ for two consecutive twist indices k, k + 1,

T = NkaNZ = Nk-&-le-&-lNz-i-lv

that is, we have n + 2 pwots dy, ..., dy, Vi, V1, Tpp1y-- -7y Define
(i) = —lld;_ylld; o + C;_y (p1; — 1), l<i<k+1,
(i) = —uurg g uuryy + uurg (= pig), k<i<n,

(which imply <(1) = w(n) = 0). Then the diagonal elements of H obey

—dyd; g + iy — ) +600), i<k
H(i,i) = (i) + yipy; + (3), ie{k,k+1}
=iy iy — ) (i), i>k+ 1

Proof. We have the data d,,...,d, and ¢, ..., ¢, _, to describe a complete lower
bidiagonal factorization of (T_);.,. Thus we can invoke Lemma 3.15 to get equa-
tions for H(7,7),7 < k. At this point we have to be careful, because Lemma 3.15
would happily offer us a relation for H(k, k) as well, but this we must reject as it
implicitly assumes i, ; = 0, which we might not have here.

However, for the case ¢ = k we do know from Lemma 3.14 that

H(kuk) = ez—1+€z _/'Li7 (A)
and using T_ = N, G, N} we can furthermore deduce
Ay = =y — Udy,_s, (B
—Hj, = g (Uldy_y + v + wuryy), ()
Th41 = “Hiypr — UlUTg - (D



146 MR? for the Bidiagonal SVD

Multiply (B) with ¢, _,, (D) with uur,, , and employ the identities €4d,_,d,_, =
€r_1, UUry Ty = €p to obtain

62—1 = —ldy_ gy, — Udy_, Ud),_,,

e

Now substitute these together with (C) into (A) and rearrange to see the result.
The symmetric cases ¢ = k4 1 and ¢ > k£ + 1 are shown analogously. ]

The General Coupling Formulae

So far, so good, but still missing is the link between H and (3.20). We need
to decompose H into two independent twisted factorizations that can in turn be
interpreted as shifted normal equations.

Let a symmetric diagonal matrix T € R?"*?" be given as

T = diagil(ela < 762n—1> - diag(ula ce 7:“271)'

The idea of course is that T is the translate of a Golub-Kahan matrix, T =
Taox(B) — p, but due to rounding errors the constant diagonal might have been
violated. Suppose we have twisted factorizations for two twists k and k + 1:

T = N,GN; = NG, N,

Now define %, k such that {2k, 2k — 1} = {k,k + 1}, and let T := T — 2diag [T].
Lemma 3.17 gives comprehensive formulae for all elements of the matrix H := TT.

Recall (3.10) to see that the permutation P} .HP  reorders the rows and the
columns of H by taking the even ones first and then the odd ones. With this
insight it is actually not hard to deduce

= N;GiN; 0 Q &
P*TTP, = | " FF o - 3.23
o 0 N;;G;;N;;J {5* Q} ’ (323)
where

( sz = —dydyiyy, i=1:k—1,

Vz' = —lyilyp, i=1:k—1,
NiGiN; is defined by { % = Lypsp (3.24)

L Uy = —Ug;_1Uoy,;, i=k+1:n,
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and
(d; = —dy;_1dy;, i=1l:ik-1,
= —loy_1loy,  i=1:k—1,
N;GiN; s defined by {4 = fop_ Vi1 (3.25)
Ty = —ToioTyiy, 1= i+ 1:m,
U, = —Ug; olly; 1, G=Fk—+1:n.
For the error terms, €2, Q) € R™*" are diagonal matrices with
(d%(,u% — Hoip1) + Uy (fa; — Hoi—q), i <k,
Q<Z) = 9 Md%—l(”% - “212—1) + UUT2k+1(M2k o '“21}+1)’ i=k,
| P2i(Hi = Haimq) + utry;y (Bog — Haiyr); i>k,
) A (3.26)
i1 (Hai—y — Ho;) + Cldy;_o(fhg;—y — [ha;—s), i <k,
Q(Z) = Mdzl%—zwm%—l - “21%—2) T UWQIQ(“zl%—l - “212;)’ i=k,
\7’2171(#21'71 — Hai—o) F uury; (Ko 1 — Ha;), i>k,

and £ € R™"™ is upper bidiagonal with characterization

Tex(E)(@, 1+ 1) = e g (fiyi 1 — Hay),

that is, Tax(€) = diag,, [TT].
The formulae (3.24) and (3.25), are what we call coupling formulae, coupling
relations or also coupling transformations.

The Need for a Constant Diagonal

It is obvious that for the coupling relations to be meaningful, the central T must
have a constant diagonal, because this is the only way to make the error terms
2, © and & vanish. Provided we have that, i.e., T(i,7) = —pu, (3.23) becomes
N;GiN;, 0
P*T(T+2uP,, = | FFF 0 il
oo T (T4 20)Pe 0 NiGiN;

Thus the representations are perfectly coupled if the coupling relations (3.24) and
(3.25) are fulfilled exactly. This gives the desired link between the eigenvectors.
The local eigenvalues are then related according to

No= N2u+N) = A (3.27)

If the constant diagonal is not present, but can be attained by perturbing
the data, i.e., if the central representation of T is ncd, then the stability of the
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coupling formulae allows to find perturbations of the remaining data to get a
perfect coupling. This is what we will usually aim for in practice. In the same
manner one can deal with rounding errors that are introduced when executing
the coupling transformations in floating-point arithmetic.

However, if the central representation is not ncd, then there is really no con-
ceivable relation between the central and outer eigensystems. One cannot stress
this fact enough. First of all we lose that T and T = T — 2diag [T] are connected
by a shift. And second, the way from TT to the outer representations NGN™ and
NGN" is blocked by an absolute perturbation manifested in €, Q) and €.

Using the Coupling Relations

In principle the coupling relations (3.24) and (3.25) can be used to compute all
8n — 3 data elements of the three representations as soon as you know 4n — 1 of
them (you need to know g for coupling from outside to inside).

Now we focus on the task to couple inside-out, that is, given the data for
a twisted factorization of a GK-translate, we want to compute the data for the
corresponding translates of the normal equations. This is the sole direction we
will need later.

The coupling relations are deceptively simple and obviously stable. The es-
sential problem, however, is this: To get coupled eigensystems we need that the
coupling relations hold exactly for central matrices N, G Ny = N, ., G, ;N; , that
both have a constant diagonal.

Suppose we have computed multiple twisted factorizations

where My is the father representation and itself a descendant of a Golub-Kahan
matrix. As a side note, if N, G Nz = N, G, N, were to hold exactly for some
k, then by considering the determinants one can easily prove [15, Thm. 3.1.18]

VeTh1 = dk’7k+1' (3.29)

It will also be useful to recall the data items that constitute the twisted factori-
zations N, G, Ny and N, G, ;N; ;. They have the 2n — 4 elements

di, by, ody 0 and Ty o, Uy g, .., Topy, Usy,
in common but differ in the remaining three:

* *
Vior Uy 1, Thyr for NpGNE, dy €y for Ny Gy N

It is tempting to just select a pair {k,k + 1} of twists in (3.28) and use the
coupling relations as stated on the combined data of N, G, N; and N, G, N;_ ;.
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Figure 3.7: Possible ways to couple data from one central twist k£ to the outside.

However, doing so is a serious mistake. To obtain (3.28) one probably used
some variant of dtwqds, depending on the representation type of M¢. Then the
shift relations will only hold exactly for perturbed data, and the required source-
perturbation of M; will generally differ for each k. Thus there is no direct relation
between N, G,N;; and N, ;G,,;N;, , and (3.29) will usually not hold at all. This
concern is not just academic: When we started experiments with twisted facto-
rizations in the GK-layer using the formulae in this “naive” way, we got horrible
results, and precisely this was the cause.

The coupling formulae as given above were stated previously by Grofler & Lang
in [35-37], and we repeated them in [72], without ever mentioning this problem,
simply because it was not known to exist. The reason that this omission caused no
trouble up to now is that the couplings were ever only used for plain bidiagonal
factorizations (k = 1 or k + 1 = 2n), where the formulae can be simplified to
require only the data for one twist index. We will now derive these special cases
and also develop a work-around to facilitate the use of arbitrary twists.

The insight that N,G,N; = N, G, N;,, will typically not hold for the
computed data forces us to fixate on only one of them and explicitly recompute
the required data for the other.

We must be able to extend the perturbation that establishes a constant diag-
onal at the source to the computed data for the second central twist, and from
there along the coupling relations to the outer representations. In general this
is only possible if the data dependency from N,G,Nj to N, ,G,, N; ,—or the
other way around if we take k + 1 as source—is well-conditioned.

The two possible data flows are depicted in Figure 3.7. For the direction
k — k + 1 the missing data for N, G, N;_, is defined by

Urg1q _ Tk
d 9 ,Yk—i-l - d Vi
k k

d, =Y, +uurg,,, 4=

where the latter follows from (3.29) and the other two from (2.18) and (2.20). This
relation is well-conditioned if there is at most benlgn cancellation in v, + uur, ;.

For the case k = 1 we can do better, because if N G N has constant dlagonal u,
then 7, + uur, = —pu, so the definition of d, above can be replaced by d; = —pu.
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The other direction k£ + 1 — k works analogously with

) d
_ _ tay oy
Tear = Uy + Vs Uy = ——, V= — Vi1
Th+1 Tht1

Now applicability hinges on the condition of £, +~, . For the case k +1 = 2n
we can again simplify to r,, = —p.

To summarize, coupling from an arbitrary twisted factorization N, G, N} in the
GK-layer is only possible if for at least one of t € {k—1,k+ 1} the relation to the
missing data of N,G,Ny is well-conditioned. Thus we will have to filter possible
twist locations with this restriction in mind. This is no serious loss, because one
can show that if neither one of the directions k — k — 1 or k — k + 1 works in
this regard, then |y;| must be fairly large, so twisting at k& would not be desirable
anyway. Coupling based on k =1 or k = 2n is always possible.

3.5 The Algorithm of Multiple Coupled RRRs

Preparations are done, preliminary analyses are complete, and we can now embark
on presenting our version of the MR?-based algorithm for BSVD, which we regard
as one of the centerpieces of this thesis.

A short historical overview. The fundamental idea as proposed by Grofier &
Lang in [35-37] was to run MR?® on the three roots BB*, T« (B) and B*B simulta-
neously, employing the coupling relations to do so in a synchronized fashion. This
was done at a time where MR? had just been baptized. The then current imple-
mentation in LAPACK 3.0 was still the first one, which handled interior clusters
by calling xSTEIN.

In [72] we described some refinements to the method which were mainly based
on integrating and adapting to new developments intended for the next LAPACK’s
MR? implementation xSTEGR. But as we started more intensive testing too many
problems cropped up. For a rather long time we had a method that worked not
well enough to be called stable, while at the same time being too good to be just
coincidence, and we did not really know why.

Grofler & Lang had not provided a rigorous error analysis, but they had given
a result that worked as motivation for the coupled algorithm’s viability (Theorem
5.2 in [37]). Naturally, the occurring problems did in some way contradict that
theory. And indeed, after further study we found a very subtle error in the
published proof, which we will elaborate on in §3.5.2. Essentially it had been
neglected that the coupling relations are meaningful really only in concert with
a constant diagonal. The need for a constant diagonal—which must seem trivial
in retrospective—arose from that realization. We really had not thought about
this before. But it is easily checkable a priori in practice, and doing so quickly
confirmed that loss of the property was a main cause for the problems.
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Harnessing the constant diagonal (or the related GK-structure) we could de-
velop the better understanding of the black-box approaches that was given in §3.2
and §3.3. Furthermore it turned out to be the missing link to prove that MR? on
the Golub-Kahan matrix does work in principle and that in turn made a rigorous
proof of the coupled algorithm possible.

What we ultimately strive for is a method that combines the good parts of
the black-box approaches and shuns the bad ones. This means the orthogonal-
ity levels of the singular vectors should fulfill (3.3), the residual norms should
fulfill (3.4), and runtime should preferably be close to using MR® on just one of
the tridiagonal problems BB* or B*B, and at the utmost twice that. The original
method envisioned by Grofler & Lang does provide these features in principle,
except for the unforeseen reliability problems in practice.

We regard the following points as our main contributions to further the
method:

e A simpler and streamlined formulation. In particular we completely re-
moved the special treatment of first-level nodes that was still present in [72].
At the same time the formulation is general enough to encompass many con-
ceivable variations of the main theme (like what kind of representations to
use, how to execute the shifts, etc.).

e A rigorous proof of correctness, giving concise error bounds. It builds on
the requirements for MR?, which means expertise and implementation tech-
nology of MR? can be maximally reused. There is one new requirement,
but that can be checked a priori. A particularly important feature of the
proof is that it does mot require the representations in the GK-layer to be
relatively robust, which to guarantee in practice is problematic at best.

3.56.1 Description of the Algorithm

The coupled approach as it was outlined before leads naturally to the fact that
we have to build up the three representation trees rooted at BB*, T« (B) and B*B
in a consistent and synchronized way. In particular they have to be structurally
compatible, meaning there must be a one-to-one correspondence between nodes
and index sets. But if this is given, we can think of the trees as being fused
together at the nodes to become one tree with 3-layered nodes. Thus, the nodes

(I\7I, I,5i*) from the tree rooted at BB*,
(M, I, 1) from the tree rooted at Tqk(B),

(I\A/I7 I,7i*)  from the tree rooted at B*B,
are combined into one single node

(M, M, M], 1, fz).
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In other words, we now have three representations attached to each node. The
bar in i denotes that it stands for accumulated shifts from the root Tgk(B).

With the concept of these “super-nodes”, the coupling-based approach can be
described in general terms and very “MR3-like” as is shown in Algorithm 3.3. We
would like to coin it Algorithm of Multiple Coupled Relatively Robust Represen-
tations, or MCR? in short.

One core principle is that all expensive computations, i.e., refining eigenvalues
and computing eigenvectors, are done only for the smaller matrices M and M. The
representation M in the central GK-layer is only there to “knit” the other two
together.

The algorithm is designed around the assumption that the three represen-
tations at each node are perfectly coupled (or at least their local eigensystems
should be). The proof later will show that it actually suffices if this can be at-
tained for perturbed data, but assume for now it holds exactly. Then the local
eigenvalues obey

No= N2+ N) = A (3.30)

To keep this connection when going down one level, the outer and central shifts
w1 and 7 that are selected in steps 13 and 14 need to obey

(m+p)?=p+71 = p*+2au—71=0.

Because we have refined the spectrum for the outer layers, it is sensible to choose
7 with respect to that refinement first and then compute p such that the above is
fulfilled, i.e., as smaller root of 2 + 2jiz — 7. The nature of shifting within MR?
implies that one usually has |7| < %, and it is not hard nor overly hindering to
restrict the choice of 7 to enforce this. Then computing p in line 13 using

o= T/(/_L—F\/[in—iﬂ')

is guaranteed to be stable.

The most critical part is how the shifts are executed in step 14. Doing them
separately would amount to MR? on the normal equations, and we know that does
not work. Thus we will have to do just a part of the factorizations explicitly, and
set up the remaining data using the coupling transformations from §3.4. Further
discussion on how to shift will be postponed until after the upcoming proof, where
specific criteria to guide the decision are developed.

3.5.2 Proof of Correctness

We will now set out to prove that Algorithm 3.3 does compute singular triplets
satisfying (3.3) and (3.4). With the intent on providing perspective we will first
revisit the existing theory from [35-37], for which we unfortunately have to point
out an error in the principal result concerning correctness.
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ALGORITHM 3.3  Algorithm MCR?

Compute specified singular triplets of bidiagonal B using couplings to
effectively run MR? on BB*, T (B) and B*B simultaneously.

Input: Upper bidiagonal B € R"*". Index set Iy C {1,...,n}.
Output:  Singular triplets (7;,0;,V;),1 € 1.
Params:  gaptol : The Gap Tolerance.

L 8 := {([BB*, Tex(B),B*B], lo,i=0)}

2. while S # () do

3: Remove one node ([|\7|, M, |\7I], I,ﬂ) from S.

4: Approximate eigenvalues [5@00],2' € I of M such that they can be classi-

fied into singletons and clusters according to gaptol; this gives a parti-
tion I = U---U I,

5: forr =1 to m do

6: if I, = {i} then // singleton

7 Refine the eigenvalue approximation [5@05] if necessary and use it

to compute eigenvector u; of M.
8: Take [S\ioc] := [Al°°] as initial approximation, adjust /refine if nec-
essary and use it to compute eigenvector v; of M.
9: Compute o; := t;Bv;. If this results in & < 0, negate 7; and v;.
10: else // cluster
11: Refine the eigenvalue approximations at the borders (and/or in-
side) of the cluster if desired for more accurate shift-selection.

12: Choose a suitable (outside-layer) shift 7 near the cluster.

13: Transform to an inside shift y := T/(ﬂ + 2+ T).

14: Compute representations M™ = M — 7, M* = M — p and
M =M-7ina synchronized way.

15: Add new node ([M*,M*,M"], I, i + 1) to S.

16: endif

17: endfor

18: endwhile
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An Error in Previous Work

GroBer & Lang did not provide a rigorous proof or error bounds for the coupling
approach, but they gave a strong principal argument to indicate validity of the
method.

The first part of their argument is based on the experimental studies with the
black-box approach on the normal equations that led to the following

Conjecture: If the local eigenvalues of the outer representations at
all nodes are close in a relative sense, then the computed singular
vectors will fit together well, i.e., have small residual norms.

A geometric argument was used as support [36, §4.3]. We do not see a conceivable
way to prove the conjecture rigorously, especially taking the new insights from
§3.2 into account. Rather it seems that the eigenvalues being close is a necessary
condition for good results, but not a sufficient one. Nevertheless the principal
sentiment remains intuitively convincing.

The second part of the argument comes in form of a theorem. We have
adjusted the formulation to our notation, in particular we use different accents.

Theorem 5.2 in [37]: Assume M is the representation in the GK-
layer, and M and M are computed from M by executing the cou-
pling transformations in floating-point arithmetic.

If M is an RRR for its local eigenvalues in I, then so are M and
M, and their local eigenvalues will be relatively close.

To combine these two pillars, they assume the representations in the GK-layer
are RRRs of sufficient quality. Provided this is so, basic correctness of the method
would indeed follow.

Unfortunately, the argument is flawed because of a subtle error in the proof of
Theorem 5.2 in [37]. For demonstration we will redo the main steps of the proof
in a compressed version and then highlight where reasoning breaks down.

The proof starts by exploiting the stability of the coupling transformations.
Clearly one can find a perturbation M ~» M of the central representation such
that M, M and M fulfill the coupling relations (3.24) and (3.25) exactly. For this
one just has to account for the rounding errors due to executing the coupling
transformations in floating-point arithmetic. An analogous argument actually
allows to choose any elementwise relative perturbations M~ M, I\A/I~w M of the
outer representations and still find a suitable perturbation of M ~~ M, such that
M, M and M fulfill the coupling transformations exactly, too.

Then they argue that because the exact coupling relations hold, the local
eigenvalues between the layers are related as in (3.30), that is

- ~ - ~
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where the (six kinds of) accents on A may convey the matrix it is supposed to be
an eigenvalue of. Now use that M is an RRR to see )\A ~ A, in a relative sense.
Using |\;| < |ji| one can then show ; ~ A; and )\ ~ Ai. Because this reasoning
should hold for any perturbations M ~ M M ~ M one can conclude that M and
M are indeed RRRs, as claimed.

The flaw of the argument is (x). The implication that exact fulfillment of the
coupling relations gives the eigenvalue relation (3.30) is only true if the central
matrix has a constant diagonal, see our remarks on page 147. But there is a
perturbation between M and M, so in general at most one of them will have its
diagonal being constant. Hence, one of the two equalities postulated in (x) will
in general not hold.

There is a variant of the argumentation pertaining to an outside-in coupling
strategy for level-one nodes in Theorem 5.4 of [37], but its proof redirects to the
one above and as such the claim is cast in doubt as well.

Actually we cannot disprove the claim of Theorem 5.2 in [37] either. However,
mainly due to practical experience we doubt that it holds, at least in this form.
On the other hand, the coupling transformations clearly indicate that having no
or only moderate element growth in the central representation carries over to
some extent to the outer representations, so at least the first part claiming the
outer representations to be RRRs might be true.

A New and Rigorous Proof

For proving Algorithm MCR? to be correct we will use the same basic, by now
well worn-in approach that we used for MR* and Algorithm 3.2. Again we identify
reasonable requirements (two this time) that have to be fulfilled and upon which
the formal argumentation can rest.

Recall the terms coupled representations and coupled eigensystems from Def-
initions 3.2 and 3.3.

Requirement TREE (Outer Representation Trees)

The “outer” representation trees with roots BB* and B*B fulfill all five MR®-
requirements on page 55, except maybe for ELG.
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Requirement CprL (Nearly Coupled Representations)

There exist constants MNepl, Yepl and Bep such that for each node
([I\V/I, M, M|, I, i) in the 3-layered tree one can find perturbations

M= erp(l\v/l, ncpl)a I\7| = erp(Ma ’YCpl)a M= erp(l\/\/l7 T]Cpl))

with the property that |\7|, M and M are perfectly coupled and

M=Tu(B)—f, where B = erp(B, Bepr)-
O

Before we begin the proof, some words about the ramifications of these re-
quirements.

TREE is just what we would like to have when using MR? on the normal equa-
tions separately. Concerning steps 12-14 we can employ all tests and heuristics
from MR? to evaluate good shift candidates, but have to apply them to both
child representations M and M.

Requirement CPL is basically fulfilled when the representations in the GK-
layer are ncd and we can perturb the three representations at each node suitably
such that the coupling relations hold. One could modify the following proof so
that it works if the need for a nearly constant diagonal is relaxed to requiring
only that the local subspaces are coupled.

As always we may assume the computed vectors to be perfectly normalized,
that is, ||G;|| = ||V = 1.

Theorem 3.18 (Orthogonality for Algorithm MCR?)

Let Algorithm 3.3 be executed such that requirement TREE is fulfilled. Then
the computed left and right singular vectors will obey

%max{ﬁfﬁj,\'/f\'/j} < orth, 1#j € I,

where orth comprises the O(ne,) rhs-bound from Theorem 2.14.

Proof. This is just Theorem 2.14 applied twice. Refer to Figure 2.1 to verify
that Requirement ELG is not needed for orthogonality. ]

Establishing a bound for the residual norms will be harder, because we have
to combine vectors that were computed from different matrices. The proof will
mimic the analysis from §3.2 up to a point. To obtain the final result we will
have to invoke the powerful lower bound from the Gap Theorem 1.22.
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Theorem 3.19 (Residual norms for Algorithm MCR?)

Let Alg. 3.3 be executed such that requirements TREE and CPL are fulfilled.
Then the computed singular triplets (o;,T;, ;) will satisfy, to first order,

,”W@—&&H}?f%BMA+n@@m+QD,

where A = Rneg + CyeesMept/ gaptol and with R as defined in Lemma 2.11.

Proof. Consider one particular index i and let ([M, M, |\7|], I, i) be the node where
it is computed, i.e., where {i} C I is a singleton child index set of I. We will
drop the index and just write G, v and & instead of G;, v; and ;. Because of
requirement CPL we can find perturbed matrices

MM, M~M, M~ M,

that are perfectly coupled. Let @i, G, and V denote their respective eigenvectors for

index 4 (or %7 in the case |\~/|) Figure 3.8 summarizes these entities and sketches
their interplay for the proof.

The computations of @ at M and of ¥ at M fulfill the conditions of Lemma 2.11,
and this is not affected by a possible negation of v in step 9. Furthermore,
both outer representations fulfill Requirements RRR and RELGAPS; thus their
1th eigenpair has relative separation exceeding gaptol and is determined to high
relative accuracy. Thence we know

fitr, dLlr EP+IN7=1 <A<,
wW+s, Vls [P+s|P=1, |s]|<A<1.

(%)

u=
vV =

The only link between them is the central layer’s representation M, or more
precisely, its perturbed version M. To get there, we combine the computed vectors

to form
Vapig — O] = [eEr
L v +s|

Using (x) we can write g in terms of M’s eigenvectors \/§P;Sdi = [iﬂ as
v

A= 36—+ e+ + P 1] (%)

So far we have followed the same path of reasoning as in §3.2 and one might
expect to run into the same problems. But here we are dealing singletons and
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Figure 3.8: Outline of the proof of Theorem 3.19. Dashed lines indicate how the
computed vectors are connected to exact eigenvectors of a perturbed GK-root.

one-dimensional eigenspaces; in particular we only have one weight ¢ and v on
each side. This fact will now let us deduce that exactly one of the factors &€ — v
and & + v in (*) is negligible. From (%) we see

1— A?
1—A?

1| = €
L sl = »?

L,

<
< L.

IAIA

Hence ‘52 — 1/2| = ‘f — 1/H§+ V‘ < A% Because A < 1, one of the factors [£ — v
and |£ 4+ v| must lie in the interval [1, 2], very close to 2, whereas the other is tiny,
that is,

2v1 — A2
A®.

max{|§—u],|§+y|}
min{|§—l/],|§+y|}

>
<

The roles of the factors are determined by the signs of £ and v; it is not important
which is which. They depend on how Vv was signed as computed eigenvector of
M in line 8 (a detail we have no direct influence on), as well as the explicit sign
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choice in line 9 to get & nonnegative. In fact, one could show that the latter
makes |¢ — v| the small one, but we do not need that.

In any case, using (%) we conclude that g must have a small angle to ezactly
one of _ or q,, that is,

min { sinZ(§_,d). sinZ(4,.q) }

1
<%

{g”'+%min{|f—y|,|§+y|} < AsIA?

To close the argument, we need to employ the second property given by Require-
ment CPL, namely that M is an exact translate of a perturbed GK-root. Thus
we have M = T — [i, where

T = Tex(B), B := erp(B, fepl)-

Hence, g, are exact eigenvectors of -T', and the computed g is close to one of them.
That is it, actually, the rest is just cleanup.
The lower bound that is provided by the Gap Theorem 1.22 yields

ITa — (§Ta)d| < spdiam[T](A + 1A2).

The transition B ~» B is harmless in the sense | T|| = [[B|| < ||B]|(1 + 2nBep1)-
With T := Tk (B) we get, to first order,

ITa— @ Ta)a|| < 20BJ(A +208u).

Note that §g*Tg = u*Bv. So, padding the bound by a further 2||B||ne, to account
for the computation of &; in floating-point arithmetic gives the result. O]

3.5.3 Shifting coupled nodes

So far we left out completely how the shifting of the 3-layered nodes in step 14
of Algorithm 3.3 is to be done. From the previous theory we know that two
conditions are to be met:

e SHIFTREL must hold for the outer trees, that is, the transitions M =M—r
~ I } i )
and M = M — 7 should behave as if they were done by a mixed relatively
stable method.

e CPL must hold in the central layer, that is, the data of M, M and M must be
related such that we can find perturbed versions of them that are perfectly
coupled (M has constant diagonal and the coupling relations are satisfied
exactly).
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There is no obvious way to consistently achieve both goals at the same time in
practice. The main avenues one can pursue are:

central Do the shifting purely in the GK-layer and couple to the outside repre-
sentations:

(1) Compute Mt = M — 11 using a stable method like dtwgds or some vari-
ant. This should be done carefully to keep the ncd-property whenever
possible.

(2) Employ the coupling transformations (3.24) and (3.25) to set up the
data for M and M.

outside Do the shifting with the outside data and couple to obtain the central
representation:

(1) Factorize one of M —7=M"or Nl —7 = M" explicitly.

(2) Use the coupling relations, together with the fact that M* should be
nced(—p — u), to set up the data for M™ and the other one of M, M.

hybrid Some combination of central and outside, using the data of all three
representations M, M and M at once and maybe switching between factor-
izing on the outside and on the inside dynamically on an index-by-index
basis, depending on where the problems arise.

The approaches central and outside were already suggested by Grofler &
Lang in [37, Sec. 5.4], [36, Alg. 3.2]. In [72] we also used a central strategy with
special treatment for the transition to the first level.

During the work on this thesis we have invested a long time of fruitless research
trying to find some kind of magic factorization method for shifting 3-layered nodes
that guarantees both properties in all cases. For that task we failed utterly. The
work was not completely wasted, though, because much of the gained experience
with qd-like factorization algorithms and their mixed relative error analysis led
in turn to the improvements in §2.4, §3.4 and Chapter 4.

On the previous pages we presented what we heralded as proof of correctness
for Algorithm MCR?. Now one could argue that this proof is worthless if we
cannot attain its preconditions in practice. But that is not so, because the proof
provides understanding and concrete criteria to steer a computation. The situa-
tion is similar to like Requirement RRR for MR?, which cannot be guaranteed a
priori either.

The new insight from §3.3 that MR® on the Golub-Kahan matrix is not that
fundamentally doomed as it was long thought to be has caused us to shed the
fears of working with GK-translates explicitly. Therefore the strategy we will use
henceforth is exclusively central. There is a series of strong arguments to be
fielded in support of this decision:
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A) Violation of SHIFTREL is usually detectable in practice. This is because one
uses the local eigenvalue approximations to get initial approximations [A°¢] —7
and [\°c] — 7 for the children (after inflating them a bit), cf. Remark 2.6. If
SHIFTREL does not hold then these are highly unlikely to be consistent, and
bisection can detect this.

B) If the representations in the GK-layer are RRRs, we can give an alternative
proof that the results will be fine—without requiring SHIFTREL—Dby combin-
ing the proofs of Theorems 3.10 and 3.19. Thus we have a backup plan to
success, should SHIFTREL fail to hold.

C) In our experience the ncd-property in the GK-translates is crucial. Doing the
factorizations there explicitly provides more control, in particular because we
can guarantee a nearly constant diagonal as long as local element growth is
kept in check.

D) In Chapter 4 we will develop new techniques to work with twisted factoriza-
tions that allow for 2 x 2-blocks as pivots. These are especially well suited
to compute successive translates of a Golub-Kahan matrix and provide much
finer-grained control over local element growth. As such they drastically re-
duce the problems with both the ncd-property and relative robustness in the
GK-layer.

3.6 Numerical Results

In this chapter we have intensively studied the theoretical aspects of two methods,
Algorithms 3.2 (MR? on Tqx) and 3.3 (MCR?), for computing the singular value
decomposition of a bidiagonal matrix. Now is the time to demonstrate how well
they perform in practice. To do so we use the same sets Pract and Synth of
bidiagonal test matrices that were introduced in §2.5.

We have implemented both methods within the same software framework
that accommodated our MR3-implementation XMR. In fact, due to the object-
oriented design most of the code could be reused from XMR. This includes the
optimized configurations of bisection and RQI. Let us denote the implementations
of Algorithms 3.2 and 3.3 as XMR-TGK and XMR-CPL, respectively.

XMR-TGK is basically XMR, adapted to use T¢k(B) as root representation. We
switched to using Z-representations for the children to cushion the effect of mod-
erate element growth on the diagonal. A shift candidate has to be ned(—fi, 32ne,,),
additionally to conditions (2.81) and (2.82), in order to be considered acceptable
a priori.

The implementation XMR-CPL of Algorithm MCR? is a natural mixture of XMR
and XMR-TGK, based on a central coupling strategy. Just like XMR-TGK we use
Z-representations in the central layer, and the representations there have to fulfill



162 MR? for the Bidiagonal SVD

the same ncd-condition, but the conditions (2.81) and (2.82) are only checked for
the outer representations. Eigenvalue refinements are done on the side that gives
the better a priori bound for relative condition. To counter the fact that for the
coupled approach we cannot prove that SHIFTREL holds always, the Sturm counts
to test the initial bounds (2.83) for the child eigenvalues for consistency are done
for both outer representations. We also do similar “coupling checks” to verify the
closeness of the local eigenvalues after they were classified and after they were
refined on one side.

Just for the sake of completeness we mention how XMR-TGK and XMR-CPL
perform on the test case that cause so much havoc in Experiments 3.4 and 3.6.
The computed vectors differ, but interestingly the results are identical: both
methods crack the problem with worst orthogonality levels of 1.15n€, and BSVD-
residual norms 0.68||B||ne,.

Tables 3.3 and 3.4 hold the orthogonality levels and residual norms of XMR-TGK
and XMR-CPL on the testsets.

XMR-TGK works amazingly well. Indeed, comparing the results with Table 2.6
we see that the extracted vectors have better orthogonality than what DSTEMR
provides for B*B alone, and they are not that much worse than those delivered
by XMR.

The coupled approach works also well on Pract, but has some undeniable
problems with Synth. Indeed, not shown in the tables is that for 24 of the cases in
Synth, XMR-CPL failed to produce up to 2.04% of the singular triplets. The reason
is that for those cases there were clusters where none of the tried shift candidates
satisfied the aforementioned consistency checks for the child eigenvalue bounds
to replace the missing SHIFTREL. Note that these failures are not errors, since
the code did flag the triplets as not computed.

The accuracy results would mean that the coupled approach is clearly out-
classed by using MR? on the Golub-Kahan matrix in the fashion of Algorithm 3.2,
if it were not for efficiency. Analogously to how it was done in §2.5 we have com-
piled profiling information in Table 3.5.

The numbers of steps of the three kinds are basically comparable between the
methods, except for the additional coupling checks (bisection) and the fact that
XMR-CPL always has to do at least one more RQI step to compute the second
vector. But for XMR-CPL, each bisection and RQI step is done with matrices of
dimension n, whereas everything XMR-TGK does involves a matrix of dimension
2n. This fact is apparent in the estimated cost, which indicates that XMR-CPL
could be expected to perform about 20 — 30% faster than XMR-TGK.

These results give in fact rise to a third method for BSVD, namely a combina-
tion of the first two: Use Algorithm MCR?, but after singleton eigenvalues have
been refined to full accuracy for the outer layer, transform them via (3.30) and
compute the final eigenvector with the central layer’s translate of T¢x(B). Stated
equivalently but the other way around, use MR? on the Golub-Kahan matrix like
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Pract Synth
75 cases ORTH 19240 cases
XMR-TGK XMR-CPL XMR-TGK XMR-CPL
5.35 10.71 AVG 5.34 6.33
2.71 2.44 MED 1.38 1.01
48.40 154 MAX 3095 27729
81.33% 82.67 % 0...10 92.59 % 91.04 %
18.67 % 14.67 % 10...100 7.04 % 8.61%
2.67% 100...200 0.12% 0.21 %
200...500 0.11% 0.10%
500...10° 0.07 % 0.02%
10%...10° 0.06 % 0.03 %
Table 3.3: Orthogonality levels max {|U*U — I|,|[V*V — ||} of XMR-TGK compared

to XMR-CPL, measured as multiple of ne,.

Pract Synth
75 cases RESID 19240 cases
XMR-TGK XMR-CPL XMR-TGK XMR-CPL
0.35 15.78 AVG 0.45 3.14
0.07 1.37 MED 0.13 0.72
4.19 453 MAX 118 6873
92.00 % 34.67 % 0...1 84.96%  57.45%
8.00 % 50.67 % 1...10 15.03 % 35.50 %
8.00 % 10...100 7.00 %
6.67% > 100 0.01% 0.06 %

Table 3.4: Residual norms max; {||BV;—;5|, ||B*0;—V;5;| } of XMR-TGK compared
to XMR-CPL, measured as multiples of ||B||ne,.
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Pract Synth
XMR-TGK XMR-CPL XMR-TGK XMR-CPL
8.10n 10.55n | AVG 14.74n 17.93n
# bisection steps 4.5Tn 6.39n | MED 17.44n 20.46n

25.02n 33.16n | MAX 40.19n 48.82n
2.01n 3.24n | AVG 2.12n 3.40n
7;; f}gl] l;;iisbis' ) 1.98n  3.09n |MED| 2.14n  3.39n
3.00n 5.00n | MAX 4.50n 6.00n

0.62n 0.56n | AVG 0.92n 0.79n
# tries for shifts 0.52n 0.49n | MED 1.00n 0.75n
2.41n 2.34n | MAX 2.64n 2.41n

36.49n 28.21n | AvG 52.30n 38.77n
34.45n 2747n |MED| 59.45n 42.44n
93.69n 71.68n | MAX | 113.93n 86.29n

est. cost
(as plain Sturm counts)

bisecti to classif 33% 28% AVG 43% 36%
. bisection to classify
& refine clusters 36% 28% | MED 57% 47%
61% 53% MAX 72% 62%
; p nalet 48% 50% | AvG 42% 42%
o refine singleton
ews & compute vectors 36% 36% MED 28% 28%
100% 100% MAX 100% 100%
v determi 19% 22% | AvG 15% 21%
... to determine en-
velopes @ﬁnd Shifts 15% 22% MED 17% 25%
50% 48% MAX 49% 55%

Table 3.5: Efficiency of XMR-TGK compared to XMR-CPL.

in Algorithm 3.2, but employ the coupling relations to outsource the expensive
eigenvalue refinements to smaller matrices of half the size.

This approach would retain the increased accuracy of XMR-TGK at reduced
cost, without the need for coupling checks. The catch is that we still need the
central layer to be robust for XMR-TGK, but to do the eigenvalue computations
with one outer layer the representation there has to be robust as well. A pity
that we have not yet been able to repair the proof of Theorem 5.2 in [37], since
then this additional condition would be implicit.

The described method could actually be regarded as new and sounds promis-
ing. In the upcoming Chapter 4 we will see that the further ingredient of using
block factorizations for GK-translates lead again to more accuracy that make the
combined method even more tasty.



Chapter 4

Block Factorizations

And he that breaks a thing to find out
what it is has left the path of wisdom.

— JOHN R.R. TOLKIEN, The Lord of the Rings (1954)

The sole possible cause of trouble with Algorithm MR? is that relatively robust
representations cannot always be guaranteed a priori in a practicable way. We
have seen that robustness is intimately linked to element growth when forming the
bidiagonal (or twisted) factorizations. The problem was magnified in the context
of problem BSVD, since there local element growth in successive translates of a
Golub-Kahan matrix can cause violation of the nearly constant diagonal and thus
loss of the essential GK-structure of the local invariant subspaces.

This chapter is devoted to a technique that just might turn out to be a solution
for all problems involving element growth. The approach is simply to allow 2x2-
pivots, or blocks, leading to a block factorization (BF).

For factorizing a symmetric tridiagonal matrix T given by its entries as T =
LDL*, block factorizations have been employed to great success [25,41]. Higham
shows in [42] how 2x 2-pivots can be used to solve a symmetric tridiagonal linear
equation system in a normwise backward stable way.

The idea to employ block factorizations as representations within MR? and its
derivatives is not new. However, up to now it was not known how to do so. Recall
that one essential requirement (SHIFTREL) is that representations can be shifted
in a componentwise mixed relatively stable way, that is, we need to compute

L*D*(L*)* := LDL*— 7 (4.1)

such that small relative changes to the inputs (the data defining LDL*) and out-
puts (the data defining L*D*(L*)*) give an exact relation. For diagonal matrices
D and D* this was delivered by dstqds. But the situation becomes rather more
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intricate if D and D' are block-diagonal of bandwidth one, maybe even with
non-conforming structure.

We have devised a new algorithm to compute (4.1), with the feature to change
the block-structure from D to Dt on-the-fly. One could call it blocked dstqds.
After studying some general structural properties of block factorizations with
2% 2-pivots in §4.1, we will present the algorithm in §4.2 and provide a complete
mixed relative error analysis. Finally, §4.3 contains numerical experiments to
show how the MR3-based methods for TSEP and BSVD from the previous chapters
can benefit from using block factorizations.

We do also know how to do a progressive transformation (dgqds) with blocks,
but with the intention of keeping this thesis within (somewhat) reasonable bounds
we decided to leave the full error analysis for that case in the hand-written stage
it is right now and focus on presenting the stationary transformation.

To the best of our knowledge, the contents of this chapter are new. Many
details have been inspired by private communications with Beresford Parlett.
The only previous work pertaining to qd-like algorithms for block factorizations
that we know of is unpublished work by Carla Ferreira and Lisa Miranian [31].
We took the motivation for the conditions when to choose a 2 x 2-pivot (Block-
Criterion I on page 186) from there, but except for that, the approach we take is
different.

4.1 Basics

4.1.1 A note on 2-by-2 matrices

Let us compile the basic properties of a simple unreduced symmetric 2 X 2 matrix

D = {d 6}, e 0.

e C

The decision to name the diagonal entries d and ¢ was deliberate and will become
clear soon. Elementary properties of matrix norms reveal

V2

DNl = le] + max{[d], [c]} = [[D]le, 1Dl < D2 < V2IID]1. (4.2)

2 =
Provided that A := det(D) = dc — €? is nonzero the inverse is
I e —e
D' = — : 4.3
A {—e d} (43)
The eigendecomposition of D is Dxi = Aixy where the eigenvalues A\ and A,

as the (two, real) roots of det(D — \) satisfy

201 = (d+o) £V ([d+ce)?—4A = (d+c) £/ (d—c)? + 4e? (4.4)
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and

)\_+)\+ = d+C, A_A_i_ = A (45)

Remark 2.1 shows that the prerequisite e # 0 implies the Cauchy Interlace prop-
erty (Thm. 1.23) holding strictly, i.e.,

A- < min{d, ¢} < max{d,c} < A;. (4.6)

For the corresponding eigenvectors we obtain

st = (L)) = w27}

4.1.2 Structural implications of 2-by-2 pivots

For a given symmetric tridiagonal matrix T, let us denote the diagonal and off-
diagonal entries as ¢; and e;, respectively, that is,

G €
61 02 .
Cn—1 En—1
€n—1 Cn
or shorter,
T = diag(cy,...,c,) +diag (e, ..., €, 1)
We will only consider unreduced matrices, that is, e, #0 for i =1,...,n — 1.

Suppose we have a decomposition T = LDL* with unit lower triangular L and
block-diagonal D with blocks of size one or two, that is,

D = diag(Dy,...,Dy),
where

D, € RoeUsil) - size(j) € {1,2}, j=1,...,N.
The blocks in D induce a partition of {1,...,n}. Let us structure the matrices L
and T conformably and write Ty ; and Ly ; to refer to individual blocks. We will
emphasize the lower triangles (K > j) and use Ly ; := (Lx;)* = (L¥);&, which is
notably different from (L*)y ;.

As L is unit triangular, the blocks L; ; must be nonsingular. Multiply the jth
column of L by Lj_<1 and take L;;D,L* . instead of D; to see that, without loss of

) J=3.
generality, we can assume them to be just copies of the identity, i.e.,

Lj,j = Isize(j)7 j=1,...,N.
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Using the triangular structure of L, the relation T = LDL* read in block
notation becomes
min{j,k}

Ty = Y. LDl  1<jk<N. (4.8)
=1

The following lemma summarizes some essential properties of block facto-
rizations, in particular that they can only exist if the diagonal blocks D; are
nonsingular, except possibly for Dy. In this regard it generalizes Lemma 2.15.

Lemma 4.1. Let unreduced tridiagonal T have a block factorization T = LDL*
as outlined above. Then Ty =Dy and for j =1,..., N —1 the following holds:

) Tt = Ljy1;D;
D, is nonsingular.
) j g
(iid ) Ly; =0 fork>j+1
) Tjt1+1 = Dy + L1055 -
(v) Tit1541 = Djs1 +seel, withs €R, e = lyuej+1)(:, 1).

Proof. We will proceed by induction on j. Assume the claims hold for all j' < 7;
this includes j = 1.

Invoke equation (4.8). For j = 1, it is just T;y = Dy; for j > 1 and (%ii)
holding for all j* < j, it folds down to give us (i), (iv) and Ty ; = Ly ;D; = 0 for
k> j+1,as T is tridiagonal. Clearly then, (i) will fall into place a soon as we
establish nonsingularity of D;.

Using the induction hypothesis on (v) for j — 1 yields

T;; = D+ seje]. (%)

This will allow to prove nonsingularity of D;. From (i) and T being unreduced,
we have
Ting = LingD; # 0, (%)
and therefore D; # 0. Hence, det(D;) = 0 is only possible if size(j) = 2 and
D, has rank one. Use (x) to see that D, has nonzero offdiagonal entries, so with
det(D;) = 0 we get that D, cannot have zero entries at all. In particular, there
is no vector of the form (0, ), o # 0 in the row space of D;. On the other hand,
T is tridiagonal, so if size(j) = 2 then the block T, ; has only zeroes in its first
(of two) columns. But this contradicts (xx). So D; must be nonsingular after all.
We have already established (iv). Thus, for (v) there is only something to
prove if size(j) = 2. Denote the one nonzero entry in T;q; by e,. Then

* — . nD.D-Ip.1* s .
_ —1T=* .
= Tj+1,D; T, by (i),

= G?D;1<27 2) eleT
———

=5
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gives us (v). O

Thus, L has in fact only N — 1 nontrivial blocks, making double indices su-
perfluous. With

L; i= Ly, € Reselxsizeel) gm0 N — 1
and |; := lge(;) We can summarize the situation as
|1 D1 Il I—l
T Ly |y D, l5
' ' Lyt
LN71 IN DN |N

Glancing at this formula one could think that L has bandwidth three. That
would be true, but rather imprecise. Combine (i) and (%) from Lemma 4.1 to
see that, independent of size(j) and size(j + 1), L; must have rank one; in fact,
for size(j + 1) = 2 we get

esl; = o€ RV,

This reveals the rather special structure of L: a bandwidth bounded by two but
nevertheless only n—size(/N) < n—1 nontrivial (meaning nonzero and offdiagonal)
entries, at most two in each block.

Now we will look more closely at the block entries and how they relate to the
entries of T. Independent of size(j) we can say that D; covers the entries (i,17),

(,7"), (i',7), and (¢',4") of D, where
j—1
i = i(j) = 1+ ) size(k) and ¢ = i+ size(j)— 1.
k=1

Fix this relation for concrete j and i for a moment. Recall that property (v) of
Lemma 4.1 revealed that D; has at most the top left entry not being also an entry
of T. We will denote this qualifying feature of D; as d;. Then we have

size(j) = 1,

o [di G ] , size(j) = 2. (49)

€ Cin
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It was already stated that L has at most n — 1 nontrivial entries. Depending on
the structure, we will use letters k& and ¢ to refer to them, in the sense

by size(j) = size(j +1) =1,
0% size(j) = 1, size(j + 1) = 2,
Li = [kz €i+1]7 size(j) = 2, size(j +1) =1, (4.10)

Lo/
[ OZ Zarl] . size(j) =size(j + 1) = 2.

Note that with our definition there exists for each index ¢ either a d, or a c;,
and either a k; or an ¢;, but never both. The natural question arises why we
differentiate at all between d’s and ¢’s for D, k’s and ¢’s for L, that is, why not
use simply d;, = D(4,4) for the diagonal of D and ¢4, . .. + 4 _size(y for the nontrivial
entries in L (like in [31])7 We have two reasons to refrain from doing so. The first
is that the respective two quantities have very differing semantics, e.g., a ¢; is also
a diagonal entry of T, but a d; is not. This distinction will become only more
pronounced as we go on. The second reason is clarity of presentation. Employing
block factorizations inevitably involves case distinctions to deal with the block
structure, which can become confusing at points. Separating diag[D] into d,’s
and ¢;’s, and L into k,’s and ¢,’s lets formulae carry the block structure implicitly,
whereas using just d, and ¢; does not.

Henceforward our treatment is based on entries (indices i) instead of whole
blocks Dj;; in fact we can all but forget about the block indices j. We will make a
slight but crucial adjustment in terminology in denoting the D;’s as pivots from
now on and use block synonymously to 2 x 2-pivot or 2 x 2-block; a D; with
size(7) = 1 is just a 1 x 1- or single pivot (but not a block anymore). Thus we
can categorize the role of an index i € {1,...,n} into exactly one of either

e being single, with data d, and ¢, if i < n;
e starting a block, with data d, and k;, if i <n — 1;

e ending a block, with data ¢; and ¢, if i < n.

The determinants of 2x2-pivots will play an important role, so let us ease working
with them by introducing

A, = dicgy — €} (4.11)

)

for each 7 that starts a block. Based on these we define for : = 1,...,n — 1 the
revealing quantity
1/di, if 7 is single,
invp(i) == 40, if i starts a block, (4.12)
d;_1 /Ay, ifiends a block.
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Note that this definition is always proper if the factorization exists. Based on our
implicit-zero convention and using Lemma 4.1, the relation between the diagonals
of D and T can now be stated compactly as

T(i,i) = D(i,i) + €7 invp(i — 1), (4.13)

which encompasses the special case T(1,1) = D(1,1) = d,. Concerning L, point
(i) in Lemma 4.1 gives the characterization

(4.14)

; = e;invp(i), if 7 does not start a block.

k; = —ejq6;/A;, if i starts a block and i <n — 1,
14
We close our introduction to 2 x 2-pivots with some examples.
Ezample 4.2. A Golub-Kahan matrix does not admit a bidiagonal (or twisted)

factorization, because the first pivot is zero regardless of where you start. The
natural way to factorize a Golub-Kahan matrix is using 2 x 2-pivots all the way:

0 aq
aq 0 bl *
= LDL
bl 0 a9 ’
a9 0
1 0 ay
. 1 aq 0
th L = D =
W bl/a1 1 ’ 0 a2
1 (05} 0

Note that there was at no time a choice to take a single pivot; the block structure
is indeed unique. O

Example 4.3. Consider Example 3.13 again, which exhibited that applying a tiny
shift to a Golub-Kahan matrix will almost inevitably incur huge element growth.
Using 2 x 2-pivots, the same matrix can be factorized as follows:

—a 1
1 —ao 1 _ LpL*
1 —a «



172 Block Factorizations

where
1 di 1
1 1 o
I_ - D —
kl 62 1 ’ d3 ’
63 1 d4
_ 1 _
kl - 1—a2 dl = —Q,
62 = ﬁ, Cy = —Q,
—o?
63 = —%, d3 = _a%_opu
d4 — 0512—:_2522.

Note that for this case the block structure is not unique, but the chosen one
makes the most sense, showing no discernible element growth at all. O

Example 4.4. A block factorization LDL* with factors L and D that have the
structural properties we saw in this section is not necessarily tridiagonal. Consider
the factors from the previous example and change L to L just by replacing ¢, with
l5(1 + €,). This results in

(LDL*)(3,1) = fyes # 0.

Hence, relative perturbations to the nontrivial entries of L can destroy tridiagonal
structure. This happens only if the perturbations are uncorrelated. For the case
above, we should have perturbed ky to ki(1 + €,/d;) at the same time to retain
the structure. O

FExample 4.5. We mentioned that the factor L can have less than n — 1 nontrivial
entries, if (and only if) a block ends at n. Consider the following 3 x 3 toy-problem
to see this behavior in action:

1 2 1 1 1 2
235 =121 -1 5 1

5 4 1 5 4 1
L D L*

A representation for block factorizations

To define a specific block factorization, we need first of all a means to capture
the block structure, i.e., the “kind” of each index. Minimality of information will
prove to be a boon here. Thus we just keep track of the indices where a 2x2-pivot
ends, in a set
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Due to its nature, this set will always satisfy i € Q = {i — 1,i+ 1} N Q = 0 and
can therefore never contain more than [n/2| elements. No other information is
required to capture the block structure.

A block factorization of a symmetric tridiagonal matrix is then completely
described by the following data:

STANDARD REPRESENTATION FOR A TOP-DOWN BF

Q Block structure: Indices where a 2 x 2-pivot ends.
€1y s Cni The offdiagonal elements.
D(1,1),...,D(n,n) Diagonal entries of D.

Note that this is in fact a generalization of the e-representation for non-blocked
decompositions, as for the case that only single pivots are employed (2 = ), the
same data items are kept. It has the same benefits as well, as the offdiagonal
elements e, can be reused, which is good for efficiency and makes the mixed
relative error analysis for shifting easier.

Using the set 2 one can tell if a D(7,1) is actually a d; or a ¢;, through

D) = {di, ifi¢Q,

c,, if1e€ .

79

Recall from § 2.4.1 our distinction between primary and secondary data items.
With respect to the standard representation for block factorizations above, the
quantities A;, invp(i), as well as the entries k; and ¢; of L, are secondary data
and can be derived from (4.11), (4.12) and (4.14), respectively.

The reader might now ask why we do not employ L in the representation
at all. Indeed, why not represent a block factorization using the nontrivial en-
tries of D and L, similar to the N-representation we used for standard bidiagonal
decompositions? The answer is quite subtle. Such a representation would ef-
fectively contain five numbers for each 2 x 2-pivot (except the N’th), namely
d;, i1, €, k; and £, ;. But these quantities are not independent, since they have
to obey (4.14). Thus, basing a componentwise error analysis on such a represen-
tation would be fatal, as uncorrelated perturbations to all five data items at once
will in general cause (4.14) not to be satisfied any more. The effect was already
exhibited in Example 4.4: loss of tridiagonal structure, due to fill-in in L;D;.

One sensible alternative representation to our standard one would be to use
all entries from D but only the ¢,’s of L, i.e., the data

{di.t; . |igQ} and {e;,_y,¢;|ie€Q}.

The main reason why we stick to our standard representation is laziness. Maximal
use of the offdiagonal elements inherits from an e-representation the advantage
that, for a mixed relative error analysis of a shifting algorithm, we have n — 1 less
perturbations to specify, since the offdiagonal entries can be reused. This will
save us a lot of work on the following pages.
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The connection between blocked and unblocked

Allowing 2 x 2-pivots in D forfeits uniqueness, in the sense that multiple block
structures may be possible for the same symmetric tridiagonal matrix, including
for example using no blocks at all. Let T have a block factorization T = LDL* as
before but also a “normal” lower bidiagonal factorization

T = (DL*
with diagonal D. Using our results so far, in particular (4.14), the following
relations between the elements are easily derived:

i A;_y/d;_y, if i ends a block in D,
t d,, otherwise,
—k;/;y, ifi# n—1 starts a block in D, (4.15)
l; = qe,_y/d,_y, ifi=n—1startsa block in D,
otherwise.

79

Clearly, the only case where a blocked T = LDL* exists but non-blocked T = LOL
does not occurs when a block-starting d; from D is zero.

As a remark, these relations were one more reason for us to keep ¢, and k;
separate from d; and ¢;, as only the latter are identical to the corresponding data
in a non-blocked factorization of the same matrix.

4.1.3 When not to choose a 2-by-2 pivot

For factorizing T = LDL*—with or without shift and not regarding how T is
represented—the basic motivation for allowing a 2x2-pivot in D covering indices
1 and ¢ + 1 is to avoid what would otherwise become a very “large” single pivot
d;+1. How to gauge what is “large” depends on the application. In the past,
a variety of schemes have been devised to evaluate when selecting a 2 x 2-pivot,
see for example [25,42]. All of those strategies essentially try to avoid global
element growth, that is, they would compare d;y; to || T||, spdiam[T] or some
variant thereof.

Alternatively, one can evaluate the local element growth caused by the poten-
tial single pivot d;;1, by comparing it directly to the concerned diagonal entry
T(¢+ 1,4+ 1). This would become the lower right entry c;,, of a block, should
one be chosen. If not, the single pivot d;,; is given by

T(i+1,i+1) = d;,, +e;/d,.

Hence, if d; 11 exceeds T(i+ 1,74 1) in magnitude by far, there has to be cancella-
tion between d;,; and €7 /d;, so e?/d; must also exceed T(i+1,i+1) in magnitude.
The latter is preferable for a test, since it does not require to compute d;_;.
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All in all, this motivates that each 2 x 2-pivot [‘j; cfil] in D should fulfill

|diciq| < K€} (4.16)

for a constant K, € (0,1).

None of the pivoting strategies aiming at global element growth that were
mentioned above would ever choose a 2 X 2-pivot violating the condition (4.16).
The reason is, basically, that avoiding local element growth requires the most
2 x 2-pivots, and any more make really no sense in whatever application (that
we know of). Since the error analysis in this chapter does only require that each
selected 2 x 2-pivot obeys (4.16), it remains fully applicable if other (more lax)
pivoting schemes are employed.

This condition is linked closely to the block determinants. Obviously, fulfill-
ment of (4.16) implies A; < 0, which is in fact a consequence of the stronger
property

—(1+ K )e? < A, < (K, —1)e? < 0.

(2

However, a far more important purpose of requiring (4.16) to be fulfilled is to
ensure that computing the block determinants from given representation data is
well-conditioned. Recall (1.11) to obtain

as worst-case bound for the condition number of a block determinant. Even the
lax choice K = 1/4 results in a benign bound of k, = 5/3. As about every use
of a block factorization will have to refer to the block determinants at some point,
being able to compute them stably is crucial.

The meanings of K and x, will remain in effect throughout this chapter.

A note on parameter-based tests and rounding errors. Usually we design
tests to be executed in a floating-point context, where a successful outcome will
merely indicate that the condition is fulfilled for slightly perturbed data. For
example, a positive evaluation of (4.16) would mean that the data on the machine
obeys

dici|(1+a.) < Kgef(1+ 8.)(1+ asg),

B.

a.l, |B.], |asq| < €.
So, strictly speaking, (4.16) would not be satisfied as such, but only for a modified
parameter K.

It will often be necessary to rely on (4.16) or (4.17) for proving a result. Then
these inaccuracies—although of no real practical importance whatsoever—would

cause loss of mathematical correctness in the stated results if ignored. There is
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a simple remedy: execute the test with a parameter that has been modified to
anticipate any effects due to floating-point operations (or perturbations of the
data).

Obviously, a relative modification of the parameter is sufficient, and there is
really no sense to limit this modification to just a couple of ulps. If all tests were
executed with, say,

K: = K, —max{nz,egl/z}ulp([(m) (4.18)

instead of K, we would be on the safe side and need never again worry about
if the condition will hold for perturbed data as well. This definition is just a
suggestion, in fact, for our applications K* < K (1 — €,)® would already suffice.

This approach makes K our pristine tool for theoretical arguments. As an
application, (4.16) executed with K% gives us |fl(d;c;, )| < Ai(KZe?). Because of
the safeguard function of K7, we could then without hesitation conclude

B(dici)] < Kpfi(el) (4.19)
and also strengthen (4.17) to

R(A(dicry), (D)) < Ay (4.20)

(2

The latter in particular will prove to be very handy for relating computed block
determinants to their perturbed counterparts.

4.2 Stationary Block Factorization

Purpose of this section is to develop an analogon to dstqds for block factoriza-
tions, to compute

T—7 =T" where T=LDL* T*=L'D*(L*)* € R™" (4.21)

and D, DT are block-diagonal (with bandwidth one) each. We call LDL* the
source and L™D*(L™)* the target of the process. Our treatment is based on the
standard representation, that is, we assume to get the data (Q,{d;},{c;},{e.})
as input for LDL* and the outputs (2, {d;},{c/},{e,}) will define L*D*(L*)*.

The ultimate goal is an algorithm that allows a componentwise mixed relative
error analysis. Hence we need to find suitable perturbations of the input and
output data items, of the form

diwgia Z€Q, djwfd/j_7 i€Q+7

~ - + = ; +

e, e, t=1...,n—1,
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such that the thusly perturbed matrices satisfy LDL*—7 = E*f)*([*)*. Note that
the perturbations to d;, ¢;, d, ¢; can be compactly stated as

D(i,i) ~ D(i,i), D*(i,i)~ D*(i,i), i=1,...,n.
Just as in standard dstqds we introduce auxiliary adjustment quantities

s; = D,(i,i) = D(i,i) +7, i=1,...,n. (4.22)

)

However, for block factorizations these do not allow for a recursive formulation of
the factorization process like in Remark 2.22, except if the block structures €2 and
Q1" are identical. Furthermore, the way to compute s; ; is not unique anymore,
but depends on the local structure at hand, meaning the four truth values of
1€ ieQ i+1€Q,i+1e€Q". With (4.13) we have

Sip1 = € (invp(i) — invp+ (i), i=1,...,n—1.

Just spelling out the definition (4.12) of invp(7) and invp+(7) yields nine possible
cases that are to be considered!; they are compiled in Table 4.1.

The cases S1, S3, S6 and S7 are special because they do not allow to compute
5,41 using just multiplications and divisions. It is possible to rewrite their defi-
nitions such that previously computed auxiliaries can be utilized for computing
5;41; the resulting alternative definitions are collected in Table 4.2. To see how
these are derived, let us exhibit case S3:

s . = g2 (dil B d:l)
i+1 7 Ai_l A?_l
o di(diye) —efy) —diy(diye; — efy)

from Table 4.1,

= ¢ - NN = by (4.11),
i—15%-1
= ¢? 6z2—1(ditl —di ) —diydi T ascf =c¢;,— T
: A, AT o
2 +
2 €i1(Sig —7) —diydi T
_ by (4.22).
A AL

Note that standard dstqds is completely subsumed in case S1 alone and the
respective (standard and alternative) formulae are identical.

The error analysis to come is more or less based on considering these cases
separately but we will have to jump between them occasionally. With the intent
of making the presentation more accessible we will continue to use the pictograms
shown in the tables. To explain how they are intended to work, consider case S6
as example. Formally, this case is characterized by

i€Q, g0, i1

INot sixteen, because neither of 2 and Q* does contain two consecutive indices.
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Case | Description i Si41

S1 zz:;& : : e;/d; — e} /df

o [ [ =]

S3 z 2 g+ ::g : €§d¢_1/Ai_1 - ezzditl/A;r—l

S4 iji f;m T —e /d}

SH z’j_t é%? :_; et /d;

S6 Z 6 2 *o e e?di—l/Ai—l - ef/dj
i,i+1&Qr o0

ST i’é—gi At ._; : e?/di — G?dztl/A?fl

S8 Z i ?E O+ ._O._; ezzdifl/Aifl

TR S /AL

Table 4.1: Standard formulae for the next adjustment s, ;.
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Case g Sit1 =

S1 S si-n /()

B oo | Al ) —dodi] /(0080
S6 '_(2 : e [di_i(s; —7) + 6?—1}/(Ai—1d¢+>

A I B R R A -

Table 4.2: Alternative formulae for s, ,, utilizing previous auxiliaries in the form

of already computed quantities $;—T,J <

€i—2
€i—2 dz_l €i—1 €i—1
€1 ¢ | € . €;i_1 dlf €;
— >
€ |diy1|Civ € |di (it
Ciy1 . Ciy1

Figure 4.1: Detailed situation for case S6
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Although being short, it quickly becomes cumbersome and error-prone to differ-
entiate the cases based solely on this purely mathematical definition. A more
graphical representation for the situation results in something like Figure 4.1.

Now that is too much information. Essential is just the structure of 2 and
Q" and the pattern they induce for the distribution of the diagonal entries of D
and D* into d;’s and ¢;’s; for case S6 this is

e dipy -+ as relevant structure in D, and

i di, - as relevant structure in D*.

The pictograms we use capture just that, using ® to represent a d, and O for
a ¢;, with a connecting line to further pronounce a block:
7
1
—O o

The top line represents the structure in D and the bottom line the structure in D*.
We find these little pictures to be of great help in keeping track of the situation
at hand. Two things should be pointed out. Firstly, the pictogram for case S6
has nothing in its lower left corner. The reason is that this case does not specify
if © — 1 belongs to £2* or not, because it has no impact on the definition of s; ;.
And secondly, keep in mind that a ® at the right end may well stand for the
start of a block, but this, too, has no effect on how s, is defined.

The task to compute a block factorization will prove to be much harder than
standard dstqds. To make the problem manageable, we allow for two simplifica-
tions:

— The computed auxiliaries s; need not fulfill the respective relation from
Table 4.1 exactly for the perturbed data. Instead, we will be content if a
small relative perturbation of s, has this property.

This relaxation makes it meaningful to see the auxiliaries as secondary data
and denote by s, the correct value for the perturbed data; you get this by
replacing everything in any definition by its perturbed counterpart, e.g.,

gz’ﬂ - fé? (Zizel/ziq - 1/3;) = ¢ (31'71/(&;71,51' - gzzq) - 1/Zi;)

(2

for case S6.

— The effective shift for any index ¢ may be perturbed. What we mean by
this is that instead for (4.21) above we actually strive for

LDL* — diag(7;) = L*D*(L")".

Recall from (2.58) that this is harmless as it just states that an additional
outer perturbation is required to obtain (4.21).
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With those in place, the relations to be fulfilled by the perturbation are just

D*(i,i) = D(i,i)+35,—7, i=1,...,n, (4.23)

as our standard representation allows to reuse the offdiagonals e, for the target.

Based on the auxiliaries s; and assuming the block structure (2* is known, the
computation of L*D*(L™)* can proceed in a manner similar to standard dstqds,
using the following computational sequence as algorithmic template:

CS 4.1:  Template for the stationary block factorization

1: s =0

22 fort=1ton—1do

3 D*(i,i) = D(i,4) + (s, — 7)
4: // Compute block determinants
5: if 7 € () then

6: Ay = dige—el

7: endif

8: if i € Q then

9 ALy = dicf —ef
10: endif
11: // Compute next auxiliary s;
12: Siy1 = .-
13:  endfor
14:  D*(n,n) := D(n,n)+ (s, —7)

One application where the block structure Q* would be known beforehand
is for example when a non-blocked factorization L*D*(L*)* is desired, i.e., with
D* being diagonal or, equivalently stated, Q* = ). In §4.2.2 we will present a
customized algorithm just for that purpose.

Generally, however, we want to determine a suitable block structure on the
fly, for example with the intent to minimize (local) element growth. Then CS 4.1
needs to be augmented with suitable tests to build up 7. The most convenient
position for such a test is right after a d has been computed in line 3 to decide
if this should start a new 2 x 2-pivot in the target factorization, that is, if ¢ + 1
should be added to 2. The concrete shape and form of the test has to depend
on the circumstances, which is to say on the block structure €2 in the source. We
will develop and discuss a series of usable situation-specific tests on the following
pages. But regardless of how they are implemented, we should keep in mind that
a 2 x 2-pivot may only be chosen if (4.16) is fulfilled for T*, that is

dfef| < Kqel. (4.24)
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Except for the composition of Q*, the prominent point left open in CS 4.1
is the computation of s, ; in line 12. We did already indicate that this has to
depend on the actual case at hand as determined by €2 and 2" and that there
are different approaches for some. Doing it wrong is the easiest way of making
componentwise mixed relative stability impossible to achieve.

We will tackle the nine cases for computing s, , from Table 4.1 by grouping
them into pieces which can then be considered one at a time:

(i) Case S1 has already been dealt with for standard dstqds based on a e—
representation. Accordingly, the reformulation from Table 4.2 can be used
and the error analysis from Theorem 2.24 does apply.

(ii) Cases S2 and S3 state that a block in D corresponds to one in D*. This will
be our first challenge in §4.2.1.

(iii) In §4.2.2 we will deal extensively with cases S4 and S6. Those constitute
what we call breaking a block: single pivots in D™ where D has a block.

(iv) The largest chunk will be to tackle S5-S8 in §4.2.3. They have in common
that a block in D* is (or has just been) introduced where D does not have
one—we call this creating a block. A special role will fall to S9 and S8,
where blocks in D and D* do owverlap, because once these two cases start to
alternate and form an overlap sequence, the worst-case relative perturbation
bounds will depend on the length of the sequence. We will not be able to
overcome this problem completely, but it can be controlled in a practicable
way.

Our exposition is designed around the principle that we will present, for each
of (ii)—(iv), a computational sequence tailored just for the computation of the
s; concerned. These are intended to be used as plugin for the template above
and will be accompanied by a complete relative error analysis covering all data
involved. The final algorithm and its error analysis in §4.2.4 can then be built by
composition.

Error Analysis: Preparations

We assume the reader has built up some skill with mixed relative perturbation
analysis up to this point, in particular with the notation we use, so we will skip
some elementary steps.

The whole error analysis to follow in this and the subsequent sections assumes
that Axiom FP is upheld by the floating-point environment and that no underflow
or overflow occurs.

For any quantity a we will normally use a for its perturbed counterpart. It
will be beneficial to be able to refer to the individual relative perturbation factors
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associated with perturbed quantities; for this purpose we reserve the letter p.

a = ag(a)

So we use the “-notation as map between unperturbed and perturbed data items,
whereas ¢ maps data to the factor separating it from the perturbed data. Note
that we deliberately let the use of g on a perturbed quantity, like o(a), undefined.

Recall our use of the term secondary data for anything (meaningful) which
can be derived from a representation’s primary data; so far we have already
introduced the block determinants A;,7 + 1 € € as such. Secondary data also
has a natural counterpart under the influence of a perturbation, namely the value
one obtains if every primary data occurrence in a definition is replaced by the
perturbed version. We will extend the "-notation to refer to perturbed secondary
data as well. Hence, the determinants for 2 x2 blocks in D and D* are

A, = dic, —e2 i+1eQ,  Af = diE, —ek i+1eqr.

Note that, although our lax use of the “-notation might suggest otherwise, there
still remains the subtle point that we can choose primary perturbations like d; ~~
d freely, whereas A, ~~ A is an immediate consequence once all perturbations
to the primary data are ﬁxed.
Together with the "-notation, the use of p will also extend in a straightforward
manner to secondary data, thus giving meaning to
A, =0oh), i+1eQ, AF=Afo(A)), i+1eQr

gi:SiQ(si)v izl,...,n, ?i:TQ(Ti% izl""’n

Concerning the offdiagonal elements e;, for a shifted factorization based on
our standard representation only their squares e? will ever be needed, so assume
we have them as

file?) = e2(1+¢), e < e, i=1,...,n—1. (4.25)

It will be necessary to relate the block determinants A, and A as computed

in lines 6 and 9 to the exact ones Ez and Ej for the perturbed matrices. Based
on Axiom FP and (4.25), we can state

A1+ Ba) = dicis (1 +an) —€i(1+¢g), fori+1eQ, (4.26)

Af(L+8L) = diciy(1+af) —ef(1+e), fori+1eQt, '
with suitable perturbations |a.l, |af|, |Bal, |85 < €. Those will of course de-
pend on ¢, but it is not necessary to make this dependency explicit. We will
be deliberate to ensure that for all 2 x 2-pivots, the condition of computing its
determinant is bounded by x, from (4.20). Then we can invoke Lemma 1.4 to
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obtain from (4.26) a connection between the computed value A, and the exact

one A, for perturbed (primary) data as follows:

zi = AiQ(Ai) = di—lg(di—l) 'CiQ(Ci) - G?Q(G?)

= d,_1¢;(14 an) —Q(g’:)(fi;’) —eX(1+¢) (ffﬁ)
A B

= A1+ B8a) (1 +7),

with |y| < k, max{|A—1|,|B—1|}. The same technique works for A* and A*. To
get sharper error bounds one can take common factors of p(e?) and o(d;)o(c; )
or o(d;)o(c;,,) out from under the control of & .

Thus, extract any nonzero factors F, F'* and repeat the steps above to derive
two useful formulae that we state for future reference:

o(A,) = (1+6)F(1+7) fori+1e€Q, where

o(d;)o(c;yq) o(e) ‘
<k, GLIAGY | |85
|7| S Ra maX{‘ (1—}—0{A)F ) (1+€Z>F X
(4.27)
o(Af) = L+ B)F (1 +~") fori+1€Q", where
o(df)o(ciy1) o(e)
o< e Q%A% | ’—z _ 1) ‘
|7 | < K, max{‘ (1+aX)F+ (1+5i)F+

As a side remark, these clearly reveal the secondary nature of p(4,;) and o(A]).

Except for few special cases, we will perturb the data influencing s;, and
maybe also the shift 7;, just so that

$;—T = 5, — T, (4.28)

holds. This means the exact difference of the quantities s, and 7 (which are
floating-point numbers stored in the machine) equals the exact difference of the
perturbed data s; and 7; (which will in general not be representable as floating-
point numbers).

Provided the relation (4.28) holds, there is an obvious way to perturb the di-
agonal data of D and DT such that (4.23) is achieved. Assuming the computation
in line 3 obeys

D*(i,1)(1 4+ 67) = D(i,i) + (s, —7) /(1 + 05), |6F

oi| < €, (4.29)

)

the way to go is

oD(i,1)) == (1+0;), oD (i,i)) = (1+35)(1+0). (4.30)
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These will serve as our default perturbation.

To attain the relation s, —7 = s, — 7; in the first place, there are basically two
ways. The obvious one is to choose e, ~» €, just so that the computed s; becomes
exact, i.e., s, = s,. Then there is even no need to touch the shift, as 7; = 7 will
do the trick. An alternative is made possible if s, is not too large in magnitude
compared to the shift, e.g.,

|s;| < RI7|

for some parameter R. Then we can achieve s, — 7 = s, — 7; for every choice of
e; ~» €; by moving any “excess” from s; to 7;, in the form

F—T =3 —s, — lo(ri) = 1| < Rlo(s;) — 1, (4.31)

defining 7;. This provides us with one additional degree of freedom in the choice of
e,;, which can be used to fix some other critical computation. Note that, effectively,
we did cast a relative perturbation from one quantity (s;) as an absolute one and
then wrote it again as a relative one, but for a different quantity (7). This
technique will prove to be a crucial ingredient for the error analysis to succeed.

This closes the general preparations. Note that, whenever (4.30) can be used,
all that remains to be done is to specify fitting perturbations e; ~» e; for the
offdiagonal data.

4.2.1 Keep a block

Block factorizations are mostly harmless as long as the block structure is not
changed. With respect to Table 4.1 this comprises the cases S1, S2 and S3.
For S1 a single pivot in the source corresponds to a single pivot in the target—
that is just like standard dstqds and the error analysis from Theorem 2.24 is
fully applicable. In this section we will deal with the cases S2 and S3; together
they constitute that a block in D is reproduced in D", that is, we keep the block.

We begin by devising a criterion to determine when a block should be kept.
Assume we have a block in the source covering indices 7 and i+1, that is, i+1 € €.
The option of keeping the block does only present itself if we did not already
choose a block in the target at i — 1, so assume ¢ ¢ Q2*. Considering again Table
4.1, the choice between keeping the block or not corresponds to the choice between
cases S2 or S4.

It is desirable to keep the structure, but that is not always possible. At least,
we have to ensure that each block in D* satisfies condition (4.24). In this situation
the data T(i+4 1,7+ 1) = ¢, is readily available in our standard representation,
so just one extra addition gives T*(i+i,i+1) = ¢;,; —7. This yields the following
test.
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Block-Criterion 1. —O

> — @
~D

Fix a parameter K; < K. Keep the block if

d (c;q —7)] < Klef.

Now focus on the case that a block 141 € € is indeed kept, that is, we assume
the following situation:
7
- ! ~
In: s, =5, —O o Out: s, 5 =5,
e—O o

As depicted, we require s; as input and assume it to be exact with respect to
the perturbed data; the produced output s, , shall have the same property. The
computation will go through case S2 followed by case S3, but to ensure stability
we need to take the reformulation from Table 4.2 for the latter. This leads to the
following computational sequence, to be integrated with our algorithmic template
CS 4.1.

CS 4.2: Keep a block
L s, =0
20w = s, —7)—didiT
30 s = e a /(A A])

Recall our goal: We need to find perturbations to the primary data involved,
namely d;, di, ¢, , ci.,, ¢; and e;,;, and optionally also the shifts 7;, 7,11, such
that the relation(4.23) is fulfilled for ¢ and i + 1, with respect to the exact adjust-
ments S;, s;,, for the perturbed data. Combined with the In/Out-specification
above, this boils down to achieving

~ o~
+ 2 = ; -3
di = d,+ (s, —7), since s; =5,
S ~
Civ1 = CGit1 — Tt as ;41 = 0,
~
Sit2 = Siyo

Concerning the intermediate z and s, ,, under the assumption that the exe-
cution environment may obey Axiom FP we will have something like

e (1+&)
z(1+6;) = ei(s, )(1+0‘i)(1+0ﬂ)

Sio(14+8s) = efﬂ(l +€iv1) x/(Al Ai*), (4.33)

— dld:—T(l + OZQ), (432)
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where |a1|, |B:] < €, aa = €(2), s = €(3) and ¢;, €;41, 0; stem from (4.25) and
(4.29).

The shift need not be perturbed: 7, = 7,1 = 7. Then, as per requirement
s; = 5; and trivially also s,,; = 0 = 5;,;, the default perturbations defined in
(4.30) can be employed for d;, df, ¢;,, and ¢/, to the effect

d; = d,(1+ o;), Ciy1 = Ci (L4 0i41),

N - (4.34)
df = df (L4 651+ 00), T 1= (14 07,)(1+ o).

So far this gives us the desired relation (4.23) for ¢ and i + 1. The sole remaining
task now is to assure that the computed s, , is again exact for the perturbed
data, i.e., 5,5 = 5; 5. We still have not touched either e; or e;,; and can perturb
them freely to achieve this goal.

As a first step, perturb e, ~» €, to control the subtraction involved in com-
puting . The goal is to get the exact intermediate for perturbed data, =, to be
a small relative perturbation of the computed value, x. Based on (4.32) we set

- o A+e)d+03) s
¢, = ef'\/(1+5i)(1+a1)(1+a2) = o(e,) —1] <€(3)  (4.35)

and use s, — 7 = 5, — 7; to obtain

T o= (s, — 1) —ddiT
= z(1+8.)(1+0)*(1+6])/(1+ as)
= wo(7),

defining o(x).

The second (and last) step is to perturb e; ; ~ €;,; to get 5, 5 = 5;,5. As
the computation of s, , involves the block determinants A; and A, we have to
control the perturbation’s effect on them. Just for this purpose we did craft the
tool (4.27), which comes to its first use now.

Straightforward application of the formula (4.27), with F := (140;) /(14 as),

yields
Ap = A+ Ba) A+ 0)(1+7)/(1+a), (4.36)
with

vl < Ky - max{‘ Q<(dli)f(;f)l(>1(1—l-+0io;2> - 1” ‘ (

By (4.34) and (4.35) we can write this as

o(ef)(1 + as)
L+¢&)(1+ 0y

)—1‘}. (4.37)

(1+0i)(1+ag) } ‘ (1+4,)
(1+as) 1401+

= 1(} (4.38)

1 < v
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Finally, Corollary 1.12 lets us simplify to
v = k. e(4). (4.39)

In analogous fashion we obtain a bound for o(A]), using the lower formula
from (4.27), with F™ := (14 0;)(1 + §;), for

AF = A+ 8D)A+0) (1401 +7), A7 = ke(3). (4.40)

The purpose for factoring out (1 + az) from &Z was to cancel out with the one
from o(z) in

i = eiﬂ\/%i—@ngAi)Q(An/@(x)

\/(1 + 8a)(1 + B2)
(14 8.)(1+ Bs)
)

e/ (L + (D)1 + (7))

— ‘Q(ei—i—l) - 1‘ < 6[4](% + %K’A)’ (4.41)

(I +ei)(T+7) (1 +77)

Taking everything together, we obtain the desired relation
Siva = Cin (gz?(si —7) - 3@;7)/(513;) = Sita-
The following result summarizes the preceding error analysis for keeping a block.

Lemma 4.6. For the case that a block in the source is reproduced in the target,
i+1e€QnQt, let in CS 4.1 the auxiliaries s, ., and s;,, be computed as in
CS 4.2. Then we can find perturbations

P - +os Y =
d,~d, = €(1), df ~ d] = €(2),
- + = -
Civ1 ~ Gy = €(1), Cit1 ™ Cip1 = €(2),
- =~ R VI 4
€; ~ € = €'(3), €it1 ™ €iy1 = € (5 + E’fa)a
such that
T+ o _
di = di+s,—7, ¢ = G —T, and S5 = S

4.2.2 Break a block

In the previous section we dealt with the situation that a block in the source D is
kept for the target D*. Now we will consider how to break a block without any
overlap, that is, without creating a new block ending within {i,7 4+ 1,7 + 2}:
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)
~ | ~
In: S; = S, e—O © Out: Si+2 = Si49

As depicted, we require s; as input and assume it to be exact with respect to the
perturbed data, and we want to deliver s, , enjoying the same property. We will
not assume that the decision to refrain from adding either one of 7, i +1 or i + 2
to 2t was supported by BC—I, but nevertheless we require

d; #0 and dj,, #0,

as otherwise the factorization would not be possible.

With respect to Table 4.1, the computation will go through S4 followed by S6.
There are different ways to compute s, ,. From case S6 in Table 4.1, applied to
5;40, We get the formula

2

Sivs = L [ddt, — A (4.42)
Aidi—i-l —

::"L‘

revealing the intermediate quantity = whose stable computation is a critical in-
gredient for breaking a block. This meaning of x will remain in effect throughout
this section. The reformulation from Table 4.2 for case S6 shows that x can also
be written as

= di(s; . —7T)+e; (4.43)
Two points should be clear:

e For having the slightest chance of finding a perturbation for e, , such that
5;,o becomes exact, we must compute x stably, meaning the computed x
should be only a small relative perturbation away from the exact = for
perturbed data.

e Neither one of the two ways for computing z introduced above will be
stable in general. This remains true even if one would assume that Block-
Criterion I was not fulfilled.

These points make the task of breaking a block special, because they effectively
force us to include a branch in the computation.

Computing x as in (4.43) is advantageous, because it reuses the intermediate
;.1 — T, which is required to compute d;,,; anyway (line 3 of CS 4.1). But for a
relative error analysis, this approach is problematic because it uses e; explicitly
again, although s; | does already depend on e;. An alternative formulation for x
is

2
r = d—i(sZ —7)—d;mT = —s;.4(s; —T) — d,T. (4.44)

(2
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This one is easily derived from (4.43) if one puts the identities s, — 7 = d — d;
and s;,; = —e?/d] to good use. Again it should be clear that the outermost
subtraction involved cannot bode well for all configurations, but at least the
double dependency of e, is removed.

Both ways to compute = that were just introduced have their uses. So let us
combine them to the following prototype computational sequence for breaking a
block. Again we state only the parts relevant for computing the auxiliaries s, ;
and s;,, and assume the rest is done according to CS 4.1. The keyword branch

is used just as it was in §2.4, cf. the remarks on page 85.

CS 4.3: Branches to break a block

L sy = —el/df
branch I :

2: = di(s —7T)+ €l
branch II :

2: r o= —s; (s —T)—d;T
endbranch

3 s = e/ (Adfy)

Let us without delay identify the effects of executing these steps using floating-

point arithmetic:
Sz’—i—l(l +5s) = —6?(1 + 81)/di+>
d(s.. . —
i(Sip1 — 7) +e?(1+¢g;), for branch I,
(115, = (1+ o)1+ 0441) (4.45)
S8 T) d;7(1+ a3), for branch II,
(1+ )1+ 0;)

sipa(1+0;) = e (T+em)x /(A7)
where |aq|, oo, |asl, [5z], |8s| < €, 85 = €(3), and &;, €41, 04, 0i41 stem from
(4.25) and (4.29).

We would like to note at this point that we did investigate even other ways
to compute s, ,. But, as was already indicated, we do not see a way to lead a
mixed relative error analysis to completion if only one computational branch (I,
IT or other ones) is used for all cases. However, what we can (and will) do is to
show that the combination of branches I and II, together with the right test to
choose between them, leads to success. To this end, we highlight the following
conditions under which the computation according to each branch will be stable:

(a) Branch I works if the computation of x in line 2 is well-conditioned. Then we
are free to fix o(e;) for any choice of o(d;) such that s, ; =5, ; holds, while
still being able to control the effect on . We will explore this condition in
Lemma 4.7.
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(b) Branch I is also fine if s;,, is not much larger than 7 in magnitude. Then we
can employ the technique surmised in (4.31) to modify the shift, opening up
the freedom to perturb e, to control the subtraction involved in computing x
in line 2. Lemma 4.8 will deal with this case.

(c) Branch II works if s, ; and 7 are not about equal in magnitude, i.e., there
would be no cancellation in s,,; — 7 (which is nevertheless not computed for
Branch II). This claim will be established in Lemma 4.9.

These are just a selection out of a variety of conditions we studied while inves-
tigating how to break a block. For example, similarly to (a) one can show that
branch II is fine if the computation of = there (line 2) is well-conditioned. How-
ever, just the three conditions stated above will contribute to our algorithm to
break a block, so we will present only them in detail. Indeed, as |s; ;| > |7] ex-
cludes the possibility of harmful cancellation between s, ; and 7, just (b) and (c)
alone would suffice to cover all input configurations, so one could even skip (a).

The error analyses in the three following lemmas have in common that the
default perturbation (4.30) is deployed for d;, d, i.e., we set

d, = di(1+0), df = df(1+5)(1+0y). (4.46)

Furthermore, the shift for index 7 is let unperturbed, 7; := 7. One main goal will
always be to prove that the computed x has a small relative distance to the exact
one for the perturbed data,

T = wo(r) = di(gi—&-l — Tir1) + 51‘2 = _§¢+1(§i —T)— d;Tit1-

Provided we have an acceptable bound on |g(z) — 1|, based on (4.45) we can then
attain s; , = s;,, by defining e; according to

~ oA E) x
€1 = 2“\/ (T ) e/ e (447)

= o) = (@) aA)e(dr) /o).

So, what is left to do is to perturb three data items and the shift for index
1+ 1, namely

=~ + e ~ ~
Cip1 ™ Ciprn dig ~df, e~ €, T T, (4.48)
in order to ensure
- \ '
+ = ~ rs -, iry -
d’i+l - Ci-i—l + Si-i,-l — Tit1 and Si+2 - Si+2‘ (449)

With these preparations done, the following three lemmas can be considered
separately, as they do not depend on each other.
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Lemma 4.7. For branch I, let

kla] = ri(fl(d;(s;4, — 7)), ()
be benign. Then we can find a perturbation
Cip1 ™ G = €(1), €~ € = "(2),
{dz—-f—l ~ Eﬂl = €(2), Cip1 ~ €y = €4+ K[r] +Ky),

such that (4.49) is fulfilled with 7,11 = 7. The computed adjustment s; , will be
exact, that is, s;, | = 5; .

Proof. Based on (4.45) we attain 5;,, = s;,, by setting

& = enJeld)(1+e)/(L+5)
= ey /(L+e)(1+a)(1+6)/(1+5.) (4.50)
= ole;) = 1+€"(2).

In cooperation with the default perturbations (4.30) for ¢, , d;,; this gives us
divi = Cip1 T Sip1 — T
For the intermediate x we have

Tr =

(8i41 —T) + Ch since s;,1 =8,,4, T, =T,
(8,1 —T)(L+0;) +eX(1+¢) by (4.46) and (4.50).

d,
= d,

Now we cast this in terms of (4.45) and invoke Lemma 1.4. Using the prerequisite
on k[z] we see that the perturbation’s effect on z can be controlled as

ox) = L+ G:) (A +0)(1+8), & = e(@rlz]).

Since o(d;) and g(e?) have the common factor F := (1 + 0;), (4.27) lets us
conclude that the computed A; will relate to the exact block determinant for
perturbed data according to A; = A,0(A,), where

0o(8;) = 1+ Ba) 1 +0)(1+7), v = €(2K,4)-

Finally, plug the obtained o(d;), o(z) and o(4,) into (4.47) and cancel terms to
determine e, ; such that s; , = s, , holds. O

Lemma 4.8. For branch I, let

‘5i+1‘ < R|7|
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for a parameter R > 1. Then there is a perturbation

Cit1 ™ 5¢+1 = €(1), e; ~ € = "(2),
dipy ~ diy, = €(2), €ip1 ™ €y = 5[4}(% + %’%)7
e = dR),

such that (4.49) is fulfilled. The computed adjustment s, will satisfy

Siv1 = Sipa(1+€(4)).

Proof. We have to assume that the computation of x is ill-conditioned. Therefore
we choose the perturbation e, ~» e, specifically to safeguard the subtraction
involved in computing x, namely as

e; = ¢/ (1+&)(1+0)(1+ o) (1 + ).

This gives us

2(14 )1+ o)) (L4 0ip1) (L + o) = dy(s;, —7) + €7,

as well as

Siv1 = _%<1 +60)[(1+ o) (1 +an)(1+8,)]

)

— o(si1) = (L+€(4)).
Now employ the precondition and invoke (4.31) to define 7;,; satisfying
o(Tiy1) = 1+€(4R),

such that s,,; —7 =35,,; — T;41. Together with the default perturbations (4.30)
for ¢; .y, d,, we get

diy, = G+ 8 — Ti1
Concerning the block determinant A;, note that o(d;)o(c,,,) and g(e?) have the
common factor F' = (1 + 0;)(1 + 0441), so our tool (4.27) gives

o(A;) = (14 82)A +0i)(1+ 0i41) (1 + €(k,))-

Take everything together, invoke (4.47) and cancel terms to find the right
perturbation for e, ;. ]

Lemma 4.9. For branch II, let

|s;1| > R|T|
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for a parameter R > 1 and define R* := (R —1)~'. Then there is a perturbation

Ciy1 ™ Ciyp = €(34+2R7), e~ ¢ =€l(3),
diy ~ E;—l =e(4+2R), i1~ €y = 6[6](% + 2K, + (ky + 1)RY),

such that (4.49) is fulfilled with 7; = 7. The computed adjustment s, will satisfy
Sip1 = Sip(1+€(2)).

Proof. As we cannot assume the computation of z to be well-conditioned, our
first action is to perturb e, to safeguard it. Setting

~_[ate)a+oya+s)
TV (T ag) (T4 as)(1+ 8y

we reach that goal, because in concert with (4.45) it gives us
€2
Sip1 = _E_:(l Ta)(lt+as) = olsi) = (1+€(2)),

7

as well as
(14 81+ 0:) /(1 + as) = ==(s,—7) — d,T.

The precondition implies [s; ;| < (1 + R*)|s;,; — 7|. Hence

S0 —T = si+1(1+a2)_1(1+a3)_1 -7
(i1 = 7)1 +¢), with¢ = €(2+2R"),

Thus, together with (4.29) we can achieve 3j+1 = iy + 5,41 — 7 through

Cix1 = Cig1 - (1+0341) (1 +C),
dz‘++1 = ;r+1 (1T + 5z‘++1)(1 + i) (1 +C).

Concerning the block determinant, invoke (4.27) with F':= (1 + o) for
o(A,) = (1+08.)1+0)(1+7), v = ke(4+2R").

Take everything together and use (4.47) for the definition of €, ;. O
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Putting everything together

We propose the following computational sequence for breaking a block. It is
designed to exploit that the preconditions for Lemmas 4.8 and 4.9 mesh perfectly.

CS 4.4: Break a block

L sy = —el/df

2. if |s,,,| < R|7| or sign(d;) # sign(d;) then
3: // branch |

4: v o= di(s; . —T)+ €

5. else

6: // branch Il

7: T o= —s;(s, —T)—d;T

8:  endif

0 sy = efg /) (D)

A complete error analysis for this sequence is now a direct reward from Lem-
mas 4.7-4.9. In fact, Lemma 4.7 is not strictly required to break a block sta-
bly. We use it in a supporting role to alleviate some of the rather largish error
bounds from Lemma 4.9 in practice. However, we do not want to test for x[x]
directly, as such a test would be rather expensive. It turns out that the cheap
test sign(d;) # sign(d;) leads all cases with x[x] = 1 into branch I, and hence into
the purview of Lemma 4.7.

Corollary 4.10. For the case that a block in D is broken without overlap,
i+1€Q and Q'N{i—1,4,i+1} =0,

let in CS 4.1 the aumiliaries s, ., and s, , be computed as in CS 4.4 above, with
a parameter R > 1. Let R* := (R —1)"Y. Then there is a perturbation

d; ~d; = e(l), dj ~ 31+ = €(2),
Cior ™ Gy = €(342RY),  di,, ~df, = e(4+2R"),
e; e =e"(3), €is1 ™~ €ipq = 5[6](% + 2K, + (K + 1)RY),

such that

T _ g + 3 = —
df = d,+s;,—T, diJrl = Cii1 1T S — Tigls and S, 5 = 5;.9.

The computed adjustment s, will satisfy s;,, = s;,1(1 + €(4)).
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Proof. The stated bounds are the worst of Lemmas 4.7-4.9, we have just to
demonstrate that one of them is always applicable.

Clearly, if branch II is taken then Lemma 4.9 can be used and Lemma 4.8
applies should the computation follow branch I when |s,, | < R|7|.

What remains to be considered is that branch I is taken with |s; ;| > R|7|
and sign(d;) # sign(d;). We have

sign(d;(s; 1, — 7)) = signd; - sign s, ;, R>1=[si4| > |7,
= signd, - sign —d;, Sis1 = —€;/df,
€ {0,1}. sign(d;) # sign(d}).
This gives k[x] = 1 for Lemma 4.7. O

An important application of breaking blocks is when we desire a non-blocked
target factorization L*D*(L*)* with D* being diagonal, i.e., Q" = (). Computation
of a general (blocked to blocked) factorization is expensive due to the conditionals
involved. For an MR?-algorithm based on block factorizations as representations
for inner nodes, there is really no need to employ blocks during bisection or
computing eigenvectors, as there element growth in the target has no effect on
accuracy. Algorithm 4.5 puts the content of the previous pages to good use by
providing a non-blocked factorization.

Theorem 4.11 (Error Analysis for blocked to non-blocked dstqds)

Let Algorithm 4.5 be executed without underflow or overflow in an envi-
ronment that satisfies Aziom FP, and let all blocks in D satisfy (4.17).

Then the diagram in Figure 4.2 commutes, that is, there are perturba-
tions to the inputs and outputs such that

LDL* — diag(7) = L*D*(L*)*

holds exactly. The perturbations can be bounded depending on the parame-
ters R and K according to Corollary 4.10; for specific choices the resulting
bounds are compiled in Table 4.3.

Proof. This is just Corollary 4.10 combined with the error analysis of non-
blocked dstqds (e-representation) from Theorem 2.24. The parameters R = 3,
K, = 1/8 imply R* = 0.5 and k, = 9/7; then the bounds in Table 4.3 are
immediate. ]

Remark 4.12 (Breakdowns in Algorithm 4.5). Since no 2x2-pivots are allowed in
the target, the factorization may break down if a df becomes zero. This can be
handled analogously to standard dstqds, cf. §2.4.5. O
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ALGORITHM 4.5 Factorize blocked to non-blocked

Given block factorization T = LDL* € R™ " in standard representa-
tion, compute data for non-blocked L*D*(L™)* = T+ such that
L*D*(L")* = LDL* — 7.
Notes:
e The offdiagonal elements e, are reused to represent T.

e Computing the block determinants A, i + 1 € 2 is not shown; these
should have been cached once beforehand.

Input: Q, shift 7, {D(i,9)} ={d;|i € QU {c;|i € Q}, {ey,...,e,_1}
Output:  {df,...,d}}
Param: R>1

. s, =0

2. fori=1ton—1do

3 di = D(i,i)+ (s; — 7)

4 if i +1 € Q then // initiate breaking the block
5 S = —e;/df // S4
6: elseif i ¢ Q) then // standard dstqds
7 Siy1 = €i(s;— 1)/ (d;d]) // 51
8 else // finish breaking the block
9 if |s;| < R|7| or sign(d,_,) # sign(d;_,) then

10: x o= d_y(s; —T)+ e, // branch |
11: else

12: x = —s;(8,_1—T)—d,_4T // branch Il
13: endif

14: sipr = efw /(A d]) // 56
15: endif

16:  endfor

17 df = D(n,n)+ (s, —7)

n




198 Block Factorizations

LDL® L'DH(LY)* | igQ i€Q
d, ~ d, 1 df ~df | 2 5
C; ~ G 4
1Z€Q 1€
e;~¢€ | 3 10
T~7, | 0 12

Table 4.3: Error bounds to achieve mixed relative stability for Algorithm 4.5, for
the concrete parameters R = 3, K = 1/8, cf. Theorem 4.11 and Figure 4.2. Only
first-order bounds are shown, i.e., an entry p stands for a bound pe, + O(€2).

dstqds
LDL* L*D*(L™)*
computed
Table 4.3 Table 4.3
e —diag(T;) -
LDL* L*D*(L*™)*
exact

Figure 4.2: Mixed relative error analysis for Algorithm 4.5.

Remark 4.13 (Optimizing Algorithm 4.5). We formulated Algorithm 4.5 with
the intention to maximize clarity, but in this form it is quite inefficient, due to
the many conditionals involved. An alternative design could use a nested loop
structure:
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1 while 7 < n do

2 while i + 1 ¢ Q2 do
3 ... // do normal dstqds
4 endwhile

5: // break the block
6:

7

8

1:=1+2
endwhile
This would reduce the number of extra conditionals to one per block in the source,
which is minimal, since we cannot avoid having to select between branches I and II
for stable computation. O

4.2.3 Creating blocks & handling overlap

In this section we will analyze how to create new blocks at a position where the
source does not have one. We will start with discussing criteria to decide when
this is sensible.

Assume the factorization process did just compute d; at an index ¢ where no
block starts in the source, that is, i + 1 ¢ 2. This leaves two cases to consider,
since D might still have a block ending at index ::

{ i
1 i
o0 or O o
® 7 ® 7

One could try to test for (4.16) directly, by tentatively computing the diagonal
element T*(i41,7+1) = ¢/, ;. This would require to first determine s, ; according
to either case S5 or S9 in Table 4.1, and then check if

|df (diq + (501 —7))| < Koe] (4.51)
holds. This approach has the advantage of being to-the-point. A 2 x 2-pivot
is chosen aggressively in every situation where it makes sense according to the
basic condition (4.16). However, there are two drawbacks. If the test should
indicate mot to choose a 2 x 2-pivot, we end up in one of the cases S1 or S6
instead. Then the computed s,;,; becomes invalid; its computation—including
at least one multiplication and one division—as well as the two additions to get
cf 1, would have been wasted. The second drawback is indeed more serious: we
need to make some additional assumptions about created blocks for the following
error analysis to succeed, and the direct test (4.51) does not provide them.

Due to these reasons, we use the following stronger criterion for determining
if a block should be introduced where the source does not have one.
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Block-Criterion 11

.= @

Fix parameter K, < K7 /3. Choose a 2 x2-pivot if

|d| -max{|r|, |dz’+1|} < K2€?

and df| < Fold,|  ifi g Q,
drd, || < Ky|A,_,| ifie .

Should a created block satisfy this criterion in exact arithmetic, then the
expressions for s, ; in cases S5 or S8 from Table 4.1 reveal

L {di+1+eg/di—7, ifidQ,

+ .+ 2
Ci-i—l - 9 . — |dl Ci-i—l’ < ngi‘
dipq + €id'_1/A2-_1 — 7, otherwise,

The adjusted choice of K3 based on K ensures that this will hold for the per-
turbed quantities as well, so indeed the computed block data will even have the
stronger properties (4.19) and (4.20) again.

Deploying BC-II instead of (4.51) has the advantage that

A7 > (1-K.)e? > 31— Ky)

e T (452)

will hold for any chosen block. For example, with K, = .25 this means the
“hidden” pivot A} /d} would have been at least nine times larger in magnitude
than d,; (or infinite if df = 0); so the choice to create a block was well-founded.
This particular property will be crucial for the coming error analysis.

A newly created block in the target can overlap with blocks in the source if
1—1€Qori+1¢€Q There is only one situation where this does not happen:

@ —=

° °
e—O o
One could call this the “clean” or “pristine” creation of a new block. It is symmet-
rical to breaking a block. Indeed, this can be realized based on the less restrictive
test (4.51) in a way completely analogous to breaking a block in §4.2.2, including
a necessary branch in the computation. Our implementation does indeed include
this special treatment, but we have chosen not to present its error analysis here,
since it does not convey anything new compared to breaking a block. Further-
more, as it turns out, if the more restrictive Block-Criterion II is employed, the
computational branch is not necessary.

There is a fundamental problem involved with overlapping blocks. It arises
when D and D* each have a sequence of consecutive blocks that are out-of-sync,
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in the sense i € ) < ¢ ¢ Q. With respect to Table 4.1, this means alternating
between S8 and S9. We call this phenomenon an overlap sequence. The essential
problem with it is that we cannot formulate the factorization as a recursive pro-
cess like we could for standard dstqds, cf. Remark 2.22. As a consequence the
perturbation bounds to attain mixed relative stability will grow with the length of
the sequence, at least in general. To explain why this is so, consider the following
excerpt of an overlap sequence, around 7 € €):
i
!
—O O
—O O o

Any perturbation strategy has to fix €; to control s, ; such that (4.23) is fulfilled.
As i € Q, this makes p(e;) depend on p(A,_ ;). Now e, contributes to A}, so
o(A;) will depend on g(e;) and therefore, o(e,, ;) will have to depend on o(e;),
too, forming a cycle.

Because of this developing interdependency, we can deal with overlap se-
quences only by considering them en bloc, starting from the last index j with
j & QUQT and up to the next k with £k +1 ¢ QU QF. Then each sequence
can start and end by either creating a block or breaking one. This leaves four
basic kinds of overlap sequences; they are depicted in Figure 4.3. The constraints
shown on j and k stem from requiring that at least one new block from D* be
contained. Note that type C-C' includes k = j + 1, the creation of a new block
without any overlap, which was introduced already. We kept this case in as the
error analysis to follow will cover it seamlessly.

The meaning of the indices j and k to denote the beginning and end of the
overlap sequence will remain in effect during this section, thus freeing 7 to be used
as running index.

The computation of the adjustments s;,,,...,s; ., for any of the four kinds
can proceed as summarized in CS 4.6 on page 203. It uses the formulae from
Table 4.1 for up to s, and the alternative formulations from Table 4.2 for s, _ ;.

We can summarize the effects of floating-point arithmetic by stating that, for
i=7...,k,
e2/(...) with oy =¢€(1), ifi=j
S = (L4+e)A+a;)- ¢ ef-(...) witha;=e(2), ifj<i<k, (4.53)
era /(...) with a; = €(4), if 1 =k,

introducing the intermediate

(sp = T (L + B1) /(L +0p) + €2 (L +epn), ifkeQ,

T = { (4.54)
(sp = )i (L4 Br) /(L +ox) — et (L+ep), if ke Qr,
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j k
Type B-B 0O &0 &0 &0 &0 o k>j+2
e 6O 6O o -O &0 o @
~ =~ N~~~

J k
TypeCfB ..—O.—O.—”'—O.—O. k>]+1
e—O 6—0O O e—O O ©
~~ =~ ~~~
Ji k
TyperC’ e—O 6O O ] e—O o © k,>j_|_1

Type C-C e 0 60O eO oo

—O —O o O O e
~— ~—~

k>j

Figure 4.3: The four kinds of overlap sequences, classified as to whether they
start/end by breaking a block (B) or creating a new one (C). The braces indicate
the repeating block structure pattern.

where |G| < € and g;, oy are the ones from (4.25) and (4.29), respectively. Note
that the rounding error from the outermost addition in computing x contributes
to oy and that we use the same x and [ for both types of endings.

The error analysis for CS 4.6 will proceed as follows. We will first focus on
the start and the repeating middle part up to s,. That is the hardest part, as
it involves dealing with perturbation bounds that depend on the length of the
sequence (i.e., the distance to j). Once that is covered, we can deal with the two
types of endings and wrap up.

As was already hinted at, the main challenge is that the required perturba-
tions of e, and A, depend on e, ; and A, ;, respectively. With the intent of
handling these interdependencies more fluently, let us define numbers p; and g;
to be minimal such that

o€)/(1+e) = 1+elp), i=j,....k (4.55)
as well as

o(A;) = 1+¢€(q), fori+1eQ,
o(Af) = 1+¢€(g), fori+1eQr.

are fulfilled.
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CS 4.6:  Compute adjustments for an overlap sequence

L. ifj+1€Q then
2: // begin by breaking a block
3: Siy1 = —e?/d}”
4. else
5: // begin by creating a block
6: s = €/d,
7. endif
8:  // the middle part
90 fori=j5+1tok—1do
10: if © € Q) then
11: S = iy /A
12: else
13: Sip1 = —e?d;’fl/Aﬁl
14: endif
15:  endfor
16:  if £ € Q then
17: // end with breaking a block
18: S = (s, — Tdpy F e ]/ (Aidy)
19: else
20: // end with creating a block
2L: Spp1 = | (s = Ty — et ] [ (deiy)
22: endif

For the diagonal data of D and D* we deploy the default perturbations (4.30).
Furthermore, we will have to use (4.27) so often that we will not always state the
reference.

Two Beginnings. The “right” perturbation e; ~~ ¢€; to get s;,; to be exact
for the perturbed data is captured by

o(d}), ifj+1eq,

— p;<3. (457
o(d;), ifj+1eQqr, ’ (4.57)

Q@ﬁ3=(1+%xl+aﬂ'{

The default perturbations (4.30) for this case are

d; = d;(1+0;), o(D) = (1+0j11),

df =di(1+05)(1+0y), o(D) = (14 0/1) (L + 0j11),
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where either D = ¢;,,, D* =dj,, if j+1 € Q or D =d;,, D" = c;, if
7+ 1€ Qf. Hence, depending on the situation we can invoke the upper formula
from (4.27) with ' := (14 0;41), or the lower one with F'* := (14 0;1;) to reveal
the perturbation’s effect on the first block determinant of the sequence to be

— ¢ <244k, (458)

0(4;) = 1+€2+2k,), ifj+1€Q,
o(AY) = 1+€(2+4k,), ifj+1€QF,

The Middle Part. Here, that is, for i = 541 : k — 1, the perturbation e, ~~ €,
to get s, =5, is

Q(Ai71>/Q(difl)7 i €4,
o(AL))/oldly), i€ Qr, (4.59)

= p;<q-1+4

o(e}) == (1+e)(1+ ) - {

Concerning the block determinants, it is not hard to realize that the maxima
(4.27) are then attained with the e?-terms. Hence, if those are perturbed as just
specified, we will have

¢ < 14 K,pi. (4.60)

The perturbations as specified so far depend on the meshed recurrence between
the p;’s and ¢;’s. To get a grip on it we employ the following elementary tool.

Fact & Definition. Define for m € Ny and z € R

P (2) = zm:zl = {m+1’ ifz=1,

py (z™™ —1)/(z — 1), otherwise.
Let for given scalars b, € R the sequence (ay)>o of reals satisfy
ag > 0, ap < b+ ra;_; for k> 0.

Then, for all k € Ny,
ar < max{b,ao} ¢r(r).

Combine (4.59) with (4.60) to get ¢; < (1 + 4k,) + K qi—1 for i > j. With
the starting value from (4.58) we can then model the recurrence (ay = ¢; =
2+4+4k,,b=1+4k,,r = Kk,) to obtain

¢ < (2+4k,) - ¢pi—j(k,) and p; <gq_1+4 for i>j. (4.61)

The dependence on the length of the overlap sequence is far to strong to
make this result of much practical use. For example, with the moderate bound
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Kk, = 3/2 (which we get with K, = 1/5) and a sequence of length k — j = 6, the
perturbation to €2 , alone would already exceed 100¢,.

But there is light at the horizon, in the form of choice. After all, the bound
above can be monitored during a computation. Should it grow too large, we can
simply choose not to take a 2 x 2-pivot, thus capping the sequence. The only
situation where we absolutely must take a 2x2-pivot is if d; becomes zero. But
that is actually a favorable situation, because it causes s;,, to be zero as well
(cf. line 13 in CS 4.6 for ¢ + 1). This effectively lifts any restriction on €,,, and
therefore cuts the dependency-chain. So far our analysis does not exploit this.
Indeed, we can improve the analysis not only for df = 0 = s,,, = 0, but more
generally for any situation where an |s;| becomes “small”. The idea here was
used before, namely that if, for any ¢, the adjustment s, is not much larger in
magnitude than the shift 7, then the latter can be perturbed to provide freedom
in the choice for e, ;.

We will limit this optimization to the middle part. So, assume we have for an
i with j < ¢ < k that |s; ;| < R|7| holds for a parameter R > 0. Then perturb
e; ~ ¢; instead of (4.59) simply as

e? = el +¢) (4.62)
and employ (4.31) to define 7;;; such that s;,; —7 =5,,; — 7,41 is upheld. Look
at the middle line of (4.53) to see that the above choice for €; implies

o(d;_1)/o(A; ), i€Q,

o) = (T4 '{mdzn/@(A:l), iear

Hence, the necessary perturbation 7,41 = 70(7;) to the shift from (4.31) can be
bounded as

‘Q(THl) - 1| < R’Q<3i+1) - 1‘ < R€[21(4+qi,1).

The benefit of doing so is that it effectively resets the recurrence, since (4.62)
gives p; = 0 and ¢; < 1+ 5k,. The parameter R is yet unspecified. Indeed, we
can choose it freely; its sole purpose is to control o(7;).

Let us summarize where we stand.

Lemma 4.14. Let in CS 4.1 the adjustments s; 4, ..., s, for an overlap sequence
be computed as in CS 4.6. Fix a parameter R > 0 and define fori=j,...,k—1

h(i) = i—max{m‘m:j orj<m<1iand|s,, | §R|T|}.

Then there is a perturbation such that (4.23) is fulfilled fori=j,...,k—1. With
suitable numbers
G < (24 4k,)0n)(ky), J <1<k,
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the individual perturbations can be bounded as follows:

D(i,i) ~ D(i,i) = €(1),  D*(i,i) ~ D*(i,i) = €(2),
€~ ’e”] = 6[4](2), e; ~ EZ = 6[4](3 + %qi_l), j<i<k,

The implied perturbations for the secondary quantities will obey

i+1e€Q: oA, — 1| o
< i), < <l€,
it1eQ: |o(A7) — 1 < ea), g

Siv1 = Sjt1s l0(s;01) =1 <P (d+qia), j<i<k
]

Recall that the main purpose of the preceding analysis was not to provide
sharp worst-case perturbation bounds, but also to give us the means to control
the computation of an overlap sequence. Whenever we absolutely need to choose
a 2x2-pivot due to a tiny d;, we can do so and because s;_, will then be tiny, too,
the bounds are controlled. Otherwise, we can keep track of the current length of
the sequence (better: the current h(i)) and if this exceeds some threshold just
choose a single pivot, thus ending the sequence and capping the bounds.

The challenging part is done, what remains is just a little tedious. We need to
deal with the two possible ways for the sequence to end. For the following we have
to rely on the stronger Block-Criterion II, and in particular (4.52). Furthermore
we require K, < 1/3.

An End by Creation: k£ € Q. We assume s, —7 is exact, i.e., 5, =7 = 5, — 7.
Lemma 4.14 does deliver this. What remains to be done is just to define e, ~ ¢,
such that s, ., becomes exact, s,,; = s,,,. The following picture summarizes
the situation:

In: s, —7 =15, — T Out: s, =5,

Decn

Note that we may have k = j + 1.

One could fear the task to be impossible should the computation leading to the
intermediate x in line 21 of CS 4.6 involve cancellation. Indeed, this would cause
problems in general, but we will show that this computation cannot be too badly
conditioned if the choice for a 2x2-pivot at k£ —1 was based on Block-Criterion II.

Depending on the situation at hand, s, is defined in one of two ways:

s _ ei_l/dk_h lfk— 1 gQ,
* 2 ydy o/Dy , fk—1€Q
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Thus fulfillment of the second condition from Block-Criterion II implies |s,| <

(K7 /3)er_,/|d}_,], which yields
[sp = 7lldi_y | < 2max {[s,],|7[}|d; | < SEDei_s.

Because of the safeguard K < K_ to anticipate rounding errors, we can safely
conclude that the computation of z in line 21, is governed by

ko (8((sy — )i ) (e )) < % ¢ wfal. (4.63)

Hence we can control the rounding errors expressed in the lower line of (4.54) as

= (s =Ty =, = wol), (464)
where |o(x) — 1] < r[z] € (max{4, pr_1}).
Finally,
oler) = (1+er)o(Af1)a(dy) (1 + ax)/ o(x) (4.65)

makes s, ; exact, as desired.

An End by Breaking: £ € Q2. The situation at hand is

k
-~ - ! ~
In: s, —7 =5, — T O o Out: s, = 5.,

—O O O o

This is very similar to breaking a block from the §4.2.2. Indeed, the way s, is
computed in line 18 of CS 4.6 corresponds to branch I from CS 4.3. The difference
is that, here, we have overlap at the left end: £k — 1 € QF. This will prove to
be beneficial, because here we can assume that the created block covering indices
{k — 2,k — 1} satisfies Block-Criterion II, which will allow us to show that the
single computational branch does work for all configurations. Note that we must
have k > 7 4+ 1, so that s, is defined as

Sk = ei_ldh/ﬁh'
For the analysis, we consider two cases, depending on the parameter
R = (1-2K.)",

which is larger than one only if K, < 1/2 holds, and we assume it does.

CASE: |s,| < R|r|. We employ the perturbations from Lemma 4.14 but throw
away those for e,_, and 7;,. We will redefine them manually to still retain s, —7 =

5, — Ti. With the intent of controlling z, we perturb e,_, instead as

olek) = (L+er-r)oldy 1)1 +0x) /(1 + Br).
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because according to the upper line in (4.54) this results in

T = (s, — T>Ek71 + glgfl = wo(dy_,)(1+ Uk)/(l + Br)

— o) —1] < e(3), (4.66)

The effect of the above choice for €, _; on s, is

Sp = spolsp) = SkQ(dZﬂ)Q(qu)[Q(Azq)(l+@k71)(1+5k)]_1(1+‘7k)-

This looks a bit unwieldy, but nevertheless we can invoke (4.31) to move all the
relative perturbations onto the shift. This defines 7 ~~ 7, such that

lo(ri) = 1] < R-|o(s,) — 1| < Re®(7+ qi_2),

and gives the desired s, — 7 =5, — 7. O

CASE: |s,| > R|7|. If Block-Criterion II is fulfilled for the created block ending
at k —1 € QF, then (4.52) and our definition of R gives

|sp = 7lldp 1| < 2(1 = Ky)|sglldp_| < %ngi_l-

In fact, the safeguard K} < K allows us to relax this relation by some ulp on
each side, so that we may assume the computation of x to be controlled by

3+ 2K,

(s — 7)dyy), filey)) < 30K, Klal,

with the same r[z] as in (4.63). In fact, attaining that was the motivation behind
our definition of R. Thus,

T = (Sk_T)Ek—1+a§—1 = zo(x),

(4.67)
where |o(z) — 1| < k[z] € (max{3, pr_1}).

¢

Finally, for both cases the analysis achieved that the computed z is close to the
exact value for computed data, meaning we have a bound on p(x). Thus we can
perturb e, ~~ €, according to

& = eyl +er)o(dyy)eld)(1+ ax)/ofz) (4.68)
to obtain s, | =5, ,.

Lemma 4.15. Let in CS 4.1 the adjustments $; 4, ..., S, for an overlap se-
quence be computed as in CS 4.6. Furthermore, let all 2 x 2-pivots in DT satisfy
Block-Criterion 11 with a parameter K, < 1/3.
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Then there is a perturbation such that (4.23) holds for j < i < k and the
computed s, ; is exact. The componentwise bounds from Lemma 4.14 do apply,
with the following adjustments and extensions:

D(k,k) ~ D(k, k) = e(1),  D"(k, k)~ D" (k, k) = €(2).

- 6+ig1, k=7j+1,

e, ~ 8, = 6[6](777,)7 mg +2qk1 ]+
k k 3 .
7+ 5qk-1, k>j+1,

Te=Tifk=7j+1, T~ T = €221+ 3qr_2), if k> j+1,
and

lo(s,) — 1| < (6 + qx_1).

Proof. The subtle point is that we might have redefined €, _, if ending with
breaking a block. But it is easy to verify that the bounds to o(e,_;) and o(A,_;)
from Lemma 4.14 do still apply, just o(s,) can increase.

For the final e, ~~ €,, note that regardless of the type of ending, the per-
turbation’s effect on the intermediate x as stated in (4.64), (4.66) and (4.67)
allow the uniform bound |o(z) — 1| < k[z] €®(max{4,px_1}) with s[z] = (3 +
2K.)/(3 — 2K_). The prerequisite K, < 1/3 gives [z] < 2 and R < 3. The
latter determines the bound on po(7x), and (4.65) and (4.68) lead to the stated
bound for p(e,,); recall that the analysis leading to Lemma 4.14 revealed p; < 3
andpz§q1_1+4,z>j ]

4.2.4 The complete algorithm

The work on the previous pages culminates in our general algorithm for stationary
block factorizations, with support for changing the block structure, shown in
Algorithm 4.7 on pages 210-211.

The basic structure remains identical to our template CS 4.1, except that we
have omitted statements to compute the block determinants A, and A;. Es-
sentially it is the straightforward combination of standard dstqds (for an e—
representation, Alg. 2.7) and the computational sequences that we have consid-
ered for keeping (CS 4.2), breaking (CS 4.4 with parameter R = Ry,y) or creating
(CS 4.6) blocks. However, this fact is obscured somewhat due to the integration
of a control mechanism for overlap sequences. That is controlled by a parameter
Rsq which is the R from Lemma 4.14.

The outermost loop is composed of two parts. The “first” half, lines 3-25,
handles the factorization as long as the block structure is not changed. With
respect to Table 4.1 this encompasses cases S1-S5. There is nothing new here.

The “second” half, lines 26-56, is essentially one inner loop to handle any
block structure changes from source to target. As such it concerns cases S6-S9
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ALGORITHM 4.7  blocked dstqds
Compute L*D*(L*)* = LDL* — 7 for block factorizations.

N
~

Input: Q, shift 7, {d,; |1 € Q}, {¢;|i € Q}, {eq,...,e,_1}
Output:  QF, {df |t € Q*}, {c/|i e Q}
Params: Ry > 1, Rosq > 0, kmax > 0, K < 1/3 as in (4.16),
K, < K}, Ky < K%/3 for BC-I (p. 186) and BC-II (p. 200)
L QF=0,i:=1,8:=0
2. whilei < n do
3: df = d;+ (s; — 1)
4: if i+ 1€ Q then
5: if BC-1 is fulfilled then // Keep the block
6: Qr = Qtu{i+1}
7: 501 = 0 // S2
8: if i <n —1 then
9 Ciy1 "= G =T
10: z = eXs;—71)—d;diT
11: Sivg = €@ /(A A]) // 53
12: 1 =141
13: endif
14: else // initiate breaking the block
15: Sip1 = —e}/df // 54
16: endif
17 else
18: if BC1I is fulfilled then // initiate creating a new block
19: Qr = Qtu{i+1}
20: Sipq = €2/d; // Sb
21: else // standard dstqds
22: sip1 = €f(s; — 1)/ (d;df) // S1
23: endif
24: endif
25: i = 1+4+1
26: E =20 // counts number of created blocks in an overlap-sequence
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ALGORITHM 4.7  blocked dstqds (continued)

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

while i <nand (i € Q) & (i € Q") do
D (i) = D(i) +(s; = 7)
if |s;| < Rosq|T| then

E =0
endif
if i € QF then
if i+ 1€ Q then // continue sequence
Sip1 = —eidi [AL, // 59
else // end by create
Sipr = e (df(s;—7)—€e? 1) /(A d)) // ST
endif
else

if BC-I1 is fulfilled and
(k; < Fmax OF i = n — 1 or |dF]e2,, < (1— K2) Osqmeg)

then // create next block in the sequence
Qr = Qtu{i+1}
k = k+1
Siy1 = efdi g /A // S8
else // end by break or clean break
if i —1€ Q" or|s;| < Ry or sign(d,_,) # sign(d;_,)
then
v o= d,_ (s, —T)+el
else
x = —s;(8,_1—7T)—d;,_4T
endif
Sy = ea [(A_1d]) // S6
endif
endif
1 = 1+1
endwhile

endwhile
D*(n) := D(n)+ (s, —7)
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from Table 4.1. This loop will only be entered if either one of the statements
in line 15 or 20 were executed to initiate a structure change, i.e., breaking or
creating a block, respectively. The former one of those, together with lines 46-52
incorporates breaking a block from CS 4.4 as well as end-by-break for an overlap
sequence (line 18 from CS 4.6), due to the extra test ¢ — 1 € Q* in line 45.

The noteworthy new ingredient is the counter k, which is increased by one for
each created block in an overlap sequence. It is reset to zero in line 30 whenever
the current adjustment s, is not much larger than the shift 7, thus integrating
the optimized test from Lemma 4.14.

A new block may only be created if the complex test in lines 39-40 is passed.
Besides checking for BC-II, creating a block in the target is only allowed if we
can control the error bounds for the overlap sequence. To this end, one of three
conditions has to be met:

(1) k < kmax: The length of the sequence is still deemed acceptable.

(2) i =n —1: Our error analysis did not dwell on this fact, but for a block that
is created at the end it is easy to give very benign perturbation bounds to
attain mixed relative stability, since no s, , has to be computed.

(3) Because we require BC-II, the stronger property (4.52) will hold. Then
fulfillment of the test |d][e,;, < (1 — K%)Rosq|T|e? implies s, 5 < Rosq|T]-
Thus the error bound optimization for the middle part of an overlap sequence
from Lemma 4.14 applies, and we can safely take the 2x2-pivot. The test in
line 29 will subsequently cause the counter to be reset.

Note that condition (3) permits the choice of a 2x2-pivot whenever a tiny d is
encountered; in particular the condition is always fulfilled if d] = 0. Hence, the
factorization cannot break down, even for k., = 0.

The following result summarizes the componentwise mixed relative error anal-
ysis for Algorithm 4.7.

Theorem 4.16 (Error Analysis for blocked dstqds)

Let Algorithm 4.7 be executed without underflow or overflow in an envi-
ronment that satisfies Axiom FP.

Then the diagram in Figure 4.4 commutes, that is, there are perturba-
tions to the inputs and outputs such that

LDL* — diag(7) = L*D*(L*)*

holds exactly. The perturbations can be bounded depending on the Parame-
ters according to Lemma 4.6, Corollary 4.10 and Lemma 4.15; for one set
of parameters the resulting bound are given in Table 4.4.
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Proof. Guideline to obtain the bounds in Table 4.4: K = 1/8 implies x, = 9/7,
Ry = 3 gives R* = 1/2 for Corollary 4.10 and R,sq = 1 is the R in Lemma 4.15.

Finally, k.« = 1 means overlap sequences j, ...,k are limited to k —j < 3, hence
we get qr_1 < 24 and g2 < 10 for Lemma 4.15. O
dstqds
LDL* LD+ (L*+)*
computed
Table 4.4 Table 4.4
(left side) (right side)

e —diag(T;) -~
LDL* L*D*(LT)*
exact

Figure 4.4: Mixed relative error analysis for blocked dstqds (Alg. 4.7).

LDL* |ieQr igQr LD*(L*)* |ieQ igQ
d, ~ d, 1 1 df ~df | 5 2
C; ~ G 1 4 cf ~cf 2 2

12 e 1¢gQ e
PEQT gt 1eQt e
€; ~ € 3 43 43 8

T~ T, 0 o1 o1 0

Table 4.4: Error bounds to achieve mixed relative stability for Algorithm 4.7, for
the concrete parameters Rp,x = 3, Rosq = 1, K5 = 1/8, kmax = 1, cf. Theorem 4.16
and Figure 4.4. Only first-order bounds are shown, i.e., an entry p stands for a
bound pe, + O(e2).

Recall that our main objective was not to provide sharp error bounds, but
to devise an algorithm for stationary block factorizations for which we can give
componentwise relative error bounds in the first place.

However, there is no denying the fact that the bounds are quite large compared
to standard dstqds. This is mainly due to the problems with overlap sequences
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(for kmax = 0 we could bound |o(e;) — 1| by 10¢,). One could fear that such
large componentwise errors would overshadow the benefits of using 2 x 2-pivots
regarding control of local element growth. But keep in mind that the bounds are
of a worst-case nature only. The experiments in the next section will show that
the accuracy of the delivered results is far better than what these bounds would
suggest.

Nevertheless, one future goal of research should be to simplify the treatment
and analysis of overlap.

4.3 Numerical Results

Block factorizations can be used as components for the tridiagonal MR? as well as
the adapted solution strategies for BsvD. This section will evaluate the potential
gain from doing so.

We took our three implementations XMR (standard MR?), XMR-TGK (MR? on
Tex) and XMR-CPL (MCR?) and introduced plain LDL* block factorizations as
follows:

e For XMR and XMR-TGK they completely replace standard twisted factoriza-
tions as representations at the nodes.

e For XMR-CPL block factorizations take over the role of representations in the
central layer, but for the outer layers, e-representation of standard twisted
factorizations are used. The reason is that the coupling relations (3.24)
and (3.25) cannot easily be extended to yield block factorizations for the
outer layers.

Sturm counts for bisection are done using the customized blocked to non-blocked
factorization from Algorithm 4.5 with parameter R = 8. To construct the (non-
blocked) factorizations that are needed for computing accurate eigenvectors, the
same instantiation of Algorithm 4.5 was employed, together with a progressive
analogon (which we have not presented).

For the execution of shifts, that is, to construct BFs for the representations
at child nodes, Algorithm 4.7 is deployed with parameters

Rbrk = 57 Rosq = 77//4, kmax - 47
K, =1/8, K1 = K7, Ky = K*/3.01.

Together this yields three new routines which we will denote as BMR, BMR-TGK
and BMR-CPL, respectively. Those will now be compared to the originals on the
already introduced testsets Pract and Synth.
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Block Factorizations for standard MR3

The results are shown in Tables 4.5 and 4.6 on the next page. We see that for the
set Pract, orthogonality is somewhat better with blocks, but residual norms go
minimally up compared to XMR. The residual norms for Synth are significantly bet-
ter with blocks, however, but for that set the average orthogonality level increases
minimally.

An interesting facet is that both methods have the same worst orthogonality
levels of 608ne, over Synth. Those stem in fact from the same test case, which has
two singleton eigenvalues at root level with relative separation ~ 0.0016. Hence
the quality of the result is within expected bounds. Since both methods start with
the same root representation, and no blocks are used during the computation of
eigenvectors, the produced vectors are exactly identical.

Block Factorizations for MR? on the Golub-Kahan matrix

Tables 4.7 and 4.8 on on page 217 show clearly that block factorizations are the
right way to handle translates of Golub-Kahan matrices. This fact was already
hinted at in Examples 4.2 and 4.3.

The worst delivered orthogonality and residual norms are significantly better
than with XMR-TGK. The averages improve as well, if only slightly. Interestingly,
the median orthogonality goes up a little. Combined with the decreasing average
this means there are fewer cases with orthogonality of about ne, or smaller. We
interpret this as effect of the larger componentwise error bounds for BFs.

Block Factorizations for the coupled approach

The results of using blocks in the coupled approach are compiled in Tables 4.9
and 4.10 on on page 218. We observe that orthogonality actually worsens a bit
with blocks, but is still within acceptable limits.

The prominent conclusion, however, is that the bad cases for XMR-CPL in the
testset Synth are evidently smoothed out using blocks. As such the results are
actually rather satisfactory, but still noticeably worse than what BMR-TGK can
deliver.

Nevertheless we must mention that there are still cases in Synth where BMR-CPL
refuses to compute some singular triplets, because at some point no child repre-
sentation can be found that withstands the coupling checks (lack of SHIFTREL
again). The good news is that the number of cases in Synth where this happens
goes down, from 24 for XMR-CPL to 4 with BMR-CPL.

Conclusion

There is really no question that block factorizations are the way to go to achieve
ultimate accuracy and reliability. Note that the previous tests did compare LDL*
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Pract Synth
75 cases ORTH 19240 cases
XMR BMR XMR BMR
5.28 3.10 AVG 3.09 3.20
1.78 1.31 MED 0.91 0.96
91 41 MAX 608 608
89.33 % 94.67 % 0...10 94.39%  93.81%
10.67 % 5.33% 10...100 5.43 % 5.99 %
100...200 0.12% 0.16%
200...500 0.05 % 0.04 %
500...10% 0.01 % 0.01 %

Table 4.5: Orthogonality levels |Q*Q — I| of XMR compared to BMR, as multiples of
ne,. The data for XMR is identical to Table 2.6.

Pract Synth
75 cases RESID 19240 cases
XMR BMR XMR BMR
0.21 0.22 AVG 0.37 0.37
0.05 0.05 MED 0.09 0.09
3.10 3.52 MAX 56.5 3.62
97.33 % 97.33% 0...1 88.24 % 88.64 %
2.67% 2.67% 1...10 11.75 % 11.36 %
10...100 0.01 %

Table 4.6: Residual norms ||B*Bq — gA|| of XMR compared to BMR, as multiples of
|B*B||ne,. The data for XMR is identical to Table 2.7.
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BMR-TGK, as multiples of ne,. The data for XMR-TGK is the same as in Table 3.3.

Pract Synth
75 cases ORTH 19240 cases
XMR-TGK BMR-TGK XMR-TGK BMR-TGK
5.35 AVG 5.34 4.41
2.71 MED 1.38 1.69
48.40 MAX 3095 788
81.33% 89.33 % 0...10 9259%  91.04%
18.67 % 10.67% 10...100 7.04% 0.12%
100...200 0.12% 0.08 %
200...500 0.11% 0.03%
500...10° 0.07 %
103...10° 0.06 %
Table 4.7: Orthogonality max {|U*U — I[,|V*V — 1|} of XMR-TGK compared to

Pract Synth
75 cases RESID 19240 cases
XMR-TGK BMR-TGK XMR-TGK BMR-TGK
0.35 AVG 0.45 0.44
0.07 MED 0.13 0.13
4.19 MAX 118 4.67
92.00 % 93.33% 0...1 84.96%  85.11%
8.00 % 1...10 15.03 % 14.89 %
10...100
> 100 0.01%

Table 4.8: Residual norms max; {||BV;—;5|, ||B*G;—V;;| } of XMR-TGK compared
to BMR-TGK, measured as multiples of ||B||ne,. The data for XMR-TGK is the same
as in Table 3.4.
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BMR-CPL, as multiples of ne,. The data for XMR-CPL is the same as in Table 3.3.
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Pract Synth
75 cases ORTH 19240 cases
XMR-CPL BMR-CPL XMR-CPL BMR-CPL
10.71 14.09 AVG 6.33 3.90
2.44 2.12 MED 1.01 1.03
154 424 MAX 27730 1536
82.67 % 80.00 % 0...10 91.03% 92.14 %
14.67 % 17.33% 10...100 8.61% 7.64 %
2.67% 1.33% 100...200 0.21 % 0.12%
1.33% 200...500 0.10% 0.07 %
500...103 0.02 % 0.02%
103...106 0.03 % 0.01%
Table 4.9: Orthogonality max {|U*U — I|,|[V*V — 1|} of XMR-CPL compared to

Pract Synth
75 cases RESID 19240 cases
XMR-CPL BMR-CPL XMR-CPL BMR-CPL
15.78 7.56 AVG 3.14 1.76
1.37 0.77 MED 0.72 0.45
453 244 MAX 6873 2414
34.67 % 58.67 % 0...1 57.44%  71.36 %
50.67 % 30.67 % 1...10 35.50 % 25.45%
8.00 % 9.33% 10...100 7.00 % 3.15%
6.67 % 1.33% > 100 0.06 % 0.03%

Table 4.10: Residual norms max; {||BY; — G5, ||B*G; — V;04]|} of XMR-CPL com-
pared to BMR-CPL, measured as multiples of ||B||ne,. The data for XMR-CPL is the
same as in Table 3.4.
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block factorizations with optimally twisted standard factorizations, so the results
can probably still be improved once we start using twisted block factorizations.

Without doubt using blocks will cause a performance hit. We have not shown
the counts of bisection-, RQI-, and shift-steps because they do not change much
from the non-blocked algorithms. However, we cannot evaluate the impact on ef-
ficiency at this moment, since there is really no conceivable abstract cost measure
to compare Algorithm 4.7 with standard dstqds. We mentioned in Remark 4.13
that Algorithm 4.5 for factorizing blocked to non-blocked can be optimized to
become not that much more expensive than standard dstqds. Furthermore, the
step counts in Tables 2.8 and 3.5 convey that the expensive general factorization
in Algorithm 4.7 will not be called that often compared to normal bisection of
RQI steps. Together this means the overall decrease in performance might turn
out not to be that bad after all, but a satisfactory answer to this issue can only
be given on the basis of optimized implementations.
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Summary

Habe nun, ach! Philosophie,

Juristerei und Medizin,

Und leider auch Theologie!

Durchaus studiert, mit heiBem Bemihn.
Da steh ich nun, ich armer Tor!

Und bin so klug als wie zuvor.

— JOHANN W. VON GOETHE, Faust I/ (1808)

The previous pages took us on quite a long journey. We have studied this
algorithm with the strange name MR? in most of its intricacies (some were still
glossed over), have gained understanding in what approaches work (and what
do not) for using MR? to solve BSVD, and learned to either love or hate mixed
relative error analysis by the way of block factorizations.

o

Scattered along the way through Chapters 2—4 we feel to have made some
minor and a few major contributions to the field. Since this is a doctoral thesis,
it is customary to summarize them explicitly, but we will limit this to what we,
personally, regard as most important.

For the problem BSVD, we have built a robust body of theory that supports
in fact two valid solution strategies—MR? on the Golub-Kahan matrix and the
coupled approach, Algorithm MCR®. Both are realized in software and were
shown to be not perfect, but predictably effective and reasonably efficient. The
tradeoff between them is the old choice between accuracy and speed.

During the work on BSVD we gained quite a lot of theoretical expertise and
practical experience with MR®. This allowed us to devise and incorporate some
new techniques to craft our own implementation of MR®. Based on numerical
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experiments we have shown it to be significantly more reliable, and argued it to
be more efficient, than the current implementation DSTEMR of MR? in LAPACK.

Finally, a new algorithm was devised to compute translates of symmetric
tridiagonal matrices given in block-factored form, and componentwise mixed rel-
ative stability of the method was rigorously established. Concrete experiments
validated that this technology can greatly improve accuracy and reliability of
MR3-based solution methods for TSEP and BSVD.

¢

Research is never complete, since answers more often than not lead to better
questions. Hence, there remains always something to do.

For us, one of the next steps must be to cast our MR?-prototype into optimized
form, so that the ambitious claims we made about beating DSTEMR in speed can
be supported by fact. Then we could also evaluate if the further accuracy gained
by including block factorizations for the standard MR? is worthwhile, compared
to the probable loss in efficiency.

Concerning problem BSVD, in our opinion there is really no arguing the fact
that Golub-Kahan matrices and their translates should be factorized with blocks.
We remarked at the end of Chapter 3 that, actually, a hybrid of using MR?
solely on the Golub-Kahan matrix and the coupled approach seems to be more
promising than either one alone. This needs to be investigated further, because
if it turns out to be true, we can enjoy the best properties of both: being able
to compute the singular value decomposition of B stably, and in just little more
time than MR? requires to solve one of the normal equations, BB* or B*B.

For block factorizations, we should try to simplify the analysis. The theoretical
worst-case error bounds are quite large, but not really felt in the experiments.
This indicates that the bounds might be sharpened. The computation of parts of
the factorization that constitute ongoing changes in the block structure (“overlap
sequences” ) was actually simpler than for just breaking a block. But we had to
cast a rather coarse net to encompass the possible errors, since we could not get
a grip on the inherent interdependency. Further research should be directed to
try different computation schemes that might admit a sharper analysis.

We can only see a short distance ahead, but we can see plenty there that needs to be done.
— ALAN M. TURING, Computing Machinery and Intelligence (1950)

Everything in the universe denies nothing; to suggest an ending is the one absurdity.
— STEPHEN KING, The Dark Tower I: The Gunslinger (1982)

Logic, logic, logic. Logic is the beginning of wisdom, Valeris, not the end.
— SPOCK, in Star Trek VI: The Undiscovered Country (1991)
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Summary of Notation

VECTOR SPACES

R™ n-dimensional Fuclidean Space over R

umv,s,... Subspaces of R"

span{a, b, c} Subspace spanned by the given vectors

dimU Dimension of U

Ut Orthogonal complement of U

uwLvry True iff v =0forallu e, ve V.

Z(U,V) Largest (acute) principal angle between U and V), see §1.3.
VECTORS

X, Yy .. (Column-) Vectors € R™ (lowercase sans-serif roman letters)

x* Transpose of x, i.e., a row-vector in R1*"

]| = [|x||2 = v/*x*x, Euclidean norm of x

é(x, y) Acute angle between span{x} and span{y}, see §1.3.

dimension n unless stated otherwise

indexing Always starts with 1

(1) Entry ¢ of the vector x

x(I) or xp Subvector of x consisting of entries with index in I

SPECIAL ENTITIES:

(@)

&

The zero vector, dimension from context

=1(:, ), the jth column of the identity, dimension from context
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Summary of Notation

A B, ...
dimension
indexing
A(i,j) or Ay
A(L,J) or Ar ;

Ar
A

Al

Al

A

A

null (A)
range (A)
det A
diag, [A}

diagy (a1, ..., an—x)

A—o
Pa(X)

SPECIAL ENTITIES:

0
I

MATRICES

Matrices (Uppercase sans-serif roman letters)
n X n unless stated otherwise

Always starts with 1 for rows and columns
Entry at row ¢, column j of the matrix A

Submatrix of A containing all elements with row-indices in [
and column-indices in J, i.e., with dimension |I| x |J|
= Ay 1, principal submatrix

Spectral norm of A, operator norm induced by Euclidean vector
norm

Can mean the matrix of absolutes or the largest absolute entry
of A, depending on context.

Inverse of A

Transpose of A

= (A"1)* = (A%)!

Nullspace of A

Space spanned by the columns of A
Determinant of A

Matrix of same dimensions as A with all entries zero except
for the kth band, which is retained from A; k = 0 if omitted,
+k for symmetric bands, allow index set I instead of k£ to grab
multiple bands at once.

Matrix of dimension n X n, zero except for the entries a; in
its kth band; k£ = 0 if omitted, write £k to get a symmetric
matrix.

Shifted matrix A — ol (we omit I)

Rayleigh Quotient x*Ax/||xH2, implies x # o, see §1.4.1.

The zero matrix, dimension from context

The identity matrix, dimension from context
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EIGENSYSTEMS
AilA] ith smallest eigenvalue of A (for i > 0)
A_i[A] ith largest eigenvalue of A (for i > 0)
q+i[A] Normalized eigenvector to A4;[A], chosen so that
{q;[A] : 1 <i < n} forms an orthonormal basis of R™.
Qr[A] = span {q;[A] : i € I}
spec(A) Set of all eigenvalues of A
spdiam[A] = M JA] — A1[A], spectral diameter
gapa (1) min {|A\; — ;| : i € I,j ¢ I'}, undefined if I = {1,...,n}
gapu (1) min {|p — Al + p# X € spec(A)}
relgapa (1) min {|A\; — Ai|/|Ni| i € 1,5 € I}, undefined if I = {1,...,n}
relgapp (1) min {|p — /|l © p # X € spec(A)}
OTHER
NUMBERS:
N ={1,2,...}
Ny =NU {0}
sign(x) € {-1,0,+1}

FLOATING-POINT ARITHMETIC:

Set of floating-point numbers

Machine epsilon; may be used instead of € (1) if in placeholder
context (right side of a =).
Underflow threshold

Overflow threshold

Nearest floating-point number to z € R. Can also be used with
a term, like fl(a + b) to indicate the computed result.

(Overbar) Indicates a computed quantity

Indicates a perturbed something

Means z is perturbed to Z; for scalar x also identified with
(Z —x)/x.

Placeholder for unspecified quantity bounded by me,/(1 —
pme,), defined only for p,m > 0 and 0 < pme, < 1.

= etl(m)

Indicates that an equality involves placeholders; should be in-
terpreted from left to right to avoid ambiguity.




