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Process for Extraction of Knowledge from Crash Simulations by
means of Dimensionality Reduction and Rule Mining

This thesis proposes an efficient process flow for analyzing an en-
semble of vehicle crash simulations. The process has two goals. The
first goal is to algorithmically detect the largest and most notable types
of deformation. The second goal is to find out how to avoid or trigger
a user-specified deformation behavior.

The first goal of deformation behavior segmentation, is approached
with a novel dimensionality reduction technique. This dimensionality
reduction technique not only makes it possible to derive a lightweight,
intermediate, and mesh-free representation of the simulation results,
but also makes it possible to compute a normalized simulation simi-
larity. These simulation similarities can be used to find groups of sim-
ilar deformation behaviors by using clustering algorithms and low-
dimensional embeddings. An engineer then has to decide which types
of deformation are acceptable, and which are not.

Having chosen the desired types of deformation, it is then possible
to find out how they can be achieved by using rule mining. The rule
mining algorithm returns multiple safe design spaces, in which the
engineer’s demand is fulfilled. Because the rules might be unsafe at
their boundaries, an optimization can limit the probability of a rule
being wrong to within a specified limit.
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Prozess zur effizienten Wissensgewinnung aus Crashsimulationen
mithilfe von Dimensionsreduktion und Regelextraktion

Diese Doktorarbeit schlägt einen Prozessfluss vor, welcher eine ef-
fiziente Analyse von einer Vielzahl an Crashsimulationen ermöglicht.
Der gesamte Prozessfluss hat zwei zentrale Ziele. Das erste Ziel ist die
algorithmische Detektion der größten und wichtigsten Deformations-
moden einer Struktur unter Crashbelastung. Das zweite Ziel ist es
herauszufinden, wie diese Deformationsmoden gezielt ausgelöst oder
vermieden werden können.

Das erste Ziel der Deformationsmodensegmentierung wird in die-
ser Arbeit mittels einer neuartige Dimensionsreduktion angegangen.
Diese Dimensionsreduktion erzeugt nicht nur eine speicherarme und
netzunabhängige Darstellung der Simulationsergebnisse, sondern er-
möglicht auch die Berechnung einer prozentualen Ähnlichkeitskenn-
zahl. Infolgedessen können mithilfe niederdimensionaler Einbettung
und Clustering Gruppen an Simulationen identifiziert werden, welche
untereinander ein ähnliches Deformationsverhalten aufweisen. Ein
Ingenieur kann zu diesem Zeitpunkt selbst entscheiden, welche De-
formationsmoden er als akzeptabel befindet, und welche er vermei-
den möchte.

Nachdem das bevorzugte Deformationsverhalten klargestellte wur-
de, kann durch Rule Mining herausgefunden werden, wie das bevor-
zugte Deformationsverhalten erreicht werden kann. Der Rule Mining
Algorithmus schlägt dabei multiple Design-Bereiche vor, in welchen
das Ziel des Ingenieurs erfüllt wird. Weil diese Regeln an ihren Gren-
zen unsicher sein können, kann über die Optimierung der Regelgren-
zen eine spezifizierte Zuverlässigkeit erreicht werden, um damit eine
sichere Nutzung zu gewährleisten.
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Notation

notation example description

vectors ~a or ai
vectors are either noted by an ar-
row or a single, lowercase index.

matrices a or aij
matrices are either noted by two
underscores or two, lowercase in-
dices.

pseudo inverse a+
The pseudo inverse of a matrix is
noted by a superset +.

variables X
var_name

This thesis uses the convention,
that variable symbols are either
written in capital letters or in the
specified, special font.

variable
realizations x

While variables are written in cap-
ital letters, realizations with as-
signed values are written in lower-
case. This also applies to matrices
and vectors.

variable info X(info)

An uppercase text, embraced in
round brackets, contains addi-
tional textual information. This
must not be confused with an in-
dex.

design
variables

X4

x4 = 3.7
Design variables for simulation
runs are indicated by the letter X .
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notation example description

responses Y1
y1 = 0.3

Simulation responses are noted by
the letter Y .

deformation
classes

C2

c2 = True

Deformation classes are noted by
the letter C. A realization of a
deformation class can only have
a Boolean value, which states,
whether the realization belongs to
this deformation class or not.

sets {1, 2, 3} Sets are described by curly brack-
ets.

set size |{4, 5}| = 2
The absolute value of a set returns
the number of elements within the
set.

inner product
〈
~a
∣∣∣~b〉 An inner product or dot product

between two vectors or functions is
indicated by the Dirac-notation.

erf erf(0.5)

The error function erf(·) is a
sigmoid-like function and is de-
fined as erf(x) = 1

π

∫ x
−x e

−t2dt.
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Chapter 1

Introduction

Evaluating and extracting knowledge from a large amount of data is
a central challenge in today’s data-driven world. In many situations,
the amount of data is simply too large to be analyzed by humans prop-
erly. This challenge is also slowly arising in the field of Computer
Aided Engineering (CAE), where for certain investigation types, the
number of simulations simply exceeds human capabilities. This gen-
eral necessity to automate human tasks gave rise to Machine Learning
(ML). Machine learning is an emerging field, which gives computers
the ability to detect patterns and dependencies through advanced sta-
tistical methods [5]. It is frequently used in other disciplines, such
as marketing [38], financial services [56], geography [37] and many
others, in order to attain new insights. The field of CAE is still in
the early transformation phase of adopting this new branch of tech-
nology. This thesis will propose a new way of embedding and more
importantly, using some of these techniques to reduce the workload
on engineers, and get new insights from his or her simulation data. In
order to understand where and how to use machine learning specif-
ically, an introduction to crash simulation, as a branch of CAE, will
be given in this chapter. This thesis will only cover crash simulation,
and will therefore address this field of work specifically, even though
sometimes generalizations may be possible.

1.1 Vehicle Crash Simulation

Crash simulation uses the Finite Element Method (FEM) to approxi-
mate the analytical solution of the mechanical equations. The abstract
goal of vehicle crash simulation is to control the energy absorption in
such a way that occupants and pedestrians remain unharmed reliably.
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The following list enumerates the challenges of crash simulation mod-
eling:

• contact and friction modeling

• nonlinear material behavior

• strain-rate dependency

• bifurcations

Before simulations can be performed, a respective model is built,
and is calibrated first at specimen-level and thereafter at component-
level. The resulting crash simulation model serves as a basis for ad-
ditional investigations. After working out a final design, at least one
more test is done for validation and certification purposes. Structural
simulations have shown to be a powerful tool, enabling advanced
analysis of structural systems. Modern cars owe their high safety to
simulations, since a simulation can yield many insights which would
be impossible for a test.

1.2 Variational Studies

In the past, crash simulations were performed in a nominal way, which
means that nominal values were chosen as inputs, and a single sim-
ulation was carried out to evaluate the performance. Nonetheless, in
order to account for physical uncertainties, variational studies are per-
formed. The increased knowledge about a design makes it possible to
narrow down the safety factors , and thus achieve for example, fur-
ther weight reduction. There are two reasons for performing multiple
simulations with variations in the input data:

• Check a design for the influence of tolerances
(Robustness Analysis)

• Search a better design (Design Space Exploration)

Robustness Analysis focuses on the surrounding of a specific de-
sign. First of all, it is very obvious, that every manufactured com-
ponent is unique due to its tolerances. Furthermore, the testing con-
ditions may also vary within a specified range, according to specifica-
tions and regulations. As a result, every physical test will always differ
in some way, and thus might have a slightly different outcome. The
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digital world adds another influence, which is the numerical round-
off error, due to load balancing along multiple computers. These fac-
tors must not influence the virtual crash performance of a car signifi-
cantly. In order to investigate a car’s performance with respect to tol-
erances, one could simply perform and analyze multiple simulations.
A mechanical system, in this thesis, can be considered to be robust if
small input variations do not influence the outcome of the simulation
severely, in respect of a user-specific metric.

Design Space Exploration in contrast, tries to identify new poten-
tials regarding crash performance. In these investigations, the struc-
tural design variables are varied in a much larger interval than mere
tolerances. Doing so can lead to different deformation patterns of en-
ergy absorption, and gives an engineer an opportunity to identify an
improved design.

Both approaches, robustness analysis and design space exploration,
do not have to be strictly separated, but may also be blended, as in Ro-
bust Design Optimization. Similarly, this thesis performs design space
exploration and robustness analysis in a blended manner, but with a
main focus on design space exploration. In consequence, the algo-
rithms and the process flow do not fit robustness analysis as well as
they fit design space exploration.

1.3 The Key Questions of Structural Behavior
Analysis

Analyzing a large amount of simulations is the major challenge tack-
led by this thesis. The task will be illustrated in the following example:

The model in figure 1.1 is a longitudinal rail, which is being crushed
by an impactor at the upper end, and as a consequence starts to buckle
(see Appendix A). The model is a simplification of a car crash, where
the crash absorbing structure is folded by the barrier. The abstract goal
is to control the location of the buckling. In order to investigate the
structure’s behavior under uncertainty, it was parametrized with 173
variables, involving material properties, geometric sizes, connection
modeling and the load conditions. The parametrized model was then
used to create 1000 different variants. The variables were sampled
from a normal distribution, in combination with a Latin-Hypercube-
Design [68]. Two deformed samples are shown on the lower part of
figure 1.1, which have been randomly selected from the ensemble.
They show, that the initiation of buckling can also occur at the lower
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impactor
hitting
downwards

rail

ground

(A) Simulation model of the rail.

(B) Buckling bottom. (C) Buckling top.

FIGURE 1.1: Model of a virtual drop-tower test. An impactor
is dropped onto the rail and triggers different buckling modes,

depending on the input variation.



1.3. The Key Questions of Structural Behavior Analysis 5

end of the rail. The real issue at this point is, that one does not know
how the rail is deforming in all other result files, and it is humanly
unpractical to investigate this manually.

This challenge of comparing large numbers of result files can be
generalized in a certain way. A specific deformation pattern, such as
buckling bottom or buckling top in figure 1.1, will be named in the
following as an effect. An effect will be defined in this thesis as a set
of simulations, which show similar results of any kind. This can either
be in terms of responses or deformation behavior.

An engineer analyzing an ensemble of simulations is now con-
fronted with the following central questions:

1 What effects occur?

2 What influences an effect?

3 How to avoid or trigger an effect?

Question 1 tries to find out what major effects take place through-
out all simulations. Question 1 already poses a major difficulty when
faced with many simulations. The core issue is that it is humanly im-
practicable to analyze all of these simulations, and categorize them in
terms of a deformation mode by hand. The engineer simply does not
know how frequently a certain deformation mode occurs. Whether
these are all modes is also unknown. Question 1 can be approached by
comparing deformation modes algorithmically, but this topic is quite
complex. The simplest approach is to measure certain properties of the
model, such as the displacement of a few nodes or the intrusion, but
there are two reasons why this will always be incomplete. Firstly, the
deformation behavior does not necessarily correlate well with mea-
surable properties, such as the intrusion. Secondly, observing only a
few nodes leaves out a lot of information from the rest of the mesh.
For example, a neighboring node might be a much better choice, but
one simply doesn’t know about it. This problem is very similar to
facial recognition, where one could also analyze a face from a few
hand-selected pixels. However, a human’s emotional expression is
determined by many fine details across the whole face, thus a more
complete view is required and will yield better results. In conclusion,
a combination of both is necessary: the analysis of responses, in com-
bination with deformation modes.

Question 2 is a soft formulation of question 3. If one can distin-
guish, for example, the deformation modes discovered by question 1,
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then in the event of undesired behavior, one is interested in the vari-
ables which possibly triggered the deformation mode. This task is
comparable to correlation studies. The danger though, is that corre-
lation does not imply causation, and thus an engineer usually has to
confirm the relationship as being physical, later on. Therefore, the an-
swers to question 2 should be seen as hints, rather than facts.

Question 3 tries to answer how an effect can be avoided or en-
forced, such as a certain deformation pattern. The challenge is to find
out what all simulations with a specific deformation pattern have in
common. Therefore an engineer usually opens up multiple models
and starts comparing them, but as was stated previously, this is not
practicable in the motivation example. The approach of this thesis is
to let an algorithm discover what the simulations have in common.
Therefore, it is merely fed the input variables, and asked how a spe-
cific deformation pattern is prevented or triggered. It is very impor-
tant to note that variables might trigger instabilities somewhere in the
model, but may not be the real cause of the problem. In conclusion,
the answers to question 3 are also hints which need human confirma-
tion. The good thing is, however, that it is much easier and faster for a
human to simply check the facts highlighted by an algorithm, than to
search the entire data oneself.

1.4 Side Challenges

The central questions of structural behavior analysis are accompanied
by many side challenges, which make any solution approach difficult.
The major side challenges are:

(a) Handling of different meshing

(b) Handling of geometric differences

(c) Dealing with highly nonlinear data

(d) Low sample counts

(e) Efficient data reduction

(f) Keeping the process manageable

First of all, it is very clear that one major difficulty is how to han-
dle different meshes. One cannot rely on the fact that a part has an
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identical mesh (a), thus results mapping might be necessary. Unfor-
tunately, mapping also has its limits when considering topological
changes, since there is no clean solution if one mesh has additional
holes or ribs somewhere (b). This becomes even more problematic in
the event that entire parts might have been added or removed. Af-
ter data alignment, the core challenge shifts to the data analysis itself.
A crash simulation can be seen as a nonlinear data cloud evolving
over time. Understanding nonlinear data with meta-models of any
kind, will always need higher sample counts compared to mainly lin-
ear data (c). The advantage of virtual analysis is in general, that new
samples can be generated, but this can only be done in a very limited
way for crash simulations, since computation still takes a long time,
and thus it is desirable to require as few samples as possible (d). This
especially opposes (c) where higher sample counts to account for non-
linearity. The complexities of (a) to (d) finally channel into (e) and
(f). Accounting for all of these challenges requires many mathemati-
cal tricks to work well. Despite the fact that computers have become
quite fast, every operation on the entire mesh, such as results map-
ping, takes a lot of time and thus it is not easy to be efficient (e). All
the mathematical tricks also need proper configuration. If a user has
to determine multiple settings for every new investigation, then this
lowers the usability significantly (f).

1.5 Goal of this Thesis

The goal of this thesis is to provide a process which guides a user to
the answers to the key questions of structural behavior analysis (sec.
1.3), while taking into account the constraints of its side challenges
(sec 1.4). The first question about effect detection, can be answered by
means of dimensionality reduction, which enables the visualization
and clustering of an entire simulation ensemble at once. The second
question about the influences of certain effects, can be answered with a
variable importance ranking. The last question about how to avoid or
trigger certain effects, will be addressed by a proprietary rule mining
algorithm. Rule mining tries to find all the possible major and simple
solutions. A major focus of this thesis was not only its algorithmic
fragments, but also the layout of the entire process as a whole.
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Chapter 2

Related Work

This section discusses how the central questions of postprocessing
with their side challenges were approached previously.

Dimensionality Reduction for Effect Detection The question, how
can different deformation modes be identified and distinguished, can
be answered algorithmically by means of dimensionality reduction.
Dimensionality reduction sees the result of a single FEM simulation as
a high dimensional data vector, and tries to reduce its length without
losing significant information. This compression scheme is usually
applied to all simulation results at once, so that the algorithm knows
which data patterns throughout the ensemble are the largest. The goal
is usually to reduce the amount of data for further processing, and
thus obtain a smaller and more easily inspectable representation. If
the data is reduced to 2D or 3D, an embedding can be plotted, and a
scientist can search for patterns, such as clusters, in the plot himself.

The most common technique for dimensionality reduction is Prin-
cipal Component Analysis (PCA) [53, 31], which tries to preserve lin-
ear dimensions with largest variance. Due to it being the simplest ap-
proach, it has already been applied in the context of crash simulation
previously. In [1] it was used to correlate principal components of the
deformation field with the input variables of a design of experiments
study. PCA was used in [47] to simultaneously analyze and reduce the
scatter between crash simulations. Later on, in [67], the algorithm was
also used to investigate crash simulation branching.

PCA is an entirely linear technique since it performs a linear trans-
formation on the data. In consequence if the data has a nonlinear
structure such as a semi-circle, PCA is inherently unable to find a coor-
dinate system which describes the data optimally (for the semi-circle
this is simply a line in the embedded space.) Therefore, PCA is not
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expected to perform best in general. In [6] three methods were com-
pared in terms of their accuracy: PCA, principal manifold learning
(PML) [20] on sparse grids and local linear embedding (LLE) based on
tangent space estimation [70]. The errors showed that nonlinear meth-
ods did indeed perform better, but the error margin narrows quickly
when more embedded dimensions are used.

It is important to note , that almost all of these previous works [47,
67, 6] tried to reconstruct an entire simulation result from an arbitrary
point in the low-dimensional space. This can be done quite easily in
case of, for example PCA, since a linear transformation is bijective and
thus easily invertible. For non-invertible transformations, one may
use methods for Pre-Image reconstruction [4]. In contrast to this moti-
vation, this thesis does not try to reconstruct simulations from a low-
dimensional embedding. The reason is simply that usually clusters
or groups develop in the low-dimensional space, and one may sim-
ply pick simulations as representative examples. Firstly, this makes
sense because there is a limited motivation to reconstruct simulations
if there are many other simulations nearby to interpolate. However,
the reconstructed version may show the isolated effect, whereas the
representative version may also contain secondary effects. Secondly,
[6] also showed that the reconstruction yielded high errors in areas
where deformation occurs. This is expected, for the reason that the
local deformation is highly nonlinear. Since as engineers, our interest
lies especially in areas with strong deformation, it was decided that
reconstruction was not worth the mathematical effort.

Geometry Comparison and Hashing for Effect Detection The com-
parison of crash simulations is closely related to the field of geome-
try comparison. Many recent ideas use the Laplace-Beltrami-Operator
(LBO) to achieve a mesh-free surface description. The LBO describes
the geometric manifold by its surface curvature. In the work of [59,
60] about Shape-DNA, the eigenvalues of the LBO are interpreted as
an isometric shape descriptor. Even though the LBO is quite pow-
erful, it requires a well-defined surface mesh, which is not the case
in FEM. FEM-meshes may contain shells and solids at the same time,
and also more than two shells may share an edge. The property of
isometry is not optimal, since it emphasizes topological changes much
strongly than deformations, so that failure contributes to a greater
extent than deformations to the Shape-DNA. An operator-based ap-
proach, including the LBO, was performed in [33]. The contribution
is especially interesting, since a 3D-embedding was done for all the
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timesteps of all the simulations, which is computationally very exten-
sive. The embedding made it possible to find out at which timestep
a behavior bifurcation occurred. In practice, the specific time of the
event may help to identify concatenation of effects during simulation.
Nevertheless, bifurcations within the responses are quite rare, and
even if they occur, the exact timestep is usually quite uninteresting
for design space exploration (not for robustness analysis). Therefore,
this thesis does not try to unveil chains of effects automatically, even
though it provides the means to do so, and focuses on the influence of
the design variables. The dimensionality reduction in this thesis was
also not used to create an embedding of all timesteps, because it is
computationally very demanding.

Another method for the comparison of geometries are Geometric
Spin-Images [48]. This method splices the surface of the geometric ob-
ject into overlapping snippets and hashes them. Instead of comparing
geometries, one has to compare two sets of hashes. The similarity be-
tween two sets may be computed with the Jaccard index [34] which is
much faster than the original mesh to mesh comparison. Due to the
arbitrary snipping, the accuracy is expected to have big variations in
the case of repetition . In conclusion, this method can be used to search
a database for roughly similar objects, but it is not expected to provide
sufficient accuracy when comparing deformed objects in the field of
CAE, where minor differences may also be important.

Inference for Simulation Data Understanding the connection be-
tween simulation inputs and outputs, is a very common task in the
field of simulation. Where both the inputs and the outputs are scalar
values, influences may be searched with techniques such as Corre-
lation Study [52] or Analysis of Variance (ANOVA) [45]. The back-
bone of these investigations is usually a meta-model. Because most
simulation outputs are continuous variables, regression meta-models,
such as Kernel Regression with Radial Basis Functions (RBF) [40] or
Gaussian Process Regression [39, 58], are used. As well as continu-
ous outputs, the prediction of discrete variables, such as the failure or
non-failure of a component, may also be desired. In order to predict
such discrete values, classification methods may be used instead of re-
gression. Common methods are Support Vector Machines (SVM) [8],
Artificial Neural Networks [46] or Decision Tree Learning [12].

A new tool to analyze cause and effect in the aspect of robust-
ness analysis, is DIFFCRASH from Sidact GmbH [25]. The tool uses a
method called Differential Principal Component Analysis (DPCA) [67,
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66] to estimate how the scatter of one component at an early timestep
influences the scatter of another component at a later timestep. The
tool makes all of its estimates on the displacement field, and requires a
user to select the components for DPCA himself, which can be tedious
when dealing with an entire car. It has the advantage though, that
it does not use parametrized geometry and thus can relate arbitrary
components, which is a significant benefit. If one component is iden-
tified as the source of scatter, an engineer can stabilize it himself, and
then run a validation investigation to check whether the algorithm’s
hypothesis was correct. What makes this PCA-based algorithm es-
pecially powerful, is its independence from model parametrization,
in contrast to this thesis which requires a parametrized simulation
model. However, a disadvantage is that DIFFCRASH ideally needs
identical meshes between the two simulation models. Mere mesh dif-
ferences can be compensated quite easily by mapping, but if construc-
tive changes are present, then the procedure’s quality is expected to
deteriorate. It is important to note that, to date, no public investiga-
tion which clearly shows how much constructive changes influence
the outcome of this PCA-based algorithm has been done.

The software Statistics on Structures (SoS) from Dynardo [24] uses
the Karhunen-Loève Expansion (KLE), to decompose the covariance
matrix of an arbitrary field into modes. The KLE is almost identi-
cal to PCA, which uses the empirical covariance matrix. The KLE in
SoS computes the covariance matrix from an autocovariance function,
which is simply a (spatial) Gaussian kernel. Because the covariance
matrix is computed densely for the entire mesh, the feasible model
size is about 10000 nodes [69]. Larger models need either mesh coars-
ening or subsampling strategies. The first idea is to use the KLE on the
simulation result field. The result field is now only a function of the co-
efficients of the modes. A field meta-model can be built by connecting
mode coefficients and input variables with a meta-model. This field
meta-model can now be used for optimization or sensitivity analysis,
since one does not have to evaluate a simulation run, but can trigger
the field meta-model instead, which is much cheaper. Care must be
taken to evaluate the field meta-model only in regions with high pre-
diction quality. A random field may not only be a result field, but also
an input field, such as sheet thicknesses derived from measurements.
It has proven that much better results are obtained if the input random
field is derived from at least a few measurements. The derived modes
can be used for the generation of perturbed designs with the target of
analyzing the scatter of the simulation results. This results in a more
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realistic analysis. A subsequent optimization can help to reduce this
scatter in combination with several design parameters.

Mineset [19] is a Machine Learning framework from ESI Group,
which also features Association Rule Mining [2]. Association Rule
Mining tries to find frequent, if-then conditions between discrete vari-
ables. This makes it unsuitable for simulation data, since many input
and output variables are continuous. One may transform continuous
variables into discrete ones by choosing discrete bins, but if so, one
has to face two major issues. Firstly, the choice of the bin thresholds
may be suboptimal, either wasting potential or worsening predictions.
Secondly choosing too many bins makes it difficult for the engine to
search for meaningful rules for the very specific reason that a lot may
be found, and it is hard to tell how they connect. Another major prob-
lem with classical Association Rule Mining is that it finds a lot of rules
regarding certain filtering criteria, thus the actual rule selection has to
be done by the user himself. Depending on the number of variables,
this may be a lot work for a simulation engineer. Mineset provides an
alternative to Association Rule Mining by making it possible to also
define rules from Naive-Bayes Classification. This is also a manual
approach and does not save a lot of manual effort, because seen ab-
stractly, one has to assemble every rule personally by picking the input
variables used for it. Nonetheless, the rule thresholds are much better
in the latter case.

An engineer might also be interested in why certain simulations
showed a specific deformation behavior. While as stated before, the
detection can be done by means of dimensionality reduction, finding
a connection to the input variables has proven to be quite a challenge.
Previous works [67, 6, 33] searched influences manually, by plotting
a low-dimensional embedding and then coloring the simulations ac-
cording to their input variables or computing the correlation between
the principal axes of the embedded space and the input variables. This
works quite well, as long as the ’real’ principal components of the data
are mostly linear. If this is not the case, then the linear principal com-
ponents do not approximate the data well, which makes the correla-
tions look weak and noisy.

This thesis attempts a new approach in the field of vehicle crash
simulation by using rule mining for knowledge extraction. The basic
idea is the extraction of rules, where an antecedent Boolean expres-
sion A predicts a discrete target class T , formally written as: A → T
(for more see section 4.3). The most notable difference between this
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and previous inference approaches, is that rule mining relies on clas-
sification and not regression, thus the prediction of a discrete variable
and not a continuous one.

Rule mining is a relatively old discipline, originating from about
1970 and having gained notable awareness around 1990 [23]. Origi-
nally, rule mining was focused on small datasets with discrete vari-
ables, but was quickly extended to also deal with continuous vari-
ables. Because simulation data contains a large number of continuous
variables, only algorithms can be used which can also deal with con-
tinuous data. Most ideas rely on the theory of decision tree learning,
which makes it possible to deal quite well, not only with continuous
variables, but also with low sample counts. Since every leaf of a de-
cision tree is already a rule, every decision tree learner can therefore
indirectly be considered to be a rule mining algorithm. The most well-
known mining algorithms are C4.5 [57] and its commercial successor
C5, as well as RIPPER [11] and CART [10]. The last one was chosen
and further adapted to suit the demands of this thesis.

Rule mining was already done indirectly in the field of Computa-
tional Fluid Dynamics (CFD). In the work of [27], rules were extracted
manually from a decision tree in order to identify good vehicle con-
cepts, in terms of aerodynamics. The vehicle samples originated from
a previous optimization.
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Chapter 3

Data Analytics Process
Flow

This chapter will explain how this thesis approaches the task of post-
processing with machine learning. Therefore, this chapter will explain
from a high-level view, why certain choices were made, and how these
fit to each another. The topics are data generation, effect and pattern
recognition and finally, inference of cause and effect. An overview of
this section is given in figure 3.1. It will serve as a map for this section
and also this thesis.

3.1 Data Generation

In order to handle stochastic data, a deterministic FEM-Model is built
up and its physical properties are parametrized with a variable vector
Xi. A realized simulation sample s will be recalled in the following by
its variable vector xsi (realizations are noted in small print).

How were the Input Variables Distributed? The first step of this
thesis was to decide how to deal with uncertainty in the input vari-
ables. The uncertainty is most usually modeled with probabilistic dis-
tribution functions. In the case of robustness analysis, realistic dis-
tributions from experiments are preferred, if available. In the case
of design space exploration, uniform data distributions within given
bounds were chosen, because a large diversity is preferred.
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Data Generation
(Design Space Exploration)

What effects occur?
(Pattern Recognition)

How to prevent
or trigger effects?
(Inference)

design of experiments study
for design variables Xi

input variables: xsi
of all simulations

create and run
all simulations

scalar system
responses: ysj

dimensionality
reduction

similarity
computation

clustering of
similar runs

deformation
classes: csk

Rule Mining

FIGURE 3.1: Abstract data and process flow of this thesis, which
serves as a map for this chapter.

How were Samples created? Specific realizations can be drawn di-
rectly in the case of simple probability distributions, by using a ran-
dom number generator. Also sampling for other distribution func-
tions, such as a normal distribution, can be derived in such a way, if
a transformation to a uniform one exists. In the general case of ar-
bitrary distribution functions resulting from testing, methods such as
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the Metropolis-Hastings-Algorithm [30], may be used in order to draw
samples.

Since this thesis instead focuses on design space exploration, a uni-
form or normal distribution is chosen for the input variables. Drawing
samples via random number generation can yield very similar runs,
due to randomness, and thus wastes computational power. In conse-
quence, the design of the experimental methods was used to enforce
a stronger diversity of the designs. All the samples in this thesis were
generated using Latin Hypercube Sampling (LHS) [65, 68] in combi-
nation with either a uniform or a normal distribution.

Computing the Simulation Samples After generating the input vari-
ables xsi for all simulation runs, the base FEM-Model is adapted for
every sample s regarding the variable vector, and is sent to a High
Performance Cluster (HPC) for computation. Thereafter, the files re-
sulting from the simulations are saved for further evaluation.

3.2 Searching and Detecting Effects

Detection of statistical patterns and thus effects, is the first very impor-
tant step when analyzing many simulations. The idea is to discover
subgroups of simulations, which show similar deformations or system
responses. A typical statistical pattern would be, for example, that the
rail from section 1.3 only buckles at very specific areas of the speci-
men, like the bottom or top area. Detecting these subgroups is very
important for two specific reasons. Firstly, humans cannot inspect ev-
ery simulation if the simulation count is large, thus automation is nec-
essary. Secondly the knowledge of which simulation run deformed in
a certain way, will be utilized later on to find constructive changes.

The method used for deformation mode segmentation is most usu-
ally dimensionality reduction, which will be discussed in section 3.2.2.
One may also identify patterns within scalar simulation responses,
such as nodal displacement or acceleration, which is covered in sec-
tion 3.2.1.

3.2.1 Analyzing Simulation Responses

The most common way to analyze an ensemble of simulations, is to
watch certain system responses. Therefore ,points of measurement are
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chosen within the simulation model, at which certain outputs are ex-
tracted as time series. Because the rule mining in this thesis works
solely on scalar values, the time series have to be converted into scalar
values for further analysis. This can be done by taking the maximum
value, or averaging over a certain interval. After the evaluation of the
time series, an output matrix ysj , is obtained which contains all the
responses Yj from all the simulation runs s. This matrix may be used
directly in order to find statistical patterns within the data. The two
approaches are:

• Analyze with statistical metrics

• Use Visualizations

The most common way to analyze the matrix is to use statistical
coefficients, such as the standard deviation, in order to find unusual
variable scatter. It should be noted here that many statistical coef-
ficients exist in order to characterize a probability distribution, but
since every coefficient has its flaws, one should always consider vi-
sual methods for additional evaluation. The mean value, for example,
is non-descriptive if a probability distribution has two entirely sepa-
rate peaks.

Visualization very often gives a much better understanding than
mere statistical coefficients because humans are still unmatched when
it comes to pattern recognition in unstructured data. Very popular
visualization methods are:

• Histograms & Probability Distributions

• Scatter Plots

• Parallel Coordinate Plots

Histograms are an approximation of the probability density func-
tion and give very good insights, despite being very simplistic. For ex-
ample, one may discover two separate probability peaks of a response,
which reveals a bifurcation somewhere in the simulation. Scatter plots
also help to identify patterns such as clusters, but are limited to three
dimensions. Parallel coordinate plots make it possible to watch more
dimensions at once. The search for the origin of a bifurcation or a
pattern, will be performed later on in section 3.3 about inference. At
this point, one simply wants to find such unusual patterns in the re-
sponses.
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3.2.2 Deformation Mode Segmentation

A structure usually deforms in a specific way for given variations. De-
tecting these deformation modes within a set of result files, is a very
helpful tool for an engineer, in order to get an overview and under-
stand his structure better. The key technology for analyzing this huge
amount of data is dimensionality reduction. Dimensionality Reduc-
tion sees a simulation as some kind of high-dimensional vector (e.g.
efficient plastic strain of every element) and tries to translate it into
low-dimensional space, such as 2D or 3D, so that one may plot a point
for every simulation. It is of the utmost importance for every algo-
rithm to lose as little information as possible during this compression
phase, so that data points with a high distance in the high-dimensional
space also preserve their distance in the low-dimensional space. This
automatically leads to the property , that simulations with very similar
results ought to be close, whereas very different simulations should
have a larger gap between them. Depending on the behavior of the
structure, clusters of points may form, which correspond to simula-
tions with very similar deformations.

An embedding for the motivation example of section 1.3 is given
in figure 3.2. Instead of plotting a marker for every simulation in the
embedded space (here 2D), a respective image of its deformation is
placed at its position. Note that the exact coordinate in the embedded
space does not matter, what matters is the position of the samples rel-
ative to each other. The dimensionality reduction worked well, since
similar samples were positioned close to each other.

The goal of this section is to identify clusters of simulations which
have similar deformation behavior. This may be done manually in
simple cases from an embedding, or in more complex cases, by the us-
age of clustering algorithms. The output from this step will be a class
matrix csk. The class matrix csk is a Boolean matrix, which denotes
whether in simulation s the deformation mode k did or did not occur.

Which Result Field was Chosen for Analysis? Before data reduc-
tion takes place, a result field has to be selected for compression. The
variable choice usually depends on the user’s interest. In a crash sim-
ulation, there are three major effects to look for:

• movement

• deformation

• failure
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FIGURE 3.2: Detailed 2-dimensional embedding of the longitudi-
nal rail from section 1.3. An image of a deformed simulation is

placed at its coordinates in the embedded space.

If the target of interest is movement, then it’s obviously best to
take the displacement field for the reason that it is strongly dominated
by rigid body movement. If on the other hand, deformation is more
interesting, then it might be more suitable to take other available re-
sults, such as the strain tensor, the efficient plastic strain, the stress
tensor, the internal energy or related field variables. There is no final
conclusion about which result variable might be most suitable yet. A
very appealing approach though, is to use the internal energy of ev-
ery element, since stress and strain both contribute to it, and it is also
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quite robust as an integrative value. In tests, internal energy and effi-
cient plastic strain yielded almost identical embeddings. This makes
sense, since in crash simulations the largest contribution to the inter-
nal energy is caused by plastic deformation. In this thesis, the efficient
plastic strain was chosen as the result field. The last target of interest
might be failure, which will not be addressed specifically in this con-
tribution. To analyze the simulation regarding this objective, either the
discrete failure index of an element or the element’s damage, would
be reasonable.

What is the Idea of Geometry-Based Dimensionality Reduction? In
this thesis, a new approach was chosen to perform dimensionality re-
duction (for details see sec. 4.1.1). The central idea is to take the ele-
ment results of a group of parts and convert them into a distribution
function. Doing so reduces the effort of mesh-comparison, to merely
function-comparison. The intrinsic assumption is that a typical defor-
mation has a typical distribution of the result field. This holds true for
asymmetric and complex parts, not though for very symmetric and
simple ones.

What distinguishes this proprietary method from all others, is the
idea of using crash simulation knowledge by taking the geometric
structure into account, and not relying solely on data compression.
This results in a rather white-box oriented dimensionality reduction,
with a comprehensible data representation, even though the optimal-
ity of this approach is still open to discussion. Taking this more specific
route yielded multiple advantages, which distinguish the idea greatly
from previous methods. Firstly minor topology modifications can be
handled much better, since the method relies on geometric simplifi-
cation with weighted local averaging (see sec. 4.1.1.2). In contrast to
this, all other methods require an identical mesh throughout all sim-
ulation models. If the meshes are different, mapping has to be per-
formed onto a reference mesh, which proves to be difficult in case of
topological modifications, such as a missing rib or an added sheet. It’s
important to emphasize at this point that any algorithm struggles with
large morphings and sizings, including the geometry-based approach
of this thesis. It is however possible to extend this algorithm to such
capabilities by matching the areas of the simplified geometry correctly,
thus a possibility for extension does exist.
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3.3 Relating Cause and Effect by means of In-
ference

How was Inference Done Before? Having discovered a vast variety
of effects in the output data, the question arises how these are actually
caused by either input variables or other events. The field of computa-
tional inference addresses this problem specifically, and helps humans
to find dependencies within large amounts of data. The simplest ap-
proach is, for example, to search for correlations between continuous
output variables. This is not possible though, if the result variables are
discrete deformation classes, as in this thesis. The most notable differ-
ence between this thesis and previous works, is thus the type of pre-
diction target. Previous works tried to focus almost entirely on contin-
uous responses, or even the field variables themselves (see sec. 2). The
general idea is to fit a meta-model, which in the case of a good predic-
tion quality, understood the connection between inputs and outputs.
The meta-model then served as basis for more sophisticated analyses,
such as a correlation study or functional analysis of variance.

What is the Prediction Target in this Thesis? This thesis takes a very
different route in order to determine inference. The final prediction
targets will always be discrete values, thus classification instead of re-
gression, will be used. This makes sense, if one wants to predict de-
formation classes, which are discrete, but continuous results, such as
responses, need to be converted into discrete variables first. The most
common strategy in association rule mining is to split continuous vari-
able ranges into discrete intervals (bins). For example, one can split the
range of intrusion into three categories: low values, medium values
and high values. It is much more reasonable though, to split continu-
ous responses at one particular threshold into valid and invalid. The
threshold value usually originates from technical specifications or le-
gal regulations. This makes sense, because we want our car design to
meet its requirements.

Which Classification Method was Chosen? In order to predict dis-
crete target values, any classification algorithm is basically a valid
choice. Nonetheless, the algorithms often differ vastly in their in-
herent properties, and do not fit well to all kinds of data. The most
popular ones are Support Vector Machines (SVM) [8], Artificial Neu-
ral Networks (ANN) [46], Decision Tree Learning (DT) [57, 10], Naive



3.3. Relating Cause and Effect by means of Inference 23

Bayes Classification and Adaptive Boosting [22]. Almost all classifica-
tion models, except for boosting, cannot handle our low sample counts
properly, and thus can be ruled out immediately. Adaptive Boosting is
a method which relies on other weak classification methods, and com-
bines them to achieve better predictions. In early and also later tests,
adaptive boosting with decision tree stumps (AdaBoost-SAMME [71])
did not perform as well as Decision Tree Learning (DT-CART [10]) it-
self, in terms of prediction accuracy. It always seemed that the low
sample count was too extreme, even for boosting. In the end, deci-
sion tree learning was chosen as the base technology because it has
the following important properties:

• Handling of low sample counts

• White-box model (easy inspectable and communicable)

• Automatic selection of important variables

• Handling of discrete and continuous variables

DTs already satisfy some of the side-challenges of crash simula-
tion from chapter 1.4. What distinguishes DTs most from the other
algorithms is the outstanding performance when facing low sample
counts. Since low sample counts are in high demand, there is already
almost no alternative to DTs. A property which is neglected a lot these
days, is the fact that DTs are white-box models. It is very simple to
inspect and understand their choices. Furthermore, DTs do two very
specific things, which will be very useful later on: they simplify (in
the upper area of the tree) and their decisions are easily translatable
to humans. This makes DTs especially attractive for human-machine
interaction.

Why was Decision Tree Learning combined with Rule Mining? De-
cision tree learning was chosen as the basic classification method, but
the technique itself is very unwieldy. An engineer simply never wants
to search a decision tree himself for good design recommendations.
Therefore, an extension is required, in order to make it more useful. A
very good complementary technology is Rule Mining from the field of
Knowledge Discovery in Databases (KDD). Rule mining tries to find
if-then conditions, where the if-part describes a design space, in which
the then-part is predicted (e.g. if X5 < 4 then Y4 < 3). Traditional
Association Rule Mining is mainly meant for discrete variables and
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search rules with the Apriori algorithm [2]. In contrast to this, the rule
search in this thesis is based on DTs, which adapts rule mining to our
requirements in a more suitable way. A part of rule mining is also
rule filtering. The discipline offers many different criteria in order to
rank or reduce the number of mined rules, since one hundred rules
or more is serious. This work proposes automatic rule filtering to find
the largest and most interesting interactions. The most important rules
are passed to the engineer, who may check them. In consequence, a
major idea of this thesis is especially the use of automatic knowledge
extraction, which should make rule mining attractive for simulation
engineers.

What are Possible Use-Case Scenarios for Rule Mining? The full
extent, of how rules may be utilized, is still open for discussion and
research. Nevertheless, in this thesis, the following scenarios are pro-
posed:

• Determine a new valid design

• Use rule bounds as optimization constraint

As stated previously a rule describes a design space, in which a
corresponding target is fulfilled, such as triggering a specific defor-
mation mode. An engineer may now choose a specific design himself
from this subspace, without having to worry about a violation any-
more. In this scenario, rule mining can be seen as a quick tool for
getting multiple, simple solution recommendations.

The rules themselves could also be used as constraints for a sub-
sequent optimization. This would prevent undesirable types of defor-
mation or constraint violations. The issue is, that the rule boundaries
are simplified in such a way that humans can understand them more
easily. An optimization algorithm would simply be better off using the
meta-model behind the rules itself, i.e. a decision tree, or even better,
a random forest. The optimization algorithm could ask the random
forest directly whether the design would be valid or not.
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Chapter 4

Mathematical
Formulations

This chapter will explain the two core algorithms of this thesis. These
two algorithms are deformation behavior segmentation and rule min-
ing, which were already introduced in the process flow of figure 3.1.
The behavior segmentation uses dimensionality reduction, low-dimen-
sional embedding and clustering, in order to find groups of simula-
tions which deform in a similar manner. The derived deformation
classes are then handed over to the rule mining algorithm, which ex-
tracts all the relevant knowledge for an engineer.

4.1 Deformation Class Segmentation

The first major contribution of this thesis is a process for deforma-
tion segmentation. This process originates from the desire to know
about all major types of deformation throughout all simulations. An
overview of the entire process of deformation class segmentation can
be found in figure 4.1. The output of this step is a deformation class
matrix csk, denoting in which simulation run s what type of deforma-
tion k occurred. This research was published previously in [13, 14].
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Raw Data

4.1.1 Dimensionality Reduction

4.1.2 Similarity Computation

4.1.3 Clustering similar runs
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FIGURE 4.1: Roadmap for deriving deformation classes csk from
the raw simulations results. Dimensionality reduction enables
the computation of a simulation similarity. These similarities are
then used to cluster simulations with similar results. The clusters

are then saved as deformation classes.

4.1.1 Geometry-Based Dimensionality Reduction

This section will explain the algorithm for geometry-based dimension-
ality reduction. The input for the procedure is:
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• a list of part ids (of the crash-absorbing structure)

• a list of simulation result files

• the polynomial degree for geometry simplification

The output will be a function of reduced plastic strain for every
simulation run. This function is a signature for the mesh-based results
and has a lower dimensionality. The signature can be stored, accessed
and compared much faster than the raw data.

4.1.1.1 Geometric Simplification

Most structural parts in a car allow a simplified representation by a 1D
line or a 2D plane since engineers use beams and sheets to guide loads
through the structure. This intrinsic assumption is the control of ge-
ometry simplification. Firstly, the geometry simplification extracts the
position ~ps of every finite element es from the specified group of parts,
and performs a parametric Bézier regression through these (either a
line or a plane). The output of this step is not the regression itself, but
we are interested in finding the closest point of every element ~̃ps on
the regression. This closest point has a parametric coordinate vector
~us = [us, vs]

T , which describes the location on the two-dimensional
surface. The output will be the parametric coordinates ~us belonging
to every element. Note that the index s is used in this thesis to index
samples in general. In this section, s is not a simulation index, but an
element index.

Why Nonlinear Parametric Bézier Regression? Parametric nonlin-
ear Bézier regression was chosen for two reasons: the ability to ap-
proximate curved structures well, and a very good repeatability. The
regression has to be parametric, since the group of parts might be ori-
ented arbitrarily in space and might resemble structures, such as a
semi-circle. The algorithm in this thesis was originally based on [51]
and generalizes it from solely curves to surfaces as well.

How is a Parametric Beziér Polynomial Described Mathematically?
A Beziér polynomial in this thesis is a 2-dimensional surface in 3D. It
is defined by a 2D-grid of control points, which span the surface. Such
a grid is illustrated in figure 4.2. In the case of a line regression, we
simply collapse the second dimensionM , which makes line regression
a special case.
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FIGURE 4.2: Example of a Bézier surface, which is spanned up by
a grid of four control points in each direction (N = 4,M = 4).

The endpoints are always on the surface.

The polynomial degree in the first and second parametric dimen-
sions (u and v) will be recalled asN,M ≥ 0. N andM can also be seen
as indexes for a 2-dimensional grid of control points, which span up
the polynomial. The spatial coordinates of the grid points are saved in
a polynomial coefficient tensor anmd, which has the shape (N,M, 3).
A point on the surface will be noted by p̃d, where d ∈ {1, 2, 3} is the
index for x, y and z. This point on the surface can be computed from
two parametric coordinates u and v,

p̃d(u, v) =
N∑
n=0

M∑
m=0

B(N)
n (u) ·B(M)

m (v) · anmd, (4.1)
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with the Bernstein polynomial,

B(N)
n (u) =

(
N

n

)
(1− u)N−n un. (4.2)

The polynomial is always normalized here, so that u and v are
bounded by,

u, v ∈ [0, 1]. (4.3)

When performing regression, the task is to find the control points
anmd , approximating a 3D cloud of points.

How High Can the Polynomial Degree Be Selected? The engineer
has to specify the polynomial degree with two parameters: N,M ≥ 0.
The number of control points corresponds to the polynomial degree
plus one. Selecting M = 0 collapses the second dimension v and per-
forms a line regression, thus the result is just a one-dimensional curve
(in 3D). The right choice of the polynomial degree should be made
carefully. If the polynomial degree is too low, then the data cannot be
approximated well enough. If on the other hand, the polynomial is
too high, oscillations will happen and may lead to divergence. The
divergence occurs, since the equation systems condition number will
automatically get worse with higher polynomial degrees. In practi-
cal experiments, our algorithm could handle regression in 1D (M = 0)
withN ≤ 20, which is quite good. Regression in 2D proved to be much
more sensitive, causing early divergence, usually at N,M > 3, which
is too low for many practical cases. The automatic choice of the cor-
rect polynomial degree is possible through k-fold cross-validation, but
since this would increase the computational effort by multiple times,
the choice of the correct polynomial degree for every run is left to the
user. The engineer usually configures the polynomial degree from one
or two samples, before analyzing the entire ensemble. Note that if de-
sired, every simulation may have a different polynomial degree. An
illustration of regression is given in figure 4.3.

What is the Process Flow of the Regression Algorithm? The regres-
sion algorithm needed multiple additions to [51] in order to work well
enough. The entire process is outlined in figure 4.4 and will be ex-
plained briefly in this paragraph. More detailed explanations can be
found in following paragraphs.
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u= 0 u= 1

FIGURE 4.3: Example for geometric simplification for the rail of
a car. The beam-like structure is simplified to a 1D curve with

parametric Bézier regression (N = 9,M = 0).

Firstly, a subsampling is done, if the point count is too high. The
samples are picked from a uniform distribution. This ensures a con-
stant runtime for larger components. Thereafter, the point cloud den-
sity is homogenized. This homogenization simply tries to get rid of
dense mesh regions, which can be the result of mesh refinement. This
is important, since regression is based on the mean value, which is sus-
ceptible to such a concentration of points. A dense mesh region would
attract the regression, and in consequence, the regression would no
longer run through the geometrical center of the component. There-
after, one has to estimate the parametric position of every element on
the not-yet existent regression. This is the most susceptible step of the
regression algorithm, since a bad estimation of us and vs for every sub-
sample s will result in a bad fit or divergence. The algorithm cannot
recover well from a wrong estimation. Having estimated the paramet-
ric position us and vs, the control points’ coordinates of the new Bézier
polynomial (anmd) can be computed. Since these change the polyno-
mial, one has to correct the parametric position usand vs of every sub-
sample s on the regression. This can be understood as a projection of
every sample onto the regression with shortest distance. Because we
already have a previous estimation of us and vs, we simply perform a
correction step, which is cheaper than a new computation. If the algo-
rithm converges and subsampling is used, then all other elements also
require the computation of the closest position on the regression.

How Was the Point Cloud Density Homogenized? For every sub-
sample, the k-nearest-neighbors (kNN) are selected. By default, we
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Select 1500 subsam-
ples if too many points

Homogenize point cloud density

Estimate parametric position
us, vs for every subsample s

Compute new con-
trol points anmd

Correct projected posi-
tion of subsamples on re-
gression (updates us, vs)

Convergence? no

yes

Compute parametric po-
sition u, v for all samples,
if subsampling was used.

FIGURE 4.4: Algorithm for parametric Bézier regression.

are using 18 neighbors here. We compute an average distance to these
neighbors, and assign the average distance to our subsample. At this
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point, every subsample s has an average neighbor distance ds. After-
wards, we compute the median of the average distances,

d(target) = median(ds), (4.4)

which will be the target distance for homogenization. These dis-
tances will be crucial in the following computations.

The point density ρs around a sample s can be computed by di-
viding the number of neighboring points Np by a volume V , which is
defined by the points average neighbor distance ds,

ρs =
Np

V (ds)
. (4.5)

In order to smooth the point cloud density, every point with a den-
sity higher than the median density should be assigned a probability
to survive a random selection process,

P (survive)(ρs | ρs < ρ(target)) =
ρs

ρ(target)

=
V (ds)

V (d(target))

=
2πd

2

s

2πd(target),2

=

(
ds

d(target)

)2

(4.6)

The number of points gets canceled out in the equation 4.6, since
we always used the same amount of neighbors for kNN-computation.
The definition of a volume depends on the intrinsic dimension of the
component. For solids, a sphere can be assumed, whereas for metal
sheets, a circle makes more sense. Since most of the structural compo-
nents can be expected to be metal sheets, the formula for a circle was
selected. The simplest form of the probability can hereby be reduced
to a fraction of the distances by the power of two. Interestingly, one
can also generalize this formula quite easily to three dimensions,

P (remove)(ds | ds < d(target)) =

(
ds

d(target)

)λ
, (4.7)
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where the exponent λ is a penalty factor, depending on the intrin-
sic dimension of the component. λ = 2 shall be used for sheet compo-
nents, whereas λ = 3 is used for solid ones. The probability in eq. 4.7
is tested against a random number from a random number generator,
which decides whether the point will be selected or not.

How is the Parametric Position of Every Subsample Estimated? Be-
fore the first regression can be computed, one has to estimate roughly
where every sample will be on the regression. This is quite troubling,
since no regression exists yet. This estimation is done differently for
1D and 2D regression.

For a 1D regression (M = 0), the estimation of u can be done
with affine invariant chord-length estimation of point clouds [21, 50].
However, the estimation did not work well in all the test cases. In
consequence, a graph-based approach was chosen. This requires the
construction of a graph from the subsamples. In order to do so, ev-
ery subsample is connected with an edge to its six nearest neighbors.
Along this graph, we simply search for the shortest path between the
most distant points with Dijkstras algorithm [16]. The shortest path
is simply a concatenation of linear segments. After having found this
shortest path, we can estimate us for every subsample s, by searching
for the closest point on the shortest path to every subsample.

For a 2D regression (M ≥ 1), the estimation is done by computing
the principal components of the point cloud with PCA. The first and
second principal components of every subsample will be taken as us
and vs. Since PCA is a linear method, strongly curved structures will
suffer from a bad estimation and thus divergence is more likely.

How Are the New Polynomial Control Points Computed? Every
subsample s has a corresponding position in space,

~ps or psd. (4.8)

The goal is to find new control points anmd, which fit our Bézier
polynomial to our point cloud of subsamples. Since we have an esti-
mation of us and vs for each ~ps available, we can compute two Bézier
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matrices b(N)
sn and b(M)

sn , which simply contain all the coefficients needed
by eq. 4.1 in one step,

b(N)
sn = B(N)

n (us) =

(
N

n

)
(1− us)N−n uns ,

b(M)
sm = B(M)

m (vs) =

(
M

m

)
(1− vs)M−m vms .

(4.9)

The idea is to minimize the squared error ε between all samples
and their closest point on the regression,

ε =
∑
s

3∑
d=1

(psd − p̃sd)2

=
∑
s

3∑
d=1

(psd − p̃d(us, vs))2

=
∑
s

3∑
d=1

(
psd −

N∑
n

M∑
m

b(N)
sn b(M)

sm anmd

)2

ε→ min

(4.10)

As is commonly done, a minimum in error can be found by setting
the derivative for the polynomial coefficients to zero.

∂ε

∂anmd

!
= 0

= 2 ·

(∑
s

psd −
N∑
n=0

M∑
m=0

b(N)
sn b(M)

sm anmd

)
︸ ︷︷ ︸

=0

·

(∑
s

N∑
n=0

M∑
m=0

−b(N)
sn b(M)

sm

)
︸ ︷︷ ︸

6=0

(4.11)

For equation 4.11 to be satisfied, the first underbraced part needs
to be zero. Setting it to zero allows the computation of the new control
points by using the pseudo inverse,

anmd =
∑
s

(
b(N)
sn

)+
·
(
b(M)
sm

)+
· psd. (4.12)
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It’s important to note, that the pseudo inverse of a matrix trans-
poses its shape from (S,N) to (N,S).

How is the Closest Position of the Subsamples on the Regression
Corrected? By computing a new polynomial in equation 4.12, the
closest point of every subsample on the regression shifts. Because the
shift is not expected to be too large, a correction step should suffice.
For simplicity, the following explanation is done for a single subsam-
ple. Mathematically, we want to minimize the residual rd, which is the
distance of our subsample to the regression,

rd(u, v) = pd − p̃d(u, v) (4.13)

The residual can be approximated by a first order Taylor expansion
around our previous closest point ~u0 = [u0, v0]T ,

rd ≈ rd(u0, v0) +
∂rd
∂~u

∣∣∣∣
u0,v0

·∆uvl,

= rd(u0, v0) +

2∑
l=1

JRdl(u0, v0) ·∆uvl.
(4.14)

The index l corresponds to the parametric dimension by
~u = [u, v]T = ul. The Jacobian of the residual JRdl and the correction
for the parametric position ∆uvl have the following form,

JRdl =
∂rd
∂ul

=



∂rx
∂u

∂rx
∂v

∂ry
∂u

∂ry
∂v

∂rz
∂u

∂rz
∂v


, (4.15)

∆uvl =

[
∆u
∆v

]
. (4.16)
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The derivative of the residual regarding u and v can be calculated
analytically,

∂rd
∂u

∣∣∣∣
u,v

=
∂ (pd − p̃d(u, v))

∂u

= −∂p̃(u, v)

∂u

= −
∂
(∑

n

∑
mB

(N)
n (u)B

(M)
m (v) anmd

)
∂u

= −
N−1∑
n=0

M∑
m=0

N B(N−1)
n (u)B(M)

m (v)
(
a(n+1)md − anmd

)
(4.17)

∂rd
∂v

∣∣∣∣
u,v

= −
N∑
n=0

M−1∑
m=0

MB(N)
n (u)B(M−1)

m (v)
(
an(m+1)d − anmd

)
(4.18)

After having assembled the Jacobian JRdl, by setting eq. 4.14 to
zero one can derive the correction step for the subsamples parametric
position,

∆uvl = −
3∑
d=1

(JRdl(u0, v0))
+ · rd(u0, v0). (4.19)

The subsample’s new parametric position can now be derived by
performing the update,

u(iter+1) = u(iter) + ∆uv1

v(iter+1) = v(iter) + ∆uv2
(4.20)
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The entire procedure until eq. 4.20 can be generalized to all sub-
samples s in a vectorized form. Firstly, we compute the residual and
also the Jacobian for all subsamples in the ensemble,

rsd = r(us, vs)

= xsd − x̃d(us, vs)

= xsd −
N∑
n

M∑
m

B(N)
n (us)B

(M)
m (vs)anmd

= xsd −
N∑
n

M∑
m

b(N)
sn b(M)

sm anmd,

(4.21)

The Jacobian for multiple runs takes the form,

JRsdl = JRld(us, vs)

=


∑N−1
n

∑M
m

(
N b

(N−1)
sn b

(M)
sm

(
a(n+1)md − anmd

))
, if l = 1,∑N

n

∑M−1
m

(
M b

(N)
sn b

(M−1)
sm

(
an(m+1)d − anmd

))
, else (l = 2).

(4.22)

With these two tensors, one is able to update all samples at once,

∆uvls =
3∑
d=1

(JRsdl)
+ · rsd, (4.23)

u(iter+1)
s = u(iter)

s −∆uv1s,

v(iter+1)
s = v(iter)

s −∆uv2s.
(4.24)

Note that the pseudo-inverse of a tensor of third order (JRsdl)
+ is

mathematically undefined. The pseudo-inverse + is broadcast along
the last two dimensions dl of the tensor, thus all Jacobian submatrices
in the vector will be pseudo-inversed independently, but all at once.
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This broadcasting is a single operation in a computer, which is sev-
eral times faster than computing the inverse for every submatrix in-
dependently. At this point, the parametric position of the subsamples
remains bounded by normalization,

u, v ∈ [0, 1]. (4.25)

4.1.1.2 Results Projection and Smoothing

This step transforms the simulations’ results into a simpler, lightweight
representation by mapping them onto the simplified geometry. The
mapping process consists of projection and smoothing, which allows
compensation for different meshes and moderate topology differences.
The output from this step will be a distribution function f(u, v), de-
scribing the distribution of a result field along the regression.

Which Result Field was Chosen? As result field, the equivalent plas-
tic strain ε

(p,eq)
s of every element es was chosen, since large deforma-

tions correlate well with plastic strain in crash simulation . The equiv-
alent plastic strain is derived within the FEM-solver by integration of
the equivalent plastic strain rate over time [28],

ε(p,eq) =

∫
t

ε̇(p,eq) dt. (4.26)

The equivalent plastic strain rate ε̇(p,eq) on the other hand, is com-
puted from the plastic strain rate tensor,

ε̇(p,eq) =

√
2

3

∑
i

∑
j

ε̇
(p)
ij ε̇

(p)
ij . (4.27)

In the following, we will simply refer to equivalent plastic strain
ε(p,eq) , as plastic strain ε(p). The displacement was not chosen for the
reason that the displacement field consists of two parts: the rigid body
movement and the deformation field. In case of large movements, the
rigid body fraction will hide the differences in deformation. In conse-
quence, a similarity analysis later on would emphasize the position of
the car after the impact, rather than its deformation. It’s important to
realize that plastic strain makes sense in case of ductile, metal compo-
nents. It is not reasonable to compare for example, a metallic structure
with a fiber reinforced one.
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How is the Smoothing Computed? The projection of the element
results has already been done, as a multitude of elements have al-
ready been projected onto the regression. Figure 4.5 shows the pro-
jected plastic strain for an example part (left rail sec. 5.2) with only
one dimension, u. It is very obvious that multiple elements may have
the same value of u. Also, very specific patterns are already visible,
but it is still difficult to compare such scatter plots computationally.
Therefore, a smoothing step, utilizing kernel density smoothing, is
necessary. The result of the smoothing is a distribution function of
plastic strain along the regression, which is also shown in figure 4.5.

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.5

1.0

1.5

2.0

ε(
p
)

smoothing
element pstrain

FIGURE 4.5: The plastic strain of every used element can be plot-
ted along the parametric coordinate u of the regression. This plas-
tic strain can be smoothed into a distribution function of plastic

strain, which can be compared more easily.

Firstly, we discretize u, v ∈ [0, 1] with nodal points ~uj . At these
nodal points, a value of the smoothed result field will be computed.
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Therefore, we sum up the plastic strain of all elements es, but with
an additional weight wsj for every element. This can be understood
as positioning a local Gaussian at the position of the nodal point ~uj .
The higher the distance between our nodal point and an element, the
lower its weight. By doing this, only the plastic strain of elements in
the locality of the nodal point contributes to its sum.

ε
(r)
j =

∑
s

ε(r)(~uj) = ε(p)s · wsj ,

= ε(p)s · w(~us − ~uj),
(4.28)

w(~us − ~uj) =
1√
2πb

exp

(
−|~us − ~uj |

2

2 · b2

)
. (4.29)

The size b of the Gaussian should be chosen to be larger than the el-
ement size of the mesh. We found that the following heuristic worked
well,

b ≥ 3 ·median (size(es)). (4.30)

The heuristic in eq. 4.30 ensures that each entry in the smoothing
vector ε(r)j is computed from a width of roughly 6-15 elements. Choos-
ing such a large Gaussian makes the procedure more robust regarding
the geometry simplification. If for example, the regression is not ex-
actly the same, then two values ε(r)j of two different models will not be
at the same geometric location. A larger Gaussian can compensate for
this flaw and ensures a better repeatability.

The discretized function of reduced plastic strain ε(r)j can be saved
with only a few kilobytes of memory, which is much less than the
original FEM results. Since we can evaluate the discretized function of
reduced plastic strain anywhere by using interpolation, we will refer
to it in the following as distribution function of plastic strain ε(u, v).

Note, that one can see the distribution of plastic strain in figure 4.5
as a random field. As such, it might be characterized not only by the
(local) mean value as above, but also additional properties such as the
variance.
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4.1.2 Computation of Similarity

The result from the previous section about dimensionality reduction,
is a distribution function of plastic strain ε(u, v) for a single simula-
tion. The goal of this section is to compute a similarity value between
two of these functions (e.g. ε(i)(u, v) and ε(j)(u, v)), resulting from two
different simulations i and j. The task of simulation comparison has
been whittled down to the task of function comparison.

What is the Concept of Similarity? The intrinsic assumption at this
point, is, that a typical type of deformation has a typical distribution
function of plastic strain. This is true for unsymmetrical components,
but not for uniform and symmetric ones, such as a pipe. This is for
the reason, that if a pipe buckles to the left or right in exactly the mid-
dle, then the amount of plastic strain should be almost identical. From
a heuristical point of view, this is not as troublesome as it seems, be-
cause the crash absorbing structure of a car is very inhomogeneous ,
consisting of many different sheets. If the rail of car a for example,
buckles to the left or right, then it will have a different pattern.

How is the Similarity Computed? Function comparison can be done
with multiple metrics, such as feature point alignment [17] or autocor-
relation. The simplest approach though is to use an inner product for
continuous functions 〈·|·〉, in order to compare two functions ε(i)(u, v)
and ε(j)(u, v),

s̃ij =

∫ 1

v=0

∫ 1

u=0

ε(i)(u, v) · ε(j)(u, v) du dv :=
〈
ε(i)
∣∣∣ε(j)〉 . (4.31)

By the multiplication of the functions in equation 4.31, their com-
mon peaks are strengthened, whereas mismatching peaks are canceled
out. The integration of this product yields a value, which describes
what both functions have in common. If the geometric simplification
is a line, the outer integral along v is neglected. Using normalization
enforces a bounded similarity value,

sij =

〈
ε(i)|ε(j)

〉√〈
ε(i)|ε(i)

〉 〈
ε(j)|ε(j)

〉 ∈ [0, 1]. (4.32)
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A simulation similarity of sij = 0 means, that the simulation re-
sults are entirely different, whereas sij = 1 means, that they are iden-
tical. In the following sections, we will need distances and not simi-
larities. The dissimilarity itself is fortunately already a distance and is
easily derivable,

dij = 1− sij . (4.33)

What distinguishes this procedure specifically from other simu-
lation distance heuristics is the fact that the distance value is well
bounded, which is not common. This makes it possible to compare
just two simulations and immediately know how similar they are. If
the resulting distance were to be bounded arbitrarily, then we could
not know whether the distance value was high or not. As a conclu-
sion, arbitrary bounded distances always require consideration of an
ensemble of simulations. That the distance value in eq. 4.33 is well
bounded, is not however as useful as it seems because in practice, one
usually creates a design of experiments study with many simulation
runs.

4.1.3 Clustering Similar Results

This section will cover the analysis of the simulation distances dij . The
simulation distances will be used in order to find groups of simula-
tions with similar behavior, either manually or by means of algorith-
mic clustering. The output of this section will be a clustering matrix
cij . The clustering matrix cij is a Boolean matrix, where every column
j stands for a cluster label and the Boolean entry indicates whether
sample i belongs to the cluster or not.

4.1.3.1 Visualization with Low-Dimensional Embeddings

The purpose of a low-dimensional embedding is to visualize high di-
mensional data or distances, in 2D or 3D. A manual grouping can
already be performed from this visualization, if the behavior of the
structure is not too complex. The most common techniques for vi-
sualization of high-dimensional data are PCA, t-distributed stochas-
tic neighbor embedding (t-SNE) [42] and multidimensional scaling
(MDS) [7]. Besides these most common techniques, literally any di-
mensionality reduction algorithm is a candidate if it reduces the di-
mension to 2D or 3D.



4.1. Deformation Class Segmentation 43

Why was Multidimensional Scaling Chosen? MDS simply converts
distances back into coordinates, but the dimensionality of the new
coordinate space is specified by the user. For plotting purposes, a
2D or 3D embedding has to be chosen. The conversion is achieved
with a dynamic relaxation, which tries to satisfy the originally high-
dimensional distances dij in the low-dimensional space. Doing so
preserves the largest structures from the high-dimensional space and
makes them visible to us.

How is Multidimensional Scaling Working? MDS simply converts
distances back into coordinates, but the dimensionality of the new
coordinate space is specified by the user. For plotting purposes, a
2D or 3D embedding has to be chosen. The conversion is achieved
with a dynamic relaxation, which tries to satisfy the originally high-
dimensional distances dij in the low-dimensional space. Doing so
preserves the largest structures from the high-dimensional space and
makes them visible to us.

Embedding for a Crushed Rail Figure 4.6 shows a MDS visualiza-
tion of 1000 simulations of the rail from figure 1.1. Every point in the
plot is a simulation. The closer the points are, the more similar their
simulation results were. The axis is the principal axis of the embedded
space. The exact positional value of a point is unimportant in an em-
bedding compared to its relational position regarding all other points.

The structure of the point cloud in figure 4.6 is surprisingly very
clear and contains two clusters and two outliers. The representative
samples A and B from both clusters reveal that buckling is occurring
either at the top or bottom end. It must be emphasized here, that there
is no connection between the clusters, thus there is no transitional be-
havior between these two states. The outlier E simply shows buckling
initiation in a much lower region than any other sample. Another in-
vestigation revealed that this behavior is extremely rare. The second
outlier D starts bending to the side, due to simultaneous buckling ini-
tiation in the upper and lower area. No similar sample was ever found
in any investigation, but the behavior was tested to be reproducible by
recomputing the sample multiple times.

It’s also very noticeable that cluster buckling_top has a very large
elongation. To understand the long elongation, six representative sam-
ples along a path from sample B to C are shown in figure 4.7. The
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FIGURE 4.6: Low-dimensional embedding of the crashed rail
from section 1.3 with MDS. SX , SY and SZ are the principal axis
of the embedded similarity space. Simulation runs are picked ex-

emplary in order to understand the clusters.

representatives reveal that buckling is not happening only at the up-
per end, but also in the middle. Watching such transitions is useful, in
order to validate the embedding and also check its quality.
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FIGURE 4.7: Choosing six samples in figure 4.6 from the repre-
sentatives B to C visualizes the transitional behavior.

Analyzing representative samples lets the user build clusters with
meaningful names (e.g. buckling_top). The separation of the runs in
figure 4.6 is clear enough for manual clustering. For its analysis, four
clusters were formed: two for the large clusters and two for the out-
liers. These groups are saved in a Boolean label matrix with shape
(1000, 4) in order to investigate possible causes of clusters later on.
Technically seen, it is desirable for a rail in a car to fold from the region
of impact downwards (here top to down), since firstly deformation
shall be kept away from the passenger cell, and secondly the rail shall
fold in a stable manner, which is not case if the rail starts buckling near
the constrained end.
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4.1.3.2 Clustering

With clustering, it is possible to form groups of similar simulations
from the distance matrix dij directly. This makes sense, since the em-
bedding is just an approximation of the distances and thus not reliable.
Clustering has proven to be a useful tool, if the cluster boundaries are
fuzzy, or the behavior of the structure is complex, thus the embedding
is very twisted. The clusters in figure 4.6 are simple enough to be sep-
arated by hand, but in more complex cases, the usage of a clustering
algorithm has shown to yield better clusters, as shown in section 5.

What Clustering Algorithm was Chosen? There are many cluster-
ing algorithms available. However, here our choice is limited, be-
cause we do not have coordinates, only distances. This already rules
out very popular ones, such as k-means clustering [64, 43]. In ex-
periments, Agglomerative Clustering [35] from the scipy package [36]
works well with Average-Linkage [63], if the dataset does not contain
too many outliers or noise. Another important property leading to the
selection of this clustering technique, is its hierarchical nature, making
it quite easy to investigate the data at different levels of granularity.

How does Agglomerative Clustering Work? Agglomerative clus-
tering starts off by seeing every sample as a cluster. It then joins the
closest clusters until there is only one left. The distance computation
for the clusters is determined by the linkage. Average-Linkage literally
averages the linking-distances between all samples of the two clusters
S1 and S2:

D(average)(S1, S2) =
1

|S1| |S2|
∑
i∈S1

∑
j∈S2

dij (4.34)

The absolute value of a cluster or set |·| returns the size of the sets,
which is the number of samples in cluster S1 or S2. The joining hier-
archy, together with the joining distances, is the key component of the
algorithm.

Example for Agglomerative Clustering. An example of agglomera-
tive clustering with average-linkage is given in figure 4.8. The dataset
is an imaginary dataset made up of three Gaussian distributions, where
two Gaussians are very close to each other. The dendrogram of cluster-
ing shows the join hierarchy of the algorithm. If two clusters are joined
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by the algorithm, the length of the vertical distance describes the join
distance. The last join at the top of the tree, is by far the largest one,
combining cluster 1 with cluster 2 and 3. Clusters can be derived from
the joining hierarchy by simply cutting off the tree at a certain level.
Because we used three Gaussians, we chose to cut the tree at a thresh-
old level of 0.35, retrieving our three original clusters. It’s important
to realize that determining the number of clusters equals cutting off
the dendrogram at a certain join distance level.

How to Determine the Number of Clusters? The issue with cluster-
ing in general is that a cluster may obviously also contain sub-clusters,
and it is difficult to automatically determine the engineer’s level of in-
terest, thus at which thresholds the tree should be cut off. Classically,
the tree is cut off at one level. In practice, different branches need to
be cut off at different levels, because the engineer might be interested
in further details of a single cluster. In conclusion, 100% automation
of this step is very difficult. Due to this rather philosophical question,
the number of clusters and sub-clusters are determined by user input,
interactively. Nonetheless this is not a real issue in practice, since in-
teractive clustering doesn’t take a lot time, and it is also essential to
explore the embedding.



48 Chapter 4. Mathematical Formulations

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

X1

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

X
2

samples in coordinate space

cluster 1
cluster 2
cluster 3

cluster index
0.0

0.2

0.4

0.6

0.8

1.0

1.2

jo
in

 d
is

ta
nc

e

dendrogram of agglomerative clustering

FIGURE 4.8: Visualization of Agglomerative Clustering on an
imaginary dataset with two design variables X1 and X2. Cut-
ting off the clustering hierarchy of the dendrogram at a value of

0.35 collapses the branches into three clusters.
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4.2 Decision Tree Learning

This section will briefly cover the basics of Decision Tree Learning,
since it is the major backbone of this thesis. A very good and complete
explanation of DTs can be found in [12], on which this section will also
be partially based on.

4.2.1 Decision Tree Basics

What is a Decision Tree? A decision tree is a classification technique,
originally intended for the prediction of discrete data, such as clusters
or class labels. A DT is a tree-like structure of Boolean decisions, for-
warding samples through its internal nodes to its leaves. Different
leaves correspond to different class labels, so that if a new sample is
given to the tree, it is forwarded into a leaf and its class will be pre-
dicted. The visualization of the decision boundaries of a DT is given
in figure 4.9. The data originates from the clustering example in sec-
tion 4.1.3.2. The DT in the figure classifies all samples correctly, except
for one sample from class 2, which ends up in the wrong leaf (we en-
forced it here for explanatory purposes). The tree could split the im-
pure leaf again to correctly predict all samples, but we forbid splitting
if only a single sample would be segregated. If a single sample can be
segregated, then the tree could fit itself to noise. Forbidding further
splitting equals controlling the depth of a DT, which is usually called
pruning. The training algorithm for the creation of the DT in figure 4.9
is called Classification and Regression Tree (DT-CART) [10] and will be
explained in the next paragraph. This thesis uses the implementation
of the scikit-learn package [54].

How is a Decision Tree Built Up? In this paragraph about the cre-
ation of DTs, we will focus mainly on DT-CART, which will be used
throughout this thesis. The basic question at this point, is how to
achieve the ’best’ DT from the training data. Unfortunately, this prob-
lem was proven to be ’nondeterministic polynomial time complete’
(NP-complete) [32], thus it is important to know that training relies
heavily on heuristics. The method explained in the following, is also
known as greedy search. Greedy search simply means that the algo-
rithm makes the best split locally, and does not consider whether a
different choice would be better further down the DT. In consequence,
one can never expect to have the very best decision tree, in terms of
prediction accuracy.
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Training a decision tree requires the input variable matrix xsi of
all samples, and a vector of discrete target classes cs. The algorithm
now tries to split the set of samples S = {s|s ∈ (1, . . . , N)} with a
new decision into two new subsets S(L) and S(R) recursively. These
subsets ought to have a lower impurity than the original set S. The
impurity of a set S is measured with the Shannon entropy [62],

H(S) = −
∑
Ck

p(Ck |S ) log2 (p(Ck |S )) . (4.35)

The probability p(Ck |S ) is the likelihood of the k-th class given a
set S. The probability p(Ck |S ) can be computed easily in a frequentist
way, by counting how many samples in the set belong to this class,

p(Ck |S ) =
|{s|s ∈ S ∧ cs = Ck}|

|S|
. (4.36)

The absolute value of a set | · | in eq. 4.36 simply counts the number
of samples in a set. An example computation for the entropy of the
lowest, impure leaf in figure 4.9 is,

H(S(example)) = −20

21
log2

(
20

21

)
− 1

21
log2

(
1

21

)
= 0.276

(4.37)

It should be mentioned here, that the impurity of a set is also very
frequently measured with the gini impurity HG,

HG(S) =
∑
Ck

p(Ck |S ) · (1− p(Ck |S )), (4.38)

but in experiments, the Shannon entropy was found to yield a bet-
ter classification accuracy throughout all our datasets. Being able to
measure the impurity of a set makes it possible to compute the infor-
mation gain I of a split,

I(S, S(L), S(R)) = H(S)−
(
|S(L)|
|S|

H(S(L)) +
|S(R)|
|S|

H(S(R))

)
. (4.39)

The information gain can be understood as the difference between
the entropy before the split, and the weighted entropy of both subset
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leaves after the split. The central question is how to find the best vari-
able with the best split in terms of information gain. Therefore, the
algorithm first searches for the best split for every variable, and then
chooses the best one from all of them. This can be understood as an
optimization for the highest information gain for a single split, which
explains the name ’greedy search’.

What are the Training Settings for Decision Tree Learning? The
major difficulty when training a DT, is to control the depth of the tree,
which is called pruning. If one does not limit the depth of the tree,
then the tree is at risk of fitting itself to noise, which is called over-
fitting. The implementation used from the scikit-learn package [54]
offers the pruning options enlisted in table 4.1.

option default description

max_depth None Maximum tree depth allowed.

min_samples_split 2
The minimum number of samples
required for a split.

min_samples_leaf 1
Stops growing the tree further, if a
leaf contains the specified number
of samples.

max_leaf_nodes None Maximum number of leafs al-
lowed.

min_impurity_decrease 0
Allow only splits, which reduce
the entropy by at least the specified
value.

TABLE 4.1: Options for decision tree learning (DT-CART) in the
scikit-learn package.

Pruning is crucial for building a DT with a high, overall predic-
tion accuracy, but it is not important for rule mining later on. This
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is because the rule mining algorithm inherently focuses on the high-
est leaves of the tree, which can be considered to be relatively reli-
able. This removes the heavy burden of controlling pruning, and thus
all default arguments are left as specified. The only setting which is
changed for rule mining, is the tree depth, which is limited to 20 for
higher performance.

How to do Variable Importance Ranking? A very interesting fact is
that decision trees automatically do variable importance ranking in-
ternally, and can simply be asked for it. Every variable split within
the tree has a corresponding information gain. Summing up all infor-
mation gains for the respective variable, tells the user which variable
helped most to structure the data. If one wishes to do variable impor-
tance ranking, it is recommended to use random forests (RF), for the
reason that they generalize better, and thus are more reliable. RFs are
explained in section 4.2.2.

What is Decision Tree Learning Used For? Decision tree learning
will be utilized in the following for rule mining and variable impor-
tance ranking. In the case of rule mining, specific leaves of a DT are
extracted as rules, and given to the user for better understanding and
further usage. The automatic selection of the most important leaves
can be difficult, and is explained in section 4.3. Decision tree learning
is also used for variable importance ranking, where for a specified tar-
get class, the most important input variables should be returned. This
is not done with DTs themselves, but with random forests in section
4.2.2.

4.2.2 Random Forests

Random forests use multiple decision trees in order to make a pre-
diction. Therefore, a RF builds multiple trees. If a new prediction is
requested, every tree will make its own prediction and the most fre-
quent prediction is taken by voting. This would not work properly if
every tree was trained in the same way, as explained in section 4.2.1,
because all the trees would make the same prediction. Therefore, a RF
uses multiple Random Trees (RT) and not classical DTs. A random tree
is a decision tree, which is trained in a more random way. Random-
ness was introduced into the trees with the options explained in table
4.2.
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option default description

max_features
√
nV ariables

Makes only the specified number
of variables available for a split.
The variables are chosen randomly.

use_bagging True
Bagging gives every tree a random
subset of samples.

TABLE 4.2: Options for random forests to introduce randomness
into its trees (scikit-learn package).

Reducing the number of variables available at every split, forces a
tree to sometimes use lower ranked variables in terms of information
gain. This softens the greedy search and helps to find alternative ways
to explain a class.

What is Bagging and How Does it Work? Bagging [9] is used to im-
prove the classification accuracy of a predictor by randomly generat-
ing subsets of samples during training. It was originally intended for
DTs, but is used nowadays in combination with other classification
methods, such as neural networks. The implementation of bagging
used, is allowed to draw N times from a set with originally N sam-
ples. Because the selection follows a uniform distribution, a sample
may be selected twice, thus the subset will very likely be smaller than
the original set. The exact number of unique samples differs every
time bagging is done, due to randomness. It was shown in [3], that
if this bagging scheme is run a large number of times, then the mean
value of unique samples in the subsets converges against 1− 1

e ≈ 0.63.

Why is Variable Importance Ranking With Random Forests Better
Than With Decision Trees? A trustworthy variable importance rank-
ing requires a classification technique, which understands the data as
well as possible. This is different to the rule mining algorithm in this
thesis, which requires a decision tree to be only precise in the upper
area, and thus roughly. A random forest can generally be expected to
have a higher prediction quality than a single decision tree for much
better generalizing.
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How is Variable Importance Ranking Done With Random Forests?
Variable importance ranking with random forests does not differ a lot
from importance ranking with decision trees. Instead of asking a sin-
gle tree for the importance of every variable, a random forest returns
an importance value for every variable from every tree. In conse-
quence, one can compute the mean and standard deviation for the
importance of every variable. In contrast to importance ranking with
only a single tree, it is very useful to have the standard deviation, as
a kind of error estimation. However, one has to keep in mind that the
trees are forced to be random, thus the standard deviation is forced
to blow up. Therefore, the standard deviation can be understood as
some kind of worst-case estimator for the variation of the variable im-
portances.

Example for Variable Importance Ranking In this paragraph, an ex-
ample for variable importance ranking will be given. The data will
once again originate from our crushed rail in figure 1.1. The maxi-
mum intrusion of the impactor was measured from every specimen.
The idea is to find out what causes high intrusion values. Figure 4.10
shows the histogram of the intrusion. The overall histogram resem-
bles a normal distribution. The only conspicuity is the high variability
of the intrusion, ranging from about 50 mm to about 90 mm.

Because importance ranking can only be run on discrete target
classes, the continuous response of intrusion needs to be converted
into classes. We therefore split the samples in figure 4.10 into two
classes: low intrusion and high intrusion. The importance ranking
is now run on the target class of high intrusion. The output is shown
in table 4.3.

variable name mean importance std. dev. importance
initial_velocity 0.31 0.028
impact_angle 0.12 0.029
... < 0.03

TABLE 4.3: Variable importance ranking for the class of high in-
trusion.

All mean importances in table 4.3 are normalized, thus sum up to
one. The largest importance by far, is the impact velocity, which totally
makes sense, due to its quadratic contribution to the kinetic energy.
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FIGURE 4.10: Histogram of the intrusion for the example of a
crashed rail in figure 1.1. The underlying probability distribu-
tion resembles a normal distribution. For importance ranking the

dataset is split into two classes.

Also, the impact angle seems to play an important role. An explana-
tion would be that the component is geometrically much stiffer in the
front, than in the rear. If the impactor is inclined in such a way that it
hits the front first, it can be expected to have an impact on the intru-
sion. The standard deviation of the importances is relatively low, so
that the estimates are trustworthy.
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4.3 Rule Mining for Knowledge Extraction from
Simulation Data

The central inference technique of this thesis is Rule Mining. The goal
is to find if-then rules connecting input and output variables, unveil-
ing potential physical relations within the data. A rule is an if-then
condition

A→ T, (4.40)

where the antecedent condition A leads to the conclusion T with
a certain accuracy (also known as confidence) regarding the underly-
ing data. An example for a rule is the following expression: X1 > 4→
¬C1, where the deformation classC1 is prevented (literally ’notC1’) by
selecting the design variable X1 larger than 4. The target T is usually
specified by a user, whereas the mining algorithm searches for multi-
ple, validA. It is quite dangerous to accept such statistical conclusions
blindly as facts, thus an engineer has to decide or check, whether the
pattern can be accepted as a real physical effect. This thesis will focus
on two tasks:

Target definition by a user.

Extract all rules from the dataset.

Rank all rules regard-
ing their relevance.

Filter out only the
most relevant rules.

FIGURE 4.11: Process flow for automated rule mining in this the-
sis.
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The algorithm starts off by requiring a target definition from a user.
Having specified a target, the algorithm searches all rules it can find,
which satisfy the target with a high accuracy. Thereafter the algorithm
first ranks all rules regarding their relevance. Determining how rele-
vant a rule is, depends on the metric. The field of rule mining provides
many different metrics in order to score the relevance of rules. Since
multiple scoring metrics are often used in combination, the first task
was to find the metric or metrics, which score rules relating to our en-
gineering demands. The relevance here is a combination of a rule’s
prediction quality and amount of samples predicted. Having found
the most relevant rules leaves the question, how many rules are rel-
evant enough to be shown to the engineer. This specifically extends
classical rule mining, where the selection of the most relevant rules is
done interactively by a user.

This automatic rule mining is very important, since a CAE-engineer
simply does not have either the knowledge or the time to isolate the
major dependencies himself. However, since the intent is quite clear,
automation can be provided. The algorithm for rule mining was orig-
inally published in [41, 15].

4.3.1 Example Data

The rule mining will be explained with an imaginary dataset, shown
in figure 4.12.

The example has two design variables: X1 and X2. Let’s imagine
that these two variables entirely determine the mechanical behavior of
our structure, thus triggering two different types of deformation (e.g.
buckling and no buckling). In such a case, all the samples can be split
into two classes according to their deformation type. The function
separating these two deformation classes in figure 4.12 is a parabola.
A parabola as border is especially interesting, because it is difficult for
a decision tree to separate classes with nonlinear boundaries.

4.3.2 Target Definition

Before performing rule mining, the targets first need to be specified.
The definition of a target condition before rule mining is very similar
to the definition of a cost-function before optimization. A target is sim-
ply a Boolean expression, separating all samples into two groups: true
or false. Thereafter the Rule Mining will investigate what causes the
separation of the samples into these two groups. This is achieved by
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FIGURE 4.12: The example dataset consists of two classes, which
are separable by a parabola in the design space X .

applying the target T to all simulation samples s in the database. The
evaluation result is saved in a Boolean vector ts, describing whether
the expression evaluated true or false for a specific sample.

The simplest target definition is to prevent or trigger, a certain de-
formation mode. By choosing for example T := ¬C1 (literally ’not
C1’), the engineer is asking how he can prevent deformation mode
C1. In the example case, this is the equivalent of triggering only C2,
because we have a two-class problem. In this section, the following
target will be used for further explanations,

T := ¬C1 = C2. (4.41)

A target can generally be defined from any variable in the matrix
of outputs ysj or classes csk (see figure 3.1). The only constraint is
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that the result of this expression has to be Boolean. The simple target
Y4 < 10 for example, demands an output value lower than a specified
threshold. While the output Y4 itself is not Boolean, the evaluation of
this inequality is. What makes this approach especially interesting, is
that one may combine multiple targets arbitrarily (e.g. Y4 < 10∧¬C1),
making a more complex analysis with multiple targets very easy to
specify.

4.3.3 Rule Extraction

This section will explain how to attain a set of antecedent conditions
Ai leading to a single target T . This is also formally known as concept
learning [23]. The extraction will be done on a trained decision tree
(see section 4.2). This work uses DT-CART [10] from the scikit-learn
package [54] to train the decision tree. The matrix of input variables
xsi and the target evaluation vector ts , are used for the training pro-
cess.

How to Extract Rules From a Decision Tree? The extraction algo-
rithm simply traverses the entire tree and converts every node into a
rule expression, if the accuracy is above the specified threshold (see
fig. 4.13). The rule simply consists of the decisions leading to the node
itself. Extracted antecedents may be redundant for the reason that also
child nodes may satisfy the accuracy limit, but this will be taken care
of in section 4.3.4.

What are the Settings for Rule Extraction? The rule extraction in
this thesis can be limited by an accuracy threshold α for the rules. In
the field of rule mining, accuracy is more commonly known as confi-
dence, and is explained in section 4.3.4. A small tolerance negates the
effects of wrongly clustered samples, and in consequence heightens
the chance of finding more general rules. Therefore, in order to find
more general rules, a slightly lower accuracy (e.g. α = 95%) is crucial.

4.3.4 Automatic Rule Filtering

The rule filtering takes as input, a set of antecedent conditions A =
{Ai} predicting a single target T with a specified, minimal accuracy of
α.

A := {Ai | conf (Ai → T ) ≥ α} (4.42)
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FIGURE 4.13: Rule extraction from a decision tree, which was
trained with the labels True or False for a target T . The dataset
is from the example in fig. 4.12. Every node or leaf is translated
into an antecedent for a rule, if the accuracy (confidence) is high

enough.
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The conf function simply evaluates the accuracy of a rule regarding
the given dataset, and will be explained more detailed later. The goal
of this section is to return only the most meaningful Ai, therefore we
have to apply ranking and filtering.

What are Relevant Rules? The question, which rules should be
ranked highest, depends on the user’s interest. Fortunately, simula-
tion engineers have common interests, which leads to the following
filtering targets:

• Large rules, which cover a large amount of the design space,
should be ranked higher.

• More accurate rules should be ranked higher.

In first place, engineers prefer to know about the largest interac-
tions within the simulation model, thus rules covering a large fraction
of the design space are of major interest. Rough, large rules can be
found in the upper area of the decision tree, where it is also relatively
reliable in terms of prediction accuracy. Additionally, there is also the
requirement that it predicts as many samples as possible, correctly.
This is a trade-off, because large rules are rougher, and thus tend to
have a lower accuracy. The trade-off was found to be difficult to re-
alize in practice, but could be solved by a specific rule scoring and
filtering scheme.

What is the Major Assumption for Relevant Rules? An implicit, but
very important, assumption is that a rule covering many samples also
covers a large design-space. This states to be true for uniform, space-
filling sampling techniques, but becomes more problematic in the case
of adaptive, local sampling. In such a case, a rule might be ranked
high for covering many samples, but describes only a small and thus
uninteresting, fraction of the design space.
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How Were Rules Scored? Association Rule Mining provides a large
number of criteria for scoring rules. This paragraph will explain the
relevant criteria for this thesis.

Definition 4.3.1. The support of a rule,

supp (A→ T ) =
|A→ T |
|S|

∈ [0, 1], (4.43)

states, how many samples (in percent) fulfill the rule A → T re-
garding a database set S.

Definition 4.3.2. The completeness of a rule,

compl (A→ T ) =
|A→ T |
|T |

∈ [0, 1], (4.44)

denotes the fraction of how many samples showing the desired
target T can be predicted by the rule.

Definition 4.3.3. The confidence,

conf (A→ T ) =
supp (A→ T )

supp (A)
∈ [0, 1], (4.45)

describes the accuracy of a rule. A value of 100% means, that the
condition of A has always predicted the target T correctly.

Definition 4.3.4. The leverage function,

lev (A→ T ) = supp (A→ T )− supp(A) · supp(T ) (4.46)

from Piatetsky-Shapiro [55] states a rules interestingness. It can be
understood as a value describing, how much the prediction of a rule
deviates from a statistical random event.
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How are Rules Ranked Here? We found the leverage criterion fit
our filtering demands quite well, since it rates rules with a high pre-
diction accuracy and also large sample counts higher. Therefore the
set of mined antecedents from equation 4.42 is taken, and ranked ac-
cording to the leverage function,

A(ranked) := {Aj | conf (Aj → T ) ≥ α
∧ lev (Aj → T ) > lev (Aj+1 → T )}.

(4.47)

How to Remove Redundant Rules? The antecedents in equation
4.47 are ranked, but may still be redundant. Due to the structure
of decision trees, a smaller rule may only be redundant regarding a
larger rule, if the smaller rule is entirely contained within the larger
one. This makes filtering especially easy. The algorithm simply iter-
ates through A(ranked) downwards, takes every rule and removes all
following rules, which are contained in our higher ranked rule. The
result is a set of unique design spaces,

A(ranked&unique) := {Aj | conf (Ai → T ) ≥ α
∧ lev (Aj → T ) > lev (Aj+1 → T )

∧Aj ∩Ak = ∅ ∀ j 6= k}.
(4.48)

The set of ranked and unique rules is visualized for our example
dataset in figure 4.14. The algorithm has extracted a total of seven
rules. The two largest zones are ranked highest, as desired, but many
smaller ones still exist. Note how the rules also do not intersect. Hav-
ing extracted the seven rules raises the question, how many rules are
actually interesting for an engineer.

How to Determine the Number of Relevant Rules? Having ranked
the rules, leads to the final step of filtering. An algorithm ought to
determine how many rules are actually relevant, and thus worthy of
being shown to the engineer. In order to determine the number of rele-
vant rules, the completeness γj for every entryAj in setA(ranked&unique)

needs to be computed,

γj = compl(Aj → T ) ∀ Aj ∈ A(ranked&unique). (4.49)
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FIGURE 4.14: Visualization of the ranked and unique rules for the
example dataset of figure 4.12. The target class (red) can be iso-
lated with seven rules, where the two largest ones are also highest

in rank as desired.

For further filtering, we need the cumulative sum of the complete-
ness,

Γj =

k=j∑
k=1

γk. (4.50)

The cumulative sum Γj for a ranked and unique rule j sums up
the completeness of all higher ranked rules k. This simply states how
many samples of target T (in percent) are predictable, if one is using
the j highest rules. There are two important properties to note for the
cumulative sum of completeness: Higher ranked rules (usually) have
a larger completeness, and the sum of the completeness will always be
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1 (100% target samples covered). In consequence, plotting the cumu-
lative sum resembles a square root function, converging against 1 (see
figure 4.15 left).

The major question is, at which point is it not worth using an addi-
tional rule. In this thesis, we postulate this point to be the outermost
knee point of the cumulative completeness. Searching for the outer-
most knee, can be done with the ’elbow method’, which is often used
to determine the number of relevant clusters during clustering [26]. In
order to find the largest knee, we simply compute the second deriva-
tive ∆2Γj by using forward differentiation,

∆Γj =
Γj+1 − Γj

1
, (4.51)

∆2Γj =
∆Γj+1 −∆Γj

1
= Γj+2 − 2Γj+1 + Γj ,

(4.52)

and search for the minimum,

#rules := argmin
j

(
∆2Γj

)
. (4.53)

This is also illustrated in figure 4.15. By using this automatic filter-
ing, the algorithm determines two major rules for the example dataset.
These are shown in figure 4.16.

Figure 4.15 illustrates the automatic rule filtering for the example
dataset. The algorithm has determined that only two rules from origi-
nally seven (see fig. 4.14) are relevant. The most relevant rule has the
bounds,

0.91 < X1 < 1.2→ T, (4.54)

and the second most relevant rule has the limits,

0.51 <X1 < 0.91

0.33 <X2 < 0.76
→ T. (4.55)

How many samples are required for rule mining? This algorithm is
inherently tuned for low-sample counts, by using decision tree learn-
ing. The number of samples required for mining depends heavily on
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FIGURE 4.16: The most relevant rules determined by automatic
rule filtering for the classification dataset from figure 4.12.

the data. It’s obvious, that large rules can be found much more easily
than smaller ones. In [15], it was shown for the dataset from section
5.2.2.1, that a large rule with a support of 20% (200 samples) could
even be found by drawing only 50 subsamples, which was twice as
much samples as the number of variables. A small rule with a support
of only 5% (50 samples) could no longer be mined reliably, showing
the limits of this algorithm. However, it’s important to keep in mind
here that a lot of tuning for low sample counts can be done, especially
testing different decision tree learning algorithms or by using further
rule learning techniques. In consequence, the real capabilities of rule
mining regarding low sample counts, needs not only more testing but
more importantly, also much more research, in order to give a pro-
found statement.
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4.3.5 Example for Rule Mining

The rule mining algorithm will be demonstrated for the crushed rail
dataset from figure 1.1. For this dataset, a 3-dimensional embedding
was computed (see fig. 4.6) and two clusters were identified. The
cluster buckling_bottom showed buckling initiation at the constrained
end of the rail, which will be considered undesirable here. Therefore,
our rule mining target will be defined as,

T := ¬ buckling_bottom. (4.56)

Even though the dataset consists of 1000 simulations, the cluster
buckling_bottom contains only 20 samples, which can be considered to
be very low, especially because the dataset has 173 input variables.
The rule mining finds the following rules for the target in eq. 4.56:

0.33 < impact_angle→ ¬buckling_bottom, (4.57)

−0.40 > impact_angle→ ¬buckling_bottom. (4.58)

It seems that all thes amples which show buckling_bottom, have an
impact angle around zero. Simply avoiding this range entirely pre-
vents the buckling mode. This can also be seen in figure 4.17. An
improvement of the structure is therefore possible, by simply inclin-
ing the upper end of the component with a slight angle, in order to
ensure stable buckling.

4.3.6 Making Rules Reliable

By using the previously explained algorithm, it is possible to automat-
ically mine good, rough rules from a decision tree. The issue is though,
that the rule bounds might be close to the class border, making them
highly unreliable in this area. In order to further increase the quality
of the rules, the probability of an antecedent A not predicting the tar-
get T correctly should be limited (literally ’the probability of not target
given a design space A shall be smaller than a specified limit’),

P (¬T |A∗) ≤ Plimit. (4.59)

Optimization Formulation The goal is to find a new design space
A∗, which satisfies the inequality 4.59. Therefore, a rule antecedent
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FIGURE 4.17: The two most important rules in order to avoid
buckling_bottom for the rail dataset from figure 1.1 . The small
rule is ranked higher, because it contains more samples, which is

a flaw resulting from non-homogenous sampling.

will be seen as a function of its boundary values, which are assembled
in a vector ~z,

A = A(~z). (4.60)

By using ~z as design vector, the entire task can be reformulated as
an optimization problem,

A∗ = A(~z ∗) = argmin
~z

(P (¬T |A(~z))− Plimit)2 . (4.61)
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The probability P (¬T |A(~z)) can be computed from Bayes’ theo-
rem,

P (¬T |A) =
P (A|¬T )P (¬T )

P (A)
. (4.62)

Computing all Probability Fragments At this point, we need to de-
rive all three parts on the right side of eq. 4.62. The probability of not
fulfilling the target does not depend on the rule boundaries, and can
be computed quite easily,

P (¬T ) = supp(¬T ). (4.63)

The other two probabilities need to be estimated. Therefore, a Ker-
nel Density Estimation (KDE) for their Probability Density Function
(PDF) is used. The probability function itself will be derived by inte-
grating the PDF

P (~w(min) ≤ ~w ≤ ~w(max)) =

∫ ~w(max)

~w(min)

pdf(~w)d~w (4.64)

The vector ~w simply contains all input variables used by the rule,
and thus also used by the optimization. Because ~z contains also the
lower and upper bounds of the rule at once, it can be rewritten from
~w,

~z =
[
~w(min),T , ~w(max),T

]T
. (4.65)

The KDE is created by using a Gaussian kernel. Therefore, the KDE
simply builds the PDF by positioning a small Gaussian at every sam-
ple point, and sums them up. In consequence areas with many sample
points have a high probability density,

pdf(~w) =
1

Nsamples

Nsamples∑
i=0

1√
det(2πK)

exp

(
−1

2
~̃w
T

i
~K−1 ~̃wi

)
, (4.66)

~̃wi = ~w − ~wi. (4.67)
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In eq. 4.66, K is the kernel matrix and ~̃wi is the distance between
location ~w and sample i in the rules variable space. The kernel matrix
K has the diagonal form,

Kij =

{
3.49σ̂jN

− 1
3

samples , ∀ i = j

0 , else
, (4.68)

and uses Scott’s rule of thumb [61] for every variable j. The rule
of thumb depends on the estimate of the standard deviation σ̂j . The
optimization requires the computation of the partial derivatives of the
probability function eq. 4.64 regarding the rule limits,

∂P

∂~z
=

[
∂P

∂ ~w(min)
,

∂P

∂ ~w(max)

]T
. (4.69)

These derivatives can be computed numerically, but it is much
more efficient to use an analytical derivative. The analytical deriva-
tive requires the matrix K to be diagonal, which means, that the rule
variables are treated independently. Using this assumption, the ana-
lytical derivatives are:

∂P

∂w
(min)
q

= − 1

Nsamples

Nsamples∑
i=0

1√
det(2πK)

·

Nvars∏
j,j 6=q

√
2πKjj

2

(
erf

(√
1

2Kjj
w̃

(max)
ij

)

−erf

(√
1

2Kjj
w̃

(min)
ij

)))

· exp
(
− 1

2Kqq
w̃

(min)
iq

)
,

(4.70)
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∂P

∂w
(max)
q

= − 1

Nsamples

Nsamples∑
i=0

1√
det(2πK)

·

Nvars∏
j,j 6=q

√
2πKjj

2

(
erf

(√
1

2Kjj
w̃

(max)
ij

)

−erf

(√
1

2Kjj
w̃

(min)
ij

)))

· exp
(
− 1

2Kqq
w̃

(max)
iq

)
.

(4.71)

How equations 4.71 and 4.70 are derived is outlined in more de-
tailin [41].

Example case for Rule Optimization In order to illustrate the rule
optimization, the example dataset’s most important rules (see fig. 4.16)
will be optimized for higher reliability. For the example dataset, we
want to limit the probability of the two most important rules being
wrong to 1%, which is very low.

Figure 4.18 shows the result of rule optimization. The two base
rules, which will be optimized, are from this section’s example dataset.
The bright rule in every plot is the old base rule, the dark one is always
the new, optimized rule. The probability of each rule being wrong
shall be limited to 1%. The border of the most important rule touches
the class border only at the upper and lower end. Therefore, the rule
is not reduced in size too much by optimization. The second, most
important rule is more volatile, because it shares the entire left edge
with the other class. If an engineer were to choose a design exactly at
the border, any physical scatter might cause a violation. The rule op-
timization reduces the size of the rule a lot, and also shifts it a little bit
to the right. A small shift may happen, but a large shift is impossible,
due to the term P (A) in eq. 4.62. If a large shift were to be necessary,
then the optimization would fail, which indicates that the rule is not
optimizable for the specified reliability. After optimization, a design
can be chosen by the engineer anywhere in the optimized rule, even
at the borders, with the assurance that the design will be safe.
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FIGURE 4.18: The probability of rules to be wrong was limited to
1% by optimization of the rule bounds.
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Chapter 5

Examples

5.1 Buckling analysis of a cantilever plate

This example is an impact simulation of a ball onto a sheet of metal
and originates from [18]. Since the structure itself is 2-dimensional, it
will serve as an example for planar dimensionality reduction. This ex-
ample is of interest, since it combines an unstable sheet structure with
an uncertain, dynamic load, thus being a good example for robustness
analysis. Also such sheet impacts occur frequently during the crash
simulation of a car. The impact is happening at such an angle, that the
deformation may deviate strongly given slightly different initial con-
ditions. As such, this model is expected to yield multiple deformation
patterns and thus is more difficult to handle for the dimensionality
reduction algorithm in contrast to the rail model from section 1.3.

5.1.1 Model Description

The model in figure 5.1 resembles a cantilever beam which is con-
strained at the left end and receives a traversal load on the right. The
load is the upward impact of a ball onto the frame. The Cantilever
Plate has a width of 150mm and a height of 100mm and is stabilized
by a small frame with a width of 10mm. The impacting ball has a
diameter of 30mm. The mesh has an average element-size of 1.5mm
which results in 8704 elements for the plate and 4903 elements for the
ball. The material model of the plate is defined by the LS-Dyna key-
word *MAT_PIECEWISE_LINEAR_PLASTICITY (MAT24) describing
a yield curve for isotropic hardening. The element formulation cho-
sen was ELFORM 16, which are fully integrated shells ( four in-plane
integration points [29]) in combination with five integration points in
thickness direction. The ball has a mass of 0.001175kg. Also as a note,
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FIGURE 5.1: The cantilever plate is constrained at the left end and
is hit on the right side with a ball, which is flying upwards. The
balls initial position (PX,PY,PZ) and initial velocity vector (~V ) are

varied for every simulation.

the time integration schema in LS-Dyna is using a modification of the
central difference method [29].

Input variables The main purpose of the model was to trigger, de-
tect and relate different buckling modes to the input variables. In total,
there are only six input variables: three variables for the variation of
the velocity vector, and three for the variation of the ball position. The
variables are varied as follows:

The distance of the ball to the plate was only varied numerically
by its vertical position PY, in order to induce slightly different contact
situations in the FEM solver. The variation of VX and VZ causes the
ball not to hit in a vertically perfect manner.



5.1. Buckling analysis of a cantilever plate 77

variable max. variation
PX ±5mm
PY ±0.001mm
PZ ±5mm
VX ±50mms
VY 8000± 300mms
VZ ±50mms

Sampling Scheme The idea of this model was to test the capabilities
of planar dimensionality reduction with a highly unstable structure.
To trigger different buckling modes, a uniform LHS design was cho-
sen. In total, 1250 samples were generated and computed.

Responses and Targets This simulation model has no responses to
keep track of. We are only interested in the variety of buckling modes
and how they are caused.

5.1.2 Results of the Buckling Analysis

What Major Deformation Modes Occur? The embedding for the
cantilever plate is shown in figure 5.2. The structure itself is very com-
plex, revealing a highly unstable buckling behavior. In general, three
major clusters are visible.

The two outer clusters in the figure are mainly longitudinal, whereas
the cluster in the middle is very twisted and thus also hard to visual-
ize. The strong twist is an indication that the entire structure does
not have enough freedom to fully unfold itself in a lower dimension.
Therefore, it seems better to make an individual embedding for every
large clusters later on, to gain further insights.

In order to understand the difference between the clusters, rep-
resentative simulations are shown. The representative samples are
colored in an undeformed state, according to their plastic strain with
a maximum of 2% at the end of the simulation. This helps to com-
pare and visualize buckling lines, and also illustrates the view of the
dimensionality reduction algorithm. While large_cluster3 has a very
unique buckling style for its curvy buckling line, the other two clusters
seem to be much more similar. On closer observation, large_cluster2
has a strong, central buckling line, whereas in large_cluster1 the buck-
ling line never runs exactly through the center.
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FIGURE 5.2: Embedding of all 1250 runs of the cantilever plate.
The embedding can be separated into three major cluster, of

which two are mainly longitudinal and one is very twisted.

What Effects are Happening in large_cluster1? This paragraph will
specifically discuss large_cluster1, which is shown in figure 5.3. large_-
cluster1 has one major, longitudinal dimension, and is separable into
three reasonable sub-clusters. cluster1 has a very high density of sam-
ples, and contains in total 498 samples, which are roughly 40%. Sev-
eral representatives have been picked along the longitudinal dimen-
sion to illustrate the transition of states. The transition from cluster1 to
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FIGURE 5.3: Embedding for solely large_cluster1 from figure 5.2.
The general structure is longitudinal, but also shows large scatter

in the middle.
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the middle of cluster2, shows that a second buckling line is develop-
ing in the top area. As this buckling line becomes stronger, the lower
buckling line decreases in strength. Along the path from the middle of
cluster2 to the end of cluster3, a third major buckling line is developing
in the top left corner. While this third buckling line is increasing, once
again the other line simultaneously decreases.

What Effects are Happening in large_cluster2? In order to gain an
understanding of large_cluster2, an embedding was created solely for
this cluster. The embedding is shown in figure 5.4. Also large_cluster2
can be split into 6 further sub-clusters. The main structure consists of
cluster4, cluster5 and cluster6. These three clusters are connected, and
thus are expected to have a smooth transition. The difference along the
transition is a shift from a buckling line in the lower right (see cluster4)
to a buckling line in the top left region (see cluster6). cluster7 emerges
from cluster5 and has a decrease in the strength of the central buckling
line. The remaining two clusters are a little detached from the others.
The representative of cluster8 looks similar to the neighboring cluster6,
but with a much weaker buckling line in the top left. By watching ad-
ditional samples, it can be confirmed that the top left line is decreasing
in strength along cluster8. The last cluster to discuss is cluster9. In con-
trast to all other runs, it has a very strong buckling line in the lower
right, at the location of the impact. Also, the plastic strain in the top
left is much more distributed, in comparison to other clusters.

How to Trigger or Avoid a Specific Cluster? Following the previous
step of effect detection, 10 sub-clusters were detected in total. For this
example, it was quite hard to give the clusters sensible names, since
their differences were more difficult to describe. The cluster hierarchy
previously shown is summarized in table 5.1.

Running feature importance ranking on these clusters reveals that
the input variables PX and PZ are the most important ones, causing
more than 85% of entropy reduction in the random forest. PX and PZ
describe the positioning of the ball underneath the plate (see fig. 5.1).
Therefore, all samples are plotted according to these two variables in
figure 5.5. The colors are the respective cluster labels for each sample.

The clusters can be predicted very well from just these two vari-
ables since relatively clear zones and borders exist. Sometimes there
are samples from another cluster in another cluster region. These can
partially be explained as wrongly clustered ones, but sometimes no
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and thus unfolds the twisted structure much better.
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Large Cluster Sub-Clusters

large_cluster1
cluster1

to
cluster3

large_cluster2
cluster4

to
cluster9

large_cluster3 cluster10

TABLE 5.1: Summary of the clustering hierarchy for the can-
tilever plate.

reason can be found. Interestingly, rule mining could be used if de-
sired, but since the regions are easily separable in 2D, it does not make
much sense. The rule mining algorithm would create boxes as large as
possible for the specified cluster region, and output them as rules.
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5.2 Analysis of a Car Crash

The last example in this thesis is the full-frontal crash of a 2007 Chevro-
let Silverado. The FEM-Model was published by the Center for Col-
lision Safety and Analysis (CCSA) at George Mason University [44].
The Silverado is available at the website of the National Highway and
Traffic Safety Administration (NHTSA). The main idea of this example
is to investigate the deformation behavior of the car, if its sheet thick-
nesses were to be varied. This is interesting because low thicknesses
mean weight savings, and thus a reduction in fuel consumption and
CO2 emissions.

FIGURE 5.6: Simulation of a 2007 Chevrolet Silverados’ full
frontal crash.

5.2.1 Model Description

The simulation model is a car, which crashes with a velocity of 56.32kmh
into a rigid barrier. As it has almost 1 million nodes and elements, the
model can be considered to be of moderate size.

Input Variables The model was not altered topologically in any way,
but sheet thicknesses of the crash absorbing structure were chosen as
input variables. The selected components are highlighted and labeled
in figure 5.7. The nominal value of each thickness was imposed with
a variability of ±15%. The material of the crash absorbing structure
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is steel and was modeled using *MAT_PIECEWISE_LINEAR_PLAS-
TICITY (isotropic hardening), which utilizes a yield curve to describe
the elastoplastic behavior.

FIGURE 5.7: The sheet thickness of the highlighted components
were varied during the investigation. The naming label consists
of three parts: the name itself, a location specifier (e.g. U for up-

per) and then a letter for left or right.

Additionally, the boundary conditions were also imposed with vari-
ation. Therefore, the initial velocity of the car and the impact angle
onto the barrier were selected. This makes sense for the reason that a
structure is usually very susceptible to the way the load enters it. The
distance between the car and the barrier was also added to the vari-
able set, but was only varied numerically. In total, the set of variables
consists of:

• 24 sheet thicknesses: ±15%

• initial velocity (VELOCITY): 15645mms ± 10%

• impact angle (WALL_YAW): 0± 6 deg

• impact distance (WALL_X): ±0.001 mm
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Variable Name base thickness [mm]
T_AARM_L 2.70
T_AARM_R 2.70
T_ABS2_L 3.50
T_ABS2_R 3.50
T_BODY_L 2.16
T_BODY_R 2.16
T_BUMPER 1.42

T_FRONT0_L 2.56
T_FRONT0_R 2.56
T_FRONT1_L 2.95
T_FRONT1_R 2.95

T_MOT_LOW_L 3.80
T_MOT_LOW_R 4.22
T_MOT_MID_L 3.40
T_MOT_UP_L 3.24
T_MOT_UP_R 3.82

T_RAIL_L 2.55
T_RAIL_R 2.55
T_REAR_L 3.18
T_REAR_R 3.18

T_SHOCK_L 3.24
T_SHOCK_R 3.24

T_XBEAM_LOW 2.46
T_XBEAM_UP 2.16

TABLE 5.2: Mean thickness of the crash absorbing sheets shown
in figure 5.7.
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Sampling Scheme This investigation was intended as design space
exploration. Therefore, the variables were varied with a LHS design.
In total, 1000 simulations were performed.

Responses and Targets Since the model has neither a dummy, nor
a seat, no occupant criteria are available. Despite this drawback of
the model, the intrusion is measured at several points of the frontal
wall, which separates the interior and the engine. This measurement
reveals whether engine parts violate the cabin space.

Beyond casual responses, it is of major interest to witness the dif-
ferent deformation modes of the crash absorbing structure for two spe-
cific reasons. Firstly, it is always interesting to uncover beneficial or
undesired types of deformation. Secondly, a response violation, such
as a high intrusion, could in the past often be related to inefficient en-
ergy absorption beforehand, and thus to deformation classes.

Partition for Dimensionality Reduction The dimensionality reduc-
tion in this thesis relies on regression of a line through selected compo-
nents of the crash absorbing structure. The selected structural compo-
nents are the same components that were used for the input variables
(see figure 5.7). These selected components cannot be approximated
by a single line, but need a manual decomposition into further groups.
In total four groups were created: one for the left rail, one for the right
rail, one for the crossbeam and one for the bumper. These groups are
shown in figure 5.8. Splitting up the structure into sensible groups and
watching each related embedding individually, has proven to yield su-
perior quality for low-dimensional visualization.

5.2.2 Results of the Structural Components

The result section discusses the four reduced components individu-
ally.

5.2.2.1 Analysis of the Bumper

The embedding of the bumper is shown in figure 5.9 and forms three
clusters. The three clusters represent buckling on the left, in the mid-
dle or on the right of the bumper. The question is, what caused these
three deformation types. An importance ranking strongly suggests
the impact angle (WALL_YAW), with an importance of 70%, and the
bumper sheet thickness (T_BUMPER) with 16%.
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FIGURE 5.8: The crash absorbing structure is divided into four
separate groups for dimensionality reduction. The geometric

simplification of these four groups are four lines.

Plotting all runs over the two most important variables, and col-
oring them according to their respective cluster in figure 5.10, reveals
that all three buckling modes can be predicted by just using these two
variables. A WALL_YAW below zero always leads to the cluster buck-
ling_left, independent of all other variables. Similarly, in the event
of 0 ≤ WALL_YAW ≤ 2.3, the cluster buckling_mid is triggered. For
WALL_YAW > 2.3 the bumper thickness also becomes relevant, mak-
ing it possible to also trigger buckling_mid, if it is high enough. If not,
the cluster buckling_right is triggered. It makes a lot of sense that these
buckling modes are strongly dependent on the WALL_YAW. At this
point, how relevant these clusters are for the rest of structure is still
open for discussion , but since the buckling mode of the bumper con-
trols the distribution of load into the structure, this information may
help resolve structural issues.

5.2.2.2 Analysis of the crossbeam

The embedding of the crossbeam is shown in figure 5.11. The structure
has a strong elongation, surrounded by a few outliers. The basic defor-
mation behavior is determined by the deformation of the left and the
right rail. Depending on how the left or the right rail gets crushed, the
crossbeam is either squeezed mainly at the right end (fig. 5.11 middle)
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FIGURE 5.9: The 3-dimensional embedding of the bumper has
three obvious cluster, which are sparsely connected.

or at both ends at the same time (fig. 5.11 bottom). The representa-
tive sample for the outliers (fig. 5.11 top) shows much lower plastic
strain at both ends, thus a lower amount of deformation occurs. From
a technical perspective it is quite interesting, that one rail almost al-
ways puts so much strain on the crossbeam, hinting for a one-sided
structural weakness of the structure.

5.2.2.3 Analysis of the left rail

The embedding of the left rail (see fig. 5.12) is the most complex one.
The central cluster is cluster2, which is directly surrounded by cluster1
on the left and cluster3 on the right. Beyond cluster3 emerges cluster4,
which is large in size, but also very sparse. It is obvious that cluster4 is
the most interesting one, due to its noisy nature.

What are the Cluster Differences? The representative samples for
the embedding of the left rail are shown in figure 5.13. Watching the
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FIGURE 5.10: The buckling modes of the bumper can be pre-
dicted from solely the impact angle and its sheet thickness.

representative of cluster1, reveals its unique property, that the rail stays
quite straight compared to all other clusters. All other clusters buckle
more strongly in the middle, which leads to higher bending of the
rail. From a technical point of view, it can be considered to be good
that the structure remains stable throughout the crash. Therefore clus-
ter1 is accepted as good. The representatives of cluster2 and cluster3
are very similar on first sight. Also in the embedding of fig. 5.12 ,
cluster3 and cluster2 look very similar in terms of their structure. Com-
paring the representative samples of cluster2 and cluster3, shows that
the frontal part of the rail of cluster3 does not get crushed entirely, in
contrast to cluster2. This is because the frontal rail of cluster3 does not
stay perfectly straight and bends to the side a little bit. Since this ef-
fect between cluster2 and cluster3 is still quite small, it is accepted as
good here. The most notable difference can be found between cluster4
and all the other clusters. cluster4 shows very low deformation in the
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FIGURE 5.11: The embedding of the crossbeam is a single clus-
ter with sparse scatter around it. The representatives are colored
according to their respective effective plastic strain with a maxi-

mum of 5%.

frontal part of the rail, so that it stays quite straight. Since the major
goal of crash simulation is energy absorption through deformation of
the rail, the behavior of cluster4 is highly undesirable, and should be
avoided.

How to prevent cluster4? In the previous section, it was decided that
cluster4 was not acceptable. Therefore, rule mining will be used to
prevent this deformation mode. The target will be defined as:

T := ¬cluster4. (5.1)

The mined antecedents are quite simple:

• T_RAIL_L < 2.65 (confidence 100%)

• T_RAIL_L > 2.65 ∧ T_XBEAM_LOW > 2.30 (confidence 99.6%)

The first rule makes sense, because a large thickness of the rail also
increases the rails stiffness. This could lead to the rail not deforming
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FIGURE 5.12: The embedding of the left rail can be divided into
four clusters. The core cluster is cluster2, which contains 91% of

all samples.

properly anymore, as shown by the representative of cluster4 in figure
5.13d. The second rule suggests that if the rail thickness is above the
recommended threshold, then the thickness of the lower shell of the
crossbeam needs to be increased, at least above the specified value.
This also makes sense, because the crossbeam holds the rail in place.
If the rail is much stiffer, then the crossbeam also has to be stiffer to
stabilize the rail properly.

Connection to Other Clusters Even though the rule mining shows
a reasonable dependency between the left rail and the crossbeam’s
thickness, no strong connection between the clusters of the crossbeam
and the clusters of the left rail was found.
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(A) Representative of cluster1.

(B) Representative of cluster2.
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(C) Representative of cluster3.

(D) Representative of cluster4.

FIGURE 5.13: Representative samples for the clusters, originally
shown in figure 5.12. The samples are colored according to equiv-

alent plastic strain with a limit of 5%.
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5.2.2.4 Analysis of the Right Rail

The right rail is the final component to be analyzed.
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FIGURE 5.14: The embedding of the right rail is mainly a large,
noisy looking cluster with a few outliers. On the right side of the

cluster is also an additional, but very small cluster.

What are the Cluster Differences? The embedding of the right rail
is shown in figure 5.14, and is simpler than the embedding of the left
rail. The embedding has only one longitudinal big_cluster with a lot
of noise surrounding it. Three outliers can be found beyond the noise.
Next to the big_cluster, there is also a small_cluster with only a few
samples.

The representatives for the clusters are shown in figure 5.15. The
difference between the big_cluster and the small_cluster is quite ob-
vious. The representative of the small_cluster stays much straighter,
in comparison to the big_cluster. The representative of the outliers
shows the same kind of deformation as the big_cluster. Nonetheless,
the frontal part does not fold perfectly, leaving an undeformed region.
The visual difference between the three clusters is small, so they are
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(A) Representative of big_cluster.

(B) Representative of small_cluster.

(C) Representative of outliers.

FIGURE 5.15: Representative samples belonging to the embed-
ding in figure 5.14.
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accepted as good. It would be interesting to understand what actually
caused the outliers, but only three samples are not enough for reliable
rule mining.

5.2.2.5 Analysis of Responses

The frontal wall separates the engine compartment from the passen-
ger cabin. The intrusion along this component was measured at 45
locations.

FIGURE 5.16: The intrusion was measured at several locations
along the frontal wall, which is highlighted here.

Evaluation Criterion Whether the intrusion is acceptable or not, de-
pends on the testing protocol. In this case, the full width frontal impact
testing protocol of the European New Car Assessment Programme
(Euro NCAP) [49] was chosen, which considers intrusions larger than
100 mm unacceptable. It is important to keep in mind that although
this evaluation criterion is based on the Euro NCAP protocol, the vir-
tual testing conditions itself are not, because the impact angle and ve-
locity are also varied.

What Intrusion Violations are Occurring? In total, 11 of 45 points of
measurement showed an intrusion exceeding 100 mm in at least one



5.2. Analysis of a Car Crash 99

simulation. 5 out of these 11 points have only very few samples violat-
ing the condition (below 5). In contrast, the other 6 points show much
stronger violations, with at least 34, but up to 112, samples not ful-
filling the criterion. As mentioned before, it must be emphasized that
the impact velocity was also greatly varied. If the velocity had been
equal to, or below, the specification of the testing protocol, only 2 out
of 1000 samples would have violated the intrusion. In conclusion, the
car seems to perform acceptably, if one does not increase the velocity,
as we did.

What is the Target? For further analysis, a new class called invalid_-
intrusion is formed. A run is assigned to the class if at least one point
of measurement violates the criterion . The target is defined to be:

T := ¬invalid_intrusion. (5.2)

What Rules Can be Found? For the target of eq. 5.2, a rule search
is performed with a minimum prediction confidence for the rules of
99%. In total, three rules were mined automatically:

VELOCITY < 16037 mm/s→ ¬invalid_intrusion. (5.3)

16037 mm/s < VELOCITY < 16475 mm/s

2.56 mm < T_FRONT0_L
2.45 mm < T_FRONT0_R
3.19 mm < T_MOT_UP_R

→ ¬invalid_intrusion.

(5.4)

16475 mm/s < VELOCITY < 16910 mm/s

2.25 mm < T_FRONT0_L
2.71 mm < T_FRONT1_R
3.59 mm < T_MOT_LOW_R < 4.83 mm

2.48 mm < T_RAIL_R
2.74 mm < T_REAR_R

→ ¬invalid_intrusion.

(5.5)
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The first rule is eq. 5.3, which states that below the given veloc-
ity, no intrusion violation can be expected (with specified tolerance).
The second rule (eq. 5.4) is already much more complex, involving
three sheet thicknesses. The first two variables relate to the connection
between the rail and the bumper, and the last variable is the thick-
ness of the motor suspension. The rule contains 47 samples in total.
While it makes sense that the motor has to be kept firmly in place at
a higher velocity, no mechanical explanation was found for the other
two variables. The last rule (eq. 5.5) is even more complex, utiliz-
ing five sheet variables. Interestingly four variables relate to the right
rail. Even though the rule seems very specific, it uses 49 samples for
its hypothesis. Like the previous rule, it was difficult to understand
the mechanical behavior behind the hypothesis. In summary, rule 5.4
and 5.5 could not be understood properly, so that these rules should
not be used blindly. In such a case, an additional investigation is rec-
ommended to check and analyze the hypothesis in detail, especially
because both rules use only 5% of the samples, which is a rather low.
This is a very good example showing the difficult border between ma-
chine intelligence and human understanding, when recommendations
become more complex.

Relating Clusters With Clusters An attempt was also made to find
strong rules inbetween clusters of different parts, for example, the left
and the right rail. However, no strong connection between the clus-
ters could be found in this example case. Occasionally two clusters
partially ’correlated’, but no strong rule was ever found.



101

Chapter 6

Summary and Conclusion

The purpose of this thesis was to create a process for the analysis of
large amounts of crash simulation data. The process flow consists of
two key elements: dimensionality reduction and rule mining.

6.1 Discussion of Dimensionality Reduction

The dimensionality reduction not only derives a lightweight and mesh-
free representation of the crash simulation results, but also enables the
computation of a normalized similarity between them. In combina-
tion with low-dimensional embedding and clustering, groups of sim-
ulations which deform in a very similar way can be found. Finally,
the engineer has to decide which deformation clusters are acceptable
in terms of simulation behavior, and which are not. Solutions for an
unacceptable deformation behavior can be investigated later on by us-
ing rule mining. What makes this dimensionality reduction algorithm
especially attractive and easy to work with, is its white-box property
for providing an understandable, intermediate representation. The re-
sulting embeddings also usually had a good quality, even on a more
detailed scale.

6.1.1 Geometric Simplification

The geometric simplification approximates a selected group of com-
ponents to either a line or plane. Since the algorithm is based on re-
gression, it demands that the selected components be physically con-
nected. How much of a downside this is for crash simulation is not
very clear, because from a technical point of view, it seems reason-
able to select physically connected components. Analyzing subgroups
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yielded better embeddings, because one does not mix up too many
effects throughout the car. It is also important to keep in mind that
approximating a very curvy structure with regression needs a high
polynomial degree, which indirectly makes the equation system more
likely to diverge, and thus cause the regression to fail. Therefore, a lot
of effort had to be put into the regression algorithm. Since regression
relies on averaging, it is susceptible to outlying, distant points, such
as parts around the rail, which do not define its longitudinal dimen-
sion. In consequence, polynomial regression is not recommended for
production stage usage and a more capable successor, which has to be
less error-prone, is needed. A generalization of the geometric simplifi-
cation could be a transformation of the simulation model of a car, into
a mainly wireframe model.

6.1.2 Projection and Smoothing

The projection and smoothing of a result field onto the simplified ge-
ometry can compensate quite well for mesh and topology differences,
in comparison to other methods. The method is not affected by dif-
ferences, such as holes or beads, but large morphings of the struc-
ture no longer yield valid comparisons, since the simplified geometry
would no longer compare the same geometrical locations. This could
be taken care of by aligning the simplified geometry, which would also
allow the comparison of the deformation behavior of two rails, from
two different cars.

6.2 Discussion of Rule Mining

The rule mining algorithm, proposed by this thesis, allows the investi-
gation of how to achieve or avoid effects, such as a certain deformation
behavior or a high intrusion. One simply needs to split the simulations
into two groups: one showing the desired effect and one not. The al-
gorithm then searches the input parameters of these simulations and
tries to work out why this effect occurs. The algorithm focuses on
simplified regions in the variable space, in which it can safely isolate
large fractions of the good simulations, and thus can predict the effect
shown by these simulations. It is important to mention that the solu-
tion spaces are simplified, so that humans can understand them more
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easily. An advantage is not only that the recommendations are under-
standable by humans, it is also fairly easy to combine multiple target
conditions and use discrete and continuous variables at the same time.

6.2.1 Insights of Decision Tree Learning

The backbone of the rule mining algorithm is a decision tree classifier,
which indirectly brings all its advantages and disadvantages with it.
The most notable properties are that DTs are a white-box model, they
deal well with low sample counts and also perform automatic variable
selection. Especially the first property gives an engineer the opportu-
nity of investigating the thoughts of the algorithm, in contrast to other
classifiers, such as artificial neural networks. As has been stated, the
DT uses only the most important variables. If two input variables are
redundant, then one of them will be omitted. This could be a problem
if a recommendation with the second variable was easier to realize.
Decision tree learning relies heavily on heuristics, thus the quality of
the heuristic learning process has a direct influence on the quality of
the recommendations given to the user, by the rule mining engine. At
the present time, it is difficult to state the full potential of DT-based
rule mining for simulation data, because a lot of the process compo-
nents can be optimized.

6.2.2 Limits, Flaws and Unknown Potential

In this thesis, the largest example in terms of variable count, still had
about ten times more simulation samples than variables. The true lim-
its of rule mining in this respect must be investigated and also devel-
oped further. In the field of crash simulation, it is quite easy to create a
simulation model with one hundred thousand input variables. At the
same time, the industry wishes to use as few samples as possible. In
addition, this rule mining algorithm suffers from the curse of dimen-
sionality, thus low sample counts in combination with a high variable
count.

The reliability optimization of the rules can increase their quality
a lot, but one has to keep in mind that it is based on the estimation
of a probability density function. The quality of the estimation will
worsen with an increasing dimensionality of the rule; thus, it is not
suitable for rules with more than four variables.

It would also be interesting to compare this rule mining algorithm
with others. While existing algorithms were not deemed to perform
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very well, with several modifications they might be able to do so.
In consequence, a lot of hidden potential can be expected in this re-
search field, especially because rule mining for simulation data is a
very young topic.
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Appendix A

Description of the
Longitudinal Rail

The model consists of a longitudinal rail with a total length of 400mm.
The schematics are shown in figure A.1. The model resembles a drop-
tower test, where a mass is dropped onto a specimen to analyze it’s
deformation behavior. This is frequently done in the domain of auto-
motive engineering to investigate for example different crash boxes.
The data for the model originates partially from a real, physical test.

The rail consists of two sheets which are connected with 13 spot-
welds along each flange. In the Design of Experiments investigation in
this thesis, the design variables of the simulation model were varied
with a normal distribution. In the following, the variables shall be
enlisted with their distribution parameters.

variable name mean value [mm] std. deviation
profile_top_width 64.2 2.
profile_bot_width 73.3 2.
profile_upper_width 116.9 1.
profile_lower_width 116.9 1.
profile_height 90.3 1.5
profile_length 400. 2.
profile_t 2.5 0.1
profile_r_bottom 4. 0.5
profile_rTop 6. 0.5

TABLE A.1: Geometric variables of the simulation mode in figure
A.1.
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(A) Schematics of the two profile sheets.

(B) Schematics of the component with covering plates, which are connected
by seamlines.

FIGURE A.1: Schematics of the longitudinal rail.
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The material of the rail sheets was an AA6016-T6 aluminium. Its
mechanical properties are defined in by the LS-Dyna keyword *MAT_-
PIECEWISE_LINEAR_PLASTICITY also known as MAT24. The elasto-
plasticity is defined by a yield curve, thus an experimental curve of
effective stress over effective plastic strain. If the minimum effec-
tive stress (yield criterion) is reached, elastoplastic deformations occur.
The plastic behavior uses isotropic hardening. The yield criterion can
in general be understood as an offset value for the entire elastoplastic
curve. This offset value was used as a design variable for the lower,
planar sheet in order achieve a different stiffness relation and thus trig-
ger possibly different deformation modes. The U-Profile is created by
using cold forming. There are four forming edges (two lower and to
upper in figure A.1). These forming edges are represented geometri-
cally by radii and have an own material property to account for the
effects of forming, therefore the offset value is higher than the base
value of the rest of the material.

variable name mean value [GPa] std. deviation
profile_lower_matOffset 80 10
profile_radius_matOffset 90 8

TABLE A.2: The material variables are the yield criterion for the
upper U-profile.

The impactor is a circular disk, which drops onto the specimen
with a predefined velocity. The angle of impact was varied in such a
way, that the inclination is either more to the front or the rear. In conse-
quence the plate hits the respective part of the model first. In addition,
also the mass was varied along with the impact velocity. The uncer-
tainty of the velocity was computed from the uncertainty of the height
from which the plate is dropped. The variation of the mass was origi-
nally intended to consider slightly different impactors, though usually
for one investigation one impactor is used for all specimens. Since the
goal was to trigger different deformation modes, this was not seen as
a severe issue for the reason that the variation in mass simply varies
the kinetic energy a little bit more.

The lower and upper profile sheets are covered by two plates at
both ends by using welding. These seam lines are also taken into ac-
count as a source of scatter, especially since such specimens are usu-
ally crafted by hand and thus have a high uncertainty in terms of their
exact length.
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variable name mean value std. deviation
crushPlate_angle 0° 3
crushPlate_mass 165kg 1
crushPlate_initialVy -8056mm/s 0.06

TABLE A.3: For the impactor, the impact angle, the mass and the
impact velocity were varied.

variable name mean value [mm] std. deviation
seamline_top_width 40 4
crushPlate_mass 50 4
crushPlate_initialVy 40 4

TABLE A.4: Variational parameters of the welding seams, which
connect the two ending plates with the profile.

A majority of the design variables is caused by the weld spots con-
necting the two profile sheets, since every weld spot was modeled in-
dependently from all others. The naming has the following scheme:
SP[+ and - to distinguish left and right][number]_[variable name], e.g.
SP+1_radius. The variation includes not only the position, but also the
stiffness, the size and the failure stresses of shear (rs) and tension (rn).
Below shall only parameters be enlisted, which are different between
the spotwelds (such as position).
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variable name mean value std. deviation
SP*_radius 8 0.08
SP*_stiff 40 0.4
SP*_rn 7.46 0.746
SP*_rs 20. 2.
SP+1_x 48.45 1.
SP+1_y 20. 1.
SP-1_x -48.45 1.
SP+2_y 50. 1.
SP+3_y 80. 1.
SP+4_y 110. 1.
SP+5_y 140. 1.
SP+6_y 170. 1.
SP+7_y 200. 1.
SP+8_y 230. 1.
SP+9_y 260. 1.
SP+10_y 290. 1.
SP+11_y 320. 1.
SP+12_y 350. 1.
SP+13_y 380. 1.

TABLE A.5: Parameters of the spot welds connecting the two
profile sheets. Only the differing variables are enlisted here (*
is a placeholder adressing any variable with that pattern in the
name). In total there are 6 parameters per spotweld, which are
districuted along 2 flanges with 13 spotwelds. This results in 156

parameters for the spotwelds only.
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